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Chapter 1

Introduction and Purpose

1.1 Overview

Recently, it has been suggested that a nonuniform superconducting state called

the Fulde–Ferrell–Lakin–Ovchinnikov state (the FFLO state) may occur in exotic

superconductors, such as heavy fermion and organic superconductors [1–3]. This

state occurs when spin-polarization energy is large in clean type-II superconductors

in strong magnetic fields [4, 5]. Therefore, the orbital pair-breaking effect needs to

be weak. The FFLO state is induced by Cooper pairs with nonzero center-of-mass

momenta q. Hence, because q 6= 0, the order parameter of this state spatially

oscillates.

The FFLO state had not been observed for a long time for the following reasons.

Because the impurity scattering destroys the FFLO state [6,7], the sample needs to

be clean for the occurrence of the FFLO state. Therefore, in conventional alloy type-

II superconductors, the FFLO state does not occur because they contain impurities

that make the coherence length ξ small. In addition, in alloy superconductors, the

orbital pair-breaking effect is strong. This effect can be weak, if the magnetic field

1



is applied in the direction parallel to the film metal superconductors. However, the

FFLO state was not observed. A possible reason is that the magnetic field was not

precisely parallel to the film [8].

In contrast to conventional alloy superconductors, the exotic superconductors

can be clean type-II superconductors, and simultaneously, the heavy effective mass

and/or narrow band width of these superconductors can suppress the orbital pair-

breaking effect. Therefore, the FFLO state can occur in the exotic superconduc-

tors [2, 3].

In addition, quasi-low-dimensional structures of these superconductors are fa-

vorable to the FFLO state because of a stabilization effect that originates from the

Fermi surface structure, which is analogous to the nesting effect for the charge den-

sity wave and spin density wave (CDW and SDW) [9–11]. The pairing anisotropy

in exotic superconductors also contributes to the nesting effect for the FFLO state.

There is another mechanism that stabilizes the FFLO state, when the singlet and

triplet order parameters coexist. This effect is called the order-parameter mixing

effect [12, 13].

In Section 1.2 of this chapter, we review the fundamental properties of the FFLO

state and these stabilization mechanisms, then we review the possibility of the FFLO

state in organic superconductors.

In the quasi-one-dimensional (Q1D) organic compound (TMTSF)2ClO4, where

TMTSF stands for tetramethyltetraselenafulvalene, Yonezawa et al. observed the

angular dependence of the onset transition temperature T onset
c (φ), where φ denotes

the angle between the in-plane magnetic field H and the crystal a-axis [14,15]. They

found that the principal axis of T onset
c (φ) changed at a high field, and argued that this

may be related to the possible emergence of the FFLO state. In this compound, the

FFLO state and the anisotropic superconductivity have been studied theoretically
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and experimentally by many authors, as reviewed in Section 1.3.

These theoretical and experimental studies motivated us to examine the FFLO

state in Q1D anisotropic superconductors. In particular, we focus on the nesting

effect and the order-parameter mixing effect.

This thesis is organized as follows.

In Chapter 2, we review the superconductivity in the magnetic field. In

(TMTSF)2X (X = ClO4,PF6, etc.), it has been suggested that the orbital pair-

breaking effect is not negligible, although this effect is sufficiently weak. We review

the orbital and paramagnetic pair-breaking effects in type-II superconductors and

the FFLO state in the presence of a weak orbital pair-breaking effect [8, 16].

In Chapter 3, we survey the anisotropic superconductivity in Q1D systems. In

these systems, various pairing interactions have been theoretically discussed by many

authors [17–19]. We assume pairing symmetries according to the studies reviewed

in this chapter.

In Chapter 4, we formulate the upper critical field and the transition temperature

of the FFLO state in Q1D systems. We also explain assumptions in the thesis, such

as that on the orbital pair-breaking effect.

In Chapter 5, we apply the theory to (TMTSF)2ClO4. For a close comparison

to the experimental results, we adopt the energy dispersion, hopping integrals, and

lattice parameters that are realistic for (TMTSF)2ClO4.

In Chapter 6, we examine the in-plane-magnetic-field-direction dependence of

the stability of the FFLO state. We compare the theoretical results with the opti-

mum direction of H observed at high fields. We examine the relation between the

optimum direction and hopping parameters. Lastly, we examine the mixing effect

for the FFLO state in Q1D systems.

In Chapter 7, we discuss the results and conclude the thesis.
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1.2 The FFLO state

In this section, we review the fundamental properties of the FFLO state and its

stabilization mechanisms.

In conventional superconductors, the superconductivity is induced by the Cooper

pairs of two electrons with k ↑ and −k ↓. In this thesis, we refer to such a supercon-

ducting state as the BCS state. In the absence of the orbital pair-breaking effect,

the BCS state is broken into the normal state when the magnetic field reaches a

value so that the condensation energy coincides with the spin polarization energy.

This field, which is called the Pauli paramagnetic limit (Chandrasekhar-Clogston

limit) [20], is expressed as HP = ∆0/µe

√
2, where ∆0 and µe are the energy gap at

the zero-field and the magnetic moment of the electron, respectively.

The FFLO state is induced by the Cooper pairs of two electrons with k ↑ and

−k+q ↓ near the Fermi surfaces splitted by the Zeeman energy as shown in Fig. 1.1.

k↑

−k+q↓
q

Figure 1.1: Schematic figure of the FFLO state. The solid and dashed curves show the Fermi

surfaces of electrons with up and down spins, respectively.
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In this state, the order parameter spatially oscillates as ∆q(R) ∝ eiq·R, where

R is the center-of-mass coordinate. We refer to the spatial oscillation of the order

parameter and the nonzero q as the FFLO modulation and the FFLO vector, re-

spectively. Fulde and Ferrell examined the state expressed by ∆(R) = eiq·R∆1 [4].

Larkin and Ovchinnikov examined the state expressed by ∆(R) = cos (q ·R)∆1 [5].

Because of this modulation, the condensation energy of the FFLO state is larger

than that of the BCS state. However, if a gain in the spin polarization energy

reduces the total energy, the FFLO state occurs. Therefore, the FFLO state can

occur at high magnetic fields where the BCS state is suppressed when H > HP as

shown in Fig. 1.2 [9]. T ∗ denotes the tricritical temperature of the FFLO, BCS,

and normal states. In the absence of the orbital pair-breaking effect, T ∗ ≈ 0.56T
(0)
c ,

where T
(0)
c is the zero-field transition temperature.

H

T 
≈ 0.56 Tc

tricritical temperature T
*

FFLO
HP

second order transition

first order transition

Normal state

BCS state

Hc

Tc

Figure 1.2: The H-T phase diagram in an isotropic two-dimensional system in the absence of

the orbital pair-breaking effect [9].

If the orbital pair-breaking effect is stronger than the spin pair-breaking effect,
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the superconducting state cannot survive by the Pauli paramagnetic limit. Hence,

it is required that the orbital pair-breaking effect is smaller than the spin pair-

breaking effect. The organic superconductors are clean type-II superconductors,

and simultaneously, the orbital pair-breaking effect can be weak when the magnetic

field is applied to the conductive plane.

The orbital pair-breaking effect is invariably present in type-II superconductors.

Gruenberg and Gunther examined the FFLO state in the presence of the orbital

pair-breaking effect in isotropic three-dimensional systems [16]. They showed that

the direction of the FFLO vector q is locked in that of the magnetic field H in the

presence of a weak the orbital pair-breaking effect; i.e., q ‖ H .

1.2.1 Fermi surface nesting for the FFLO state

In this subsection, we review the nesting effect for the FFLO state [9–11,21–23]. In

this state, there exist the characteristic FFLO vectors q analogous to the nesting

vector Q in the CDW and SDW states. Therefore, for the FFLO state, the Fermi

surface nesting effect can be introduced. To examine the nesting effect, it is useful

to consider the overlap of the Fermi surface of the up spin electrons and the Fermi

surface of the down spin electrons that is shifted by q (hereafter simply expressed

as “the Fermi surfaces” at some subsequent instances below). In the following, we

ignore the orbital pair-breaking effect. Figure 1.3 is a schematic figure of the Fermi

surface nesting for the FFLO state.

In one-dimensional (1D) systems, the Fermi surfaces fully touch on a surface,

where one of them is shifted by an appropriate q, and nesting is perfect. Thus,

the upper critical field of the FFLO state (HFFLO) diverges at T → 0. It may

appear that the FFLO state is most stable in 1D systems. However, in 1D systems,

because the usual nesting instability induces the SDW or CDW at a higher transition
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q

FS↓

FS↑

Figure 1.3: Schematic figure of the Fermi surface nesting for the FFLO state. The black solid

and dashed curves show the Fermi surfaces of electrons with up and down spins, respectively. The

red dotted curve shows the Fermi surface of electrons with down spin shifted by q(small arrow).

temperature for realistic coupling constants, the superconducting transition hardly

occurs.

On the other hand, in three-dimensional (3D) systems, the Fermi surfaces touch

on a point or cross. When the Fermi surfaces cross, the nesting condition is better

than touching on a point. In this condition, HFFLO is slightly larger than HP, and

HFFLO/HP = 1.075 [4, 24].

In quasi-two-dimensional (Q2D) systems, the Fermi surfaces touch on a line in

the 3D momentum space. In particular, in isotropic Q2D systems at T = 0, it has

been shown that the length |q| is 2µeH/∆0vF, where vF is the Fermi velocity. In

this case, HFFLO =
√
2HP. When the Fermi surfaces touch on a line, dHc/dT < 0

at T = 0, which means that the upper critical field shows up-turn at low temper-

atures [9]. Therefore, it is considered that Q2D systems in which the SDW and

CDW transitions are suppressed must be most favorable to the FFLO state. The
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(TMTSF)2X compounds are classified as Q2D systems in the sense that the Fermi

surfaces are sufficiently warped enough to suppress the CDW and SDW. However,

they are traditionally called Q1D organic superconductors because one of the hop-

ping integrals is much larger than the others [21].

To clarify the nesting effect for the FFLO state in detail, Shimahara examined

the nesting effect in a square lattice system in which shapes of the Fermi surface are

changed by changing the hole density nh [11]. It might be expected that the FFLO

state is stabilized when the Fermi surface has a flat portion such as 1D systems.

However, in reality, a round Fermi surface at nh ≈ 0.630 provides the greatest

stability for the FFLO state. At nh ≈ 0.630, Hc(nh) exhibits a sharp cusp and

exceeds five times the Pauli paramagnetic limit. This sharp cusp is explained as

follows. The difference between the Fermi surfaces can be expressed by

∆kFx (ky, q) ≡ kF↓x (ky − qy)− kF↑x (ky) + qx, (1.1)

where kFσx (ky) is the Fermi surface of σ spin. ∆kFx (ky, q) is expressed as

∆kFx (ky, q) ∝ (ky − k0y)
n near ky = k0y(q) with an integer n. We have defined k0y(q)

by ∆kFx (k
0
y(q), q) = 0. When n = 1, it means that the nesting condition is cross-

ing. The upper critical field is enhanced for q that gives n = 2, which implies that

the Fermi surfaces touch on the line at ky = k0y(q). In a square lattice system at

nh ≈ 0.630, n = 4 for an appropriate q, which results in the previously mentioned

sharp cusp and extreme enhancement of Hc(nh) [11]. Therefore, the nesting effect

sensitively depends on the Fermi-surface structure. In addition, the structure of the

gap function must be taken into account because the momentum dependence near

the Fermi surfaces affects the nesting effect [10, 22, 23].

The enhancement of the upper critical field due to quasi-low-dimensionality is

physically significant for the following reasons. The orbital pair-breaking effect re-

duces the upper critical field. In 3D systems, HFFLO exceeds HP slightly; however,
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the above effect reduces the upper critical field. Hence, the FFLO state could be

suppressed (HFFLO < HP). When the enhancement of the internal magnetic field

due to Coulomb repulsive is considered, the upper critical field becomes less than

the Pauli paramagnetic limit. Therefore, for the FFLO state to exist stably, contri-

butions of the nesting effect and the order-parameter mixing effect are significant.

1.2.2 Order-parameter mixing effect

In this subsection, we review the order-parameter mixing effect for the FFLO state.

In exotic superconductors, various mechanisms of the pairing interactions have been

discussed. For organic superconductors, because the superconducting phase appears

in proximately to the antiferromagnetic phase in p-H-T phase diagrams [25,26], the

pairing interaction mediated by antiferromagnetic fluctuations is examined by many

authors. It has been suggested that such a pairing interaction contains both singlet

and triplet attractive channels [19].

In the FFLO state, the spatial symmetry in the real space is reduced because of

the FFLO vector q ( 6= 0), and simultaneously, the rotational symmetry in the spin

space is reduced because of the magnetic field. In the FFLO state, the singlet and

triplet order parameters are mixed.

When it is supposed that dominant singlet pairing mixes with subdominant

triplet pairing, the upper critical field in the presence of the order-parameter mixing

effect is larger than that in the pure singlet state [12, 13]. Besides, the tricritical

temperature T ∗ is larger than 0.56T
(0)
c , which is the tricritical temperature in the

pure singlet state. Therefore, the FFLO state is stabilized by the order-parameter

mixing effect. Hereafter, we simply express this effect as the mixing effect. Figure 1.4

shows the H-T phase diagram in the presence of the mixing effect for the FFLO

state [13].
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H

T 

HP

Hc

Tc

tricritical temperature T
*

BCS state

FFLO

second order transition 

Normal state

Figure 1.4: The H-T phase diagram in the presence of the mixing effect for the FFLO state in an

isotropic two-dimensional system [13]. The dotted curve shows the second-order transition curve

between the FFLO and normal states in the absence of the mixing effect. The open and closed

circles are the tricritical temperature in the absence and presence of the mixing effect, respectively.

The mixing effect in 3D and 2D systems has been examined by Matsuo et al. and

Shimahara [12, 13]. It has been shown that the tricritical temperature T ∗ depends

on

G = log
T

(0)
c1

T
(0)
c0

=
1

g1N1(0)
− 1

g0N0(0)
, (1.2)

where N1(0) and g1 (N0(0) and g0) are the density of state at the Fermi energy

and coupling constant of the singlet (triplet) pairing symmetries, respectively. For

example, in the s-p mixing FFLO state, T ∗ ≈ 0.67T
(0)
c0 and T ∗ ≈ 0.74T

(0)
c0 for

G = log 0.01 and G = log 0.1, respectively [12]. Therefore, it has been shown that in

these systems, the FFLO state is stabilized by the mixing effect, even if the triplet

pairing interaction very weak.
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1.2.3 The FFLO state in organic superconductors

In this subsection, we review previous researches on the FFLO state in organic

superconductors. The narrow band width of these superconductors gives quasi-low-

dimensional structures and the suppression of the orbital pair-breaking effect, which

are favorable to the FFLO state. Hence, when the magnetic field is applied to the

conductive plane in organic superconductors, the FFLO state can occur.

The occurrence of the FFLO state is suggested in the Q2D organic

compound κ-(BEDT-TTF)2Cu(NCS)2 [27], where (BEDT-TTF) stands for

bis(ethylenedithio)tetrathiafulvalene. Lortz and Bergk et al. determined the H-

T phase diagrams from experimental results of the specific heat and the magnetic

torque. Their study suggested that the superconducting phase in high magnetic

fields is the FFLO phase [28, 29]. Agosta et al. also suggested that release and ab-

sorb of latent heat relate to the FFLO state, from the calorimetric measurement [30].

NMR spectra measured by Wright et al. indicated that the phase transition within

the superconducting state is Zeeman driven [31]. In addition, Mayaffre et al. sug-

gested that the Andreev bound state observed in NMR measurement relates to the

FFLO state [32].

In the Q2D organic compound λ-(BETS)2FeCl4, where BETS stands for

bis(ethylenedithio)tetraselenafulvalene, Uji et al. carried out the resistance mea-

surement in the field-induced superconducting phase, and obtained a character-

istic dip structure suggesting the FFLO state [26, 33]. In addition, in the mag-

netic torque measurement, they obtained the result suggesting the FFLO state [34].

Shimahara reproduced the temperature dependence of the upper critical field in

the field-induced superconducting phase by taking into account the combination of

the Jaccarino-Peter mechanism and the FFLO state in the presence of the mixing

effect [35]. In a similar compound λ-(BETS)2GaCl4, Tanater et al. measured the
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thermal conductivity in the in-plane magnetic field, and obtained several results

consistent with theoretical predictions for the FFLO state [36].

Uji et al. also suggested the occurrence of the FFLO state in the

Q2D compound β ′′-(BEDT-TTF)4[(H3O)Ga(C2O4)3]C6H5NO2 from the resistance

and the magnetic torque measurement [37]. In the similar compound β ′′-

(BEDT-TTF)2SF5CH2CF2SO3, Cho et al. reported the experimental results sug-

gesting the transition between the vortex and FFLO states [38].
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1.3 Organic superconductors (TMTSF)2X

The organic compounds (TMTSF)2X, which have a Q1D structure as mentioned in

the following subsection, are clean type-II superconductors [39, 40]. Therefore, the

FFLO state can occur in these compounds.

In (TMTSF)2ClO4, Yonezawa et al. pointed out that the observed change of the

principal axis in T onset
c (φ) at a high field H0 relates to the emergence of the FFLO

state [14, 15]. Besides, they observed the up-turn at low temperatures in Hc(T ), at

which the value of Hc(T ) exceeds the Pauli paramagnetic limit HP. Lee et al. also

observed a similar behavior of Hc(T ) in (TMTSF)2PF6 [41–43]. These behaviors

are similar to that in the FFLO state where the Fermi surfaces touch on a line. In

addition, Yonezawa et al. showed that the superconducting state at high fields is

weak for impurity scattering. This result also coincides with the scenario that the

FFLO state occurs [15].

1.3.1 Crystal structure

In this subsection, we review the crystal structure of (TMTSF)2X, which is crucial

for a close comparison between theoretical and experimental results.

The Q1D superconductor (TMTSF)2ClO4 has a crystal structure as shown in

Fig. 1.5 [39,44,45]. TMTSF molecules are stacked in the a-axial direction. Overlap

of π-orbits of TMTSF molecules is largest in the a-axial direction. In the c-axial

direction, the electron transfer is blocked by anion layers. Hence, ta > tb ≫ tc,

where ta, tb, and tc denote the hopping integrals in a-, b-, and c-axial directions,

respectively.

Pévelen et al. obtained the cell parameters, which are a = 7.083 Å, b = 15.334 Å,

c = 13.182 Å, α = 84.40◦, β = 87.62◦, and γ = 69.00◦ at low temperatures and
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under atmospheric pressure from their X-ray crystallography [45, 46]. We use these

parameters, except for a value of b. For the following reason, we have halved the

value of b as b = 7.667 Å.

In (TMTSF)2ClO4, anions order in b-axial direction at low temperatures under

ambient pressure. Because of the anion order, the unit cell doubles in this direction,

and the Brillouin zone is halved. The anion order affects the energy dispersion near

the edges of the halved Brillouin zone. However, it is expected that this change in

the energy dispersion is negligible for the FFLO state, as shown in the later section,

because the position of ky on the Fermi surfaces touched by the vector q of the

FFLO state is far away from the band edges. Also in a simplified model, q ‖ a, and

the touching of the Fermi surfaces is far away from the band edges [47].

Figure 1.5: View of crystal structure of (TMTSF)2ClO4 along a-axis.
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1.3.2 Previous studies on the superconductivity in Q1D

systems

In this subsection, we review previous studies for the anisotropic superconductivity

and the FFLO state in Q1D systems.

The pairing symmetry in the (TMTSF)2X and its origin have been examined by

many authors. Hasegawa and Fukuyama showed theoretical curves of NMR relax-

ation time for singlet and triplet states [48], and obtained a qualitative agreement

between the experimental data in (TMTSF)2ClO4 by Takigawa et al. [49] and theo-

retical curve for these states with line node at the Fermi surfaces. This singlet state

with line node is called the d-wave state. The detailed NMR measurement by Shina-

gawa et al. indicated the d-wave state [50]. Yonezawa et al. suggested that the gap

structure of a superconducting state in (TMTSF)2ClO4 has line node, from the field-

angle dependence of the heat capacity [51, 52]. Shimahara showed that the d-wave

component in the pairing interaction mediated by antiferromagnetic fluctuations is

attractive and maximum [18].

Although the d-wave pairing is most likely pairing symmetry in (TMTSF)2ClO4,

other pairing symmetries have been discussed. Belin and Beniha suggested a su-

perconducting state with a nodeless gap, from the temperature dependence of the

thermal conductivity in (TMTSF)2ClO4 [53]. Oh et al. obtained the phase diagram

determined by the temperature dependence of magnetic torque in (TMTSF)2ClO4,

and showed that Hc2 > HP at low temperature. They discussed the possibility of a

spin-triplet superconducting state [55]. Also in a similar compound (TMTSF)2PF6,

the spin susceptibility via NMR Knight shift measurement indicated a spin-triplet

superconducting state [54]. Suginishi and Shimahara showed that the spin-triplet

superconductivity with a nodeless gap can be induced by phonons in Q1D systems,

which coincides with the above experimental results [17]. Tanaka and Kuroki et al.
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studied the gap anisotropy due to the pairing interaction mediated by charge and

spin fluctuations, and examined the f-wave pairing superconducting state induced

by such a pairing interaction [56–60].

Pairing symmetries can be different in (TMTSF)2ClO4 and (TMTSF)2PF6, but

the origin of pairing interaction can be similar, because crystal structure and elec-

tronic states in these compounds are similar. It has been shown that singlet and

triplet attractive channels coexist in the pairing interaction mediated by antiferro-

magnetic fluctuations [19]. Fukui and Kato examined the mixing state where the

odd- and even-frequency superconducting states coexist [61].

The FFLO state in (TMTSF)2X has been theoretically studied by many au-

thors [62–67]. Lebed and Wu compared their theoretical curve of Hc2(T ) with the

experimental data by Yonezawa et al. [14], and obtained a good overall qualitative

and quantitative agreement [68]. Croutoru, Houzet, and Buzdin studies interplay

between the orbital effect and the FFLO modulation [69,70]. Croutoru and Buzdin

also examined the FFLO state on layered superconductors in a parallel magnetic

field, and showed the resonance between the FFLO modulation and the Josephson

coupling [71–73]. Miyazaki et al. obtained the magnetic field dependence of the

transition temperature considered higher-order terms in the b-axial direction of the

energy dispersion [74]. Miyawaki and Shimahara examined the effect of the Fermi

surface anisotropy in Q1D systems, and found a dimensional crossover induced by

the temperature [21], in which the behavior of the upper critical field continuously

changes from that in 1D system at high temperatures to that in 2D system at low

temperatures via a small shoulder between them. Aizawa et al. examined the FFLO

state where singlet and triplet pairing symmetries coexist because of the pairing in-

teraction mediated by charge fluctuations [75, 76].
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1.4 Purpose of the thesis

As mentioned in Section 1.3, although various theoretical studies for the FFLO state

in Q1D systems have been done (see § 1.3.2), the direction of the principal axis of

T onset
c (φ) observed in (TMTSF)2ClO4 at H = H0 has not been reproduced. In this

thesis, we theoretically try to reproduce this direction.

The observed change of the principal axis, if caused by a transition to the FFLO

state, must primarily originate from the emergence of the nonzero FFLO vector

q. Unless the orbital pair-breaking effect is extremely weak, the FFLO modula-

tion can occur in the direction parallel to the magnetic field. In (TMTSF)2ClO4,

Hc(T ) ∝ T
(0)
c − T near H = 0, which indicates that the orbital pair-breaking effect

is not negligibly small. Therefore, it is reasonable to assume that q ‖ H [10, 16].

Even when q = 0, the transition temperature Tc(φ) and the upper critical tem-

perature hc(φ) depend on φ because of the orbital pair-breaking effect, and they

reflect the anisotropy of the Fermi surface. In (TMTSF)2X , the hopping integral on

the a-axis is much larger than the others. Therefore, the orbital pair-breaking effect

must be predominantly determined by the magnitude of H ’s component perpendic-

ular to the intra-chain, which is consistent with the observed behavior of T onset
c (φ)

below H0. Therefore, below H0, the anisotropy of T onset
c (φ) primarily originates

from the orbital pair-breaking effect, and the Pauli paramagnetic pair-breaking ef-

fect does not significantly contribute to the anisotropy. In contrast, in the FFLO

state, the nesting effect due to the finite q causes the anisotropy of Tc(φ) and hc(φ).

Because q ‖ H owing to the weak orbital pair-breaking effect, the anisotropy of

Tc(φ) depends on the in-plane magnetic field direction. When q 6= 0, φq = φ, where

φq denotes the angle between q and the crystal a-axis.

On the basis of this purpose and background, we examine the in-plane-magnetic-

field-direction dependence of the stability of the FFLO state in Q1D systems. To
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focus on the nesting effect, we assume that the orbital pair-breaking effect is suffi-

ciently strong to lock the direction of q along H , but is negligible in the equations

for Tc and Hc. The latter part of this assumption is not quantitatively justified

for (TMTSF)2ClO4; however, even in our simplified model, it would be possible to

clarify the direction of the magnetic fields that most stabilize the FFLO state.

Since we are motivated by above experimental results in (TMTSF)2ClO4, we

show realistic parameter sets to reproduce the experimental results. However, our

study is not limited to these compounds, and we examine with a wide range of

parameters in Q1D systems.

In addition, in the Q1D compounds (TMTSF)2X , as mentioned in § 1.3.2, vari-

ous pairing symmetries have been discussed by many authors. In the FFLO state,

the order-parameter mixing effect can occur because of the nonzero FFLO vector q

and Zeeman energy. Therefore, the mixing effect can occur in (TMTSF)2X . From

the experimental Hc(T ) in (TMTSF)2X , it might be expected that the tricritical

temperature T ∗ is larger than 0.56T
(0)
c . The mixing effect can enhance T ∗. In addi-

tion, this effect also affects the optimum direction of T onset
c (φ) because the anisotropy

of the mixed order parameter affects the nesting effect. Therefore, in addition to

the nesting effect, we examine the FFLO state in the presence of the mixing effect.
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Chapter 2

Superconductivity in the magnetic

field

In this chapter, we review the superconductivity in the magnetic field. The su-

perconductors are classified into type-I and type-II superconductors for κ < 1/
√
2

and κ > 1/
√
2, respectively. Here, κ = λ/ξ denotes the Ginzburg-Landau (GL)

parameter, where λ and ξ are the London’s magnetic-field penetration depth and

the coherence length, respectively.

2.1 Type-I superconductors

In type-I superconductors, in which κ < 1/
√
2, since the surface energy is posi-

tive, the magnetic field does not penetrate into superconductors, and the perfect

diamagnetic state occurs inside superconductors.

When the magnetic field increases, the perfect diamagnetic state becomes un-

stable at the thermodynamic critical field Hc. Hc is derived from the condition

Fs(T,Hc(T )) = Fn(T,Hc(T )), where Fs and Fn are the free energy for the BCS and
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normal states, respectively. From F (T,H) = −T log Tr[e−βH], Fs and Fn are ex-

pressed by

Fs =− 2

β

∑

k

[

log (1 + e−βEσ(k)) + ξ(k)− E(k)

+ ∆2
0(k)

1− f(E↓(k))− f(E↑(k))

2E(k)

]

,

(2.1)

Fn = − 2

β

∑

k

[

log (1 + e−βξσ(k)) + ξ(k)− |ξ(k)|
]

, (2.2)

in the weak coupling limit. Here, Eσ(k) = E(k) − σh, E(k) =
√

ξ2(k) + ∆2
0(k),

ξσ(k) = ξ(k)− σh, ξ(k) = ǫ(k)− µ, h ≡ µe|H|, and f(x) = 1/(eβx + 1). µ denotes

the chemical potential.

From Eqs. (2.1) and (2.2), Fn(T,H)− Fn(T, 0) = −H2/8π and

Fs(0, 0)− Fn(0, 0) = −N(0)∆2
0/2, where the right-hand side is called the con-

densation energy of the superconductivity. Since in type-I superconductors H = 0

except for the region near the surface, Fs(0, H) = Fs(0, 0). Therefore, since

Fs(0, Hc) = Fn(0, Hc),
H2

c

8π
=

1

2
N(0)∆2

0. (2.3)

Because ǫF ≈ 1/N(0) ≫ ∆ ≈ kBT , Hc is significantly small. For example, the

critical field is approximately 0.01 T for type-I superconductor Al.
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2.2 Type-II superconductors

In type-II superconductors, when the magnetic field H increases, the magnetic field

penetrates at H > Hc1, where Hc1 is the lower critical field. When the magnetic

field increases further, the superconducting state is broken at the upper critical field

Hc2, which is determined by both spin and orbital pair-breaking effects. The spin

pair-breaking effect, which is called the Pauli paramagnetic pair-breaking effect, is

caused by the Zeeman energy H · S. The orbital pair-breaking effect is caused by

the orbital motion of electrons. In the classical mechanics, the orbital motion of the

charged particle is taken into account by the Lorentz force ev×H . In the quantum

mechanics, that is taken into account by the replacement of p with p+ eA/c, where

A denotes the vector potential.

2.2.1 Orbital limit Hc20

At Hc1 < H < Hc2, the penetrating magnetic fields are quantized with the unit of

Φ0 = h/2e, and the vortex is formed by the orbital motion of the charged particles.

On the central axis of the quantum flux, the superconductivity is locally broken,

while the superconductivity is restored at the position ξ away from this axis. These

quantum fluxes form the triangle vortex lattice, and the superconducting state is

stable, which is called the vortex state.

The magnitude of the orbital pair-breaking effect is characterized by Hc20, which

is the upper critical field in the absence of the spin pair-breaking effect [77]. Ap-

proximate expression

Hc20 ≈ ∆2
0

c

e~v2F
(2.4)

is obtained by considering the Lorentz force and the coherence length.
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2.2.2 Pauli paramagnetic limit HP

As mentioned in the previous chapter, the Pauli paramagnetic limit HP is the mag-

netic field at which the superconducting condensation energy coincides with the spin

polarization energy χH2/2 in the absence of the orbital pair-breaking effect, where

χ is the spin susceptibility [20]. At H = HP, the superconducting state is broken.

In this subsection, we review the Pauli paramagnetic limit [8, 11, 23].

When we take into account the anisotropy of the gap function at T = 0, HP is

determined by

Nα(0)|∆(0)
α |2

2
=
χHP

2

2
, (2.5)

where Nα(0) and ∆
(0)
α are the density of state at the Fermi energy and the en-

ergy gap of the symmetry index α, respectively. Here, ∆
(0)
α = ∆α0/γ̄α, where

∆α0 = 2~ωD exp (−1/gαNα(0)) and

1

γ̄α
= exp

[〈[γα(k)]2 log (1/|γα(k)|)〉F
〈[γα(k)]2〉F

]

. (2.6)

γα(k) is the basis function of symmetry index α. We have defined the average over

the Fermi surface as

〈· · · 〉F =
∑

s=±

∫ π

−π

dky
2π

ρ(0, ky, s)

N(0)
(· · · ), (2.7)

where ρ(0, ky, s) is the density of state at the Fermi energy with s = sgn(kx). Thus,

the Pauli paramagnetic limit in α-wave state at T = 0 is

µeHP

∆α0

=

√

〈[γα(k)]2〉F
γ̄α

1√
2
. (2.8)

For the s-wave state, µeHP/∆s0 = 1/
√
2.
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At finite temperatures, the difference ∆F between Fs and Fn is

∆F = T
∑

k,σ

log

(

1 + eβ(|ξ(k)|+σh)

1 + eβ(E(k)+σh)

)

+
∑

k

[

|ξ(k)| − E(k) + ∆2
0(k)

1− f(E↓(k))− f(E↑(k))

2E(k)

]

,

(2.9)

where ∆0(k) = ∆0(T )γα(k). When ∆F = 0,

1

2

(

∆0(T )

∆
(0)
α

)2(

1 + 2 log

∣

∣

∣

∣

∆
(0)
α

∆0(T )

∣

∣

∣

∣

)

= 2
T

∆
(0)
α

∆0(T )

∆
(0)
α

∑

s=±

∫ π

−π

dky
2π

ρ(0, ky, s)

Nα(0)
γα(k)

×
∑

σ

∫ ∞

0

dp cosh p log

(

1 + e−β(|∆0(k) sinh p|+σh)

1 + e−β(|∆0(k) cosh p|+σh)

)

.

(2.10)

On the other hand, the gap equation in the magnetic field is expressed as

∆(k) =
1

N

∑

k′

V (k,k′)
1− f(E↓(k

′))− f(E↑(k
′))

2E(k′)
∆(k′), (2.11)

where V (k,k′) is the pairing interaction. In the weak coupling limit, the gap equa-

tion is rewritten as

log
∆

(0)
α

∆0(T )
=

∑

s=±

∫ π

−π

dky
2π

ρ(0, ky, s)[γα(k)]
2

Nα(0)

∑

σ

∫ ∞

0

dp log

(

1

1 + eβ(∆0(k) cosh p+σh)

)

.

(2.12)

We solve Eqs. (2.10) and (2.12) simultaneously, and obtain the first-order transition

point (hP, T ) between the BCS and normal states.

2.2.3 The FFLO state

The ratio of the strength of Pauli paramagnetic and orbital pair-breaking effects is

expressed by the Maki parameter [78]

α =

√
2Hc20

HP
. (2.13)
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As mentioned in Section 1.2, for the FFLO state to occur, it is required

that Hc20 & HP. In conventional type-II superconductors, the orbital pair-

breaking effect is strong (α ≪ 1). However, in exotic superconductors, such

as heavy fermion and organic superconductors, it can be that α > 1 because

of the heavy effective mass and narrow band width. For example, it has been

shown that α ≈ 8 for κ-(BEDT-TTF)Cu(NCS)2 [29] and α = 3.94 for β”-

(BEDT-TTF)SF5CH2CF2SO3 [38]. Therefore, the FFLO state can occur in these

superconductors.

In this subsection, we review the FFLO state in the presence of a weak orbital

pair-breaking effect, and survey many studies [79–87] as a reference.

Gruenberg and Gunther examined the FFLO state in the presence of the orbital

pair-breaking effect in isotropic 3D systems [16]. They showed that the FFLO state

coexists with the vortex state when α > 1.8, and that the direction of the FFLO

vector q is locked in that of the magnetic fieldH in this case: q ‖ H . In other words,

when the orbital pair-breaking effect is sufficiently weak, the FFLO modulation can

occur in the direction parallel to the vortex line. If the orbital pair-breaking effect

is ignored; i.e., when α = ∞, the direction of the magnetic field is locked in the

optimum direction that is determined from the Fermi surface.

Shimahara and Rainer examined the relation between the vortex and FFLO

states in isotropic 2D systems, and showed that the pure FFLO state coincides with

the vortex state in the limit nL → ∞, where nL is Landau level index, as reviewed

below [10].

When the magnetic field is applied to the y-z plane; H = H(0, cos θ, sin θ), the

magnitude of the orbital pair-breaking effect is expressed by κ⊥ = 2cH sin θ/e, which

vanishes in the limit θ → 0. In this limit, the relational equation between the FFLO
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and vortex states is

q = lim
κ⊥→0

√
2nLκ⊥. (2.14)

For the FFLO vector q to be finite in the limit κ⊥ → 0, the Landau level index nL

diverges such as nL ≈ 1/κ⊥.

We define η† = (Πx + iΠy), where Π = −i~∇− 2eA/c, which satisfies

η†φnL
=

√
nLe

iϕ0φnL
, (2.15)

for the eigenfunction φnL
of infinitely large nL, where ϕ0 is the angle between the

momentum q and kx-axis in the momentum space. The eigenfunction is expressed

as

φnL
=

1√
nL!

(η†)nLφ0, (2.16)

where

φ0 = eikx exp

[

− κ⊥
2
(y − k

κ⊥
)2
]

(2.17)

is the Abrikosov function, and k is a parameter. The solution of Eq. (2.15) is

φnL
∝ exp (iq · r), where q = (q cosϕ0, q sinϕ0, 0) and q = limκ⊥→0

√
2nLκ⊥.

Therefore, in the limit κ⊥ → 0, the Abrikosov function can have large Landau

level indices nL. The order parameters with nL ≫ 1 exhibit a spatial modulation

perpendicular to the vortex line. This modulation is physically equivalent to the

FFLO modulation because in the limit nL → ∞, the vortex state is reduced to the

FFLO state. To sum up, when the orbital pair-breaking effect is sufficiently weak,

the Landau level index diverges, and the FFLO modulation occurs in the direction

parallel to H .
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Chapter 3

Anisotropic superconductivity in

Q1D systems

Mechanisms of the anisotropic superconductivity have been examined by many au-

thors. As mentioned in Chapter 1, because the anisotropic superconductivity con-

tributes to the FFLO state, in the thesis, we examine the FFLO state on vari-

ous pairing symmetries. In this chapter, we survey pairing interactions mediated

by phonons and antiferromagnetic fluctuations in Q1D systems, which induce the

anisotropic superconductivity. Our assumption for the pairing symmetry is based

on the survey in this chapter.

3.1 Triplet superconductivity induced by

phonons

The attractive interaction mediated by phonons can cause the superconductivity.

In Q1D organic superconductors (TMTSF)2X, from the observation of the isotope
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effect [88], it has been suggested that the pairing interaction mediated by phonons

can contribute to the superconductivity. Although the pairing interaction mediated

by phonons usually causes the singlet superconductivity with full-gap, it also can

cause triplet superconductivity. In this section, we review that the triplet supercon-

ductivity can be induced by phonons [17, 89].

The electron-phonon Hamiltonian is

He−ph =
∑

k,q

∑

σ,σ′

M(q)(bq + b†−q)c
†
kσck−qσ′ , (3.1)

where c†kσ (ckσ) and b
†
q (bq) are creation (annihilation) operators of electrons with kσ

and phonons with q, respectively. M(q) is the electron-phonon coupling constant.

In the following, we ignore the momentum dependence ofM(q) asM(q) ≡ g. In the

weak coupling limit, the effective interaction between electrons mediated by phonons

is

Veff(k − k′) = −g q2s
|k − k′|2 + q2s

, (3.2)

for |ξ(k)|, |ξ(k′)| < ωD, where qs and ωD are the inverse screening length and

the Debye frequency, respectively. This interaction has been studied by many au-

thors [90–93]. Suginishi and Shimahara examined this pairing interaction, taking

into account the correction of short-range and long-range parts of Coulomb interac-

tions, and showed phase diagrams [17].

The gap equation is expressed as

∆(k) = − 1

N

∑

k′

V (k − k′)
tanh (E(k′)/2T )

2E(k′)
∆(k′). (3.3)

The Q1D dispersion is defined by ǫ(k) = −2ta cos (kxas)−2tb cos (kybs), where as and

bs are lattice constants along a- and b-axial directions, respectively. When ta ≫ tb,

there exist the Fermi surfaces ±kFx (ky) in the first Brillouin zone.
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The pairing interaction at the Fermi surfaces can be written as

V (k − k′) = V (kFx (ky)± kFx (k
′
y), ky − k′y) ≡ V (+±)(ky, k

′
y). (3.4)

We define Ṽ (+±)(ky, k
′
y) =

√

ρ(ky)V
(+±)(ky, k

′
y)
√

ρ(k′y), where
√

ρ(ky) = 1/[4πta sin (k
F
x (ky)as)]. Ṽ

(+±)(ky, k
′
y) can be expanded as

Ṽ (+±)(ky, k
′
y) =

∑

n,m

[V (+±)
nm γn(ky)γm(k

′
y) + V̄ (+±)

nm γ̄n(ky)γ̄m(k
′
y)], (3.5)

with expansion factors V
(+±)
nm and V̄

(+±)
nm and basis functions γm(ky) and γ̄m(ky),

where γm(ky) = nm cos (mkybs) and γ̄m(ky) = nm sin (mkybs) with normalization

factors nm =
√
2 for m 6= 0 and nm = 1 for m = 0. The pairing symmetry is

classified by an integer m and the symmetry of the order parameter with respect to

the inversion of kx. For example, for γ0(ky) = 1 and ∆(kx, ky) = ∆(−kx, ky), the
s-wave state is defined. For γ0(ky) = 1 and ∆(kx, ky) = −∆(−kx, ky), the px-wave

state is defined.

It has been shown that the px-wave state is favorable in Q1D superconductors

if the s-wave state is suppressed by weak screening and strong on-site Coulomb

repulsive interaction [17]. This condition is satisfied for realistic parameters in

(TMTSF)2X . This theoretical result coincides with the experimental results of

NMR Knight shift and the thermal conductivity in (TMTSF)2PF6 [53, 54]. There-

fore, we examine the FFLO state, taking into account the contribution of the triplet

pairing.
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3.2 Pairing interaction mediated by antiferro-

magnetic fluctuations

In Q1D superconductors (TMTSF)2X , because the superconducting phase appears

in proximately to the antiferromagnetic phase in the phase diagram in the pHT

space [25]. The pairing interaction mediated by antiferromagnetic fluctuations

has been examined by many authors [18, 94–96]. In this section, we review the

anisotropic superconductivity induced by this pairing interaction [18].

3.2.1 d-wave pairing

In this subsection, we review that the d-wave superconductivity can be induced by

antiferromagnetic fluctuations.

This theory is carried out by using the Hubbard model

H =
∑

kσ

ǫ(k)c†kσckσ + U
∑

k,k′,q

c†k+q↑ck↑c
†
k′−q↓ck′↓, (3.6)

where U is the on-site Coulomb.

In the random-phase-approximation (RPA), the spin- and charge-susceptibilities

are obtained as

χs(q) =
χ0(q)

1− Uχ0(q)
(3.7)

and

χc(q) =
χ0(q)

1 + Uχ0(q)
, (3.8)

respectively, where

χ0(q) =
1

N

∑

k

f(ǫ(k))− f(ǫ(k + q))

ǫ(k + q)− ǫ(k)
(3.9)
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is the static free susceptibility. In the same approximation, the effective pairing

interaction between electrons is obtained as

Γ↑↓(k,k
′) = γ1(k − k′) + γ2(k + k′), (3.10)

where

γ1(k − k′) = U − 1

2

U2χ0(k − k′)

1 + Uχ0(k − k′)
+

1

2

U2χ0(k − k′)

1− Uχ0(k − k′)
,

γ2(k + k′) =
1

2

U2χ0(k + k′)

1− Uχ0(k + k′)
.

(3.11)

The singlet and triplet pairing interactions between electrons on the sites sepa-

rating by the relative coordinate vector (m,n) are expressed as

V sin
nm =

1

N

∑

q

(γ1(q) + γ2(q))e
imqx+inqy ,

V tri
nm =

1

N

∑

q

(γ1(q)− γ2(q))e
imqx+inqy .

(3.12)

For realistic parameter tb = 0.15ta and U ≈ 1.48t in (TMTSF)2X , it has been

shown that V sin
nm is attractive and maximum for n = 0 and m = 2, which means

that the gap function
√
2∆20 cos (2kx) can appear in Q1D systems. The pairing

symmetry with this gap function is called the d-wave pairing symmetry, which has

line nodes at the Fermi surfaces. Therefore, we examine the d-wave FFLO state in

Q1D systems.

3.2.2 Coexistence of singlet and triplet attractive channels

In this subsection, we review that the pairing interaction mediated by antiferromag-

netic fluctuations includes both singlet and triplet pairing attractive channels [19].

Let us consider the pairing interaction mediated by spin fluctuations expressed

by

H ′ = −g
∑

i,j

χijSi · Sj , (3.13)
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where g is the coupling constant, i and j are lattice sites, and χij is the expression

of the spin susceptibility in the real space. Equation (3.13) is rewritten as

H ′ =− g

N

∑

k,k′

χ(k − k′)

[

− 3

4
ψ†
00(k)ψ00(k

′)

+
1

4
(ψ†

11(k)ψ11(k
′) + ψ†

1−1(k)ψ1−1(k
′) + ψ†

10(k)ψ10(k
′))

]

,

(3.14)

where ψ11(k) = c−k↑ck↑, ψ1−1(k) = c−k↓ck↓, ψ10(k) = (c−k↑ck↓ + c−k↓ck↑)/
√
2, and

ψ00(k) = (c−k↑ck↓ − c−k↓ck↑)/
√
2.

For antiferromagnetic correlations, χij < 0 and χij > 0 on the same and different

sublattices, respectively. In a square lattice tight-binding model near the half-filling,

χij ≡ χ̄1 < 0 and χij ≡ χ̄2 > 0 for the nearest-neighbor and next-nearest-neighbor

sites, respectively. It is verified from Eq. (3.14) that the former favors the singlet

pairing, while the latter favors the triplet pairing.

The gap equation by this pairing interaction is





∆1

∆2



 = −V





χ̄1W11 χ̄1W12

χ̄2W21 χ̄2W22









∆1

∆2



 , (3.15)

where the matrix elements Wnm are

Wnm =
1

N

∑

k

γn(k)γm(k)
tanh (ǫ(k)/2T )

2ǫ(k)
. (3.16)

The eigenvalue of the matrix in the right-hand-side of Eq. (3.15) is

λ =
1

2

[

(χ̄1W11 + χ̄2W22)±
√

(χ̄1W11 + χ̄2W22)2 − 4χ̄1χ̄2(W11W22 −W 2
12)

]

. (3.17)

Since χ̄1χ̄2 < 0 and W11W22 −W 2
12 > 0, the second term in Eq. (3.17) is positive.

Therefore, two eigenvalues have opposite signs, which implies that both singlet and

triplet pairing interactions are attractive channels.
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It has been shown that in the Q1D Hubbard model as reviewed in the previous

subsection, V tri
10 < 0 and V tri

40 < 0 for realistic parameters within the RPA. These

interactions induce the gap functions ∆10 sin kx and ∆40 sin 4kx, respectively, the

symmetries of which are called p-wave and f-wave pairing symmetries, respectively.

Hence, the pairing interaction mediated by antiferromagnetic fluctuations contains

both singlet and triplet pairing attractive channels. In this case, the singlet and

triplet order parameters coexist. Therefore, we need to examine the FFLO state in

the presence of the mixing effect.
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Chapter 4

Theory of the FFLO state

As mentioned in the purpose, we do not consider the orbital pair-breaking effect,

except for q ‖ H . Thus, Hamiltonian is represented by

H =
∑

k,σ

ξσ(k)c
†
kσckσ −

1

N

∑

k,k′q

V (k,k′, q)c†k+q↑c
†
−k↓c−k′↓ck′+q↑, (4.1)

where V (k,k′, q) is the pairing interaction.

It is supposed that there exists three-dimensionality to stabilize the supercon-

ducting long-range order and to justify the mean-field approximation, but we ignore

kz for simplicity. We apply the mean-field approximation to Eq. (4.1):

HMF =
∑

k,σ

ξσ(k)c
†
kσckσ +

∑

k

∆∗
qc−k+ q

2
↓ck+ q

2
↑ +

∑

k

∆qc
†
k+ q

2
↑
c†
−k+ q

2
↓
, (4.2)

where

∆q(k) = − 1

N

∑

k′

V (k,k′)〈c−k′+ q

2
↓ck′+ q

2
↑〉, (4.3)

which is the order parameter in the FFLO state.

We assume

V (k,k′) = − gαγα(k)γα(k
′), (4.4)
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where gα and γα(k) are coupling constants and basis functions of the symmetry

index α, respectively. Thus,

∆q(k) = ∆αγα(k). (4.5)

We express basis functions of the singlet pairing as

γs(ky) = 1 , γd(ky) =
√
2 cos ky. (4.6)

for s- and d-wave states, respectively. We express basis functions of the triplet

pairing as

γpx(s, ky) = s , γpy(ky) =
√
2 sin ky (4.7)

and

γfx(s, ky) =
√
2s cos ky , γfy(ky) =

√
2 sin 2ky (4.8)

for p- and f-wave states, respectively.

The momentum dependence of these states may appear to originate from the

inter-chain pairing. For example, in the d-wave state, the momentum dependence

is expressed as γd ∝ cos (2kx) as mentioned in § 3.2.1. The momentum dependence

of γd ∝ cos ky simulates the structure of the gap function of the d-wave state near

the Fermi surface.

We do not consider the mixing with the parallel spin pairing states in the triplet

pairing for the following reasons. Firstly, transitions to the parallel spin pairing

states have not been observed in experimental. Secondly, such interactions in these

states are much smaller than the antiparallel spin pairing interactions [35].
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4.1 Spatial modulation of the order parameter

In this section, we mention the FFLO modulation. The order parameter spatially

oscillates because of the nonzero FFLO vector q [3,97]. The order parameter of the

FFLO state is expressed by

∆†
q(k) = 〈c†

−k+ 1
2
q↓
c†
k+ 1

2
q↑
〉, (4.9)

where q and k are center-of-mass and relative momenta, respectively. In the coor-

dinate representation, the order parameter is expressed by

∆∗(r, r′) = 〈ψ†
↑(r)ψ

†
↓(r

′)〉. (4.10)

Here, we define the center-of-mass and relative coordinates as R and ρ, respectively.

Equation (4.10) is rewritten as

∆∗(R,ρ) =
1

N

∑

k1,k2

e−i(k1+k2)·Re−i(k1−k2)·ρ〈c†k1↑
c†k2↓

〉

=
1

N

∑

k,q

e−iq·Re−ik·ρ〈c†
k+ 1

2
q↑
c†
−k+ 1

2
q↓
〉.

(4.11)

By using Fourier transformation,

∆∗(R,k) =
∑

q

e−iq·R∆†
q(k). (4.12)

Thus, the order parameter spatially oscillates because of the FFLO vector q.

In general, there exist several equivalent q, and these q provide the same upper

critical field at the second-order transition point. Therefore, the order parameter is

∆(R) =
M
∑

m=1

∆me
iqm·R, (4.13)

where M is the number of degenerate q. In the isotropic symmetry, M = ∞. If we

require a periodicity of the order parameter in the real space, M can take 1, 2, 3, 4,
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or 6. When M = 1, the order parameter is expressed as

∆(R) = eiq·R∆1, (4.14)

the state of which was examined by Fulde and Ferrell [4]. Larkin and Ovchinnikov

examined the state for M = 2 in 3D isotropic systems [5]. In this state, the order

parameter is expressed as

∆(R) = ∆1 cos (q ·R). (4.15)

It has been shown that the free energy of Eq. (4.15) is lower than that of Eq. (4.14).

In the states of M = 3, M = 4, and M = 6, because nodes of the order parameter

in the real space increase at the second-order transition point, a gain of the spin

polarization energy increases. Thus, it has been shown that free energy in these

states is lower than that in states of Eqs. (4.14) and (4.15) at low temperatures and

high magnetic fields [97].

The number of degenerate q is determined by the symmetry of the Fermi surface

or the gap function. When we consider the Q1D system where the Fermi surfaces

are symmetric with respect to the kx- and ky-axes, it is expected that M = 4 at

the second-order transition point. When q is parallel to the kx- or ky-axes in the

above system, it is expected that M = 2. Also, when the Q1D Fermi surfaces are

not symmetric with respect to the kx- and ky-axes, and are symmetric with respect

to the origin, it is expected that q and −q are degenerate at the second-order

transition point. This is why the FFLO state can have q and −q or more than q

values. However, we examined the second-order transition point where a single q is

assumed.
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4.2 Formulation at finite temperatures

In this section, we derive the formulation at finite temperatures. We diagonalize

Eq. (4.2) by a Bogoliubov transformation

ck+ q

2
↑ = ukαk↑ + vkα

†
−k↓ , c−k+ q

2
↓ = ukα−k↓ − vkα

†
k↑. (4.16)

Thus, the gap equation is obtained as

∆q(k) =
1

N

∑

k′

V (k,k′)
1− f(Ek′↑)− f(Ek′↓)

2Ek′

∆q(k
′), (4.17)

where Ekσ = Ek + σζ , and Ek =
√

ξ2(k) + ∆2
q(k). In Q1D systems, because one of

the hopping integrals is much larger than the others, the Fermi surfaces are open at

the edges of the first Brillouin zone, and there exist the Fermi surfaces ±kFx (ky) in
the first Brillouin zone. We define

ζ = hc

(

vF(s, ky) · q
2hc

− 1

)

, (4.18)

where vF(s, ky) is the Fermi velocity, and s = sgn(kx).

Taking the limit of ∆q → 0 in the gap equation Eq. (4.17), we obtain the equation

of the second-order transition point (hc(q), Tc(q)) between the FFLO and normal

states,

log
Tc

T
(0)
cα

=

∫ ∞

0

dy
∑

s=±

∫ π

−π

dky
2π

ρα(0, s, ky)

Nα(0)

× sinh2 βζ

2

tanh y

y (cosh2 y + sinh2(βζ/2))
.

(4.19)

For numerical calculation, we rewrite Eq. (4.19) as

log
Tc

T
(0)
cα

= −
∑

s=±

∫ π

−π

dky
2π

ραα(0, s, ky)

Nα(0)
sinh2 (

βζ

2
)

∫ ∞

0

dy log y

×
[

2 sinh2 y

(cosh2 y + sinh2 (βζ/2))2
− 1

cosh2 y(cosh2 y + sinh2 (βζ/2))

]

,

(4.20)
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where

ραα(0, s, ky) = ρ(0, s, ky)[γα(s, ky)]
2, (4.21)

and

Nα(0) =
∑

s=±

∫ π

−π

dky
2π

ραα(0, s, ky). (4.22)

Here, ρ(ξ, s, ky) is the density of state defined by

1

N

∑

k

F (k) =
∑

s=±

∫

dξ

∫ π

−π

dky
2π

ρ(ξ, s, ky)F (k), (4.23)

for the arbitrary smooth function F (ξ, s, ky) = F (k).
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4.3 Formulation at T = 0

Next, we derive the formulation at T = 0. We define the normal and anomalous

Green functions by

G(t− t′) = − i〈T [ck′↑(t)c
†
k↑(t

′)]〉,

F †(t− t′) = i〈T [c†−k↓(t)c
†
k+q↑(t

′)]〉,
(4.24)

respectively, where T [· · · ] and 〈A〉 represent time-ordered product and quantum me-

chanical expectation of physical quantity A, respectively. The equations of motion

of the Green functions are

i
∂

∂t
G(t− t′) = δ(t− t′)δk,k′ − i〈T [[ck↑(t),HMF]c

†
k↑(t

′)]〉,

i
∂

∂t
F †(t− t′) = i〈T [c†−k↓(t)[c

†
k+q↑(t

′),HMF]]〉.
(4.25)

We obtain F †(k, ω) and G(k, ω) by Fourier transformation:

(ω + iδω − ξ(k) + h)G(k, ω) + ∆q(k)F
†(k, ω) = 1,

(ω + iδω + ξ(k + q) + h)F †(k, ω) + ∆∗
q(k)G(k, ω) = 0.

(4.26)

Thus, we obtain the gap equation at T = 0

∆q(k) = − 1

N

∑

k′

V (k,k′)

×
∫ ∞

−∞

dω

2πi

∆∗
q(k)

(ω + iδω − ξ(k) + h)(ω + iδω + ξ(k + q) + h) + |∆q(k)|2
.

(4.27)

Taking limit ∆q → 0 in the gap equation Eq. (4.27), we obtain

hc
∆α0

=
1

2
exp

[

−
∑

s=±

∫ π

−π

dky
2π

ραα(0, ky, s)

Nα

log

∣

∣

∣

∣

1− vF(s, ky) · q
2hc

∣

∣

∣

∣

]

. (4.28)

Equation (4.28) coincides with Eq. (4.20) in the limit T → 0.
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4.4 Order-parameter mixing effect

As mentioned in § 3.2.2, in Q1D organic superconductors (TMTSF)2X, it is expected

that singlet and triplet attractive channels coexist in the pairing interaction. In

addition, in the FFLO state, the order parameters of the singlet and triplet pairing

are mixed. Thus, the pairing interaction can be expanded as

V (k,k′) = −
∑

α

gαγα(k)γα(k
′), (4.29)

as a result,

∆q(k) =
∑

α

∆αγα(k). (4.30)

By solving the gap equation Eq. (4.17) using Eqs. (4.29) and (4.30), we obtain

the equation where the order-parameter mixing effect is taken into account at finite

temperatures:




∆α1

∆α2



 log
Tc

T
(0)
cα1

= −





Mα1α1
Mα1α2

Mα2α1
Mα2α2

−Gα1α2









∆α1

∆α2



 , (4.31)

where

Mα1α2
=

∑

s=±

∫ π

−π

dky
2π

ρα1α2
(0, s, ky)

Nα1
(0)

sinh2 (
βζ

2
)

∫ ∞

0

dy log y

×
[

2 sinh2 y

(cosh2 y + sinh2 (βζ/2))2
− 1

cosh2 y(cosh2 y + sinh2 (βζ/2))

]

,

(4.32)

and

Gα1α2
= log

T
(0)
cα2

T
(0)
cα1

=
1

gα2
Nα2

(0)
− 1

gα1
Nα1

(0)
. (4.33)

From Eq. (4.31), we obtain Tc = e−λ(q,hc,Tc)T
(0)
cα1 , where λ is the smallest eigenvalue

of the matrix of the right-hand-side in Eq. (4.31).

At T = 0, we obtain




∆α1

∆α2



 log
2hc
∆α10

=





Mα1α1
Mα1α2

Mα2α1
Mα2α2

−Gα1α2









∆α1

∆α2



 , (4.34)
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where Mα1α2
is the formula at T = 0:

Mα1α2
=

∑

s=±

∫ π

−π

dky
2π

ρα1α2
(0, ky, s)

Nα1

log

∣

∣

∣

∣

1− vF(s, ky) · q
2hc

∣

∣

∣

∣

. (4.35)

We obtain hc = e−λ(q,hc)∆α10 from Eq. (4.34). The upper critical field hc(q) and the

transition temperature Tc(q) are given by optimizing the length |q|.
We discuss the magnitude of the mixing effect in the Q1D dispersion

ǫ(k) = −2ta cos kx − 2tb cos ky when α1 = s, d and α2 = p, f. As mentioned in

§ 1.2.2, the mixing effect enhances the tricritical point (h∗, T ∗), which is defined

by

h∗(ϕq, tb/ta) = lim
q→0

hc(q, ϕq, tb/ta),

T ∗(ϕq, tb/ta) = lim
q→0

Tc(q, ϕq, tb/ta).
(4.36)

We suppose that the off-diagonal element Mα1α2
is proportional to qm(tb/ta)

l for

small q and tb/ta with integers m and l. The mixing effect is strong as integers m

and l decrease because ta ≫ tb in Q1D systems. We summarize m and l for each

combination of α1 and α2, where ϕq is fixed, in Tab. 4.1 (for the derivation see

Appendix B). Table 4.1 shows that m = 1 and l = 0 when α1 = s and α2 = px,

α1 = d and α2 = fx, and ϕq = 0, which means that the leading term in Mα1α2
is

proportional to q1(tb/ta)
0. Therefore, the magnitude of the mixing effect is strong

at ϕq = 0. In contrast, when ϕq = π/2, because Mspx = 0 and Mdfx = 0, the mixing

effect does not occur. Table 4.1 shows that m = 3 and l = 1 when α1 = d and

α2 = px, which means that the leading term in Mα1α2
is proportional to q3(tb/ta)

1.

Therefore, Mdpx ≪ 1, and the magnitude of the mixing effect is weak. Table 4.1

shows that m = 1 and l = 1 when α1 = s and α2 = py, α1 = d and α2 = fy, and

ϕq = π/2, while Mspy = 0 and Mdfy = 0 when ϕq = 0. Therefore, the magnitude of

the mixing effect is strong at ϕq = π/2, while the mixing effect does not occur at

ϕq = 0.
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Table 4.1: Integers m and l for each combination of α1 and α2 when ϕq is fixed. We show the

results at ϕq = 0 and ϕq = π/2 for s-px, d-px, and d-fx mixing states and s-py, d-py, and d-fy

mixing states, respectively. In the former states, Mα1α2
= 0 at ϕq = π/2, while in the latter states,

Mα1α2
= 0 at ϕq = 0.

Combination s-px d-px d-fx s-py d-py d-fy

ϕq 0 π/2

m 1 3 1 1 1 1

l 0 1 0 1 2 1
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Chapter 5

Application to organic

superconductor (TMTSF)2ClO4

We define the following energy dispersion as a model of the conduction electrons of

(TMTSF)2ClO4 [39, 44, 45, 98] by

ǫ(k) = ǫAA(k)− ǫAB(k), (5.1)

where

ǫAA(k) = −2tI3 cos ky − 2tI4 cos (kx − ky), (5.2)

ǫAB(k) =
√

ǫ20 + [ǫ1(k)]2, (5.3)

[ǫ1(k)]
2 = 2tS1tS2 cos kx + 2(tS1tI1 + tS2tI2) cos ky

+ 2(tS1tI2 + tS2tI1) cos (kx − ky) + 2tI1tI2 cos (kx − 2ky),
(5.4)

and ǫ20 = tS1
2 + tS2

2 + tI1
2 + tI2

2. The hopping integrals tS1, tS2, tI1, tI2, tI3,

and tI4 are defined in Fig. 5.1. We express k as k = kxa
∗ + kyb

∗ + kzc
∗, where

a∗ = b× c/[a · (b× c)], b∗ = c× a/[b · (c× a)], and c∗ = a× b/[c · (a× b)].

Therefore, kx = k · a and ky = k · b. For simplicity, we assume kz = 0.
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Figure 5.1: (a) Schematic figure of the structure of (TMTSF)2ClO4. TMTSF molecules

shown by black thick solid lines are dimerized, and the sites A and B are inequivalent. (b)

Definition of the hopping integrals in real space. The unit cell contains two sites A and

B. The black solid lines show tS1 and tS2, respectively. The red solid, blue solid, green

solid, and black dotted lines show tI1, tI2, tI3, and tI4, respectively. The angle γ and the

lengths of the lines reflect the lattice parameter in (TMTSF)2ClO4 obtained by Pévelen et

al. described in § 1.3.1.
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We summarize parameter sets in Tab. 5.1. The parameter sets Pa and Pb are

based on X-ray crystallography [45]. Note that A 6= a and B 6= b. We have defined

A and B to distinguish TMTSF molecules due to the dimerization and a and b to

distinguish parameter sets due to the influence of the anion order. The parameter

set Aave is obtained by the first-principles calculation [44]. Because we ignore the

influence of the anion order, we use the parameter set Pave. The parameter sets M1

and M2 are obtained by modifying the inter-chain hopping integrals in the parameter

set Pave, and reproduce the experimental results precisely.

Table 5.1: Parameter sets for (TMTSF)2ClO4 in unit of meV. Pa and Pb are the parameter sets

obtained by Pévelen et al. for the molecules that are nonequivalent as a result of the anion order.

Because we ignore the influence of the anion order, we use Pave, which is parameter set obtained

by averaging Pa and Pb. Aave is the parameter set by Alemany et al. at average structure 7K and

1kbar. M1 and M2 are parameter sets obtained by modifying Pave.

Parameter Pa Pb Pave Aave M1 M2

tS1 413 362 387.5 278.5 387.5 387.5

tS2 324 335 329.5 242.6 329.5 329.5

tI1 −50 −50 −50 −50.1 −50 −50

tI2 −100 −100 −100 −56.4 −90 −90

tI3(/tI5) 70(/71) 70(/71) 70.5 55.9 55 55

tI4(/tI6) 20(/21) 20(/21) 20.5 −2.4 35 45

Figure 5.2 shows the Fermi surfaces derived for the parameter sets Aave, Pave, M1,

and M2. We assume a half-filled hole band, which corresponds to a quarter-filled

hole band in the absence of the dimerization of TMTSF molecules. The direction

of the distortion of these Fermi surfaces is the same, although the magnitude of the

distortion is different.
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Figure 5.2: The black, blue, red, and green solid curves represent the Fermi surfaces for the

parameter sets Aave, Pave,M1, and M2, respectively. Although a∗ and b∗ are not perpendicular to

each other, kx and ky are drawn perpendicular to each other for the convenience.
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In the FFLO state, the FFLO vector q is expressed as q = qxa
∗ + qyb

∗

(Fig. 5.3 (a)). For simplicity, we assume qz = 0. q is expressed as

(qx, qy) = q1(cosϕq, sinϕq), (5.5)

where ϕq and q1 are defined in Fig. 5.3 (b). Note that q1 6= |q| ≡ q.

We define qa and qb′ by

(qa, qb′) ≡ (q · â, q · b̂′) = q(cosφq, sinφq), (5.6)

where φq is shown in Fig. 5.3 (c). Here, we define the unit vector b̂′ that is perpen-

dicular to â and b̂′ · b̂ > 0 by b̂′ = (b̂− cos γâ)/ sin γ. Therefore,

qa = q · â =
1

a
q · a =

1

a
qx, (5.7)

qb′ = q · b̂′ = (
a

b

qy
sin γ

− qx
tan γ

)
1

a
, (5.8)

and

tanφq =
1

sin γ

a

b
tanϕq −

1

tan γ
. (5.9)

Figure 5.3: For the FFLO vector q, we define (a) qx and qy, (b) ϕq and q1, and (c) qa, q
′
b

and φq. In the panel (b), a∗ and b∗ are drawn perpendicular to each other to define the

angle ϕq and length q1.
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Chapter 6

Results : Stability of the FFLO

state and phase diagrams

In this chapter, as mentioned in the purpose, the direction of q is locked in the

direction of H ; i.e., φq = φ, whereas the length |q| must be optimized so that hc is

maximized.

6.1 Dependence on the in-plane magnetic field

direction

We examine the stability of the FFLO state depending on the in-plane magnetic

field direction for both s- and d-wave states. We do not consider the mixing effect.

We numerically calculate Eq. (4.28) for parameter sets shown in Tab. 5.1. Fig-

ures 6.1 and 6.2 show the magnetic field angular dependence of the upper critical

field for s- and d-wave states, respectively. Over wide ranges of φ, the upper crit-

ical fields hc(φ) are remarkably enhanced by the emergence of the FFLO state. In
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particular, they exhibit sharp cusps, at the tops of which hc is more than six times

the Pauli paramagnetic limit. For example, for the parameter set M1, the cusp

occurs at φ ≈ −0.3392π. The maximum value is hc ≈ 3.925∆d0, which is given

by q ≈ 5.216hc/tS1. Their sharpness implies that the directions of the cusps must

remain the optimum directions of the magnetic field that stabilize the FFLO state

the most when the orbital pair-breaking effect is incorporated. The optimum direc-

tions are sensitive to changes in the inter-chain hopping integrals, whereas for all

parameter sets, they are in the second and fourth quadrants, which do not contains

the directions of ±b. This agrees with the observations in T onset
c (φ). The parameter

sets M1 and M2 give the maxima of hc(φ) near φ = −63.3◦ and φ = −78.3◦, at

which the experimental T onset
c (φ) have the maximum values when H = 30 kOe and

H = 47.5 kOe [14], respectively.

At the cusps, it is easily verified that n = 3, which means that the terms in

∆kFx (ky, q) proportional to (ky − k0y)
1 and (ky − k0y)

2 vanish. This behavior is essen-

tially the same as that in the square lattice system explained in § 1.2.1 [11], although
the controlling parameters (φ and nh) are different.

Comparing Figs. 6.1 and 6.2, it is found that the optimum directions of φ do not

strongly depend on the pairing symmetry for all parameter sets.

Figures 6.3 and 6.4 show |q|(φ) for the parameter set M1 in s- and d-wave states,

respectively. It is found that at each φ, the Fermi surfaces touch or nearly touch

when |q| is optimized. At φ = −0.340π, which is close to the optimum φ, the red

closed circle shows that the optimum |q| makes the Fermi surfaces touch as shown

in Fig. 6.5.

Comparing the blue closed triangles in the Figs. 6.3 and 6.4, which is the optimum

|q| for φ ≈ −0.199π, it is found that the optimum |q| of the s-wave state is different
from that of the d-wave state. In the s-wave state, the optimum |q| for φ ≈ −0.199π
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makes the Fermi surfaces touch, and the optimum nesting point k0y ≈ −0.6π, as

shown in Fig. 6.6. In contrast, in the d-wave state, the optimum |q| deviates from
the red dashed curves, which means that the Fermi surfaces cross for the optimum

|q| and the optimum nesting point k0y ≈ 0.9π as shown in Fig. 6.7. These differences

can be explained as follow. Although the amplitude of the order parameter in the d-

wave state is small at the k0y ≈ −0.6π, where the Fermi surfaces touch, that is large

at the k0y ≈ 0.9π, where the Fermi surfaces cross. Therefore, the Fermi surfaces nest

so that the amplitude of the order parameter is large. Figure 6.8 shows the angluar

dependence of the optimum nesting point and indicates the above explanation. In

the regime of −0.338 . φ . 0.045π including the blue closed triangles, the optimum

nesting point k0y in the d-wave state, which is the light blue open circles in Fig. 6.8,

has two points for an angle φ. This means that the Fermi surfaces cross, because

the amplitude of the order parameter in the d-wave state is small at k0y where the

Fermi surfaces touch, as shown in the black open circles in Fig. 6.8.

Figure 6.5 also shows that the points at which the Fermi surfaces touch are far

away from ky = π/2, near which the anion order affects the electron dispersion.

Hence, the anion order would not significantly change the present result.
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Figure 6.1: Magnetic field angular dependence of the upper critical field hc(φ) for the s-wave

state at T = 0 scaled by zero field gap ∆s0. The black, blue, red, and green solid curves show the

results for parameter sets Aave, Pave, M1, and M2, respectively. The bold dashed circle shows the

Pauli paramagnetic limit hP/∆s0 = 1/
√
2 ≈ 0.7071. The dashed straight lines represent directions

of the magnetic field (φ = −63.3◦ and φ = −78.3◦) at which the experimental T onset
c (φ) has a

maximum value for H = 30 kOe and H = 47.5 kOe, respectively [14]. This figure is presented in

Ref. [99].
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Figure 6.2: Magnetic field angular dependence of the upper critical field hc(φ) for the d-wave

state at T = 0. The definitions of the curves are the same as in Fig. 6.1, except for the pairing

symmetry and the values of the Pauli paramagnetic limit hP/∆d0 derived from Eq. (2.8), which are

approximately equal to 0.6096, 0.6075, 0.6063, and 0.6070 for Aave, Pave, M1, and M2, respectively.

This figure is presented in Ref. [99].
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Figure 6.3: Angular dependence of optimum q(φ) for parameter set M1. ξh ≡ v0F/2hc(φ) and

v0F ≡ tS1tS2/~
√

tS1
2 + tS2

2 are defined. v0F is the Fermi velocity at the half-filling in the 1D system

with tI1 = tI2 = tI3 = tI4 = 0. The black solid curve shows the angular dependence of optimum

q(φ) for the s-wave state. The blue solid curve shows the value divided by five. The red dashed

curves show that the q(φ) makes the Fermi surfaces touch. The red closed circle and blue closed

triangle show the optimum q(φ) at φ = −0.340π and φ = −0.199π, respectively. The red solid

curve shows hc(φ)/∆s0 in an arbitrary scale.
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Figure 6.4: The black solid curve shows the angular dependence of optimum q(φ) for the d-wave

state when parameter set M1 is assumed. The red solid curve shows hc(φ)/∆d0 in an arbitrary

scale. The definitions of the other curves and points are the same as in Fig. 6.3. This figure is

presented in Ref. [99].
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Figure 6.5: Fermi-surface nesting at φ = −0.340π for parameter set M1. The upper critical field

is maximum in this direction for both s- and d- wave states, and its values are hc(φ) ≈ 2.860∆s0

and hc(φ) ≈ 3.925∆d0, respectively. The black solid and dotted curves show the Fermi surfaces

of up and down spins, respectively. The red dashed curve shows the Fermi surface obtained by

shifting that of down spins by the vector q (the small arrows). The right panel shows a detailed

figure focused on nesting. In the weak coupling theory, h ≪ tS1; however, for this figure, we used

a large value h = 0.1tS1 to make the displacement visible. This figure is presented in Ref. [99].
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Figure 6.6: Fermi-surface nesting at φ = −0.199π for parameter set M1. For the s-wave state,

hc(φ) ≈ 1.520∆s0 at this φ. The black solid and dotted curves show the Fermi surfaces of up and

down spins, respectively. The blue dashed curve shows the Fermi surface obtained by shifting that

of down spins by the vector q (the small arrows). The right panel shows a detailed figure focused

on nesting.
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Figure 6.7: Fermi-surface nesting at φ = −0.199π for parameter set M1. For the d-wave state,

hc(φ) ≈ 1.667∆d0 at this φ. The definitions of the curves are the same as in Fig. 6.6.
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Figure 6.8: Angular dependence of the optimum nesting points k0y for parameter set M1. The

black open circles show the k0y that make the Fermi surfaces touch. The orange and light blue open

circles show the angular dependence of the points of k0y for optimum q when s- and d-wave states

are assumed, respectively. The red closed circle shows the optimum k0y at φ = −0.340π. The blue

closed triangles show the optimum k0y at φ = −0.199π for s- and d-wave states, respectively.
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Next, we numerically calculate Eq. (4.20) for φ as shown above, and examine

the temperature dependence of the upper critical field hc(T ).

Figures 6.9 and 6.10 show hc(T ) for the parameter set M1 when we assume d-

and s-wave states, respectively. hc(T ) for φ = φ0 ≈ −0.3392π, where n = 3, shows

a sharp up-turn at low temperatures in both s- and d-wave states. φ0 is φ that

gives the maxima of hc(φ), which implies the optimum direction of the magnetic

field. This up-turn is different from that of n = 2 such as φ = 0.5π; i.e., H ‖ b′,

and dhc(T )/dT at T = 0 for φ0 ≈ −0.3392π is significantly large. In contrast, for

the d-wave state at φ = −0.199π, hc(T ) does not show a up-turn near T = 0, and

dhc(T )/dT vanishes at T = 0 because n = 1 at this φ, which means that the Fermi

surfaces cross. Thus, dhc(T )/dT at T = 0 increases as φ approaches φ0. This rapid

increase for φ ≈ φ0 at low temperatures is similar to the behavior shown in the

square lattice system for nh = 0.630, where n = 4 [22]. The behavior of hc(T ) at

φ = −0.199π for the s-wave state is different from that for the d-wave state because

n = 2, which means that the Fermi surfaces touch on a line, as mentioned above.
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Figure 6.9: Temperature dependence of the upper critical field for parameter set M1 when the

d-wave pairing is assumed. The blue and red curves show the results for φ ≈ −0.3392π and

φ = −0.199π, respectively. The black solid and dashed curves show the results for φ = 0 and

φ = 0.5π, which means that H ‖ a and H ‖ b′, respectively. The dotted curve shows the upper

critical field in 1D systems.
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Figure 6.10: Temperature dependence of the upper critical field for parameter set M1 when the

s-wave pairing is assumed. The definitions of the curves are the same as in Fig. 6.9.
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6.2 Dependence on the Fermi-surface structure

In this section, we examine the relation between the in-plane magnetic field depen-

dence of the upper critical field hc(φ) and the Fermi-surface structure. As explained

in the previous section, the nesting effect sensitively depends on the Fermi-surfaces

structure that includes derivatives of ǫ(k) on the Fermi surface as well as the shape

of the Fermi surfaces. Because the optimum direction φ0 is determined by the nest-

ing effect, even for similar appearances of the Fermi surfaces, φ0 can largely differ.

Therefore, only by explicit calculation of hc(φ) for various parameters, we can clarify

their relation. In addition, we try to find the hopping integrals significant for the

determination of the optimum direction.

We introduce parameters that quantitatively express the shapes of the Q1D

Fermi surfaces. We define ks = k
(+,t)
y − k

(−,t)
y = 2k

(+,t)
y and kw = k

(+,t)
x − k

(+,b)
x ,

which respectively express the degrees of the shear and warp of the Q1D Fermi

surfaces as shown in Fig. 6.11. Here, k(±,t)
x = ±max

ky
kFx (ky), k

(±,b)
x = ±min

ky
kFx (ky),

and k
(±,t)
y and k

(±,b)
y are ky that gives k

(±,t)
x and k

(±,b)
x , respectively. When kw = 0,

the Fermi surfaces are flat. ks is a function of {tIµ| µ = 1, 2, 3, 4}, and has the

periodicity ks({tIµ}) = ks({−tIµ}) + 2π.

We examine the relation between the optimum direction φ0 and the shapes of

the Fermi surfaces. Figure 6.12 shows tS1/tS2 dependence of φ0, which implies that

φ0 hardly changes by tS1/tS2. Therefore, we fix the values of intra-chain hopping

integrals tS1 and tS2, which are 387.5 meV and 329.5 meV, respectively. The pa-

rameter sets of the inter-chain direction are sampled using a grid of (9× 9× 9× 9)

points in the tI1tI2tI3tI4 space, where −0.3 ≤ tI1/tS1 ≤ 0.3, −0.4 ≤ tI2/tS1 ≤ 0.4,

−0.3 ≤ tI3/tS1 ≤ 0.3, and −0.15 ≤ tI4/tS1 ≤ 0.15. The optimum direction φ0 is a

function of {tIµ| µ = 1, 2, 3, 4}. Because we examine Q1D systems, we exclude the

60



parameter sets for which the warp of the Fermi surface is so large that kw > 0.20π

or the Fermi surface is closed.

Figures 6.13 and 6.14 show the relation between ks and φ0 for the parameter sets

defined above. In Fig. 6.13, the black closed circles show the points for the parameter

sets with tI4 = 0. For these parameter sets, the points (ks, φ0) are concentrated on

a curve, which varies in the range of −0.1π . φ0 . 0.1π. However, as shown by the

blue and red open circles, which are for the parameter sets with tI4 > 0 and tI4 < 0,

respectively, the points (ks, φ0) are scattered in a wide range for tI4 6= 0. Therefore,

a finite tI4 is significant for the optimum directions φ0 to take various values in a

wide range. The distribution of the points (ks, φ0) is symmetric in Fig. 6.13, because

there exist both (ks({tIµ}), φ0({tIµ})) and (ks({−tIµ}), φ0({−tIµ})) + (2π, 0) in the

diagram.

In Fig. 6.14, the black closed circles show the points for the parameter sets with

tI1 = 0. In contrast to Fig. 6.13, for these parameter sets, the points (ks, φ0) are not

concentrated. The behavior for tI2 and tI3 are similar to that for tI1. Therefore, tI1,

tI2, and tI3 are not significant for the determination of the optimum directions.

Next, we examine the relation between the optimum direction and the shapes

of the Fermi surfaces. We focus on the parameter sets A1, A2, and A3, which

have been shown the orange triangles in Figs. 6.13 and 6.14. For these parameter

sets, ks ≈ −π and kw ≈ 0.1π, which implies that their Fermi surfaces are similar

as shown in Fig. 6.15. However, the optimum directions φ0 for these parameter

sets are different, which are approximately equal to 0.191π, 0.0690π, and −0.250π,

respectively, as shown in Figs. 6.13 and 6.14. Similarly, for the parameter sets

B1, B2, and B3 as shown by the green triangles in Figs. 6.13 and 6.14, although

their Fermi surfaces are similar with ks ≈ −0.5π and kw ≈ 0.07π, the optimum

directions φ0 are different, which are approximately 0.297π, −0.00532π, and−0.185π
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respectively. For these parameters, the shapes of the Fermi surfaces are shown in

Fig. 6.16. Therefore, even in the systems with similar shapes of the Fermi surfaces,

the optimum directions can be different. In contrast to this behavior, the optimum

directions can be similar, even when the shapes of the Fermi surfaces are completely

different. In fact, the parameter sets C1, C2, and C3 give different shapes of the

Fermi surfaces as shown in Fig. 6.17, whereas the optimum directions φ0 almost

coincide (φ0 ≈ −0.3π) as shown by the light blue triangles in Figs. 6.13 and 6.14.

Therefore, the optimum direction cannot be predicted by a simple consideration for

the shape of the Fermi surfaces [11].

As shown by the red closed diamonds in Figs. 6.13 and 6.14, the points for

parameter sets Pave, M1, and M2 are near the region in which the points (ks, φ0) are

concentrated.

In Figs. 6.13 and 6.14, the points (ks, φ0) are not concentrated in proximately to

the direction of γ. This implies that the FFLO vector cannot point this direction,

in which the edge of the Fermi surfaces is open.

Figure 6.18 shows phase diagrams about values of φ0 for several values of tI4 in

the tI2tI3 plane when tS1 = 387.5, tS2 = 329.5, and tI1 = 50 in the unit of meV. Also

in Fig. 6.18, the behaviors as mentioned above occur. In Fig. 6.18 (a), the optimum

directions φ0 for the parameter sets with tI4 = 0 become −0.1π . φ0 . 0.1π in a

wide range, which is expressed by a light-colored region. As the value of tI4 increases,

a dark-colored region widen, which means that φ0 variously changes. In Fig. 6.18

(b), (c), and (d), the parameter sets Pave, M1, and M2 are included in a green-scaled

region that φ0 < 0.
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Figure 6.11: Definition of ks and kw. The black solid curves show the Fermi surfaces. The

black closed circles show the momenta k(±,t) and k(±,b), which are k(±,t) = (k
(±,t)
x , k
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y ) and

k(±,b) = (k
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Figure 6.12: The ratio tS2/tS1 dependence of the optimum direction φ0 for the d-wave state when

tS1 = 250.0, tI1 = tI2 = −25.0, and tI3 = 50.0 in the unit of meV. The black, red, blue, and orange

curves show the results for tI4 = 30.0, 10.0, −10.0, and −30.0 in the unit of meV, respectively.
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Figure 6.13: The relation between ks and φ0 for the d-wave state and sampled parameter sets

when tS1 = 387.5 meV and tS2 = 329.5 meV, except for parameter sets where the edge of the

Fermi surface closes. The black closed circles show the points for tI4 = 0, whereas the blue and

red open circles show the points for tI4 > 0 and tI4 < 0, respectively. The dashed straight line

represents φ0 = γ = 69.0◦, which means that H ‖ b. The red closed diamonds show the results

for parameter sets Pave, M1, and M2. The orange, green, and light blue closed triangles show the

results for parameter sets A1, A2, and A3, B1, B2, and B3, and C1, C2, and C3, respectively.
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Figure 6.14: The data same as Fig. 6.13 are plotted, with different definition of the colors. The

black closed circles show the points for tI1 = 0, whereas the blue and red open circles show the

points for tI1 > 0 and tI1 < 0, respectively.
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Figure 6.15: The Fermi surfaces for parameter sets A1, A2, and A3, which are shown in Figs. 6.13

and 6.14. The optimum directions φ0 for these parameter sets are approximately 0.191π, 0.0690π,

and −0.250π, respectively.
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Figure 6.16: The Fermi surfaces for parameter sets B1, B2, and B3, which are shown in

Figs. 6.13 and 6.14. The optimum directions φ0 for these parameter sets are approximately 0.297π,

−0.00532π, and −0.185π, respectively.
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Figure 6.17: The Fermi surfaces for parameter sets C1, C2, and C3, which are shown in Figs. 6.13

and 6.14. The optimum directions φ0 for these parameter sets are approximately equal to −0.3π.
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Figure 6.18: Phase diagrams in the tI2tI3 plane for tS1 = 387.5 meV, tS2 = 329.5 meV, tI1 =

−50.0 meV, and several values of tI4 when the d-wave state is assumed. The color scale for the

optimum direction φ0/π is shown in the left panel. The solid curves are the boundaries of the area

in which the Fermi surface is open. In the panels (b), (c), and (d), the closed black circles show

the parameter sets Pave, M1 and M2, respectively.
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6.3 Effect of the order-parameter mixing

In this section, we numerically calculate Eq. (4.31), and examine the stability of

the FFLO state in the presence of the mixing effect. As mentioned in the purpose,

in Q1D organic superconductors (TMTSF)2X , the mixing effect can occur. In the

following, we examine the case that T
(0)
cα2 = 0.01T

(0)
cα1 , where α1 = s, d and α2 = p, f,

and assume tS1 = tS2 = ta, tI3 = tb, and tI1 = tI2 = tI4 = 0.

Figures 6.19 and 6.20 show hc(T ) of d- and s-wave FFLO states, respectively.

In the absence of the mixing effect, the tricritical temperature T ∗ ≈ 0.561T
(0)
cα1 at

any ϕq. In contrast, the mixing effect enhances T ∗. For example, when α1 = d

and α2 = fx, T
∗ ≈ 0.668T

(0)
cd at ϕq = 0 as shown in Fig. 6.19. The mixing effect

is maximized at ϕq = 0, while it does not occur at ϕq = π/2. When α1 = d and

α2 = fy, the mixing effect is maximized at ϕq = π/2, while it does not occur at

ϕq = 0. For example, T ∗ ≈ 0.668T
(0)
cd at ϕq = π/2 and T ∗ ≈ 0.561T

(0)
cd at ϕq = 0 as

shown in Fig. 6.19. In the case of the s-wave FFLO state, we obtain similar results

to the d-wave FFLO state. In addition, when the mixing effect occurs, the width

of the shoulder in the hc(T ), which is shown by Miyawaki and Shimahara [21], is

larger than the pure FFLO state. Thus, the FFLO state is more stable because of

the order-parameter mixing effect, and its stability depends on the direction of the

FFLO vector and the combination of the order parameters that are mixed.

Figures 6.21 and 6.22 show T ∗(ϕq) for d-f and s-p mixing states, respectively.

The behavior of T ∗(ϕq) is similar to the results as analytically shown in Section 4.4.

The order-parameter mixing effect almost does not occur in d-p mixing state, and

T ∗ almost does not enhance. When s-px and d-fx mixing states occur, the tricritical

temperature is maximum at ϕq = 0, and decreases as the direction of q approaches

b′. In contrast, when s-py and d-fy mixing states occur, the tricritical tempera-

ture increases as the direction of q approaches b′, and is maximum at ϕq = π/2.

68



Figures 6.23 and 6.24 show the ratio of hopping parameters tb/ta dependence of

the tricritical temperature T ∗. As tb/ta decreases, T ∗ increases for s-px and d-fx

mixing states, while T ∗ decreases for s-py and d-fy mixing states. These behaviors

remarkably appear as q approaches b′.
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Figure 6.19: Temperature dependence of the upper critical field for the state where the d-wave

pairing is dominant at tb/ta = 0.10. The black and red dotted curves show the results in the

absence of the mixing effect at ϕq = 0 and ϕq = π/2, respectively. The black solid curve shows

the result at ϕq = 0 when α1 = d and α2 = fx. The red solid curve shows the result at ϕq = π/2

when α1 = d and α2 = fy. The opened and closed circles show the tricritical temperature T ∗ in

the absence and the presence of the mixing effect, respectively. The inset shows a detailed figure

focused on the tricritical temperature T ∗.
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Figure 6.20: Temperature dependence of the upper critical field for the state where the s-wave

pairing is dominant at tb/ta = 0.10. The black solid curve shows the result at ϕq = 0 when α1 = s

and α2 = px. The red solid curve shows the result at ϕq = π/2 when α1 = s and α2 = py. The

other curves and circles are the same as Fig. 6.19.

70



0 0.25 0.5

0.57

0.6

0.63

0.66

T
*
 /

 T
 (

0
) cd

ϕq / π

tb / ta = 0.3

tb / ta = 0.1

d + fx d + fy

Figure 6.21: Angle ϕq dependence of the tricritical temperature. The black (red) solid and

dotted curves show the results for the d-fx (d-fy) mixing state at tb/ta = 0.10 and tb/ta = 0.30,

respectively.
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Figure 6.22: Angle ϕq dependence of the tricritical temperature. The black (red) solid and

dotted curves show the results for the s-px (s-py) mixing state at tb/ta = 0.10 and tb/ta = 0.30,

respectively.
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Figure 6.23: The ratio tb/ta dependence of the tricritical temperature. The black (red) solid,

dashed, and dotted curves show the results for the d-fx (d-fy) mixing state at ϕq = 0, ϕq = 0.25π,

and ϕq = 0.45π, respectively.
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Figure 6.24: The ratio tb/ta dependence of the tricritical temperature. The black (red) solid,

dashed, and dotted curves show the results for the s-px (s-py) mixing state at ϕq = 0, ϕq = 0.25π,

and ϕq = 0.45π, respectively. The red solid, dashed, and dotted curves show the results for the

s-py mixing state at ϕq = 0, ϕq = 0.25π, and ϕq = 0.45π, respectively.
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Chapter 7

Discussion and conclusion

In this thesis, we have studied the stability of the FFLO state in Q1D systems,

particularly focused on the Fermi surface nesting effect and the order-parameter

mixing effect. The observed change of the principal axis of T onset
c (φ) at high fields

in (TMTSF)2ClO4 is caused by the emergence of the nonzero FFLO vector q. The

direction of the principal axis at high fields can be determined by the nesting effect

for the FFLO state, because q ‖ H as reviewed in Chapter 2. Therefore, we

have examined the Fermi surface nesting effect when the direction of the in-plane

magnetic field is changed. In (TMTSF)2X , as reviewed in Chapter 3, in addition

to the d-wave state, the triplet state has been discussed by many authors. Besides,

it has been suggested that pairing interactions of singlet and triplet states coexist.

Therefore, we have examined the order-parameter mixing effect. Our main results

are summarized as follows.

The FFLO state is extremely stable for magnetic fields around the nontrivial

optimum directions indicated by the cusps in hc(φ). The maximum value of hc(φ)

at these cusps exceeds six times the Pauli paramagnetic limit. Therefore, even if

the orbital pair-breaking effect is incorporated, the FFLO state can be stabilized
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around the optimum directions. We compared the optimum direction with the

observed direction of the principal axis in T onset
c (φ) at high fields. It was shown that

there exist realistic parameter sets (M1 and M2) that can reproduce the optimum

directions of H (‖ q) consistent with the experimental observations. Furthermore,

for the parameter sets obtained from previous studies (Pave and Aave), the optimum

directions are in the quadrants consistent with the experimental observations.

The results mentioned above on the stability and the optimum direction are

consistent with the hypothesis that the FFLO state emerges in (TMTSF)2ClO4.

The behavior with cusps mentioned above is theoretically interesting because

in the present case φ is controlled, whereas an analogous behavior was found in a

square lattice system in which nh is controlled to deform the Fermi surfaces [11].

Hence, a similar behavior may occur in other low-dimensional systems with other

controlling parameters. This phenomenon may be universal to the FFLO state.

Now, we discuss the discrepancy between the theoretical and experimental re-

sults. For example, the present results do not coincide with the fact that the

optimum direction of H depends on the magnitude of the magnetic field in the

experimental T onset
c (φ). The order-parameter mixing effect does not cause the tem-

perature dependence of optimum direction φ0, because φ0 is primarily determined

by the Fermi-surface structure. On the other hand, the orbital pair-breaking effect

can cause the temperature dependence of φ0 for the following reason. If vortex

states with higher Landau level indices occur, the order parameter modulates in

the direction perpendicular to the magnetic field [8]. Such a modulation is effec-

tively regarded as the component of q perpendicular to H . Therefore, the orbital

pair-breaking effect can cause the difference between the directions q and H . The

orbital pair-breaking effect can cause the temperature dependence of φ0 because of

this difference, while when the temperature increases, the present optimum direc-
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tions of H at T = 0 remain optimum. In addition, superconducting fluctuations

may contribute to Tc(φ) and hc(φ). The resistance in (TMTSF)2ClO4 suddenly

decreases with the small width due to superconducting fluctuations as the temper-

ature decreases, and the onset transition temperature was adopted [15]. Therefore,

the observed temperature dependence of φ0 can be reproduced by incorporating the

effect of fluctuations.

Next, we examined whether the optimum direction φ0 can be found solely by

simple considerations of the shape of the Fermi surfaces. The shape of the Q1D

Fermi surfaces can be crudely characterized by (ks, kw), which expresses the degrees

of the shear and warp. We found that there is not any correlation between the

optimum direction φ0 and (ks, kw), which determines the appearance of the Fermi

surfaces. The reason is that the nesting condition is determined not only by the

shape of the Fermi surfaces but also by derivatives of one-particle energy ǫ(k) on

the Fermi surface, such as the Fermi velocity vF(ky). This behavior is analogous to

the behavior found in the square lattice system [11]. In this system, Hc(nh) for the

round Fermi surface is larger than that for the Fermi surface with the flat portion.

We found that the hopping integral tI4 is most significant for the optimum direc-

tion φ0. This result might be unexpected because tI4 is the second-nearest-neighbor

hopping integral in the inter-chain direction, as shown in Fig. 5.1, which is smaller

than the other hopping integrals. However, in the real space, the bond related to

tI4 is as short as that related to tI3, which is one of the nearest-neighbor hopping

integrals.

In Q1D systems with tS1 = tS2 = ta, tI3 = tb, and tI1 = tI2 = tI4 = 0, we

confirmed that the FFLO state is stabilized by the order-parameter mixing effect,

even if the triplet order parameter is very weak, which has been shown in 2D and 3D

systems [12, 13]. In Q1D organic superconductors, because the singlet and triplet
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pairing interactions are expected to coexist as mentioned above, this effect would be

significant. For (α1, α2) = (d, fx) and (s, px), the stability of the mixed state increases

as the direction of H approaches a-axial direction, whereas for (α1, α2) = (d, fy) and

(s, py), that increases as the direction ofH approaches b′-axial direction. The former

mixed state is more stable when the Fermi surfaces are flat, whereas the latter mixed

state is more stable when the warp of the Fermi surfaces is large. When (α1, α2) =

(d, px) and (d, py), the order-parameter mixing effect does not occur. Therefore, the

stability depends on the combination of α1 and α2, the direction of the magnetic

field, and the shape of the Fermi surfaces. The behavior mentioned above can be

explained by examining the dependence of q and tb/ta of the off-diagonal elements

Mα1α2
.

Our study supports the possibility that the FFLO state occurs in

(TMTSF)2ClO4. However, our study is not limited to this compound. We ex-

pect that our present results summarized above can be useful for future studies on

the FFLO state in Q1D superconductors.
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Appendix A

Expansion of ∆kFx

In this appendix, we examine the difference between the Q1D Fermi surfaces of up

and down spins expressed as

∆kFx (ky, q) = kF↓x (ky − qy)− kF↑x (ky) + qx. (A.1)

For example, n = 3 is shown for parameter set M1 at φq ≈ −0.3392π.

Equation. (A.1) is rewritten as

∆kFx (ky, q) = kF↓x (ky)− kF↑x (ky)−
dkF↓x (ky)

dky
qy + qx. (A.2)

Because ξσ(k
Fσ
x (ky), ky) = σh, the total derivative with respect to ky is

dξ

dky
=

∂ξ

∂kx

dkFσx
dky

+
∂ξ

∂ky
. (A.3)

We define

kF(0)x =
(kF↑x (ky) + kF↓x (ky))

2
,

∆kF(0)x = kF↓x (ky)− kF↑x (ky).

(A.4)

The ξσ is rewritten as

ξ(kF(0)x , ky) +
∂ξ

∂kx

1

2
σ∆kF(0)x = σh. (A.5)
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From Eqs. (A.3) and (A.5), we obtain

∆kFx (ky, q) = ∆kF(0)x − dkF↓x (ky)

dky
qy − qx

=
2h

vFx
− vFy
vFx

∣

∣

∣

∣

(kFσ
x

,ky)

qy − qx,

(A.6)

where vFx ≡ ∂ξ/∂kx, and vFy ≡ ∂ξ/∂ky. Therefore, at k
0
y,

2h = q · vF(s, ky). (A.7)

We expand ∆kFx (ky, q) as

∆kFx (ky, q) =
∞
∑

k=1

Ck(ky − k0y(q))
k, (A.8)

where

Ck =
1

k!

∂k∆kFx (ky, q)

∂kky

∣

∣

∣

∣

ky=k0
y
(q)

. (A.9)

When Ck with k = 1, 2 · · ·n − 1 vanish, we obtain ∆kFx (ky, q) ∝ (ky − k0y(q))
n for

small (ky − k0y(q)).

When parameter set M1 is assumed, we obtain n = 3 for the optimum

φq ≈ −0.3392π (i.e., ϕq ≈ −0.3070π), |q| ≈ 5.216hc/tS1, and k0y ≈ 0.9570π from

numerical calculation. The red dashed curves in Figs. 6.3 and 6.4 are obtained from

the condition C1 = 0.
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Appendix B

Detailed explanation of Tab. 4.1

In this appendix, we analytically calculate the magnitude of the mixing effect.

In the weak coupling limit, the off-diagonal elements in Eq. (4.31) are

Mα1α2
=

1

N

∑

k

γα1
(k)γα2

(k)
∑

σ

1

2ξ
tanh

(

(ξ + σζ)

2T

)

. (B.1)

Mα1α2
is expanded as Mα1α2

=
∑

k1

M (k1)
α1α2

qk1. Here, we define

M (k1)
α1α2

=
∑

s=±

∫ π

−π

dky
2π

ρ(0, ky)γα1
(k)γα2

(k)xk1(ky, ϕq, s)

∫ ωD

−ωD

dξL(k1)(ξ), (B.2)

where

L(k1)(ξ) =
1

k1!

[

∂k1

∂ξk1

∑

σ

tanh

(

(ξ + σζ)

2T

)]

, (B.3)

ρ(0, ky) = 1/[4π sin (kFx (ky))], and

x(ky, ϕq, s) = sin (skFx (ky)) cosϕq + tb sin (ky) sinϕq. (B.4)

We have defined ta = 1. Further, we expand the term depending on kFx (ky). For

example,
∞
∑

k2=0

∂k2kFx (ky)

∂tb
k2

= C0 + C1 cos (ky)tb +O(tb
2), (B.5)
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∞
∑

k2=0

∂k2ρ(0, ky)

∂tb
k2

=
1

sinC0

− cos (C0)

sin2 (C0)
C1 cos (ky)tb +O(tb

2), (B.6)

and
∞
∑

k2=0

∂k2 sin (kFx (ky))

∂tb
k2

= sinC0 + cos (C0)C1 cos (ky)tb +O(tb
2), (B.7)

where C0 = arccos (−µ

2
) and C1 = 2/

√

4− µ2. Therefore, Mα1α2
is expanded as

Mα1α2
=

∑

k1,k2

M (k1,k2)
α1α2

qk1tb
k2 . (B.8)

When M
(k1,k2)
α1α2 with k1 = 0, 1, · · ·m − 1 and k2 = 0, 1, · · · l − 1 vanish, we obtain

Mα1α2
∝ qm(tb)

l for small q and tb.

We analytically calculate the M
(k1,k2)
α1α2 except for the term depending on ξ. For

example, when α1 = s and α2 = px, m = 1 and l = 0 at ϕq = 0, while M
(k1,k2)
α1α2 = 0

for any k1 and k2 at ϕq = π/2. When α1 = d and α2 = px, m = 3 and l = 1 at

ϕq = 0, while M
(k1,k2)
α1α2 = 0 for any k1 and k2 at ϕq = π/2.

80



Reference

[1] R. Casalbuoni and G. Nardulli, Rev. Mod. Phys. 76, 263 (2004).

[2] Y. Matsuda and H. Shimahara, J. Phys. Soc. Jpn. 76, 051005 (2007).

[3] H. Shimahara, in The Physics of Organic Superconductors and Conductors, ed.

A.G. Lebed (Springer, Berlin, 2008), p. 687.

[4] P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964).

[5] A. I. Larkin and Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47, 1136 (1964);

translation: Sov. Phys. JETP, 20, 762 (1965).

[6] S. Takada and T. Izuyama, Prog. Theor. Phys. 53, 635 (1969)

[7] L. G. Aslamazov Zh. Eksp. Teor. Fiz. 55, 1477 (1968); translation: Sov. Phys.

JETP 28, 773 (1969).

[8] H. Shimahara and D. Rainer, J. Phys. Soc. Jpn. 66, 3591 (1997).

[9] H. Shimahara, Phys. Rev. B 50, 12760 (1994).

[10] H. Shimahara, J. Phys. Soc. Jpn. 66, 541 (1997).

[11] H. Shimahara, J. Phys. Soc. Jpn. 68, 3069 (1999); J. Supercond. 12, 469 (1999).

81



[12] S. Matsuo, H. Shimahara and K. Nagai, J. Phys. Soc. Jpn 63, 2499 (1994).

[13] H. Shimahara, Phys. Rev. B 62, 3524 (2000).

[14] S. Yonezawa, S. Kusaba, Y. Maeno, P. Auban-Senzier, C. Pasquier, K. Bech-

gaard, and D. Jerome, Phys. Rev. Lett. 100, 117002 (2008).

[15] S. Yonezawa, S. Kusaba, Y. Maeno, P. Auban-Senzier, C. Pasquier, and D.

Jerome, J. Phys. Soc. Jpn. 77, 054712 (2008).

[16] L. W. Gruenberg and L. Gunther, Phys. Rev. Lett. 16, 996 (1996).

[17] Y. Suginishi and H. Shimahara, J. Phys. Soc. Jpn. 73, 11 (2004).

[18] H. Shimahara, J. Phys. Soc. Jpn. 58, 1735 (1989).

[19] H. Shimahara, J. Phys. Soc. Jpn. 69, 1966 (2000).

[20] A. M. Clogston, Phys. Rev. Lett. 9, 266 (1962); B. S. Chandrasekhar, Appl.

Phys. Lett. 1, 7 (1962).

[21] N. Miyawaki and H. Shimahara, J. Phys. Soc. Jpn. 83, 024703 (2014).

[22] H. Shimahara and K. Moriwake, J. Phys. Soc. Jpn. 71, 1234 (2002).

[23] H.Shimahara and S.Hata, Phys. Rev. B 62, 14541 (2000).

[24] Saint-James, D., G. Sarma, and E. J. Thomas, 1969, Type-II Superconductivity,

(Pergamon, Oxford, England).

[25] D. Jerome, Mol. Cryst. Liq. Cryst. 79, 155 (1982).

[26] L. Balicas, J. S. Brooks, K. Storr, S. Uji, M. tokumoto, H. Tanaka, H.

Kobayashi, A. Kobayashi, V. Barzykin, and L. P. Gor’kov Phys. Rev. Lett

87, 067002 (2001).

82



[27] J. Singleton, J. A. Symington, M.-S. Nam, A. Ardavan, M. Kurmoo, and P.

Day, J. Phys. Condens. Matter 12, L641 (2000).

[28] R. Lortz, Y. Wang, A. Demuer, P. H. M. Böttger, B. Bergk, G. Zwicknagl, Y.
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