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Abstract. We show that the n-th Nash blowup of the toric surface singularity

of type A3 is singular for any n > 0. It has been known that the normalization

of the n-th Nash blowup of an affine normal toric variety is the toric variety

associated to the Gröbner fan of a certain ideal. In our case, we prove that

the Gröbner fan contains a certain non-regular cone for any n > 0. Thus we

conclude that the normalizations are singular, and so are the Nash blowups.

Introduction

Let X be an equidimensional quasi-projective variety over C. The classical Nash

blowup of X was defined in [1], and was recently generalized in [2] and [3] indepen-

dently.

The classical Nash blowup is defined as follows.

Definition 0.1 ([1]). Let X be a subvariety of Am of dimension r, and Xsm :=

X \ Sing (X). Let G (m, r) be the Grassmanian of r-dimensional subspaces of an

m-dimensional vector space over C. Then we have a natural morphism

ϕ : Xsm ↪→ X ×G (m, r) ; P 7→ (P, TPX)

where TPX is the tangent space of X at P . We define Nash(X) to be the closure

of ϕ (Xsm) in X × G (m, r). Moreover we obtain a morphism π : Nash (X) → X

by restriction of the first projection X × G (m, r) → X to Nash(X). The pair

(Nash(X), π) is called the Nash blowup of X. For an arbitrary variety, its Nash

blowup is defined by gluing the Nash blowups of its affine patches.

The classical Nash blowup is generalized to the n-th Nash blowup for any n > 0.

Let MX,P ⊂ OX be the ideal sheaf of a closed point P . In the above definition,
1
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we looked at the tangent space at a smooth point P , which can be identified with

the dual space of MX,P /M2
X,P . In other words, we looked at the first infinitesimal

neighborhood at P , i.e. the closed subscheme of X associated to the ideal sheaf

M2
X,P . The n-th Nash blowup is defined by considering the n-th infinitesimal

neighborhoods:

Definition 0.2 ([3]). Let n > 0 be an integer.

(1) For any closed point P ∈ X, the n-th fat point P (n) is defined to be the

closed subscheme of X associated to the ideal sheaf Mn+1
X,P .

(2) For N :=
(
dimX+n
dimX

)
, let HilbN (X) be the Hilbert scheme of 0-dimensional

closed subschemes of length N . We have a natural morphism

ϕn : Xsm ↪→ X ×HilbN (X) ; P 7→
(
P,

[
P (n)

])
.

Then we define Nashn(X) to be the closure of ϕn (Xsm) in X ×HilbN (X),

and πn : Nashn(X) → X to be the restriction of the first projection

X × HilbN (X) → X to Nashn(X). The pair (Nashn(X), πn) is called the

n-th Nash blowup of X.

Nash1(X) was shown to be isomorphic to the classical Nash(X) ([3], Proposition

1.8). Moreover, let p be the second projection X × HilbN (X) → HilbN (X), and

Nash′n (X) the closure of

p ◦ ϕn (Xsm) =
{[

P (n)
]
∈ HilbN (X) | P ∈ Xsm

}
in HilbN (X). Then p : Nashn (X) → Nash′n (X) is an isomorphism ([3], Proposi-

tion 1.3), so we identify them.

Now the following questions were raised:

Questions. (1) ([4], Remark 1.5) Is Nashn(X) smooth for n ≫ 0?

(2) ([3], Conjecture 0.2) Let J (dimX−1) be the (dimX − 1)-th neighborhood

of the Jacobian subscheme J ⊂ X, i.e. the closed subscheme associated to
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jdimX
X where jX is the Jacobian ideal sheaf of X. Let [Z] ∈ Nashn(X) with

Z ⊈ J (dimX−1). Then, is Nashn(X) smooth at [Z]?

Let X has only finitely many singular points, i.e. J be 0-dimensional. Under

this assumption, if the answer to Question (2) is positive, then so is the answer to

Question (1): Indeed, any [Z] ∈ Nashn (X) satisfies Z ⊈ J for n ≫ 0 whenever

length (Z) =
(
dimX+n
dimX

)
> length (J). When X is a curve, it was proved in [3] that

the answer to Question (2) is positive, thus so is the answer to Question (1).

If the answer to Question (1) were positive for an arbitrary X, then a resolution

of singularities of X could be obtained as Nashn(X) for n ≫ 0. Hence we could

resolve singularities without iterations of operations, as with Hironaka’s resolution

([5]).

Our main result shows that the answers are negative in general:

Main Theorem. Let X :=
(
z4 − xy = 0

)
⊂ A3 be the toric surface singularity of

type A3. Then Nashn(X) is singular for any n > 0.

Therefore the A3-singularity is a counterexample to the above questions, since

X has only finitely many singular points. It has been suggested by T. Yasuda ([4],

Remark 1.5) that the A3-singularity might be a counterexample. Moreover, exten-

sive calculations supporting the suggestion were given by D. Duarte ([6], Section

3.5). The current work was motivated by them.

We prove our main theorem in the following way: Duarte’s theorem (Theorem

1.2) shows that the normalization Nashn(X) of Nashn(X) is the toric variety as-

sociated to the Gröbner fan GF (Jn) of a certain ideal Jn. Thus it is sufficient to

show that GF (Jn) contains a non-regular cone. On the other hand, we see that

the maximal cones of GF (Jn) are obtained from reduced Gröbner bases of Jn in a

certain way. Hence we first give the reduced Gröbner basis of Jn with respect to a

certain ordering, and explicitly describe the cone associated to the base. Then the

cone is non-regular. Therefore Nashn(X) is singular, and so is Nashn(X).

This paper is organized as follows.
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In section 1, we recall the general theory of Gröbner fans of ideals in monomial

subalgebras. For any ideal I in a monomial subalgebra, we give a description of

the maximal cones of GF (I) in terms of reduced Gröbner bases of I, as it is more

convenient in our exposition.

In section 2, we give a proof of our main theorem. First we give a certain

monomial ordering ⪯, and then determine the minimal generators of in⪯ (Jn) for

any n > 0 where Jn is the ideal introduced in Duarte’s theorem (Theorem 1.2).

This is the hardest part of the proof, and needs somewhat technical arguments

on certain semigroups in (Z≥0)
2
. The minimal generators of in⪯ (Jn) are exactly

leading monomials of elements of the reduced Gröbner basis of Jn. Moreover, for

one element of the reduced Gröbner basis, we show that it in addition contains

a certain (explicitly given) monomial. These results on elements of the reduced

Gröbner basis allow us to explicitly describe the cone in GF (Jn) associated to the

basis. Then our main result is proved.

1. Gröbner fans of ideals in monomial subalgebras

In this section, we recall the theory of Gröbner fans of ideals in monomial subal-

gebras. Gröbner fans is defined and studied for ideals in polynomial rings, but a very

analogous theory can be developed for ideals in monomial subalgebras ([7][8][9][6]).

First of all, let us explain how we are going to use the Gröbner fans. Our setting

in this section is as follows.

Notation 1.1. Let σ ⊂ Rd be a strongly convex full-dimensional rational polyhe-

dral cone, and X the affine toric variety associated to σ.

(1) Let S := C[σ∨ ∩ Zd] where σ∨ is the dual cone of σ. Thus X = SpecS.

(2) Let a1, . . . , as generate σ∨ ∩ Zd, i.e. σ∨ ∩ Zd = Z≥0a1 + · · ·+ Z≥0as.

(3) By a coordinate transformation, we can assume that σ∨ ⊂ (R≥0)
d
. Then S

becomes a monomial subalgebra of C [x1, . . . , xd] in the following way: For
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each ai = (ai1, . . . , aid), take the monomial

xai := xai1
1 · · ·xaid

d ∈ C[x1, . . . , xd].

Then S = C[xa1 , . . . , xas ] ⊂ C[x1, . . . , xd].

With the above notations, we state Duarte’s theorem as follows:

Theorem 1.2 ([9], Theorem 2.10). Let Jn := ⟨xa1 − 1, . . . , xas − 1⟩n+1 ⊂ S. Then

Nashn(X) is the toric variety associated to the Gröbner fan GF (Jn) of Jn.

By the theorem, we can conclude that Nashn(X) is singular if GF (Jn) contains

a non-regular cone.

Now let us go back to our explanation of the theory of Gröbner fans of ideals in

S. Let I be an arbitrary nonzero ideal in S till the end of this section.

Definition 1.3 ([9], Proposition 1.5). Let w ∈ σ.

(1) For a nonzero element f =
∑

β∈Nd cβx
β of S, letm := max

{
w · β | xβ ∈ supp (f)

}
where the dot product · denotes the standard inner product on Rd. Then

we define the initial form of f with respect to w as

inw (f) :=
∑

w·β=m

cβx
β .

We define inw (0) to be 0.

(2) inw(I) := ⟨inw(f) | f ∈ I⟩ is called the initial ideal of I with respect to w.

(3) Let C[w] := {w′ ∈ σ | inw′ (I) = inw (I)}.

Definition and Proposition 1.4 ([9], Proposition 1.6). Let C[w] be the closure

of C[w] in Rd. Then

GF (I) :=
{
C[w] | w ∈ σ

}
forms a polyhedral fan with |GF (I) | = σ. This is called the Gröbner fan of I.

Below we will give an alternative description of the maximal cones of GF (I) to

be more suitable for our purpose.
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Definition 1.5 ([6], Appendix A, Definition A.1.1). Let ⪯ be a total ordering on

monomials in S. Then ⪯ is called a monomial ordering if it satisfies the following

conditions:

(1) Let xα, xβ ∈ S. If xβ divides xα in S, then xβ ⪯ xα.

(2) For any xγ ∈ S, xβ ⪯ xα implies xβ+γ ⪯ xα+γ .

Remark 1.6. In this paper, divisibility between monomials in S will always mean

divisibility in S, not in C[x1, . . . , xd]. For example, in S = C
[
u, u3v4, uv

]
, u does

not divide u3v4.

Definition 1.7 ([9], Definition 1.2, 1.3). Let ⪯ be a monomial ordering on S.

(1) A set {g1, . . . , gt} of nonzero polynomials in I is called a Gröbner basis of

I with respect to ⪯ if lm⪯ (g1) , . . . , lm⪯ (gt) generate the ideal

in⪯ (I) := ⟨lm⪯ (f) | f ∈ I⟩

i.e. for any f ∈ I \ {0} there exists gi such that lm⪯ (gi) divides lm⪯ (f).

(2) We say that a Gröbner basis {g1, . . . , gt} is reduced if lc⪯ (gi) = 1 for any

i and no monomial of gi is divisible by lm⪯ (gj) for any i ̸= j.

Theorem 1.8 ([9], Theorem 1.4). Let ⪯ be a monomial ordering on S. Then I

has a unique reduced Gröbner basis with respect to ⪯.

Definition 1.9 (c.f. [10], Chapter 8). (1) Let {g1, . . . , gt} be the reduced Gröbner

basis of I with respect to ⪯. Then

G := {(g1, lm⪯ (g1)) , . . . , (gt, lm⪯ (gt))}

is called the marked Gröbner basis of I with respect to ⪯. Note that two

distinct monomial orderings may define the same marked Gröbner basis of

I. When we do not care about orderings, G is simply referred to as “a

marked Gröbner basis of I”.
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(2) Let G = {(g1, xα1) , . . . , (gt, x
αt)} be a marked Gröbner basis of I. Then

we define the cone CG ⊂ σ by

CG :=
{
w ∈ σ | (αi − β) · w ≥ 0 for any i and xβ ∈ supp (gi)

}
.

We will see in Theorem 1.17 that the maximal cones of GF (I) are exactly the

cones given as CG.

Lemma 1.10 ([11], Lemma 1, Theorem 4). Let ⪯ be a monomial ordering on S,

which we regard as a total ordering on σ∨∩Zd. Then ⪯ extends to a total ordering

on Qd in a natural way, and there exist row vectors w1, . . . , wr ∈ Rd satisfying the

following: For any α, β ∈ Qd, β ⪯ α if and only if there exists r0 ≤ r such that

∀i < r0, (α− β) · wi = 0 and (α− β) · wr0 > 0.

In this case, we say that ⪯ is the monomial ordering associated to the r× d matrix
w1

...

wr

 .

Proof. Let H ⊂ Zd be the abelian subgroup generated by σ∨∩Zd. Then Q⊗ZH =

Qd since σ∨ ⊂ Rd is full-dimensional.

One can easily check that ⪯ extends to a total ordering on H as follows: For any

p, p′ ∈ H, take expressions p = p+ − p− and p′ = p′+ − p′− by some p+, p−, p
′
+, p

′
− ∈

σ∨ ∩ Zd. Then p ⪯ p′ if and only if p+ + p′− ⪯ p′+ + p−.

Moreover ⪯ extends to a total ordering on Qd = Q ⊗Z H as follows: For any

q, q′ ∈ Q⊗Z H, there exists r ∈ Z>0 such that rq, rq′ ∈ H. Then q ⪯ q′ if and only

if rq ⪯ rq′.

Now Robbiano’s theorem ([11], Theorem 4) shows that there exists r > 0 and a

real r × d matrix M such that the ordering ⪯ on Qd is associated to M . Then the

vectors wi := (i-th row of M) satisfy the condition in the assertion. □
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Lemma 1.11 ([6], Appendix A, Proposition A.2.2). Let ⪯,⪯′ be monomial order-

ings on S. Then in⪯′ (I) ⊂ in⪯ (I) implies in⪯′ (I) = in⪯ (I).

Lemma 1.12 (c.f. [10], Chapter 8, Theorem 4.7). LetG = {(g1, xα1) , . . . , (gt, x
αt)}

be a marked Gröbner basis of I. Then we have the following:

(1) CG is a strongly convex full-dimensional rational polyhedral cone.

(2) For any w ∈ int (CG), we have

(αi − β) · w > 0 for any i and xβ ∈ supp (gi) \ {xαi} .

Proof. (1) CG is a rational polyhedral cone because the entries of αi−β are rational.

Moreover CG is strongly convex since CG ⊂ σ and σ is strongly convex.

Let us show the full-dimensionality of CG. By the definition of CG, it is clear

that CG contains the open subset U of Rd defined by

U := int (σ) ∩
∩

1≤i≤t

{
w ∈ Rd | (αi − β) · w > 0 for all xβ ∈ supp (gi) \ {xαi}

}
.

Therefore it is sufficient to show that U ̸= ∅.

Let ⪯ be a monomial ordering on S with respect to which G is the marked

Gröbner basis. By Lemma 1.10, ⪯ extends to a total ordering on Qd associated to

some r × d matrix M . Let wi be the i-th row of M , and put w(ϵ) := w1 + ϵw2 +

· · ·+ ϵr−1wr ∈ Rd for any ϵ ∈ R.

We will see that w(ϵ) ∈ U for sufficiently small ϵ > 0.

First, let us remark the following fact: For any γ1, γ2 ∈ σ∨ ∩Zd with xγ1 ≺ xγ2 ,

there exists r0 ≤ r such that (γ2 − γ1)·wi = 0 for all i < r0 and (γ2 − γ1)·wr0 > 0.

Thus, for sufficiently small ϵ > 0, we have (γ2−γ1)·(wr0 + ϵwr0+1 + · · ·+ ϵr−r0wr) >

0. This implies that

(γ2 − γ1) · w(ϵ) = (γ2 − γ1) ·
(
w1 + ϵw2 + · · ·+ ϵr−1wr

)
> 0.

Let L be any ray of σ∨ and µL its ray generator. Then 1 ≺ xµL . Thus, as we

have remarked above, µL ·w(ϵ) > 0 for sufficiently small ϵ > 0. By restricting ϵ for
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all L, we have w(ϵ) ∈ int (σ). Moreover, for any xβ ∈ supp (gi) \ {xαi}, we have

xβ ≺ xαi . Thus (αi − β) · w(ϵ) > 0 for sufficiently small ϵ > 0.

Therefore w(ϵ) ∈ U ̸= ∅ for sufficiently small ϵ > 0, so (1) holds.

(2) The vectors αi − β in the assertion are contained in (CG)
∨
by Definition 1.9

(2). Thus F := {w ∈ CG | (αi − β) · w = 0} is a face of CG, which is proper since

CG is full-dimensional and αi −β ̸= 0. Therefore any w ∈ int (CG) is not contained

in F . □

Definition 1.13 ([9], proof of Proposition 1.5). Let w be an element of σ, and ⪯ a

monomial ordering on S. Then the w-weighted ordering associated to ⪯, denoted

by ⪯w, is defined as follows:

xβ ⪯w xα ⇔ ((α− β) · w > 0) or
(
(α− β) · w = 0 and xβ ⪯ xα

)
.

One can easily check that ⪯w is also a monomial ordering on S.

Lemma 1.14 ([6], Appendix A, proof of Proposition A.3.1). Let w be an element

of σ, ⪯ any monomial ordering on S, and G the reduced Gröbner basis of I with

respect to ⪯w. Then

C[w] = {w′ ∈ σ | inw′(g) = inw(g) for all g ∈ G} .

Corollary 1.15. Let G = {(g1, xα1) , . . . , (gt, x
αt)} be a marked Gröbner basis of

I, and w an element of int (CG).

(1) Let ⪯ be any monomial ordering on S. Then G is the marked Gröbner

basis of I with respect to ⪯w.

(2) C[w] = CG.

Proof. (1) It is sufficient to show that

lm⪯w (gi) = xαi for 1 ≤ i ≤ t , and in⪯w (I) = ⟨xα1 , . . . , xαt⟩.
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By Lemma 1.12 (2), we have inw (gi) = xαi . Thus, by the definition of ⪯w, one can

easily check that lm⪯w (gi) = lm⪯ (inw (gi)) = xαi . Hence

⟨xα1 , . . . , xαt⟩ ⊂ in⪯w (I) .

On the other hand, for a monomial ordering ⪯′ with respect to which G is the

marked Gröbner basis of I, we have in⪯′ (I) = ⟨xα1 , . . . , xαt⟩. Thus ⟨xα1 , . . . , xαt⟩ =

in⪯w
(I) by Lemma 1.11. Therefore (1) holds.

(2) By (1), G is the marked Gröbner basis of I with respect to ⪯w, and Lemma

1.12 (2) shows that inw (gi) = xαi for any 1 ≤ i ≤ t. Thus, by Lemma 1.14,

C[w] = {w′ ∈ σ | inw′(gi) = xαi for all 1 ≤ i ≤ t} .

This shows that int (CG) ⊂ C[w] by Lemma 1.12 (2), so CG ⊂ C[w]. On the

other hand, this also shows that C[w] ⊂ CG by Definition 1.9 (2). Therefore

C[w] = CG. □

Lemma 1.16. Let ⪯ be the monomial ordering associated to a matrix M , and G

the marked Gröbner basis of I with respect to ⪯. Then the first row w1 of M is

contained in CG.

Proof. We have w1 ∈ σ since 1 ⪯ xα for any xα in S. Thus the assertion follows

from the definitions of CG. □

Theorem 1.17. There exists a one-to-one correspondence

{marked Gröbner bases of I}
∼=−→ {maximal cones of GF (I)} ; G 7→ CG.

Proof. The set int (CG) is nonempty since CG is full-dimensional by Lemma 1.12

(1). Therefore CG is a member of GF (I) by Corollary 1.15 (2), which is maximal

because of the full-dimensionality. Thus the correspondence is well-defined.

Let ⪯ be any monomial ordering on S (e.g. the lexicographic ordering). One can

easily check that the correspondence is injective by Lemma 1.15 (1).
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Now fix any maximal cone C ∈ GF (I) and take w ∈ int (C). Let G be the

marked Gröbner basis of I with respect to ⪯w. We have w ∈ CG by Definition

1.13, Lemma 1.10 and Lemma 1.16. Then C = CG: Indeed GF (I) is a fan and

hence C ∩ CG is a face of both C and CG. However w ∈ int (C) is contained in

C ∩ CG, thus C = C ∩ CG ⊂ CG. Since C is maximal in GF (I), we have C = CG.

Therefore the correspondence is also surjective, so the assertion holds. □

2. Higher Nash blowups of the A3-singularity

We give a proof of our main theorem in this section.

Notation 2.1. In this section, let X :=
(
z4 − xy = 0

)
⊂ A3.

(1) Let σ ⊂ R2 be the cone generated by lattice points (0, 1) , (4,−3). Then the

dual cone σ∨ ⊂ R2 is generated by (1, 0) , (3, 4). These cones are strongly

convex and full-dimensional.

(2) The monoid σZ := σ∨ ∩ Z2 is generated by (1, 0) , (3, 4) , (1, 1).

(3) S := C[σZ] = C[u, u3v4, uv] ⊂ C[u, v]. There is a surjective homomorphism

F : C[x, y, z] ↠ S; x 7→ u, y 7→ u3v4, z 7→ uv

with kerF = ⟨z4 − xy⟩. Hence X is isomorphic to SpecS, the affine toric

variety associated to σ.

(4) For any integer n > 0, we define

Jn := ⟨u− 1, u3v4 − 1, uv − 1⟩n+1 ⊂ S.

Then the normalization Nashn(X) of Nashn(X) is the toric variety associ-

ated to GF (Jn) (Theorem 1.2).

Remark 2.2. We will identify elements of σZ with monomials of S = C[u, u3v4, uv]:

For example, we identify (3, 4) ∈ σZ with u3v4 ∈ S, and (1, 0) + (1, 1) with u · uv.
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Our aim is to find a non-regular cone in GF (Jn) to prove that Nashn(X) is

singular. As we explained in the previous section, it is sufficient to find a marked

Gröbner basis Gn of Jn such that CGn is non-regular.

Definition 2.3. (1) Let ⪯ be the monomial ordering on S associated to 2 −1

1 1


(see Lemma 1.10 for details).

(2) Let Gn be the marked Gröbner basis of Jn with respect to ⪯.

(3) Let Mn := {α | (g, α) ∈ Gn}. This is the minimal monomial generating set

of in⪯ (Jn).

Below we will describe CGn explicitly, and show its non-regularity.

2.1. Candidate for Mn. We first study Mn.

Definition 2.4. For each integer n > 0, let Pn be the set consisting of following

elements of σZ (see Figure 1, Figure 2):

For odd n,

pn :=
(
n+3
2 , 0

)
,

q0n :=
(
n+3
2 , 1

)
+ n−1

2 (1, 2) , qin := q0n − i (1, 2)
(
0 ≤ i ≤ n−1

2

)
,

r0n := q0n + (0, 1), rjn := r0n + j (1, 2)
(
0 ≤ j ≤ n−1

2

)
,

sn := n+1
2 (3, 4) .

For even n,

pn :=
(
n+2
2 , 0

)
,

q0n :=
(
n+2
2 , 0

)
+ n

2 (1, 2) , qin := q0n − i (1, 2)
(
0 ≤ i ≤ n−2

2

)
,

r0n := q0n + (0, 1), rjn := r0n + j (1, 2)
(
0 ≤ j ≤ n

2

)
,

sn :=
(
n+2
2

)
(3, 4) .

In the next subsection, we will show Mn = Pn. Here we prove some properties

of Pn that will be needed later.
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The next lemma gives direct description of elements of Pn:

Lemma 2.5. Let n > 0 be an integer. If n is odd, then

pn =
(
n+3
2 , 0

)
= q

n−1
2

n − (0, 1),

q0n = (n+ 1, n) , q
n−1
2

n =
(
n+3
2 , 1

)
,

r0n = (n+ 1, n+ 1) , r
n−1
2

n =
(
3n+1

2 , 2n
)
,

sn = n+1
2 (3, 4) = r

n−1
2

n + (1, 2).

If n is even, then

pn =
(
n+2
2 , 0

)
= q

n−2
2

n − (1, 2),

q0n = (n+ 1, n) , q
n−2
2

n =
(
n+4
2 , 2

)
,

r0n = (n+ 1, n+ 1) , r
n
2
n =

(
3n+2

2 , 2n+ 1
)
,

sn =
(
n+2
2

)
(3, 4) = r

n
2
n + (2, 3).

Proof. The assertions follow from direct calculations. □

Now let us explain what Pn looks like. By the definition of Pn and Lemma 2.5,

we obtain Figure 1 and Figure 2: All qin and rjn are lying on the thick-line segments,

and conversely all lattice points on the segments are members of Pn. The broken-

line segments have lattice points only at the edges. If n is odd, then the slopes of

segments q
n−1
2

n q0n and r0nsn are both 2. If n is even, then the slopes of pnq
0
n and

r0nr
n
2
n are both 2, and the slope of r

n
2
n sn is 3

2 .

Next let us look at how Pn and Pn+1 are related.

Lemma 2.6. Let n > 0 be an integer.

(1) #Pn = n+ 3.

(2) For any distinct members a, b of Pn, we have b /∈ a+ σZ.

(3) If n is odd, then

pn−1 + (1, 0) = pn = pn+1, sn ̸= sn+1.
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Figure 1. Pn for odd n Figure 2. Pn for even n

If n is even, then

pn ̸= pn+1, sn−1 + (3, 4) = sn = sn+1.

(See Figure 3, Figure 4.)

(4) For the map θ : σ∨ → σ∨ defined by a 7→ (1, 1) + a, we have

θ
(
qin
)
= qin+1, θ

(
rjn
)
= rjn+1

and

θ (pn) = pn+1 + (1, 1) and θ (sn) = r
n+1
2

n+1 if n is odd,

θ (pn) = q
n
2
n+1 and θ (sn) = sn+1 + (1, 1) if n is even.

Thus θ (Pn) ⊂ Pn+1 + σZ.

(5) We have

Pn ∩ Pn+1 =


{pn} if n is odd,

{sn} if n is even,

and

Pn+1 = θ (Pn \ Pn+1) ⊔ {pn+1, sn+1} .
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(6) We have

Pn + σZ = (Pn \ Pn+1) ⊔ (Pn+1 + σZ) .

Proof. (1) follows from direct counting.

(2) Let l1 := (4,−3) and l2 := (0, 1) be the ray generators of σ. Then, for any

a, b ∈ Pn, b ∈ a+ σZ if and only if l1 · (b− a) ≥ 0 and l2 · (b− a) ≥ 0. However the

following inequalities hold: If n is odd, then

l1 · pn > l1 · q
n−1
2

n > · · · > l1 · q0n > l1 · r0n > · · · > l1 · r
n−1
2

n > l1 · sn,

l2 · pn < l2 · q
n−1
2

n < · · · < l2 · q0n < l2 · r0n < · · · < l2 · r
n−1
2

n < l2 · sn.

If n is even, then

l1 · pn > l1 · q
n−2
2

n > · · · > l1 · q0n > l1 · r0n > · · · > l1 · r
n
2
n > l1 · sn,

l2 · pn < l2 · q
n−2
2

n < · · · < l2 · q0n < l2 · r0n < · · · < l2 · r
n
2
n < l2 · sn.

Indeed, we have l1 · (1, 2) = −2 < 0 and l2 · (1, 2) = 2 > 0, thus

l1 · qi+1
n = l1 ·

(
qin − (1, 2)

)
= l1 · qin − l1 · (1, 2) > l1 · qin,

l2 · qi+1
n = l2 ·

(
qin − (1, 2)

)
= l2 · qin − l2 · (1, 2) < l2 · qin.

One can easily check the other inequalities by similar calculations.

Then, for any a ̸= b ∈ Pn, we have either l1 · (b− a) < 0 or l2 · (b− a) < 0.

Therefore (2) holds.

(3) follows from direct calculations.

(4) One can easily check that θ
(
q0n
)
= q0n+1 for any n by Lemma 2.5. Therefore

θ
(
qin
)
= θ

(
q0n − i (1, 2)

)
= θ

(
q0n
)
− i (1, 2) = q0n+1 − i (1, 2) = qin+1.

The other assertions also follow from similar direct calculations and (3).

(5) In Figure 3 and Figure 4, (4) implies that θ shifts segments as follows:

θ
(
q

n−1
2

n q0n

)
= q

n−1
2

n+1 q
0
n+1 and θ

(
r0nsn

)
= r0n+1r

n+1
2

n+1 if n is odd,

θ
(
pnq

0
n

)
= q

n
2
n+1q

0
n+1 and θ

(
r0nr

n
2
n

)
= r0n+1r

n
2
n+1 if n is even.
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This shows that

Pn+1 \ {pn+1, sn+1} =


θ (Pn \ {pn}) if n is odd,

θ (Pn \ {sn}) if n is even.

On the other hand, we have

Pn ∩ Pn+1 =


{pn} if n is odd,

{sn} if n is even.

Indeed, let n be odd (resp. even). By (3), we have pn = pn+1 ∈ Pn ∩ Pn+1 (resp.

sn = sn+1 ∈ Pn ∩ Pn+1). If Pn ∩ Pn+1 contains some a ̸= pn+1 (resp. a ̸= sn+1),

then a ∈ θ (Pn \ {pn}) or a = sn+1 = sn + (3, 4) (resp. a ∈ θ (Pn \ {sn}) or

a = pn+1 = pn + (1, 0)). However each of these possibilities contradicts to (2).

Therefore (5) holds.

(6) By (3) and (5), it is clear that Pn+1 ⊂ Pn+σZ. Hence Pn+1+σZ ⊂ Pn+σZ

and it is sufficient to show that

(Pn + σZ) \ (Pn+1 + σZ) = Pn \ Pn+1.

Fix any a ∈ Pn \ Pn+1.

We have a /∈ Pn+1 + σZ: Otherwise θ (a) ∈ Pn+1 + (1, 1) + σZ but θ (a) ∈

Pn+1 by (5). This contradicts to (2). Therefore a ∈ (Pn + σZ) \ (Pn+1 + σZ) so

(Pn + σZ) \ (Pn+1 + σZ) ⊃ Pn \ Pn+1.

To see the other inclusion, we will show the following by induction on n:

a+ (1, 0), a+ (3, 4) ∈ Pn+1 + σZ where a ∈ Pn \ Pn+1.

The case n = 1 is easily checked by Figure 5. Let n > 1.

Let d be (1, 0) or (3, 4).

By (5), we have

a ∈ Pn \ Pn+1 = (θ (Pn−1 \ Pn) \ Pn+1) ⊔ ({pn, sn} \ Pn+1) .
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Figure 3. Pn and Pn+1

for odd n
Figure 4. Pn and Pn+1

for even n

Let a is contained in θ (Pn−1 \ Pn) \Pn+1. Then a = θ (a′) for some a′ ∈ Pn−1 \

Pn, so a+d = a′+d+(1, 1). By the induction hypothesis, we have a′+d ∈ Pn+σZ

thus a+ d ∈ Pn + σZ + (1, 1). Since Pn + σZ + (1, 1) = θ (Pn) + σZ ⊂ Pn+1 + σZ by

(4), we have a+ d ∈ Pn+1 + σZ.

Let a is contained in {pn, sn} \ Pn+1. If n is odd, then a = sn by (5) and

sn + (1, 0) = r
n−1
2

n + (1, 2) + (1, 0) = θ
(
r

n−1
2

n

)
+ (1, 1) = r

n−1
2

n+1 + (1, 1),

sn + (3, 4) = sn+1.

Hence a+ d ∈ Pn+1 + σZ. If n is even, then a = pn and we have

pn + (1, 0) = pn+1,

pn + (3, 4) = q
n−2
2

n − (1, 2) + (3, 4) = θ
(
q

n−2
2

n

)
+ (1, 1) = q

n−2
2

n+1 + (1, 1)

thus a+ d ∈ Pn+1 + σZ.
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Figure 5. P1 and P2

Therefore the induction is complete and we have a+(1, 0), a+(3, 4) ∈ Pn+1+σZ

for any a ∈ Pn \ Pn+1. Note that a+ (1, 1) = θ (a) is also contained in Pn+1 + σZ

by (4).

Then the other inclusion (Pn + σZ) \ (Pn+1 + σZ) ⊂ Pn \ Pn+1 holds: For any

b ∈ (Pn + σZ) \ (Pn+1 + σZ), we have b = a + d′ for some a ∈ Pn \ Pn+1 and

d′ ∈ σZ. Then d′ = 0: Otherwise, since σZ is generated by (1, 1), (1, 0) and (3, 4),

b = a+ d′ ∈ Pn+1 + σZ as we have seen above. Therefore b = a ∈ Pn \ Pn+1. □

Definition 2.7. Let Dn := σZ \ (Pn + σZ). In the monomial algebra S, Dn is the

set of monomials which are not divisible by any monomial in Pn. In other words,

Dn consists of all monomials in S not contained in the ideal ⟨Pn⟩ generated by the

monomials in Pn.
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Definition 2.8. Let O := (0, 0) ∈ σZ. We define the following sets:

V1 := {O, (1, 1) , (1, 0)} ,

V2 :=
{
O, s1, (1, 0) , q

0
1

}
,

Vn :=


{
O, pn−1, q

0
n−1, r

n−1
2

n−1 , sn−2

}
if n ≥ 3 is odd,{

O, sn−1, q
0
n−1, q

n−2
2

n−1 , pn−2

}
if n ≥ 4 is even.

Let Dn be the convex set Conv (Vn). We will later show that Dn is the convex

hull of Dn (Lemma 2.10 (5)). The vertices of Dn are exactly elements of Vn, but

we do not need this fact. However it is clear that the vertices of Dn are contained

in Vn.

Lemma 2.9. Let n ≥ 3. Then Dn contains the lattice points r0n−1, q
0
n−2 and

q
n−3
2

n−2 if n is odd,

r
n−2
2

n−2 if n is even.

Proof. For each lattice point α in the assertion, we will give a representation of α

as follows: α = c1γ1 + c2γ2 where γi ∈ Vn and ci ≥ 0 with c1 + c2 ≤ 1. Then we

can conclude that α ∈ Dn.

If n is odd, then

r0n−1 = n2−n
n2+2n−1q

0
n−1 +

2n
n2+2n−1r

n−1
2

n−1 ,

q0n−2 = 2
n2−1pn−1 +

n−2
n−1q

0
n−1,

q
n−3
2

n−2 = n2−2n−1
n2−1 pn−1 +

1
n−1q

0
n−1.

If n is even, then

r0n−1 = n
n+3q

0
n−1 +

2
n+3sn−1,

q0n−2 = 2
n2−npn−2 +

n−2
n−1q

0
n−1,

r
n−2
2

n−2 = 1
2npn−2 +

2n−3
2n sn−1.

Therefore the assertion holds. □

Lemma 2.10. Let n > 0 be an integer.

(1) D1 = {(0, 0) , (1, 0) , (1, 1)} and Dn = Dn−1 ⊔ (Pn−1 \ Pn) for n ≥ 2.
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(2) #Dn = 1
2 (n+ 1)(n+ 2).

(3) (1, 1) +Dn ⊂ Dn+1.

(4) Let Φ : σZ → Z be the map defined by a 7→ (−1, 1) · a.

If n is odd, then

Φ (Dn) =

{
−n+ 1

2
,−

(
n+ 1

2
− 1

)
, . . . ,−1, 0, 1, . . . ,

n+ 1

2
− 1

}
.

If n is even, then

Φ (Dn) =
{
−n

2
,−

(n
2
− 1

)
, . . . ,−1, 0, 1, . . . ,

n

2
− 1,

n

2

}
and sn−1 is the only member of Dn which is mapped to n

2 by Φ.

(5) Vn ⊂ Dn and Dn is the convex hull of Dn.

(6) pn is strictly bigger than any element of Dn with respect to ⪯.

(7) Let n ≥ 2. We define Ψn : σZ → Z by a 7→ ln · a where

ln :=


(2n− 2,−n+ 2) if n is odd,

(2n,−n+ 1) if n is even.

Then, if n is odd, we have

maxΨn (Dn) = Ψn

(
r

n−1
2

n−1

)
and this is equal to

minΨn (Pn) = Ψn

(
q

n−1
2

n

)
.

If n is even, we have

maxΨn (Dn) = Ψn (sn−1)

and this is equal to

minΨn (Pn) = Ψn (pn) .
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Proof. (1) The case n = 1 follows from Figure 5. Let n ≥ 2. Then Lemma 2.6 (6)

implies Pn + σZ ⊂ Pn−1 + σZ, thus the following equalities hold:

Dn = σZ \ (Pn + σZ)

= (σZ \ (Pn−1 + σZ)) ⊔ ((Pn−1 + σZ) \ (Pn + σZ))

= Dn−1 ⊔ (Pn−1 \ Pn) .

Hence (1) holds.

We prove (2)-(5) by induction on n.

(2) The case n = 1 follows from (1). Let n ≥ 2. We have # (Pn−1 \ Pn) = n+1

by Lemma 2.6 (1) and Lemma 2.6 (5). Hence (1) implies that

#Dn = #Dn−1 +#(Pn−1 \ Pn) =
1

2
n(n+ 1) + (n+ 1) =

1

2
(n+ 1)(n+ 2).

(3) Let n = 1. In Figure 6, it is clear that D1 consists of lattice points of D1.

Moreover D2 = D1 ⊔ (P1 \ {p1}) by (1) and Lemma 2.6 (5). Thus one can see by

Figure 6 that D2 also consists of lattice points of D2. Then it is easily checked that

(1, 1) +D1 ⊂ D2.

Let n ≥ 2. By (1) we have

(1, 1) +Dn = ((1, 1) +Dn−1) ∪ ((1, 1) + (Pn−1 \ Pn)) .

Now (1) also shows that Dn ⊂ Dn+1. Thus, by the induction hypothesis, we have

(1, 1) +Dn−1 ⊂ Dn ⊂ Dn+1.

Moreover Lemma 2.6 (5) shows that

(1, 1) + (Pn−1 \ Pn) = θ (Pn−1 \ Pn) ⊂ Pn \ Pn+1

and Pn \ Pn+1 ⊂ Dn+1 by (1). Therefore (1, 1) +Dn ⊂ Dn+1.

(4) The case n = 1 follows from direct calculations.

Let n ≥ 2. By (1) we have Φ (Dn) = Φ (Dn−1) ∪ Φ(Pn−1 \ Pn).
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Figure 6. D1 and D2

Let n be even. By the induction hypothesis, Φ (Dn−1) consists of

−n

2
,−

(n
2
− 1

)
, . . . ,−1, 0, 1, . . . ,

n

2
− 1.

Moreover Φ (Pn−1 \ Pn) consists of

Φ
(
qin−1

)
= −1− i, Φ

(
rjn−1

)
= j and Φ (sn−1) =

n

2

where 0 ≤ i, j ≤ n−2
2 . Hence the assertion holds for even n.

Let n be odd. By the induction hypothesis, Φ (Dn−1) consists of

−
(
n+ 1

2
− 1

)
,−

(
n+ 1

2
− 2

)
, . . . ,−1, 0, 1, . . . ,

n+ 1

2
− 2,

n+ 1

2
− 1.

Moreover Φ (Pn−1 \ Pn) consists of

Φ (pn−1) = −n+ 1

2
, Φ

(
qin−1

)
= −1− i, Φ

(
rjn−1

)
= j

where 0 ≤ i ≤ n−3
2 and 0 ≤ j ≤ n−1

2 . Hence (4) holds.
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(5) In the proof of (3), we have already shown the cases n = 1, 2: In Figure 6,

D1 (resp. D2) consists of lattice points of D1 (resp. D2).

Let n ≥ 3. It is sufficient to show that Vn ⊂ Dn ⊂ Dn.

Let n be odd. First let us show Dn ⊂ Dn. By (1), we have Dn = Dn−1 ⊔

(Pn−1 \ Pn). One can check Dn−1 ⊂ Dn as follows. If n = 3, we have D2 ⊂ D3:

Indeed

V2 =
{
O, s1, (1, 0) , q

0
1

}
and O, s1 ∈ V3 ⊂ D3. Since p2 = (2, 0) ∈ V3, we have (1, 0) ∈ Op2 ⊂ D3.

Furthermore q01 ∈ D3 by Lemma 2.9. Thus V2 ⊂ D3, so D2 ⊂ D3. If n > 3, we also

have Dn−1 ⊂ Dn: Indeed

Vn−1 =
{
O, sn−2, q

0
n−2, q

n−3
2

n−2 , pn−3

}
and O, sn−2 ∈ Vn ⊂ Dn. Lemma 2.9 shows that q0n−2, q

n−3
2

n−2 ∈ Dn. Moreover

pn−3 ∈ Opn−1 ⊂ Dn since pn−1 ∈ Vn. Thus Vn−1 ⊂ Dn, so Dn−1 ⊂ Dn.

Therefore Dn−1 ⊂ Dn−1 ⊂ Dn for odd n ≧ 3 by the induction hypothesis.

To see Pn−1 \ Pn ⊂ Dn for odd n ≧ 3, note that the following equalities hold:

Pn−1 \ Pn = Pn−1 \ {sn−1} =
{
lattice points on pn−1q

0
n−1 and r0n−1r

n−1
2

n−1

}
(see Figure 4). Now pn−1, q

0
n−1, r

n−1
2

n−1 ∈ Vn, and r0n−1 ∈ Dn by Lemma 2.9. Thus

Pn−1 \ Pn ⊂ Dn.

Therefore Dn = Dn−1 ⊔ (Pn−1 \ Pn) ⊂ Dn for odd n ≧ 3.

Next let us show that Vn =
{
O, pn−1, q

0
n−1, r

n−1
2

n−1 , sn−2

}
⊂ Dn for odd n ≧ 3. By

the induction hypothesis, O, sn−2 ∈ Vn−1 ⊂ Dn−1. Moreover pn−1, q
0
n−1, r

n−1
2

n−1 ∈

Pn−1 \ Pn by Lemma 2.6 (5). Therefore Vn ⊂ Dn−1 ⊔ (Pn−1 \ Pn) = Dn by (1).

Hence (5) holds for odd n.

Similar arguments prove the cases for even n ≧ 4: To show Dn = Dn−1 ⊔

(Pn−1 \ Pn) ⊂ Dn, we will check that Dn−1 ⊂ Dn and Pn−1\Pn ⊂ Dn respectively:
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For the set

Vn−1 =
{
O, pn−2, q

0
n−2, r

n−2
2

n−2 , sn−3

}
,

O, pn−2 ∈ Vn ⊂ Dn. Moreover q0n−2, r
n−2
2

n−2 ∈ Dn by Lemma 2.9. We also have

sn−3 ∈ Osn−1 ⊂ Dn since sn−1 ∈ Vn. Thus Vn−1 ⊂ Dn, so Dn−1 ⊂ Dn. Then, by

the induction hypothesis, Dn−1 ⊂ Dn−1 ⊂ Dn. On the other hand

Pn−1 \ Pn = Pn−1 \ {pn−1} =
{
lattice points on q

n−2
2

n−1q
0
n−1 and r0n−1sn−1

}
(see Figure 3). Then q

n−2
2

n−1 , q
0
n−1, sn−1 ∈ Vn and r0n−1 ∈ Dn by Lemma 2.9, so

Pn−1 \ Pn ⊂ Dn.

Therefore Dn = Dn−1 ⊔ (Pn−1 \ Pn) ⊂ Dn.

Let us check that Vn =
{
O, sn−1, q

0
n−1, q

n−2
2

n−1 , pn−2

}
⊂ Dn. By the induction

hypothesis, O, pn−2 ∈ Vn−1 ⊂ Dn−1. Moreover sn−1, q
0
n−1, q

n−2
2

n−1 ∈ Pn−1 \ Pn by

Lemma 2.6 (5). Therefore Vn ⊂ Dn−1 ⊔ (Pn−1 \ Pn) = Dn, so (5) holds.

To prove (6) and (7), let us remark that, for any l ∈ R2, the function f : Dn ∋

a 7→ l · a ∈ R attains the maximum value at the vertices of Dn. Therefore, by (5),

we have max f (Dn) = max f (Vn).

(6) By the definition of ⪯ (Definition 2.3), we only have to show that

(2,−1) · pn > (2,−1) · a for all a ∈ Dn.

Let n be odd. The case n = 1 is easily checked. Let n ≥ 3. To determine

max {(2,−1) · a | a ∈ Dn}, we give the following calculations for elements of Vn:

(2,−1) · pn−1 = (2,−1) ·
(
n+1
2 , 0

)
= n+ 1,

(2,−1) · q0n−1 = (2,−1) · (n, n− 1) = n+ 1,

(2,−1) · r
n−1
2

n−1 = (2,−1) ·
(
3n−1

2 , 2n− 1
)
= n,

(2,−1) · sn−2 = (2,−1) · n−1
2 (3, 4) = n− 1.

Hence max {(2,−1) · a | a ∈ Dn} = n+ 1 < (2,−1) · pn = n+ 3.
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Let n be even. The case n = 2 is easily checked. Let n ≥ 4.

(2,−1) · sn−1 = (2,−1) · n
2 (3, 4) = n,

(2,−1) · q0n−1 = (2,−1) · (n, n− 1) = n+ 1,

(2,−1) · q
n−2
2

n−1 = (2,−1) ·
(
n+2
2 , 1

)
= n+ 1,

(2,−1) · pn−2 = (2,−1) ·
(
n
2 , 0

)
= n.

Hence max {(2,−1) · a | a ∈ Dn} = n+1 < (2,−1) ·pn = n+2. Therefore (6) holds.

(7) The case n = 2 is easily checked. Let n ≥ 3 be odd. To determine

maxΨn (Dn), we give the following calculations for elements of Vn:

Ψn (pn−1) = (2n− 2,−n+ 2) ·
(
n+1
2 , 0

)
= n2 − 1,

Ψn

(
q0n−1

)
= (2n− 2,−n+ 2) · (n, n− 1) = n2 + n− 2,

Ψn

(
r

n−1
2

n−1

)
= (2n− 2,−n+ 2) ·

(
3n−1

2 , 2n− 1
)
= n2 + n− 1,

Ψn (sn−2) = (2n− 2,−n+ 2) · n−1
2 (3, 4) = n2 − 1.

Therefore maxΨn (Dn) = Ψn

(
r

n−1
2

n−1

)
= n2 + n− 1.

To determine minΨn (Pn), note that Ψn (1, 2) = 2 > 0. Then

Ψn

(
qin
)
= Ψn

(
qi+1
n + (1, 2)

)
= Ψn

(
qi+1
n

)
+Ψn (1, 2) > Ψn

(
qi+1
n

)
.

Hence minΨn

(
q

n−1
2

n q0n ∩ Pn

)
= Ψn

(
q

n−1
2

n

)
. Similar calculations show that minΨn

(
r0nsn ∩ Pn

)
=

Ψn

(
r0n
)
(see Figure 1). Therefore

minΨn (Pn) = min
{
Ψn (pn) ,Ψn

(
q

n−1
2

n

)
,Ψn

(
r0n
)}

.

Thus

minΨn (Pn) = Ψn

(
q

n−1
2

n

)
= n2 + n− 1

by direct calculations, and (7) holds for odd n.
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Let n ≥ 4 be even. Then

Ψn (sn−1) = (2n,−n+ 1) · n
2 (3, 4) = n2 + 2n,

Ψn

(
q0n−1

)
= (2n,−n+ 1) · (n, n− 1) = n2 + 2n− 1,

Ψn

(
q

n−2
2

n−1

)
= (2n,−n+ 1) ·

(
n+2
2 , 1

)
= n2 + n+ 1,

Ψn (pn−2) = (2n,−n+ 1) ·
(
n
2 , 0

)
= n2.

and therefore maxΨn (Dn) = Ψn (sn−1) = n2 + 2n.

On the other hand, Ψn (1, 2) = 2 > 0, thus we have

minΨn (Pn) = min
{
Ψn (pn) ,Ψn

(
r0n
)
,Ψn (sn)

}
(see Figure 2). By direct calculations, we have

minΨn (Pn) = Ψn (pn) = n2 + 2n.

Hence (7) holds. This completes the proof. □

2.2. Proof of Mn = Pn. As we remarked in Definition 2.3 (3), Mn generates

in⪯ (Jn). The key to the proof of the equality Mn = Pn is to show that Pn also

generates in⪯ (Jn). We prepare some lemmas.

Lemma 2.11 ([6], Appendix A, Proposition A.2.1). For any ideal I of S, the

monomials of S not contained in in⪯(I) form a C-basis of S/I. Therefore we have

(1) dimC S/Jn = dimC S/in⪯ (Jn),

(2) dimC S/⟨Pn⟩ = #Dn.

Lemma 2.12. (1) dimC S/in⪯ (Jn) =
1
2 (n+ 1) (n+ 2) = dimC S/⟨Pn⟩.

(2) (Jn : uv − 1)S = Jn−1.

(3) dimC in⪯ (Jn−1) /in⪯ (Jn) = n+1. Furthermore if a set of monomials gener-

ates in⪯ (Jn−1) as an ideal, then the set also generates in⪯ (Jn−1) /in⪯(Jn)

as a vector space over C.

Proof. (1) By Lemma 2.11 (1), we can consider dimC S/Jn instead of dimC S/in⪯ (Jn).
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Let J0 := ⟨u− 1, u3v4 − 1, uv− 1⟩. Then J0 = ⟨u− 1, uv− 1⟩ since the following

equality holds:

u3v4 − 1 =
(
u3v3 + u2v2 + uv + 1

)
(uv − 1)− u3v4 (u− 1) .

Moreover SJ0 is a regular local ring of dimension two because J0 is the maximal

ideal in S corresponding to the smooth point (1, 1, 1) of X = (z4 − xy = 0).

Now consider grJ0
(S) =

⊕∞
ν=0 J

ν
0 /J

ν+1
0 . Then we obtain an isomorphism of

graded C-algebras

C[x1, x2]
∼=−→ grJ0SJ0

(SJ0)
∼= grJ0

(S);

x1 7→
[
u− 1 mod J2

0

]
, x2 7→

[
uv − 1 mod J2

0

]
.

Hence

dimC S/Jn = dimC C[x1, x2]/⟨x1, x2⟩n+1 =
1

2
(n+ 1) (n+ 2) .

Lemma 2.10 (2) and Lemma 2.11 (2) show the last equality in the assertion.

(2) (Jn : uv − 1)S ⊃ Jn−1 is obvious for any n > 0 by the definition of Jn. We

will show the other inclusion by induction on n.

Fix any f ∈ (Jn : uv − 1)S . Then f ∈
(
Jn+1
0 : uv − 1

)
S
since Jn = Jn+1

0 .

Assume that n = 1. Let us consider grJ0
(S) again. From f ∈

(
J2
0 : uv − 1

)
S
, it

follows that

[
uv − 1 mod J2

0

]
· [f mod J0] =

[
(uv − 1)f mod J2

0

]
= 0.

However grJ0
(S) is an integral domain and

[
uv − 1 mod J2

0

]
is a nonzero elements

as we have seen above, so [f mod J0] = 0, i.e. f ∈ J0.

Assume that n > 1. Jn ⊂ Jn−1 and hence (Jn : uv − 1)S ⊂ (Jn−1 : uv − 1)S .

Therefore, by the induction hypothesis, we have f ∈ Jn−2 = Jn−1
0 . Then

[
uv − 1 mod J2

0

]
· [f mod Jn

0 ] =
[
(uv − 1)f mod Jn+1

0

]
= 0.
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Thus [f mod Jn
0 ] = 0, i.e. f ∈ Jn

0 = Jn−1. Hence (2) holds.

(3) By (1), we have

dimC in⪯ (Jn−1) /in⪯(Jn) = dimC S/in⪯(Jn)− dimC S/in⪯(Jn−1)

=
1

2
(n+ 1) (n+ 2)− 1

2
n (n+ 1)

= n+ 1.

For the last assertion, let {m1, . . . ,mr} be any set of monomials which generates

in⪯ (Jn−1) as an ideal. It is obvious that the vector space in⪯ (Jn−1) /in⪯(Jn) is

generated by monomials in in⪯ (Jn−1). Letm be any monomial in in⪯ (Jn−1). Then

m is divisible by some mi. If m ̸= mi, then there exists uavb ∈
{
u, u3v4, uv

}
such

that m is divisible by mi(u
avb). However one can find f ∈ Jn−1 with lm⪯ (f) = mi

and obtain g := (uavb − 1)f ∈ Jn. Then mi(u
avb) = lm⪯ (g) ∈ in⪯(Jn) and hence

m ≡ 0 mod in⪯(Jn). Therefore in⪯ (Jn−1) /in⪯(Jn) is generated by {m1, . . . ,mr}

as a vector space. □

The following proposition determines the marked Gröbner basis G1 of J1 with

respect to ⪯:

Proposition 2.13. The reduced Gröbner basis of J1 with respect to ⪯ consists of

the following polynomials:

u3v4 + u− 4uv + 2,

u2v2 − 2uv + 1,

u2v − u− uv + 1,

u2 − 2u+ 1,

where the underlined monomials are the leading terms with respect to ⪯. Therefore

M1 coincides with P1 = {(3, 4) , (2, 2) , (2, 1) , (2, 0)}.

Proof. First we will show that the polynomials are contained in J1.
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Let g1 := u3v4 + u− 4uv + 2. Then

g1 =
(
(uv)

2
+ 2uv + 3

)
(uv − 1)

2 − (u− 1)
(
u3v4 − 1

)
∈ J1.

Moreover

(2,−1) · (3, 4) = 2 ≥ (2,−1) · (1, 0) = 2 > (2,−1) · (1, 1) = 1,

(1, 1) · (3, 4) = 7 > (1, 1) · (1, 0) = 1,

and hence lm⪯ (g1) = u3v4. Furthermore

g2 := u2v2 − 2uv + 1 = (uv − 1)
2 ∈ J1,

g3 := u2v − u− uv + 1 = (u− 1) (uv − 1) ∈ J1,

g4 := u2 − 2u+ 1 = (u− 1)
2 ∈ J1.

Therefore the polynomials are contained in J1 and their leading terms are the ones

in the assertion.

Next we will show that

in⪯ (J1) = ⟨u3v4, u2v2, u2v, u2⟩.

The right hand side is obviously contained in the left hand side, and coincides with

⟨P1⟩. Then in⪯ (J1) = ⟨P1⟩ since dimC in⪯ (J1) /⟨P1⟩ = 0 by Lemma 2.12 (1).

Therefore {g1, g2, g3, g4} is a Gröbner basis of J1 with respect to ⪯. It is easy to

check that no monomial of supp (gi) is divisible by lm⪯ (gj) for j ̸= i. Hence the

basis is reduced. □

We need the following lemma for the cases n > 0.

Lemma 2.14. Consider the homomorphism C[u, v] → C[λ, λ−1] of C-algebras

given by u 7→ λ−1, v 7→ λ. By restricting to S ⊂ C[u, v], we obtain

ϕ : S → C[λ±]; u 7→ λ−1, u3v4 7→ λ, uv 7→ 1.
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Then we have the following:

(1) ϕ is surjective and ker(ϕ) = ⟨uv − 1⟩.

(2) Let n > 0 be even. Then

B :=
{
λ−n

2 , λ−(n
2 −1), . . . , λ−1, 1, λ, . . . , λ

n
2 −1, λ

n
2

}
⊂ C[λ±]

is a C-basis of C[λ±]/ϕ(Jn).

(3) Let n > 0 be even, and let f be an element of S satisfying that lm⪯ (f) ∈

Pn−1 \ Pn. Then

supp (ϕ(f)) ⊂ B.

Moreover, if f ∈ Jn, then ϕ (f) = 0.

Proof. (1) ϕ is obviously surjective. Let F : C[x, y, z] ↠ S be the homomorphism

introduced in Notation 2.1 (3). Then one can easily see that ker (ϕ ◦ F ) = ⟨xy −

1, z − 1⟩. Therefore

kerϕ = F (⟨xy − 1, z − 1⟩) = ⟨u4v4 − 1, uv − 1⟩ = ⟨uv − 1⟩

because u4v4 − 1 =
(
u3v3 + u2v2 + uv + 1

)
(uv − 1).

(2) One can easily check that

ϕ (u− 1) = −λ−1ϕ
(
u3v4 − 1

)
and ϕ (uv − 1) = 0.

Thus ϕ(Jn) = ⟨ϕ
(
u3v4 − 1

)
⟩n+1 = ⟨λ− 1⟩n+1.

It is clear that 1, λ, . . . , λn form a C-basis of C[λ]/⟨λ − 1⟩n+1 = C[λ±]/ϕ(Jn).

Now λ is a unit element of this ring. Hence, by multiplying λ−n
2 , we obtain a

C-basis B =
{
λ−n

2 , λ−(n
2 −1), . . . , λ−1, 1, λ, . . . , λ

n
2 −1, λ

n
2

}
of C[λ±]/ϕ(Jn).

(3) Fix any m ∈ supp (f) and let us show ϕ (m) ∈ B.

Suppose that ϕ(m) /∈ B, i.e. ϕ (m) = λd or ϕ (m) = λ−d for some d ≥ n
2 + 1.

If ϕ(m) = λd for d ≥ n
2 + 1, then m is divisible by

(
u3v4

)d
: Indeed m can

be written as m = ua
(
u3v4

)b
(uv)

c
for some a, b, c ≥ 0, and ϕ (m) = λ−aλb1c.

Therefore b ≥ d.
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Now lm⪯ (f) ∈ Pn−1 \ Pn = Pn−1 \ {pn−1} by Lemma 2.6 (5), hence direct

calculations show that

lm⪯ (f) · (2,−1) =


n+ 1 if lm⪯ (f) = qin−1,

n if lm⪯ (f) = rin−1 or sn−1.

On the other hand, m · (2,−1) = 2a+2b+ c ≥ 2b ≥ 2d ≥ n+2. These calculations

show that lm⪯ (f) ≺ m. This is a contradiction.

If ϕ(m) = λ−d for d ≥ n
2 + 1, then m is divisible by ud and hence m · (2,−1) ≥

2a ≥ 2d ≥ n+ 2. Thus we also have lm⪯ (f) ≺ m, a contradiction.

Therefore ϕ (m) ∈ B, so supp (ϕ (f)) ⊂ B.

Assume f ∈ Jn. If ϕ (f) ̸= 0, then supp (ϕ (f)) ̸= ∅. However ϕ (f) ≡ 0 mod

ϕ(Jn), so there exists a non-trivial relation between elements of supp (ϕ (f)) in

C[λ±]/ϕ(Jn). This contradicts to (2). □

The following proposition is the first consequence of the above lemmas.

Proposition 2.15. Let n > 0 be an integer. Then Mn coincides with Pn.

Proof. We prove the assertion by induction on n. The case n = 1 has already been

done (Proposition 2.13).

Let n ≥ 2. The arguments will go as follows: We will show Pn ⊂ in⪯ (Jn). Then

we can conclude that ⟨Mn⟩ = in⪯ (Jn) is also equal to ⟨Pn⟩ by Lemma 2.12 (1).

Therefore Pn ⊂ Mn: Indeed any monomial xα ∈ Pn is divisible by some xβ ∈ Mn,

and this xβ is also divisible by some xα′ ∈ Pn. Then Lemma 2.6 (2) implies that

xα = xα′
= xβ . On the other hand, since Gn is reduced, similar arguments for any

xα ∈ Mn show the other inclusion. Therefore Pn = Mn.

Let us show Pn ⊂ in⪯ (Jn). By Lemma 2.6 (5), we have

Pn =


θ (Pn−1 \ {sn−1}) ⊔ {pn, sn} if n is odd,

θ (Pn−1 \ {pn−1}) ⊔ {pn, sn} if n is even.
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Let n be odd. To see θ (Pn−1 \ {sn−1}) ⊂ in⪯ (Jn), fix any α ∈ Pn−1 and let us

show that θ (α) ∈ in⪯ (Jn). By the induction hypothesis, we have α ∈ Mn−1. Thus

there exists (f, α) ∈ Gn−1. Now f ∈ Jn−1 and hence (uv − 1)f ∈ Jn. Therefore

θ (α) = lm⪯ ((uv − 1)f) ∈ in⪯ (Jn).

To see sn ∈ in⪯ (Jn), let us remark that J1 has g := u3v4 + u − 4uv + 2

with lm⪯ (g) = (3, 4) (Proposition 2.13). Then g
n+1
2 ∈ (J1)

n+1
2 = Jn, so sn =

n+1
2 (3, 4) = lm⪯

(
g

n+1
2

)
∈ in⪯ (Jn).

Furthermore pn ∈ in⪯ (Jn): Indeed, by the induction hypothesis, pn−1 ∈ Mn−1.

Hence there exists (h, pn−1) ∈ Gn−1. Then (u − 1)h ∈ Jn and hence pn = pn−1 +

(1, 0) = lm⪯ ((u− 1)h) ∈ in⪯ (Jn) by Lemma 2.6 (3).

Therefore Pn ⊂ in⪯ (Jn) for odd n > 0.

Let n be even. One can see that θ (Pn−1 \ {pn−1}) ⊂ in⪯ (Jn) by arguments

similar to the above. Moreover sn ∈ in⪯ (Jn): Indeed, by the induction hypothesis,

sn−1 ∈ Mn−1. Hence one can find (g, sn−1) ∈ Gn−1. Then (u3v4 − 1)g ∈ Jn and

sn = sn−1 + (3, 4) = lm⪯
(
(u3v4 − 1)g

)
∈ in⪯ (Jn) by Lemma 2.6 (3).

Now we will show pn ∈ in⪯ (Jn). This is somewhat harder.

Lemma 2.12 (3) shows that in⪯ (Jn−1) /in⪯ (Jn) is generated by Mn−1 = Pn−1

as a vector space, and dimC in⪯ (Jn−1) /in⪯ (Jn) = n+1. However #Pn−1 = n+2

by Lemma 2.6 (1). Therefore there exists a non-trivial relation between monomials

in Pn−1 in the vector space in⪯ (Jn−1) /in⪯ (Jn). Hence precisely one element α ∈

Pn−1 is contained in in⪯ (Jn) : Otherwise the existence of such relation contradicts

to Lemma 2.11.

Let us show that this α is pn−1. Assume the contrary, α ∈ Pn−1 \ {pn−1}.

Since α ∈ in⪯ (Jn), there exists f ∈ Jn such that lm⪯ (f) = α. Then lm⪯ (f) =

α ∈ Pn−1 \ {pn−1} = Pn−1 \ Pn and hence f ∈ kerϕ by Lemma 2.14 (3). Thus

f = (uv − 1)h ∈ Jn for some h ∈ S by Lemma 2.14 (1). Now h ∈ Jn−1 by Lemma

2.12 (2), so lm⪯ (h) = α−(1, 1) ∈ in⪯ (Jn−1). However this leads to a contradiction:

By the induction hypothesis, there exists α′ ∈ Pn−1 such that xα′
divides xα−(1,1),
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i.e. α ∈ α′ + (1, 1) + σZ. However α, α
′ ∈ Pn−1 and this contradicts to Lemma 2.6

(2).

Thus α = pn−1 is contained in in⪯ (Jn), i.e. pn = pn−1 ∈ in⪯ (Jn) by Lemma 2.6

(3). Therefore Pn ⊂ in⪯ (Jn). This completes the proof. □

2.3. Non-regularity of CGn . Our next task is to show the non-regularity of CGn .

We have already seen that CGn is a 2-dimensional strongly convex cone (Lemma

1.12 (1)), so CGn has two rays.

Next lemma explains our strategy for determining the rays:

Lemma 2.16. Let w ̸= (0, 0) be a lattice point of CGn . If there exists (g, α) ∈ Gn

and β ∈ supp (g) \ {α} satisfying that (α− β) · w = 0, then R≥0w is a ray of CGn .

Proof. By Definition 1.9 (2), γ := α − β is contained in (CGn)
∨
. Thus γ defines a

face τ := {a ∈ CGn | γ · a = 0} of CGn . Since CGn ⊂ R2 is a strongly convex cone

of dimension 2 and γ ̸= 0, τ must be a proper face, i.e. τ = {(0, 0)} or τ is a ray.

We have (0, 0) ̸= w ∈ τ by the hypothesis, so τ is the ray R≥0w. □

Therefore we only have to find appropriate w ∈ CGn and (g, α) ∈ Gn.

Lemma 2.17. Let f ∈ Jn satisfy lc⪯ (f) = 1. Then (f, lm⪯ (f)) ∈ Gn if and only

if lm⪯ (f) ∈ Pn and supp (f) \ {lm⪯ (f)} ⊂ Dn.

Proof. Let α := lm⪯ (f). If (f, α) ∈ Gn, then α ∈ Pn by Proposition 2.15. More-

over, any monomial m in supp (f) \ {α} is not divided by Pn, i.e. m ∈ Dn.

Conversely, by Proposition 2.15, α ∈ Pn implies that there exists g ∈ Jn such

that (g, α) ∈ Gn. Since supp (f) \ {α} ⊂ Dn, no monomial in supp (f) \ {α} is

divisible by any monomial in Pn. This implies that {(f, α)} ∪ (Gn \ {(g, α)}) is

also the marked Gröbner basis of Jn with respect to ⪯. By the uniqueness of the

reduced Gröbner basis (Theorem 1.8), we have f = g. □

Proposition 2.18. L1 := R≥0(2,−1) is a ray of CGn
.

Proof. Let w := (2,−1). Then CGn contains w by Lemma 1.16.
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As we have seen in Proposition 2.13, the reduced Gröbner basis of J1 contains

g1 := u3v4 + u− 4uv + 2

where lm⪯ (g1) = (3, 4) = s1. Now let gn := (uv − 1)
n−1

g1.

For any f, g ∈ S, one can easily see that inw (fg) = inw (f) inw (g). Thus

inw (gn) = (uv)
n−1 (

u3v4 + u
)
since inw

(
(uv − 1)

n−1
)
= (uv)

n−1
and inw (g1) =

u3v4 + u. Therefore we have

αn := (uv)
n−1

u3v4, βn := (uv)
n−1

u ∈ supp (gn) .

It is clear that lm⪯ (gn) = lm⪯

(
(uv − 1)

n−1
)
lm⪯ (g1) = αn = (n−1)(1, 1)+s1.

Then, by Lemma 2.6 (4), we have

α1 = s1 ∈ P1,

α2 = (1, 1) + s1 = r12 ∈ P2,

αn = (1, 1) + αn−1 = r1n ∈ Pn for n ≧ 3.

Thus αn is a member of Pn.

Moreover one can show supp (gn) \ {αn} ⊂ Dn by induction on n: The case

n = 1 is easily checked. Let n > 1. Then any m ∈ supp (gn) can be written as

m = (uv)
d
m′ for some m′ ∈ supp (gn−1) and d ∈ {0, 1}. If m′ ̸= αn−1, then

m′ ∈ Dn−1 by the induction hypothesis. Since Dn−1 ⊂ Dn by Lemma 2.10 (1) and

(1, 1) +Dn−1 ⊂ Dn by Lemma 2.10 (3), we have m ∈ Dn. If m
′ = αn−1 and d = 0,

then m = αn−1. In this case, by the above equations, we have m = s1 ∈ D2 when

n = 2 by Lemma 2.10 (5), and m = r1n−1 ∈ Pn−1 \Pn ⊂ Dn when n ≥ 3 by Lemma

2.6 (5) and Lemma 2.10 (1).

Therefore (gn, αn) ∈ Gn by Lemma 2.17.

Now the vector

αn − βn = (3, 4)− (1, 0) = (2, 4)

satisfies (2, 4) · w = 0. Hence L1 is a ray of CGn by Lemma 2.16. □
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Lemma 2.19. Let n ≥ 2 be an integer. Then Gn contains (g, α) with the following

property: If n is odd,

α = q
n−1
2

n and r
n−1
2

n−1 ∈ supp (g) .

If n is even,

α = pn and sn−1 ∈ supp (g) .

Proof. Let n be even. Let ϕ : S → C[λ±] be the homomorphism in Lemma 2.14,

and

f := λ−(n
2 +1) (1− λ)

n+1
.

Then f is the image of (−1)
n
2 (u− 1)

n
2 +1 (

u3v4 − 1
)n

2 ∈ Jn by ϕ, so f ∈ ϕ (Jn).

It is clear that λ−(n
2 +1), λ

n
2 ∈ supp

(
f
)
and

supp
(
f
)
⊂ C :=

{
λ−(n

2 +1), λ−n
2 , . . . , λ−1, 1, λ, . . . , λ

n
2

}
.

Now note that the monoid homomorphism Φ in Lemma 2.10 (4) can be identified

with the restriction of ϕ on the monomials of S and C [λ±]. Hence, by Lemma 2.10

(4), one can see that any monomial in C \
{
λ−(n

2 +1)
}
has a preimage by ϕ in Dn,

and in particular, λ
n
2 has a unique preimage sn−1 ∈ Dn. In addition, λ−(n

2 +1) has

a preimage pn. Hence one can obtain a preimage f of f such that

pn, sn−1 ∈ supp (f) and supp (f) \ {pn} ⊂ Dn.

The coefficient of pn in f is one since so is the coefficient of λ−(n
2 +1) in f .

Since ϕ(f) = f ∈ ϕ(Jn), there exists ∆ ∈ ker(ϕ) such that f + ∆ ∈ Jn. Let

{g1, . . . , gt} be the reduced Gröbner basis of Jn with respect to ⪯. Then, by the

division algorithm ([6], Appendix A, Theorem A.1.4), ∆ has the following repre-

sentation:

∆ =

t∑
i=1

qigi + r where supp (r) ⊂ Dn.

Now r also satisfies g := f + r ∈ Jn because g = (f +∆)−
∑

qigi is a difference of

elements of Jn. Let us show that this g satisfies the condition in the assertion.
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It is clear that supp (g) \ {pn} ⊂ Dn because supp (f) \ {pn} and supp (r) are

contained in Dn. Moreover pn ∈ supp (g): Indeed, pn ∈ supp (f) and pn /∈ supp (r)

since supp (r) ⊂ Dn and pn /∈ Dn. Thus g = f + r contains pn.

Then lm⪯ (g) = pn by Lemma 2.10 (6). Now lc⪯ (g) = 1 since the coefficient of

pn in f is one, and therefore we have (g, pn) ∈ Gn by Lemma 2.17.

To see sn−1 ∈ supp (g), it is sufficient to check that sn−1 /∈ supp (r) since sn−1 ∈

supp (f). Furthermore the coefficient of sn−1 in r coincides with the coefficient of

ϕ (sn−1) = λ
n
2 in ϕ(r) because sn−1 is a unique element of supp (r) ⊂ Dn which

is sent by ϕ to λ
n
2 (Lemma 2.10 (4)). However one can see ϕ(r) = 0 as follows:

ϕ (Dn) can be identified with Φ (Dn) in Lemma 2.10 (4), and then one can see that

Φ (Dn) is the set B in Lemma 2.14 (2). Now supp (r) ⊂ Dn, so ϕ (r) is a linear

combination of monomials in B. On the other hand, since ∆ ∈ kerϕ and gi ∈ Jn,

we have ϕ(r) = ϕ (∆−
∑

qigi) ≡ 0 mod ϕ (Jn). If ϕ(r) ̸= 0, then ϕ (r) gives a non-

trivial linear relation between monomials in B in C[λ±]/ϕ (Jn). This contradicts to

Lemma 2.14 (2), so ϕ(r) = 0. Therefore the coefficient of sn−1 in r must be zero,

i.e. sn−1 /∈ supp (r). Thus sn−1 ∈ supp (g) and the assertion holds for even n.

Let n ≥ 3 be odd. By the case of even n, there exists (h, pn−1) ∈ Gn−1 such

that sn−2 ∈ supp (h). Let us show that g := (uv − 1)h ∈ Jn satisfies the condition

in the assertion.

It is clear that lm⪯ (g) = pn−1+(1, 1) = q
n−1
2

n ∈ Pn by Lemma 2.6 (4). Moreover

supp (g)\{lm⪯ (g)} ⊂ Dn: Indeed, supp (h)\{pn−1} ⊂ Dn−1 ⊂ Dn by Lemma 2.10

(1), and pn−1 ∈ Pn−1 \ Pn ⊂ Dn by Lemma 2.6 (5) and Lemma 2.10 (1). Thus

supp (h) ⊂ Dn. Furthermore (1, 1) + (supp (h) \ {pn−1}) ⊂ (1, 1) + Dn−1 ⊂ Dn by

Lemma 2.10 (3). Hence supp (g) \ {lm⪯ (g)} ⊂ Dn.

Therefore
(
g, q

n−1
2

n

)
∈ Gn by Lemma 2.17.

Now sn−2 ∈ supp (h) and r
n−1
2

n−1 = sn−2 + (1, 1) by Lemma 2.6 (4). Thus r
n−1
2

n−1 ∈

supp (uvh). On the other hand, supp (h) \ {pn−1} ⊂ Dn−1 by Lemma 2.17. Since

r
n−1
2

n−1 /∈ Dn−1, we have r
n−1
2

n−1 /∈ supp (h). Therefore g = (uv−1)h contains r
n−1
2

n−1 . □
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Proposition 2.20. Let L2 :=


R≥0(2n− 2,−n+ 2) if n is odd,

R≥0(2n,−n+ 1) if n is even.

Then L2 is a ray of CGn
.

Proof. Let ln be the one in Lemma 2.10 (7):

ln :=


(2n− 2,−n+ 2) if n is odd,

(2n,−n+ 1) if n is even.

Then L2 = R≥0ln.

First, let us show ln ∈ CGn . It is easy to check ln ∈ σ, so it is sufficient to check

that ln · (α − β) ≥ 0 for any (g, α) ∈ Gn and β ∈ supp (g) \ {α} by the definition

of CGn . In Lemma 2.10 (7), we have already seen that Ψn : σZ ∋ a 7→ ln · a ∈ R

satisfies

maxΨn (Dn) = minΨn (Pn) .

Therefore ln · (α − β) ≥ 0 since α ∈ Pn and β ∈ Dn by Proposition 2.15. Thus

ln ∈ CGn .

By Lemma 2.19, Gn contains (g, α) such that

α = q
n−1
2

n and r
n−1
2

n−1 ∈ supp (g) if n is odd,

α = pn and sn−1 ∈ supp (g) if n is even.

Now let

vn :=


q

n−1
2

n − r
n−1
2

n−1 if n is odd,

pn − sn−1 if n is even.

Then ln · vn = 0 by Lemma 2.10 (7), so L2 is a ray of CGn by Lemma 2.16. □

As a consequence of the above arguments, we have a complete description of CGn :

CGn is the 2-dimensional cone whose rays are L1 = R≥0(2,−1) and L2 = R≥0ln
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where

ln :=


(2n− 2,−n+ 2) if n is odd,

(2n,−n+ 1) if n is even.

One can easily check that ln is the primitive ray generator of L2. It was suggested

in [6] that GF (Jn) might contain this cone.

Now we are ready to prove our main result.

Theorem 2.21. For any n > 0, Nashn(X) has a singular point of type A1, and

Nashn(X) is also singular.

Proof. To see the non-regularity of CGn , let N be the sublattice of Z2 generated by

w := (2,−1) and ln. Then N ̸= Z2 since

det

w

ln

 = 2.

Hence CGn is non-regular. Moreover this calculation shows that the affine toric

variety associated to CGn is the A1-singularity
(
z2 − xy = 0

)
⊂ A3. Thus Nashn(X)

has a singular point of type A1 by Theorem 1.2, so Nashn(X) is also singular:

Otherwise Nashn(X) = Nashn(X) and one has a contradiction. □
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