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ABSTRACT OF DISSERTATION 

Agus Susanto 

Vibration analysis in machining of thin-walled workpieces using 
Hilbert-Huang Transform 

 
Hilbert-Huang Transform  

 
 

Thin-walled mechanical parts are widely used in industries in order to develop the 
light-weight structure of machine such as turbine blade, impeller, and aerospace frame. 
And they are often processed by machining operation, such as turning and milling. 
However, machining of these mechanical parts are more challenging than rigid ones. The 
main reason of this is that the dynamic properties, such as stiffness and damping, are very 
low. Therefore, machining of thin-walled mechanical parts can induce chatter vibration, 
accelerate tool wear, and lead machining error easily which are major obstacles in order 
to achieve desired products. 

In machining process, those negative phenomena are often monitored by analysis 
of vibration, cutting force, and temperature which are often measured by such kinds of 
sensors. The advanced sensors would exert their potential with an appropriate signal 
processing technique to extract the features of measured signals which provide an 
important information about machining states. Another word, signal processing is 
important to guarantee reliable results. 

In vibration analysis, researchers use many kinds of signal processing techniques 
for machining process monitoring. Fast Fourier transform (FFT) is commonly used for 
vibration analysis in frequency domain to detect chatter and tool wear in turning and 
milling. Vibration analysis method in energy-time-frequency domain is also used for 
machining process monitoring. The time-frequency analysis (TFA) includes short time 
Fourier (STFT) and wavelet transforms. However, they are not suitable for analyzing of 
nonlinear and non-stationary vibration signals just like signal obtained in machining 
processes. 

A recent TFA method which deals with nonlinear and non-stationary signals is 
Hilbert-Huang transform (HHT). HHT is applied for detecting fault in mechanical 
transmission, such as gear and rotating machinery. However, the use of HHT to analyze 
signal in turning and milling is limited. Therefore, HHT is applied in this study for 
machining process monitoring by means analyzing vibrations obtained in machining.  In 
this study, machining process monitoring is including chatter detection, sudden change of 
machining stability caused by lubrication, sudden change of machining stability caused 
by obstacle in machining, and tool condition monitoring.  In order to achieve the goals of 
this research, extensive experiments were conducted under various cutting conditions. 
Signals obtained in machining tests were analyzed by FFT, STFT, and HHT.  

The results showed that the empirical mode decomposition (EMD) decomposed 
complex vibration into simple components, and each one of them contained a unique 
vibration mode caused in machining. EMD can sift out the signal containing chatter 
frequency from others. In chatter detection in milling based on HHT spectrum, the energy 
in stable milling was concentrated in particular frequency. Besides, the energy in unstable 
milling (occurring chatter) was chaotic and the frequency was not constant. And, the HHT 
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can reveal the difference excitation among cutting edges. HHT can reveal the effect of 
cutting fluid on the stability of milling which was pointed out in Hilbert spectrum. In 
Hilbert spectrum, the energy appeared in certain frequency range for dry cutting, and 
energy vanished when tool entered in the wet area. Besides, the energy in Hilbert 
spectrum displayed a chaotic spectrum when milling was unstable caused by obstacle. 
And, Hilbert spectrum of the stable milling showed that the energy was distributed in 
particular frequency. HHT can be utilized for tool condition monitoring. Based on the 
Hilbert spectrum, milling using worn and chipped tools can be distinguished from milling 
using normal tool. FFT was not suitable for analyzing stationary vibration signal which 
frequency changes over cutting periode. STFT spectra gave blurry and blocked spectra 
because of its time-frequency resolution. Besides, HHT spectra showed a significant 
improvement of time-frequency resolution making the frequency components easier to be 
identified. 

 
Key words: machining process monitoring, Hilbert-Huang transform, chatter vibration, 
sudden change of machining stability, tool condition monitoring. 
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SUMMARY OF DISSERTATION 
Agus Susanto 

Vibration analysis in machining of thin-walled workpieces using 
Hilbert-Huang Transform 

 
Hilbert-Huang Transform  

 
Thin-walled mechanical parts are widely used in industries in order to develop the light-

weight structures of machine such as turbine blade, impeller, and aerospace frame. However, 
machining of these mechanical parts are more challenging than rigid ones. The main reason of 
this is that the dynamic properties, such as stiffness and damping, are very low. Therefore, 
machining of thin-walled mechanical parts can induce chatter vibration, accelerate tool wear, and 
lead machining error easily which are major obstacles in order to achieve desired products. 

In vibration analysis, researchers use many kinds of signal processing techniques for 
machining process monitoring for example fast Fourier transform (FFT), short time Fourier 
transform (STFT) and wavelet transform. However, the disadvantages of them are the trade-off 
between time and frequency resolutions, i.e. the higher of frequency signal resolution, the lower 
of time resolution is, and vice versa. And, difficult to find fit amplitude in frequency spectrum 
because FTT averages the signal amplitude in its spectrum. Therefore, FFT is hammered to be 
applied for signal with change in amplitude. A recent TFA method which deals with nonlinear 
and non-stationary signals is Hilbert-Huang transform (HHT). And, HHT is applied in this study 
for machining process monitoring by means analyzing vibrations obtained in machining.   
All signals obtained in the above machining tests were analyzed by FFT, STFT, and HHT. The 
results showed that FFT was not suitable for analyzing transient vibration, whose frequency 
changes over cutting periode. STFT spectrum provides low time and frequency resolution. 
Therefore, STFT presented blurry, overlapped, and disjointed blocks spectrum. Besides, EMD of 
HHT decomposed signal into a series of components called intrinsic mode functions (IMFs). And 
each IMF contains individual mode oscillation, amplitude, and frequency. The first IMF is the 
component with highest frequency, otherwise the last IMF is the component with lowest 
frequency and monotonic residue has no physical meaning because it was just residue. From 
IMFs, complex signal containing slight and severe chatter could be sifted out from other signals. 
Therefore, EMD makes it easy to recognize chatter growing as the cutting depth was increased 
both in turning and milling. Besides, Hilbert spectra of HHT shows a significant improvement of 
the frequency resolution making the frequency components easier to be identified. In Hilbert 
spectrum, the energy level for unstable milling (occurring chatter) was greater than stable milling. 
And, the energy in unstable milling was chaotic and the frequency was not constant over the 
cutting period. It was caused by cutting with fluctuating radial cutting depth and each cutting edge 
excited the vibration of the workpiece. The important note that HHT could reveal the difference 
excitation among cutting edges. Besides, the energy for stable milling was concentrated in certain 
frequency. On the other hand, the cutting fluid enhanced the attenuation of vibration in milling, 
which was pointed out in Hilbert spectrum. In Hilbert spectrum, the energy appeared in certain 
frequency for dry cutting, and energy was vanished when tool entered in wet area. In milling with 
obstacle, the Hilbert spectrum displayed chaotic spectrum of energy. Besides, milling using 
normal tool could be distinguished from milling using worn or chipped tool. When the cutting 
tool was getting wear, the energy of Hilbert spectrum appeared at spindle rotational frequency. 
When cutting tool was getting chipping, the energy appeared in spindle rotational, tooth passing, 
and unidentified frequencies. Besides, strain signal provided useful signal for machining process 
monitoring. Because strain signal worked well with HHT as shown in Hilbert spectrum 
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Chapter 1 

Introduction 
 
 

 

1.1.    Background and Motivation 

Thin-walled mechanical parts, for example; turbine blade, impeller, and aerospace 

frame as shown in Fig. 1.1, are extensively used in industrial and academia fields [1-3]. 

They are often processed by machining operation such as turning [4-6] and milling [7-9]. 

Thin-walled mechanical parts are usually machined from blank blocks [10,11] which 

allows to get high quality and precise parts in less time [12]. However, for machining 

thin-walled mechanical parts are more challenging than rigid ones. The main reason for 

this is that the dynamic properties of those mechanical parts, namely stiffness and 

damping, are very low. Therefore, machining thin-walled mechanical parts can induce 

negative effects such as chatter [4,5], tool wear [7], and machining error [8, 9] which are 

major obstacles to achieve desired products. Therefore, machining process monitoring is 

needed to make better products. 

In machining thin-walled mechanical parts, those negative effects are often 

monitored by measurement and analysis acceleration, displacement, cutting force, and 

sound signals. Huang et al. [7] measured cutting forces using dynamometer and analyzed 

them to monitor tool wear in down-milling of thin-walled aerospace components. Feng et 

al. [13] measured cutting forces using dynamometer and analyzed them to detect chatter 

in milling of thin-walled parts and found the correlation to the surface finish. Ren et al. 

[14] measured the displacement signals of workpiece using displacement sensor to 

monitor machining states in pocket milling of the thin-walled components. Kolluru and 

Axinte [15] used accelerometer sensor to measure the acceleration signals of workpiece 

and analyzed them to monitor chatter in milling of circular thin-walled components. Shi 

et al. [16] measured and analyzed the sound signals using microphone to monitor chatter 

and evaluated the machined surface finish.  

Based on those studies, they informed that the sensors were one of the key elements 

for machining process monitoring. The advanced sensor would exert its potential with an 
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appropriate signal processing technique to extract the features of the measured signal 

which provide an important information about machining states. In other words, the signal 

processing is important to guarantee the reliable results of machining process monitoring. 

    

   
          (a)  Pipeline [17]    (b) Turbine blade for jet engine [18] 

 

  
             (c) Impeller for automotive engine [19]      (d) Aerospace frame [20] 
 

Fig. 1.1. Thin-walled mechanical parts; pipeline, turbine blade, impeller and aerospace 
frame. 

 

 

The aim of this study is applying Hilbert–Huang transform (HHT) for analyzing 

measured signals to monitor machining states. Because the HHT is an advanced method 

of energy-time-frequency analysis nowadays which is specially applied for nonlinear and 

non-stationary signals like vibrations occurring in machining processes. And the vibration 

analysis is one of the easy ways to monitor machining process. Machining states are 

monitored to detect chatter, to analyze sudden change of machining stability caused by 

lubrication, to analyze sudden change of machining stability caused by obstacle in thin-

walled milling, and to monitor tool condition. In this study, extensive machining tests are 

conducted under various machining parameters. 
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1.2.    Organization of Dissertation 

This research has been carried out in the Laboratory of Machining and Machining 

Systems under the supervision of Professor Keiji Yamada for machining process 

monitoring through vibration analysis. The dissertation is organized as follows:  

 In Chapter 2, conventional spectral analysis tools, namely; fast Fourier (FFT), short-

time Fourier (STFT), and wavelet transforms, are explained. Simulation signal is 

created to show the performance of each spectral analysis. Several types of previous 

researches which utilized these spectral analysis tools are also provided. Furthermore, 

the drawback of those spectral analysis tools is also given based on the previous 

researchers’ findings. 

 Chapter 3 describes the widespread use of HHT to detect damage of the transmission 

element in mechanical system and limited use of HHT in machining fields. In this 

chapter, HHT is also explained theoretically and simulation signal is created to 

explain HHT. 

 In Chapter 4, the dynamic models for turning and milling are derived first. Following, 

stability lobe diagram (SLD) is introduced for determining cutting parameters. Here, 

theory of experimental modal analysis (EMA) method is also discussed briefly. EMA 

is needed for determining the dynamic modal parameters, such as; stiffness, and 

damping ratio. 

 Chapter 5 explains the experimental methods of this study, including; hammering and 

machining tests. After hammering tests, SLDs introduced in Chapter Four are 

generated to determine the cutting parameters prior to machining tests; both turning 

and milling. 

 Chapter 6 explains experimental results and discussions. The discussions are 

including chatter detection in turning and milling, analysis of sudden change of 

machining stability caused by lubrication and analysis of sudden change of machining 

stability caused by obstacle in thin-walled milling, and tool condition monitoring.  
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 In the last of this dissertation, some important conclusions are considered in Chapter 

7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 
 

Chapter 2 

Conventional Signal Analysis Tools 
 
 
 

In this chapter, conventional spectral analysis tools are explained. They are including fast 

Fourier (FFT), short-time Fourier (STFT), and wavelet transforms. Simulation signal is 

created to show the performance of each spectral analysis. The previous studies which 

utilized these spectral analysis tools are also provided. 
 
 
 
2.1.     Fast Fourier Transform 

In machining process monitoring through vibration analysis, fast Fourier transform 

(FFT) is widely used to detect chatter and tool wear. Altintas et al. [21] modeled the 

dynamics of half immersion down-milling to get stability lobe diagram. Their model was 

then proved by milling tests, and measured cutting forces were analyzed by FFT. Comak 

and Budak [22] designed the geometry of ball end-mill for optimizing the chatter stability 

limit through selecting the pitch of cutting edge and the helix angle, and they 

experimentally verified their model through milling. Then, they employed FFT for 

analyzing sound signals to recognize chatter frequency. On the other hand, FFT was also 

utilized to analyze the acoustic emission signal for tool condition monitoring in turning 

by Govekar et al. [23]. 

FFT provides an efficient algorithm for transforming data from the time domain 

into the frequency domain. Typically, the time-domain data xj to be transformed to 

frequency-domain consists of data length N. The discrete Fourier transform (DFT) can be 

commonly expressed as [24]: 

1

0
)2exp(

N

j
j k

N
jixX

      
 (2.1) 

where k = 2
N , …, -1, 0, 1, …, 2

N  and xj represent the time-domain data. 
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It should be noted that the frequency resolution ∆f is defined as the ratio of sampling 

frequency fsam to the data length N, i.e. ∆f = fsam/N = 1/T. 
To show the time and frequency resolution of FFT, we simulate the signal 

)2sin()( tAtx x , where; A, ωx, and t are amplitude, frequency signal, and time, 

respectively. After simulating that signal, FFT method is applied to analysis it. In this 

simulation, we are trying three trials of simulation signal x(t) with different parameter 

input. And, we calculate computational time of the program. 

For the first trial of simulation, the parameters are shown in Table 2.1. Based on 

this table, the frequency signal ωx, amplitude A, sampling frequency fsam and data length 

N are set 200 Hz, 1 m/s2, 10 kHz, and 1000 points, respectively. And the simulation result 

is shown in Fig. 2.1. Figure 2.1(a) is full waveform of simulation signal in time-domain. 

As can be seen from Fig. 2.1(a), the amplitude of signal is A = 1 m/s2. On the other hand, 

Fig. 2.1(b) shows frequency spectrum obtained by FFT. As can be seen from the figure, 

frequency signal shows 200 Hz and the amplitude of spectrum is 1 m/s2. In this first trial, 

the computational time was 0.13001 seconds. 

 
Table 2.6. Parameter of simulation signal for first simulation. 

Frequency of signal ωx 200 Hz 

Amplitude A 1 m/s2 

Sampling frequency fsam 10 kHz 

data length N 1000 points 
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(a) Full waveform in time-domain. 

 

 
 

(b) Frequency spectrum obtained by FFT. 

Fig. 2.1. Result of simulation signal for first trial. 

 

Now the parameter is changed for the second trial of simulation, new parameters 

are shown in Table 2.2. Based on this table, the sampling frequency fsam is decreased 

becoming 1 kHz (10 kHz to be 1 kHz) and other parameters are same as Table 2.1. 

 
Table 2.7. Parameter of simulation signal for second simulation. 

Frequency of signal ωx 200 Hz 

Amplitude A 1 m/s2 

Sampling frequency fsam 1 kHz 

data length N 1000 points 
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(a) Full waveform in time-domain. 

 

 
 

(b) Frequency spectrum obtained by FFT. 

Fig. 2.2. Result of simulation signal for second trial. 

 

The simulation result of second simulation is shown in Fig. 2.2. Figure 2.2(a) is full 

waveform of simulation signal in time-domain. On the other hand, Fig. 2.2(b) shows 

frequency spectrum obtained by FFT. Let us compare the result shown in Fig. 2.2 to the 

result in Fig. 2.1. As can be seen from Fig. 2.2, both time-domain and frequency spectrum 

do not show similar result to Fig. 2.1. The time-domain signal in Fig. 2.2(a) is deferent 

from Fig. 2.1(a). As shown in the figure, time-domain signal in Fig. 2.1(a) is smoother 

than in Fig. 2.2(b). Instead, time-domain signal in Fig. 2.2(b) is distorted comparing with 

Fig. 2.1(b), consequently the amplitude cannot reach 1 m/s2. On the other hand, the 

frequency spectrum shown in Fig. 2.2(b) is smoother than Fig. 2.1(b). The resolution of 

frequency spectrum in Fig. 2.2(b) is becoming high, but the amplitude cannot reach 1 
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m/s2. Therefore, if the sampling frequency fsam becomes low, then time resolution in time-

domain signal is becoming low, otherwise frequency resolution is becoming high. In this 

second trial, the computational time was 0.87905 seconds. 

The parameter is changed for the third trial of simulation; new parameters are 

shown in Table 2.3. Based on this table, the data length N is decreased becoming 500 

points (1000 points to be 500 points) and other parameters are same as Table 2.1. 

 
 

Table 2.8. Parameter of simulation signal for third simulation. 

Frequency of signal ωx 200 Hz 

Amplitude A 1 m/s2 

Sampling frequency fsam 10 kHz 

data length N 500 points 

 

 

The result is shown in Fig. 2.3. Figure 2.3(a) is full waveform of simulation signal in 

time-domain. On the other hand, Fig. 2.3(b) shows frequency spectrum obtained by FFT. 

Let us compare the result shown in Fig. 2.3 to the result shown in Fig. 2.1. The time-

domain signal in Fig. 2.3(a) is deferent from Fig. 2.1(a). Even though each amplitude 

signal shown 1 m/s2, but signal in Fig. 2.3(a) is only 0.05 seconds, whereas the signal in 

Fig. 2.1(a) is 0.1 seconds. On the other hand, the frequency spectrum as shown in Fig. 

2.3(b) is more bad than in Fig. 2.1(b) because frequency resolution of Fig. 2.3(b) is 

becoming lower than one in Fig. 2.1(b). Therefore, if the data length N becomes short, 

then the frequency resolution is becoming low. In this third trial, the computational time 

was 0.88105 seconds. 
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(a) Full waveform in time-domain. 

 

 
 

(b) Frequency spectrum obtained by FFT.  

Fig. 2.3. Result of simulation signal for third simulation. 

 

Next, we simulate signal with increasing amplitude over the time and applying FFT 

to simulated signal. The simulation signal is w(t) = exp(30t) × sin (2π × ωxt). Parameter 

input in this simulation signal is shown in Table 2.4. 

 

Table 2.9. Parameter of simulation signal w(t). 

Frequency of signal ωx 200 Hz 

Sampling frequency fsam 10 kHz 

data length N 1000 points 
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Figure 2.4 shows the result of simulation signal. Fig. 2.4(a) is full simulation signal in 

time-domain. As can be seen from Fig. 2.4(a), the amplitude is exponentially growing up 

as function of time rather than previous simulation signal in Fig. 2.1 till Fig. 2.3. On the 

other hand, Fig. 2.4(c) shows frequency spectrum obtained by FFT. As can be seen from 

the figure, frequency signal is 200 Hz which is same as in Fig. 2.1(b). However, the 

amplitude of frequency spectrum is different, namely 6.4 m/s2.  

 

 

 
 

(a) Full waveform in time-domain. 

 

 
 

(b) Frequency spectrum obtained by FFT. 

Fig. 2.4. Result of simulation signal w(t). 
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Following, we also simulate a signal which contains different frequencies over the 

time but same in amplitude. In this simulation, five simulation signals with different 

frequency are combined. Those signals are y1(t) = sin (2π × ω1t); y2(t) = sin (2π × ω2t); 

y3(t) = sin (2π × ω3t); y4(t) = sin (2π × ω4t); and y5(t) = sin (2π × ω5t). The parameters of 

those signals are shown in Table 2.5. 

 
 

Table 2.10. Parameter of simulation signal y(t) with different frequency. 

Frequency of signal ωy ω1 = 100, ω2 = 300, ω3 = 190, ω4 = 150, 

and ω5 = 200 Hz 

Amplitude A 1 m/s2 

Sampling frequency fsam 10 kHz 

data length N 5000 points 

 

 

Figure 2.5 shows the result of simulation signal. Fig. 2.5(a) is full simulation 

signal in time-domain. As can be seen from the figure, the amplitude is 1 m/s2 and the 

signal contains different frequency over the time. On the other hand, Fig. 2.5(b) shows 

frequency spectrum of simulation signal obtained by FFT. As shown in the figure, all 

frequencies appear in this spectrum. However, the amplitude of frequency spectrum is 

different, namely 0.2 m/s2. Here, the FTT averages the signal amplitude. 
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(a) Full waveform in time-domain. 

 

 
 

(b) Frequency spectrum obtained by FFT. 

Fig. 2.5. Result of simulation signal. 

 

 

From those simulations results, the advantage of the use of FFT is that FFT is quick 

method for transforming signal in time-domain to the frequency-domain. However, the 

disadvantages of the FFT to be applied for signal analysis is the trade-off between time 

and frequency resolutions, i.e. the higher the frequency signal resolution, the lower the 

time resolution is, and vice versa as shown in the above result in Fig. 2.1, Fig. 2.2, and 

Fig. 2.3. And, difficult also to find fit amplitude in frequency spectrum of FFT as shown 

in Fig. 2.4 and Fig. 2.5 because FTT averages the signal amplitude in the frequency 

spectrum. And, FFT cannot be used to analyze signal both in the time and frequency 

domains because FFT provides spectrum in just frequency domain. 
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To overcome the limitation of FFT, time–frequency analysis (TFA) methods which 

map the one-dimensional signal to a two-dimensional time–frequency plane have a great 

potential to monitor machining process. Several researchers have used TFA methods for 

monitoring chatter and tool wear as in refs. [3,25]. Because the TFA methods can provide 

machining states both in the time and frequency domains. And, short-time Fourier (STFT) 

and wavelet transforms are widely applied for vibration analysis occurring in machining 

processes.  

 

2.2. Short-Time Fourier Transform 

Short-time Fourier transform (STFT) is one of TFA methods which are widely 

used to analyze signals obtained in machining. Kolluru and Axinte [3] used STFT for 

analyzing acceleration signal to detect chatter in milling and was combined with FFT 

results. In their work, a coupled dynamic response of tool and workpiece was observed 

both for thin-walled straight cantilever and for ring type casing. STFT was also utilized 

for analyzing acceleration and cutting force signals to monitor chatter and tool wear in 

high-speed milling of aluminum alloys [26]. 

The idea of STFT is computing the Fourier transform in short, successive time 

windows over the entire time series. Given a data set x(t), the STFT at time t and frequency 

 is represented as [24]; 

( , ) ( ) ( ) .j sSTFT t x s w s t e ds       (2.2) 

where w(s-t) is a windowing function sliding along the time axis to characterize the 

change of frequency components at different time intervals, i.e., a series of the 

conventional Fourier transforms of finite length time signal are evaluated by applying a 

windowing function to the original time signal. Here, Hanning window of 

1 2 ( )( ) 1 cos
2 1

s tw s t
N

 are used. N is the data length N which determines 

frequency sampling as mention in previous subchapter. And frequency sampling affects 
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on the time-frequency resolution of STFT spectrum. If the frequency sampling in time-

domain is high, then time-frequency resolution becomes low and vise-versa. 
Following, simulation signal y(t) as given in previous example is demonstrated 

once more to understand STFT performance for signal analysis. Figure 2.6 shows the 

result of simulation signal. Fig. 2.6(a) is full waveform of simulation signal in time-

domain. As can be seen from the figure, the amplitude is 1 m/s2 and the signal contains 

different frequency over the time. Besides, Fig. 2.6(b) is the magnification signal of signal 

in Fig. 2.6(a). On the other hand, Fig. 2.6(c) shows STFT spectrum. All frequencies 

appear in this spectrum, namely; 100, 300, 190, 150, and 250 Hz. However, the STFT 

spectrum contains poor resolution and frequency is too dilating. Besides that, the STFT 

spectrum looks like the overlapped and disjointed blocks. 

 

               
 

      (a) Full waveform in time-domain.                 (b) Magnification signal in Fig. 2.6(a). 

 

 
 

           (c) STFT spectrum. 

Fig. 2.6. Simulation result in STFT for first trial. 
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Now the simulation signal is changed its sampling frequency fsam becoming 1 kHz 

with same other parameters. The result is shown in Fig. 2.7. Fig. 2.7(a) shows the 

magnification signal and Fig. 2.7(b) is STFT spectrum. As shown in Fig. 2.7(b), the 

resolution is better than STFT spectrum in Fig. 2.6(b). And, frequency is more 

compressed than Fig. 2.6(c), therefore we can get more precise frequency. However, the 

time-domain signal in Fig. 2.7(a) shows distorted signal comparing with Fig. 2.6(b) or 

time resolution is becoming low.  

 

 
 
 

(a) Magnification signal. 
 

 
 

(b) STFT spectrum. 
Fig. 2.7. Simulation results in STFT for second trial. 
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According to the simulation result, STFT cannot provide good time and frequency 

resolution simultaneously, instead STFT gives the trade-off between time and frequency 

resolutions, i.e. the higher the frequency signal resolution, the lower the time resolution 

is, and vice versa. And the STFT provides spectrum with overlapped and disjointed 

blocks. 

 

 
2.3. Wavelet Transform 

Wavelet Transform is one of powerful TFA methods which widely applied to 

analyze signals for machining process monitoring. Kamarthi and Pittner [27] used a 

wavelet transform to analyze the cutting force and acceleration signals obtained in turning 

to detect flank wear and they compared the wavelet results to the FFT results. 

Consequently, they recommended FFT to be used in analyzing acceleration signals 

whereas wavelet transform was acceptable to analyze cutting forces. Xu et al. [28] 

employed a wavelet transform to analyze the force and torque signals for drill wear 

estimation. 

The wavelet transforms of signal x(t) is defined with respect to an analyzing 

wavelet, which is complex in general, as 

dt
s

ttx
s

sX ).(1),(       (2.4) 

To show the time and frequency resolution of wavelet transform, simulation signal 

)2sin()( tAtz x x(t) is demonstrated. The frequency signal ω1, sampling frequency 

fsam and data length N were 10 Hz, 100 Hz and 100 points, and the amplitude is 1 m/s2.  

Figure 2.8 shows the result of simulation signal. Fig. 2.8(a) is full simulation 

signal in time domain. As can be seen from the figure, the amplitude is 1 m/s2 as the signal 

setting. On the other hand, Fig. 2.8(b) shows time-frequency domain of wavelet spectrum. 

As shown in the figure, the wavelet spectrum is better than STFT spectrum in Fig. 2.6(c), 

but wavelet spectrum contains poor time-frequency resolution. As can be seen from Fig. 

2.8(b), the wavelet spectrum looks like the overlapped and disjointed blocks. 
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(a) Waveform in time-domain.  

 

 

 

(b) Wavelet spectrum. 

Fig. 2.8. Simulation result in wavelet for first trial. 

 
Now the simulation signal is changed its sampling frequency fsam and number of 

data N becoming 1000 Hz and 1001 with same other parameters. The result is shown in 

Fig. 2.9. Time-domain simulation signal is shown in Fig. 2.9(a) and Fig. 2.9(b) is wavelet 

spectrum. As can be seen from the figures, the time-domain signal in Fig. 2.9(a) shows 

smooth oscillation and better than Fig. 2.8(a). And the wavelet spectrum as shown in Fig. 

2.9(b) shows also better resolution than Fig. 2.8(b).  
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(a) Waveform in time-domain.  

 
 
 

        (b) Wavelet spectrum. 
Fig. 2.9. Simulation result in wavelet for first trial. 

 

A few people who interesting in signal processing mentioned the drawbacks of 

conventional spectral analysis techniques above; FFT, STFT, and wavelet transforms, 

which is due to the FFT. Thus, both time and frequency resolution cannot be arbitrarily 

high in FFT [25,26,29]. Gu et al. stated that the disadvantage of the STFT to applied for 

non-stationary signal analysis obtained in machining is the trade-off between time and 

frequency resolutions [29], i.e. the higher the frequency resolution, the lower the time 

resolution is, and vice versa. Besides, in wavelet transform, it is difficult to determine the 

suitable wavelet base functions and decomposition levels which affect on the analysis 

results significantly [31]. 
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2.4. Summary  

In this chapter, conventional spectral analysis tools are explained. They are 

including fast Fourier (FFT), short-time Fourier (STFT), and wavelet transforms. 

Simulation signal is created to show the performance of each spectral analysis. From 

those simulations results,  

1. The advantage of the use of FFT is that FFT is quick method for transforming signals 

in time-domain to the frequency-domain. However, the disadvantages of the FFT to 

be applied for signal analysis is the trade-off between time and frequency resolutions, 

i.e. the higher the frequency signal resolution, the lower the time resolution is, and 

vice versa. And, difficult to find fit amplitude in frequency spectrum because FTT 

averages the signal amplitude in frequency spectrum.  

2. The idea of STFT is computing the Fourier transform in short, successive time 

windows, rather than once over the entire time series. STFT provides signal analysis 

in time-frequency rather than FFT. According to the simulation result, STFT cannot 

provide good time and frequency resolution simultaneously, instead STFT gives the 

trade-off between time and frequency resolutions, i.e. the higher the frequency signal 

resolution, the lower the time resolution is, and vice versa. And the STFT provides 

spectrum with overlapped and disjointed blocks. 

3. The wavelet spectrum is better than STFT spectrum, but wavelet spectrum still 

contains poor time-frequency resolution. The wavelet spectrum looks like the 

overlapped and disjointed blocks. When the frequency sampling is reduced, the 

wavelet spectrum shows better time and frequency resolution.  
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Chapter 3 

Hilbert-Huang Transform 
 

 
 

 
3.1.   Introduction 

Hilbert–Huang transform (HHT) is one of time-frequency analyses (TFA) which 

was developed by Huang et al. in 1995 [31]. Unlike the traditional signal analysis 

techniques, such as FFT, STFT, and wavelet transforms, this method was especially used 

for analyzing nonlinear and non-stationary signal. And, different from other conventional 

TFA methods, HHT does not involve the concept of frequency resolution or time 

resolution but introduces the concept of instantaneous frequency. Consequently, a 

uniform high time and frequency resolution are obtained [32]. 

HHT is widely used for analyzing signals to detect the damage of the transmission 

element in mechanical system. HHT was used to analyze acceleration and acoustic 

emission signals for gear damage detecting [33,34]. HHT was also used for analyzing 

velocity signal to detect rotor fault of rotating shaft [35]. Peng et al. [36] proposed the 

combination of wavelet transform and HHT for acceleration signal analysis to detect the 

fault of a rolling bearing. Wavelet transform worked as the preprocessor of signal analysis 

and following HHT was applied. The proposed method was compared with the wavelet 

spectrum through experimental case studies. The comparison results showed that the 

proposed method had better in time-frequency resolution and computational efficiency 

than wavelet. Yan et al. [37] investigated the utility of HHT for acceleration signal 

analysis to monitor the health of bearing machine. The results demonstrated the 

effectiveness of HHT for signal decomposition and feature extraction in the application 

of bearing machine health monitoring. Saidi, et al. [38] utilized the advantages of Bi-

Spectrum and EMD (BSEMD) for analyzing acceleration signals to detect bearing 

failures in machine. The proposed method was confirmed with the experimental tests and 

the results showed that BSEMD techniques can effectively diagnosis bearing failures. 

Yang and Wu [39] studied the diagnostic effectiveness of the gear deterioration through 
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the feature extraction process by using HHT and was supported by the principal 

component analysis (PCA) and the artificial neural network (ANN) for the gear 

deterioration diagnostic. The diagnostic results obtained using showed that the different 

types and levels of gear malfunctions could be identified effectively by the proposed 

approach. 

However, the use of HHT to analyze the signal obtained in machining is limited. We 

can classify it into two categories; utilization of HHT for chatter detection [40] and tool 

wear monitoring [41,42]. Peng [43] used HHT for analyzing cutting force to detect tool 

breakage in the milling process. Cao et al. [44] combined the benefit of wavelet and HHT 

for chatter detection. Here, wavelet was used as a preprocessor of signal analysis before 

employing HHT. The motor current signal was decomposed into IMFs by HHT and 

extracted energy index and kurtosis index based on those IMFs for chatter detection by 

Liu et al. [45]. 

Moreover, HHT has not been implemented for analyzing the vibration occurring in 

turning operation referring to articles, abstracts or keywords in the Scopus® database [46] 

using the words “chatter, turning” and considering all types of documents in the subject 

area of physical sciences, published after 1998, and then refining the search manually to 

define a more specific subject area. Actually, HHT consists of two consecutive steps, 

namely; an empirical mode decomposition (EMD) and Hilbert transform. They will be 

explained in following sections. 

 

 

3.2.   Empirical Mode Decomposition 

The first step of Hilbert-Huang transform (HHT) is Empirical Mode Decomposition 

(EMD) process, which decompose original signal into a series of components called 

intrinsic mode functions (IMFs = {c1, c2, …}). Each IMF contains individual mode 

oscillation, amplitude, and frequency as a function of time. The EMD process is shown 

using the flow chart given in Fig. 3.1 and the steps are explained using simulation signal 

as follows: 
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Fig. 3.1. Flow chart of EMD process. 

 

1. Simulation signal, x(t) = sin (2πω1t) + 1.3sin (2πω2t) + 1.1sin (2πω3t), is considered 

as raw data whose length is N = 5000 points and sampling frequency fs is 10000 Hz. 

Here, ω1, ω2, and ω3 are signal frequency and they are set 100, 150, and 300 Hz, 

respectively. And the simulation signal is shown in Fig. 3.2 as the black curve. This 

signal is magnification of full signal. 

2. The local maxima and minima are identified first, and then they are connected with 

cubic spline line to form the upper u(t) and the lower l(t) envelopes. These steps are 

shown in Fig. 3.2. The upper u(t) and the lower l(t) envelopes are shown with red and 

blue curves, respectively. 
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Fig. 3.2. Creating lower and upper envelopes of the signal. 

 

3. Compute the mean of two envelopes and subtract the signal x(t) by the mean of two 

envelopes to get the proto-IMF hi.   

      (3.1) 

These steps are shown in Fig. 3.3 and Fig. 3.4. 

 

 

Fig. 3.3. Compute the mean of envelopes. 
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Fig. 3.4. Compute the proto IMF of signal. 

 

4. The h(t) should be checked against the stoppage criterion of IMF as expressed in Eq. 

(3.2) to determine if it is an IMF or not. 

 

        (3.2) 

where hi is the sifting result in the i-th iteration. SD is a threshold value and it was set 

0.2 in this study. 

5. If hi does not satisfy to the stoppage criterion of IMF, then treat hi as new input data 

and iterate steps 2–4 till hi satisfies the stoppage criterion of IMF. 

6. After hi fulfills the condition as expressed in Eq. (3.2), assign it as a component of 

IMF cj(t). And the residue r(t) is defined as; . Repeat the operation 

step 2 to 6 for extracting the next IMF using the new input data r(t). 

7. The operation ends when the extracting result of residue r(t) contains no more than 

one extremum. Then, the residue is called as monotonic residue res(t).  

The output of the EMD process is a set of IMF components cj(t) (j = 1, 2… Nk), 

where Nk is a number of modes. In addition, the last mode cNk(t) is a monotonic residue 

res.(t). An example of a set of IMF components of simulation signal is shown in Fig. 3.5. 

As can be seen from the figure, the first IMF c1 is the component with highest frequency, 

otherwise the last IMF c6 is the component with lowest frequency and monotonic residue 

has no physical meaning. In addition, EMD can separate complex signal into simple 

N 
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signal in each IMF and each IMF contains individual mode oscillation, amplitude, and 

frequency. 

The decomposition of the signal x(t) to be a set of IMF components and a monotonic 

residue can be achieved mathematically using; 

       (3.3) 

 
 

 

 
 

Fig. 3.5. Example of IMF components and monotonic residue obtained by  
                  EMD process. 
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3.3.   Hilbert Transform 

The next step of HHT is applying Hilbert transform to all IMF components for 

generating an energy-time-frequency distribution which is called as a Hilbert spectrum. 

The Hilbert transform of each IMF cj(t) is defined as [31]; 

       (3.4) 

The instantaneous amplitude of Hilbert transform can be calculated by  

, the phase is , and the instantaneous 

frequency can be achieved by .      

An example for Hilbert spectrum of simulation signal x(t) obtained by Hilbert 

transform is shown in Fig. 3.6. As can be seen, Hilbert spectrum provides good time and 

frequency resolution, unlike than STFT and wavelet transform which provide spectrum 

with overlapped and disjointed blocks as shown in Chapter 2. 

 

 

 
 
 

Fig. 3.6. Example of Hilbert spectrum obtained by Hilbert transform. 
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3.4.   Summary 

Hilbert-Huang transform (HHT) is widely applied to detect the damage of the 

transmission element in mechanical system but the use of HHT in machining process is 

limited. HHT consists of two consecutive steps, namely; an empirical mode 

decomposition (EMD) and Hilbert transform. By EMD process, raw signal is decomposed 

into a series of components called intrinsic mode functions (IMFs). Each IMF contains 

individual mode oscillation, amplitude, and frequency as a function of time. The first IMF 

is the component with highest frequency, otherwise the last IMF is the component with 

lowest frequency and monotonic residue has no physical meaning. Besides that, an 

example of Hilbert spectrum of HHT is provided. Hilbert spectrum provides good time 

and frequency resolution rather than spectrum of STFT or wavelet transform. 
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Chapter 4 

Vibration Models in Machining 
 

 
 

4.1.   Review of Chatter Vibration in Machining Process 

Chatter vibration can occur during machining operations including turning, milling, 

grinding and drilling. It has been a topic of industrial and academic interest for many 

years because it can induce numerous problems like decreasing surface finish, excessive 

noise, breakage of machine tool components, accelerate tool wear, reduced material 

removal rate, and productivity. Chatter was first studied by Taylor [47], who carried out 

extensive studies on metal-cutting processes. And he stated that chatter is the most 

obscure and delicate of all problems facing the operator. Arnold [48] explained the 

mechanisms generating chatter during metal cutting process analytically and he 

confirmed by experimentally turning tests. Koenigsberger and Tlusty [49] examined 

chatter vibration which was caused by instability in cutting processes, including turning, 

milling, and grinding. Meritt [50] studied the modeling of the structural response and 

stability limit aspects of regenerative chatter in orthogonal cutting.  

In a machining process, mechanical vibration due to a lack of stiffness of the 

machine tool system can be classified into three group; free, forced and self-excited or 

chatter vibrations [51]. Free vibration is induced by shock and forced vibration is due to 

unbalance effects in machine tool assemblies. Free and forced vibrations can be easily 

identified and eliminated. But chatter vibration extracts energy to start and grow during 

machining process from the interaction between the cutting tool–workpiece and brings 

the system to instability [52]. M. Wiercigroch and E. Budak classified chatter vibration 

into primary and secondary chatters [53]. Primary chatter is caused by friction between 

tool–workpiece. Secondary chatter is caused by the regeneration of wavy surface on the 

workpiece. Regenerative vibration is the most destructive among all other vibrations. 
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Most of the research has been carried out to avoid this regenerative chatter vibration by 

predicting.  

To avoid chatter vibration by predicting, a stability lobe diagram (SLD) is generated 

prior to real machining. SLD can be used to determine the cutting parameters, which 

responsible for machining process instability. Generally, the depth of cut is plotted 

against spindle speed on the diagram. SLD in machining was early developed by 

Meritt [50]. This was an important contribution, because it allowed an improvement in 

material removal rate without chatter by selecting appropriate process parameters. And 

then, SLD theory was extended by Tlusty [54] in high-speed milling, as well as by 

Altintas and Budak [55,56]. Furthermore, SLD has been widely applied in several 

research fields. Bravo et al. [57] used SLD for high-speed milling of monolithic 

workpieces. Campa et al. [58] proposed a methodology for chatter avoidance in milling 

of flexible thin floors using a bull-nose end mill by stability diagram. Alan et al. [59] 

generated SLDs for a multistage milling operation. Altintas et al. [60] presented an SLD 

with considering the process damping. It was found that accurate prediction of chatter 

stability at low speeds was dependent on the identification of the cutting force 

coefficients. The cutting force coefficients were found to be sensitive to the work material 

properties, cutting edge preparation, tool clearance angle, tool wear, cutting speed, and 

tool–workpiece contact mechanics. Kurata et al. [60] have also identified the process 

damping force coefficient from the plunge turning tests. The process damping coefficient 

was estimated by inverse solution of the stability using the characteristic equation of 

turning process when it was critically stable during cutting tests. Stability lobes were 

generated using this identified process damping coefficient. It was found that when tool 

wear reaches a level that covers the vibration wave left on the surface, process damping 

becomes fully effective and additional tool wear does not significantly change the 

damping during the process. Recently, Tunc and Budak [61] have explored the effect of 

process damping on the stability lobe diagram with considering the effect of cutting 
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conditions and tool geometry. The analytical SLDs were then confirmed by milling tests 

experimentally. 

To generate SLD, the machining system (tool-workpiece-holder-spindle) can be 

modeled by considering the degree-of-freedom (DoF) of a spring-mass-damper system of 

machining structure, for example, a single SDoF or 2DoF. Hanna and Tobias [62] 

presented an SDoF for the milling process. They considered the end mill as the flexible 

part of the machining system. The model has predicted the chatter stability, which is 

affected by the width of cut in three ranges like an unconditionally stable range, a 

conditionally stable range, and an unstable range. Chen and Tsao [63,64] presented 2DoF 

vibration models of the machining process with considering the workpiece as the flexible 

part. The effect of workpiece deformation on the stability was studied and the effect of 

the critical chip width under different spindle speed was also investigated. By considering 

the deformation of the workpiece, the results showed that the critical chip width of the 

deformed was always larger than the rigid body cases, especially at lower natural 

frequencies. And they claimed that 2DoF models were very good for deriving the stability 

and evaluating the influence of the deformation of the workpiece. 

 

 
4.2.  Vibration Model in Turning of Thin-Tubular Workpiece 

In turning of thin-tubular operation, the cutting system is composed by tool, 

workpiece, and chuck. Especially, the workpiece can be deformed in x and y directions 

caused by cutting forces as shown in Fig. 4.1 because the workpiece is considered as the 

flexible part of this machining system. 
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Fig. 4.1. Deformation of thin-tubular workpiece caused by cutting force. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2. Vibration model in turning of thin-tubular workpiece [54]. 

 

 

On the other hand, Figure. 4.2 shows vibration model of two-degree-of-freedom 

(2DOF) system in turning of thin-tubular workpiece. The model consists of modal 
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vibrating by cutting force F(t) during removal material. According to Fig. 4.2, cutting 
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force is loaded on the workpiece during operation, and it cause vibration which produce 

wavy profile in workpiece. When the workpiece rotates, the tool encounters that wavy 

surface and consequently fluctuates the uncut chip thickness at any time. And the uncut 

chip thickness at any time depends on both the vibration mark left in previous rotation 

and the vibration mark in present vibration. The vibration subsequently determines 

whether the turning operation is stable or unstable (chatter occurs).  

The equation of motion for vibration model of 2DOF system shown in Fig. 4.2 can 

be expressed as follow; 

( ) ( ) ( ) ( )
x x x

M t C t K t F t
y y y
x xx

( ) ( )( ) ( )
x xxxx

( ) ( )( )( )( )( ) ( )( ) ( )) ( )( )( )( )
y yy

( ) ( )( ) ( )( )( )    (4.1), 

where [M], [C], and [K] are mass, damping and stiffness matrices. Besides, xx and yy are 

acceleration, whose can be represented as velocity and displacement.  

On the other hand, the uncut chip thickness is expressed as follows [54]; 
( ) ( )

( ) ( )
( ) ( )o

x t x t
h t h t

y t y t
    (4.2), 

in the Laplace domain is expressed as [54]; 

( )
( ) ( ) 1

( )
s

o

x s
h s h s e

y s
    (4.3), 

where ho is controlled uncut chip thickness and τ is a spindle revolution period.  

And the cutting force is expressed as [54]: 

( ) ( )sF s AK h s           (4.4), 

where A is width of cut and Ks is cutting force coefficient.  

Besides, Eq. (4.1) can be represented as the relationship between the force and the 

displacement which well-known frequency response function [G(s)] as follow; 

( )
( ) ( )

( ) s

x s
G s AK h s

y s
   (4.5) 

Substituting (4.5) into (4.3) yields 

( ) ( ) 1 ( ) ( )s
o sh s h s e G s AK h s  (4.6) 



34 
 

From Eq. (4.6), the ratio between controlled chip thickness to uncut chip thickness can be 

achieved as; 

 ( ) 1
( ) 1 1 ( )

o
s

s

h s
h s e G s AK

  (4.7) 

The stability limit at the chatter vibration frequency ωc can be determined by; 

lim1 1 ( ) 0s
c a se G j A K   (4.8), 

where Aalim is maximum axial depth of cut for chatter free machining and G(jωc) is the 

frequency response function. This frequency response function can be expressed to other 

expression with considering the frequency ratio r = ω/ωc and damping ratio ζ, as follows; 

2

2 22

1 21

1 2
c

r i r
G j

k r r
   (4.9) 

Eq. (4.9) shows a complex equation that can be expressed into real and imaginary parts 

as follows; 

2

2 22

1 1Re
1 2

c
rG j

k r r
  (4.10) 

2 22

1 2Im
1 2

c
rG j

k r r
  (4.11)  

The frequency response functions G(jωc) in Eq. (4.8) determine the stability limit 

of depth of cut Aalim and phase angle ε as follows; 

lim
1

2 Re[ ( )]a
s c

A
K G j

      
   

(4.12) 

1 Re[ ( )]2 tan
Im[ ( )]

c

c

G j
G j

   (4.13) 

Stability lobes diagram (SLD) can be generated using Eqs. (4.13), (4.14) and calculates 

the spindle speed  
60 cn
lb

 with lb is integer number of lobes (lb = 0, 1, 2, …).  
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The SLD distinguishes stable and unstable cutting (chatter occurs) operations for 

different combinations of width of cut and spindle speed. Here, we provide an example 

of SLD shown in Fig. 4.3. As can be seen from the figure, any combination of spindle 

rotational speed and depth of cut that appears above the lobe indicates unstable cutting, 

otherwise any combination of spindle rotational speed and depth of cut below of the lobe 

is stable. 
 

 

 

 

 

 

 

 

 

 
Fig. 4.3. Example stability lobe diagram (SLD). 

 

 

4.3.  Vibration Model in Thin-Walled Milling 

Figure 4.4(a) shows side milling of thin-walled part along x-direction with the 

spindle rotation n, feed rate Vf, and axial cutting depth Aa. The workpiece is clamped at 

one end and the other sides are free. The cutting force Fy excites different modes of 

vibration such as bending, torsional, and stretching. In general, coupled vibration is 

excited in machining and the figure shows a typical workpiece displacement y. On the 

other hand, Fig. 4.4(b) shows cutting edge angle in down-milling. According to this 

figure, uncut chip thickness h, the radial cutting depth Ar, tool’s rotational angle , start 

s and exit e angles are shown. 
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(a) Workpiece displacement of thin-walled workpiece caused by cutting force. 

 

 

 

 

 

 
 

 
(b) Tool’s rotational angle during milling.

Fig. 4.4. Side milling of thin-walled workpiece. 
 

 

The uncut chip thickness h in milling varies periodically as the function of tool’s 

rotational angle and it can be expressed as [54]: 

sin( )th f        (4.15)  

where ft is the feed per tooth. 

Uncut chip thickness is zero when  0 (start angle for up-milling) and 180 deg. (exit 

angle for down-milling) and maximum when  = 90 deg. Figure 4.4(b) shows variation 
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of chip thickness for down-milling operation. As can be seen from this figure, the chip 

thickness decreases in down-milling and it is zero for 180 360 deg. because no 

cutting occurs between these angles. In down-milling operation, the start angle s is a 

function of the radial cutting depth Ar and tool radius ra (see Fig. 4.4(b)) which can be 

expressed as; 

1180 cos a r
s

a

r A
r

     (4.16)  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.5. Vibration model for down-milling of thin-walled workpiece [55]. 
 

On the other hand, Figure 4.5 shows a vibration model for thin-walled milling, 

which is considered in this research. This model is based on the ones in ref. [55] which 

consists of mass m, spring stiffness k, and damper c of the workpiece. Here, we use their 

model and assume that the workpiece is to be a flexible part with the vibration mode is a 

single-degree-of-freedom (SDOF) system because the influence of vibration in width-

direction is small. 

According to the Fig. 4.5, the wavy surface left behind cutting edge is caused by 
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the current wave and the wavy surface left by the previous cutting edges. The variable 

chip thickness determines the cutting force which affects subsequent workpiece 

displacement.  

The stability chatter model as proposed by Altintas and Budak [55] is used in this 

study. And, the relationship between frequency response function and the stable limit of 

milling model is summarized below; 

lim

2Re yy c
t t a yy

G j
N K A

   (4.17) 

where Nt, Kt, Aalim are the number of tooth, tangential cutting force coefficient, and 

maximum axial depth of cut for chatter free machining, respectively. And, yy  is the 

directional milling coefficient in the y-direction, which is obtained by the integrating 

between start s and exit e angles in Eq. 4.16 when the cutting edge enters and exits the 

cutting zone (see Fig. 4.6); 

1 cos 2 2 sin 2
2

e

yy r r
s

K K   (4.18)

 
where Kr is the radial milling force coefficient. 
Using the real part of FRF and Eq. (4.15), the axial stability limit is obtained as follows: 

2 22

lim 2

1 2. .2
1a

t t yy

r rkA
N K r

   (4.19) 

The spindle speed n (min-1) is expressed by using the tooth passing period P (s) as; 

  (4.20),

 
where lb is integer ( = 0, 1, 2, …). In this equation,  is the 

phase shift. And substituting it into Eq. (4.20), it yields; 

  (4.21) 

Calculating Eqs. (4.19) and (4.21) with changing the frequency ratio  for 

arbitrary integer lb, stability limits of the axial cutting depth Aalim and spindle rotation n 

are derived both. On a plane configured with two axes of the axial depth of cut and the 

spindle rotational speed, we plot the calculated results to obtain a stability lobe for an 

arbitrary integer lb. Repeating above procedure in this study, the SLD was obtained.  
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4.4.  Brief Theory of Experimental Modal Analysis Method for Dynamic Cutting  
System Identification 

The dynamic modal parameters (m, c, ζ, and k) discussed in previous sections must 

be measured through hammering tests to create stability lobe diagram (SLD). SLD was 

then used to determine the cutting condition of machining tests. The modal parameters 

can be determined using experimental modal analysis (EMA) technique just after 

hammering test. So that, the purpose of the EMA is to extract the signals obtained in 

hammering test to be modal parameters. 

Figure 4.6 shows real and imaginary part of FRF obtained by hammering test for 

milling. This figure is used for demonstrating the EMA method. As shown in figure, the 

FRF clearly contains single mode within the observed frequency bandwidth. Initially, 

three frequencies and one peak value for each mode are identified. The frequencies are 

labeled f1 and f2 along the frequency axis in the real part of FRF, and natural frequency fn 

correspond to the negative peak value A in imaginary part of FRF.      

 

 

 

 

 

 

 

 

 

 

Fig. 4.6. Frequency response function (FRF); (a) Real part and (b) Imaginary part of 
FRF. 
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Following, the modal damping ratio ζ can be determined using; 

fn
ff

2
12     (4.20) 

The negative peak value A in the imaginary part of the FRF is then used to find the modal 

stiffness value k; 
1

2
k

A
    (4.21) 

Next, the modal mass m can be determined using modal stiffness and the natural 

frequency; 

2
n

km
f

    (4.22) 

The modal damping coefficients c are calculated using the modal damping ratio, stiffness, 

and mass values as follows; 

2c km     (4.23) 

 

 

4.5.  Summary 
In this chapter, analytical methods are presented in stability lobe diagram for turning 

and end milling operations. The analytical based on the previous study by Altintas et al. 

In analytical model, the dynamic modal parameters; mass, damping, and stiffness are 

needed. Therefore, a brief theory of experimental modal analysis method is also provided 

for extracting those modal parameters from the signal obtained in hammering tests. 
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Chapter 5 

Experimental Methods 
 

 

5.1.      Machine Tool, Workpiece, and Cutting Tool 

5.1.a. Turning of thin-tubular workpieces  

Machine tool used in turning tests was ANNYANG lathe machine. The work-

material was AISI 1045 steel. This work material is widely used in studies and industries 

[65,66]. The dimension of the workpiece is shown in Fig. 5.1. As can be seen in the figure, 

the workpiece includes solid and thin-tubular structures with 200 mm in total length; 50 

mm is solid structure and 150 mm is thin-tubular structure. The outer diameter is 38 mm 

and the inner diameter d1 depends on the wall-thickness t. And, t = 3 and 5 mm were used 

in turning tests. As shown from the Fig. 5.1, workpiece is clamped on solid structure 

using three-jaw chuck and thin-tubular structure is free clamped. The workpieces were 

machined using carbide tool in straight turning.  
 
 

 
 

Fig. 5.1. Dimension of thin-tubular workpieces. 
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5.1.b. Milling of thin-walled workpieces 

Machine tool used in milling tests was Shizuoka ST-NR of 3 axes knee type CNC 

milling machine whose specifications are given in Table 5.1. The work materials used 

were aluminum alloys with chemical composition are given in Table 5.2. The material 

was widely used in researches [67,68] and industries [69,70]. The workpieces were thin-

walled plates with dimension of 100 x 100 x 3 (mm), and side milling was performed 

using square end-mills of HSS-Co. Specifications of end-mill tool used are given in Table 

5.3. The tool overhang was 45 mm and the tool was more rigid than the workpiece. The 

thin-walled milling tests were carried out in the Laboratory of Machining and Machining 

Systems, Graduate School of Engineering, Hiroshima University, Japan. 

 

Table 5.1. Specification of milling machine [71]. 

Controller Fanuc CNC control 
Maximum speed of rotation n (min-1) 6000 
Maximum feed rate Vf (m/min) 3000 (X-Y) and 2000 (Z) 

 

Table 5.2. Chemical composition of aluminum alloys [72]. 

Cu Mg Zn Mn Si Fe Cr Ti 
0.15 – 0.4 0.8 – 1.2 0.25max 0.15max 0.4 – 0.8 0.25max 0.04 – 0.35 0.15max 

 

Table 5.3. Specification of end-mill tool. 

Terminology Dimension 
Diameter  12 
Total length L (mm) 80 
Helix angle b (degree) 45 
Number of tooth Nt 4 

 

 

5.2.      Dynamic Cutting System Identification 

5.2.1. Hammering test in turning and milling 

Figure 5.2 shows the hammering test setup in turning schematically. Here, 

dynamic behavior of the workpiece was measured because it was the most flexible in 

mechanical structure of this study. Figure 5.2(a) shows the apparatus used in the test. As 

shown in the figure, the workpiece is excited using a Dytran hammer. The impulse force 
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of hammer is measured by force transducer which is mounted in the tip of hammer. 

Besides, response signals are measured by B&K accelerometer sensors which are 

mounted in the workpiece. Both of impulse force of hammer and response signals are 

acquired by using PICO oscilloscope. The personal computer with Pico-scope shows the 

waveform of those vibrations which were collected as the data. The impact techniques 

are conducted as shown in Fig. 5.2(b). Here, workpiece is excited in x and y directions. 

When hammer excites workpiece in the direction of either x or y, then the response will 

be measured, namely; Gxx(ω) and Gyy(ω). 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

(a) Apparatus used in experimental hammering test. 
 
 
 
 
 
 
 
 

Gxx(ω)   Gyy(ω) 
(b) Impact techniques. 

Fig. 5.2. Hammering test setup in thin-tubular workpieces. 
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Besides, in milling of thin-walled workpieces, the dynamic behavior of the 

workpiece is usually limiting factor for the machining process because they have low 

stiffness, damping and the most flexible component in the process. Therefore, the thin-

walled workpiece needs to be modelled as being flexible. And in this case, FRF is 

measured in y-direction as shown in Fig. 5.3. As can be seen in Fig. 5.3, the structure is 

hit by a Dytran 5850 hammer in y-direction. The acceleration response is measured by 

the accelerometer sensor and it is acquired by a data storage system; Yokogawa DL750 

with sampling rate of 100 kHz.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.3. Hammering test setup in thin-walled plate. 
 

 

In hammering tests, the obtained signals should be examined to identify whether 

it was a bad or good hit. A hit is considered bad if a multiple hit occurred. This phenomena 

is called “bouncing effect“. It means the hammer bounces, loses contact and hits the 

structure twice or more. A bouncing effect can easily be detected in oscilloscope and this 

signal has to be rejected. In this study, FRF was just calculated using signal with good hit. 

The FRF gave dynamic cutting system information in certain frequency. In calculating 

FRF, the frequency spectrum of the acceleration signal needs to be integrated twice in 

order to get displacement. 
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5.2.2. Identification of dynamic cutting system by EMA method 

Figure 5.4 shows the signals in time-domain obtained in hammering test of thin-

walled plate. Fig. 5.4(a) shows the impulse force and Fig. 5.4(b) shows the acceleration 

response. The signal of the hammer shows no second hit, and therefore no bouncing effect 

has been occurred.  

 

 
 

 

 
 

 

Fig. 5.4. Raw data in time-domain of hammering test; (a) Impulse force and  
  (b) Acceleration response. 
 

 

On the other hand, Figure 5.5 shows frequency spectra of hammering test 

obtained by FFT. The cutting system contains natural frequency of 1 kHz. So that cutting 

phenomena could be identified in this frequency. Following, the frequency response 

function (FRF) was determined by combining the Fourier spectra of displacement (Fig. 

5.5(b)) divided by the impact force (Fig. 5.5(a)) [51], and the result is shown in Fig. 5.6. 

The real & imaginary parts of the FRF are shown in these figures. By using these curves, 

the experimental modal analysis (EMA) technique explained in Section 4.5 was 

performed to estimate the modal parameters. 
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Fig. 5.5. Frequency spectra of hammering test; (a) Impulse force and 
  (b) Acceleration response. 

 

 

Figure 5.6(a) shows the real part of FRF which contains two the highest peaks at 

specific frequencies f1 and f2. And in Fig. 5.6(b) shows imaginary part one which the 

negative peak value A is identified for natural frequency fn. According to these values; f1, 

f2, fn and B, the modal parameters can be determined, including modal damping ratio ζ, 

stiffness k, mass m, and damping coefficient c of the workpiece. And the dynamics modal 

parameters for thin-walled plate obtained in above test are shown in Table 5.4. On the 

other hand, Table 5.5 shows for thin-walled tubular workpiece one. 

 

Table 5.4. Dynamic modal parameters of thin-walled plate. 
FRF 

Direction 
Natural frequency 

fn (kHz) 
Damping ratio 

ζ (%) 
Stiffness 
k (N/μm) 

Gyy 1 4.5 1.92 
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Table 5.5. Dynamic modal parameters of thin-turbular workpieces. 
Wall thickness 

t (mm) 
FRF 

Direction 
Natural frequency 

fn (Hz) 
Damping ratio 

ζ (%) 
Stiffness 
k (N/μm) 

3 Gxx 55 6.6 0.25 

Gyy 53 1.1 0.266 

5 Gxx 78 5.6 0.355 

Gyy 84 1.05 0.28 

  

 

 

 

 

 

 

 

 

 

 

Fig. 5.6. Frequency response function (FRF) of thin-walled plate; (a) Real and  
               (b)  Imaginary parts of FRF. 

 
 
5.2.3. Generating stability lobe diagram for turning and milling 

The stability lobe diagrams (SLDs) were generated to determine the cutting 

conditions prior to machining tests. The SLD shown in Fig. 5.8 is result for thin-tubular 

workpiece using modal parameter in Table 5.5 and cutting force coefficient Ks = 2600 

N/m2 [73]. Here, dotted curves are lobes for thickness of thin-tubular t = 3 mm. Besides, 

solid lobes are for t = 5 mm. On the other hand, the SLD shown in Fig. 5.7 is result for 

down-milling using the modal parameters in Table 5.4, tooth number of end-mill Nt = 4, 

and radial cutting depth Ar of 0.5 mm. Besides, the tangential Kt   = 7.96 × 108 N/m2 and 

radial Kr = 1.68 × 108 N/m2 cutting force coefficients which result of Jin et al. was also 

used [74]. In our analytical SLD, we obtained 26 lobes (lb = 0, . . . 25) for spindle rotation 

of 550 to 7000 min-1. Figure 5.7 shows 14 lobes for spindle rotation of 1000 to 7,000 

min-1. 
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Fig. 5.7. Stability lobe diagram for selecting cutting conditions in milling. 

 

 

 

Fig. 5.8. Stability lobe diagram for selecting cutting conditions in turning. 
 

 

5.3.      Tests for Chatter Detection in Turning of Thin-Tubular Workpieces  

In experimental turning tests, the cutting parameters were determined using SLDs 

shown in Fig. 5.7 for any pair of axial cutting depth Aa and rotational speed of spindle n. 

In detail, the cutting parameters are shown in Table 5.6 for turning of thin-tubular 

workpieces with t = 3 and t = 5 mm. Based on this table, turning tests for thin-tubular 

workpiece with t = 3 mm will be conducted in the three cutting states, namely; stable    

(Aa = 0.5 mm), slight chatter (Aa = 0.8 mm), and severe chatter (Aa = 1.2 mm) with the 
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same of spindle rotational speed n = 550 min-1 and feed/revolution ft = 0.06 mm/rev. On 

the other hand, the axial depth of cut for turning test with t = 5 mm will be gradually 

increasing from Aa = 0.5 – 2.5 mm with constant spindle rotational speed n = 800 min-1 

and ft = 0.06 mm/rev. 

Besides, Figure 5.9 shows the experimental turning setup. Based on this figure, 

the acceleration signal is measured by accelerometer sensor which is mounted in the tool 

holder and then acceleration was acquired by a data storage system; PICO oscilloscope. 

 
Table 5.6. Cutting condition for observing chatter in thin-tubular turning tests. 

No. t (mm) ft (mm/rev) n (min-1) Aa (mm) Cutting states  
1 

3 0.06 
 

550 
 

0.5 
0.8 
1.2 

Stable 
Slight chatter 
Severe chatter 

2 
3 

4 5 0.06 800 0.5-2.5 Stable to 
chatter 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

Fig. 5.9. Turning test setup for observing chatter. 
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5.4.      Milling tests  

5.4.1. Chatter detection in thin-walled milling 

Chatter is important topic in machining dynamic research. Because (1) chatter is 

a highly complex phenomenon due to the diversity of elements that can compose the 

dynamic system, i.e. cutting tool, tool holder, work material, and the machine tool 

structure [75]. (2) The negative effects of chatter which lead to poor surface quality, 

dimensional error in the machine part and accelerate tool failure too [76]. Therefore, in 

the first milling tests, this study concerns to monitor the milling states by observing the 

chatter.  

In these tests, the SLD shown in Fig. 5.7 was used for determining the cutting 

conditions; both of axial cutting depth Aa and spindle rotation n. According to the 

diagram, Aa = 1 mm and Aa = 2 mm correspond to n = 3000 min-1 were chosen to conduct 

the tests under stable (“ ” symbol) and unstable (“ ” symbol) conditions. The 

experimental setup is shown in Fig. 5.10 and cutting conditions are in Table 5.7. Based 

on the Fig. 5.10, the acceleration signal was measured by accelerometer sensor and then 

acceleration signal was acquired by a data storage system; Yokogawa DL750 in down-

milling. 

  

 

 

 

 

 

 

 

 

 
 

 
Fig. 5.10. Milling test setup for observing chatter. 
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Table 5.7. Cutting conditions for observing chatter thin-walled milling. 

No. Spindle rotation  
n (min-1) 

Feed rate Vf  
(mm/min) 

Depth of cut (mm)  

Axial Aa Radial Ar 
1 3000 960 1 0.5 
2 3000 960 2 0.5 

 

 

5.4.2. Sudden change of machining stability caused by lubrication in  
            thin-walled milling 

Cutting fluid improves the surface finish quality of workpieces and extends tool 

life. Many scholars have investigated the effect of cutting fluid on machining process [77-

80] but few focused to the effect of cutting fluid on vibration and especially for flexible 

part. Therefore, in the second experiment, we conducted dry and wet milling test to 

compare the results of vibration analysis for signals obtained in both conditions. 

This test was conducted in unstable condition shown in Fig. 5.8 which was Aa = 

3 mm and n = 1200 min-1 (see “ ” symbol in Fig. 5.8). In this test, some oil was put on 

the cutting path of the workpiece and it allowed reducing the cutting resistance during 

milling process to inhibit the cutting instability. The oil areas are shown in Fig. 5.11. As 

can be seen from the figure, the vibration is measured using accelerometer sensor and 

strain-gauge and then they are acquired by data storage, Yokogawa oscilloscope. Besides, 

Table 5.8 shows cutting conditions for this milling test in detail.  
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Fig. 5.11. Milling test setup for observing sudden change of machining stability 
caused by lubrication. 

 
Table 5.8. Cutting conditions for observing sudden change of machining stability 

caused by lubrication. 
 

Spindle rotation  
n (min-1) 

Feed rate Vf  
(mm/min) 

Depth of cut (mm)  

Axial Aa Radial Ar 
1200 30 1 0.5 

 
 
 
 
5.4.3. Sudden change of machining stability caused by obstacle in  
            thin-walled milling  

Similar to the sudden change in lubricant condition, the cutting stability can also 

be disturbed by the biting different material such as work-hardened chips, inclusions in 

metal and so on. Therefore, we tested a milling for materials including an obstacle. The 

goals are to demonstrate the reliability of HHT to detect the obstacle in milling and to 

observe the sudden change of machining stability caused by milling with obstacle. 
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In this test, to simulate a milling process that facing an obstacle during operation, 

the workpiece was set up for activating the obstacle in thin-walled milling as shown Fig. 

5.13. Here, the main work material is aluminum and an M4 screw bolt of steel is put in 

the middle of cutting path and stand out to above little. As can be seen from the Fig. 5.13, 

at the middle of cutting path, the tool encounters the steel suddenly, then the cutting 

stability drastically changes because of the difference in cutting force coefficient for two 

kinds of materials. From the Fig. 5.13, vibration is measured using accelerometer and 

strain-gauge sensors and then were acquired by data storage system of Yokogawa 

oscilloscope. Test was conducted in the stable region just below the SLD shown in Fig. 

5.12, which is marked with the symbol “ ”. And the cutting conditions are presented in 

Table 5.9. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5.12. Stability lobe diagram for selecting cutting conditions. 
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Fig. 5.13. Workpiece condition for activating obstacle in milling.  
 
 

Table 5.9. Cutting conditions for observing sudden change of machining stability 
caused by obstacle in thin-walled milling. 

 

Spindle rotation  
n (min-1) 

Feed rate Vf  
(mm/min) 

Depth of cut (mm)  

Axial Aa Radial Ar 
600 120 1 0.5 

 

 

5.4.4. Tool condition monitoring 

In the following test, we monitored the tool condition. Because, tool is one of 

important elements in machining operation. In these tests, three kinds of end-mills with 

different cutting-edge conditions were used and the influence of those conditions was 

investigated. Figure 5.14 shows the microscopic photograph of end-mill cutting edges. 

Figure 5.14(a) is the end-mill body with four flutes in normal condition. The magnified 

cutting edge of this tool is shown in Fig. 5.14(b). Figure 5.14(c) shows the cutting edge 
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of worn tool which was simulated by grinding-down the one of teeth but retaining cutting 

ability of the tooth. The condition of worn tool was similar to flank wear. It means that 

the grinding-down cutting edge was contacting with the workpiece during milling. Fig. 

5.14(d) shows chipped tool. The chipped tool was simulated by grinding one of the teeth 

completely, and the ground tooth was unable to cut the workpiece. Milling tests were 

conducted in stable area of the SLD shown in Fig. 5.12 with same feed rate vf (120 

mm/min) and radial cutting depth Ar and cutting conditions are shown Table 5.10 in 

detail. As can be seen from the table, axial cutting depth Aa = 1 mm corresponds to spindle 

rotation n = 600 min-1 was chosen as the cutting condition. On the other hand, setup for 

these milling tests is shown in Fig. 5.15. Here, vibration was measured using strain gauge. 

 
Table 5.10. Cutting conditions for tool condition monitoring. 

No. Spindle rotation 
n (min-1) 

Feed rate Vf  
(mm/min) 

Depth of cut (mm) Tool 
condition 

Axial Aa Radial Ar 
1 600 120 1 0.5 Normal  
2 600 120 1 0.5 Wear 
3 600 120 1 0.5 Chipping 

 

 
 

Fig. 5.14. Microscopic photograph of different cutting edges; (a) full end-mill body  
  (b) normal, (c) worn, (d) chipped tools. 
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(d) 
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Fig. 5.15. Milling test setup for observing tool condition. 
 

 

5.5.      Summary 

In this section, the experimental methods are explained, and they are summarized 

as follows; 

 Machine tools, workpieces, and cutting tools are explained including for lathe and 

CNC milling machine tools. Steel, aluminum alloys work materials, and their 

dimension are explained. High-speed-steel cutting tool material and the specification 

is also explained.  

 The procedures of hammering test for turning and milling process are provided. 

Wokrpieces are considered as the flexible part of machine structures, so that the 

workpieces are excited by hammer.  

 For extracting the dynamic modal parameters; damping and stiffness, experimental 

modal analysis method was used.  

 Stability lobe diagrams are generated for each turning and milling process to 

determine cutting conditions prior to machining tests.  

 Cutting tests for turning and milling are also explained. 
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Chapter 6 

Result and Discussion 
 
 
 
The vibrations obtained in machining tests were analyzed in frequency-domain using Fast 

Fourier (FFT) and time-frequency domain using short-time Fourier (STFT) and Hilbert-

Huang (HHT) transforms. The results are discussed in each section.  

 

6.1. Chatter Detection in Turning of Thin-Tubular Workpieces 

6.1.1. Time-domain signals obtained in turning tests 

Figure 6.1.1 and Fig. 6.1.3 show vibrations which were measured in turning under 

cutting parameter given in Table 5.6. Figure 6.1.1 shows vibrations obtained in turning 

of thin-tubular workpieces with wall-thickness t = 3 mm and using different pair of axial 

cutting depth and spindle rotation. As can be seen from the figures, the vibration 

amplitudes are varying over the cutting period. Figure 6.1.1(a) is vibration obtained in 

stable operation and its amplitude is smaller than others and smooth during cutting period. 

The amplitude of vibrations becomes larger and chaotic in slight chatter and severe chatter 

operations as shown in Fig. 6.1.1(b) and Fig. 6.1.1(c). Stable and chatter vibrations was 

imprinted in the machined surface of turning tests as shown in Fig. 6.1.2. 

On the other hand, Fig. 6.1.3(a) shows transient vibration obtained in turning of 

thin-tubular workpieces with wall-thickness t = 5 mm. The transient vibration was caused 

by gradually increasing axial cutting depth (Aa = 0.5 – 2.5 mm) during the operation. As 

shown in the figure, the amplitude is small at beginning till 13 seconds of cutting period. 

This amplitude represents stable cutting (see magnified figure in Fig. 6.1.3(b)). And, the 

amplitude becomes transition and it is increasing as the cutting depth increase. The 

increasing amplitude indicates occurrence of chatter (see magnified figure in Fig. 

6.1.3(c)). Furthermore, FFT, STFT, and HHT were utilized for analyzing vibrations 

shown to show the capability of these signal processing techniques for chatter 

identification. 
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             Aa = 0.5 mm, n = 550 min-1 

 

 

 

 

 

 

 

 

Aa = 0.8 mm, n = 550 min-1 

 

 

 

 

 

 

 

 

Aa = 1.2 mm, n = 550 min-1 

Fig. 6.1.1. Effect of different axial cutting depths on vibration in turning of thin- 
  tubular workpieces with wall-thickness t = 3 mm. 
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Fig. 6.1.2. Machined surfaces obtained in turning of thin-tubular    

               workpieces for wall-thickness t = 3 mm. 
 
 

 

                        
 

 

                                              
 

 

Fig. 6.1.3. Transient acceleration signal caused by gradually increasing of axial 
                    cutting depth in turning of thin-tubular workpiece with wall-thickness  
                    t = 5 mm. 
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6.1.2. Vibration analysis using FFT 

Fast Fourier transform (FFT) was used to observe the frequency contents whether 

chatter occurs. The frequency spectrum obtained by FFT is shown in Fig. 6.1.4 and Fig. 

6.1.5. In Fig. 6.1.4(a), rotational spindle frequency (fsp = n/60 = 9.2 Hz) appears in this 

spectrum with small amplitude when stable turning using Aa = 0.5 mm. When the axial 

cutting depth was increasing with slight chatter turning operation, chatter frequency fc 

appears at 49 Hz together with fsp as shown in Fig. 6.1.4(b). here, fsp also appears in the 

spectrum when the turning operation is in severe chatter as shown in Fig. 6.1.4(c), the 

chatter amplitude increases with largest amplitude at same chatter frequency and high 

amplitude and fsp disappears in this case.  

On the other hand, Fig. 6.1.5 represents the frequency spectrum associated with 

transient acceleration signal shown in Fig. 6.1.3. Fig. 6.1.5(a) is the frequency spectrum 

for full vibration which is associated with signal shown in Fig. 6.1.3(a). As shown in the 

figure, the chatter frequency fc appears in this spectrum at 80 Hz. Besides, Fig. 6.1.5(b) 

is the frequency spectrum for stable cutting which is associated with signal shown in Fig. 

6.1.3(b). As shown in this figure, chatter frequency is vanished in this frequency 

spectrum. In addition, Fig. 6.1.5(c) is frequency spectrum for unstable operation which is 

associated with signal shown in Fig. 6.1.3(c). As can be seen, chatter frequency fc also 

appears in this frequency spectrum with higher amplitude than ones in Fig. 6.1.5(a). 

These results showed that FFT is unable to detect the frequency changes of transient 

signal. Therefore, FFT is not suitable for analyzing transient acceleration signal which its 

frequency changes over cutting period. 
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Fig. 6.1.4. Frequency spectra for three kinds of acceleration signals which correspond  
  to vibrations in Fig. 6.1.1. 
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Fig. 6.1.5. Frequency spectra for transient signal obtained which correspond to  
  vibrations in Fig. 6.1.3. 

 

 

6.1.3. Vibration analysis using HHT and comparing with STFT results 

The first step of HHT is applying EMD process to decompose raw signal to be a 

set of IMF components and some of the results are shown in Fig. 6.1.6 and Fig. 6.1.7. 

Figure 6.1.6(a) and Fig. 6.1.6(b) are IMF components for stable and severe chatter 

vibrations which correspond to signals in Fig. 6.1.1(a) and Fig. 6.1.1(c), respectively. 

Eight IMF components and a monotonic-residue were obtained for these cases. On the 

other hand, Fig. 6.1.7 is a set of IMF components for transient acceleration signal which 

corresponds to signal in Fig. 6.1.3(a). Here, Nine IMF components and a monotonic-

residue were obtained for this case. 
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Fig. 6.1.6. IMF components in time-domain obtained by EMD process. 

 

 

 

 

 

    

 

 

Fig. 6.1.7. IMF components for transient signal which correspond to vibration in  
  Fig. 6.1.3(a). 

 

 

(a) IMF components for stable cutting 
corresponding to vibration in Fig. 6.1.1(a) 

(b) IMF components for severe chatter 
corresponding to vibration in Fig. 6.1.1(c) 
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As can be seen from the figures, each IMF component contains different 

oscillation and amplitude. For example, the first IMF c1 contains the most oscillations, 

otherwise, the last IMF c9 contains the least oscillations. Therefore, c1 contains the highest 

frequency and c8 contains the lowest frequency among all IMFs. And, monotonic-residue 

is just residual of the process so that it did not include significant vibration. Therefore, we 

did not show the monotonic-residue. 

Next, we will inspect the first IMF c1 for each case. As shown in the figures, first 

IMF c1 captures the highest amplitude and oscillation among IMF components in turning 

test. The first IMF c1 is in Fig. 6.1.7, especially. This IMF captures the transient signal. 

Therefore, the first IMF c1 in each case contained a unique information of vibration mode 

obtained in experimental tests. To confirm that, the first – fourth IMF components in Fig. 

6.1.6 and Fig. 6.1.7 both were examined by FFT to observe frequency content, and the 

results are shown in Fig. 6.1.8 and Fig. 6.1.9. All the symbols in these figures have the 

same denotations as in Fig. 6.1.4. 

Every characteristic frequency appears in particular IMF of Fig. 6.1.8 and Fig. 

6.1.9 with different amplitude. It also should be noted that each IMF component contains 

one unique frequency, which means that the sifting process by EMD decomposed the 

complex vibration into simple components. In Figure 6.1.8(a) which is associated with 

stable cutting, the first IMF c1 just contains rotational spindle frequency. Besides, Figure 

6.1.8(b) which is associated with severe chatter, the first IMF c1 and the forth IMF include 

the chatter and rotational spindle frequencies at fc = 49 Hz and fsp = 9.2 Hz, respectively. 

On the other hand, Figure 6.1.9 represents the IMF in frequency domain which associated 

with IMFs in Fig. 6.1.7. As shown in figure, chatter frequency appears in the first IMF c1 

and was separated from others. 
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Fig. 6.1.8. Frequency spectrum for each IMF obtained by FFT. 

 

 

 

(a) IMFs spectra for stable cutting corresponding to IMFs in Fig. 6.6(a) 

(b) IMFs spectra for severe chatter corresponding to IMFs in Fig. 6.6(c) 
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Fig. 6.1.9. IMFs in frequency-domain for transient signal which correspond to IMFs  
  in Fig. 6.1.7. 
 

Above results showed that the EMD process separated complex vibrations into 

simple components, and each one of them contained a unique vibration mode caused in 

machining. EMD also sifted out the chatter from the others. In our study, the first IMF c1 

in Fig. 6.1.8(b) and Fig. 6.1.9 was IMF containing chatter and other IMFs are signal 

without chatter. Thus, IMFs obtained by EMD process made it easy for chatter 

identification when was combined with FFT. 

The second step of HHT is applying the Hilbert transform to all IMFs for generating 

time-frequency distribution which is represented in Hilbert spectrum shown in Fig. 

6.1.10(a)-(c) and Fig. 6.1.11(a). The resulted Hilbert spectra were compared to other 

time-frequency (TF) spectrum; namely STFT spectrum obtained by short-time Fourier 

transform (STFT) shown in Figs. 6.1.10(d)- 6.1.10(f) and Fig. 6.1.11(b). According to 

both Hilbert and STFT spectra, we can monitor turning states both in time and frequency 

domains for all cases. 

Represented in Figs. 6.1.10(a)-6.1.10(c) are Hilbert spectra for stable, slight chatter 

and severe chatter which were associated with the IMFs components given in Fig. 6.6. 

Besides, represented in Figs. 6.1.10(d)- 6.1.10(f) are STFT spectra which correspond to 

the vibrations shown in Fig. 6.1.1. Actually, the vibrations obtained in turning of thin-

tubular workpieces with wall-thickness t = 3 mm. 
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Fig. 6.1.10. Chatter detection in turning using Hilbert spectra and STFT spectra: (a-c)  
  Hilbert spectra, (d-f) STFT spectra. 
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As shown in the figures, both Hilbert and STFT spectra show good correlation with 

raw acceleration signals shown in Fig. 6.1.1. This leads the conclusion that they have the 

capability to capture the turning states among stable, slight chatter and severe chatter on 

acceleration signal obtained with different axial cutting depths. From visual investigation 

of Fig. 6.1.10(a) and Fig. 6.1.10(d) which are corresponding to stable cutting, the energy 

just appears in rotational spindle frequency, at fsp = 9.2 Hz with lowest energy level. And 

the energy level was increasing when operation is in unstable operation and the chatter 

frequency fc is appearing as shown in Figs. 6.1.10(b), 6.1.10(c), 6.1.10(e) and 6.1.10(f). 

Following, we need to compare the Hilbert and STFT spectra by identifying the 

time-frequency patterns. The comparison was carried out on the resolution of TF spectra 

and the efficiency of TF spectra to monitor the turning states.  

STFT spectra obtained by STFT give blurry time-frequency spectra. Otherwise, 

Hilbert spectra shows a significant improvement of the frequency resolution making the 

frequency components easier to be identified. The Hilbert spectra obtained by HHT are 

clearer than STFT spectra. Unlike STFT method, HHT does not involve the concept of 

frequency resolution or time resolution but introduces the concept of instantaneous 

frequency as discussed in Section 2. Consequently, a uniform high resolution is obtained 

in the full frequency range which makes it suitable to be utilized into a machining process 

monitoring. 

On the other hand, Fig. 6.1.11(a) and Fig. 6.1.11(b) are Hilbert and STFT spectra 

for vibration obtained in turning of thin-tubular workpiece t = 5 mm with respect to 

gradually increasing depth of cut. As previously mentioned, HHT give better frequency 

resolution and a clearer display of transient acceleration signal. As shown in Fig. 

6.1.11(a), the moment when frequency change from rotational spindle frequency fsp to 

chatter frequency fc, as any dynamic frequency patterns characteristic to the cutting 

process, are well captured. However, this moment cannot not be captured in STFT 

spectrum shown in Fig. 6.1.11(b). Here, STFT has trouble for capturing the moment of 

frequency change for the unsteady signal. 
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(a) Hilbert spectrum 

 

 

 

 

 

 

 

 

 

(b) STFT spectrum 

Fig. 6.1.11. Chatter detection in turning using Hilbert and STFT spectra for transient  
  acceleration signal.  

 

Therefore, using HHT on the transient signal in turning can improve time-frequency 

spectrum and helps to correctly identify the characteristics of the cutting process through 

various frequency components. Any changing frequency events appeared in Hilbert 

spectrum in the form of changes in patterns of frequency components. From these results, 

it might be said that HHT clearly shows an advantage over STFT by producing a better 

time-frequency spectrum resolution for the presented transient signals. 
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6.1.4. Summary 

In this section, the vibrations obtained in turning tests were analyzed in frequency-

domain using Fast Fourier transform (FFT) and time-frequency domain using short-time 

Fourier transform (STFT) and Hilbert-Huang transform (HHT) to reveal chatter in 

turning. The results are summarized as follows; 

1. Vibrations obtained in turning of thin-walled with thickness t = 3 mm and t = 5 mm 

and they are analyzed by FFT, STFT, and HHT. 

2. The EMD process of HHT decompose complex vibration into simple components and 

each one of them contains a unique vibration mode caused in machining. EMD also 

sifted out the chatter from the others and EMD also decomposed signals containing 

stable, slight chatter and severe chatter obtained in turning with different axial cutting 

depths.  

3. FFT is not suitable for analyzing transient vibration obtained in turning and milling 

which means its frequency changes over cutting period. 

4. STFT spectra provided blurry block spectra and it was trouble for capturing the 

moment of frequency change for the transient vibration.  

5. Besides, Hilbert spectra showed significant improvement of the frequency resolution 

making the frequency components easier to be identified. 
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6.2. Chatter Detection in Thin-walled Milling 

6.2.1. Time-domain signals obtained in milling test 

Figure 6.2.1 shows acceleration signals measured in milling under cutting 

conditions given in Table 5.7. The data length N was 5000 points, and the sampling rate 

was 100 kHz. The data length was twice longer than data length used by Peng [43] and 

close to the data length used by Zhong et al. [80]. Figure 6.2.1(a) is the signal obtained 

in stable milling, and Fig. 6.2.1(b) is one in unstable milling (occurring chatter). As can 

be seen from the figures, acceleration signals have periodic peaks whose height are 

fluctuating. Because the peak interval was equal to the tooth passing interval, the 

fluctuation of signal peak might be caused by change of chip thickness during milling. 

 

 

 

 

 

 

 

 

 

 

Fig. 6.2.1.  Time-domain of acceleration signals obtained in thin-walled milling. 
 

 

6.2.2. Vibration analysis using FFT for chatter detection 

Figure 6.2.2 is the waterfall diagram of frequency spectra obtained by FFT 

corresponding to signals in Fig. 6.2.1. In this figure, symbols of fn and fc denote natural 

and chatter frequencies, respectively. And the arrows denote spindle rotational frequency 

(fs = n/60 = 50 s-1), tooth passing frequency (fp = Ntfs = 200 s-1) and the harmonic of 

frequencies. 

As can be seen from Fig. 6.2.2, the spectrum of stable milling (Aa = 1 mm) shows 
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tooth passing frequencies and the harmonics with amplitude is greater than ones in stable 

milling. Chatter frequency fc (940 Hz) also appears with larger amplitude in this frequency 

spectrum.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.2.2. Waterfall diagram of frequency spectrum obtained by FFT for stable  
         (Aa = 1 mm), and unstable (Aa = 2 mm) milling. 
 

 

6.2.3. Vibration analysis using HHT for chatter detection 
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last process in EMD which also did not include significant vibration. Therefore, the first 
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Fig. 6.2.3. 
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                   (a) IMFs for stable milling.                                  (b) IMFs for unstable milling. 

Fig. 6.2.3. IMF components obtained by EMD process for (a) stable and  
   (b) unstable milling. 

 

 

As can be seen from Fig. 6.2.3, obvious differences of oscillations and amplitudes 

can be seen among IMFs. For example, the first IMF c1 contains the most oscillations, 

otherwise the last IMF c8 contains the least oscillations among all IMFs. Moreover, c1 and 

c8 contain the highest and the lowest frequency, respectively. Now, let us inspect fourth 

IMF c4 of Fig. 6.2.3(a) and c5 in Fig. 6.2.3(b). As can be seen from the figures, they 

capture the smooth oscillation of signals in these tests. Furthermore, c4 in Fig. 6.2.3(a) 

contains the highest amplitude among IMF components for stable milling and c5 in Fig. 

6.2.3(b) is the highest one for unstable milling. Therefore, each IMF contains a unique 

information about the vibration mode in the experimental tests. 
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To confirm above deduction, each IMF in Fig. 6.2.3 was examined in frequency-

domain to observe frequency content of each IMF, and the results are shown in Fig. 6.2.4. 

The cutting period of 50 ms was used to get frequency spectra in Fig. 6.2.4. All symbols 

in these figures denote same as in Fig. 6.2.2. As can be seen from Fig. 6.2.4, the 

characteristic frequency with different amplitude appears in each IMF. It also should be 

noted that each IMF component contains one unique frequency which means that the 

sifting process by EMD separated the complex vibration into simple components 

properly. For example, high mode components of IMF (c1 to c3) include harmonic of tooth 

passing frequency with small amplitude for both of stable and unstable milling conditions. 

In Fig. 6.2.4(a), c4 includes the natural frequency (1 kHz) of cutting system and lower 

mode components c5 and c6 display tooth passing frequency and the harmonics. In Fig. 

6.2.4(b), c4 and c6 show the tooth passing frequency and the harmonics, however chatter 

frequency appears in c5. Here, chatter frequency (940 Hz) also appears with the larger 

amplitude.  

Above results showed that EMD process decomposed the complex raw signal into 

simple components, and each one of them contained a unique vibration mode caused in 

machining. EMD process also sifted out the chatter from other signals. In our study, fifth 

IMF c5 shown in Fig. 6.2.4(b) is the signal containing chatter and other IMFs in Fig. 

6.2.4(b) are signal without chatter. Thus, IMFs obtained by EMD process made it easy to 

recognize the chatter growing as cutting depth was increased.  

The next step of HHT is applying the Hilbert transform to all IMFs for generating 

energy-time-frequency distribution, which are presented in Hilbert spectrum. And Fig. 

6.2.5 shows Hilbert spectra obtained by Hilbert transform. Fig. 6.2.5(a) is Hilbert 

spectrum corresponding to IMFs for stable milling, and Fig. 6.2.5(b) is one for unstable 

milling (occurring chatter). These Hilbert spectra provide energy-time-frequency 

distribution, which made it easy to detect chatter at any time and frequency. It is different 

from frequency spectra obtained by FFT as given in Fig. 6.2.2, which just provided 

frequency-domain for chatter detection over sampled cutting period. 
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(a) IMFs for stable milling. 

 

 

 

 

 

 

 

 

 

 

 

(b) IMFs for unstable milling. 

Fig. 6.2.4. FFT spectra of all IMFs to examine frequency content of each IMF. 
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condition, the spectrum contains different magnitude of energy. It was caused by cutting 

with fluctuating radial cutting depth. And from Fig. 6.2.5(b), the energy level fluctuating 

during short time range and each cutting edge excited the vibration of the workpiece. In 

this figure, first cutting edge contains the largest effect on the vibration. And, these results 

showed that HHT could reveal the difference excitation among cutting edges. 

 

 

 
 

 

 
 

 

Fig. 6.2.5. Hilbert spectra for (a) stable and (b) unstable milling. 
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6.2.4. Summary 

In this section, the vibrations obtained in milling tests were analyzed in frequency-

domain using Fast Fourier transform (FFT) and energy-time-frequency domain using 

Hilbert-Huang (HHT) transform to reveal chatter in milling. The results are summarized 

as follows; 

1. Each IMF obtained by EMD process contained a unique vibration mode caused in 

milling process.  

2. EMD separated chatter from other signals. Thus, EMD process made it easy to 

identify chatter growing up as the cutting depth was increased.  

3. In Hilbert spectrum of stable milling, the energy of cutting was concentrated in certain 

frequency. Besides, the energy for unstable milling was chaotic and the frequency was 

not constant over the time.  

4. HHT could reveal the difference excitation among cutting edges during milling 

process. 
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6.3. Sudden Change of Machining Stability caused by Lubrication 

6.3.1. Time-domain signals obtained in milling 

In this section, the effect of cutting fluid on the vibration are discussed. These tests 

were conducted under unstable conditions of SLD given in Fig. 5.7 and using cutting 

parameters shown in Table 5.8. In addition, some lubrication was put on the cutting path 

of workpiece shown in Fig. 5.11. 

Transition of signals obtained in milling tests are shown in Fig. 6.3.1. Figure 

6.3.1(a) and Fig. 6.3.1(c) represent; acceleration and strain signals, which were measured 

using accelerometer and strain-gauge sensors, respectively. As can be seen from these 

figures, both acceleration and strain signals have different amplitudes over the cutting 

period. The amplitudes increase at cutting period 16–35 seconds and 111–114 seconds. 

The increasing of amplitude occurred in dry cutting and under unstable milling. On the 

other hand, the amplitudes decrease at cutting period 0–15 seconds and 36–110 seconds. 

These decreasing of amplitudes are caused by the cutting fluid which was put on the 

workpiece. In this case, the cutting fluid allowed the reducing of cutting resistance during 

milling to inhibit chatter, i.e., the effect of the cutting fluid can be attributed to reduction 

of cutting coefficients in dynamic model of milling. So that, the cutting fluid influenced 

on the stability in milling of thin-walled workpieces.  

To explore other important information about acceleration and strain signals both, 

the signals in solid boxes of Fig. 6.3.1(a) and Fig. 6.3.1(c) were sampled, and the 

magnified ones are displayed in Fig. 6.3.1(b) and Fig. 6.3.1(d). As can be seen from these 

figures, the amplitudes decrease at cutting period 1.7 seconds for all signals, but the 

amplitude of acceleration signal is greater than strain signal. Further, the signals in Fig. 

6.3.1(b) and Fig. 6.3.1(d) were analyzed in detail in the following section. 
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Fig. 6.3.1. Time-domain of acceleration and strain signals obtained in milling  
            Caused by lubrication; (a) and (c) are full signals, (b) and (d) are  
            transition of signals from dry to wet milling. 

 
 

6.3.2. Vibration analysis for observing sudden change of machining stability using 
FFT 
 
The frequency contents of both acceleration and strain signals are observed using 

FFT and the results are shown in Fig. 6.3.2. The cutting period of 4 seconds was used to 

get those frequency spectra. Fig. 6.3.2(a) shows frequency spectrum for a transient 

acceleration signal, which corresponds to signal in Fig. 6.3.1(b). Besides, Fig. 6.3.2(b) is 

ones for transient strain signal, which corresponds to signal in Fig. 6.3.1(d). According 

dry cutting wet cutting

(a) Full acceleration signal

(b) Transition of acceleration signal

dry cutting
wet cutting

A
cc

. a
(m

/s
2 )

A
cc

. a
(m

/s
2 )

dry cutting wet cutting

(c) Full strain signal

(d) Transition of strain signal

dry cutting
wet cuttingSt

ra
in

 ε
St

ra
in

 ε

x 10-6

x 10-6



80 
 

to these figures, the frequencies appear in certain frequency range. Fig. 6.3.2(a) for 

instance, the frequency is distributed in 1.2-2 kHz. In this figure, chatter frequency fc and 

harmonics of tooth passing frequency (arrows symbol) appear in the high frequency. On 

the other hand, in Fig. 6.3.2(b), the frequency is distributed in two frequency bands; in 

80 Hz and 1.2-2 kHz. In this figure, tooth passing frequency appears in low frequency. 

Besides, harmonics of tooth passing frequency and chatter frequency fc appears in the 

high frequency. 

 

 

 

 

 

 

 

 

 

 

Fig. 6.3.2. Frequency spectra for transition signals from dry to wet cutting; 
       (a) acceleration, and (b) strain signals.  
 

 

To analyze the effects of cutting fluid to frequency content, the acceleration signal 

in the Fig. 6.3.1(b) was analyzed. First, from Fig. 6.3.1(b), the dry cutting period of 1.6 

seconds (dotted box) was chosen for FFT analysis to obtain the spectrum, then the wet 

cutting period (dotted box) was also chosen to do same procedure. Fig. 6.3.3 shows the 

frequency obtained spectra and analyzed acceleration signals are also displayed as the 

inserted figures.  
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Fig. 6.3.3. Effect of cutting fluid on frequency content of acceleration signals  
            obtained in (a) dry cutting, and (b) wet cutting.  
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results are shown in Fig. 6.3.5. Figure 6.3.5(a) is the Hilbert spectrum of acceleration 

signal corresponding to IMFs in Fig. 6.3.4(a). Besides, Fig. 6.3.5(b) is Hilbert spectrum 

of strain signal corresponding to IMFs in Fig. 6.3.4(b). 

According to Fig. 6.3.5(a) and Fig. 6.3.5(b), the milling states is unstable at the 

beginning of process during the 0-1.7 seconds. The machining process in this period was 

dry milling. As can be seen from the figures, the energy with high magnitude is distributed 

in the frequency range of 1.2-2 kHz. The energy with high magnitude of these Hilbert 

spectra indicated that chatter is occurring at that frequency range and time period. 

However, after the tool enters the wet area; time of 1.8 seconds until finish, the cutting 

process is stable. The energy decreases quickly by the cutting fluid and chatter frequency 

is vanished. 

Comparing the frequency spectra in Fig. 6.3.2 with Hilbert spectra in Fig. 6.3.5, 

we can see that both FFT and HHT informed the chatter frequency. Especially, the Hilbert 

spectra informed all of we need completely; the occurrences of chatter frequency, period, 

energy and vanished of them. 
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       (a) IMFs correspond to acceleration signal.          

Fig. 6.3.4. A set of IMF components obtained by EMD process. 
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Fig. 6.3.5. Transition energy in Hilbert spectra obtained in dry and wet milling. 
 

 

In addition, in Fig. 6.3.5(b), there are two main frequencies appear in this Hilbert 

spectrum, those frequencies are 80 Hz and the frequency of 1.2-2 kHz. The frequency of 

80 Hz was tooth passing frequency, which was calculated by fp = Ntfs, where number of 

teeth Nt is 4, and spindle rotational frequency fs is 20 seconds-1). In order to observe clearly 

about low frequency in Fig. 6.3.5, then the frequency in Fig. 6.3.5(b) is magnified as 

shown in Fig. 6.3.6. 
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Fig. 6.3.6. Magnified Hilbert spectrum of Fig. 6.3.5(b). 
 

 

Based on the above results, the strain-gauge sensor worked better than 

accelerometer sensor in the signal measurement. Because it captured all vibration modes 

rather than accelerometer sensor. The frequency corresponds to strain signal appeared 

both low and high frequencies in the frequency spectrum of FFT and Hilbert spectra of 

HHT and Fig. 6.3.6). Otherwise, the signal measured using accelerometer did not capture 

the low frequency but just captured high frequency as shown in Fig. 6.3.2(a) and Fig. 

6.3.5(a). Other important information that the cutting fluid enhanced the attenuation of 

vibration in milling. And the surface topographies for dry and wet milling can be 

compared as in Fig. 6.3.7. As can be seen from those figures, the surface finish in dry 

cutting is poorer than one in wet cutting. The surface roughness Ra in dry milling was 

0.721 μm, and in wet milling one is Ra = 0.187 μm. 
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Fig. 6.3.7. Surface topography of machined surface. 
 

 

6.3.4. Summary 

In this section, the vibrations obtained in milling test were analyzed in frequency-

domain using Fast Fourier transform (FFT) and energy-time-frequency domain using 

Hilbert-Huang (HHT) transform to analyze sudden change of machining stability caused 

by lubrication. The results are summarized bellows; 

1. The cutting fluid enhanced the attenuation of vibration in milling which was pointed 

out in Hilbert spectrum.  

2. In Hilbert spectrum, the energy appeared in the certain frequency range for dry 

cutting, and energy vanished when tool entered in the wet area.  

3. Hilbert spectra obtained by HHT provided useful information compared the frequency 

spectra obtained by FFT for machining process monitoring. 

4. The Hilbert spectrum provided complete information about the occurrence of chatter 

on time-frequency with indicated by the energy and the vanished of chatter caused by 

a lubricant.    

 

 

 

 

 

(a) Dry milling 

Ra = 0.721 μm 1 mm 

(b) Wet milling 

Ra = 0.187 μm 1 mm 
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6.4. Sudden Change of Machining Stability Caused by Obstacle in Thin-walled 
Milling 
 

6.4.1. Time-domain signals obtained in milling test 

Figure 6.4.1 is acceleration and strain signals measured in milling under cutting 

conditions given in Table 5.9 and milling setup shown in Fig. 5.13. Figs. 6.4.1(a)-(c) are 

acceleration signals, and Figs. 6.4.1(d)-(f) are strain signals. In detail, Figures 6.4.1(a)-

(d) show a full time-domain of acceleration and strain signals. From the figures, the 

cutting tool removes the workpiece in stable milling at the cutting period of 0-12.5 

seconds. This cutting process was associated to cut the aluminum material. And then the 

amplitude of signal grows up suddenly at cutting period of 12.6-14 seconds. This cutting 

process was associated to cut the aluminum material and crash the steel material. The 

increasing of amplitude was attributed to the enhancement of cutting coefficients in the 

dynamic model of milling, which affects on the machining stability. Because the 

aluminum and steel have different cutting coefficients. According to the amplitude in 

these figures, it indicates that not all of machining process runs smoothly or always in 

stable condition during milling process, but sometimes get an obstacle. And in this study, 

we called it as the bumping milling for the amplitude of signal grows up suddenly. The 

acceleration signals obtained in bumping and stable milling are shown in the boxes of 

Fig. 6.4.1(a) and the magnified ones are shown in Fig. 6.4.1(b) and Fig. 6.4.1(c). Besides, 

strain signals in Fig. 6.4.1(d)-(f) show the magnified ones. To get important information 

about acceleration and strain signals both, the signals were analyzed in detail in the 

following section. 
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Fig. 6.4.1. Time-domain of acceleration and strain signals. (a) and (d) full signals,  
        (b) and (e) signals obtained in stable milling, and (c) and (f) signals  
        obtained in bumping milling. 
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6.4.2. Vibration analysis for observing sudden change of machining stability using  
        FFT 

 
Figure 6.4.2 shows frequency spectra obtained by FFT for stable and bumping 

milling. The cutting period of 1 second was used to get these frequency spectra. These 

figures were used to describe the effect of stable and bumping milling on the frequency 

content. Figure 6.4.2(a) and Fig. 6.4.2(c) are frequency spectra for acceleration and strain 

signals obtained in stable milling. These frequency spectra are corresponding to time-

domain signals shown in Fig. 6.4.1(b) and Fig. 6.4.1(e). As can be seen from Fig. 6.4.2, 

frequency of acceleration signal appears in the high frequency (1-1.3 kHz), and frequency 

of strain signal appears in low frequency (0-40 Hz).  

 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

Fig. 6.4.2. Effect of obstacle on frequency content for acceleration, and strain  
            signals. (a) and (b) are acceleration signals, (b) and (d) are strain signals. 
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On the other hand, Fig. 6.4.2(b) and Fig. 6.4.2(d) are frequency spectra for acceleration 

and strain signals obtained in bumping milling. These frequency spectra are 

corresponding to time-domain signals shown in Fig. 6.4.1(c) and Fig. 6.4.1(f). The figures 

show that frequency of the acceleration signal spreads out over a wider frequency range, 

namely in 1-2 kHz. Besides, the frequency of the strain signal appears in the low 

frequency (0-80 Hz). 

 

 
6.4.3. Stability analysis for observing sudden change of machining stability using  

       HHT 
 
Figure 6.4.3 shows IMF components cj obtained by EMD process. Figure 

6.4.3(a) and Fig. 6.4.3(c) are IMF components of acceleration and strain signals obtained 

in stable milling, Fig. 6.4.3(b) and Fig. 6.4.3(d) are ones obtained in bumping milling. 

For each milling condition, EMD process resulted nine IMFs and a monotonic-residue. 

However, these tests showed the first four IMFs (c1 to c4) for each milling condition 

because these IMFs contain vibration modes that we need to be observed in this section. 

IMF components of acceleration signals is represented in Fig. 6.4.3(a) and Fig. 6.4.3(b), 

and IMF components of strain signals is represented in Fig. 6.4.3(c)-(d).  

According to Fig. 6.4.3, there is obvious change of the amplitudes in each IMF. 

The signal obtained in stable milling contain smaller amplitude than the signals obtained 

in bumping milling. These IMF components were observed in energy-time-frequency 

domain using Hilbert transform and the results are Hilbert spectra shown in Fig. 6.4.4. 

The Hilbert spectra corresponding to stable milling are shown in Fig. 6.4.4(a) and Fig. 

6.4.4(d). As can be seen from these figures, the energy was distributed in particular 

frequency (1 kHz). Besides, the Hilbert spectra correspond to bumping milling shown in 

Fig. 6.4.4(b) and Fig. 6.4.4(d). In these spectra, the energy is messy and there is no 

frequency characteristic belongs to the energy distribution or the Hilbert spectrum 

displayed a chaotic spectrum of energy.  

Let us examine Hilbert spectra corresponding to strain signal shown in Fig. 

6.4.4(c) and Fig. 6.4.4(d). As can be seen from these spectra, there are two main 

frequencies for stable milling, at the low and high frequencies. And, during machining 

with obstacle, the energy is distributed only at low frequency. Besides, the change of 

energy was clearly shown in Hilbert spectrum which was generated using strain signal 
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than acceleration signal. It can be seen in Fig. 6.4.5. In this figure, the cutting process is 

analyzed with a longer time to obtain full machining process, from stable to bumping 

milling. From this figure, we find clear information that milling with obstacle occurs at 

2–2.5 seconds. 

 

 

 

 

 

 

 

 

 

 

 

 

       

 

 

 

 

 

 

Fig. 6.4.3. A set of IMF components for acceleration and strain signals  
            corresponding to obtained in stable and bumping milling. 
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Fig. 6.4.4. Hilbert spectrum for acceleration (left column) and strain (right column)  
        signals corresponding to stable and bumping milling. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.4.5. Hilbert spectrum from stable to bumping milling. 
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6.4.4. Summary 
In this section, the vibrations obtained in milling test were analyzed in frequency-

domain using Fast Fourier transform (FFT) and energy-time-frequency domain using 

Hilbert-Huang (HHT) transform to analyze sudden change of machining stability 

caused by obstacle in thin-walled milling. The results are summarized as follows; 

1. Hilbert spectra in stable milling showed that the energy was distributed in particular 

frequency.  

2. Hilbert spectra in bumping milling showed that the energy was chaotic and spread out 

over the spectrum. And there is no frequency characteristic in bumping milling. 

3. Hilbert spectra which correspond to strain signal provided the change of energy 

clearly, therefore the strain signal measured using strain gauge sensor worked well 

with HHT. 
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6.5. Tool Condition Monitoring Using HHT 

6.5.1. Time-domain signals obtained in milling tests 

Figure 6.5.1 shows strain signals obtained in milling under cutting conditions 

given in Table 5.10 and using different tool conditions shown in Fig. 5.14. Figure 

6.5.1(a) is strain signal obtained in milling using normal tool. As can be seen from the 

figure, shapes of the peak are mostly uniform, and the amplitude is smaller than others. 

Based on the figure, the period of one spindle rotation is approximately 0.1 seconds. It is 

associated to spindle rotation n = 600 min-1 and there are four peaks within one spindle 

rotation, and one peak of signal was performed by one individual cutting edge of tool. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.5.1. Strain signals measured in milling using different tool conditions; (a)  
normal, (b) wear, (c) chipping tool. 

 

Figure 6.5.1(b) shows strain signal measured in milling using worn tool. As can be seen 

from the figure, one of signal peaks is distorted within one spindle rotation. The distorted 

signal was caused by milling using worn tool. Figure 6.5.1(c) is strain signal measured 

in milling using chipped tool. As can be seen from this figure, one of signal peaks is lost 

within one spindle rotation. The loss of the signal peak was due to the end-mill tool lost 

one of the cutting edges. As the result, within one spindle rotation is found three peaks of 

signals. 
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6.5.2. Vibration analysis for tool condition monitoring using HHT  

Figure 6.5.2 shows IMF components obtained by EMD process. Using EMD 

process twelve IMFs and a monotonic-residue were resulted. However, four IMF 

components c5 to c8 are shown for each milling condition because these IMFs include 

mode vibration that we need to be observed in this discussion. Figs. 6.5.2(a)-(c) are IMF 

components corresponding to milling using normal, worn and chipped tool, respectively. 

As can be seen from Fig. 6.5.2, there are obvious change of the amplitudes among of 

IMFs. The IMFs signals obtained in milling using normal tool contain smaller amplitude 

than milling using worn and chipped tool. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.5.2. IMF components obtained by EMD process corresponding to milling  

using different tool conditions. 

(a) IMFs corresponding to milling using 
normal tool. 

(b) IMFs corresponding to milling 
using worn tool. 

(c) IMFs corresponding to milling using chipped tool. 
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The intrinsic meaning of each IMF was explored in energy-time-frequency domain 

using Hilbert transform for tool condition monitor. The result is represented in Hilbert 

spectrum. As can be seen from Fig. 6.3.5, the energy just appears at low frequency, the 

frequency band, therefore, was narrowed to be 0-80 Hz for each figure to analyze the 

vibrations more detail. 

Figure 6.5.3(a) shows Hilbert spectrum corresponding to strain signal measured in 

milling using normal tool. As can be seen from this figure, the energy is consentrated at 

the frequency of 40 Hz over the cutting period. This frequency was tooth passing 

frequency (fp = Ntfs = 40 Hz). Besides, Fig. 6.5.3(b) shows Hilbert spectrum 

corresponding to milling using worn tool. In this figure, the energy appears both in the 

tooth passing frequency of 40 Hz and at new frequency of 10 Hz. The new frequency was 

spindle rotational frequency (fs = n/60 = 10 Hz). On the other hand, Fig. 6.5.3(c) shows 

Hilbert spectrum corresponding to milling using chipped tool. According to this figure, 

the energy appears in three frequency components, i.e.; 10, 20, and 40 Hz. 

Based on the above results, HHT can be used to monitor tool condition because 

milling using normal tool can be distinguished from milling using worn tool or chipped 

tool based on the Hilbert spectrum of HHT. Therefore, we can identify that when the tool 

was getting wear, the energy in Hilbert spectrum appears at spindle rotation frequency. 

When end-mill was getting chipping, the energy appears in spindle rotation, tooth passing, 

and new frequencies. Besides, other important note that strain signal provided a useful 

signal for tool contition monitoring with HHT. 
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 (a) Hilbert spectra corresponding to milling using normal tool. 
 
 
 
 
 
 
 
 
 
 
 

 

(b) Hilbert spectra corresponding to milling using worn tool. 
 
 
 
 
 
 
 
 
 
 
 

 

(c) Hilbert spectra corresponding to milling using chipped tool. 

 

Fig. 6.5.3. Hilbert spectra for tool condition monitoring in milling. 
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6.5.3. Summary 

   In this section, the vibrations obtained in milling test were analyzed in energy-

time-frequency domain using Hilbert-Huang transform (HHT) for tool condition 

monitoring. The results are summarized as follows; 

1. Based on Hilbert spectrum, milling using normal tool can be distinguished from 

milling using worn tool and milling using chipped tool. 

2. From Hilbert spectrum, when end-mill is getting wear, the energy in Hilbert spectrum 

appears at spindle rotation frequency. When end-mill is getting chipping, the energy 

appears in spindle rotation, tooth passing, and new frequencies.  

3. In this study, strain signal measured using strain gauge sensor can work well with 

HHT for tool condition monitoring. 
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Chapter 7 

Conclusions 
 

 

This research presented here focused on machining process monitoring by vibration 

analysis. Machining process monitoring was to detect; chatter vibration, sudden change 

of machining stability caused by lubrication, sudden change of machining stability caused 

by obstacle in thin-walled milling, and to monitor tool condition. Hilbert-Huang 

transform (HHT) was employed for analyzing signals and the results of HHT analysis 

were compared with fast Fourier transform (FFT) and short-time Fourier (STFT) 

transform results. For each signal obtained in turning and milling tests, HHT decomposed 

the signals to be intrinsic mode function (IMF) components by Empirical Mode 

Decomposition (EMD) process, and each one of them contains a unique vibration mode 

caused in machining. Hilbert transform is then applied for all IMFs to generate Hilbert 

spectrum which represent energy-time-frequency distribution of signals. Following is 

some important conclusions: 

1. The EMD process decomposed complex vibration into simple components, and each 

one of them contained a unique vibration mode caused in machining. EMD also sifted 

out the chatter from the others. 

2. In turning process, Hilbert and STFT spectra were capable to capture turning states 

among stable, slight, and severe chatter. However, STFT spectra provided blurry and 

blocked spectra and STFT spectrum was trouble to capture the moment of frequency 

change for the transient vibration. Besides, Hilbert spectra showed a significant 

improvement of time-frequency resolution making the turning states was easier to be 

identified. 

3. For chatter detection in milling process using HHT, the energy of stable milling was 

concentrated in particular frequency. Besides, the energy of unstable milling was 

chaotic, and the frequency was not constant. And, HHT have revealed the difference 

excitation among cutting edges. 

4. HHT can reveal the effect of cutting fluid on the stability of milling which was pointed 

out in Hilbert spectrum. In Hilbert spectrum, the energy appeared in the certain 
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frequency range for dry cutting, and energy vanished when tool entered in the wet 

area. 

5. Besides, the energy in Hilbert spectrum displayed a chaotic spectrum when milling 

was unstable caused by machining with obstacle. And, Hilbert spectrum of the stable 

milling showed that the energy was distributed in particular frequency. 

6. HHT can be used for tool condition monitoring. Based on the Hilbert spectrum, 

milling using worn and chipped tools can be distinguished from milling using normal 

tool. 
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Appendix A. Hilbert-Huang Transform 
 
%%%%%%%%%%%%% 
%This coding is generated for analysis signal obtained in machining using Hilbert-Huang transform. 
%Under Prof. Keiji Yamada, Ph.D. in Eng 
%Agus Susanto 
clear; close all;clc; 
pkg load signal 
fs=100000.0;         % sampling frequency (samples/second) 
Ts=1/fs;             %  
N=1200000;           % full sampling point (samples) 
NN=N+0;              %  
xx=csvread("Acc_&_SG_FullSignal.csv"); % load war data 
x=xx(325000:NN-835000,2)*10;     % sampling point (samples) will be analysis (samples) 
Ny=length(x)            % data length  
t=0:Ts:Ts*(N-1160000);  % time vektor (s) 
t11=t*10; 
t1=t11'; 
Nt1=length(t1)  
 
% Plot time domain of raw data 
figure(1) % time domain signal 
plot(t1,x,'linewidth',1, 'k'); 
set(gca,'FontName', 'Times New Roman','FontSize',30); 
xlabel('Time t (s)'), ylabel('Amplitude a (m/s^2)'); 
hold on; 
stem3_hht(x,Ts);         % Function to perform EMD process. Result is a set IMFs components; 

       % The function as follows; 
function stem3_hht(x,Ts) 
N = length(x); 
c = linspace(0,(N-2)*10*Ts,N-1); 
imf = emd(x); 
% plots of Set IMF in time-domain. 
M = length(imf); 
N = length(x); 
c = linspace(0,(N-1)*10*Ts,N);   % c = linspace(0,(N-1)*1000*Ts,N);  
for k1 = 0:4:M-1 
   figure 
   for k2 = 1:min(4,M-k1), subplot(4,1,k2), plot(c,1.2*imf{k1+k2}, 'linewidth',3, 'k');  
       set(gca,'FontName', 'Times New Roman','FontSize',13,'XLim',[0 4.001]); 
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       %set(gca,'FontName', 'Times New Roman','FontSize',30,'XLim',[0 c(end)]);   
       %xlabel('Time t (ms)'); 
       %ylabel({['IMF',num2str(k1+k2)],'Amplitude a (m/s^2)'}); 
       ylabel({['IMF',num2str(k1+k2)]}); 
   end 
end 
 
emd_power_plot_hht(x,Ts);          % Function to perform Hilbert tranform process. Result is a Hilbert 
spectrum; 
               % The function as follows; 
function emd_power_plot_hht(x,Ts) 
N = length(x); 
% c = linspace(0,(N-2)*Ts,N-1); 
c = linspace(0,(N-2)*10*Ts,N-1); 
imf = emd(x); 
% Set time-frequency plots. 
for k = 1:length(imf)-1 
   b{k} = abs(hilbert(imf{k})).*abs(hilbert(imf{k}));  
   b{k} = b{k}(1:N-1);%power 
   th{k}= angle(hilbert(imf{k})); 
   d{k} = diff(th{k})/Ts/(2*pi);%frequency 
end 
 
%find max instant amplitude to make color map 
for k = 1:length(imf)-1 
   m(k)=max(b{k}); 
end 
   bmax = max(m); 
   B    = colormap(jet); 
   i    = bmax/63; 
for k = 1:length(imf)-1 
   bn{k}= round(b{k}/i)+1;%a nunmer of color band 
   for a=1:length(b{k}) 
   cm{a}=B(bn{k}(a),:); 
   end 
    
   for n = 1:length(b{k}), 
     figure(2) 
     plot(c(n),0.1*d{k}(n),'.','color',cm{n},'markersize',10); 
     %plot(c(n),d{k}(n),'.','color',cm{n},'markersize',10); 
     set(gca,'FontName', 'Times New Roman','FontSize',30,'XLim',[0 c(end)],'YLim',[0 10000]);  
     xlabel('Time [s]'), ylabel('Frequency [Hz]');  
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     hold on; 
   end 
end 
 
whitebg([0 0 0.56250]) 
colormap(jet) 
c = colorbar; 
ylabel(c,'Energy') 
set(gca,'Clim',[0,bmax], 'FontName', 'Times New Roman','FontSize',30); 
d=get(c,'position') 
d(3)=0.5*d(3) 
set(c,'position',d)  
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Appendix B. Experimental modal analysis (EMA) 
 
 
The dynamic modal parameters, such us; mass m, damping c, and stiffness k of a machine 
tool structure needs to be measured to predict cutting condition in a well-known as 
stability lobe diagram. The dynamic modal parameters of machine tool structures are 
determined from a so-called hammering test. 
In hammering test, the machine tool structure is excited by hitting it with an impulse force 
hammer. This impact will excite the structure over a certain frequency range. The 
structure will show a response after the impact, which characterizes the dynamics of the 
structure. This response can then be measured using a displacement sensor, a velocity 
sensor, or an accelerometer sensor (in our study, we used accelerometer sensor). The 
dynamic characteristics of the structure are determined by combining the Fourier 
spectrum of both the impact force measurement and the displacement measurement. 
When using an accelerometer, the signal needs to be integrated twice in frequency 
domain, to get the displacement measurement. The combination of these two 
measurements results is called Frequency Response Function (FRF). 
In our study, we considered the workpieces as the flexible part, more flexible than cutting 
tool because the workpieces were thin-walled structure, for both turning and milling. 
Therefore, we excited the workpiece using the modal hammer. Please refers Chapter 5 to 
get experimental method of hammering tests in turning and milling.  
To minimize errors during the hammering testing, we always conducted several 
measurements. After each hitting, we examined the signals to identify whether it was bad 
or good hitting. A hitting is considered bad if a multiple hitting occurred (the hammer 
bounces, loses contact and hits the structure again), this phenomenon is called bouncing 
effect. A bouncing effect can be detected in DL750 Yokogawa oscilloscope or in screen 
of personal computer which was already installed with Pico Scope oscilloscope. Enough 
good hits need to be collected and then they will be examined the FRF. 
After the hammering test is performed, we analyzed the measured frequency response 
function. Figure 1 shows a couple of impact force and time domain data obtained in 
hammering test of thin-tubular workpieces with wall thickness h 3 and 5 mm, 
respectively. Figures 1(a) and Fig. 1(b) are a couple of impact force and acceleration 
response which were measured for thin-tubular workpieces with wall thickness h 3 mm. 
Besides, Fig. 1(c) and Fig. 1(d) are a couple of impact force and acceleration response 
which were measured for thin-tubular workpieces with wall thickness h 5 mm. As can be 
seen from impact signal in Fig. 1, the black signals are obtained in x direction and the red 
signals are obtained in y direction. The impact signals show no second hit, therefore no 
bouncing effect has occurred, and they will be good hits.  
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Figure 1. Time domain data of hammering test; (a) and (c) impact forces, and (b) and 

(d) acceleration responses. 
 
Next step is transformed the time domain data shown in Fig. 1 to frequency domain using 
fast Fourier transform (FFT) and the result is shown in Fig. 2. Figure 2(a) and Fig. 2(b) 
are a couple of frequency spectra of impact force and acceleration response which were 
obtained by FFT for thin-tubular workpieces with wall thickness h 3 mm. Besides, Fig. 
2(c) and Fig. 2(d) are frequency spectra for thin-tubular workpieces with wall thickness 
h 5 mm. The black signals are obtained in x direction and the red signals are obtained in 
y direction. 
As can be seen from Fig. 2(b) and Fig. 2(d), large peaks are at 53, 55, 78, and 84 Hz, 
respectively. These peaks are natural frequencies of each workpiece. These peaks 
represent the weakest points of machine tool structure that we observe. Therefore, we 
should keep these frequencies in mind as a critical location in our analysis.  
 

  
 

Figure 2. Frequency spectra of hammering test; (a) and (c) impact forces and (b) and 
(d) acceleration responses which were obtained by FFT.  
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Following step, we can observe the real & imaginary parts of the FRF of the work-pieces 
by combining the Fourier spectrum of both the impact force and the displacement and the 
FRF results are shown in Fig. 3. Figure 3(a) and 3(b) show a couple of the real and 
imaginary parts of FRF for thin-tubular workpiece with wall thickness h 3 mm. Besides, 
Fig. 3(c) and Fig. 3(d) are a couple of the real and imaginary parts of FRF for thin-tubular 
workpieces with wall thickness h 5 mm. The black signals are obtained in x direction and 
the red signals are obtained in y direction. As can be seen from Fig. 3(a) and Fig. (c), they 
contain two the highest peaks at specific frequencies f1 and f2, and f3 and f4. Besides, Fig. 
3(b) and Fig. 3(d) contain the negative peak value A and B for each natural frequency fn. 
According to these values; f1, f2, f3, f4, fn, A and B, the modal parameters can be determined, 
including modal damping ratio ζ, stiffness k, mass m, and damping coefficient c of the 
workpiece.  
 

  
 

Figure 3. Transfer function; Real-Imaginary parts. 
 
 
Following, the dynamic modal parameters are determined using some formulas. And 
these formulas were referred in ref. [51] as follows;    
The modal damping ratio ζ can be determined using; 

fn
ff

2
12     (1) 

The negative peak value A in the imaginary part of the FRF is then used to find the modal 
stiffness value k; 

1
2

k
A

    (2) 

Next, the modal mass m can be determined using modal stiffness and the natural 
frequency; 

2
n

km
f

    (3) 

The modal damping coefficients c are calculated using the modal damping ratio, stiffness, 
and mass values as follows; 

2c km     (4)  
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And the dynamics modal parameters for or thin-walled tubular workpieces are shown in 
following table and OCTAVE coding for generate EMA is shown in bellow of table. 
 
 

Table 1. Dynamic modal parameters of thin-turbular workpieces. 

Wall thickness 
t (mm) 

FRF 
Direction 

Natural frequency 
fn (Hz) 

Damping 
ratio ζ (%) 

Stiffness 
k (N/μm) 

3 
Gxx 55 6.6 0.25 

Gyy 53 1.1 0.266 

5 
Gxx 78 5.6 0.355 

Gyy 84 1.05 0.28 

 
 

 

OCTAVE Coding for Experimental modal analysis 

(EMA) 
 

%%%%%%%%%%%%% 

%This coding is generated for machine tool structure identification - 

%by using experimental modal analysis (EMA). 

%Under Prof. Keiji Yamada, Ph.D. in Eng 

%Agus Susanto 

clear all, clc 

close all; 

pkg load signal 

% Loading the raw data for Gxx 

h3xx = csvread('20150305-0001V_01.csv'); 

h3yy = csvread('20150305-0003H_01.csv'); 

Colom1xx = h3xx(:,1);     % time (ms) 

Colom2xx = h3xx(:,2);     % Impulse force (V) 

Colom3xx = h3xx(:,3);     % Acceleration response(V) 

% Loading the raw data for Gyy 

Colom1yy = h3yy(:,1);     % time (ms) 

Colom2yy = h3yy(:,2);     % Impulse force (V) 

Colom3yy = h3yy(:,3);     % Acceleration response(V) 

% Sensor sensitifity 

FSen = 2.3;                % Hammering force sensitifity = 10 mV/lbf = 2.3 mV/N 

AccSen = 1;                % Accelerometer sensitifity = 1.0 mV/ms^-2 

% Generate a time vector 



116 
 

N1xx = length(Colom1xx);     % Data length 

N2xx = length(Colom2xx);     % Data length 

N3xx = length(Colom3xx);     % Data length 

 

N1yy = length(Colom1yy);     % Data length 

N2yy = length(Colom2yy);     % Data length 

N3yy = length(Colom3yy);     % Data length 

 

t1 = 0:1/180:1/180*(N1xx-1); % Time vector (s) 

f1xx = (Colom2xx/FSen);      % Impulse force (N) 

a1xx = (Colom3xx/AccSen);    % Acceleration response (m/s^-2) 

f1yy = (Colom2yy/FSen);      % Impulse force (N) 

a1yy = (Colom3yy/AccSen);    % Acceleration response (m/s^-2) 

 

% Plot impulse force and acceleration response in time domain 

figure (1);                   

subplot(211);               

plot(t1, f1xx,'linewidth',2,'k');         % Impulse force 

hold on; 

plot(t1, f1yy,'linewidth',2,'r');         % Impulse force 

%axis([0.0008 0.0031,  -10, 200]); 

axis([0.3 0.61,  -3, 200]); 

set(gca,'FontSize', 15); 

ylabel('Impulse Force F (N)'); 

xlabel('Time t (s)'); 

hold on; 

subplot(212);                 

plot(t1, a1xx,'linewidth',2,'k');         % Accelerotion response 

hold on; 

plot(t1, a1yy,'linewidth',2,'r');         % Accelerotion response 

%axis([0.0008, 0.0031,  -1, 1]); 

axis([0.3, 2.5,  -1, 1]);    

set(gca,'FontSize', 15); 

ylabel('Acc. a (m/s^2)'); 

xlabel('Time t (s)'); 

% Calculate Fourier transform of impact force and acceleration 

fs = 180; 

Axx = [0: N2xx-1].*(fs/N2xx);  

Bxx = [0: N3xx-1].*(fs/N3xx);  

axx = ceil(N2xx/2);   

bxx = ceil(N3xx/2); 
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Ayy = [0: N2yy-1].*(fs/N2yy);  

Byy = [0: N3yy-1].*(fs/N3yy);  

ayy = ceil(N2yy/2);   

byy = ceil(N3yy/2); 

 

%FFT untuk raw signal 

fftf1xx = (fft(f1xx)); 

ffta1xx = (fft(a1xx)); 

 

fftf1yy = (fft(f1yy)); 

ffta1yy = (fft(a1yy)); 

 

% Plot the frequency spectrum for impact force and acceleration 

figure (2); 

subplot(211);     

plot(Axx(1:axx), abs(fftf1xx(1:axx)), 'linewidth',2,'k'); 

hold on; 

plot(Ayy(1:ayy), abs(fftf1yy(1:ayy)), 'linewidth',2,'r'); 

%axis([0,5000,  0,200]); 

axis([0,80,  0,200]); 

set(gca,'FontSize', 15); 

ylabel('Force F (N)'); xlabel('Frequency f (Hz)'); 

hold on; 

 

subplot(212); 

plot(Bxx(1:bxx), abs(ffta1xx(1:bxx)), 'linewidth',2, 'k'); 

hold on; 

plot(Byy(1:byy), abs(ffta1yy(1:byy)), 'linewidth',2, 'r'); 

%axis([0,2000,  0,100000]); 

axis([0,80,  0,12]); 

set(gca,'FontSize', 15); 

ylabel('Acc. a (m/s^2)'); xlabel('Frequency f (Hz)'); 

hold on; 

 

% Transfer function 

tfxx = ffta1xx(1:bxx)./fftf1xx(1:axx);  

tfyy = ffta1yy(1:byy)./fftf1yy(1:ayy); 

Omega = 50; 

TFxx = -tfxx/(Omega^2); 

TFyy = -tfyy/(Omega^2); 

 

figure (3); 
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subplot (311); 

plot(Axx(1:axx), abs(TFxx(1:bxx)), 'linewidth',3, 'k');  

hold on; 

plot(Ayy(1:ayy), abs(TFyy(1:byy)), 'linewidth',3, 'r');  

%axis([0,2000,  0,5e-6]); 

axis([0,80]); 

set(gca,'FontSize', 15); 

ylabel('Magnitude (m/N)'); xlabel('Frequency f (Hz)'); 

hold on; 

 

subplot (312); 

plot(Axx(1:axx), real(TFxx(1:axx)), 'linewidth',3, 'k'); 

hold on; 

plot(Ayy(1:ayy), real(TFyy(1:ayy)), 'linewidth',3, 'r'); 

%axis([0,2000,  -3.5e-6,3.5e-6]); 

axis([0,80]); 

set(gca,'FontSize', 15); 

ylabel('Real (m/N)'); xlabel('Frequency f (Hz)'); 

%title('Real part of TF'); 

hold on; 

 

subplot (313); 

plot(Axx(1:axx), imag(TFxx(1:axx)), 'linewidth',3, 'k'); 

hold on; 

plot(Ayy(1:ayy), imag(TFyy(1:ayy)), 'linewidth',3, 'r'); 

%axis([0,2000,  -5e-6,3e-6]); 

axis([0,80]); 

set(gca,'FontSize', 15); 

ylabel('Imaginary (m/N)'); xlabel('Frequency f (Hz)'); 

 

% Perfor EMA Gxx 

%(1) Calculate damping ratio (zetaxx) and (zetayy) 

f2axx = 56;         % Frequency in positif peak of real part (Hz) 

f1axx = 49.23;      % Frequency in negative peak of real part (Hz) 

fnaxx = 55;         % Natural frequency(Hz) 

zetaxx = (f2axx-f1axx)/(2*fnaxx)       % Damping ratio (zetaxx) 

%(2) Calculate stiffness (kxx) and (kyy) 

Aaxx = -0.000031796;   Aayy = -0.00002386;  % Negative value of imaginary part of FRF 

kxx = -1/(2*zetaxx*Aaxx)               % Stiffness (kxx) 

 

% Confirm dynamic modal parameter by EMA with hammering test 

w = (0:0.2:4000)'*2*pi;   % frequency, rad/s 
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% Dynamic modal parameter obtained by EMA 

fnaxx = 55;               % Frequency(Hz) 

wnaxx = fnaxx*2*pi;       % Frequency (rad/s) 

raxx = w/wnaxx;           % Frequency ratio 

 

% Magnitude of FRF 

FRF_magn_xx = 1/kxx*sqrt(1./((1-raxx.^2).^2 + (2*zetaxx*raxx).^2));             % m/N 

% Real part of FRF 

FRF_real_xx = 1/kxx*(1-raxx.^2)./((1-raxx.^2).^2 + (2*zetaxx*raxx).^2);         % m/N 

% Imaginary part of FRF 

FRF_imag_xx = 1/kxx*(-2*zetaxx*raxx)./((1-raxx.^2).^2 + (2*zetaxx*raxx).^2);    % m/N 

 

figure (4); 

subplot (311); 

plot(Axx(1:axx), abs(TFxx(1:bxx)),'k', 'linewidth',3); 

hold on; 

plot(w/2/pi, FRF_magn_xx, 'b','linewidth',3); 

hold on; 

axis([0,130,  0,3.5e-5]); 

set(gca,'FontSize', 15); 

ylabel('Magnitude (m/N)'); xlabel('Frequency f (Hz)'); 

 

subplot (312); 

plot(Axx(1:axx), real(TFxx(1:axx)), 'k','linewidth',3); 

hold on; 

plot(w/2/pi, FRF_real_xx-0.5e-5, 'b','linewidth',3); 

axis([0,130,  -3e-5,2e-5]); 

set(gca,'FontSize', 15); 

ylabel('Real (m/N)'); xlabel('Frequency f (Hz)'); 

 

subplot (313); 

plot(Axx(1:axx), imag(TFxx(1:axx)), 'k', 'linewidth',3); 

hold on; 

plot(w/2/pi, FRF_imag_xx, 'b','linewidth',3); 

axis([0,130,  -3.5e-5,3e-6]); 

set(gca,'FontSize', 15); 

ylabel('Receptance'); 

xlabel('Frequency, f, (Hz)'); 

 

% Perfor EMA Gyy 

%(1) Calculate damping ratio (zetaxx) and (zetayy) 

f2ayy = 54;        % Frequency in positif peak of real part (Hz)  



120 
 

f1ayy = 50.5;      % Frequency in negative peak of real part (Hz) 

fnayy = 53;        % Natural frequency(Hz) 

zetayy = (f2ayy-f1ayy)/(2*fnayy)       % Damping ratio (zetayy) 

%(2) Calculate stiffness (kxx) and (kyy) 

Aayy = -0.00002386;                    % Negative value of imaginary part of FRF 

kyy = -1/(2*zetayy*Aayy)               % Stiffness (kyy) 

 

% Confirm dynamic modal parameter by EMA with hammering test 

w = (0:0.2:4000)'*2*pi;   % frequency, rad/s 

% Dynamic modal parameter obtained by EMA 

fnayy = 55;               % Frequency(Hz) 

wnayy = fnayy*2*pi;       % Frequency (rad/s) 

rayy = w/wnayy;           % Frequency ratio 

% Magnitude of FRF 

FRF_magn_yy = 1/kyy*sqrt(1./((1-rayy.^2).^2 + (2*zetayy*rayy).^2));             % m/N 

% Real part of FRF 

FRF_real_yy = 1/kyy*(1-rayy.^2)./((1-rayy.^2).^2 + (2*zetayy*rayy).^2);         % m/N 

% Imaginary part of FRF 

FRF_imag_yy = 1/kyy*(-2*zetayy*rayy)./((1-rayy.^2).^2 + (2*zetayy*rayy).^2);    % m/N 

 

figure (5); 

subplot (311); 

plot(Ayy(1:ayy), abs(TFyy(1:byy)),'r', 'linewidth',3); 

hold on; 

plot(w/2/pi, FRF_magn_yy, 'b','linewidth',3); 

hold on; 

axis([0,130,  0,3.5e-5]); 

set(gca,'FontSize', 15); 

ylabel('Magnitude (m/N)'); xlabel('Frequency f (Hz)'); 

 

subplot (312); 

plot(Ayy(1:ayy), real(TFyy(1:ayy)), 'r','linewidth',3); 

hold on; 

plot(w/2/pi, FRF_real_yy-0.3e-5, 'b','linewidth',3); 

axis([0,130,  -3e-5,2e-5]); 

set(gca,'FontSize', 15); 

ylabel('Real (m/N)'); xlabel('Frequency f (Hz)'); 

 

subplot (313); 

plot(Ayy(1:ayy), imag(TFyy(1:ayy)), 'r', 'linewidth',3); 

hold on; 

plot(w/2/pi, FRF_imag_yy, 'b','linewidth',3);  
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axis([0,130,  -3.5e-5,3e-6]); 

set(gca,'FontSize', 15); 

ylabel('Receptance'); 

xlabel('Frequency f (Hz)'); 

 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


