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Abstract

The new state of matter, called quark-gluon plasma (QGP), created by the high-energy
heavy-ion collision has been studied for more than 40 years. Partons originating from initial
hard scatterings lose their energy in the hot and dense QCD medium, which results in sup-
pression of hadron production at high transverse momentum (pr), compared to pp collisions
at the same center-of-mass energy /snn. Light flavor particles are excellent probes to study
the suppression in a wide pr range with high precision. Especially, neutral mesons such
as 7 and 7 mesons that decay into two photons can be reconstructed and identified by a
fine-segmented electro-magnetic calorimeter in a wide pr range.

In this thesis, the suppression of 7° and 1 mesons in Pb-Pb collisions at the highest energy
V/SnN = 5.02 TeV is reported. By increasing the collision energy, pr spectra of 7 meson be-
come harder than that at \/syn = 2.76 TeV in both pp and Pb-Pb collisions. Nevertheless,
the suppression of 7 meson in Pb-Pb collisions compared to pp collisions is the same level,
which is by a factor of up to 8. This indicates the larger energy-loss at the higher collision
energy. Comparing light and heavy flavor hadrons, namely 7° and D mesons, the suppression
of D mesons at low pr is weaker than that of 7% meson. This is interpreted as the smaller
energy-loss for charm quarks than for up, down quarks. The suppression pattern of 17 meson
seems to be similar to K'® meson consisting of a strange quark, though uncertainties for the
7 meson measurement is large.

Direct photons that are defined as photons not originating from hadron decays are also dis-
cussed in this thesis. Direct photons are unique probes to study the space-time evolution of
the QGP, since they are not involved in strong interaction and can carry information when
they are produced. When focusing on direct photons, 7 and 1 mesons contribute as huge
backgrounds. To subtract decay photon yields, the cocktail simulation where pr spectra of
neutral mesons are inputs has been performed. Direct photon spectra or upper limits at
the 90% of confidence level have been extracted. Finally, Raa of direct photons has been
determined and is consistent with unity at high pr which justifies the measurement. On the
other hand, the excess beyond the pQCD calculation is observed at low pr by a factor of up
to 4 in central Pb—PDb collisions. This indicates thermal photon emissions from the hot and
dense QCD medium. The obtained effective temperature Teg is 345 + 222(total unc.) MeV
in Pb-Pb collisions at \/syx = 5.02 TeV for centrality 0-10%. This is the first measurement
and setting upper limits on direct photons in pp and Pb-Pb collisions at /sy = 5.02 TeV.
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1 INTRODUCTION

1 Introduction

Our main goal in high-energy heavy-ion collisions is to understand properties, such as energy den-
sity, temperature, transport coefficient, order of the phase transition e.t.c., of the quark-gluon
plasma (QGP), which is the state of deconfined quarks and gluons from hadrons. These re-
search for the QGP will provide phenomenological knowledge of fundamental Quantum Chromo-
Dynamics (QCD).

1.1 Quantum Chromo-Dynamics (QCD)

The Quantum Chromo-Dynamics is a fundamental non-Abelian SU(3) gauge theory to describe
strong interaction. The strong interaction is mediated by gluons between elementary particles
which have color charge (red, blue and green). As gluon also has color, self-interaction among
gluons can be induced. On the other hand, in Quantum Electro-Dynamics (QED), photon is
neutral gauge boson and mediates electric charge with coupling constant aqep = 1/137. Hence,
photons do not interact themselves. This is a main difference between QCD and QED. One
of the most important point of QCD is that the strong interaction among quarks and gluons
becomes weaker at high energy (i.e. large momentum transfer @?). This behavior is called
“asymptotic freedom”. The strong coupling constant c at large Q? can be approximated as :

127
(@) (G N (@ W) M

where Ny is the number of quark flavors (Ny < 6), Aqcp is called QCD scale, which is typically
200 MeV. Therefore, as(Q?) becomes smaller and perturbative calculation is applicable at large
Q?. The confinement can be also expressed by a following phenomenological potential:
4 o
V(r)=—5— +kr 2
(1) = —55% 4 kr, 2)
where 1/r term is dominant at small distance which is similar to Coulomb potential and kr
is related to the confinement of quarks in hadrons. When one wants to separate two quarks,
the potential energy kr increases and tends to produce a new ¢g pair. This results in two
shorter strings. Finally, extracting single quark is not possible and new colorless hadrons will
be produced.

1.2 Quark-gluon plasma (QGP)

The confined state of quarks and gluons in hadrons can be broken at the extremely high temper-
ature or high density of many body systems of hadrons. This leads a transition from hadronic
phase to the deconfined state of partons. The deconfined state of partons is called “quark-gluon
plasma (QGP)” proposed by Bjorken [1]. Numerical calculations based on the lattice QCD are
performed. Step-like behavior of /7% at T = T is clearly seen in Figure 1. This is interpreted
as the transition from the hadronic phase to the QGP at the critical temperature T = 150 ~ 200
MeV due to increase of degrees of freedom related to deconfined quarks and gluons from hadrons.
In addition, recent lattice QCD calculations also predict crossover transition [2, 3].

Figure 2 shows a schematic phase diagram of QCD matter. The horizontal axis represents the
net baryon density normalized to the normal nucleus, the vertical axis indicates the tempera-
ture. It is thought that the QGP has existed in the early universe at a few micro seconds after
Big-Bang.
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Figure 1: The energy density ¢ divided by 4th power of the temperature 7% predicted by lattice
QCD [4].
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Figure 2: A schematic phase diagram of QCD matter [5].
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1.3 High-energy heavy-ion collisions

High-energy heavy-ion collisions provide an unique opportunity to study strongly interacting
matter, namely the QGP. In high-energy heavy-ion collisions, two Lorentz-contracted nuclei
interact at the geometrical overlap region (Figure 3). A distance between the center of each
nuclei is called “impact parameter” b. Nucleons participating the interaction are “participants”
and the others are “spectators”. The impact parameter b is not directly measured, but can be
simulated by the Glauber model calculation [6]. Then it provides the number of participant
Npart and the number of binary nucleon-nucleon collisions Neop. Npart is related to the volume
of the interaction region. The number of particles produced at the later stage of collisions is
roughly scaled by Npart. On the other hand, the number of particles produced by initial hard
scatterings is basically scaled by Ncoi.

participants

before collision after collision

Figure 3: A schematic view of collision geometry in high-energy heavy-ion collisions [7].

As shown by Figure 4, the space-time evolution of the QCD matter created by heavy-ion colli-
sions pass through various phases.

1. Pre-equilibrium (0 < ¢ < 79)
Two accelerated nuclei collide with each other at t = 0 and high energy is released in a tiny
volume. Multiple parton scatterings lead local equilibrium of the hot and dense matter.

2. QGP phase (19 <t < 71¢)
The QGP phase is formed at t = 7p, if energy density is higher than a value necessary for
the transition (¢ > 1 GeV/fm3). Its evolution can be described by hydrodynamics and the
temperature becomes cooler.

3. Mixed phase between QGP and hadron gas (7¢ < t < 7y1)
The mixed phase consisting of quarks, gluons and hadrons can exist only if the phase
transition is at first order. When the temperature reaches the transition temperature T,
hadronization will start. Eventually, inelastic scattering of hadrons stops. This tempera-
ture is called “chemical freeze-out temperature”.

4. Hadron gas (g < t < 7p)
Hadronization processes finishes here, but still keep interaction as momentum exchange by
elastic scatterings. At the end, elastic scattering ceases, too. This temperature is called
“kinetic freeze-out temperature”. After the kinetic freeze-out, hadrons fly to our detectors.



473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

1 INTRODUCTION

"

Equilibrated quark-gluon plasma

Pre-equilibrium

Figure 4: A schematic view of space-time evolution of the matter in high-energy heavy-ion
collisions

1.4 Suppression of high pr hadrons

Partons originating from initial hard scatterings lose their energy in the hot and dense medium,
which results in modification of pt spectra of hadrons. Light flavor hadrons are excellent probes
to study the hadron suppression with high precision, because their statistics is large. It has
been reported that the suppression of hadron yields compared to those in pp collisions scaled
by Neon, quantified by the nuclear modification factor Raa (Eq. 4), is up to by a factor of 5
in Au-Au collisions at /sy = 0.2 TeV at RHIC [8, 9]. It is by a factor of up to 8 in Pb-Pb
collisions at /syn = 2.76 TeV in LHC Runl (2009-2013) [10, 11, 12]. At the latest during
LHC Run2 (2015-2018), the LHC provided Pb-Pb collisions at \/snn = 5.02 TeV, which is
the highest collision energy in the world. In this thesis, neutral meson (7% and 7 mesons) are
focused on. Its advantage is that 7° and 7 mesons can be reconstructed via their 2y decays
with a fine-segmented electro-magnetic calorimeter in a wide transverse momentum (pr) range.
In addition, photons decayed from neutral mesons are huge backgrounds, which have to be
subtracted from inclusive photons, for the direct photons measurement described in section 1.5
later.
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1.4.1 Particle production in hadron colliders at high pr

. . . . -24

First of all, the particle production at high pp 10 T o 1500 oy 3
was measured by CERN-ISR in pp collisions - ZUM i G:V -
. . —-26F =
at. different energies (23, 45 a.nd 62 GeV) [14] HE e oBs 53 Gev 3
Figure 5 shows the production cross section & E N 27 Gev
of charged hadrons in pp collisions at 23, 53, o 0—285_ E
546 and pp collisions at /s = 1800 GeV. The :g E
invariant differential cross section of charged e 305 o E
- LYY A»o =
hadrons is described by an exponential func- a I 3 L
tion exp (—a - pr) at low pr region, while a — 3 s Che e
. . . Lo -32F iR
power-law behavior p;." is seen at high pr. T 10 e i =
Moreover, the power-law parameter n is lower .. 1 é
. . . . . . _34 E 5
at higher collision energl.es, resulting in harder 10 - Ossnen) -
slope of pr spectra at high pr. i - =
-36 :E 1 It L = 1 é

1 0 2 8 10

e
P; (GeV/c)

Figure 5: The production cross section of
charged hadrons in pp collisions [13].

The hard scattering occurs in the initial stage of pp and heavy-ion collisions and can be calcu-
lated by perturbative QCD (pQCD) based on factorization theorem. Figure 6 shows a schematic
diagram of parton interaction a + b — ¢+ x in hadronic collisions. The production cross section
is defined as :

do.pp—>th = dxqdxpdz,. - fa(xaa HF) : fa(xav ,UF) X do’a+b—>c+ax(as(ﬂR)) X Dc(zca ,U,F), (3)

where f, ) (Za(v), for) is called parton distribution function (PDF) which is probability to find a
parton a(b) at its momentum fraction at x,() in a proton A(B).

There, 74, = momentum of parton a(b)/momentum of proton A(B). dogipscra(as(pr)) is a
production cross section of parton ¢ from scattering between parton a and b. Dc(z¢, pur) is
fragmentation function (FF) which describes probability to hadronize into a hadron he from a
parton ¢ at momentum fraction z., where z, = momentum of h¢c/momentum of parton c. pp:
factorization scale and pp: re-normalization scale are dummy parameters introduced to avoid
divergence in theoretical calculations. Usually, they are fixed to transverse momentum of the
particle (up = pr = pr) in calculations.

1.4.2 Nuclear modification factor Raa

One of ideas to observe medium-induced effects is to compare particle yields between A—A
collision and pp collisions. Due to the large number of partons in A—A collisions, particle yields
in A—A collisions is normalized by the number of binary nucleon-nucleon collisions Ncoy. If there
are medium-induced effects in A—A collisions, particle yields in A—A collisions may be different
from No scaling. The medium-induced effects to high pr particles is quantified by a ratio of
particle yields in A—A collisions to that in pp collisions at the same center-of-mass energy ,/snn,
called Raa:
Rax — d*N/dprdy|aa _ d*N/dprdy|aa
Taa x d?a/dprdylpp  Neon x d2N/dprdylpp’

(4)

where d®N/dprdy|aa is differential particle yields in A—A collisions, d°c /dprdy|yp is differential
production cross section in pp collisions and T is called nuclear overlap function which is
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parton a: fo(zq, pr) parton d

parton ¢: D.(zc, iF) parton b: fy(x, pur)

Z

Figure 6: A schematic diagram a + b — ¢ + d, where hadron X represents anything else.

connected to the average number of inelastic collisions by Taa = Neon /U%}EEL. In case of no

medium-induced effects, R44 = 1 at high pp. Hence, Raa is an excellent probe to see medium-
induced effects. As of 2018, it has been known that Raa < 1 for hadrons, Raa = 1 for
electro-weak bosons (7, W*/Z) respectively.

1.4.3 Cold nuclear matter effects

In order to understand hadron suppression in A—A compared to pp (Raa < 1), it is important
to test particle productions in p—A collisions where the hot and dense QCD medium is not likely
created. Possible effects to modify particle yields are multiple soft scatterings or different parton
distribution function in a nucleus, which are generally called “cold nuclear matter effects”.

Cronin effect It was observed that the produc- S o ]
tion cross section in p—A collisions is not scaled by L2 (a) vy (b) . .
mass number A of the target nucleus [15] at ISR in . I.O:— ! g ! bt Pt J
1970, compared to that in pp collisions. They got - ) 5,? ;
these results by incident proton beam at 200, 300 83 ™o LA
and 400 GeV to fixed Be, Ti and W targets. They ; ’ ‘ ‘
found production cross section in p—A collisions as ' 2; (c) } ; (d) 4 };
a function of pr and A can be expressed by : a L s 1 ! N : v )
Ao o i ¢! ! IS i _
ET}ﬁ(pT, A) = Edipg(pTv 1) X Aa(pT)v (5) .8;’ K f, K™ :
where power o > 1 for pp > 2 GeV as shown by L4 (o) i (f) . v
Figure. 7. Thus, an enhancement of particle yields ’2:_ ¢ 1 . T;
in p—A collisions compared to the expectation from a | . ! . § * ]
pp collisions was observed. This effect is refereed L0 44 4+ |
as “Cronin effect” and interpreted as multiple soft Fa A o
scatterings of incoming nucleons, which cause an 8- . J ° | 1 P
additional pr broadening of particles. o 2 4 & 0 2 4 6
p.(Gev/c) p, (Gev/c)

Figure 7: Power parameter « vs. pr [15].
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Nuclear shadowing Another initial effect is dif- &
ferent parton distribution function in a nucleus. &

European Muon Collaboration (EMC) firstly re- Be/C
ported that nuclear structure function in a nucleus 0.9 - i
is different from that in a free proton by deep in- OSLACE139 [22]

A Photoabs. ot 60 GeV [Z3.24j; ]

elastic scattering (DIS) with p—Fe(d) collisions [17]. il
This results in different parton distribution func-
tion in a nucleus from one in a free proton. Fig-
ure 8 shows the ratio of nuclear structure func-
tion in a heavier ion to that in a Carbon ion mea-
sured by New Muon Collaboration (NMC) [16].
F{JFS < 1 at o < 0.07 refereed as “shadowing”, i
FPJFS > 1 at 0.07 < x < 0.3 refereed as “anti- PP e e
shadowing” and there is a dip at 0.3 < z called | [LLAER Leds o o+b%;l ) Bl L PTE I
“EMC effect”. The relevant x of a parton can be ! ] ﬁi
estimated from transverse momentum pr of a lead- 0.9 - + + % il

ing hadron which carries the largest momentum
fraction of the original scattered parton by means 0.8 % ﬂ 1
Of : Il vl n | Vil

2 0.01 0.1 1 0.1 1
o 2T (6) X

SNN
At LHC energles JANN = 2.76 ~ 5.5 TeV and Figure 8: The ratio of nuclear structure
on. in clei t e in, Car-

leading p ~ O(100) GeV, hence z < 0.05 where the sﬂa?‘o ing e 60l the Thost relévant.

1.4.4 Parton energy-loss

One possible explanation for Raa < 1 is parton energy-loss in interaction with the hot and
dense QCD medium. By traversing the QCD medium, the parton loses its energy by elastic
scattering or gluon radiation. Initially, only radiative energy-loss in static QCD medium (non-
moving constituents) was assumed in theoretical models such as GLV [18, 19], DGLV [20],
BDMPS|21, 22| till ~ 2008. The radiative energy is similar to Bremsstrahlung of an electron
in an electro-magnetic field. However, these calculation gave disagreement with experimental
results. Then, one of theoretical models have included radiative energy-loss in dynamical QCD
medium (moving constituents) [23, 24]. Currently, it is considered that radiative and elastic
energy-losses are comparable in dynamical QCD medium [25, 26]. Theoretical models shown in
this thesis are described below.

DREENA-C [25] and DREENA-B [26] Descriptions are taken from [25, 26]. DREENA
stands for Dynamical Radiative and Elastic ENergy loss Approach and C denotes the constant-
temperature QCD medium and B stands for Bjorken expansion of the QCD medium. They aim
to calculate the nuclear modification factor Raa and the azimuthal anisotropy vy simultaneously
in their framework. First, let T" be an averaged temperature of the medium, L be an averaged
path-length traversed by particles and AFE/E be fractional energy-loss. In a simple case for the
purpose of these estimations, it is assumed that

AE/E ~nTL, (7)
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where 7 is a proportionality factor. The nuclear modification Raa is commonly estimated [27]

as . 9
1AEN\N"
Raa =~ <1 — ) , (8)

where n is the steepness of the initial momentum distribution function. Here, different path-
length between in-plain (L;, = L — AL) and out-of-plain (Li, = L — AL) is introduced. For the
constant-temperature QCD medium, the nuclear modification factor Raa can be expressed as :

1 .
Raa ~ §(R;;“A + RW) ~ 1 —¢TL, (9)

The azimuthal anisotropy ve can be :

i ;A — R{y _§TAL
2R, + R 2

v2 (10)

For the evolving system, the average temperature along in-plane is higher than that along out-
of-plane (Ti, = T+ AT and Toy = T — AT). In this case,

Raa = 1-¢TL, (11)
and
_ETAL — ¢ATL
- 2

Therefore, DREENA-B and -C predict the similar Raa, while the smaller v is predicted by
DREENA-B. Only Rap is compared to experimental data in this thesis.

(%) (12)

1.5 Direct photons production

The direct photon is an unique tool to study space-time evolution of the hot and dense matter.
Direct photons are defined as photons not originating from hadron decays, for example 70 — 7,
1 — v and so on. Because they are not involved in the strong interaction, they carry undistorted
information at the time of their productions. Moreover, direct photons are divided into to two
sources. One is “thermal photon” originating from the thermal radiation from the hot and dense
medium. An averaged temperature T.g of locally equilibrated medium over the all space-time
evolution can be measured by the pr spectrum of thermal photons, assuming the Boltzmann
distribution A xexp(—p1/Test). The previous measurement by PHENIX at RHIC reported Teg =
221 4 19(stat.) &= 19(syst.) MeV [28, 29] via virtual photons and Teg = 239 £ 25(stat.) & 7(syst.)
MeV [30] via real photons in 0-20 % central Au-Au collisions at /syy = 0.2 TeV. In ALICE,
Teg = 294+12(stat.)+47(syst.) MeV [31] in 0-20 % central Pb—Pb collisions at /sxy = 2.76 TeV.
The other one is “prompt photon” produced by initial hard scatterings between partons. The
prompt photon is a powerful probe to test pQCD calculations. Thermal photons are dominant
at low pr (1 < pp < 3) regime, while prompt photons exhibit at high pr. Figure 9 illustrates
Feynman diagrams for direct photon productions. Thermal photons are also emitted from a hot
hadron gas (HHG), which is the last stage of collisions. Main constituents of the hot hadron gas
are pions and p mesons. They produce photon as 7+p — 7, 7t7~ — py and p — 77 7.
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(a) Compton scattering of quark—gluon (b) Annihilation of quark-anti-quark

Figure 9: Feynman diagrams for direct photon productions

1.5.1 Pioneers of the direct photon measurement

WARS80

The first attempt to measure thermal photons was performed by the WA80 (West Area) col-
laboration [32, 33]. WASO is a fixed-target experiment at the SPS in CERN colliding 0 and
328 beam at 2004 GeV with Au. They reported upper limits on the direct photon yield at the
90% confidence level in central 32S—Au collisions by employing a statistical subtraction method,
as shown by Figure 10b. It is a technique to subtract decay photon yields simulated by known
sources (e.g. ™ — vy, 7 — v e.t.c.) from inclusive photon yields. The dotted curve is the
calculated thermal photon production from a QGP by reference [34]. The solid curve is the ex-
pected thermal photon production from a hot hadron gas by reference [34]. The dashed curve is
also thermal emissions from a hot hadron gas taken from reference [35]. This was the important
step, as hadron gas scenarios were excluded by their upper limits.

WA98

WAO98 [36, 37] is also a fixed-target experiment upgraded from WAS80. The improvement was
a lead glass calorimeter which has excellent energy resolution. The WAO98 collaboration has
measured direct photon yields in central 1584 GeV Pb-Pb collisions for the first time. They
used the same statistical subtraction method explained above. Figure 11a shows excess of direct
photons beyond decay photons from known sources. The upper (lower) panel is for peripheral
(central) collisions. If the ratio is greater than unity beyond statistical (bar at each point)
and systematic (shaded band around unity) uncertainties, there are direct photons. Figure 11b
shows invariant yields of direct photons in central 1584 GeV Pb-Pb collisions. Clear direct
photon signals were observed at py > 1.5 GeVe. Downward arrows indicate upper limits at 90%
confidence level.

1.5.2 Direct photon puzzle

The PHENIX collaboration at RHIC reported not only the invariant yield [30], but also the
azimuthal anisotropy ve = (cos(2Ay)) of direct photons [38] at low p as shown by Figure 12.
It was surprisingly a big discovery of the large vy of direct photons. The observed large v
together with the large direct photon yield contradicts our interpretations. The large direct
photon yield are produced at the very early stage, when the temperature of the medium is the
highest where the collective flow of the medium is small. Contrary to this, the large vy suggests
that photons are produced at the very late stage of the collision, when the collective flow of the
system is fully developed where the temperature and the corresponding thermal emission rate is
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ss0 small. Hence, there is difficultly in theoretical models to describe the large yield and the large

es0 o for direct photons at the same time. This is called “direct photon puzzle”, which is not solved

es1  yet as of now. On the other hand, due to the large uncertainty, there is not direct photon puzzle
at the LHC energy (Figure 13).
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Figure 12: Direct photon yields and flow in 20-40 % Au-Au collisions at \/syny = 0.2 TeV with
PHENIX [30, 38].
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1 INTRODUCTION

1.6 Organization of this thesis

Neutral mesons (7%, 1) and direct photon 44 production in pp and Pb-Pb collisions at V5NN
= 5.02 TeV in ALICE with the PHOS detector are described. This thesis is organized by
following. The LHC and ALICE detectors are introduced in Chapter 2. Data sets and its
quality assurance for this thesis are written in Chapter 3. Chapter 4 introduces analysis method
for neutral mesons measurements. Systematic uncertainties of neutral mesons measurements are
summarized in Chapter 5. Results of neutral mesons measurements are discussed in Chapter 6.
After that, analysis method for direct photons are given in Chapter 7. Systematic uncertainties
of inclusive and direct photons measurements are summarized in Chapter 8. Results of photons
measurements are discussed in Chapter 9. Finally, the conclusion of this thesis is in Chapter 10.
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2 THE LHC AND THE ALICE APPARATUS

2 The LHC and the ALICE apparatus

This section is aimed at basic informations about the LHC accelerator at CERN and the ALICE
detectors which are relevant to this thesis.

2.1 The Large Hadron Collider (LHC)

Descriptions about the LHC are taken from these references [40, 41, 42]. The Large Hadron
Collider (LHC) is located at CERN across the border between France and Switzerland. The
LHC underground tunnel was previously hosted by the Large Electron Positron (LEP) collider.
It is the most powerful particle accelerator in the world, whose circumference length is 27 km.
The LHC can collide protons at a center-of-mass energy up to 14 TeV and Pb ions up to 5.5
TeV per nucleon.

First, protons are produced from Hydrgen gas by stripping electrons in an electic field. They are
accelerated through LINear ACcelerator 2 (LINAC2) up to 50 MeV and injected to a booster
for Proton Synchrotoron (PS). At the booster for PS, they are accelerated up to 1.4 GeV. PS
accelerates proton beams up to 25 GeV, then sends them to Super Proton Synchrotron (SPS)
where they are futher accelerated up to 450 GeV. Finally, proton beams are delivered to the
LHC ring and accelerated up to 6500. The designed maximum energy is 7000 GeV per beam,
but it is operated at 6500 GeV during Run2 which means center-of-mass energy is at 13 TeV.
Lead (Pb) ions are produced by heating slid 2°®Pb to make a vapour [43]. Ion beams are
accelerated up to 4.2 MeV per nucleon by LINear ACcelerator 3 (LINAC3). Low Energy Ion
Ring (LIER) takes them from LINAC3 and accelerates to 72 MeV/n. The rest of path is the
same as proton beams, but beam energy is 5.9 GeV/n at the PS,; 177 GeV/n at the SPS, 2510
GeV/n at the LHC.

CERN's Accelerator Complex

M0
HiRadMat
011 TT60
I
AD

TT2 1999 (162 m)

47«‘44‘7
B ion P neutrons P P (antiproton) P electron - fantiproton conversion
LHC Large Hadron Collider  SPS Super Proton Synchrotron  PS  Proton Synchrotron
AD Antiproton Decelerator  CTF3 Clic Test Facility ~AWAKE Advanced WAKefield Experiment  ISOLDE lsotope Separator Online DEvice
LEIR Low Energy lon Ring LINAC LINear ACcelerator n-ToF Neutrons Time Of Flight ~HiRadMat High-Radiation to Materials CERN 2013

Figure 14: CERN accelerator complex [44].
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2 THE LHC AND THE ALICE APPARATUS

2.2 ALICE apparatus

Detectors descriptions are taken from these references [45, 46].

2.2.1 Overview of ALICE apparatus

THE ALICE DETECTOR BT/ /A a. ITS SPD (Pixel)
=3 b. ITS SDD (Drift)
pemasiaw. v avh mm & aVAN ) : ! g ITS SSD (Strip)

. VO and TO
. FMD

i®

ITS
FMD, TO, VO
TPC

TRD

TOF

HMPID
EMCal

DCal

. PHOS, CPV
10. L3 Magnet
11. Absorber

12. Muon Tracker
13. Muon Wall
14, Muon Trigger

CoNoOAWNE

15. Dipole Magnet
16, PMD

17. AD

18.zZDC

19. ACORDE

Figure 15: Overview of ALICE detectors in Run2

From the inner side of the central barrel, Inner Tracking System (ITS) which is six layers of
silicon tracker and Time Projection Chamber (TPC) which also provides particle identification
(PID) by ionization energy loss dE/dx are installed. They are central tracking systems to
measure momenta of charged particles under a solenoid magnet B = 0.5 T in ALICE. Two type
of electro-magnetic calorimeters (Photon Spectrometer (PHOS) and EMCal/DCal) are located
from 4.6/4.4 m from a interaction point to measure photon and electron energy and its hit
position. In addition to them, there are several PID detectors such as Time of Flight (TOF), High
Momentum Particle Identification Detector (HMPID), Transition Radiation Detector (TRD) at
mid-rapidity. Trigger detectors (VZERO, T0) are installed to study event property (e.g. event
plane and multiplicity) at forward and backward rapidity. Zero Degree Calorimeter (ZDC) at
forward and backward rapidity is used to reject events induced by beam-gas interactions. Muon
tracker and trigger are installed at only forward rapidity under a dipole magnet B = 0.7 T.
Hereafter, VOA(C) denotes VZERO detector at A(C)-side, same for TO. In ALICE, A-side is
for n > 0 and C-side is for n < 0.

2.2.2 Basic kinematic variables in ALICE coordinate

The coordinate system in ALICE for emitted particles from the interaction point (IP) is right-
handed Cartesian coordinate system (z,y,z). The point (0,0,0) is the center of ALICE detectors.
The beam axis is in parallel to the z-axis and the z-y plane is transverse to the beam(z-) axis.
The positive direction of z-axis is defined as the direction from the IP to the center of the LHC
ring. The positive direction of y-axis is upward. More often, a spherical coordinate system
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2 THE LHC AND THE ALICE APPARATUS

(r,0,p) is used. The azimuthal angle around the beam(z-) axis ¢ = arctan (y/z), the polar angle

from beam(z-) axis 6 = arctan (\/z2 + y?/z), and the distance from the IP r = /22 + 32 + 22.

The azimuthal angle ¢ in the transverse plane starts from ¢ = 0 pointing to « = 0, the center
of the LHC ring. Rapidity y of a particle is defined as :

L E—p,)’
where E is energy of the particle, p, is momentum along the z-axis. Pseudo-rapidity 7, the
relativistic limit of rapidity vy, is also used to point the particle position.

)

Furthermore, to be Lorentz-invariant in high-energy particle physics, transverse momentum pp
which is momentum along the transverse plane is defined as :

pr = psind = /p2 + p2

Especially, pr is important variable, as it is given by collisions.
The distance in 7 — ¢ plane AR is used for jet reconstruction and particle isolation as :

AR = \/An? + Ap?

An =mn; —n;
Ay = p; — @5,

where 7;(;y, ¢;(j) represent the position of particle i(j).
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79 2.2.3 Trigger detectors

720 VZERO The VZERO detector [47] consisting of 32 x 2 plastic scintillators covers —3.7 <
1 n < —1.7VOC and 2.8 < n < 5.1 VOA. This detector provides minimum-bias (MB) triggers
> VOOR/VOAND. VOOR (INT5) requires at least one hit on either VOA or VOC. VOAND (INT'7)
requires at least one hit on each VOA and VOC. The VZERO detector also measures event

multiplicity and event plane in Pb—Pb collisions.

7

N

7

N

7

N

3

VZERO-A
VZERO-C
o
o,
1
2
\% 3
Figure 16: Sketches of VOA and VOC arrays [48].
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Figure 17: Position of VZERO (A-C) arrays and ITS around the beam pipe [48].

724
725 It also rejects beam-gas interactions by collision timing. As shown by Figure.19, three event

s classes are observed: collisions at (8.3 ns,14.3 ns), beam-gas interactions at (-14.3 ns,-8.3 ns)
7 and (14.3 ns,8.3 ns).
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N
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Figure 19: Correlation between the sum and the difference of hit timing of VOA and VOC [46].
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2 THE LHC AND THE ALICE APPARATUS

TO The TO detector [47], quartz Cherenkov detector, measures collision timing and the position
of the interaction along the beam line precisely. It also delivers luminosity at IP2 to LHC
operators. The acceptance of the T0 detector is —3.3 < n < —3.0 for TOC and 4.6 < n < 4.9 for

TOA.
H TO-A

Figure 20: Positions of TOA and T0C [49].

2.2.4 Central Tracking System

Inner Tracking System (ITS) The ITS
detector [51] is inner-most silicon tracker to
reconstruct a primary vertex of a collision and
momenta of charged particles. The coverage
of the ITS is |n| < 0.9 and 27 in azimuth. It
consists of three different types that are Sil-
icon Pixel Detector (SPD), Silicon Strip De-
tector (SSD) and Silicon Drift Detector (SDD)
from inner to outer layer. Each of them has
two layers. SSD and SDD also provide ioniza-
tion energy loss dE/dx for PID at low trans-
verse momentum.

Time Projection Chamber (TPC) TPC [54]
is the main tracking detector which mea-
sures momenta of charged particles and ion-
ization energy loss dE/dx for PID in AL-
ICE. Advantages of TPC are great spatial res-
olution under high multiplicity environment
N ~ O(10%) produced by Pb-Pb collisions

CENTRAL HV

and strong PID performance. The coverage / il
is [n| < 0.9, 27 in azimuth and its radius is :
between 85 and 250 ¢cm around the beam axis.

INNER FIELD
CAGE

Figure 23: The layout of TPC [52, 53].
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Figure 22: dF/dx measured in ITS standalone as a function momentum of charged particle [46].
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Figure 24: dF/dx measured in TPC as a function momentum of charged particle [46].
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2 THE LHC AND THE ALICE APPARATUS

2.2.5 Electro-magnetic calorimeters

Photon Spectrometer (PHOS) PHOS [55, 45] is the main detector in this thesis. PHOS is
a homogeneous electro-magnetic calorimeter located from 4.6 m from the interaction point. It
consists of fine-segmented 12,544 PbWO, crystals readout by Avalanche Photo Diode (APD)s,
operated at -25 degrees Celcius. A Moliere radius of the PbWOQO, crystal is 2.2 cm which allows us
to distinguish two photons decayed from 7¥ at high pt with a small opening angle. A radiation
length X is 0.89 cm and a density is 8.29 g/cm? for the PbWO, crystal. Volume of one crystal
is 2.2 x 2.2 x 18 cm?®, which corresponds to 20 X,. The acceptance of the PHOS detector is
[n] < 0.12, 250° < ¢ < 320°, Ap = 20° for one module. The energy resolution as a function of
energy F in GeV is [56] :

%E (%) = \/<$)2 + (%)2 +(0.0112)*

The position resolution as a function of energy E in GeV is [55] :

0o s (mm) = \/ (%)2 40,442

Figure 25: Elements of the PHOS detector.
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2 THE LHC AND THE ALICE APPARATUS

PHOS is constructed as shown by Figure 25. The PbWOy4 crystal readout by the APD for
one element on top left, one strip unit has 8 x 2 elements on to right. One module consists of
64 x 56 = 3584 elements on bottom left. Finally, there are three and a half modules are installed
in ALICE. (A half module have been installed since 2015.) The PHOS detector provides Level-
0 and Level-1 triggers to select events containing high energy deposition in the area of 4 x 4
cells on PHOS. Energy thresholds of triggers are configurable and were set to 4 GeV (LO0) in
pp collisions at /s = 5.02 TeV (2017) and 8 GeV (L1 High), 4 GeV (L1 Midium) in Pb-Pb
collisions at /sy = 5.02 TeV (2015). The latency of the L0 and the L1 trigger is 1.2 and 7 us
respectively [57].

2.2.6 Other detectors

ALICE detectors that are not relevant to this thesis (ACORDE, AD, CPV, EMCal, FMD,
HMPID, MCH, MTR, PMD, TOF, TRD, ZDC) are explained in [45, 46].
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3 DATA SETS

3 Data sets

The detailed event selection, cluster selection on PHOS and quality of data are described in this
section.

3.1 Data sets in pp collisions at /s = 5.02 TeV

Minimum-bias events and PHOS triggered events have been analyzed in this these. The inte-
grated luminosity used in this analysis is 19 nb~! for Minimum-bias and 550 nb~! for PHOS L0
triggered events respectively.

| ALICE Performance 2017, pp Vs =5 TeV
— 2017-11-21 07:02:50

- Seen: 1.442 pb

" Diy, single u high-p_: 1.235 pb™/ 0.5 b’
_ Single n Iow-pT: 0.109 pb'1

—
(*)]

—
~

" PHOS: 0.718 pb
[ Double gap: 0.008 pb’1
— INT7: 0.0208 pb™

Integrated luminosity, pb™
o o -
O N
|||‘|\|‘|\|‘|||||||

=
~

<
N

0 12 Nov 19 Nov

Figure 26: The integrated luminosity in pp collisions at /s = 5.02 TeV taken in 2017.

Run lists
LHC17p
282343, 282342, 282341, 282340, 282314, 282313, 282312, 282309, 282307, 282306, 282305,
282304, 282303, 282302, 282247, 282230, 282229, 282227, 282224, 282206, 282189, 282147,
282146, 282127, 282126, 282125, 282123, 282122, 282120, 282119, 282118, 282099, 282098,
282078, 282051, 282050, 282031, 282030, 282025, 282021, 282016, 282008.
LHC17q
282441, 282440, 282439, 282437, 282399, 282398, 282393, 282392, 282391, 282367, 282366,
282365.
In LHC17q, MB events were recorded in only 282367, 282366, 282365.

Monte-Carlo simulation samples
LHC1713b PYTHIAS for LHC17p-q (~ 200 M events)
LHC17j3[a,b,c][1,2] single particle simulation (7%, 1, v) for LHC17pq (main efficiency for
correction in LHC17pq)
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3 DATA SETS

Event selection
physics selection (reject beam-gas interactions)
the number of charged track associated with the primary vertex > 0
pileup rejection by SPD
|Zytx| < 10 cm

Minimal cluster selection
Euster > 0.2 GeV (to extract photon signal as much as possible at low energy)
MO02 > 0.1 cm for only E > 1 GeV (to extract photon signal as much as possible at low

energy)
M20 > 0.1 cm for only E > 2 GeV (to extract photon signal as much as possible at low

energy)
M20 < 2.0 cm (to remove clusters whose size is too large)
|ITOF| < 12.5 ns in real data (to remove photons from other bunch crossings)

The total number of events after these event selection is about 975 M MB events and 1.0 M
PHOS triggered events. A cluster means “a group of cells”. Photons interact with PbWOQO,
crystals and generate electro-magnetic showers, depositing energy in a group of cells around the
impact point of each photon. This group of cells is defined as a cluster. The sum of amplitudes
measured in each cell in the cluster is proportional to the initial photon energy. The center of
gravity in cell coordinates weighted by the cell energy logarithmically defines the hit position.
Second moments (M 20, M02) of the cluster is used to discriminate electro-magnetic or hadronic
showers [58, 59].

3.1.1 Quality assessment of MB data

The minimum-bias (MB) trigger configuration was VOAND (INT7 in Figure.26) in this data
taking period. As a first check of PHOS data, an average cluster energy and an average number
of hits are plotted. The average values are stable in all runs. 7 peak parameters are plotted
run-by-run to verify that PHOS was stable in this period. As a result, M1,2,3 are all stable.
Especially, 7° peak could not be seen well on M4, because M4 has limited detector acceptance.
A peak position in M1,2,3 are consistent within statistical error bar. There are poor statistics
in some runs where 7° peak is not so clear. M4 was excluded from the beginning because a
systematic uncertainty of material budget is large in front of M4 due to TOF + TRD, which is
not suitable for the precise photon measurement.
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3.1.2 Quality assessment of PHOS triggered data

In addition to minimal event selection described above, at least one high energy hit on PHOS
is required for the PHOS trigger. Additional quality assessments were performed in case of
PHOS triggered data. PHOS L0 trigger decision is taken by each TRU by the sliding window
algorithm. If analogue sum of 2 x 2 FastORs (= 4 x 4 cells) is greater than the threshold,
PHOS LO trigger fires. On the other hand, PHOS L1 trigger decision is taken by STU. STU
stands for Summary Trigger Unit and it is new trigger device since Run2. STU summarizes all
TRU information and scan them by the same sliding window algorithm beyond TRU borders.
Thanks to STU, PHOS L1 trigger can detect high energy hits between borders of TRUs, while
LO can not. At first, one has to check distance between a fired TRU channel and cluster hit
positions in X and Z coordinate respectively. Since TRU stores cell indices at the bottom-left of
fired channels, a typical distance is expected to be [-3,0] in X and [-3,0] in Z. Figure 31 proves
that the typical distance is [-3,0] in X and [-3,0] in Z. Based on this fact, a matching criterion
between a fired TRU channel and a cluster is set to [-3,0] in X and [-3,0] in Z respectively. The
dead TRUs are in white (Figure 31,32). PHOS triggered events must contain at least one cluster
which matches the fired TRU channel decided by the criterion based on the distance between
fired TRU channels and clusters. Fig.32 shows energy distribution in PHOS LO triggered events.
The matching efficiency is close to 100% above the trigger threshold at 4 GeV in pp collisions
at /s = 5.02 TeV (LHC17pq). The rejection factor of the PHOS L0 trigger in pp collisions at
Vs = 5.02 TeV is stable at 30.6 k as shown by Figure 33.
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¢ 3.2 Data sets in Pb—Pb collisions at ,/syy = 5.02 TeV

sss The integrated luminosity used in this analysis is 12 gb~! for Minimum-bias and 70 pub~! for
PHOS L1 triggered events respectively.
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Figure 34: The integrated luminosity in Pb—Pb collisions at /sxny = 5.02 TeV taken in 2015.
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Monte-Carlo simulation samples
LHC16g1[,a,b,c] HIJING for LHC150 (~ 10 M events)
LHC17i7[a,b,c][1,2] single particle simulation (7%, 1, 7) for LHC150 (main efficiency for
correction in LHC150)

Event selection
physics selection (reject beam-gas interactions)
the number of charged track associated with the primary vertex > 0
pileup rejection by SPD
|Zvix| < 10 cm
centrality estimator : VO multiplicity (VOM)

Minimal cluster selection
Euster > 0.2 GeV (to extract photon signal as much as possible at low energy)
MO02 > 0.1 cm for only E > 1 GeV (to extract photon signal as much as possible at low

energy)
M20 > 0.1 cm for only E > 2 GeV (to extract photon signal as much as possible at low

energy)
M20 < 2.0 cm (to remove too large size cluster)
|TOF| < 50.0 ns in real data (to remove photons from other bunch crossings)

3.2.1 Quality assessment of MB data

The minimum-bias (MB) trigger configuration was VOAND (MB in Figure.34) in this data taking
period. As a first check of PHOS data, an average cluster energy and an average number of
hits are plotted here. Average values stay stable in all runs. 7¥ peak parameters are plotted
(Figure.38, Figure.39 and Figure.40) run-by-run to verify that PHOS was stable in this period.
As a result, M1,2,3 are all stable. Especially, 70 peak could not be seen well on M4, because
M4 has limited detector acceptance. A peak position in M1,2,3 are consistent within statistical
error bar. There are poor statistics in some runs where 7% peak is not so clear. Note that M4
was excluded from analyses in Pb—Pb, too.

3.2.2 Quality assessment of PHOS triggered data

In this data taking period (LHC150), 2 different L1 triggers that are high (L1H) and medium
(L1M) threshold triggers were active. As it has been known that PHOS L1 triggers on M3 did
not work because of poor matching efficiency between trigger units and readout units from the
begenning of analyses in this data taking perid, Since STU stores cell indices at the top-left of
fired channels, a typical distance is expected to be [-3,0] in X and [-1,2] in Z. Based on Figure 41
and 42, a matching criterion between a fired TRU channel and a cluster is set to [-3,0] in X
and [-3,0] in Z for module 1 and [-3,0] in X and [-1,2] in Z for module 2. M3 is excluded from
trigger analyses in Pb-Pb collisions at /sny = 5.02 TeV. The matching efficiency is close to
100% above the trigger thresholds at 4 GeV for medium (L1M) and 8 GeV for high (L1H) in
Pb—PDb collisions at \/sny = 5.02 TeV (LHC150).  The rejection factor of PHOS L1 triggers in
Pb-Pb collisions at \/sxy = 5.02 TeV is stable at 9.66 k for L1H and 0.835 k for L1M as shown
by Figure 45. According to Figure 45a, runs 245233, 245439 and 246391 have small rejection,
which means the L1H trigger have fired too often. Thus, these 3 runs were excluded from PHOS
L1 trigger analyses.
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Figure 37: The average cluster energy and number of hits in each run on PHOS in LHC150
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Figure 38: 7 yield, peak position and sigma in each run in LHC150 passl.
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Figure 39: 70 yield, peak position and sigma in each run in LHC150 passl_pidfix.
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Figure 41: The distance between fired TRU channels and cluster position on different modules
for L1H at Eguster > 8 GeV in Pb—Pb collisions at /sy = 5.02 TeV
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Figure 42: The distance between fired TRU channels and cluster position on different modules
for LIM at Eguster > 4 GeV in Pb—Pb collisions at /sy = 5.02 TeV
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e e

(b) Module 2.

Figure 43: Energy distribution of all clusters and triggered clusters and ratios on different

modules for L1H in Pb—Pb collisions at /syn = 5.02 TeV
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4 ANALYSES OF NEUTRAL MESONS

4 Analyses of neutral mesons

Procedure to measure production cross section of neutral mesons are described in this section.
At first, an analysis strategy to give an overview of analyses is summarized in 4.1. Since pho-
ton identification is a key of this thesis, criteria for photon selection is in 4.2. The detailed
explanation about analyses in pp and Pb—Pb are in section 4.3 and 4.4, respectively.

4.1 Analysis strategy

The PHOS detector is used to measure energies and positions of produced photons. The
minimum-bias trigger is VOAND which requires at least 1 hit on each VOA and VOC. Neu-
tral mesons (7° and 7)) are reconstructed by invariant mass method defined by Eq. 13, which is
based on 4-momentum conservation between a particle and its decay products.

M., = \/2E1 E5(1 — cos 012), (13)

where E /o is energy of photonl/2, 12 is opening angle between photonl and photon2. The
invariant mass reconstruction is performed over all possible combinations in each event. Raw
yields of neutral mesons are obtained by counting histogram entries around 135 MeV /c? for 7°
and 547 MeV/c? for n respectively. The background is subtracted by mixed-event technique
(a first photon is taken from a current event and a second photon is from another event). 4-
momentum of particles never conserves in this technique and this gives us only background. Same
procedure is performed in M.C. simulation. Since generated particle is known in simulation, an
acceptance X reconstruction efficiency € can be measured by :

Number of reconstructed particles on PHOS

. X rec. effici = 14
ace. x rec. SHICICNCY €= Qumber of generated particles in |y| < 0.5 and 27 in azimuth (14)
Finally, a production cross section of particle is given by :
d3 1 1dN 1 1 1
5= . f (15)

— = — X — X — X = X ;
dp>  2m prdpr Ay & Lin

where 57]\4 is transverse momentum-(prp-)differential raw yield of particle and Ly = UPYJI(’\;% is

an integrated luminosity. The cross section of VOAND trigger U;/SAND =51.2+ 1.2 mb and the

total inelastic cross section UII)II\)IEL = 67.6 £0.6 mb [60] in pp collisions at /s = 5.02 TeV. In

case of rare-triggered data (e.g. high-energy photon trigger in PHOS), the particle yields have
to be further normalized by a trigger rejection factor (RF).

MB
RF = 16
MB & rare-trigger input (16)
Ney
Lint = —yganp % RF (17)
Tpp

Once neutral mesons yields are measured in both pp and Pb—Pb collisions, the nuclear modifi-
cation factor Raa for each particle is measured based on.4.
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4 ANALYSES OF NEUTRAL MESONS

4.2 Photon identification

There are two types of photon identification cut to clusters measured by PHOS. They are
Charged Particle Veto (CPV) and shower shape cut called dispersion cut.

4.2.1 CPV cut

This cut is to reject charged particles. As photon is neutral and can not be tracked, photon
hits on PHOS should not match extrapolated tracks from ITS/TPC. Hence, if a distance in the
x — z plane between a cluster and an extrapolated track is closer than a certain threshold, the
cluster is rejected.

4.2.2 Dispersion cut

This cut is to select electro-magnetic clusters by an elliptic shape of the electro-magnetic shower
evolution in PbWOy crystals. It is characterized by eigenvalues in a cluster [58, 59] :

1
MO02 (cm) = 5 (ng + 02 4+ (02, —02,)2 + 40§Z> for long axis
1
M20 (cm) = 5 (afm + 02, —\/(02, —02)2 + 40%2) for short axis,
1
where 02, = (xz) — (z)(2), (z) = E w;z; is the weighted average over all cells in a
Weotal
(2

cluster. The weight wj; is given by w; = max(0,4.5+1In (E;/E)), where F; is cell energy at ¢ and
Wiotal = Z w;. Clusters are required to pass a criterion based on correlation between M02 and

M?20 as al function of the energy. Especially for clusters at low energy, simple minimum and
maximum thresholds to N and M02 as a function of their energy are imposed, instead of the
dispersion cut. Ny is the number of cells in a cluster (i.e. how many cells a cluster consists of).
In order to save photon clusters at low energy, these criteria are loose for low energy clusters
where the evolution of the electro-magnetic shower is poor.
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4 ANALYSES OF NEUTRAL MESONS

4.3 Analyses in pp collisions at /s = 5.02 TeV

Details of analyses in pp collisions are described here. First, neutral meson reconstruction via
two photons were performed. Second, M.C. tuning to reproduce realistic peak parameters and
determine efficiency. Then, various cut efficiencies (cluster timing, triggering, feed down from
strange hadrons) have been evaluated.

4.3.1 Raw yield extraction

70 and 7 mesons are reconstructed via their two photons decay with invariant mass method.
The neutral meson peaks are fitted by Gaussian function and integrated over the mean value
+30. Backgrounds are estimated by mixed event technique. Varying fitting ranges, functions
and integral ranges are included in systematic uncertainties.
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Figure 46: Invariant mass distributions in pp collisions at /s = 5.02 TeV (INT7)
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Figure 47: Invariant mass distributions in pp collisions at /s = 5.02 TeV (PHI7)
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4 ANALYSES OF NEUTRAL MESONS

Figure 46, 47 are invariant mass distributions for MB and L0 PHOS triggered events respectively.
Neutral meson signal are clearly seen. The number of neutral meson signals is obtained by bin-
counting on the invariant mass distribution at each pr bin.
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Figure 48: Raw yields of neutral mesons in pp collisions at /s = 5.02 TeV

Raw yields are plotted on Figure 48. No PID cut was applied in 7¥ signal extraction in pp,

while an energy asymmetry cut (o = % < 0.7) and CoreDisp 2.5¢ only in INT7 events

were applied for the 7 meson measurement. As 1 has heavier mass (547 MeV /c?) than 7° mass

(135 MeV/c?), the tighter cut is helpful to extract its signal.

4.3.2 Acceptance x reconstruction efficiency

The efficiency is obtained by M.C. simulation. First, M.C. simulation has to reproduce realistic
peak position and width of neutral mesons by tuning energy measurement in M.C.. Figure 49,
50 show good agreement of peak parameters by Gaussian fitting to 7% and 7 meson between
data and M.C..
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Figure 49: 7° peak parameters in pp collisions at /s = 5.02 TeV
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Figure 50: n peak parameters in pp collisions at /s = 5.02 TeV

Once properties of neutral meson peak are reproduced by M.C., acceptance x reconstruction
efficiency has been measured based on Eq. 14.
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Figure 51: acceptance x reconstruction efficiency of neutral mesons in pp collisions at /s =
5.02 TeV with PHOS

4.3.3 Timing cut

The bunch space of each proton beam bunch was 25 ns during LHC-Run2 operation. Timing
cut (|TOF uster| < 12.5 ns) was applied at cluster level to reject clusters from other BCs. The
timing of a cluster is defined as the timing of a leading cell which has the highest amplitude in
APDs. TOF cut efficiency(eror) is defined by :

Ntnggered BC
Ntrlggered BC?
all ~

ETOF =

where NtTrg;%eged BC is the number of photons after TOF cut in the triggered BC and N;ﬁgiered BC

is the number of all photons in the triggered BC respectively. The efficiency is measured by
data driven, called tag-and-probe method. This technique is widely applicable for any kinds
of efficiency, e.g. trigger efficiency, PID cut efficiency and so on. The first photon is required
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4 ANALYSES OF NEUTRAL MESONS

to pass the timing cut (tagged photon) and reconstructing invariant mass with two photons in
same events. If the reconstructed invariant mass is in the 7% (1) meson signal window, typically
0.12 < M,, < 0.15 GeV/c? (0.5 < M,, < 0.6 GeV/c?), the second photon is called probe
photon. Then, the efficiency can be measured with probe photons by :

The number of probe photons which pass criteria

= 19
c The number of all probe photons (19)

The drop of TOF efficiency in Figure 52b at FEguster > 6 GeV is due to switching high gain
(HG) to low gain (LG) channels in the PHOS readout electronics. Timing resolution is worse
in LG, as LG channels have lower gain. Then, the number of photons is corrected by eTor as a
function of photon energy. Since etor is measured as a function of photon energy, % is

necessary at neutral mesons level which is reconstructed from two photons.
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Figure 52: The cluster timing distribution and TOF cut efficiency

4.3.4 Trigger efficiency

e S A m s B
pp at Vs =5.02 TeV (2017)
PHOS LO trigger
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The PHOS trigger allows us to measure high g o
energy photons/electrons efficiently in AL- %}% 0
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ICE. The energy threshold of the PHOS L0 o

trigger in pp collisions at /s = 5.02 TeV :Z

(LHC17pq) period was set to 4 GeV in sum of 10° ’111

4 x 4 analogue signal (FastOR). The rejection :z 1¢¢+

factor is defined by : 00

Dv[IS B S S PR
MB & 0PHO and matched with cluster’

(20) g o
as shown by The PHOS trigger efficiency is 0
measured in MB events by means of :

RF =

3

=3
>
T
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Figure 53: PHOS LO trigger efficiency in pp col-

Number of tri d clusters in kINT7
umber of triggered clusters in lisions at /5 = 5.02 TeV

e = T Number of all clusters in kINT?(21

Charged particle veto and dispersion cut were applied for both nominator and denominator to
get high photon purity. The trigger efficiency in pp collisions at /s = 5.02 TeV (LHC17pq)
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4 ANALYSES OF NEUTRAL MESONS

reaches 0.6 above the energy threshold. For the neutral meson reconstruction, at least one
triggered cluster (logical-OR) is required in this analysis. The trigger efficiency for 7° and 7 is

OR _ 1 2 1 2
gtrg - Etrg + Etrg - Etrg X Etrg'

4.3.5 Feed down correction from strange hadrons

70 fromstrangehadronsdecayssuchasKg% Ofo R N L R A B AR A AR A
7070 (BR = 30.69%, cr = 2.7 cm) and A —  £|s%F PSSR E
nm® (BR = 35.8 %, et = 7.9 cm (negligible)) = *"°F E
contribute the total number of 7°, while 7° Z:? E
from primary interaction is focused on. Hence, '0157 E
they have to be subtracted from the total ook E
number of 7. For this study, M.C. simula- 006E e E
tion with PYTHIAS event generator was used O S SR E
to estimate this contribution. However, it oozb = S —— =
is known that PYTHIA event generator does 005‘“‘1‘””;‘”‘3””‘””‘HH\HH\HH\HH_HE

not reproduce realistic K= /7% ratio. There-
fore, re-weighting to Kg spectrum is neces-

sary. Since K*/m* ratio in pp collisions at Figure 54: Feed down factor for 7° from Kg in
Vs = 5.02 TeV hasinotibeer'l pubhshed.a's of pp collisions at v/3 = 5.02 TeV
January 31 2019, K= /7™ ratio in pp collisions

at /s = 2.76 TeV [61, 62] are taken as a reference. KT /7% ratio does not depend on collision
energy at ~TeV energy region [61, 63]. The feed down factor is defined as :

P, (GeV/c) of n°

FD — Number of reconstructed 7° from Kg

22
Number of all reconstructed 7° (22)

Figure 55 shows K* /7T ratio before and after the re-weighting procedure. The FD factor is
plotted on Figure 54, which is about 6% at the maximum and decreases with pr.
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Figure 55: K* /7% ratio in PYTHIAS
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4.4 Analyses in Pb—Pb collisions at ,/syy = 5.02 TeV

Details of analyses in Pb—Pb collisions are described in this section. They are generally the
same as in pp collisions. In addition to analyses in pp, events are classified by multiplicity
on the VZERO detector called “centrality class”. The centrality at 0 % indicates the highest
multiplicity class and the higher value of centrality, the lower multiplicity class. There were
two active L1 PHOS triggers in Pb—Pb collisions recorded in 2015. One is CINT7PHH, high
energy threshold at 8 GeV for all centrality classes. The other is CPER7TPHM, medium energy
threshold at 4 GeV for peripheral collisions (centrality > 60%). As shown by Figure 56, the
centrality distribution in Minimum-Bias events (CINT7) is well calibrated and flat. However,
they are biased in PHOS triggered data. It is understood that the probability to detect a
high energy photon under the high multiplicity environment is higher than that in peripheral
collisions, because the number of produced photons is also large in central collisions. Trigger
rejection factors for L1H and L1M are biased, too.
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Figure 56: Centrality VOM distributions in Pb—Pb collisions at \/syn = 5.02 TeV (2015)

4.4.1 Raw yield extraction

Figure 57, 58 are invariant mass distributions for MB and L1 PHOS triggered events respectively.
Neutral meson signal are clearly seen in all centrality classes. The number of neutral meson
signals is obtained by bin-counting on the invariant mass distribution at each pr bin. Raw yields
are plotted on Figure 59, 60 in different centrality classes. Both CPV and core-dispersion cuts

were applied to clusters in Pb—Pb collisions. Furthermore, energy asymmetry a = %;52‘ < 0.8

for 7¥ and a < 0.7 for n mesons were also applied.
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Figure 57: Invariant mass distributions in Pb—Pb collisions at /sxy = 5.02 TeV (INT7)
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Figure 59: Raw yields of 7% in Pb-Pb collisions at \/sny = 5.02 TeV
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Figure 60: Raw yields of n in Pb—Pb collisions at /syn = 5.02 TeV
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4.4.2 Acceptance x reconstruction efficiency

Due to the extremely high charged particle multiplicity dNu,/dn ~ O(10) [64, 65] in central
Pb—Pb collisions, the reconstruction efficiency for photons and neutral mesons is influenced and
centrality-dependent. In order to take high multiplicity environment into account, the efficiency
in Pb—Pb collisions is obtained by using embedding technique. The main idea of embedding
technique is to merge real data as underlying events (UE) with events from single particle
simulation (7,  and 7) and to reconstruct data again. This allows us to study how clusters are
modified under the realistic high multiplicity environment. The general procedure is following :

1. embed 1 simulated particle per 1 underlying event.

2. cell information in both UE and simulation are inversely calibrated to ADC values from cell
energy. At this step, global energy scale and non-linear response of energy measurement
in simulation is also inversely applied.

3. merge all cells at ADC level.

4. clusterize merged cells by the same clustering algorithm.
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Figure 61: acceptance x reconstruction efficiency of neutral mesons in Pb—Pb collisions at /sy
= 5.02 TeV with PHOS

As well as analyses in pp, M.C. simulation has to reproduce realistic peak position and width
of neutral mesons. To avoid overlapping effect under high multiplicity environment, 7% peak
parameters were tuned in peripheral collisions. Figure 62, 63, 64, 65 are the comparison of
peak parameters for 7% and 1 between data and embedding M.C.. Peak parameters are in good
agreement in peripheral collisions, while 1% of discrepancy in peak position is found in central
collisions. The global energy scale and the non-linearity response of energy measurement in M.C.
are fully detector response and should not depend on event multiplicity. Therefore, AE/E =~ 0.01
in central collisions is attributed to an additional systematic uncertainty of the global energy
scale.
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Figure 62: 7° peak position in Pb-Pb collisions at /syy = 5.02 TeV for different centrality
classes
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Figure 63: 7° peak width in Pb-Pb collisions at /syn = 5.02 TeV for different centrality classes
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Figure 65: 1 peak width in Pb—Pb collisions at /snyn = 5.02 TeV for different centrality classes
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1085 4.4.3 Timing cut

wss The general procedure is the same as in pp, but the bunch space was 100/150/175/225 ns in

157 Pb—Pb collisions (2015). So, the timing cut for clusters is |[TOF| < 50 ns. This wide time window

1088 leads higher TOF cut efficiency than one in pp. The drop of TOF efficiency in Figure 66b at

1089 Ecyster > 6 GeV is due to switching high gain (HG) to low gain (LG) channels in the PHOS
readout electronics.

[
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(a) TOF vs. Ecluster- (b) eTor as a function of photon energy.

Figure 66: Timing distribution of clusters and TOF cut efficiency

1090

w01 4.4.4 Trigger efficiency

1002 There were two active L1 PHOS triggers in Pb—Pb collisions recorded in 2015. One is CINT7PHH,
1003 high energy threshold at 8 GeV for all centrality classes. The other is CPER7TPHM, medium
w04 energy threshold at 4 GeV for peripheral collisions (centrality > 60%). As the rejection factor
o5 strongly depends on centrality (Figure 67a), this bias was also taken into account for the event
196 normalization. The trigger efficiency has a plateau region at 0.45 above the threshold shown
w7 by Figure 67b. The rejection factor and trigger efficiency are plotted for centrality 0-90 %,
1008 because they have been measured in MB events. This method is available, since all fired triggers
information is stored even in MB events.

o
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(a) The rejection factor vs. centrality (b) PHOS L1 triggers efficiencies

Figure 67: PHOS L1 triggers performance in Pb—Pb collisions at /sy = 5.02 TeV
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4 ANALYSES OF NEUTRAL MESONS

4.4.5 Feed down correction from strange hadrons

0
S

0.2 T T e e e

HIJING event generator was used to esti- Y E _

mate feed down in Pb-Pb collisions. The re- 2 %0'18? PP at Vs, =502 TeV e e

weighting to Kg spectrum is necessary, be- | oo

cause it is also known that HIJING does not 0'14?+ e oty vt o0
0.12 — —e— centrality VOM 60-80 %

reproduce realistic K* /7% ratio. K*/n% ra-
tio in Pb—Pb collisions at /s = 2.76 TeV [61]
are taken as a reference. Figure 69, 70 show
K* /¥ ratio before and after the re-weighting
procedure. The FD factor in different cen-
trality classes is plotted on Figure 68. It is
about 11% at the maximum in central (0—5%)
collisions and becomes smaller in peripheral
(60 — 80%) collisions.
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Figure 68: Feed down factor for 7° from Kg in
Pb—Pb collisions at /sxy = 5.02 TeV

4.5 Combining MB and PHOS triggered data

Neutral meson spectra have been measured independently in minimum bias data and PHOS
triggered data. Finally, they have been combined by the weighted average described in [66].
Since systematic uncertainties of global energy scale, PID, material budget, feed down in case
of 7° and acceptance of detector are common between minimum bias and PHOS triggered data,
quadratic sum of uncertainties of yield extraction, TOF in INT7, trigger efficiency in PHI7 and
statistical uncertainty are used as weights. The weighted average is defined as :

1n
| = — iYis 2
i w%wy (23)

where w; = ﬁ and w = Z:L w;. The standard deviation of i is ﬁ
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5 SYSTEMATIC UNCERTAINTIES FOR NEUTRAL MESONS

5 Systematic uncertainties for neutral mesons

5.1 Yield extraction

A systematic uncertainty of yield extraction was estimated by varying fitting functions, fitting
ranges and integral regions. In total, 24 combinations were performed for each neutral mesons.
The relative systematic uncertainty of the yield extraction is defined as standard deviation/mean
value of 24 samples.

e Fitting function for signal : Gaussian/CrystalBall [67]
e Fitting function for background : polynomial 1/2
e Fitting ranges for 7¥ : [0.06,0.22], [0.04,0.20], [0.08,0.24] GeV /c?

e Fitting ranges for n : [0.4,0.7], [0.35,0.65], [0.45,0.75] GeV /c?

Integral region : [-30,430], [-20,420] around the peak

5.2 Global energy scale

The global energy scale was evaluated by energy to momentum ratio E/p of electrons (positrons)
in data and M.C.. Criteria for e* identification are —2 < no. < 3 in dE/dx measured by TPC
and matched with a PHOS cluster which pass dispersion cut (2.50). Here, the noe represents
accepted deviation in unit of standard deviation from the dE/dx value expected for the electron
signal. Figure.71 shows electron F/p reaches 1 at high energy and is well reproduced by M.C..
According to this study, the discrepancy between data and M.C. in E/p+ 0.5% is assigned to an
uncertainty of energy scale. The pr of neutral meson is shifted by App/pr = £0.005 in TCM
function (or Hagedorn function for n meson in pp) fitting, and the ratio to the function with
Apr/pr = 0 was taken. The larger side is assigned to the final systematic uncertainty of particle
yields due to the global energy scale. In case of Pb—Pb collisions, the energy scale uncertainty
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H 7 ata B © 108~ ppats=502TeV —flp,+Aap) /)
® tosf— — 5 06: i
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Coo l B 1.02 =
L ] 1= —
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B 1 0981\ =
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W aaa f f e f f s 094 =
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P 1 S SR = 092 3
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(a) E/p of e* as a function of energy measured by (b) The ratio of TCM fit to 7 .
PHOS.

Figure 71: E/p of e* and the uncertainty of particle yield by the energy scale in pp collisions
at /s = 5.02 TeV.

due to the discrepancy of peak position between data and M.C. (Apr/pp ~ 0.01 for centrality
0-10 %, Aprt/pr ~ 0.005 for centrality 10-40 %) was added quadratically.
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5 SYSTEMATIC UNCERTAINTIES FOR NEUTRAL MESONS

5.3 Non-linearity of energy measurement in simulation

The non-linear response of the energy measurement was studied in pp collisions at /s = 5.02
TeV taken in 2015 data, described in section B.8.6.

5.4 Trigger efficiency

The systematic uncertainty related to the trigger efficiency was estimated by varying fitting
range at plateau region on Figure 53 and 67b. They have plateau region at 0.597 4+ 0.015 for
PHOS LO trigger in pp collisions (2017) and at 0.45 £+ 0.02 for PHOS L1H/M trigger in Pb—Pb
collisions at \/sny = 5.02 TeV, respectively. Since neutral meson yields are corrected by logical-
OR (i.e. Eglgv[ = 6ir1g + sﬁfgg ), the uncertainty of trigger efficiency for 1 photon is
analytically propagated to the uncertainty of their yields at high pr.

5.5 Timing cut efficiency

There were data taking period when a bunch space of each pp collision was 1000 ns which
was much wider than timing resolution of PHOS. These runs allow us to estimate systematic
uncertainty of TOF cut efficiency. The idea is defined by Eq.24. The deviation from unity in
the ratio is considered as a systematic uncertainty of TOF cut.

70 yield at BS = 25 ns corrected by 51TOF X 52TOF
70 yield at BS = 1000 ns (etor = 1)

ratio = (24)

As shown by Figure.72a, it is found to be 2% in pp collisions at /s = 5.02 TeV, not depending
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Figure 72: The ratio of 7% raw yields in high intensity runs to those in low intensity runs.

on pp . The same approach was applied for Pb—Pb analysis, but the nominal bunch space (BS)
was 100 ns. It is found to be 4% in Pb-Pb collisions at /sy = 5.02 TeV.

5.6 PID cut efficiency

In order to check photon identification cut on PHOS, each PID cut efficiency as a function of
photon energy was evaluated. i.e. Charged Particle Veto (2.50) and dispersion cut (2.50) were
tested. Especially in pp collisions, the CPV cut efficiency is very close to unity, because average
charged track multiplicity in pp collisions is expected to be 5 ~ 7 tracks at mid-rapidity [68].
Hence, the probability of random matching between a photon hit and a charged particle is small.
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The deviation from unity in the ratio Data/M.C. is considered as systematic uncertainty of PID
cut, which is ~ 2% without depending on photon energy in all centralities.
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Figure 73: PID cut efficiency as a function of photon energy in pp collisions at /s = 5.02 TeV.

3 R B I I I =) T T = [ AR R R T 7

3 E  PbPbatys,=502TeV CPV25c ] g E  PbPbatys,=502TeV CoreDisp 2.5 ¢ 3 E PbPbatys,=502TeV PV 25088 Coeisp25 0 3

s “E" centrality VOM 0-10 % —e— Data = 5 ME centraliy VOM 0-10% —s— Data = MET centrality VOM 0-10 % —— oaa =

2 i —e— Embedding E 2 . —e— Embedding E o —o— Enbedsng E

Rty E E + 3 E + E

we R + E it I E e e -

= B B 3 A, W 3

e E wf + E .4 Ty E

b 3 B E wf E

oef- 3 oef- E oef- E

R SaanRaR *_1 L e B I B R SaR 1$l LR S B A R B 2E 1+ LR T I B I B

eI 5 oo, T f ST 5

Bt T ] : & e BT I : S T ARNAG, ] :

@ +1TT I E AT | E R ] E

S T = o [ A e s D T h
I I B s s s L L s s I e e e

£ GV £, oV £ ooV

(a) CPV cut (b) Dispersion cut (¢) CPV and Dispersion cut

Figure 74: PID cut efficiency as a function of photon energy in Pb—Pb collisions at /snn = 5.02
TeV centrality 0-10%.
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Figure 75: PID cut efficiency as a function of photon energy in Pb—Pb collisions at /syny = 5.02
TeV centrality 10-20%.

5.7 Feed down from strange hadrons

The systematic uncertainty of feed down correction to 7° is inherited from the systematic un-
certainty of the measured K* /™ ratio [61]. Typically, the systematic uncertainty of K /7 ratio
is about 10 % at the maximum. Thus, it is feed down correction x 0.1 in both pp and Pb-Pb
collisions.
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Figure 76: PID cut efficiency as a function of photon energy in Pb—Pb collisions at /snn = 5.02
TeV centrality 20-40%.
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Figure 77: PID cut efficiency as a function of photon energy in Pb—Pb collisions at /sy = 5.02
TeV centrality 40-60%.

. T T T T T T
Pb-Pb at s, = 5.02 TeV. CPV250

T
Pb-Pbat {5y = 5.02 TeV PV 25088 CoreDisp 250

T T T
Pb-Pb at s, = 5.02 TeV.

+

T 3 5 T T T T

] g C CoreDisp 2.5 ¢
e centrality VOM 60-80 % —e— Data = 3 ME" centrality VOM 60-80 % —e— Data " centrality VOM 60-80 % ——
o —e— Embedding = 3 LB —e— Embedding ——

I R
NRnnar

T T[T TIT [T [TTT 77T

g
]
?
i

4 4 4 4 4 4 4
12] t t t t t t t 12| t t t
115

|
t t
e comsnt- 099820002 I E B2 comsnt 099120004 ’f‘ i
g 105 b —{»—‘—.— E a5 105 e } l
g o, [ SR e ol | 1 gg 3 Shaty
099 Lhaii il ah e o E 098 3
05 E 05
o Il Il Il L Il Il Il Il I o Il Il
g 5

2 % g g 7 AN R .

o
F

we

3
3
?

(a) CPV cut (b) Dispersion cut (¢) CPV and Dispersion cut

Figure 78: PID cut efficiency as a function of photon energy in Pb—Pb collisions at /sxny = 5.02
TeV centrality 60-80%.
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5 SYSTEMATIC UNCERTAINTIES FOR NEUTRAL MESONS

5.8 Acceptance of PHOS detector

This estimation was done in 2015 data of pp collisions at /s = 5.02 TeV by varying the distance
to the closest bad channel (0 or 1 cell), which is described in section B.8.7. Typically, it is 1.5
% for neutral mesons.

5.9 Material budget

This uncertainty is common in pp and Pb—Pb data, as ALICE detector did not change during
Run2 operation. The systematic uncertainty of the material budget has been estimated by
comparing 7 yields between magnetic field ON and OFF taken in 2017 data (LHC17d). As
converted eTe™ pairs do not bend without magnetic field, the ete™ pair is reconstructed as
same as a photon candidate. This results in increase of the reconstructed 70 yields and allows
us to estimate description of the material budget in simulation. Note that there are TOF and
TRD in front of PHOS M4 (a half module). As shown by Fig.79, 7° yields at B = 0.0 T is
higher those in 0.5 T and well described by M.C in M123 (1.01£0.02). However, there are large
statistical error bars in M4 (1.11 £ 0.21). Thus, I decided to exclude M4 from my analyses and
the systematic uncertainty of the material budget is 2% from this study.

= T T LB e
VT el i T S W23 Data B
4. i —e— M4 Data _
1E 5y —— M123 M.C. =
b il —e— M4 M.C. =
09— —

- OBEi' »Afa hih— 3 | 35 o oo =

vlo U8E = -

olc — { ’_< =

I = —

o 0.7 p
06— =
05— =
04— —
03— =

£, I -

- E =
= E
S METT emi23 =
R = M4 1 =
G| I RIS -2 T SERCIT i e o e = TS
oo E I T t T T t 4 M2 taint = 1.01+ 0.0: 3
4 E 1 E
o2 UB:_ M4 constanti= 1114021 3
aln 06— =
10

p(

jo)
@
<
)

Figure 79: top : ratio of 7% yields at B = 0.5 T to those at B = 0.0 T in data and M.C.. bottom
: Double ratio of 7° yields
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5.10 Summary of systematic uncertainties

1103 Total systematic uncertainties for 7% and 7 mesons are summarized in this section.

noe 5.10.1 Summary of systematic uncertainties in pp collisions at /s = 5.02 TeV
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5.10.2 Summary of systematic uncertainties in

TeV
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Figure 83: The summary of systematic uncertainties of the 7 measurement in Pb-Pb collisions
at /sy = 5.02 TeV (5—10 %)
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Figure 85: The summary of systematic uncertainties of the 7 measurement in Pb-Pb collisions
at \/snn = 5.02 TeV (20-40 %)
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Figure 86: The summary of systematic uncertainties of the 7 measurement in Pb-Pb collisions
at \/snn = 5.02 TeV (40-60 %)
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Figure 87: The summary of systematic uncertainties of the 7° measurement in Pb-Pb collisions
at /sy = 5.02 TeV (60-80 %)
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Figure 88: The summary of systematic uncertainties of the n measurement in Pb—Pb collisions
at \/snn = 5.02 TeV (0-10 %)
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Figure 89: The summary of systematic uncertainties of the n measurement in Pb—Pb collisions
at \/snn = 5.02 TeV (10-20 %)
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Figure 90: The summary of systematic uncertainties of the n measurement in Pb—Pb collisions
at \/snn = 5.02 TeV (20-40 %)
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Figure 91: The summary of systematic uncertainties of the n measurement in Pb—Pb collisions
at /sy = 5.02 TeV (40—60 %)
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Figure 92: The summary of systematic uncertainties of the n measurement in Pb—Pb collisions
at /snn = 5.02 TeV (60—80 %)
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6 RESULTS AND DISCUSSIONS FOR NEUTRAL MESONS

6 Results and discussions for neutral mesons

Results of neutral mesons analyses are summarized in this section. Production cross sections,
invariant yield, particle ratio n/7°, and nuclear modification factor Ras are described. In all
figures, vertical bars represent statistical error and boxes indicate the systematic uncertainty.

6.1 Invariant cross section of particles

The production cross section of 7° and 7 mesons have been measured in pp collisions at /s =
5.02 TeV. Neutral mesons spectra are fitted by either two-component model (TCM) function
[69, 70, 71] or Hagedorn function [72]. Two-component model function is :

3o Ey e\ "
E— = A, _ Al1l T 2
e exp < T, > + ( + 77 n> ) (25)

where A¢, Te, A, T and n are free parameters for fitting and Fryi, = 4/ p?r + m?2—m is transverse

kinetic energy (m is mass of particle). The exponential term is for soft, and the power-law is
for hard particle production. Hagedorn function is :

Y7 _ 4 (1 + pT>n (26)
dp? Po ’
—n n
(1 Lpr ) |, Jexp (_ITOPT) for pr < po
Do P for pp — o0

where A, pg and n is free parameters for fitting. Hagedorn function behaves exponential at low
pr and power-law at high pr. Fitting parameters are listed in Table. 1, 2, 3, 4.
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Figure 93: Production cross sections of neutral mesons in pp collisions at /s = 5.02 TeV
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Figure 94: Invariant yields of neutral mesons in Pb—Pb collisions at /syn = 5.02 TeV
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Table 1: Fitting parameters of TCM function in pp collisions at /s = 5.02 TeV

particle || A. (pb GeV 2 ¢?)

T, (GeV/c)

A (pb GeV~2 &%)

T (GeV/e) n

0 (2.57 £0.58) x 10*!

0.18 £ 0.02

(0.16 +0.04) x 10*!

0.67+£0.03

Table 2: Fitting parameters of Hagedorn function in pp collisions at /s = 5.02 TeV

particle

A (pb GeV~2 &%)

po (GeV/c)

n

n (1.58 £ 0.58) x 10!

0.96 = 0.08

6.7£0.1

Table 3: Fitting parameters of TCM function for 7° in Pb-Pb collisions at

SNN — 5.02 TeV

centrality (%) || Ac (GeV=2¢%) | T, (GeV/e) | A (GeV=2¢3) | T (GeV/e) n

0-5 187 + 26 0.39 +£0.01 1526 1055 | 0.29 £0.05 | 2.75 £ 0.04
5-10 144 £+ 22 0.39 £0.01 1026 + 500 0.334+0.04 | 2.78 = 0.04
10-20 105 £ 15 0.39 £ 0.01 421 +£129 0.39 £0.03 | 2.85+0.03
20-40 40.7£74 0.40 £ 0.01 233 + 52 0.41 £0.02 | 2.89 +0.03
40-60 59+19 0.43 +0.02 92 £ 16 0.44£0.02 | 2.931+0.03
60-80 78 £ 36 0.16 = 0.03 5.9+ 28 0.64£0.06 | 3.17 = 0.04
0-10 185 £ 24 0.39£0.01 1062 + 466 0.32£0.03 | 2.76 = 0.03
0-90 43.7£7.1 0.39 £0.01 163 £ 43 0.41 £0.02 | 2.88+=0.02

Table 4: Fitting parameters of TCM function for 7 in Pb—Pb collisions at /sxny = 5.02 TeV

centrality (%) || Ac (GeV=2¢%) | T, (GeV/e) | A (GeV=2 ) | T (GeV/e) n
0-10 6.1 +29 0.55 202 £ 27 0.36 2.68
10-20 0.78 4+ 2.0 0.55 171 + 21 0.36 2.68
20-40 3.1£0.6 0.55 103 £ 10 0.36 2.68
40-60 0.81 £ 0.25 0.55 55.5+ 6.2 0.36 2.68
60-80 0.15+£0.07 0.55 15.8 £ 2.1 0.36 3.68
0-90 26+1.5 0.55 £+ 0.05 112 £ 89 0.36 £0.05 | 2.68 = 0.10
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110 Especially, 7 meson spectra in Pb—Pb collisions have only 6 ~ 7 data points, that leads poor
1211 quality of the fitting or divergence. Therefore, centrality classes are merged into 0-90 % to
12 get the full statistics of data and fitted by TCM function. When 7 meson spectra in different
1213 centrality classes are fitted by TCM, T., T and n are fixed to those in centrality 0-90 % to
1214 avoid divergence of the fitting. Hence, yield parameters A, and A are free parameters in each
1215 centrality class.

1216 Figure 95 shows the ratio of pr spectra of 70 at V/sNN = 5.02 TeV to those at /snn = 2.76
w7 TeV [73, 74] in Pb—Pb (color filled marker) and pp (black open marker) collisions for same
1218 centrality classes. Ratios of spectra increase with pp in both pp and Pb—Pb collisions which

means harder pt spectra at higher collision energy.

T T
E| Pb-Pb : centrality VOM 0-5 %

T T — T
Pb-Pb : centrality VOM 5-10 %

T T —
Pb-Pb : centrality VOM 10-20 %

502 TeV/ T522TY

15
1
0.5
P | N N o
s - t -+
|Z| Pb-Pb : centrality VOM 60-80 % Elpp
45 E = norm.unc. 2.3 % inpp at s = 5.02 TeV
4 F F ¥ norm. unc. 2.5 % in pp at fs = 2.76 TeV
£ r F n%inppat 15 =276 TeV (Eur. Phys. J. C (2017) 77:339)
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Figure 95: Comparison of pr spectra for 7¥ between /sy = 5.02 and 2.76 TeV in Pb-Pb
collisions

1219

73



1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

6 RESULTS AND DISCUSSIONS FOR NEUTRAL MESONS

6.2 Particle ratio

n/7° ratios have been measured in pp and Pb-Pb collisions at \/syny = 5.02 TeV for different
centrality classes, as shown by Figure 96 and Figure97. As, the statistical uncertainty is large,
no centrality dependence of 1/7% ratios in Pb-Pb collisions is observed. In order to reduce
statistical and systematic uncertainties, all centrality (Figure.97b) have been combined in Pb—
Pb collisions. The n/7° ratio is found to be 0.507 £ 0.017(stat.) + 0.008(syst.) in pp collisions
and 0.491 + 0.022(stat.) = 0.017(syst.) at pp > 3.6 GeV/c in centrality 0-90% Pb-Pb collisions
at /sy = 5.02 TeV. The measured 7/ 70 ratios may be claimed to be consistent with published
ALICE results [74, 75, 76, 77] within experimental uncertainties, although the ratio in pp
collisions at /s = 5.02 TeV is a bit higher than that in pp collisions at /s = 8 TeV [78].
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Figure 96: The n/7° ratio in pp collisions at /s = 5.02 TeV
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Figure 97: n/ 79 ratios in Pb—Pb collisions at /sy = 5.02 TeV
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6 RESULTS AND DISCUSSIONS FOR NEUTRAL MESONS

6.3 Nuclear modification factors Rss of neutral mesons

Since neutral mesons spectra have been measured in both pp and Pb—Pb collisions at /sy =
5.02 TeV, nuclear modification factors Raa in different centrality class have been determined.
The typical values of the nuclear overlap function Taa used in this thesis are summarized in
Table.5. These are taken from the reference [79]. Boxes around unity is the total normalization
uncertainty, namely, square root of the quadratic sum of systematic uncertainty of Taa and
systematic uncertainty of normalization for spectra in pp collisions. Raa reaches 0.13 at pr =
5 —6 GeV/c in central Pb—Pb collisions for both 7% and 7 mesons and increase with pr-.

Table 5: Geometrical parameters in Pb—Pb collisions at /syxy = 5.02 TeV [79]

centrality || Taa (mb~1) [ syst. Taa (mb~1) || Neon | syst. Neon Npart | syst. Npart
0-5 (%) 25.92 0.37 1752 28 382.3 2.4
5-10 (%) 20.22 0.52 1367 37 329.1 5
10-20 (%) 14.27 0.36 964.8 25 260.2 5.2
20-40 (%) 6.872 0.21 464.5 15 158.5 3.1
40-60 (%) 2.046 0.05 138.3 3.1 70.61 1.1
60-80 (%) 0.4173 0.014 28.21 0.81 23.34 0.43
6.3.1 Collision energy ,/sny dependence

Raa of 7 mesons in Pb-Pb collisions at \/sxn = 5.02 and 2.76 TeV are compared on Figure 98.
In spite of the fact that pp spectra become harder at higher collision energy both in pp and
Pb—Pb collisions, Ra 4 is found to be the same at two collision energies. This indicates the larger

parton energy-loss at the higher collision energy.
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o 14 n°:05% —+ n°:510% - n°:10-20% —
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1.2¢ [olys,, = 2.76 TeV (Eur. Phys. J. C (2014) 74:3108) & [oly{5,,, = 2.76 TeV (Eur. Phys. J. C (2014) 74:3108) F 5. = 2.76 TeV (Eur. Phys. J. C (2014) 74:3108)
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Figure 98: Raa of ¥ in Pb-Pb collisions at \/syy = 5.02 and 2.76 TeV
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6 RESULTS AND DISCUSSIONS FOR NEUTRAL MESONS

(0-10%) with higher statistics [76]. Those were recorded in 2011, so called LHC11h period,
in Pb-Pb collisions at /sy = 2.76 TeV. As published results are available up to pp = 20
GeV/c, the comparison has been performed at only pr < 20 GeV /¢ here. Considering the large
experimental uncertainties for both results, comparisons on Figure 99 again indicate the harder
pr spectrum at higher collision energy, but the same suppression level at two collision energies

up to pr = 20 GeV/ec.
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(a) The ratio of pr spectrum for 7. (b) Raa for m°.

Figure 99: Comparison of the ratio of pr spectrum and Ras in Pb—Pb collisions at /syn =
5.02 and 2.76 TeV (2011 sample)
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6 RESULTS AND DISCUSSIONS FOR NEUTRAL MESONS

6.3.2 Comparison to theoretical models

Raa of 7° and 7 mesons are compared to theoretical models (Figure 100). The prediction in-
cluding both radiative and elastic energy-loss in the hydrodynamically expanding QCD medium
by M.Djordjevic [26] shows quantitatively good agreement with data in all centrality classes for
both 7° and 1 mesons. The model based on the same approach in the constant-temperature
QCD medium without the evolution by M.Djordjevic [25] also gives good agreement again. This
can be interpreted as that the evolution of the medium affects the azimuthal anisotropy vy of
hadrons, rather than to Raa, as she explains [26, 25]. Models by M.Djordjevic aim to reproduce
Raa and wve for hadrons simultaneously in her framework. So, it might be interesting to see
them for comprehensive studies in the future.

6.3.3 Hadron species dependence

Raa of ©° and 7 mesons are consistent with each other within experimental uncertainties at
pr > 4 GeV/c. However, it seems Raa for n meson is systematically higher than that of 7°
at low pr, which is similar to those previously measured in Pb-Pb collisions at /sy = 2.76
TeV [76, 80].

R for different hadron species in central Pb-Pb collisions at /sny = 5.02 TeV are summarized
on Figure 102. The suppression of neutral and charged [81] pions is consistent with each other,
as expected (centrality classes 0-5 and 5-10% were merged into 0-10% for 7% and K*). The
comparison indicates the similar suppression pattern between 7 and K+ [81] mesons for whole
pr range, but seems to differ from pions at pp < 4 GeV/c. This is explained by that both n and
K* mesons consist of a strange quark and an up, down quark, while pions contain up, down
quarks. However, with the present accuracy of the  meson measurement, it is not enough to
determine whether the suppression is different /same for 7° and 7 at low pr. On the other hand,
comparing Raa between 7° and D mesons [82], the suppression of D mesons is clearly weaker
than that of 7% mesons at pr < 10 GeV/c. This is because of smaller energy-loss for charm
quarks than for up and down quarks due to its heavier mass. At high pr, the parton energy-loss
does not depend on the quark mass [84, 85] and thus, R4 is the same for light and heavy flavor
hadrons. B* mesons which contain a bottom quark and a light quark have been measure in
centrality class 0-100% by CMS [83] by triggering muons from from B* — J/YK* — ptpu~ K+
at high pt. So, it would be interesting to see Raa of charm-hadrons and bottom-hadrons at low
pr in Run3 at /sny = 5.5 TeV.
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Figure 100: Comparison of Raa with theoretical models in Pb—Pb collisions at /syny = 5.02
TeV
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Figure 101: Comparison of Raa between 70 and 7 in Pb-Pb collisions at /sxy = 5.02 TeV for
different centrality classes.
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Figure 102: Raa of 70, n, 7%, K*, D and BT mesons in central (0-10%) Pb-Pb collisions at
JENN = 5.02 TeV [81, 82, 83]
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6.3.4 Comparison of Rxs and Ryp at /sy = 5.02 TeV

Comparing the suppression of high pr hadrons between A—A and p—A collisions can distinguish
whether the suppression is initial state or final state effects. Figure 103 shows there is no
suppression in p—Pb collisions [77], while the strong suppression is observed in Pb—Pb collisions.
This demonstrates that the strong suppression observed in Pb—Pb collisions is not related to
initial state effect, but to the formation of hot and dense QCD medium.
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Figure 103: Raa, Rpa of 7% and 1 mesons
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7 ANALYSES FOR DIRECT PHOTON

7 Analyses for direct photon

Detailed descriptions for the direct photon ¥4 measurement by using measured 7° and 7 mesons
are described in this section.

7.1 Analysis strategy

First of all, the inclusive photon +"¢ spectrum has to be measured as :

AP N jine 1 1 dN 1 1 1
. z (27)

E = — X ——XPXx—XxX-xX ,

dp? 27 prdpr Ay Nev

where P is photon purity in the total number of clusters. The photon purity is estimated by a
data driven approach described in section 7.7.

Direct photons ¥4 are defined as produced photons not originating from hadron decays as
follows : .
,.Ydir _ ,Yinc _ ,ydecay _ ,Yinc . (1 _ R) 7 (28)
»

where v"¢ indicates inclusive photons and 74 denotes decay photons from hadrons. In order
to observe direct photon signals, it is convenient to introduce a variable R, which is the ratio
of inclusive photons yields to decay photons yields.

,yinc _ (’Yinc/ﬂ'o)data
,ydecay (’Ydecay/ﬂ-o)cocktail

R, = (20)

The 7% spectrum is inserted in R, because experimentally systematic uncertainties related to
the energy measurement cancel out in the ratio. The cocktail simulation (mixture of hadrons
which decay into photons such as 7°, 7, w, 7/, p and ¢ e.t.c.) is used to determine decay photon
yields. Thus, neutral mesons measurements described in the previous section are important
inputs to this cocktail simulation. Finally, if R, > 1, inclusive photon yields in data are larger
than decay photon yields, which means the excess of direct photon signals beyond decay photon
yields. If R, is consistent with unity within experimental uncertainties, upper limits at the 90%
confidence level (C.L.) are set. The invariant yield of direct photon is obtained by :

1— —

7 (30)

1 dzN,ydir 1 dszyinC ( 1 )
= X
21 Ney pr dpr dy 27 Ney pr dpr dy

In case of upper limits on direct photon yields at the 90% confidence level, mean data point +
1.28¢ is considered at each pr bin.
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7.2 Raw yields of clusters

At first, raw yields of cluster have been constructed as shown by Figure 104. Only the core-
dispersion cut was applied to clusters in pp and both CPV and core-dispersion cuts was used in

Pb—Pb collisions.
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Figure 104: Raw yields of clusters in pp and Pb—Pb collisions at /sy = 5.02 TeV
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7.3 Acceptance x reconstruction efficiency

The acceptance x reconstruction efficiency has been measured by the same procedure as neutral
mesons analyses, namely the single v simulation in pp and the embedded simulation (single 7
events + real underlying events) in Pb—Pb collisions. One should keep different active area of
the PHOS detector in different data taking periods in mind. As single v simulation on only the
PHOS detector was employed, there is no tracking information in single v simulation for pp case.
Thus, only the dispersion cut was applied to clusters in pp collisions for both data and M.C..
However, the CPV cut efficiency in pp collisions is close to 100% due to the low multiplicity
environment dé\gjh = 5 ~ 7 at mid-rapidity [68]. On the other hand, after embedding photons
into real underlying events, track matching between a cluster and a track was available in Pb—
Pb case. Late conversion electrons (v — eTe™ outside of TPC) are also considered as photon
signals, because they can not be rejected by the CPV cut. Efficiencies are plotted on Figure 105.
The higher efficiency is observed in peripheral collisions due to the small overlapping probability
between clusters, as expected.
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(a) The efficiency in pp collisions. (b) The efficiency in Pb-Pb collisions.

Figure 105: Acceptance x reconstruction efficiencies in pp and Pb—Pb collisions at /syn = 5.02
TeV

7.4 TOF cut efficiency

This is the same as the neutral mesons analysis, but corrected by 1/eTop.

7.5 'Trigger efficiency

This is the same as the neutral mesons analysis, but corrected by 1/etyg.

7.6 Feed down correction for K2 — %70 — 4~

Photons from strange hadron decays were subtracted based on PYTHIA and HIJING event
generator for pp and Pb-Pb respectively. K* /7% has been already tuned for the 7° measurement
explained in the previous section. They are about 5-6% at low pr and 2-3% at high pr.
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Figure 106: Feed down corrections from Kg in pp and Pb-Pb collisions at /syn = 5.02 TeV

7.7 Photon purity

In order to measure inclusive and direct photons spectra, the photon purity has been estimated
by a data driven approach. The definition of photon purity is a fraction of the number of photon
clusters in the total number of clusters.

7.7.1 Data driven approach for photon purity estimation

The total number of cluster N¢jyster can be expressed as Nejyster = Noyy+Nex + N+ + N+ + Np+
Np+ Ny + Np 4 Ngo + N+ N, + M. Tt is known that p/p ~ 1 in high-energy hadron collisions
[86] and N, ~ N, based on isospin symmetry. In this analysis, there are 4 independent PID
cuts (no PID, CPV, Disp, and CPV+Disp). Then, a system 31 can be constructed to estimate
particle composition in PHOS clusters.

Nan
Ncpv |
NDisp
Nbotn
1 Cch + C’nh 2 1 NA/
P P P P P P
%v C VCCll+€C Vo V_|_EC A £CPV N+
isp gglsp (Cch + Cnh) 26lesp DlSp Nﬁ
6SPV > EE‘SP (e CPVCCh + ECPVC ) X €£fp (gng + PV x 6191819 6CPV > EDlsp N+
(31)

where Cy, = 1 + K* /7% + p/7F (sum of relative 7%, K* and p contributions) and Cy, =
0.5 x K*/nt + p/n* (sum of relative K? and n contributions) as a function of pSUs*’ on
PHOS. &' is efficiency of PID cut i for particle X. Charged particles are identified by dE/dx
in TPC. It has been reported that electrons/positrons from semi-leptonic decays of heavy flavor
hadrons becomes larger at the higher collision energy at LHC [87], compared to RHIC. So,
electrons/positrons contributions has to be taken into account. Here, anti-protons contribution
is different from protons because of detector response. Protons behave as minimum ionizing
particles (MIP) in an electro-magnetic calorimeter. On the other hand, anti-protons can deposit
higher energy because of annihilation. Finally, N,, N =, Nj, N+ are obtained by solving system
31. Adding/removing C\, is considered as a systematic uncertainty of photon purity. To evaluate
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7 ANALYSES FOR DIRECT PHOTON

the CPV cut efficiency for charged particles, the mixed event technique was used to subtract
random matchings. The distance between a PHOS cluster in a current event and a charged
particle in another event is measured to make a random matching distribution (Figure 107).

Then, the CPV cut efficiency for charged particles (i.e. how many charged particles can survive
after applying the CPV cut) is defined as :

cpyv _ Number of entries beyond a criterion in the real matching distribution

€ , 32
ch Number of all entries in the real matching distribution (32)
and the dispersion cut efficiency for charged particles is defined as :
Disp Number of particles with Disp cut (33)
£ =
ch Number of charged particles without Disp cut
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Figure 107: The distance between a cluster on PHOS and a charged particle in pp collisions at
Vs = 5.02 TeV.

7.7.2 Photon purity in pp collisions at /s = 5.02 TeV

Figure 108 shows particle ratios on PHOS that are inputs for C., and Cyy,. Figure 109 shows
PID cut efficiencies for different particles. The matching criterion between a charged particle
with a cluster on PHOS is r < 20 for evaluation of the dispersion cut efficiency. Especially for
e, 0.8 < E/p < 1.2 was applied to get higher electron purity. To avoid statistical fluctuation
at high pr (pr > 4 GeV/c), each efficiency is fitted by constant and used as matrix elements.
The particle abundance on PHOS is summarized on Figure 110. The photon purity is 90 %
with the dispersion cut and 97 % with the CPV and the dispersion cuts at high pr. Electrons
and positrons converted from photons outside of TPC, so-called late conversion electrons, can

not be tracked, because there is no tracking detector there. Therefore, late conversion electrons
denoted by L.C. e* are treated as photon signals in M.C. truth.
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Figure 110: The summary of particle abundance on PHOS in pp collisions at /s = 5.02 TeV
for Cpp = 0.
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Figure 111: The summary of particle abundance on PHOS in pp collisions at /s = 5.02 TeV

for Cyp, = 0.5 x K+ /7% + p/7.
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13 7.7.3 Photon purity in Pb—Pb collisions at /syy = 5.02 TeV

The procedure is the same as the pp case.
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Figure 112: The summary of particle abundance on PHOS in 0-10% Pb-PDb collisions at /snN
= 5.02 TeV for C, = 0.
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Figure 113: The summary of particle abundance on PHOS in 0-10% Pb—Pb collisions at
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Figure 114: The summary of particle abundance on PHOS in 10-20% Pb-Pb collisions at /sNn
= 5.02 TeV for C,, = 0.
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Figure 115: The summary of particle abundance o
= 5.02 TeV for Oy, = 0.5 x K+ /7% + p/n*.

92

n PHOS in 10-20% Pb-Pb collisions at \/sNN



7 ANALYSES FOR DIRECT PHOTON

HIJING M.C. truth .y
ect
ot -

b— TK* §
*p ]
»— Lop E

on
— n
QKE
eLC.e"
eothers

Data DDA no PID cut HIJING DDA
1= PRI ; ——
E — —e—
[ € b 4 l * i ? —
10" :—Vv.':" R " 2 @ ;Lo +
E st e R v
E {‘u —— ° N f ®
r et K 4 pT®, e o
102 + . .* +

CPV 256+ CoreDisp25¢ T

E* - LI ¢ i g{”f RERS Fomm—stey ¢ Siee——4— E

gt T

Pb-Pb at VSNN =5.02TeV
centrality VOM 20 - 40 %

30 35 40

P (GeV/c)

[ (GeV/c)
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Figure 117: The summary of particle abundance on PHOS in 20-40% Pb—Pb collisions at /Sxn
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Figure 118: The summary of particle abundance on PHOS in 40-60% Pb—Pb collisions at /sSxn
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Figure 119: The summary of particle abundance on PHOS in 40-60% Pb—Pb collisions at /Sxn
= 5.02 TeV for Oy, = 0.5 x K+ /7% + p/n*.
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Figure 120: The summary of particle abundance on PHOS in 60-80% Pb—Pb collisions at /sSxn
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Figure 121: The summary of particle abundance on PHOS in 60-80% Pb—Pb collisions at /sSxn
= 5.02 TeV for Oy, = 0.5 x K+ /7% + p/n*.
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7 ANALYSES FOR DIRECT PHOTON

7.8 Photon cocktail simulation

The cocktail simulation is used to determine decay photon yield from hadrons. Measured pr
spectra of hadrons desctibed in section 6 are inputs to the cocktail simulation. Technically,
TPythia6Decayer in ROOT6 framework based on PYTHIA 6.4 [88] with flat pp, azimuthal
angle and rapidity distribution is used for decay simulation. The source of cocktail simulation
considered in this thesis is summarized in Table.6.

Non-measured particles (w and 7’) are scaled from the 7¥ spectrum using m scaling [89]. The

Table 6: Particles which decay into photons

Particle || mass (MeV/c?) | decay channel | branching ratio (%)

70 135 vy 98.8
vete™ 1.2
n 547 Yy 39.2
o o 4.8

vete™ 4.9 x 1073
w 782 70y 8.3

Ny 4.6 x 1074
n 958 vy 2.2
%y 29.1
wry 2.8

mr is called transverse mass which is defined by mt = 4/ pgr + m?2. The relation to the invariant
yield is:

1 d2N 1 d2N

prdprdy — mr dmrdy

The meaning of mr scaling is that particle yields at the same mt can be scaled from light
hadron yields (e.g. 750 for mesons or p for baryons) by a constant coefficient C},. Therefore,
one can write kinematic relation between 7 and particle of interest (h) as following:

2 2 _ 2 2
P+ My = P+ My

2 _ .2 2 2
DT = PT,p + M) — My

Finally, the invariant prt j spectrum for particle A can be obtained by:

fu(pr.n) = Ch % fw(\/p%,h +mj —m2)

where, f; represents parameterization of invariant pt spectrum of reference particle w. Typically,
w/m =0.85 [90] and 1’ /7" = 0.40 [88].

7.8.1 Cocktail simulation in pp at /s = 5.02 TeV
7.8.2 Cocktail simulation in Pb—Pb at ,/sxy = 5.02 TeV
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Figure 122: The decay photon cocktail in pp collisions at /s = 5.02 TeV
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Figure 123: The decay photon cocktail in Pb-Pb collisions at /s = 5.02 TeV centrality 0-10 %
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Figure 124: The decay photon cocktail in Pb-Pb collisions at /s = 5.02 TeV centrality 10-20
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Figure 125: The decay photon cocktail in Pb—Pb collisions at /s = 5.02 TeV centrality 20-40
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Figure 126: The decay photon cocktail in Pb-Pb collisions at /s = 5.02 TeV centrality 40-60
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Figure 127: The decay photon cocktail in Pb—Pb collisions at /s = 5.02 TeV centrality 60-80
%
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8 SYSTEMATIC UNCERTAINTIES FOR PHOTON MEASUREMENTS

8 Systematic uncertainties for photon measurements

Systematic uncertainties for photon measurements are summarized in this section. Systematic
uncertainties from the PID cut, the triggering, the global energy scale, the non-linearity, the
acceptance of the PHOS detector and the material budget are common with neutral mesons
measurements.

8.1 Photon purity

The systematic uncertainty of the photon purity is divided into two components. One is data
driven approach (DDA) method itself. This has to be evaluated in M.C., because the true particle
abundance is known. The other is due to the different assumption of the particle composition.

8.1.1 Data Driven approach method itself

The uncertainty due to the method itself was estimated by comparing photon purity between
M.C. truth and DDA in M.C., since the true particle abundance is known in M.C.. This was
performed in PYTHIA simulation (pp collisions) to avoid cluster overlappings under the high
multiplicity environment. As shown by Figure 128, it is found to be ~ 4% at low pr and almost
vanishes (0.2%) at high pr. The uncertainty of the DDA method itself is treated as common in
pp and Pb—Pb collisions.

0.5\\\‘\\\‘\\\‘\\\‘\\\\\\\\\\\\\\\\\\

pp at Vs =5.02 TeV
PYTHIA8 simulation (LHC17I3b)

0.45

0.4

0.35

0.3

0.25

0.2

relative syst. unc. of DDA method itself

0.15

0.1

N S—

EL Lol \“HAL A 1 I v | I

0 2 4 6 8 10 12 14 16 18
P, (GeV/c)

0.05

N HH‘HH‘HH‘HH‘HH‘H\\‘HH‘HH‘HH‘HH

0 0

Figure 128: Systematic uncertainties of the DDA method itself.

8.1.2 Different assumption of particle composition

In the DDA, the system 31 was constructed to obtain the number of particles on PHOS under
different assumptions of hadron contributions. This was evaluated by adding/removing neutral
hadron components in system 31. The deviation from unity in the ratio —1Rwity with Cyp

~ purity without Chy, 15
considered as the systematic uncertainty due to the different assumption.

8.2 Cocktail simulation

Mainly, there are two systematic uncertainties in the cocktail simulation. They are due to the
different input parameterization of the measured 7° spectrum and particle ratios.
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8 SYSTEMATIC UNCERTAINTIES FOR PHOTON MEASUREMENTS

8.2.1 Shape of input 7¥ spectrum

The input 70 spectrum is parameterized by TCM function described in the prevision section. In
order to take into account different parameterization, the measured 7° spectra in pp collisions at
Vs = 5.02 TeV is alternatively fitted by the modified Hagedorn function [29, 91, 92] developed
by the PHENIX collaboration at RHIC.

LT 4 (e (—( 2+ ) 34
a7 p(—(apr + bp7)) + . (34)
When a — 0 and b — 0, the modified Hagedorn function becomes the original Hagedorn function.
On the other hand, the modified Hagedorn function does not fit to 7° spectra measured for wide
pr range in central Pb-Pb collision at \/syn = 5.02 TeV due to a kink at pr =4 ~ 5 GeV/c.
In other wards, the TCM function is necessary for describing hadron productions for such wide
pr range in central Pb—Pb collisions. Hence, a simplified TCM-inspired function was tried for
alternative parameterizations of input 7° spectra.

d*o pT P\ "
Ed—ps:AeeXp (_Te> —|—A<1+ (35)

The systematic uncertainty due to different 7° paramterization was evaluated by the v/7° ratio
(7/ﬂﬂ)ah
(W/Fo)def
simulation is considered as the systematic uncertainty of the shape of the input =

in the cocktail
0

in the cocktail simulation. The deviation from unity in the double ratio
spectrum.
However, since (1+ 1;—23)_” is similar to the original TCM function, alternative parameterizations
for 7¥ spectra fitted by Eq. 35 give too small difference from default ones in Pb-Pb collisions.

Thus, the systematic uncertainty due to the shape of the input 7° spectrum in Pb—Pb collisions
is inherited from that in pp collisions. It is 4 % at low pt and decreases with pt down to 0.4 %.

8.2.2 Particle ratios

The uncertainty due to particle ratios are originating from measured particle ratios. The 7/7°
and w/7¥ are varied 0.50 + 0.02 and 0.85 & 0.15 respectively. As relative contributions to total
decay photon yields (15% for photons from 7 mesons and 2.5% for photons from w mesons) are
known, the relative systematic uncertainty can be analytically estimated as :

+0.02

% x 0.15 ~ +0.60% for photons decayed from 7 mesons (36)
+0.1
% % 0.025 ~ +0.44% for photons decayed from w mesons (37)

They were also estimated directly in the cocktail simulation, as shown on Figure 129, which
gives similar values to the analytical calculations, as expected. The uncertainty from n’/7° is
negligible, as the relative contribution of decay photons decayed from 7’ mesons to total the
decay photon is less than 1%.
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the cocktail simulation.
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Figure 129: Systematic uncertainties due to particle ratios in the cocktail simulation

8.3 Summary of systematic uncertainties for inclusive photons ¢

The summary of systematic uncertainties for inclusive photons "¢ is plotted in this section.

8.3.1 Summary of systematic uncertainties for ~™"

relative systematic uncertainty
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Figure 130: Systematic
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uncertainties for 4"¢ in pp collisions at /s = 5.02 TeV.
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7 8.3.2 Summary of systematic uncertainties for v"¢ in Pb—Pb collisions at /syy =
1448 5.02 TeV
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Figure 131: Systematic uncertainties for "¢ in Pb-Pb collisions at \/sny = 5.02 TeV for
centrality 0-10%.
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Figure 132: Systematic uncertainties for 4™¢ in Pb-Pb collisions at /sny = 5.02 TeV for
centrality 10-20%.
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Figure 133: Systematic uncertainties for "¢ in Pb—Pb collisions at /sxy = 5.02 TeV for
centrality 20-40%.
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w9 Results and discussions for photons

uso  Results toward the direct photons measurement are described in this section. Inclusive photon
ws1 spectra 4", 4 /70 ratios in data and cocktail simulation, R, which is the double ratio of
ws2 "¢ /70 and finally, direct photon spectra.

s 9.1 Results on inclusive photons "¢

1se  As a first step for the direct photons measurement, inclusive photon spectra have been measured
in pp and Pb—Pb collisions at /sxn = 5.02 TeV.
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(a) The production cross section of inclusive pho- (b) Invariant yields of inclusive photons in Pb-Pb
tons in pp collisions at /s = 5.02 TeV. collisions at /sy = 5.02 TeV.
Figure 136: Inclusive photons spectra in pp and Pb—Pb collisions at /sxny = 5.02 TeV.

1455

wse 9.2 Results on direct photons 4
s 9.2.1 ,yinc/ﬂ.[) ratio

1ss  Neutral mesons and inclusive photons have been measured as described in previous sections.
use  Secondly, the ratio of inclusive photon yields to ¥ yields are constructed in data and cocktail
uso  simulation from known sources respectively for pp and Pb—Pb collisions (Figure 137). The main
1s1  advantage of "¢ /70 ratio is to cancel out the systematic uncertainty of energy measurement,
ue2 namely global energy scale and non-linear response in M.C., that are dominant sources in the
uss PHOS detector.
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Figure 137: v"¢/7Y ratios in pp and Pb-Pb collisions at /sxy = 5.02 TeV.
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Figure 138: R, in pp and Pb-Pb collisions at /syn = 5.02 TeV.
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As plotted on Figure 138, R, becomes larger with the event multiplicity (i.e. central collisions)
at high pp. This is explained by the suppression of neutral mesons in central collisions, while
the direct photon is transparent probe for the QCD medium. Therefore, the excess of prompt
photons that are produced by initial hard scatterings between partons becomes significant at
higher pr in central collisions. R, for the pQCD NLO calculation is defined as :

(38)
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unn 9.2.3 Direct photon spectra

w72 Finally, direct photon spectra or upper limits at the 90% confidence level have been extracted as
173 shown by Figure 139. The pQCD calculation basically describes prompt photon yields at high
prt well in both pp and Pb—Pb collisions.
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Figure 139: Direct photon spectra in pp and Pb—Pb collisions at /sny = 5.02 TeV.
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9.2.4 Rap of direct photons

In this thesis, only upper limits on direct photon yields at the 90% confidence level have been set
at low pr. Nevertheless, a few data points on R, (Figure 138b) and the invariant yield of direct
photons (Figure 139b) in central collisions show larger value than the pQCD calculation at low
pr. Hence, it is interesting to see Raa of direct photons. As shown by Figure 140, direct photon
yields beyond the pQCD calculation which can describe prompt photon yields by a factor of up
to about 4 is observed at pr < 4 GeV/c. This can be interpreted as an indication of thermal
photon emissions from the hot and dense medium in central Pb—Pb collisions. Focusing on Raa
at high pr region, hadron yields are strongly suppressed, while it is consistent with unity for
direct photons. The resulting R emphasizes the observed strong hadron suppression is related
to final state effects due to the formation of hot and dense colored medium. Additionally, the
experimental fact that Raa of direct photons is consistent with unity at high pt proves successful
Glauber modeling in terms of the collision geometry.
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Figure 140: Raa of direct photons in Pb—Pb collisions at /sy = 5.02 TeV for centrality 0-10%.
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9.2.5 Effective temperature 1.5 extraction

The inverse slope of an exponential fit at low pr regime is interpreted as the average temperature
over all the space-time evolution. As written in the previous section ( 9.2.4), pr spectra of
prompt photons at high pr agree with the pQCD calculation, which justifies these measurements.
Moreover, there is indication of excess due to thermal emissions from the QGP at low pt beyond
the pQCD calculation in central Pb—Pb collisions (0-10%). Therefore, there is a possibility to
fit data points at low pp by the exponential function A x exp(—pr/Teg) and modified Hagedorn
function. Namely, the global fitting function is :

1 (iz ]\[Vdir
27 Ney pr dpt dy

2 —n
= A x exp(—pr/Tegt) + B X (1 + ZE) ; (39)
0

where parameters B, py and n for prompt photons at high p are fixed by the pQCD calculation
to reduce the number of degrees of freedom. So, free parameters are A and T.g. Both data points
and upper limits at the 90% C.L. are included in the fitting. The obtained effective temperature
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Figure 141: The pr spectrum of direct photons in Pb—Pb collisions at /sxy = 5.02 TeV for
centrality 0-10% and the TCM fit to data.

Tem is 345 & 222(total unc.) MeV in Pb-Pb collisions at /syn = 5.02 TeV for centrality 0-
10%. The statistical and systematic uncertainty of the Tog are not separated, because upper
limits on direct photon yields at the 90 % C.L. are set based on the quadratic sum of them.
For references, it has been reported that Tog = 239 + 25(stat.) £+ 7(syst.) MeV [30] via real
photons in 0-20 % central Au-Au collisions at /sy = 0.2 TeV at RHIC by PHENIX, and
Teg = 294 & 12(stat.) £ 47(syst.) MeV [31] in 0-20 % central Pb-Pb collisions at \/snn = 2.76
TeV with ALICE at the LHC.
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10 Conclusion

The measurement of neutral mesons and direct photons in pp and Pb—Pb collisions at /snn
= 5.02 TeV has been performed in ALICE with the PHOS detector. pr spectra and nuclear
modification factors Raa of 7° meson in 0.4 < pr < 35 GeV/c and i meson in 2.0 < pr < 16
GeV/c have been measured in pp and Pb-Pb collisions at /sxy = 5.02 TeV. This is the first
measurement of the suppression of 7¥ at such high pr regime. 7° and 7 mesons show the same
suppression pattern at pr > 4 GeV/c in all centrality classes. The suppression pattern between
n and KT mesons seems to be similar at low pr, though the uncertainty for n meson is large. It
is found that pr spectrum of 7° becomes harder than that at /sxy = 2.76 TeV in both pp and
Pb-Pb collisions. Nevertheless, the suppression of 7° meson in Pb-Pb collisions compared to
pp collisions is the same level between /sny = 2.76 and 5.02 TeV, which is by a factor of up to
8. This indicates the larger energy-loss at the higher collision energy. Comparing the light and
heavy flavor hadrons, namely 7 and D mesons, the suppression of D mesons at pt < 10 GeV/c
is weaker than that of 70, which is interpreted as the smaller energy-loss for charm quarks than
for up, down quarks. The suppression pattern of 1 meson seems to be similar to K* meson
consisting of a strange quark, though uncertainties for the 7 meson measurement is large.

The direct photon measurement is complicated due to the huge background of decay photons
from hadrons. By using measured pr spectra of 7°, 7 mesons and mr-scaled w(782), n'(958)
mesons as inputs to the cocktail simulation, decay photon yields have been estimated and sta-
tistically subtracted from inclusive photon spectra. Direct photon excess ratios I, show clear
prompt photon signals originating from initial hard scatterings at high pp. The prompt photon
production is described by the pQCD NLO calculation well in both pp and Pb—Pb collisions
at \/snn = 5.02 TeV. Direct photon spectra or upper limits at the 90 % of C.L. have been ex-
tracted up to pp = 30 GeV/c in central Pb—Pb collisions. The resulting Raa of direct photons
which is consistent with unity at high pr justifies the measurement and proves the successful
Glauber modeling for the collision geometry. Focusing on Raa of direct photon at low pr in
central collisions, a few data points show the excess beyond the pQCD calculation by a factor
of up to 4. This indicates thermal photon emissions from the hot and dense QCD medium. The
obtained effective temperature Teg is 345 & 222(total unc.) MeV in Pb-Pb collisions at ,/snn
= 5.02 TeV for centrality 0-10%. This is the first measurement and setting upper limits on the
direct photons in pp and Pb-Pb collisions at /sny = 5.02 TeV.
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s A Zero Suppression study in Run2

1556 A new noise reduction system has been introduced in PHOS readout since Run2. This is based
1557 on minimum sequence of samples (MINSEQ) in ALTRO chip [93]. MINSEQ is set to 3 samples
1558 in PHOS readout in Run2. It means data is readout only if consecutive ALTRO sample is longer
1550 than 3 samples. This mechanism successfully reduces noise by a factor of 3 ~ 4 compared to
150 Runl. Data size of noise scan was 2 ~ 3 kBytes in Runl, but it is 0.8 kBytes in Run2. ZS
1561 threshold is set to 3 ADC counts. However, ZS threshold is effectively increased due to MINSEQ.
1562 In order to test this effect, effective ZS threshold was varied in M.C. and tuned for reproducing
1563 standard cluster cut efficiency and PID cut efficiency. As shown by Fig.142, standard cluster
164 cuts play rolls only at E, < 1 GeV where an electro-magnetic shower evolution is not well
165 defined and ZS at 20 MeV can reproduce data very well (the best). Fig.143 shows that ZS at
20 MeV is the best again.

W
e

EH iy E ET b

Eue (G2V)

(c) M20 cut efficiency vs. E,

Figure 142: standard cluster cut efficiency as a function of photon energy. (12.5 MeV is default
value in M.C.) Note these cuts are not apply in my analysis.
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Figure 143: ~-ID cut efficiency as a function of photon energy. (12.5 MeV is default value in
M.C.)

1566

116



1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

B PP COLLISIONS AT /S = 5.02 TEV IN 2015

B pp collisions at /s = 5.02 TeV in 2015

The LHC provided proton-proton collisions at /s = 5.02 TeV in 2015 and 2017. ALICE took 100
M events (~ 2 nb™!) triggered by VOAND in November of 2015. On the other hand, as described
in section 3.1, ~ 10 times more VOAND events which corresponds to 19 nb~! were recorded in
2017. Although data in 2015 have been also analyzed, it is just considered as a “guideline” for
this thesis. This small pp data recorded in early period gave me a great opportunity to estimate
systematic uncertainties at early stage and allowed me to save my time for 2017 data analyses.
Hereafter, LHC15n represents pp data in 2015.

ALICE Performance, pp 2015, (s = 5.02 TeV
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o
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Figure 144: Integrated luminosity in pp collisions at /s = 5.02 TeV in 2015.

B.1 Date sets and QA
B.1.1 Date sets in pp collisions at /s = 5.02 TeV

run list in pp collisions at /s = 5.02 TeV in 2015 is following:

LHC15n

244628, 244627, 244618, 244617, 244542, 244540, 244531, 244484, 244483, 244482, 244481,
244480, 244453, 244421, 244418, 244416, 244411, 244377, 244364, 244359, 244355, 244351,
244343, 244340.

M.C. productions used in this analysis are following:
e LHC16h8a + LHC16kba PYTHIAS for LHC15n
e LHC16h8b + LHC16kbb PYTHIAG6 for LHC15n
e LHC16h3 PYTHIAS jet-jet for LHC15n

e LHCI17i7 single particle (7%, 1, v) simulation for LHC15n/0
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B.1.2 event selection

Following event cuts have been applied in order to select physics events both in data and M.C..
e physics selection to reject beam-gas interaction
e the number of charged track associated with primary vertex > 0
e pileup rejection by SPD

o |Zyix| < 10 cm

B.1.3 minimal cluster selection

e E > 0.2 GeV (to extract photon signal as much as possible at low energy)

e M02 > 0.1 cm is applied only E > 1 GeV (to extract photon signal as much as possible at
low energy)

e |TOF| < 12.5 ns in pp

As a first check of PHOS data, an average cluster energy and an average number of hits are
plotted (Fig.145). Average values stay stable in all runs.
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Figure 145: average cluster energy and number of hits in each run on PHOS in LHC15n.

B.1.4 70 peak parameters vs. run numbers

70 peak parameters are plotted (Fig.146) run-by-run to verify that PHOS was stable in this
period. As a result, M1,2,3 are all stable. Especially, 7 peak could not be seen well on M4,
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because M4 has limited detector acceptance. A peak position in M1,2,3 are consistent within
statistical error bar. There are poor statistics in some runs where 7 peak is not so clear.
Note that M4 was excluded from the beginning because a systematic uncertainty of material
budget is large in front of M4 due to TOF + TRD, which is not suitable for the precise photon
measurement.
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Figure 146: ¥ yield, peak position and sigma in each run in LHC15n.

B.2 Trigger QA

B.2.1 Distance between fired TRU channels and clusters
B.2.2 Energy distribution of matched clusters

B.3 Raw yield extraction

Unfortunately, 7 measurement was not possible due to the small statistics in LHC15n.

B.4 Acceptance x reconstruction efficiency

At first, peak positions and peak widths have been compared between data and M.C..

B.5 Trigger efficiency

PHOS trigger allows us to measure high energy photons/electrons efficiently in ALICE. An
energy threshold of PHOS LO trigger in LHC15n period was set to 3 GeV in sum of 4x4 FastOR.
Due to the poor TRU acceptance in LHC15n period, trigger efficiency ey, is saturated at about
0.28 £ 0.02 at high pr .
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Figure 147: The distance between fired TRU channels and cluster position in different module
for Eeuster > 3 GeV in LHC15n. Note that M4 is excluded from my analysis from the very

beginning.
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Note that M4 is excluded from my analysis from the very beginning.
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Figure 153: The rejection factor and trigger efficiency of PHOS LO trigger in LHC15n data.
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B.6 Timing cut

Timing cut (|TOF custer| < 12.5 ns) was applied at cluster level to reject clusters from other BCs.

Thus, TOF cut efficiency efficiency (eror) as a function of photon energy has to be measured.
where, N?é)g%er;d BC is the number of photons after TOF cut in the triggered BC and Ntaﬁgsered BC
is the number of photons in the triggered BC respectively. Then, histograms are filled with the

number of photons weighted by the inverse of eTor as a function of photon energy after TOF

cut. Since eror is measured as a function of photon energy, L s necessary at neutral
€TOF

XE
TOF
mesons level which are reconstructed from 2 photons.
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Figure 154: TOF cut efficiency as a function of photon energy in LHC15n data sample.

B.7 Feed down from strange hadrons

The same approach as in 2017 data was applied.

B.8 Systematic uncertainties in pp collisions at /s = 5.02 TeV in LHC15n
B.8.1 Yield extraction of neutral mesons

Fitting function, range and integration range were varied to estimate systematic uncertainty of
yield extraction. This estimation was performed by the fully corrected yields. R.M.S./mean
value in each pr bin is considered as the uncertainty of yield extraction.

e Fitting function [Gaussian,crystallball] for signal and [poll,pol2] for background
e Fitting range [0.06,0.22], [0.04,0.20], [0.08,0.24] GeV/c? for 7"
e Fitting range [0.40,0.70], [0.35,0.65], [0.45,0.75] GeV/c? for n

e Integration range [+30,420]

B.8.2 PID cut

No PID cut was applied in pp analysis.
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B.8.3 TOF cut

There were data taking period when a bunch space of each pp collision was 1000 ns which
was much wider than timing resolution of PHOS. These runs allow us to estimate systematic
uncertainty of TOF cut efficiency. The idea is defined by Eq.24. The deviation from unity in the
ratio is considered as a systematic uncertainty of TOF cut. It is found to be 4% from Fig.155
in KINT7 events recorded in LHC15n period, not depending on pr .
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Figure 155: The ratio of 70 yield in BS = 25 ns to one in BS = 1000 ns triggered by kINT7 in
pp collisions at /s = 5.02 TeV.

B.8.4 Feed-down correction

The systematic uncertainty of K /7 ratio in pp collisions at /s = 2.76 TeV is ~ 10% [61] at the
maximum. Therefore, the final systematic uncertainty of 7% yields from feed down correction is
0.3 ~ 0.6%, decreasing with pr .

B.8.5 Global energy scale

The same approach was performed as described in section 5.2.

B.8.6 Non-linearity of energy response

The peak position measured by PHOS depends on pt . This is due to pr slope of particle
spectrum and finite energy resolution of the PHOS detector. The important effect is, so called,
non-linearity of energy response. One has to tune non-linearity and reproduce peak position in
M.C. for efficiency calculation. However, it is too difficult to understand non-linearity response
which may come from APD response and/or light yield of a crystal in simulation. A simple

125



1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

B PP COLLISIONS AT /S = 5.02 TEV IN 2015

non-linearity model defined by Eq.40 to correct the measured energy was used in this analysis.

a

Ecorr:E'f(E)? f(E):l_Fm

(40)
where, Fcopy is corrected energy and E is energy before non-linearity correction. Parameters
a,b were varied in M.C. to find the best combination that can reproduce 7° peak position. The
ratio of 70 peak position in data to that in M.C. was fitted by a Oth-order polynomial function
and x?/ndf were obtained, shown on Fig.156. The best parameters are a = —0.06, b = 0.7.
Combinations (a,b) at x?/ndf < 2 were taken into account to estimate uncertainty of non-
linearity. The systematic ucertainty of non-linearity was estimated by R.M.S/mean value with
different nonlinearity function shown by Fig.157. The systematic ucertainty of non-linearity is
2% at low pp and deacring with pr (Fig.156b).
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(a) The correlation of a,b. (b) The systematic uncertainty of NL.

Figure 156: x2/ndf of fitting to the ratio of 7° peak position in data to that in M.C. at different
parameters a,b.

B.8.7 Acceptance of detector

The systematic uncertainty of acceptance was estimated by varying the distance to the bad
channel (0 cell or 1cell). 0 cell is default value in my analysis. The deviation from unity in the
ratio of corrected yield of 7 in different distance cut is considered as systematic uncertainty
of acceptance. The deviation from unity is 1.5% and this value is systematic uncertainty of
acceptance.

B.8.8 Material budget

This is common in all period and taken from section 5.9.

B.8.9 Summary of systematic uncertainties

Total systematic uncertainty is summarized on Fig.159.

B.9 Invariant differential cross section of 7
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Figure 158: The ratio of corrected yield in different distance cut.
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Figure 160: The invariant differential cross section of 7¥ .
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