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ABSTRACT

We present a 4 deg2 weak gravitational lensing survey of subhalos in the very nearby Coma cluster using the
Subaru/Suprime-Cam. The large apparent size of cluster subhalos allows us to measure the mass of 32 subhalos
detected in a model-independent manner, down to the order of 10−3 of the virial mass of the cluster. Weak-lensing
mass measurements of these shear-selected subhalos enable us to investigate subhalo properties and the correlation
between subhalo masses and galaxy luminosities for the first time. The mean distortion profiles stacked over
subhalos show a sharply truncated feature which is well-fitted by a Navarro–Frenk–White (NFW) mass model
with the truncation radius, as expected due to tidal destruction by the main cluster. We also found that subhalo
masses, truncation radii, and mass-to-light ratios decrease toward the cluster center. The subhalo mass function,
dn/d ln Msub, in the range of 2 orders of magnitude in mass, is well described by a single power law or a Schechter
function. Best-fit power indices of 1.09+0.42

−0.32 for the former model and 0.99+0.34
−0.23 for the latter, are in remarkable

agreement with slopes of ∼0.9–1.0 predicted by the cold dark matter paradigm. The tangential distortion signals in
the radial range of 0.02–2 h−1 Mpc from the cluster center show a complex structure which is well described by a
composition of three mass components of subhalos, the NFW mass distribution as a smooth component of the main
cluster, and a lensing model from a large scale structure behind the cluster. Although the lensing signals are 1 order
of magnitude lower than those for clusters at z ∼ 0.2, the total signal-to-noise ratio, S/N = 13.3, is comparable, or
higher, because the enormous number of background source galaxies compensates for the low lensing efficiency of
the nearby cluster.
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1. INTRODUCTION

The cold dark matter (CDM) concordance cosmology has
had considerable success in explaining various observations
on a large scale, such as the cosmic microwave background
(Komatsu et al. 2011; Hinshaw et al. 2013). It provides initial
conditions for the hierarchical structure formation involved in
the mass assembly histories of halos, for high-resolution N-body
simulations and analytical models. In hierarchical clustering,
less massive halos are accreted into more massive halos, which
are then subsequently eroded by effects combined with tidal
stripping and dynamical friction of the host halo, eventually be-
coming a smooth component. Since galaxy clusters are the most
massive virialized objects in the universe, the central regions of
subhalos have survived under the over-density field until the
recent epoch, and constitute their population. Numerical simu-
lations of, and analytic approaches to CDM predict that subhalo
mass functions at the intermediate and low mass scales follow a
power law, dn/d ln Msub ∝ M−α

sub with slopes of ∼0.9–1.0 (e.g.,
Taylor & Babul 2004, 2005a, 2005b; Oguri & Lee 2004; van
den Bosch et al. 2005; Diemand et al. 2004; De Lucia et al.
2004; Gao et al. 2004b, 2012; Shaw et al. 2006; Angulo et al.
2009; Giocoli et al. 2010; Klypin et al. 2011; Wu et al. 2013).

∗ Based on data collected from the Subaru Telescope and obtained from
SMOKA, operated by the Astronomy Data Center, National Astronomical
Observatory of Japan.

Observations of cluster subhalo properties, such as mass func-
tion and spatial distribution, provide us with a deeper under-
standing of the mass assembly history and are the most strin-
gent test of CDM predictions on scales of less than several
Mpc. A characteristic feature of the subhalo mass function is
also critically important to constrain the nature of dark matter,
because it depends on the particle mass of dark matter. Further-
more, a study of the correlation between galaxy properties and
subhalo masses, incorporating different data-sets, sheds impor-
tant insight on the physics of galaxy evolution associated with
dark matter. Thus, it is of paramount importance to measure
the mass function directly from observations without assuming
a relationship between dark matter and luminous matter and
the dynamical state of the system. It is difficult, though, to infer
the masses of subhalos from visible matter, such as galaxies, be-
cause assumptions about the mass distribution extending beyond
galaxies and dynamical state of the galaxies are required. In this
situation, weak gravitational lensing analysis plays an important
role. Weak lensing analysis measures a coherent distortion pat-
tern of background galaxy images caused by the gravitational
field of the system and thus avoids any of the assumptions men-
tioned above (e.g., Bartelmann & Schneider 2001). However,
the weak-lensing signal is obtained by averaging over a cer-
tain number of background galaxies, and thus, only the mass
information over a scale of several arcminutes is obtained. Pre-
vious weak lensing studies or joint strong- and weak-lensing
studies (Broadhurst et al. 2005; Okabe et al. 2010b, 2011,
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Figure 1. Cadence design for the Coma cluster subhalo survey. The horizontal
and vertical axes are R.A. and decl. with an offset distance from NGC 4874, in
units of arcmin. The data set name (Table 1) is indicated in the middle of each
pointing. The pointings have an overlap of 2 arcmin, with a total survey area
of 4.1 deg2. Hatched regions represent areas of archival data (core and sub). A
summary of the imaging data is shown in Table 1.

2013; Oguri et al. 2010, 2012; Umetsu & Broadhurst 2008;
Umetsu et al. 2010, 2011; Applegate et al. 2012; Hoekstra et al.
2012) mainly focused on clusters at redshift higher than approxi-
mately 0.15, because of good lensing efficiency and high-quality
imaging data obtained using wide-field cameras mounted on
ground-based telescopes, such as the Subaru Prime Focus Cam-
era (Suprime-Cam; Miyazaki et al. 2002) on the 8.2m Subaru
Telescope. However, it is very difficult to detect subhalos using
weak lensing analysis of clusters at z ∼ 0.2 with masses on
the order of 1012 h−1 M�, because the apparent truncation size
(∼0.′2–0.′5 or less) of these subhalos is too low to be detected in
the lensing signal. Stacking lensing studies for member galax-
ies help to overcome this disadvantage (Natarajan & Springel
2004; Natarajan et al. 2007, 2009; Limousin et al. 2005, 2007).
It computes lensing distortion signals centered around member
galaxies and, thus, is independent of lensing selections, which
increases an signal-to-noise ratio (S/N) in lensing signals due
to the large sample size. Hence, the stacking analysis enables us
to measure a mean mass of subhalos associated with member
galaxies. However, a correlation between the luminosity and
mass of the subhalos must be assumed to derive a subhalo mass
function and/or conduct statistical studies of subhalos.

Weak-lensing studies of very nearby clusters (z � 0.1) over-
come the problems described above. In contrast to weak-lensing
studies of clusters at z ∼ 0.2, there are three significant ad-
vantages in the analysis of dark matter subhalos. First, a large
apparent size enables us to easily resolve less massive subhalos
inside the clusters. Second, subhalos are sufficiently separated
from the main cluster center and other subhalos to ignore their
lensing contamination in subhalo mass measurements. Third,
a large angular scale provides a correspondingly large number
of background galaxies, which leads to low statistical errors
and compensates for low lensing efficiency to achieve a high
S/N. This last advantage also plays an important role in cluster

Table 1
Imaging Data

Namea Rc
b Vb Seeingc r̄∗

h
d

(min) (min) (arcsec) (arcsec)

coma10 24.5 13.75 0.93 0.48
coma11 24.5 13.75 0.65 0.34
coma12 24.5 13.75 0.63 0.32
coma13 24.5 13.75 0.63 0.31
coma14 24.5 13.75 0.65 0.33
coma20 24.5 14.75 0.75 0.39
coma21 24.5 13.75 0.59 0.29
coma22 24.5 13.75 0.75 0.39
coma23 24.5 13.75 0.63 0.33
coma24 24.5 13.75 0.57 0.28
coma30e 24.5 13.92 0.69 0.36
coma30f 24.5 13.92 0.67 0.35
coma31 24.5 13.75 0.61 0.30
coma32 24.5 13.75 0.71 0.37
coma33 24.5 13.75 0.83 0.54
coma34 24.5 13.75 0.70 0.36
coma41 24.5 14.58 0.72 0.38
coma42 24.5 14.58 0.72 0.38
coma43 24.5 13.75 0.76 0.40
coreg 42.0 · · · 0.81 0.41
subg 16.0 · · · 0.83 0.41

Notes.
a Data set.
b Exposure times in Rc and V bands, respectively.
c The seeing FWHM in unit of arcseconds, for Rc band.
d The median stellar half-light radius in unit of arcseconds, for Rc band.
eRc band data taken in 2011 March 1.
fRc band data taken in 2011 March 30.
g Data retrieved from SMOKA.

mass measurements. For example, the Coma cluster is at redshift
zc = 0.0236, with a large apparent size ∼7 times larger than that
of clusters at z ∼ 0.2. We thus use the area of 50–100 square
minutes or more in weak-lensing mass measurements of subha-
los with masses greater than ∼1012 h−1 M�. Indeed, Okabe et al.
(2010a) has demonstrated the power of weak-lensing analysis
of the Coma cluster and discovered less massive subhalos.

Here we report the results of a 4.1 deg2 weak gravitational
lensing survey of subhalos in the Coma cluster by 18 pointing
observations (Rc and V bands) using the Subaru/Suprime-Cam
to directly measure subhalo masses and their mass function.
This paper is a continuation of our previous work (Okabe et al.
2010a), which used archival Subaru/Suprime-Cam data with
the Rc band. The archival data covers the central and the south-
west regions (two pointings; see also Figure 1), with a total
area of ∼0.5 deg2. Our new data significantly improves the
quality of the weak-lensing analysis. First, the data covers an
area to the outskirts of the cluster, which enables us to study
the radial dependence of subhalo properties. Area fractions, for
the previous and new data, respectively, account for ∼10% and
∼80% within r200 inside of which the mean interior density
is 200 times the critical mass density at the cluster redshift.
Second, the exposure time is deeper than the effective one used
in the previous weak-lensing analysis (∼16 minutes; Table 1),
which increases the number of background galaxies and thus
suppresses the noise for the intrinsic ellipticity. Third, we
used two filters to secure the background galaxies, avoiding
contamination of unlensed member/foreground galaxies in our
shear catalog. Therefore, this new data enables us to conduct
a systematic survey for cluster subhalos for the first time. We
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describe the details of data analysis in Section 2, including
shape measurements, background and member selections and
modeling of background lensing signals. In Section 3, we define
the subhalos from lensing signals, measure model-independent
projected mass, conduct stacked lensing analyses and evaluate
systematic errors including the purity of the subhalo sample.
We also present a galaxy–galaxy lensing study for luminous
member galaxies in Section 4, which is complementary to
and independent of the analyses in Section 3. We describe
measurement of the main cluster mass in Section 5. Finally,
we discuss the subhalo mass function, subhalo properties, and
future studies in Section 6. The conclusions are stated in
Section 7. Throughout this paper, we use the cosmology of
Ωm0 = 0.27, ΩΛ = 0.73 and H0 = 100 h km s−1 Mpc−1. One
arcmin corresponds to 20 h−1 kpc.

2. DATA ANALYSIS

2.1. Survey Observation and Image Processing

We observed the Coma cluster using the Suprime-cam
(Miyazaki et al. 2002) at the Subaru 8.2-m telescope, in Rc and
V bands, in 2011 March and April. The Rc band data is used for
the wide-field weak lensing analysis, and combined with V band
data to minimize contamination of the member and foreground
galaxies in the shear catalog. The survey is covered by a mosaic
of 18 pointings, specifically, coma10. . . coma43, as shown in
Figure 1. Each pointing overlaps by 2 arcmin. The total survey
area is 4.1 deg2. A maximum projected radius from the brightest
cluster galaxy, NGC 4874, reached ∼100.′ which is comparable
to the cluster virial radius rvir (Section 5). The Rc band data of
coma30 was recollected due to the low number of background
galaxies. The typical exposure times for Rc and V bands are 24.5
and ∼14.0 minutes (Table 1). We also used two Rc imaging data
sets retrieved from Subaru archival data (SMOKA5).

We used the standard pipeline reduction software for the
Suprime-Cam, SDFRED (Yagi et al. 2002; Ouchi et al. 2004)
modified for the new CCD, for flat-fielding, instrumental dis-
tortion correction, differential refraction, point-spread-function
(PSF) matching, sky subtraction and stacking. The seeing for
each pointing is shown in Table 1. An astrometric calibration
was performed using point sources from the Two Micron All
Sky Survey catalog (Skrutskie et al. 2006). The typical residual
values are no larger than the CCD pixel size. Photometric cali-
bration was carried out by fitting point sources detected in each
data set with stars from Sloan Digital Sky Survey (SDSS) DR8
photometry (Eisenstein et al. 2011), taking into account the dif-
ference between their sensitivities. The archival data obtained
using the previous CCDs was reduced by the same procedure
using the SDFRED for the previous CCDs.

2.2. Weak Lensing Distortion Analysis

The weak lensing measurements follow Kaiser et al. (1995),
referred to as the KSB+ method, which uses the IMCAT package
with some modifications, similar to Umetsu et al. (2010),
Oguri et al. (2012), Okabe et al. (2013). Image ellipticity
is measured from the weighted quadrupole moments of the
surface brightness of objects detected in the Rc band imaging
data (Table 1). The anisotropic PSF correction is conducted in
the same manner as Okabe et al. (2010a, 2010b, 2011, 2013).
We select bright unsaturated stars in the half-light radius, rh,
and magnitude plane to estimate the stellar anisotropy kernel,

5 http://smoka.nao.ac.jp/index.jsp

q∗
α = (P ∗

sm)−1
αβ e

β
∗ , where P

αβ
sm is the smear polarizability matrix,

and eα is the image ellipticity. Quantities with an asterisk
denote those for stellar objects. Following the KSB method,
PSF anisotropy is corrected with the equation

e′
α = eα − P αβ

sm q∗
β. (1)

We estimate qα
∗ (θ ) at each galaxy position, θ , using a fitting

function of second-order bi-polynomials of the vector θ with
iterative σ -clipping rejection. The data region is then divided
into several rectangular blocks based on the typical coherent
scale of the measured PSF anisotropy pattern. A number of tests
were performed to assess the anisotropic PSF correction (see
details in Appendix A). To estimate systematic residuals caused
by imperfect PSF correction, we computed an auto-correlation
function for the stellar ellipticities and a cross-correlation
function for the ellipticities of galaxies and stars, before and
after the correction, respectively. Although the autocorrelation
and the cross-correlation functions for raw ellipticities before
the correction are highly corrected to the order of 10−5–10−4,
the residual/corrected ellipticities show no correlation, which
supports the accuracy of the anisotropic PSF correction.

Next, the isotropic smearing effect of galaxy images is
corrected to estimate the reduced distortion signal, gα ,

gα = (P −1
g )αβe′

β, (2)

where P
g

αβ is the pre-seeing shear polarizability tensor. The
measurement of P

g

αβ is very noisy for individual faint galaxies
because of its nonlinearity (Bartelmann & Schneider 2001),
which may result in a systematic bias in weak-lensing distortion
measurements. We therefore calibrate P

g

αβ using the following
procedures, in a similar way as Umetsu et al. (2010) and Oguri
et al. (2012). The polarizability tensor is first computed as a
scalar polarizability, (Pg)αβ = (1/2)tr[Pg]δαβ . We then compute
a median for (Pg)αβ in rg, with an adaptive grid to assemble
as uniformly as possible. Here, rg is the Gaussian smoothing
radius used in the KSB method. A sample of galaxies satisfies
the following conditions to suppress the noise: a detection
significance level of ν > 30, a size condition of rh > r̄∗

h + σ (r∗
h )

and rg > r̄∗
g + σ (r∗

g ) and a positive raw Pg. Here, r̄∗
h (σ (r∗

h )) and
r̄∗
g (σ (r∗

g )) are the median (rms dispersion) of half-light radii
and Gaussian smoothing radii for the stars selected above. We
interpolate the polarizability tensor for individual galaxies as a
function of rg. A similar interpolation for the absolute value of
the ellipticity, |e|, is also applied. We use galaxies for the shear
catalog with ν > 10 and the same size cut as in the calibration.
An rms error of the shear estimate, σg , is computed from 50
neighbors in the magnitude-rg plane. We also assign the weight
function for individual objects.

wg = 1

σ 2
g + α2

(3)

where α is the softening constant variance representing the
scatter due to the intrinsic ellipticity of the galaxies (e.g.,
Hoekstra et al. 2000; Hamana et al. 2003; Okabe et al. 2010b;
Umetsu et al. 2010; Oguri et al. 2012). We choose α = 0.4,
which is a typical value of the mean rms σg over the background
sample, In the limit of σg � α, individual galaxies are uniformly
weighted. On the other hand, noisy objects, such as fainter
objects, are less weighted.

To check shear calibration, we use a number of realis-
tic images for which the field-of-view is comparable to the
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Subaru/Suprime-cam (kindly provided by M. Oguri). The mock
images are generated with different seeing sizes (0.5–1.1 arcsec)
and the Moffat profile with power slopes 3 < β < 12, using
GLAFIC software (Oguri 2010), as described in Oguri et al.
(2012). We found that a multiplicative calibration bias, m and
an additive residual shear offset, c in Heymans et al. (2006)
and (Massey et al. 2007) are |m| � 0.03 and |c| � 2 × 10−4,
respectively, for our typical seeing ∼0.′′7.

We then combine the shear catalog constructed from individ-
ual images. For the overlapping regions, since the same galaxies
are detected in different images, we estimate weighted averages
of their position and shear with wg . We compared reduced shear
for 1.8 × 105 overlapping galaxies and confirmed that the de-
viation, Δgα = (−2.16 × 10−6 ± 6.6 × 10−4, 1.93 × 10−6 ±
6.6 × 10−4), is negligible. Using this approach, the number of
background galaxies is ∼6.7 × 105.

2.3. Photometry and Background Selection

A secure selection of background galaxies in the
color–magnitude plane was used because contamination by un-
lensed member or foreground galaxies in the shear catalog di-
lutes the weak-lensing signals, leading to an underestimation of
the gravitational lensing mass, mainly for the central regions
(Broadhurst et al. 2005; Okabe et al. 2010b, 2013).

Photometric catalogs were constructed from the mosaic im-
ages using SExtractor (Bertin & Arnouts 1996). The SExtractor
parameters are optimized for faint galaxies for shape measure-
ments. We compute the total magnitude for each object in the
AB-magnitude system using the MAG_AUTO parameter and
color using the MAG_APER parameter. For the color measure-
ments, we degraded the seeing to the worst image. The aperture
diameter for the MAG_APER parameter is 1.5 times the see-
ing FWHM. The overlapping galaxies serve as a monitor of the
offset in the magnitude. We introduced an additional parameter
in each data field to describe the offset using two magnitudes
and calibrated them simultaneously fitting bright objects with
magnitudes less than 22 mag. The measurement scatter for faint
galaxies (Rc > 24 mag) is typically less than 0.1 mag. The
magnitudes and colors for objects are estimated using weight-
ing measurement errors. We then match the shear and SExtractor
catalogs.

The red-sequence of member galaxies is fitted to a linear
function, using luminous galaxies (Rc < 18 mag). We then
define the background galaxies with colors redder than the red-
sequence in the magnitude range of 20 mag < Rc < 26 mag
(Figure 2). The number of background galaxies is reduced to
∼6 × 105 after the color cut but remains 30–60 times higher
than those of clusters at z ∼ 0.2, obtained by previous studies
using two path-band filters (Okabe et al. 2010b). The number
density, ng 	 41.3 arcmin−2, is also from two to eight times
higher than both those for clusters at z ∼ 0.2, and for our
previous analysis of the Coma cluster (Okabe et al. 2010a,
ng 	 23 arcmin−2). Thus, we can use a correspondingly large
number of background source galaxies for nearby cluster weak-
lensing analysis, for the following two reasons. First, since the
colors of red-sequence galaxies in clusters becomes more blue
with decreasing redshifts, the number of galaxies, with colors
are redder than those of member galaxies, increases. Second,
the large area encompassed by the nearby cluster increases
the number of background galaxies. Even if member galaxies
are contained in the background catalog, the dilution effect in
lensing signals could be ignored because the ratio of thousands
of member galaxies to the millions of background galaxies is

Figure 2. Color–magnitude diagram. The color shows the number of back-
ground galaxies in each pixel (0.1 × 0.1). The white solid line denotes the
red-sequence of member galaxies, fitted to a linear function for the bright
galaxies.

(A color version of this figure is available in the online journal.)

negligible. Thus, weak-lensing analysis of a nearby cluster has
a great advantage to compensate for low-lensing efficiency.

2.4. Mean Lensing Depth

Since the redshifts of individual galaxies in the shear catalog
are not available, we estimated the mean source redshift using
a statistical approach. The lensing signal depends on the source
redshifts through the distance ratio. As a reference, we used
the COSMOS photometric redshift catalog (Ilbert et al. 2009)
estimated by combining 30 broad, intermediate and narrow
bands. Because the Rc band is not available in the COSMOS
catalog, and we converted magnitudes from Rc to i ′ bands, based
on the filter sensitivities of the Suprime-Cam. The probability
function of redshift, dPWL/dz, for our background galaxies
selected by the color–magnitude plane (Section 2.3) is computed
by matching with the COSMOS photometric redshift, with a
statistical weight of wg . The mean distance ratio is given by

〈Dls/Ds〉 =
∫

zc

dzdPWL/dzDls/Ds, (4)

where Ds and Dls are the angular diameter distance to the sources
and between the cluster (lens) and the sources, respectively.
We obtain 〈Dls/Ds〉 = 0.9554. The mean source redshift,
〈zs〉 = 0.61, is slightly lower than that (〈zs〉 ∼ 0.7–0.8) for
clusters at z ∼ 0.2 (Okabe et al. 2013), because we include
many background galaxies at lower redshifts. The mass estimate
for nearby systems do not strongly depend on the redshift
distribution of background sources.

2.5. Luminous Member Galaxies

We defined luminous member galaxies identified in spectro-
scopic observations in order to compare the mass properties.
Luminous galaxies with a magnitude brighter than i ′ < 18 mag,
were retrieved from SDSS DR8 (Eisenstein et al. 2011), in
a 4 × 4 deg2 region centered on NGC 4874. Furthermore,
member galaxies were selected within the redshift range of
|z − zc| < σv(1 + zc)/c and σ = 3000 km s−1, where c is the
velocity of light. To complete the catalog of member galaxies
on the bright end, we also checked the redshifts of galaxies in
NED.6 If they satisfied the above conditions, they were added
to the catalog. Luminosities of individual galaxies are estimated
from apparent magnitudes using the k-correction for early-type
galaxies, assuming a single redshift of zc.

6 http://ned.ipac.caltech.edu/
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2.6. Model of LSS Lensing

Weak-lensing mass measurements for clusters at low redshift
suffer from lensing signals of background galaxies between the
cluster and the source redshifts, referred to as uncorrelated large-
scale structure (LSS) lensing. The three-dimensional, inhomo-
geneous mass distribution causes a locally strong shear pattern,
which potentially gives biases in detection and mass measure-
ments of localized objects, such as subhalos. We therefore quan-
tified the uncorrelated LSS lensing effect on each galaxy in the
shear catalog, using the luminosity and photometric redshift
retrieved from SDSS DR8 (Eisenstein et al. 2011), following
Okabe et al. (2010a). Galaxies are selected with magnitudes
i ′ < 24 mag and photometric redshifts between the cluster,
zph − zc > δz = σv(1 + zc)/c 	 0.01, and the source redshift,
where zph is the photometric redshift of each galaxy. Galaxies
spectroscopically identified as member galaxies (Section 2.5)
were excluded. Masses of individual galaxies are estimated us-
ing galaxy–galaxy lensing results from SDSS data Guzik & Sel-
jak (2002). Using the mass-to-light ratio in each band (u′g′r ′i ′z′)
derived by stacked lensing analysis of galaxies, the luminosity
is converted into the mass. The masses estimated with different
bands are used to cross-check and calibrate systematic errors
in the mass–luminosity scaling relation utilized here. Since un-
correlated LSS lensing is obtained by integrating the effect of
light deflections due to galaxies at different redshifts along the
line-of-sight, the best-fit scaling relations in mass estimates for
individual objects were used in order to quantify an average LSS
lensing effect. The interior mass structure of each halo is as-
sumed to be a universal mass profile found in numerical simula-
tions, referred to as Navarro–Frenk–White (NFW; Navarro et al.
1996, 1997). The NFW mass model is described by two param-
eters: the mass and concentration (see details in Appendix D). It
is well known that there is a correlation between mass and halo
concentration (Bullock et al. 2001) predicted by the hierarchi-
cal structure formation scenario. We use the mass-concentration
relation obtained from recent numerical simulations based on
WMAP5 cosmology parameters (Duffy et al. 2008) to describe
the internal structure. The tangential distortion signals of indi-
vidual galaxies are computed on all source galaxies. We found
that the shear estimated in the r ′ band is consistent with that in
the z′ band, but the estimates in the u′g′i ′ bands are systemati-
cally different, as found in Okabe et al. (2010a). The LSS lensing
model based on the galaxy–galaxy lensing result is therefore de-
fined with g(LSS)

α = (gr ′
α +gz′

α )/2. If groups or other clusters exist
behind the cluster, this model would fail to incorporate those ef-
fects. Since this would bias the mass measurement of the main
cluster, this is considered separately in Sections 3.4.1 and 5.
The LSS lensing model allows us to statistically estimate the
lensing signals of real background structure from the observing
data and the LSS bias in the mass measurement. We thus use
the LSS lensing model for the main analysis of this paper.

We also conduct the cluster and subhalo mass measurements
taking into account the error covariance matrix of uncorrelated
large-scale structure along the line-of-sight, (e.g., Schneider
et al. 1998; Hoekstra 2003; Umetsu et al. 2011; Oguri et al.
2010; Oguri & Takada 2011; Okabe et al. 2013), instead
of the above LSS lensing model. The LSS error covariance
matrix is estimated from the weak-lensing power spectrum (e.g.,
Schneider et al. 1998; Hoekstra 2003) with WMAP7 cosmology
(Komatsu et al. 2011). Since we fully take into account both the
LSS error matrix and the statistical noise caused by the intrinsic
shapes of the galaxies and the noise in the shape measurement,
this approach is complementary to the LSS lensing model.

Table 2
Known Background Systems Appearing in the Mass Maps

IDa Name zphot
b Reference

A MaxBCG J195.08820+26.78870 0.162 Koester et al. (2007)
B GMBCG J195.47315+26.95810 0.219 Hao et al. (2010)
C MaxBCG J195.47907+27.16429 0.208 Koester et al. (2007)
D GMBCG J195.34791+29.07201 0.189 Hao et al. (2010)
E MaxBCG J195.34617+29.18616 0.170 Koester et al. (2007)
F NSC J125939+290715 0.189 Gal et al. (2003)
G GMBCG J193.96542+28.51557 0.257 Hao et al. (2010)
H MaxBCG J193.92901+28.76123 0.259 Koester et al. (2007)
I SDSSCGB 06685 0.183 McConnachie et al. (2009)
J WHL J125535.3+273104 0.418 Wen et al. (2009)

Notes.
a The identification of background systems in Figure 3.
b Photometric redshifts.

However, the statistical error is dominated in subhalo mass
measurements (see Section 3.4.2), and it is difficult to identify
real background structure using the error matrix.

3. WEAK-LENSING ANALYSIS FOR SUBHALOS

3.1. Projected Distributions of Mass and Baryons

We first make maps of the lensing convergence field (κ(θ)),
luminosity (l(θ)) and number density (n(θ )) of member galaxies
and the model of the LSS lensing signal (κLSS(θ )). In order to
identify subhalos in a model independent way, the projected
mass distribution is reconstructed following Kaiser & Squires
(1993) with a Gaussian smoothing kernel. The details of
map-making are explained in Appendix B. We adopt various
smoothing scales in the range of rsm = 1, . . . , 5 arcmin, stepped
by 0.1 for 1–2 arcmin and 0.2 for 2–5 arcmin, to optimize
the detection of subhalos with various mass properties. The
definitions of subhalos are described in the next subsection. We
present here the correlation between mass and luminous matter
on the projected distribution.

Figure 3 shows the significance map, ν, defined by κ/σκ ,
with a smoothing scale of FWHM = 4.′ (rsm = 2.′4), where
the reconstruction error, σκ , is calculated over local background
galaxies (see Appendix B) where a typical value in this smooth-
ing scale is σκ 	 7.7 × 10−3. The LSS lensing model was not
taken into account. The mass distribution in the central region, in
which two cD galaxies NGC 4874 (α, δ) = (194.◦898, 27.◦959)
and NGC 4889 (195.◦034, 27.◦977) exist, is elongated in the east
and west directions. Clumpy structures are found everywhere,
but anisotropically distributed. In particular, the projected dis-
tribution of clumpy structures is concentrated 30–60.′ south-
west of NGC 4874. Some clumpy structures are associated with
background groups in the literature (letters in Figure 3 and
Table 2).

The left and middle panels of Figure 4 show maps of
luminosity and the number density of member galaxies, overlaid
with the contours of the projected mass distribution. The mass
and galaxy distribution are clearly correlated with each other.
The right panel of Figure 4 is the convergence map of the LSS
lensing model. The S/Ns of the LSS lensing map are at most
0.4σ , and thus, the LSS lensing effect accounts for a small
fraction of the observed signal. However, the LSS model fails
to describe the lensing signals around some groups behind the
cluster (Table 2). The reason is likely that the estimation of the
LSS lensing effect is based on galaxy–galaxy lensing which
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Figure 3. Projected mass distribution with a smoothing scale of FWHM = 4.′ and units of significance of ν = κ/σκ . The shear is used without taking into account the
LSS lensing effect. The contours of significance start at 1σ with a step value of 1σ . The letters and numbers denote the names of known background systems (Table 2)
and the names of subhalos (Table 3), respectively.

(A color version of this figure is available in the online journal.)

fails to take group-scale or cluster-scale structures into account.
This is further elaborated in the Section 3.4.1.

To quantify the correlations shown in the maps, we compute
the pixel-to-pixel coefficients between the mass maps (κ(θ))
and the luminosity (l(θ)) and density (n(θ)) maps for member
galaxies. The resultant coefficients for both 〈κl〉 and 〈κn〉 change

from 0.57 ± 0.08 (7σ ) to 0.16 ± 0.02 (8σ ) with a decrease in
spatial resolution. Here, the errors are estimated by bootstrap re-
sampling with 200 realizations of κ maps, describing that noise
peaks are accidentally correlated with smoothed luminous dis-
tributions. In short, the correlation between mass and member
galaxy distributions is at the level of 7σ–8σ . We also computed
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Figure 4. Luminosity map for member galaxies spectroscopically identified in the SDSS DR8 and NED catalog (i′ < 18; Section 2.5). The contours of the lensing
κ-field are overlaid in units of 1σ reconstruction error (Figure 3), without taking the LSS lensing model into account. Middle: density map for member galaxies. Right:
mass map of the LSS lensing model estimated from galaxy–galaxy lensing using photometric redshifts and luminosities for individual galaxies (Section 2.6).

(A color version of this figure is available in the online journal.)

the coefficients between the mass map and the LSS lensing
map (κLSS(θ)), and found high correlation, 0.51 ± 0.08 (6σ ) for
rsm = 5.′ and 0.28 ± 0.02 (14σ ) for rsm = 1.′, respectively. The
significance level is higher with an increase in resolution, indi-
cating that the LSS lensing signal caused by small background
objects creates a local shear pattern.

As shown in Figure 5, the X-ray surface brightness distribu-
tion of ROSAT X-ray satellite shows an elongated X-ray distri-
bution in the central region and an excess X-ray flux associated
with the NGC 4839 group in the southwest direction (Briel
et al. 1992; White et al. 1993; Neumann et al. 2001). Mass con-
tours are overlaid with a smoothing scale of FWHM = 8.′33 to
compare with the diffuse emission detected with a large PSF
of the ROSAT. Although the diffuse X-ray emission from the
NGC 4839 group is associated with a clumpy mass structure,
all mass structures are not necessarily correlated with X-ray
features. This point is further discussed in Section 6.6.

3.2. Selection and Mass Measurements of Subhalos

We explore, in a model-independent way, subhalo candidates
by finding peaks in the mass maps reconstructed using several
smoothing scales. As described in Section 3.1, maps of the
observed lensing signals are correlated with those of the LSS
lensing model (Figure 4). In order to securely identify cluster
subhalos and accurately measure their masses, it is crucial to
minimize the contamination by the LSS lensing effect. We
therefore calibrate the reduced shear with an approximate form
of g(corr)

α = gα − gLSS
α to eliminate the LSS lensing effect along

the line-of-sight as much as possible. Mass reconstructions are
then repeated using the calibrated shear catalog.

Subhalo candidates with peaks above a threshold in the
mass maps are selected. The mass maps are represented as the
convolution of the lensing distortion pattern of a cluster mass
distribution with smoothing kernels. Therefore, the Gaussian
smoothing scales used for the mass reconstruction vary from
1.′ to 5.′ in order to optimize for the detection of subhalos with
various mass properties. Here, the pixelized κ field changes
slightly using the reconstruction kernels, similar to top-hat or
wavelet filters.

We use a significance level, ν ≡ κ/σκ , for the selection
of subhalo candidates, where κ and σκ are the dimensionless
surface mass density and the reconstruction error, respectively.
Since the variance and skewness of the ν histogram in the
pixels depend on the smoothing scale, we identify subhalo
candidates above a threshold set at three times the standard
deviation. The threshold of significance in the highest resolution
corresponds to ν > 3.4. We first identify subhalo candidates at
various smoothing scales. Then, two peaks appearing between
two different smoothing scales are matched with the condition
d < FWHM, where d is the distance between the two peaks
which appeared in different scales, and FWHM is the full width
and half the maximum of the larger smoothing scale. This
process results in 49 subhalo candidates. We note that Okabe
et al. (2010a) used a mass map with single smoothing scale
(FWHM = 2.′) and applied the lower threshold. Therefore, two
of the seven subhalo candidates in the previous paper (Okabe
et al. 2010a; numbers 6 and 8) are below a more conservative
threshold of this analysis.

Since we minimized the LSS lensing contribution by applying
the galaxy–galaxy lensing model, eight known background
objects (Table 2) are below the thresholds selected. However,
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Figure 5. X-ray surface brightness distribution in the 0.1–2.4 keV band from
ROSAT X-ray satellite. The contours of the mass map are overlaid with
FWHM = 8.′3, taking into account the LSS lensing model. The contour level
starts at 1σ and increases in steps of 1σ .

(A color version of this figure is available in the online journal.)

the model does not perfectly describe the full LSS lensing
effect. Three other peaks associated with the known background
objects (Table 2) are detected with the above conditions. One is
the background object “I” and two peaks are around the object
“F” (see Figure 3). These objects are likely to be groups because
the lensing signals are stronger than what is expected from the
luminosity of a single galaxy. Furthermore, there is a possibility
that background groups are accidentally superimposed with
cluster subhalos, giving a systematic bias on mass estimates
of subhalos. This point is discussed in Section 3.4.1.

Next, we measure the model-independent projected masses
(Clowe et al. 2000, see also Appendix C) for shear-selected
subhalo candidates. This measurement has several important
advantages. First, a large number of background galaxies are
available, because a projected mass within a circular aperture
radius is computed by integrating source galaxies outside the
radius. The measured projected mass is a cumulative function
of radius. Thus, this approach suppresses the random noise
relevant to the intrinsic ellipticity, compared to a tangential
distortion profile, which averages the tangential component
of all background galaxies residing in radial bins. Second,
since the measurement subtracts the background mass density

surrounding subhalos, the contribution of the main cluster
mass distribution to subhalo masses is excluded. Third, the
mass density of subhalos is expected to be close to zero
outside of the tidal radius, and the measured aperture mass
corresponds to the subhalo mass itself. If the mass density
profile follows the universal NFW profile (Navarro et al. 1996,
1997) without any truncation radii, the aperture mass is higher
than the spherical one (Okabe et al. 2010b). As expected from
tidal destruction, the radial profile of the projected mass is
saturated outside the truncation radii, rt. We measure projected
masses for all the candidates. Since the smoothing kernel for
the mass reconstructions gives rise to centroid uncertainties of
the candidates, we determine the central position by choosing
maximal lensing signals within a 8.′ × 8.′ box where the center
is aligned with the map peak position. For accurate mass
measurements of subhalos with a variety of sizes, it is important
to explore truncation radii where the projected mass profile is
saturated. We systematically compute projected mass profiles
by changing the background annulus and then statistically
determining the truncation radii. Here, the inner radius changes
from 0.′7 to 14.′5 in steps of 0.′2 and the width is fixed at 3.′. The
projected mass M2D is computed from saturated values, taking
into account the error covariance matrix. The measurement
method is detailed in Appendix C. The same analysis was
repeated for different background widths which showed that the
result does not significantly change. Mass measurements used a
considerably large number of source galaxies (4×103–2×104).
The number is comparable or less than that for main clusters at
z ∼ 0.2 (e.g., Okabe et al. 2010b) for which the background
number densities are ng ∼ 5–20 (arcmin−2). Less massive
subhalos which are detected inside more massive ones should
be excluded in order to avoid double-counting these subhalos.
We count the ith subhalo using two conditions of the radius
rt,i > rt,j and the subhalo mass M2D,i > M2D,j (i �= j ). The
number of candidates is then reduced from 49 to 39 using this
procedure. As mentioned above, the LSS model fails to fully
explain the lensing signals of background systems, especially on
group scales. Furthermore, since there is a possibility to detect
mass structures behind the cluster, we conservatively select the
candidates hosting spectroscopically identified member galaxies
within their truncation radii as the cluster subhalos. Having
applied these limitations, 32 peaks are identified as dark matter
subhalos. Three candidates are associated with the background
systems (Table 2). Four candidates have no optical counter:
they are located around ∼70.′ in the south-east direction and the
north-west direction, respectively.

These 32 subhalos are labeled by integers, in the order of
right ascension. The resulting subhalo masses, M2D, range
from ∼2 × 1012 h−1 M� to ∼5 × 1013 h−1 M� (Table 3).
As shown in Figure 6, the radial profiles of the projected mass
clearly show saturation at some outer radii. The subhalos are
widely distributed from the northeast to the southwest in the sky
(Figure 3). Interestingly, the direction connecting between the
Coma cluster and A1367 which are parts of the Coma superclus-
ter (Gregory & Thompson 1978) agrees roughly with the sub-
halo distributions. Several massive subhalos are associated with
well-known, spectroscopically identified groups in the cluster
(e.g., Mellier et al. 1988; Adami et al. 2005). Galaxies or groups
associated with subhalos are summarized with references in
Table 3. The cD galaxies, NGC 4874 and NGC 4889, are as-
sociated with subhalos “21” and “24,” respectively. The mean
mass ratio reported in this paper compared to the previous pa-
per for overlapping subhalos is 〈Mnew/Mold〉 = 1.02 ± 0.54.
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Table 3
The Properties of Subhalos

IDa (R.A., Decl.)b M2D
c νd Representative Galaxiese

(deg) (1012 h−1 M�)

1f (193.885, 27.505) 15.42 ± 2.79 5.98 NGC 4807
2 (194.011, 27.685) 8.79 ± 4.69 3.55 NGC 4816 Grouph

3 (194.197, 27.763) 3.71 ± 1.08 4.61 SDSS J125645.42+274638.0
4 (194.232, 27.053) 2.89 ± 1.08 3.51 SDSS J125647.00+270324.9
5 (194.298, 27.360) 5.00 ± 2.34 3.86 2MASX J12571076+2724177
6 (194.355, 27.660) 2.52 ± 1.27 4.45 G12 Groupk

7 (194.361, 28.187) 5.99 ± 2.84 3.80 UGC08071, 2MASX J12572841+2810348
8 (194.372, 27.380) 1.87 ± 0.73 3.54 2MASX J12573148+2723048
9 (194.381, 27.493) 12.11 ± 2.52 6.45 NGC 4839 Grouph, G4 Groupi, NGC 4842, X-ray subhalom

10 (194.477, 28.507) 3.24 ± 0.75 3.42 2MASX J12575392+2829594
11 (194.572, 27.745) 4.13 ± 0.85 4.03 2MASX J12581922+274543
12 (194.579, 27.846) 2.02 ± 0.78 3.87 SDSS J125818.20+275054.5
13 (194.597, 27.101) 2.70 ± 0.77 3.61 2MASX J12581552+2705137
14 (194.640, 27.623) 4.51 ± 1.27 3.53 NGC 4853
15 (194.656, 27.905) 2.96 ± 1.44 6.90 NGC 4839 Grouph

16 (194.659, 26.738) 5.03 ± 1.06 4.19 SDSS J125839.93+264534.2
17 (194.718, 27.825) 3.13 ± 0.74 4.94 G9 Groupi, SA 1656-030j

18 (194.732, 27.759) 6.48 ± 2.03 4.47 G8 Groupi

19 (194.790, 28.288) 4.66 ± 1.26 4.74 SDSS J125914.99+281503.6
20 (194.879, 28.062) 2.90 ± 1.58 4.16 2MASX J12593141+2802478
21 (194.882, 27.936) 4.29 ± 1.06 7.23 NGC 4874(cD),part of G1 Groupi, X-ray subhalo 2l

22 (194.895, 28.511) 4.50 ± 1.90 3.54 2MASX J12594129+2830257
23 (194.971, 27.837) 3.75 ± 1.04 4.26 J194.9353+27.83393k, SA 1656-054j,X-ray subhalo 3l

24 (195.052, 28.005) 5.20 ± 2.40 4.71 NGC 4889(cD), part of G1 Groupi X-ray subhalo 1l

25 (195.086, 28.542) 3.86 ± 0.95 3.93 2MASX J13002268+2834285
26 (195.111, 28.654) 2.75 ± 0.79 4.43 SDSS J130037.14+283950.9
27 (195.115, 28.080) 4.28 ± 1.74 6.24 SDSS J130030.95+280630.2,part of G7 Groupi

28 (195.155, 28.331) 5.70 ± 1.68 3.68 NGC 4896
29 (195.220, 28.010) 3.64 ± 1.30 4.31 NGC 4908, NGC 4908 Group
30 (195.300, 28.558) 3.12 ± 0.66 4.03 SDSS J130114.96+283118.3
31 (195.325, 27.830) 2.97 ± 1.42 3.41 G4 Groupi, NGC 4919
32g (195.421, 29.054) 45.95 ± 7.57 8.35 G15 Groupi,IC 4088,2MASX J13014399+2859587

Notes.
a Subhalo name.
b Weak-lensing center in units of deg.
c Subhalo mass in units of 1012 h−1 M�.
d Maximum signal-to-noise ratio appearing in the mass maps (κ).
e Name of representative galaxies or optical groups.
f Possibly an overlapped background structure, WHL J125535.3+273104 (Table 2).
g Possibly an overlapped background structure, GMBCG J195.34791+29.07201 (Table 2).
h Mellier et al. (1988).
i Adami et al. (2005).
j Conselice & Gallagher (1999).
k Adami et al. (2009).
l Andrade-Santos et al. (2013).
m Briel et al. (1992).

We also measured the projected masses for two subhalos with
peaks below the threshold in this analysis. The mean mass ratio
is 〈Mnew/Mold〉 = 0.74 ± 0.66. Since the number density of
background galaxies in the previous analysis is about half of
that reported in this analysis, we cannot rule out the possibility
that these peaks are actually above the threshold.

3.3. Stacked Lensing Analysis for Subhalos

Next, we conducted a stacked lensing analysis for the subhalo
candidates, which is complementary to the projected mass
measurement. The power of the stacked lensing technique is
to reduce the random noise due to intrinsic ellipticities by
increasing the number of source galaxies. Tangential profiles,
even for small and less massive subhalos, can be computed

and their average parameters can be determined with lower
measurement errors.

We first divide the subhalos into three subsamples based
on the model-independent projected masses of M2D � 4.6 ×
1012 ×1012 h−1 M�, 4.6×1012 h−1 M� �M2D � 1013 h−1 M�
and 1013 h−1 M� � M2D. The mass thresholds are chosen by
a subhalo mass function which is described in Section 6.1.
The number of subhalos are 21, 8, and 3, progressing from
less massive to more massive subhalos. Figure 7 shows that
the tangential component is positive (top panel), and the 45◦
rotated component is positive and negative in random order
(bottom panel). The mean of the 45◦ rotated component over
the radial range is consistent with a null signal, within the
error of the mean. A sharply truncated feature is found in the
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Figure 6. Radial profiles of projected mass for subhalos, showing that the masses are saturated at their outer radii. Numbers in the top-left corner denote subhalo
names (see also Figure 3).

stacked signal of the tangential profile. Outside the breaks, the
profiles are proportional to θ−2, which indicates that the mass
density becomes zero. We emphasize that such a feature was
not found in massive clusters (e.g., Okabe et al. 2010b, 2013)
but was identified in the stacked lensing profile for subhalos
in our previous paper (Okabe et al. 2010a). We did not apply
any rescaling procedures to the radial bins corresponding to
the lensing signals, because this mass weight scheme biases

the mass estimates, as described by Okabe et al. (2013).
Here, an off-centering effect (Yang et al. 2006) in the lensing
signals from the main cluster mass is negligible because the
mean projected distance from the cluster center is much larger
than the maximum radius for the plots. The stacked lensing
profiles are then fit with NFW, TNFW and TNFWProb models
(Appendix D). Here, the TNFW model is a truncated NFW
(Takada & Jain 2003; Okabe et al. 2010a). The TNFW model
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Figure 7. Mean distortion profiles obtained by azimuthally averaging the measured galaxy ellipticities for 32 subhalos. The subsamples are selected with model-
independent projected masses. Left: 21 subhalos with M2D � 4.6×1012 h−1 M�. Middle: 8 subhalos with 4.6×1012 h−1 M�< M2D � 4.6×1012 h−1 M�. Right:
3 subhalos with 10 × 1012 h−1 M�� M2D. The profile slopes drastically change at the truncation radii. The red solid, green dashed, and blue dotted curves are the
best-fit TNFW, TNFWProb, and NFW models, respectively. The NFW and TNFWProb models adequately describe a sharp truncation, while the NFW model for less
massive (left) and massive (right) subsamples is strongly disfavored. The best-fit truncation radius increases with an increasing mass of the subsample.

(A color version of this figure is available in the online journal.)

Table 4
Best-fit Mass Parameters for TNFW and TNFWProb Models for Lensing-selected Subhalos

Sub-samplea Nsub
b Msub

c rt
c 〈Msub〉d 〈rt 〉d σrt

d 〈Li′ 〉e S/Nf Pfake
g

(1012 h−1 M�) (h−1 kpc) (1012 h−1 M�) (h−1 kpc) (h−1 kpc) (1010 h−2Li′,�)

−4.6 × 1012 h−1 M�h 21 2.91+0.28
−0.29 27.48+2.43

−1.91 3.53+0.49
−0.44 35.57+4.78

−4.53 9.97+5.41
−4.38 2.11 13.69 0.019

(4.6–10) × 1012 h−1 M� 8 5.93+1.43
−1.11 72.79+25.42

−15.07 5.95+1.66
−1.12 73.18+33.06

−12.20 <1.75 5.24 8.67 0.011

1013 h−1 M� −h 3 26.72+4.28
−4.10–5.88 161.15+57.25

−22.33 23.13+7.37
−6.33–5.06 127.11+71.86

−35.22 33.31+18.39
−18.95 7.49 5.35 2 × 10−5

0–20.′ 11 3.05+0.56
−0.58 35.10+5.28

−4.26 3.05+1.49
−0.62 35.66+23.02

−4.65 <19.71 5.35 8.25 0.082

20.′–40.′ 10 5.00+0.74
−0.65 49.29+8.76

−7.66 5.00+0.73
−0.65 49.29+9.77

−11.84 <19.43 3.47 10.70 0.062

40.′–60.′ 8 5.43+1.04
−1.33–0.73 65.08+10.55

−19.51 4.84+1.24
−1.09–0.17 49.56+13.78

−11.42 14.62+9.62
−7.81 1.52 8.39 0.023

60.′–80.′ 3 30.29+3.21
−3.23–1.75 209.69+2.99

−13.29 30.27+5.22
−4.12–1.75 209.31+4.87

−39.86 <19.00 6.16 7.62 5 × 10−5

Notes.
a Name of subsamples for subhalos in the stacked lensing analysis.
b Number of subhalos.
c Best-fit subhalo mass and truncation radius for the TNFW model.
d Best-fit subhalo mass, and the average and standard error of the truncation radius for the TNFWProb model.
e Average luminosity for associated galaxies, estimated by weighting tangential distortions, g+.
f Signal-to-noise ratio for the tangential distortion profile.
g Probabilities that the TNFW mass and truncation radius represent false subhalos are within 1σ contours for the best-fit values of observed subhalos.
h The NFW model is strongly disfavored.

is an extreme case of truncation models, where the mass
density outside the truncation radius is zero as described in
Appendix D. The TNFWProb model is the TNFW model
taking into account a probability function for the truncation
radius which is assumed to be Gaussian with the mean, 〈rt 〉,
and the standard error σrt

. Given this function, we measure
a mean subhalo mass 〈Msub〉. In the process of fitting the
model, we propagate systematic errors by possible background
structures around subhalos “1” and “32,” which is described in
Section 3.4.1. As expected from the clear truncation feature,

the mean tangential profiles are well fitted using the TNFW
and TNFWProb models (Figure 7). The best-fit subhalo masses
and truncation radii are listed in Table 4. The best-fit mass
and truncation increase with increasing model-independent
projected masses. If the subhalo sample was entirely from
false peaks, these characteristic features could not be found.
We compute the significance probability, Q(ν/2, χ2

min/2), that
the data shows as a poor fit, as the observed value of χ2

min
by chance. The NFW models for the lowest- and highest-mass
samples are rejected with a significance level of Q = 4%.
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Figure 8. Mean distortion profile for four subsamples of 32 subhalos, selected by the projected cluster-centric radii of 0–20.′ (top-left), 20–40.′ (top-right), 20–40.′
(bottom-left), and 60–80.′ (bottom-right). The red solid, green dashed, and blue dotted curves are the best-fit TNFW, TNFWProb, and NFW models, respectively.

(A color version of this figure is available in the online journal.)

Thus, the NFW model is inadequate to describe the tangential
shear profile with breaks. The mean ratio between the best-fit
subhalo masses and the mean projected mass of the subsamples,
〈M2D〉, are 〈〈M2D〉/Msub〉 = 1.02 ± 0.12 for the TNFW model
and 〈〈M2D〉/〈Msub〉〉 = 1.06 ± 0.15 for the TNFWProb model,
respectively, These two models are in good agreement.

Next, we repeat the stacked lensing analysis for four
subsamples divided by the projected cluster-centric radii
(0–20.′, 20–40.′, 40–60.′, and 60–80.′). Since tidal destruction
predicts that the truncation radii are statistically correlated
with the three-dimensional radius, a stacked procedure aver-
ages out line-of-sight positions for subhalos. This provides
information regarding the dependence of mean subhalos size

on the cluster-centric radius. Figure 8 displays the mean tan-
gential profiles with clear breaks. The TNFW and TNFW-
Prob models give a better to fit the stacked profiles (Table 4).
Although the NFW model fit is acceptable (Q > 10%), the
TNFW and TNFWProb are preferred based on comparing the
goodness-of-fit of each model. The mean truncation radius in-
creases as the projected radius from the cluster center increases.
The mean mass ratios are 〈〈M2D〉/Msub〉 = 0.97 ± 0.11, and
〈〈M2D〉/〈Msub〉〉 = 1.00 ± 0.16 for the TNFW and TNFWProb
models, respectively.

Previous papers (e.g., Natarajan et al. 2007, 2009; Limousin
et al. 2005, 2007) estimated subhalo masses by galaxy–galaxy
lensing method using a model of a pseudo-isothermal elliptical
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mass distribution (PIEMD) of which three-dimensional mass
density is given by ρ ∝ (1 + r2/r2

core)−1(1 + r2/r2
cut)

−1. Here,
the core radius rcore is at the order of 100 pc (Limousin et al.
2005) and rcut is the truncation radius. The tangential shear for
the PIEMD model (Natarajan et al. 2007) falls as γt ∝ r−1 in
the transition region (rcore < r < rcut) and γt ∝ r−2 in the outer
region (rcut < r). We also tried to fit the stacked lensing signals
with the PIEMD model. Here we assume that the core radius is
one-hundredth of the truncation radius, because there is no data
on scales of sub kpc and thus we cannot constrain it. We also
assume a spherical model for the simplicity. The PIEMD model
gave a poor fit because the slope of the model in the transition
region (rcore < r < rcut) is different from the observed profile
for the mass scales of our subhalos.

3.4. Systematic Errors

In this section, we assess various systematic errors on the
subhalo analysis, such as a projection effect on subhalo mass
measurements (Section 3.4.1), LSS error covariance matrix
(Section 3.4.2), a probability of spurious peaks (Section 3.4.3),
selection criteria of subhalos (Section 3.4.4) and stacking
procedure (Section 3.4.5). They are critically important for
further discussion of subhalo properties such as a mass function
(Section 6.1; construction of Figure 13). Each systematic
error would have an independent effect on the mass function.
For instance, the projection effect would lead to a bias in
subhalo mass measurements (the x-axis of the mass function).
A contamination of spurious peaks and selection criteria would
change a shape of the mass function (the y-axis), especially on
small mass scales.

3.4.1. Projection Effect

The projection effect on lensing mass measurement of cluster
subhalos, caused by background groups accidentally superim-
posed along the line-of-sight, is examined here. Although LSS
modeling is quantified based on scaling relations between mass
and luminosities, it fails to fully describe massive background
structures, such as groups or clusters. This effect would lead
to a bias in mass estimates, possibly changing the mass of the
x-axis in the mass function (Section 6.1; Figure 13). As shown
in Figure 3, possible background structures, J and D (Table 2),
are located within two subhalo regions labeled “1” and “32”
(Table 3), respectively. Although it is in principle very difficult
to discriminate between them from the observed lensing signal,
a difference between the expected mass density profiles enables
us to assess a contribution from background structures in the
observed lensing signal. Since interior subhalos are tidally de-
stroyed by their parent halos, it is expected that the mass density
profile outside the tidal radius sharply declines. On the other
hand, virialized background groups or clusters do not show
such a feature as long as there is no neighboring massive halo.
Indeed, tangential distortion profiles for individual groups or
clusters and stacked profiles show a clear curvature as a char-
acteristic signature of the NFW prediction and no evidence of a
truncation feature (e.g., Johnston et al. 2007; Okabe et al. 2010b,
2013; Umetsu et al. 2011; Oguri et al. 2012; Taylor et al. 2012).
Thus, fitting models to tangential distortion profiles helps us
to discriminate between subhalos and background objects. As
mentioned above, the profile for less massive subhalos is very
noisy and slightly changed by the choice of radial bins, because
the number of source galaxies is small in proportion to the area
surrounding less massive subhalos. We therefore concentrate on

Table 5
Best-fit Masses and Truncation Radii for Three Massive

Subhalos Using the Tangential Distortion Profiles

IDa Mt
b rt

c χ2
min/d.o.fd S/Ne χ2

min/d.o.f (NFW)f

(1012 h−1 M�) (h−1 kpc)

1 14.26+2.37
−2.53–5.55 77.22+2.74

−3.81 5.38/3 6.17 8.79/4

9 11.051.83
−1.84 68.70+5.54

−9.49 0.59/3 5.99 1.97/4

32 47.65+5.81
−5.81–13.42 184.38+14.75

−16.65 3.74/5 8.33 11.31/6

Notes.
a Name of subhalos (Table 3).
b Best-fit mass, in units of 1012 h−1 M�.
c Best-fit truncation radii, in units of h−1 kpc.
d Reduced chi-square for the best-fit truncated NFW (TNFW) model (d.o.f is
the degrees of freedom).
e Signal-to-noise ratio for the tangential distortion profile.
f Reduced chi-square for the best-fit NFW model. All are higher than those of
the TNFW model. In particular, the significance probability, Q, for the NFW
model of subhalo “32” is less than 10%, indicating that the profile is not well
fitted by the NFW model.

computing distortion profiles for three massive subhalos (“1,”
“9,” and “32”), with masses greater than 1013 h−1 M�.

Figure 9 displays breaks in the tangential shear profiles. The
slope follows ∝ θ−2 outside the break, as shown by stacked
lensing analysis (Section 3.3). The off-centering effect (Yang
et al. 2006) of the main cluster mass on the lensing signal is
negligible because of large separation from the cluster center.
We first fit the TNFW model as a model of subhalos to the
tangential distortion profiles. We also tried to fit a truncated
singular isothermal sphere (Okabe et al. 2010a) model to the
profile but found a poor fit for massive subhalos. The best-fit
masses and truncation radii are shown in Table 5. We found that
the best-fit values do not change significantly by a choice of
radial bins. The solid lines for the best-fit values describe the
profiles with the breaks (Figure 9) well. Next we fit the NFW
model to the data and then obtain larger minimum reduced χ2

min
values than those for the TNFW model. The significance prob-
abilities, Q, for the NFW model are 0.12, 0.74, and 0.08 for
subhalos “1,” “9,” and “32,” respectively. When we adopt the
threshold of 10%, the NFW model for subhalo “32” is unac-
ceptable and for subhalos “1” and “9” are acceptable although
Q for subhalo “1” is close to the threshold. If observed lensing
signals around subhalos “1” and “32” were explained only by
background objects, the profiles should be well described by
the NFW model. We repeat the tangential fits using photometric
redshifts zphot = 0.418 and 0.189 as redshifts of background ob-
jects around subhalos “1” and “32,” and obtain the virial masses
for the NFW model, M (1)

vir = 12.11+11.06
−4.93 × 1014 h−1 M�, and

M (32)
vir = 3.98+1.06

−0.91 × 1014 h−1 M�, respectively. In this mass
scale, no clear truncation radius was found in the tangential
profiles (e.g., Okabe et al. 2010b; Oguri et al. 2012). Thus, it
implies that all lensing signals cannot be explained solely by
background objects. We then fit using a combined model of
the TNFW for subhalos and NFW for backgrounds, where we
assume the mass and concentration relation for backgrounds
(Duffy et al. 2008) and fix the truncation radius derived by fit-
ting the TNFW model. Although measurement errors of subhalo
masses become larger, we find that the best-fit subhalo masses
are decreased by 30%–40%. We therefore add these differences
to the second error in Table 5, as the systematic error, and
propagate them into the stacked lensing analysis (Section 3.3;
Table 4).
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Figure 9. Radial profiles of the tangential shear component (top panel), g+, and the 45◦ rotated component (bottom panel), g×, for three massive subhalos (“1,” “9,”
and “32”; from left to right). The tangential signals sharply decline outside the truncation radii. The red solid and blue dotted lines are the best-fit for TNFW and NFW
models, respectively.

(A color version of this figure is available in the online journal.)

3.4.2. LSS Error Covariance Matrix

An alternative approach to take into account LSS lensing
effect in weak-lensing mass measurements is to use the error
covariance matrix of uncorrelated large-scale structure along
the line-of-sight (e.g., Schneider et al. 1998; Hoekstra 2003),
instead of the LSS lensing model. Here we estimate the error
covariance matrix Cij = Cg,ij + CLSS,ij in the i- and j-th
radial bin, where Cg,ij = σ 2

g δij is a diagonal matrix of the
uncertainty caused by the intrinsic shapes of the galaxies and
the noise in the shape measurement, and CLSS,ij is calculated
by the weak-lensing power spectrum (e.g., Schneider et al.
1998; Hoekstra 2003) with WMAP7 cosmology (Komatsu et al.
2011). The diagonal component of LSS error covariance matrix,
σLSS = C

1/2
LSS, is lower than the statistical error σg for r � 50′

and comparable to those for r � 50′, respectively. Thus, the
statistical error is denominated in the radial range of the subhalo
mass measurements. We computed the stacked tangential shear
profiles from the shear catalog without LSS lensing model. As
the truncation position in the tangential shear profiles does
not change significantly, the best-fit truncation radii agree
within 2% with those in Table 4. As the lensing signals at
the truncation radii become higher than those estimated from
the shear catalog with the LSS lensing, the subhalos masses for
mass and radial bins become ∼10% and ∼13% higher. In other
words, our LSS model corrects the LSS lensing bias by ∼10%.
The measurement uncertainties of the subhalo mass and the
truncation radius, estimated with the error covariance matrix,
are consistent with those estimated from the statistical error,
because the statistical error is dominated.

3.4.3. Probability of Spurious Peaks

To measure a reliable subhalo mass function, it is of critical
importance to statistically rule out the possibility that the
subhalo candidates are actually spurious peaks. The peak finding

method always suffers from the presence of spurious peaks. It
is therefore of vital importance to quantify the number and
properties of spurious peaks in order to confirm the purity
of real subhalos. Especially, if our subhalo catalog included
spurious peaks, a shape of a subhalo mass function (Section 6.1;
Figure 13) would be changed. For this purpose, we create 200
bootstrap data-sets generated by randomly swapping reduced
shear at fixed positions, repeat the map making process and
then identify artificial false peaks which satisfy the same
conditions except for the spectroscopic information of the
galaxies. The number of spurious peaks is 5.32 ± 2.23 for each
realization. Thus, we cannot completely rule out a contamination
in the subhalo catalog. It is, however, difficult to quantify the
purity of subhalos comparing the number of detected subhalo
candidates and false peaks, because we excluded several subhalo
candidates taking into account the cloud-in-cloud problem and
the background groups. Stacked lensing analysis enables us to
measure the mean parameters even for spurious peaks, although
individual measurements of spurious peaks are very difficult due
to high statistical noise. Comparing the statistical properties of
spurious peaks allows us to discuss the purity of the subhalo
catalog. We generated 500 bootstrap replications of stacked
tangential profiles using the catalog of artificial false peaks.
Here, the number of spurious peaks and radial bins are the
same as those for subsamples in stacked lensing analysis of
subhalos (Section 3.3). The mean mass and truncation radius for
spurious peaks are estimated by fitting with the TNFW model.
We found that 38%–45% of profiles for spurious peaks gives
a poor fit (Q < 10%) or are ill-constrained. This indicates
that the profile shapes are different from those of observed
subhalos. Indeed, the stacked lensing analysis for shear-selected
subhalos shows that the best-fit truncation radius depends on
the projected mass and the cluster-centric radius (Figures 7
and 8). If our sample consisted entirely of spurious peaks, such
a clear dependence could not be found. To make a more robust
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Table 6
Results of Stacked Lensing Analysis Using a Mock Shear Catalog

Nsub
a 〈M input

sub 〉b σ (M input
sub )b 〈r input

t 〉b σ (r input
t )b

〈
MTNFW

sub

M
input
sub

〉
c

〈
rTNFW
t

r
input
t

〉
c

〈
MTNFWProb

sub

M
input
sub

〉
d

〈
rTNFWProb
t

r
input
t

〉
d

21 3.5 1.0 35 10 1.01 ± 0.09 (0.11) 1.10 ± 0.12 (0.21) 1.03 ± 0.12 (0.15) 1.12 ± 0.18 (0.29)
8 7.0 2.0 70 20 0.92 ± 0.21 (0.21) 0.96 ± 0.36 (0.29) 1.04 ± 0.23 (0.23) 1.11 ± 0.44 (8)
3 20.0 5.0 130 40 1.02 ± 0.26 (0.21) 1.08 ± 0.49 (0.35) 1.03 ± 0.16 (0.20) 1.02 ± 0.21 (0.6)
11 3.0 1.0 35 20 0.98 ± 0.28 (0.17) 1.18 ± 0.38 (0.79) 1.02 ± 0.18 (0.22) 1.11 ± 0.40 (5)
10 5.0 1.0 50 20 0.92 ± 0.17 (0.18) 0.99 ± 0.33 (0.37) 1.01 ± 0.19 (0.21) 1.09 ± 0.35 (13)
8 5.0 1.0 50 15 0.93 ± 0.17 (0.19) 1.00 ± 0.35 (0.36) 1.02 ± 0.18 (0.22) 1.11 ± 0.41 (5)
3 30.0 5.0 200 20 1.04 ± 0.26 (0.24) 1.10 ± 0.28 (0.52) 1.04 ± 0.14 (0.15) 1.03 ± 0.11 (11)
64 1.0 0.5 60 20 0.91 ± 0.27 (0.47) 1.00 ± 0.20 (0.77) 1.18 ± 1.18 (1.00) 1.04 ± 0.75 (6)

Notes.
a Number of simulated subhalos.
b Mean and standard error of the mass (1012 h−1 M�) and truncation radius (h−1 kpc) for simulated subhalos.
c Mean ratio of outputs to inputs for the TNFW model. Errors shown are the standard deviation based on 500 realizations. The values in brackets are the mean
measurement uncertainties.
d Mean ratio of outputs to inputs for the TNFWProb model.

conclusion, we estimate the probability that the parameters for
spurious peaks accidentally coincide with those for observed
subhalos within 1σ uncertainty, based on Monte Carlo re-
distributions of the best-fit values with the covariance matrix
of the measurement errors. The false probabilities for individual
subsamples in stacked lensing analysis, Pfake, are from 10−3%
to ∼8% (Table 4). Multiplying the number of subhalos by the
false probability in each sub-sample, the expected numbers of
spurious subhalos are less than unity. Therefore, we conclude
that our sample of subhalos has a high degree of purity.

3.4.4. Selection Criteria

A choice of the threshold in the S/N for mass maps results
in one of the main systematic errors, because we cannot
completely rule out the possibility that peak heights in mass
maps are accidentally above or below the threshold due to
reconstruction errors of finite sampling of background galaxies.
Assuming Poisson fluctuations of the reconstruction noise, the
S/N changes by δ(S/N) = √

δNbkg/Nbkg = N
−1/4
bkg 	 0.25,

where Nbkg is an effective number density in the smoothed
mass map with the highest resolution. We repeated the same
analysis with different thresholds. The sample numbers become
24 and 49 with higher and lower thresholds, respectively. This
systematic error is taken into consideration to compute a subhalo
mass function in Section 6.1.

3.4.5. Stacking Procedure

We investigate whether the stacking method gives systematic
errors, because the mean tangential profile stacked over subhalos
with various truncation radii would blunt the break feature.
We make synthetic weak shear catalogs of subhalos using the
analytic TNFW model and the intrinsic ellipticity. Here, the
number of background sources is the same as that observed.
The parameters of the TNFW model for individual subhalos are
generated from a Gaussian distribution. The mean and standard
error of subhalo masses and the truncation radii for simulated
samples are shown in Table 6. We assume that the coefficient
between the subhalo mass and the truncation radius is 0.7 and
that the halo concentration is 1, for the sake of simplicity. We
compute 500 samples in each stacked profile and fit them with
the TNFW and TNFWProb models. As shown in Table 6, the
mean tangential profiles are able to recover the input values. In
TNFWProb model fitting, since the mean and standard error of

the truncation radii are degenerate, 〈rt 〉 are not well constrained
in some cases, resulting in a large mean measurement error.

4. CLUSTER GALAXY–GALAXY LENSING ANALYSIS

Galaxy–galaxy lensing analysis for member galaxies selected
solely by their luminosities provides us with complementary and
important information regarding cluster subhalos, because the
sample is unbiased with respect to the lensing definition of sub-
halos (Section 3). We use member galaxies with luminosities
in the i ′ band larger than 1010 h−2Li ′,�. We compute a stacked
tangential distortion profile as a function of the radius from lumi-
nous member galaxies. Since the cluster field is crowded, neigh-
boring luminous galaxies may lead to serious contamination in
the stacked lensing profile, if they are not sufficiently separated.
We thus need to determine the outermost radius of the profile
in order to minimize lensing contamination from neighboring
luminous members. We estimate the histogram of projected dis-
tances between the luminous member galaxies. The outermost
radius is chosen to be 5.′ by applying a threshold that the mean
number of neighboring luminous galaxies is less than unity. We
compile 64 luminous member galaxies located in the projected
cluster-centric radius of 10.′ < r < 80.′. Figure 10 shows the
mean tangential profile. A sharply truncated profile is not found,
in contrast to lensing-selected subhalos (Figures 7 and 8). The
NFW and TNFWProb models are then applied to describe the
profile, and these two models (Table 7) give an acceptable fit.
The best-fit tangential profile for the TNFWProb model is simi-
lar to that for the NFW model, because the intrinsic distribution
of rt makes a sharply truncated profile blunt. The mean virial
radius for the NFW model, 273.87+58.80

−45.98 h−1 kpc, is larger than
the mean truncation radius 〈rt 〉 = 60.84+7.62

−15.34 h−1 kpc for the
TNFWProb model. On average, three luminous galaxies are
inside the mean virial radius of luminous galaxies. In other
words, the mass distribution of subhalos associated with lumi-
nous galaxies overlap each other. The NFW model is therefore
unlikely to represent halos associated with luminous member
galaxies. On the other hand, the TNFWProb model gives a large
scatter of the truncation radius compared to the mean value,
σrt

/〈rt 〉 ∼ 37%. A broad distribution of the truncation radius
smooths the truncation feature in the mean tangential profile
for a large sample of less massive subhalos, which makes it
difficult to resolve the subhalo size. To confirm this explana-
tion, we conducted a stacked lensing analysis using a mock shear
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Table 7
Best-fit Mass Profile Parameters for NFW and TNFWProb Models, Obtained by Galaxy–Galaxy Lensing for Luminous Member Galaxies

Numbera 〈Msub〉b 〈rt 〉b σrt
b MNFW

vir
c cvir

c 〈Li′ 〉d S/Ne

(1012 h−1 M�) (h−1 kpc) (h−1 kpc) (1012 h−1 M�) (1010 h−2 L�)

64 1.10+0.40
−0.40 60.84+7.62

−15.34 22.56+19.47
−10.64 2.39+1.89

−1.01 22.99+20.25
−9.81 2.25 5.63

Notes.
a Number of luminous member galaxies selected by luminosities (Li′ > 1010 h−2 L�) and cluster-centric radii (10.′ � r � 80.′).
b Best-fit mass, the average and standard error of truncation radius distribution for the TNFWProb model.
c Best-fit virial mass and halo concentration for the NFW model.
d Average luminosity 〈Li′ 〉.
e Signal-to-noise ratio for the tangential distortion profile.

Figure 10. Mean distortion profile for 64 luminous member galaxies with lu-
minosities more than 1010 h−2 L�. The red solid, green dashed, and blue dotted
curves are the best-fit TNFW, TNFWProb, and NFW models, respectively.

(A color version of this figure is available in the online journal.)

catalog (Table 6) in the same way as Section 3.4.5. We found
that the truncation feature in the stacked profile is obscured and
the mock simulation recovers the input values. Although we
also conducted fitting stacked profiles for subsamples divided
by luminosities or projected distances from the cluster center,
only the upper limits can be derived. We also checked less lumi-
nous galaxies with luminosities less than 1010 h−2 L� but found
significant contamination from neighboring luminous or less
luminous galaxies in the mean tangential profile.

Previous studies (Natarajan & Springel 2004; Natarajan
et al. 2007, 2009; Limousin et al. 2005, 2007) conducted
galaxy–galaxy lensing studies for clusters at z � 0.2 using
single-band images. As described by Broadhurst et al. (2005)
and Okabe et al. (2010b, 2013), lensing signals would be signif-
icantly diluted by a contamination of unlensed member galax-
ies in the shear catalog. Their catalog for background source
galaxies using the single filter would suffer from a contamination
of member galaxies. It is thus difficult to make a fair comparison
between our result and the previous studies.

Figure 11. Top panel: The tangential distortion component, g+, with respect
the projected cluster-centric radius, in the range of 1–100 arcmin, is estimated
by azimuthally averaging the measured galaxy ellipticities. The green dashed,
blue dotted, and magenta dashed-dotted lines are the best-fit NFW profile as
the smooth mass component of the main cluster, lensing signals expected from
subhalos, and the LSS lensing model, respectively. The total lensing signal (red
solid line) of the three components is consistent with the observed distortion
profile. Middle panel: The tangential profiles for subhalos (blue dotted) and
the LSS lensing model (magenta dashed-dotted), are the same as that in the
top panel, except for the use of a linear scale. Bottom panel: The 45◦ rotated
component, g×, is consistent with a null signal.

(A color version of this figure is available in the online journal.)

5. MAIN CLUSTER MASS MEASUREMENT

A tangential distortion profile, g+, with respect to the cluster
center, is a powerful tool to estimate the cluster mass (Okabe
et al. 2010b). The tangential distortion profile as a function of
the projected cluster-centric radius is computed by azimuthally
averaging the measured galaxy ellipticities. Here, we assume
that the cluster center is at the central position of the subhalo
“21” associated with the cD galaxy (NGC 4874). The top panel
of Figure 11 shows a complex feature of the lensing profile in the
radial range of 1.′–100.′, extending over 2 orders of magnitude.
Here, the data points are calculated using the shear catalog
without the LSS modeling. The lensing signal changes from
O(10−1) to O(10−3) as the radius increases. As expected from
the low lensing efficiency of the nearby cluster, the lensing signal
is 1 order of magnitude lower than that for massive clusters at
z ∼ 0.2 (e.g., Okabe et al. 2010b). However, the S/N reaches
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Table 8
Main Cluster Mass Estimates

Fitting Methoda Mvir cvir M200 c200 M500 M1000 M2500

(1014 h−1 M�) (1014 h−1 M�) (1014 h−1 M�) (1014 h−1 M�) (1014 h−1 M�)

g+ profile 8.42+4.17
−2.42 3.57+1.54

−1.12 6.23+2.53
−1.58 2.55+1.17

−0.84 3.89+1.04
−0.76 2.47+0.44

−0.37 1.15+0.22
−0.22

ζc profile 8.31+2.42
−1.82 3.24+0.80

−0.67 6.08+1.51
−1.20 2.30+0.61

−0.50 3.67+0.69
−0.60 2.27+0.36

−0.33 1.00+0.18
−0.18

Note. a Profiles for fitting.

S/N 	 13.3 thanks to a remarkably large number of background
galaxies, which is comparable to or higher than those of clusters
at z ∼ 0.2 (Okabe et al. 2010b). This high S/N validates weak-
lensing analysis for low redshift clusters (z � 0.1) which have
been overlooked for a long time. We also find that the 45◦
rotated component, g× (bottom panel of Figure 11), which is a
non-lensing mode serving as a monitor of systematics errors, is
1 order of magnitude smaller than the lensing mode, g+, which
is consistent with a null signal.

The tangential distortion contains complete information for
the lensing signals, including the smoothed mass component of
the main cluster, the interior substructure (Section 3.2), and LSS
lensing signals behind the cluster (Section 2.6). To understand
the profile, we computed the tangential shear profiles for 32
shear-selected subhalos and the LSS lensing model, illustrated
by the blue dotted and magenta dashed-dotted lines in the top
and middle panels of Figure 11. The S/N for the subhalos is
S/N 	 4.4, accounting for 33% of the total distortion signal.
This indicates that the profile highly resolves the lensing signal
from the interior substructure by the large apparent size of the
cluster. The observed signal in the central region (r � 5.′) is
dominated by the subhalo “21.” The lensing signals in 5.′ � r �
12.′ and in r ∼ 70.′ are depressed by prominent subhalos. As
for LSS lensing, the signal-to-noise ratio is S/N 	 1.3. Here,
since the LSS lens modeling for possible background groups,
“F” and “I” (Table 2 and Figure 3), has failed significantly, we
estimated the lensing distortion pattern from the NFW profile
determined by the tangential profile for this object and found that
this background group depresses the observed lensing signal at
r ∼ 70.′.

We fit a single NFW model to the distribution profile cor-
rected using the LSS lensing model. The lensing signals from
the subhalos gradually change from positive to negative in the
central region (�12.′). These absolute values account for a large
fraction of the total lensing signals, which makes it difficult to
discriminate between signals from the subhalos and the main
cluster based on the central signals. Indeed, when a single NFW
model fits the data, the best-fit halo concentration is systemat-
ically changed (Δcvir � 1) by a choice of the innermost radius.
To avoid the subhalo bias in cluster mass measurements, we
estimate the radial range for the fitting, by requiring that the
fraction of the absolute value of subhalo signals to observed
signals is less than 30%. We fit the tangential profile between
13.′ (∼260 h−1 kpc) and 64.′ (∼1.3 h−1 Mpc) with a single
NFW model. Here, the physical scale of the innermost radius
is comparable to those for massive clusters at z ∼ 0.2 (Okabe
et al. 2010b). The resultant masses at different overdensities
are listed in Table 8. The virial mass and concentration are
Mvir= 8.42+4.17

−2.42 × 1014 h−1 h−1 M� and cvir= 3.57+1.54
−1.12, re-

spectively.
We also fit the profile in the full range with the NFW model

for the smooth matter component and a central point mass con-
tribution of the brightest cluster galaxy (BCG). We obtain the

point mass Mpt = 5.67+0.32
−0.32 × 1012 h−1 M�, which is con-

sistent with the projected mass measurement of subhalo “21”
(Table 3). The summation of the virial mass and the point mass
is Mtot = 8.21+2.99

−1.98 × 1014 h−1 M�. The total mass is in agree-
ment with the estimated virial mass derived using the tangential
fit for the radial range to minimize subhalo contributions.

We next repeat fitting with the NFW model as the smooth
component, by fully taking into account lensing signals from
all shear-selected subhalos and the LSS lensing model. The
best-fit profile for the smooth component is shown in the green
dashed line in Figure 11. The total signal (red solid line) from
three different components of the smooth NFW profile, subhalos
and LSS lens model describes the observed signals remarkably
well. The summation of the virial mass and subhalo masses,
Mtot = 8.18+3.78

−2.02 ×1014 h−1 M�, is in good agreement with the
virial mass Mvir (Table 8). A singular isothermal sphere (SIS)
model is strongly disfavored as the smoothed mass component,
returning a goodness-of-fit statistic of χ2

min/d.o.f. = 59.3/11.
We also conduct the cluster mass measurement using the

LSS error covariance matrix (e.g., Schneider et al. 1998;
Hoekstra 2003), as described in Section 3.4.2. Although the
error covariance matrix does not significantly change the result
of subhalo mass measurement, the situation for the cluster mass
measurement is slightly different. The diagonal component
of the LSS error covariance matrix becomes comparable to
the statistical error for r � 50′. The S/N estimated from
the covariance matrix in the tangential shear profile becomes
smaller S/N 	 7.5 from the case of the statistical errors because
the LSS errors in different radial bins are correlated. The S/N
is consistent with Hoekstra (2003). We use the shear catalog
without the correction of the LSS model in the full radial range
of the cluster and apply the NFW model for the smooth matter
component and a central point source of the BCG. The best-fit
mass is Mtot = 8.80+7.59

−3.74 × 1014 h−1 M�. The upper and lower
errors become larger by ∼80% and ∼40%, respectively.

The projected mass (Mζc
) measurement (ζc statistics) for the

main cluster is less sensitive to lensing signals from subhalos,
because it estimates a cumulative profile. It is thus compli-
mentary to the tangential fit. Figure 12 shows the Mζc

pro-
file calculated with the fixed background annulus of 70.′–90.′.
The background region is inside the best-fit virial radius
(rvir = 96.67+13.89

−10.32 arcmin) derived from the tangential shear fit.
Following Okabe & Umetsu (2008), we fit the ζc profile with
a single NFW model, taking into account the error covariance
matrix. The best-fit profile is shown by the red solid line. The
best-fit values (Table 8) are consistent with those for the tangen-
tial shear fit.

We compare the best-fit mass and concentration with results
in the literature (Table 9). The mass measurements in this study
are consistent with our previous analysis (Okabe et al. 2010a).
The statistical precision of the new mass estimates is improved
by four times thanks to the huge number of background galaxies.
Gavazzi et al. (2009) conducted fitting the tangential distortion
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Table 9
Mass and Concentration Previously Reported in the Literature

Reference Mvir cvir M200 c200

(1014 h−1 M�) (1014 h−1 M�)

WL : (Kubo et al. 2007) · · · · · · 18.8+6.5
−5.6 3.84+13.16

−1.84

WL : w/o priorsa (Gavazzi et al. 2009) 4.27+8.47
−2.45 6.7+4.1

−3.3 3.57+3.01
−1.47 5.0+3.2

−2.5

WL : w/ priorsa (Gavazzi et al. 2009) 7.77+11.69
−4.27 4.9+1.7

−1.4 6.79+4.27
−2.45 3.5+1.1

−0.9

WL : (Okabe et al. 2010a) 8.92+20.05
−5.17 3.50+2.56

−1.79 6.61+12.06
−3.63 2.50+1.94

−1.34

Dynamics : (Rines et al. 2003) · · · 7.85 · · ·
Dynamics : (Łokas & Mamon 2003) 8.45 ± 3.15 9.4 · · · · · ·

Note. a Priors with and without the mass-concentration relation.

Figure 12. Mζc profile as a function of the projected cluster-centric radius,
estimated by azimuthally averaging galaxy ellipticities with a correction factor
from the LSS lens model. The red solid line is the best-fit NFW profile.

(A color version of this figure is available in the online journal.)

profile in the range of 0.′35 � r � 35.′ using the NFW
model including and excluding priors on mass and concentration
relations, using CFHT/Megacam data. In that study, the LSS
lensing effect was not accounted for. The best-fits, regardless of
priors, are compatible within their large errors, with the present
study. However, their lensing signals (Figure 3 in Gavazzi et al.
2009) differ from the results in the present study (Figure 11).
Their profile (0.′35 � r � 35.′) is well described by a single
NFW model. The lensing signals in the same radial range
in the present study are dominated by prominent subhalos in
r � 12.′ and by the smooth mass component in 12 � r � 35.′,
respectively. We conduct the tangential fit using the profile
computed with the same radial bins as Gavazzi et al. (2009)
and a single NFW model and obtain only an upper limit on
Mvir < 4 × 1016 h−1 M� because of an inadequate model.
Kubo et al. (2007) carried out weak-lensing analysis using SDSS
data. The best-fit M200 (Kubo et al. 2007) derived by fitting the
tangential profile up to 10 h−1 Mpc with a single NFW model
is three times higher than that observed here. The background
LSS lensing effect was not accounted for in that study. Since

their outermost radius (10 h−1 Mpc) is five times higher than
our best-fit virial radius, their mass would be overestimated
by mass distribution outside the cluster. The dynamical mass
estimates of Mvir and M200 (Rines et al. 2003; Łokas & Mamon
2003) agree with our best-fits, although their concentration is
three times higher than estimates in the present study.

6. DISCUSSION

6.1. Subhalo Mass Function

The subhalo mass function is computed from Monte Carlo
redistributions of subhalo masses taking into account both mea-
surement uncertainties and the systematic error on the applied
threshold (Section 3.4.4). Figure 13 shows the subhalo mass
function. The error bars are based on both measurement and
systematic errors. The resulting subhalo mass function covers
over 2 orders of magnitude in mass. The number of subha-
los decreases as their mass increases, while it is significantly
decreased in the low-mass end (Msub/Mvir ∼ 10−3) because
the detection limit appeared in the mass map. To access the
purity, we also compute the mass function of spurious peaks,
dNfake/d ln Mfake. Here, we calculate the mass function for spu-
rious peaks, using the probability distribution of best-fit masses,
Mfake, derived by stacked lensing analysis (Section 3.4.3). The
number of false peaks as a function of the mass is given
by N (Mfake) = Nfake

∑
i Nsample,iPi(Mfake)/

∑
i Nsample,i, where

Nfake is the total number of spurious peaks and Pi(Mfake) and
Nsample,i are the probability distribution and the subhalo number
for the subsamples of the mass bin, respectively. The probability
distribution, Pi(Mfake), is calculated by the best-fit masses tak-
ing into account the measurement uncertainty. The green dashed
lines show a single peak of the mass function for spurious peaks.
The functional form is different from the observed mass func-
tion. The peak height of spurious peaks is 1 order of magnitude
lower than the observed mass function in the same mass range.
Stacked lensing analysis of false peaks (Section 3.4.3) disfavors
the contamination of spurious peaks in the sample of subhalos.
Even if they exist, the contamination level is negligible for a
study of the mass function.

We fit the subhalo mass function with single power law model
(e.g., Gao et al. 2012),

dn/d ln Msub ∝ M−α
sub (5)

and a Schechter function (e.g., Schechter 1976; Shaw et al.
2006),

dn/d ln Msub ∝ M
−β

sub exp(−Msub/M∗). (6)

The mass function is modified from these analytical functions
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Figure 13. Subhalo mass function spanning 2 orders of magnitude of subhalo
masses. The red solid and blue dotted lines are the best-fit power-law model
and Schechter function, respectively. The best-fit powers are in remarkable
agreement with CDM predictions. Green dashed lines are the mass function for
spurious peaks. The thick and thin dashed lines are the best-fit and the 68% C.L.
uncertainty, respectively.

(A color version of this figure is available in the online journal.)

because of finite measurement errors for the subhalo masses.
This corrects the modeling for the so-called Eddington bias.
The model of the mass function is described by the convolution
between the analytical forms and the errors, dnmodel/d ln Msub =∫

dn/d ln xp(x,Msub)dx/
∫

p(x,Msub)dx. Here, we assume a
Gaussian probability function, p(x,Msub) = Σi exp(−(x−
Msub,i)2/2/σ 2

M,i)/(2πσ 2
M,i)

1/2, where Msub,i and σM,i are the
mass estimate and the error for ith subhalo, respectively. The
cutoff mass, M∗, in the Schechter function is sensitive to
abundance at the high-mass end. However, since the abun-
dance of massive subhalos is small, it is not well constrained,
M∗/Mvir = 0.089+0.135

−0.064. We are therefore unable to discriminate
between the single power law and the Schechter function. The
best-fit power indices, which characterize the shape of the func-
tion at the intermediate and low ranges, are in good agreement
(α = 1.09+0.42

−0.32 and β = 0.99+0.34
−0.23). We also computed a subhalo

mass function including four subhalo candidates with no optical
counter and obtain the best-fit α = 1.15+0.38

−0.32 and β = 0.99+0.38
−0.24.

For further verification, we excluded the most and least mas-
sive of the massive subhalos to construct a mass function and
found that the best-fit slope values do not significantly change.
The best-fit slopes are in remarkable agreement with CDM pre-
dictions ∼0.9–1.0 from numerical simulations (e.g., Diemand
et al. 2004; De Lucia et al. 2004; Gao et al. 2004b, 2012; Shaw
et al. 2006; Angulo et al. 2009; Giocoli et al. 2010; Klypin et al.
2011) and analytical models (e.g., Taylor & Babul 2004; Oguri
& Lee 2004; van den Bosch et al. 2005; Giocoli et al. 2008).
A recent high-resolution numerical simulation study (Gao et al.
2012) found that the slope of mass function in the range of
10−6 < Msub/M200 < 10−3 gives α = 0.98.

The mass fraction for observed subhalos is estimated as
fsub = ∑

i Msub,i/Mvir = 0.226+0.111
−0.085 with the tangential fit for

the main cluster and fsub = 0.229+0.078
−0.064 with ζc fit, respectively.

Shaw et al. (2006) estimated the mean mass fraction as a
function of the virial mass, 〈fsub〉 = 0.14 ± 0.02(Mvir /8 ×
1014 h−1 M�)0.44±0.06. The mass fraction for the Coma cluster
is larger than the mean fraction, 〈fsub〉 = 0.16, estimated using
the best-fit virial mass. We also calculated the mass fraction
within r200, fsub,200 = 0.222 ± 0.077.

6.2. Correlation between Subhalo Masses and
Truncation Radii

It is interesting to investigate the correlation between the
subhalos’ masses and truncation radii, because they are both
free parameters in stacked lensing analysis. We compile the
stacked lensing results divided by mass and cluster-centric

bins and find a tight correlation of Msub ∝ r
1.18+0.10

−0.09
t and

Msub ∝ r
1.19+0.17

−0.16
t for the TNFW and TNFWProb models, re-

spectively. Considering a functional form of the NFW model,
MNFW(< x) ∝ log(1 + x) − x/(1 + x) (Equation (D2)) where
x = r/rs is the radius normalized by a scale radius, the best-fit
slope values imply that the mass loss occurs in the subhalo out-
skirts beyond the scale radius as long as the internal structure
does not change during movement in the host halo.

6.3. Radial Dependence of Subhalo Properties

Subhalos captured by more massive halos are subject to dy-
namical friction, losing their angular momentum and subse-
quently falling inward the center. Simultaneously, their masses
are reduced by the tidal force which increases with an increas-
ing radius from the cluster center. The subhalos in the central
region have been affected by the tidal field for a longer time
than those on the outskirts. It is thus expected that the subhalo
mass and truncation radius are an increasing function of clus-
ter radius. The survey of subhalos using the wide-field imaging
data allows us to study the radial dependence of their proper-
ties. For this purpose, we use the projected position of shear-
selected subhalos. It is difficult to constrain the pericenter radius
and a line-of-sight position of the subhalo. In order to reduce
these uncertainties, we compute the mean subhalo masses and
truncation radii derived from stacked lensing analyses for the
subsample divided by their positions from the cluster center
(Section 3.3). The mean projected distance of the subsample
is estimated as a weighted average of projected distances from
the cluster center for the individual subhalos. The weight func-
tion is given by the tangential distortion signals with respect to
the subhalo center. The left and right panels of Figure 14 dis-
play a clear radial dependence of subhalo masses and truncation
radii, as expected from tidal destruction. The subhalo masses
and radii gradually increase out to ∼1 h−1 Mpc and drasti-
cally rise due to massive subhalo “32” on the outskirts in the
range of 1.2–1.6 h−1 Mpc. We fit the subhalo mass profile with
a functional form of log(Msub/Mpivot) = A + B log(r/rpivot)
where Mpivot = 1012 h−1 M� and rpivot = 1 h−1 Mpc and
obtain, A = 2.66 ± 0.08 and B = 1.45 ± 0.12. The best-
fit parameters for the inner three bins are A = 1.86 ± 0.23
and B = 0.55 ± 0.26. The subhalo size profile is fitted with
log(rt/rt,pivot) = A + B log(r/rpivot) and rt,pivot = 1 h−1 kpc.
The best-fit parameters for all, and for the three inner bins, are
A = 4.95 ± 0.04 and B = 1.18 ± 0.08, and A = 4.07 ± 0.26
and B = 0.38 ± 0.24, respectively. The best-fit slope values for

19



The Astrophysical Journal, 784:90 (27pp), 2014 April 1 Okabe et al.

Figure 14. Mass (left) and truncation radius (right) profiles of subhalos as a function of the projected cluster-centric radius. The black circles represent the masses and
truncation radii of subhalos using stacked weak-lensing analysis for lensing-selected subhalos, showing that they monotonically increase with an increasing radius.

the mass and truncation radius are significantly changed by the
presence of the massive subhalo on the outskirts (60.′ < r <
80.′). The similar trend on the half mass radius for subhalos in
simulated clusters are found by Limousin et al. (2009).

The tidal radius of subhalos is generally defined by a compe-
tition between the differential tidal forces of the host halo po-
tential and the acceleration toward the subhalos. Equivalently,
this condition can be rewritten as a balance between the av-
erage density of subhalos and the host halo, ρ̄sub = ηρ̄main,
where η is an efficiency factor. For instance, η = 3 for a point
mass case on a circular orbit, η = 2 for the Roche limit, and
η = 2 − d ln Mmain/d ln R in the case of extended mass profiles
of subhalos and the host halo (e.g., Tormen et al. 1998; Taylor &
Babul 2004; Gan et al. 2010) in a linear regime of Msub/Mmain �
1 and rt/R � 1, where R is the pericenter radius from the clus-
ter center. The minimum subhalo size is determined by the
pericenter radius. Although we cannot constrain the pericenter
radius of subhalos from the current position of the subhalos, it
is interesting to compare the density ratio, η, with these trial
approximations. We calculate the mean densities for subhalos,
ρ̄sub = Msub/r3

t , and for the host halo, ρ̄main = MNFW(<R)/R3,
where MNFW is a spherical NFW mass enclosed within the three-
dimensional radius. Here, we use the best-fit NFW model and the
projected cluster-centric radius for subhalos. The mean density
for subhalos is higher than that for the cluster mass. The den-
sity ratios, η ∼ 10–40 for shear-selected subhalos (Section 3.3)
and ∼10 for luminous galaxies (Section 4), are comparable
to each other, but they are higher than expected by the linear
regime assuming that the current position is the pericenter. If the
discrepancy could be explained by a difference of the positions,
shear-selected subhalos and luminous galaxies would be located
inward. On the other hand, the subhalo mass implies that the de-
tected subhalos are remnants of group-scale structure. Large and
massive subhalos would not be described by the linear regime.

6.4. Surface Number Density for Subhalos

It is important to estimate a surface number density profile
for subhalos to understand the evolution of subhalos in the
cluster. Figure 15 shows the surface number density profile of

Figure 15. Surface density (black circles) profile of subhalos. The best-fit profile
is shown by a blue dotted line. For comparison, a red solid line shows the surface
mass density for the total mass of the main cluster, normalized with the number
density at r200. Red dashed lines are the 68% confidence uncertainties for
the total mass. Green diamonds and magenta squares denote the surface mass
densities for member galaxies of which luminosities are Li′ > 1010 h−2 L�,i′
and 109 h−2 L�,i′ < Li′ < 1010 h−2 L�,i′ , respectively.

(A color version of this figure is available in the online journal.)

subhalos normalized by the mean surface density. The errors
for the surface number density are assumed to be Poisson
noise. It is clear that the surface number density increases
while decreasing the cluster-centric radius. For comparison,
we compute the surface number density profiles of member
galaxies for which the luminosities are Li ′ > 1010 h−2 L�,i ′ and
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109 h−2 L�,i ′ < Li ′ < 1010 h−2 L�,i ′ . Both profiles are similar
to that of subhalos. To quantify these distributions, we assume
the spherical symmetric NFW distribution for the subhalos and
member galaxies and fit the profiles. The surface number density
profile is specified by three parameters including normalization,
the concentration and the virial radius. We here use the virial
radius determined by the tangential shear fit (Section 5). The
best-fit concentrations are cvir = 5.73 ± 4.46 for subhalos,
cvir = 5.97 ± 3.28 for luminous galaxies and cvir = 5.35 ± 1.00
for less luminous galaxies. All best-fit concentrations agree with
each other. We also compute the surface mass density profile
for the total mass from the best-fit NFW parameters (Section 5).
Here, the normalization is set to be the surface density of the
subhalos at r200. The best-fit concentrations for the subhalos
and luminous member galaxies do not differ from that for the
main mass, while the less luminous galaxies are more centrally
concentrated. Recent numerical simulations (e.g., Ghigna et al.
2000; Diemand et al. 2004; De Lucia et al. 2004; Gao et al.
2004b, 2012, 2004a; Nagai & Kravtsov 2005) and analytical
models (e.g., Taylor & Babul 2005b; Zentner et al. 2005) have
shown that the radial distribution of subhalos is less concentrated
than that of the total mass, because the subhalos lose their mass
more efficiently in the inner regions of the main halo. The local
surface density of subhalos is noisy, and there is an uncertainty in
their position along the line-of-sight. The Coma cluster contains
the famous NGC 4839 group in the southwest central region
(Figure 3), and thus, the presence of subhalos in the southwest
direction from the cluster center might significantly affect the
surface profile. We thus need further studies to measure the
subhalo distribution and compare these with the dark matter
distribution of the main cluster, using a large sample of clusters,
especially nearby clusters.

6.5. Mass-to-light Ratio

The evolution of galaxies is profoundly affected by their sur-
rounding environments, such as the presence of dark matter ha-
los. The environmental processes (e.g., Boselli & Gavazzi 2006)
in an overdensity region such as groups or clusters consume cold
gasses in galaxies through star-bursts triggered by mergers, tidal
interaction with other galaxies, and ram-pressure stripping by
the gas, which leads to a halt in star formation. Based on hi-
erarchical structure formation scenarios, some cluster galaxies
have spent a long time in group-scale environments, before
being captured in their current host halo. These group-scale en-
vironments may play an important role in the evolution of the
galaxies, rather than that of the cluster environment (Zabludoff
& Mulchaey 1998). On the other hand, subhalo masses and
sizes depend on their initial properties, infall epochs and sub-
sequent evolution in the cluster halo. Therefore, study of a
galaxy-dark matter connection may provide insights into how
galaxies form and evolve with different mass properties. We
compare two independent quantities of weak-lensing masses
of subhalos and luminosities for associated galaxies. It is
well established observationally that there is a correlation be-
tween luminosity, velocity dispersion, and scale length for early
type galaxies, the so-called fundamental plane (Djorgovski &
Davis 1987; Dressler et al. 1987). These studies estimate dy-
namical mass tracing the gravitational potential of a galaxy
at small scales. Weak-lensing analysis measures the mass of
dark matter where the distribution extends beyond the galaxies.
Thus, our approach is complementary to previous studies (e.g.,
Cappellari et al. 2006; Cody et al. 2009). We compile two
stacked lensing results of shear-selected subhalos divided by

individual masses (TNFW; Section 3.3) and luminous member
galaxies (Section 4). Here, we use the truncated mass rather than
the NFW model. The luminosity of each sample is estimated by
an average over all galaxies associated with the subhalos, with
a weight of the tangential distortion signals. We plot the corre-
lation between the subhalo masses and the galaxy luminosities
in the left panel of Figure 16. The luminosity ranges between
1010–1011 h−2 L�, indicating that member galaxies in the sub-
samples are mainly composed of elliptical galaxies. The mass
increases with increasing luminosity. To quantify this trend,
we fit with log(Msub/Mpivot) = A + B log(Li ′/Lpivot), where
Lpivot = 1010 h−2 L�. The best-fit slope, B = 1.49 ± 0.16,
gives a positive slope at an 8σ level. The normalization is
A = −0.15 ± 0.19. The data points show a large amount of
scatter. To understand the scatter, further careful study using
other parameters of galaxies is needed to constrain the funda-
mental plane between the subhalo masses and the galaxy prop-
erties. We convert the scaling relation into the mass-to-light ra-
tio, M/L = 86.1+18.1

−15.0(Li ′/1010 h−2 L�)0.49±0.16[h M�/Li ′,�].
Limousin et al. (2009) have investigated the scaling relation
between the luminosity and the total mass in simulated clus-
ters and found Mtot ∝ L1.431±0.119 in the massive cluster
(Mvir = 1.3 × 1015 h−1

70 M�) at z = 0, which is in a good
agreement with our result. We compare this analysis to the
mass-to-light ratio determined by dynamical masses. Cappel-
lari et al. (2006) estimated the scaling relation of M/L =
(2.35 ± 0.19)(LI/1010LI,�)0.32±0.06 for the SAURON sample.
Our normalization is higher by 1 order of magnitude than dy-
namical estimates. It is likely due to a difference in mass mea-
surements, because weak-lensing analysis measures the mass of
dark matter halos extending beyond galaxy scales. Similar re-
sults have been reported by van Uitert et al. (2011), who showed
that weak-lensing masses within r200 are about 10 times larger
than dynamical masses.

The right panel of Figure 16 clearly shows decreasing mass-
to-light ratio toward the cluster center, similar to the radial de-
pendence of the mass and truncation radius (Figure 14). Here,
we use the TNFW mass for subsamples divided by the pro-
jected distance from the cluster center (Section 3.3). The lu-
minosity is estimated in the same way as for subsamples di-
vided by mass bins. We fit the form of log(M/L/(M/L)pivot) =
A + B log(r/rpivot) to quantify the radial dependence, where
(M/L)pivot = 1 h M�/L� and rpivot = 1 h−1 Mpc. We obtain
A = 5.76+0.13

−0.13 and B = 1.35+0.08
−0.08. The upper panel shows the

mass-to-light ratio of subhalos normalized by the cluster mass-
to-light ratio, M/L = 337.4+140.2

−92.5 h[M�/Li ′,�], within the virial
radius derived from the tangential fit. The mass-to-light ratios
for subhalos on the outskirts (0.7 � θ/θvir � 1) are close to
unity, while the ratios in the central region account for 17%.
This feature is explained by a scenario where the dark matter
subhalos are more subjected to mass loss due to tidal truncation
than luminous galaxies which tend to be in the central region
of subhalos. Furthermore, since the mean luminosity increases
toward the cluster center, it is also associated with galaxy evo-
lution. Similar trends are suggested by numerical simulations
(Springel et al. 2001). They found the that the median mass-
to-light ratio gradually increases out to 1.5–2 h−1 Mpc and is
saturated beyond that point. Gao et al. (2004a) also found a sim-
ilar result, where the median mass-to-light ratio for subhalos
is saturated beyond r200. The saturated values (Springel et al.
2001) are ∼15%–20% of the cluster mass-to-light ratio in the
B-band. The discrepancy in these ratios might be caused by a
difference in the subhalo mass range between their simulations
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Figure 16. Left panel: The mass and luminosity relation for shear-selected subhalos (black circles) and luminous member galaxies (blue squares). The mass of shear-
selected subhalos is from stacked lensing analysis of subsamples divided by model-independent masses. The red solid and dashed lines are the best-fit relationships and
68% confidence level uncertainties, respectively. Right panel: The radial dependence of the mass-to-light ratio obtained from the stacked lensing results for subhalo
subsamples divided by their cluster-centric radius. The top panel shows the mass-to-light ratio normalized by the cluster mass-to-light ratio, as a function of the radius
normalized by the cluster virial radius (rvir or r200).

(A color version of this figure is available in the online journal.)

and our catalog because we used shear-selected subhalos and
they selected cluster galaxies and associated subhalos.

This study suggests that the mass-to-light ratio for cluster
subhalos depends on both the luminosity (mass) and the cluster-
centric radius. To derive more robust conclusions will require
a study using a larger sample of nearby cluster lensing analy-
ses. However, the present results suggest that an assumption of
the constant scaling relation between the mass and the lumi-
nosity gives a systematic bias on mass measurements and their
statistical properties.

6.6. Future Studies

We present a direct observation of the dark matter subhalo
mass function using weak gravitational lensing analysis, which
is the first evidence for consistency with CDM predictions on
cluster sub-scales. It is thus an important step toward studying
subhalo mass functions and properties with a large sample of
clusters to make stringent tests of the nature of dark matter and
the details of structure formation.

Although the subhalo mass function is well described by the
single power law or the Schechter function, it is difficult to
discriminate between the two functions because the abundance
of high-mass subhalos is low. The subhalo mass function stacked
over a large sample of clusters will enable us to make a more
robust determination of the functional form. Furthermore, the
shape of the mass function has a characteristic feature depending
on the masses of the other components of dark matter, if any.
Thus, the subhalo mass function allows us to constrain the nature
of dark matter and structure formation. Hierarchical structure
formation predicts that the subhalo mass function depends on
host halo mass (e.g., Gao et al. 2004b; van den Bosch et al.
2005; Shaw et al. 2006). Less massive halos form first at
higher redshifts where the mean background mass density is
higher. Subhalos captured by less massive halos efficiently lose
their mass in the high density environment. These subhalos are

furthermore exposed to destruction over a longer time. Less
massive halos are therefore expected to contain fewer subhalos.
To investigate the parent mass dependence, an increase of
sample of clusters is essential. The systematic survey for nearby
clusters with these properties will increase the total number
of dark matter subhalos on the order of a few hundred or
more and improve the statistical accuracy. Furthermore, finer
weak-lensing resolution of nearby clusters will enable us to
conduct principal component analyses of the properties of dark
matter halos/subhalos (e.g., Jeeson-Daniel et al. 2011; Skibba
& Macciò 2011; Wong & Taylor 2012). Analytical models such
as the halo occupation distribution (e.g., Seljak 2000; Cooray
& Sheth 2002), the abundance matching (e.g., Vale & Ostriker
2004), and the conditional luminosity function (e.g., van den
Bosch et al. 2003) would be helpful to understand the galaxy-
dark matter connection.

The near future for multi-wavelength study of subhalos will
give us direct and important information on the long-standing
problem of the interplay between dark halos and baryons of
member galaxies and gasses. We investigated the correlation
between galaxy luminosities, subhalo masses and their projected
radius from the cluster center. It would also be interesting to
investigate the correlation with ages, star formation rates and
specific star formation rates of galaxies. Smith et al. (2012)
have shown an anisotropic spatial distribution of the galaxies
age and found that the older population of galaxies distribute
around subhalo “17.” This might suggest that stellar population
properties would vary from subhalo-to-subhalo because some
cluster galaxies spent a long time in group scale environments
before being captured by the cluster. Further systematic studies
using other data-sets, such as stellar masses, star formation rate,
specific star formation rate and galaxy types, will provide us
with information regarding cluster galaxy evolution.

The ROSAT X-ray surface brightness distribution (Figure 5)
shows that all shear-selected subhalos do not contain X-ray
extended structures. This can be understood in terms of
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observational and/or physical effects. First, relatively small
X-ray sources are unresolved by the poor PSF of the ROSAT.
Recent observation (Andrade-Santos et al. 2013) using Chandra
and XMM-Newton satellites with high resolution resolves three
X-ray subhalos in the central region that are associated with
subhalos “21,” “23,” and “24,” respectively. Subhalo masses
were estimated under the assumption of hydrostatic equilibrium
and are in good agreement with our mass estimates. However,
X-ray subhalos in other shear-selected subhalos are not found
even with high resolution data, which is due to various phys-
ical processes on gas initially bound in the subhalos. Tormen
et al. (2004) has pointed out using numerical simulations that
the gaseous components, which is collisional matter, are easily
destroyed by ram pressure stripping and hydrodynamic insta-
bilities. Accordingly, the lifetime of the X-ray subhalos is much
shorter than those of dark matter subhalos. Furthermore, the
temperature of the intracluster medium in the central region
(∼8 keV) is too high to be trapped by subhalos. Since X-ray
observation at the outskirts requires stable and low X-ray back-
grounds, the Suzaku X-ray satellite has a great advantage to
search for gas components associated at the outskirts of the
subhalos (e.g., Kawaharada et al. 2010; Walker et al. 2012;
Sato et al. 2012; Ichikawa et al. 2013) rather than the ROSAT.
Simionescu et al. (2013) has measured the temperature profile
out to 70.′ ∼ 1.4 h−1 Mpc using the Suzaku. The temperature
at the outskirts drops down to 2 keV. The sound velocity at this
temperature, cs ∼ 720 (kBT /2 keV)1/2 km s−1, is lower than the
escape velocity, vesc ∼ 1500 km s−1, expected from the most
massive subhalo, number “32.” The enhancement of gas distri-
bution is thus expected to be detected in this region. However,
the Suzaku pointings do not fully cover the whole area of the
cluster. The X-ray follow-up observation of the subhalo regions
provides us with important information regarding the gas evo-
lution and the interplay with subhalos (Tozzi & Norman 2001),
and resolves possible systematics on the temperature measure-
ment by gas clumpy structures at the outskirts (Nagai & Lau
2011). The thermal Sunyaev–Zeldovich effect (SZE) observa-
tion with different sensitivity from the X-ray is also powerful
for gas studies. Indeed, Planck Collaboration et al. (2013) has
shown that the SZE map with FHWM = 10.′ Planck Collabora-
tion et al. (2013) detected the excess flux around the NGC 4839
group (subhalo “9”), similar to the ROSAT X-ray image.

7. CONCLUSIONS

We conducted a weak-lensing survey of subhalos in the very
nearby Coma cluster, with 18 pointing Subaru/Suprime-Cam
observations, covering 4 deg2 and measure the mass of 32
subhalos down to the order of 10−3 of the virial mass. We
quantified systematic issues relevant to lensing signals from the
large-scale structure behind the cluster and the probability of
spurious peaks. Our findings are summarized as follows:

1. Weak-lensing analysis for the very nearby Coma cluster
offers three important advantages to study cluster subhalos.
First, the large apparent size of the subhalos enables us
to easily resolve the truncation radii for less massive
subhalos. Second, the large apparent area covering the
subhalos provides us with a correspondingly large number
of background galaxies, which leads to low statistical errors,
compensates for low lensing efficiency and achieves a high
S/N. Third, subhalos mass measurements do not suffer
from contamination in lensing signals from the main cluster
and other subhalos, because the subhalos are well separated.

It is acknowledged that this analysis is at a disadvantage
in distinguishing cluster subhalos from background group
structures, although the LSS lensing effect was accounted
for in this analysis. Spectroscopic or photometric redshifts
of galaxies are essential to make a secure selection of
subhalos. A difference in the models of subhalos and
background groups/clusters is also helpful to assess the
observed lensing signals.

2. Reconstructed mass maps are associated with the projected
distributions of member galaxies and the LSS lensing model
at ∼7σ–14σ , suggesting that the observed shear catalog
contains complete information regarding the mass structure
of, and behind, the cluster.

3. We discovered 32 cluster subhalos by applying thresholds
of peaks which appeared in the mass maps. We estimate the
model-independent projected masses of subhalos, ∼2–50×
1012 h−1 M�, where the smooth mass component for the
main cluster has been subtracted.

4. Stacked lensing analysis for samples divided by subhalo
masses and cluster-centric radii shows a sharply truncated
profile. The profile is proportional to g+ ∝ θ−2 outside
the truncation radii. This feature is well described by
truncated NFW (TNFW) profile rather than the universal
NFW profile without any truncations, as expected based
on a tidal destruction model. For the two subsamples
with the most and least massive of the subhalos, the
NFW model is strongly disfavored. The stacked lensing
masses are consistent with model-independent masses for
the individual subhalos.

5. The cluster galaxy–galaxy lensing analysis for luminous
member galaxies shows a curved tangential shear profile
which is well fitted by the NFW model or the summation
of the truncated NFW model considering a Gaussian
distribution of the truncation radius. However, the NFW
model is unlikely for subhalo models, because the best-fit
virial radius is too large for the subhalo model.

6. The subhalo mass function dn/d ln Msub is computed taking
into account the systematics of subhalo selection. The mass
function in the range of 2 orders of magnitude in mass
is well described by a single power law ∝ M−α

sub or the
Schechter function ∝ M

−β

sub exp(−Msub/M∗). These best-fit
slope α = 1.09+0.42

−0.32 and β = 0.99+0.34
−0.23 are in a remarkably

good agreement with CDM predictions ∼0.9–1.0 (e.g.,
Giocoli et al. 2010; Gao et al. 2012). This is the first
evidence of consistency with CDM predictions on cluster
sub-scales.

7. The subhalo masses, truncation radii, and mass-to-light
ratios decrease toward the cluster center, as expected from
tidal destruction. The galaxy luminosities associated with
subhalos depend on both their mass and the cluster-centric
radius.

8. The tangential distortion signals, g+, in the range of
∼0.02–2 h−1 Mpc show a complex structure which is well
described by three mass components of the smooth mass
distribution of the NFW model, subhalos, and LSS lensing
model. Although the lensing signals are 1 order of magni-
tude lower than those for clusters at intermediate redshifts,
z ∼ 0.2 (Okabe et al. 2010b), the total S/N, S/N 	 13.3,
is comparable to them or higher because of a correspond-
ingly large number of background galaxies (∼6×105). The
S/Ns for subhalos and LSS lensing models are S/N 	 4.4
and 	1.3, respectively. The 45◦ rotated component, g×, is
consistent with a null signal.
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APPENDIX A

ANISOTROPIC PSF CORRECTION

The anisotropic PSF correction is critically important for
weak-lensing analysis of clusters with low lensing efficiency,
such as the Coma cluster. Systematic residual ellipticities
remaining after the correction will introduce a systematic bias
in estimates of cluster and subhalo masses. We conducted five
tests to assess the anisotropic PSF correction. As described in
Section 2.2, we estimated qα

∗ (θ ) patterns by fitting the stellar
ellipticity components with the function of second-order bi-
polynomials of the vector θ , and applied it to galaxy ellipticities.

To test the model, we first compared the observed qα
∗ (θ) dis-

tribution patterns with those of the model by rapidly alternating
the two distributions on a monitor to allow visual identification
of significant differences, since the human eye is sensitive to
differences in rapidly changing images. We also investigated
spatial distributions of the stellar ellipticity components, eα

∗ (θ ),
before and after the anisotropic PSF correction, as shown in Fig-
ure 17. Although there is a large-scale coherent pattern of raw
stellar ellipticities (left panel of Figure 17), the residual stellar
ellipticities after the correction visually confirmed the random
distribution patterns (right panel of Figure 17).

Second, in order to more quantitatively assess the model, we
computed an auto-correlation function for stellar ellipticities
and a cross-correlation function for the ellipticities of galaxies
and stars, before and after the correction, respectively. These
are estimated by using the average for all pairs of galaxies/
stars and stars separated by the angle θ , with equal weight. A
clear positive correlation between observed stellar ellipticities
is shown in the top-left panel of Figure 18. However, residual
stellar ellipticities are suppressed to zero, even though they are
slightly anti-correlated at a separation angle ∼1′. Similarly, no
correlation between the corrected galaxy and residual stellar
ellipticities is found (right-middle panel of Figure 18). This test
was conducted before applying the isotropic PSF correction, and
the results support the conclusion that there is no systematic bias
in the measurement of galaxy ellipticities.

Third, we investigated the cross-correlation function between
residual stellar ellipticities and reduced shear gα after the
isotropic PSF correction and found the same result. Here, we
plot the cross-correlation for our background sample after the
color selection, estimated with a weight of wg (Equation (3)),
in the right-bottom panel of Figure 18. This plot clearly shows
the null correlation and thus indicates that the systematic bias
caused by imperfect PSF correction is negligible at most.

Fourth, we computed the median for two components of
residual stellar ellipticities before and after the correction. The
median for two components of residual stellar ellipticities after
the anisotropic correction, ē∗

res = (0.791 ± 3.130, 1.127 ±
2.331) × 10−5, improves from those of raw stellar ellipticities
before the correction, ē∗

raw = (−1.179 ± 0.014,−0.520 ±
0.014) × 10−2.

Fifth, we assessed the shape measurement using the same
galaxies detected in all overlapping regions of different images
(see also Section 2.2).

APPENDIX B

MAP MAKING

We reconstructed the projected mass distribution following
Kaiser & Squires (1993). As described in detail in Okabe &
Umetsu (2008), we pixelize the reduced shear into a regular
grid with a Gaussian smoothing of G(θ ) ∝ exp[−θ2/θ2

g ]. The

resolution of the maps is defined by FWHM ≡ 2
√

ln 2θg . The
smoothed shear pattern at an angular position θ is estimated as

ḡα(θ ) =
∑

i G(θ − θ i)wg,igα,i(θ i)∑
i G(θ − θ i)wg,i

(B1)

where wg and gα,i are the statistical weight of Equation (3)
and the reduced shear of the ith galaxy, respectively. The error
variance for the smoothed shear (B1) is given by

σ 2
ḡ (θ) =

∑
i G(θ − θ i)2w2

g,iσ
2
g,i(∑

i G(θ − θ i)wg,i

)2 . (B2)

Then, the smoothed shear field (B1) is inverted with the kernel
(Kaiser & Squires 1993) in Fourier space to obtain the projected
mass distribution, κ(θ). Here, we assume the weak-limit of
gα = γα/(1 − κ) ≈ γα . We also compute a map of the
significance level for mass reconstruction, ν(θ ) ≡ κ/σκ , with
the mass reconstruction error σκ (θ). We also make maps of
luminosity (l(θ )) and number density (n(θ )) for member galaxies
defined in Section 2.5 and the convergence field (κLSS(θ)) of LSS
lensing in Section 2.6 with a statistical weight of wg,i = 1.

APPENDIX C

MODEL-INDEPENDENT MASS MEASUREMENT

A parameter-free estimation of subhalos is given by the
aperture-densitometry, or the so-called ζc-statistics (Clowe et al.
2000). The projected mass, Mζc (< θ ), is given by

Mζc (< θ ) = πθ2Σcrζc(θ, θinn, θout), (C1)

ζc(θ; θinn, θout) = κ̄(< θ ) − κ̄(θinn < θ < θout)

= 2
∫ θinn

θ

d ln θ ′〈γ+(θ )〉

+
2

1 − θ2
inn/θ

2
out

∫ θout

θinn

d ln θ ′〈γ+(θ )〉 (C2)

where θinn and θout are the inner and outer radii of the background
annulus. The 〈γ+〉 is an azimuthal average of the tangential
component of the gravitational shear, which we take 〈γ+(θ )〉 ≈
〈g+(θ )〉 in the weak limit. The uncertainty in ζc at θi is estimated
as

σ 2
i = 4

Ninn∑
j=i

(
Δθj

θj

)2

σ 2
g+

(θj ) +

(
2

1 − θ2
inn/θ

2
out

)2

×
Nout∑

i=Ninn

(
Δθj

θj

)2

σ 2
g+

(θj ), (C3)

24



The Astrophysical Journal, 784:90 (27pp), 2014 April 1 Okabe et al.

Figure 17. Pattern of stellar ellipticity before and after the anisotropic PSF correction for individual pointings. The data name is shown in the top left corner. The left
and right panels show the raw (e∗,raw

1 , e
∗,raw
2 ) and residual (e∗,res

1 , e
∗,res
2 ) stellar ellipticities, respectively.

where Ninn and Nout are the indices for each of the discrete radial
bins corresponding to the radii of θinn and θout in Equation (C1),
respectively. An error covariance of ζc between each bin is given
by σij = σji = σ 2

j for θi < θj . The S/N of the radial profile,
which is complementary information to that of peaks in mass
maps, is computed by

S/N =
⎛
⎝∑

ij

Mζc,iV
−1
ij Mζc,j

⎞
⎠

1/2

(C4)

where V −1
ij is the inverse of the covariance matrix.

To quantify the mass of the subhalos, we estimate an average
projected mass taking into account the error covariance matrix,
as follows,

M2D =
Ns2∑

i=Ns1

ΓiMζc,i (C5)

σ 2
M2D

=
Ns2∑

i,j=Ns1

ΓiΓjVij (C6)

Γi =
Ns2∑

j=Ns1

V −1
ij

/ Ns2∑
i,j=Ns1

V −1
ij (C7)

where Ns1 and Ns2 are the indices for each of the discrete radii
where Mζc

profile is saturated.

APPENDIX D

MASS MODELS

Mass models for cluster halos and subhalos are summarized
in this section. Numerical simulations, based on the CDM model
of structure formation, predicts that dark matter halos spanning
a wide mass range can be described by a universal mass density
profile (Navarro et al. 1996, 1997). In this paper, we refer to
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Figure 18. Auto correlation function for the stellar ellipticities (left) and a cross correlation function between the galaxy and stellar ellipticities (right) as a function
of angular separation, θ . The red diamonds and blue circles denote two components of the ellipticity (eα ; α = 1, 2), respectively. The x positions for blue circles
are shifted (multiplied by 1.1) from the originals. The raw stellar ellipticities are highly correlated (left-top panel), while the residual stellar ellipticities after the
correction are consistent with zero (left-bottom panel). The cross correlation function between the raw galaxy and stellar ellipticities, 〈eraw

α e∗,raw
α 〉, shows positive

values (right-top panel). The residual cross correlation function between the galaxy and stellar ellipticities, 〈eαe∗,res
α 〉, does not show any significant correlation over

a wide range (right-middle panel). The cross correlation between the residual stellar ellipticities and the reduced shear for background galaxies which we used for
lensing analysis, 〈gαe∗,res

α 〉, does not show any significant feature consistent with an imperfect anisotropic PSF correction (right-bottom panel).

(A color version of this figure is available in the online journal.)

these density profiles as the NFW profile which is expressed in
the form of

ρNFW(r) = ρs

(r/rs)(1 + r/rs)2
, (D1)

where ρs is the central density parameter and rs is the scale
radius. The density profile has inner and outer slope values
of −1 and −3, respectively. The three-dimensional spherical
masses, MΔ, enclosed by the radius, rΔ, inside of which the
mean density is Δ times the critical mass density, ρcr(z), at the
redshift, z, is given by

MNFW(< rΔ) = 4πρsr
3
Δ

c3
Δ

[
ln(1 + cΔ) − cΔ

1 + cΔ

]
. (D2)

The NFW profile is specified by the two parameters including
MΔ and the halo concentration cΔ = rΔ/rs .

Subhalo sizes are determined by the strong tidal field of the
main cluster halo. The mass density outside the instantaneous
tidal radius of subhalos drastically decreases and is close to zero
due to tidal stripping (e.g., Tormen et al. 1998; Hayashi et al.
2003; Oguri & Lee 2004; Taylor & Babul 2004; van den Bosch
et al. 2005). Therefore, the mass model for subhalos requires an
additional parameter of the truncation radius, rt. We consider
two models of the truncation model for NFW and SIS models
described above. We refer to these truncation models as the
truncated NFW (TNFW; Takada & Jain 2003; Hamana et al.
2004). The interior mass density profile for the TNFW model
follows the NFW model but is zero outside the truncation radius.

ρTNFW(r) = ρNFW(r � rt ),

= 0(r > rt ). (D3)

This is an extreme case of the truncation model. The TNFW
model (Okabe et al. 2010a) is specified by three parameters
including the subhalo mass (Mt), a truncation radius (rt) and
a concentration (ct). The slope of the lensing profile for the

TNFW model drastically changes outside the truncation radius
and behaves as a point source (∝ θ−2). In model fitting, the
truncation radius and the concentration are sensitive to this
break and the inner profile, respectively. The subhalo mass is
also determined by the distortion signal at the truncation radius.
Since the mass densities outside the truncation radius are zero,
the three- and two-dimensional masses within the truncation
radius yield the exactly same value (M3D = M2D).

When we stack tangential distortion profiles for subhalos with
different properties, the break in the distortion profile is smooth
due to their intrinsic distribution. In addition to the TNFW
model, we compute the model taking into account a distribution
function of the truncation radius (TNFWProb). The probability
function is assumed to be Gaussian, p(rt ) = exp(−(rt −
〈rt 〉)2/2σ 2

rt
)/

√
2πσ 2

rt
, where 〈rt 〉 and σrt

are the average and the

standard error for the truncation radius, respectively. The mean
lensing signal is expressed in terms of

∫
p(rt )g

(TNFW)
+ drt . We

do not assume a distribution over the subhalo mass but instead
estimate the mean subhalo mass, 〈Mt 〉, which is sensitive to a
lensing signal at 〈rt 〉.
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