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ABSTRACT

We present a joint weak-lensing/X-ray study of galaxy cluster mass–observable scaling relations motivated by the
critical importance of accurate calibration of mass proxies for future X-ray missions, including eROSITA. We use
a sample of 12 clusters at z � 0.2 that we have observed with Subaru and XMM-Newton to construct relationships
between the weak-lensing mass (M) and three X-ray observables, gas temperature (T), gas mass (Mgas), and quasi-
integrated gas pressure (YX), at overdensities of Δ = 2500, 1000, and 500 with respect to the critical density. We find
that Mgas at Δ � 1000 appears to be the most promising mass proxy of the three because it has the lowest intrinsic
scatter in mass at a fixed observable, σlnM � 0.1, independent of the cluster dynamical state. The scatter in mass at
fixed T and YX is a factor of ∼2–3 larger than at fixed Mgas, which are indicative of the structural segregation that we
find in the M–T and M–YX relationships. Undisturbed clusters are found to be ∼40% and ∼20% more massive than
disturbed clusters at fixed T and YX, respectively, at ∼2σ significance. In particular, A 1914—a well-known merging
cluster—significantly increases the scatter and lowers the normalization of the relation for disturbed clusters. We
also investigated the covariance between the intrinsic scatter in M–Mgas and M–T relations, finding that they are
positively correlated. This contradicts the adaptive mesh refinement simulations that motivated the idea that YX may
be a low-scatter mass proxy, and agrees with more recent smoothed particle hydrodynamic simulations based on the
Millennium Simulation. We also propose a method to identify a robust mass proxy based on principal component
analysis. The statistical precision of our results is limited by the small sample size and the presence of the extreme
merging cluster in our sample. We therefore look forward to studying a larger, more complete sample in the future.
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X-rays: galaxies: clusters
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1. INTRODUCTION

Galaxy clusters are the largest virialized objects in the uni-
verse; they formed from high amplitude peaks of the primordial
density field. Clusters therefore occupy the high mass expo-
nential tail of the dark matter halo mass function, which is
sensitive to the matter density and expansion history of the
universe and to modifications of the laws of gravity. Measure-
ments of the evolution of the galaxy cluster mass function across
a broad range of redshifts can thus provide a powerful tool
for constraining the cosmological parameters (e.g., Vikhlinin
et al. 2009a, 2009b). Numerous galaxy cluster surveys will soon
begin delivering a huge amount of data at optical, X-ray, and mil-
limeter wavelengths, e.g., from Subaru/Hyper-Suprime-Cam,
eROSITA, SPT, and ACT. One of the main goals of these surveys
is to measure the evolution of the galaxy cluster mass function,
and thus to probe the expansion history of the universe. How-
ever, the mass of a galaxy cluster is not directly measurable.
These surveys will therefore rely on “mass-like” observables

∗ This work is based in part on data collected at the Subaru Telescope and
obtained from the SMOKA, which is operated by the Astronomy Data Center,
National Astronomical Observatory of Japan. Based on observations made
with the XMM-Newton, an ESA science mission with instruments and
contributions directly funded by ESA member states and the USA (NASA).

(e.g., X-ray temperature—Evrard et al. 1996) and scaling re-
lations between these observables and mass, to construct the
all-important mass functions. Calibration of mass–observable
scaling relations is therefore currently a high-priority observa-
tional goal.

Traditionally, observational studies of the mass–observable
scaling relations have relied solely on X-ray observations,
typically concentrating on the mass–temperature relation (e.g.,
Finoguenov et al. 2001; Sanderson et al. 2003; Ettori et al.
2004; Arnaud et al. 2005). X-ray-based mass measurements
require hydrostatic equilibrium (H.E.) and spherical symmetry
to be assumed, and either a measurement of the temperature
profile, or an assumption of isothermality. Inclusion of X-ray
temperature information in both axes of the mass–temperature
relation may therefore induce intrinsic correlations into the
measured relation. The validity of the underlying assumptions
also warrants careful testing.

Gravitational lensing offers cluster mass measurements that
are independent of X-ray observations and do not rely on
assuming H.E. Joint lensing/X-ray studies (e.g., Okabe &
Umetsu 2008; Kawaharada et al. 2010) are therefore a promising
route for calibrating cluster mass–observable scaling relations.
Indeed, early lensing/X-ray studies of cluster cores indicated
that the scatter in cluster temperature may be as large as 40%
at fixed mass and that the scatter is dominated by disturbed,
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merging clusters, in which H.E. may not hold (Smith et al.
2005). Subsequent work has concentrated on using weak-
lensing data to extend this pioneering work beyond cluster cores
to overdensities of 500 � Δ � 2500 with respect to the critical
density (Bardeau et al. 2007; Hoekstra 2007; Pedersen & Dahle
2007; Zhang et al. 2007, Zhang et al. 2008). The main limiting
factors in these weak-lensing/X-ray studies have been the
limited statistical precision and heterogeneity of the available
weak-lensing data, and also the small samples observed to date.

On the theoretical side, Kravtsov et al. (2006) proposed the
so-called quasi-integrated pressure, YX ≡ Mgas×T , as a “new
robust low-scatter X-ray mass indicator” or a mass-like ob-
servable. This was motivated by analysis of their hydrodynamic
numerical simulations of clusters using an adaptive mesh refine-
ment (AMR) code. They found that the temperature deviations
from the M–T relation are anti-correlated with the gas-mass de-
viations from the M–Mgas relation. This anti-correlation found
in their simulations acts to suppress the scatter in the M–YX
relation, independent of the dynamical state of the clusters. This
prediction has stimulated much observational effort within the
X-ray community that has broadly supported the idea that YX
is the optimal X-ray mass proxy (e.g., Maughan 2007; Arnaud
et al. 2007; Vikhlinin et al. 2009a).

However, Stanek et al.’s (2010) smoothed particle hydrody-
namic (SPH) Millennium Gas Simulations contradict Kravtsov
et al.’s simulations. Stanek et al. predict that the temperature
and gas-mass deviations are positively correlated; this result ap-
pears to be independent of the range of gas physics (gravity-only,
cooling, preheating) implemented in the simulations. Juett et al.
(2010) have also recently suggested that previous X-ray-only
studies may have underestimated the scatter in mass–observable
scaling relations by a factor of ∼2–3. In summary, a joint
lensing/X-ray observational investigation of the relationships
between mass and gas mass, temperature, and YX is urgently
needed. Such joint studies also lend themselves well to the task
of observationally testing various corrections that have been de-
rived from numerical simulations to account for deviations from
H.E. For example, numerous authors have pointed out that H.E.
mass estimates may underestimate the cluster mass because of
non-thermal pressure support due to turbulence caused by bulk
motion of the cluster gas (e.g., Evrard 1990; Rasia et al. 2006;
Nagai et al. 2007; Piffaretti & Valdarnini 2008; Fang et al. 2009),
and Vikhlinin et al. (2009a) applied a 17% upward correction
to X-ray masses of disturbed clusters, based on the results of
simulations.

A key goal of the Local Cluster Substructure Survey
(LoCuSS8) is to calibrate cluster mass–observable scaling rela-
tions for future cosmological experiments. LoCuSS is a multi-
wavelength survey of galaxy clusters at 0.15 < z < 0.3 selected
from the ROSAT All-sky Survey catalogs (Ebeling et al. 1998,
2000; Böhringer et al. 2004). To date, we have published the
first lensing/Sunyaev–Zeldovich effect comparison (Marrone
et al. 2009), begun our lensing/X-ray scaling relation work with
a pilot study (Zhang et al. 2008), and compared lensing-based
masses with H.E. masses on both small (Richard et al. 2010) and
large (Zhang et al. 2010) scales. This article is a continuation of
our pilot study (Zhang et al. 2008), in which we combined weak-
lensing mass measurements from the Canada–France–Hawaii
Telescope (Bardeau et al. 2005, 2007) and from the Nordic Op-
tical Telescope and UH 88in (Dahle 2006) with XMM-Newton
observations to calibrate the mass–observable scaling relations.

8 http://www.sr.bham.ac.uk/locuss

As alluded to above, Zhang et al.’s results were limited by the
quality of the weak-lensing mass measurements because the
underlying data were heterogeneous in the observing facilities,
fields of view, and filters used. In this article, we address these is-
sues by using our own weak-lensing mass measurements based
on uniform analysis of our Subaru/Suprime-Cam observations
(Okabe & Umetsu 2008; Okabe et al. 2010). Nevertheless, our
Subaru/XMM-Newton sample remains small, at just 12 clusters.
As we discuss throughout this article, sample size therefore re-
mains an issue, and we will address this in a future article.

The outline of this paper is as follows. In Section 2, we briefly
describe the weak-lensing and X-ray analysis and measure the
dynamical state of each cluster using XMM-Newton data. We
present the main results on the mass–observable scaling rela-
tions in Section 3, discuss the results in Section 4, and summa-
rize our work in Section 5. Throughout this paper, we assume
Ωm,0 = 0.3, ΩΛ = 0.7, and h = H0/100 km s−1 Mpc−1 = 0.7.

2. SAMPLE AND DATA ANALYSIS

2.1. Sample

For the purpose of this paper, we compiled a sample of
12 clusters—A 68, A 115, A 209, A 267, A 383, A 1835,
A 1914, Z 7160, A 2261, RX J2129.6 + 0005, A 2390,
and A 2631—that represents the overlap between the samples
for which Subaru/Suprime-Cam and XMM-Newton data are
available, and that we have previously published (Zhang et al.
2008; Okabe & Umetsu 2008; Okabe et al. 2010). The sample
does not suffer, by design, any strong biases to extreme merging
or extreme cool core clusters, and therefore can be regarded,
qualitatively, as representative of massive, X-ray luminous
clusters. However, given the small sample size, we refrain from
attempting to quantify how these 12 might be biased with respect
to the underlying cluster population in this article. Instead,
this article presents some early results from our Subaru/XMM-
Newton program that benefit from the use of our Subaru data,
as opposed to the CFH12k/UH8k/NOT data that we used in
Zhang et al. (2008). We defer a detailed discussion of sample
definition and possible biases to future articles in this series that
will address larger, more complete samples.

2.2. Weak-lensing Mass Measurements

The details of our weak-lensing analysis are described in
by Okabe & Umetsu (2008) and Okabe et al. (2010); here, we
provide a brief outline of some important aspects of our methods.

We selected background galaxies based on their location
in the color-magnitude plane—typically (V − i ′)/i ′—bluer or
redder than the cluster red sequence by a minimum color offset
(Umetsu & Broadhurst 2008; Umetsu et al. 2009; Okabe et al.
2010). As demonstrated by Okabe et al. (2010), contamination
of the background galaxy catalogs by faint (unlensed) cluster
members dilutes the weak-lensing signal. This effect is more
pronounced at smaller clustercentric radii because the number
density of cluster galaxies rises toward the cluster centers. In the
absence of our color-selection techniques, weak-lensing M500
and M2500 measurements can be biased low by ∼20%–50%.

We used the COSMOS photometric redshift catalog (Ilbert
et al. 2009) to estimate the redshift of the background galax-
ies. Specifically, we calculated the average lensing weight,
〈DLS/DOS〉 = ∫

zd
dzdPWL/dzDLS/DOS (see also Equation (10)

in Okabe et al. 2010), of each background galaxy catalog by
selecting galaxies identical to both our catalogs and the COS-
MOS catalog. DOS and DLS are the angular diameter distances
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between the observer and source (background galaxy) and lens
and source, respectively.

In cosmology the three-dimensional spherical mass, MΔ,
enclosed within a sphere of radius rΔ for a given overdensity
Δ is most relevant for the cluster mass function, where rΔ is
chosen such that the average density within the sphere is equal
to the critical mass density at the cluster redshift, ρcr, times
the overdensity, Δ. We estimated MΔ for each cluster by fitting
the measured radial profile of lensing distortion signals to the
Navarro–Frenk–White (NFW) model prediction parameterized
by the mass MΔ and cΔ, where the NFW mass profile (Navarro
et al. 1996, 1997) is given as ρ ∝ r−1(1 + cΔr/rΔ)−2 with cΔ
being the concentration parameter.

Describing cluster-scale dark matter halos as spherical objects
may cause systematic errors in individual mass measurements
because clusters are predicted to be triaxial in the collisionless
CDM model (Jing & Suto 2002). For example, if the major
axis of a triaxial halo is aligned with or perpendicular to
the line of sight, a spherical model would overestimate or
underestimate the mass, respectively, and also cause systematic
errors in the measurement of the concentration parameter (Oguri
et al. 2005; Gavazzi 2005; Corless et al. 2009). However, if
the distribution of cluster orientations is random, then adopting
spherical mass models should not introduce a significant bias
into the properties of the sample. We therefore check that this
is the case for our sample by comparing the spherical mass
measurements from Okabe et al. (2010) that we use here with
triaxial mass measurements of the same clusters using the
same background galaxy catalogs from Oguri et al. (2010).
On average, the spherical (M (sph)

Δ ) and triaxial (M (tri)
Δ ) masses

agree well—〈M (tri)
Δ /M

(ave)
Δ 〉 = 0.98 ± 0.15, 0.90 ± 0.17, and

0.83 ± 0.21, for Δ = 500, 1000, and 2500—confirming the
expectation of negligible bias.

2.3. X-ray Observables

The observations and data reduction are described in detail
by Zhang et al. (2007, 2008). In brief, the three mass prox-
ies considered in this article are calculated as follows. The
global temperature is a volume average of the spectrally mea-
sured, radial temperature profile limited to the radial range of
(0.2–0.5)r500. The gas mass Mgas(r) was obtained for each clus-
ter by integrating a double-β model of the electron density that
was fitted to the X-ray surface brightness profile. The quasi-
integrated pressure is the product of the gas mass and the global
temperature: YX(r) = Mgas(r) × T0.2–0.5r500 . Note that Mgas(r),
T0.2–0.5r500 , and YX(r) have all been calculated using radii
obtained from the weak-lensing analysis and not using radii
calculated from the X-ray analysis as in Zhang et al. (2008).
This definition of radii introduces a subtle correlation with
weak-lensing mass—we will explore this when estimating the
intrinsic scatter in the mass–observable scaling relations in Sec-
tion 3.6 and the Appendix. Finally, we adopted a self-consistent
definition of the cluster centers based on the weak-lensing
analysis. This caused us to change the centers of just two
clusters—A 1914 and A 2631—from those used by Zhang et al.
(2010).

2.4. X-ray Morphology and Dynamical State

Previous joint-lensing/X-ray studies have identified the dy-
namical state of clusters as a significant source of scatter in
mass–observable scaling relations (Smith et al. 2005; Pedersen
& Dahle 2007; Zhang et al. 2008, 2009). In this section, we

Figure 1. Asymmetry vs. fluctuation parameters using the �r500 region. We
define undisturbed clusters (red, low A and F parameters) and disturbed clusters
(blue, high A parameter or high F one).

(A color version of this figure is available in the online journal.)

therefore classify the clusters as either “disturbed” or “undis-
turbed,” based on a new method patterned on those developed
for the morphological classification of galaxies (e.g., Conselice
2003).

We calculate the asymmetry (A) and fluctuation (F) of the
X-ray surface brightness distribution in the 0.7–2 keV band.
Asymmetry is defined as A = (

∑
ij |Iij − Rij |)/

∑
ij Iij , the

normalized sum of the absolute value of the flux residuals, where
Iij is a matrix element of the combined MOS1+MOS2 XMM-
Newton frame in the 0.7–2.0 keV band, flat-fielded, point-source
subtracted, and refilled assuming a Poisson distribution, and Rij
is a matrix element obtained by rotating the above frame by
180◦. The pixel size of both frames is 4′′ × 4′′. The fluctuation,
F, measures deviations from a smooth flux distribution and is
defined as F = (

∑
ij Iij −Bij )/

∑
ij Iij , where Bij is an element

in a frame smoothed on 2 arcmin scales, which corresponds
to a physical scale of 400 kpc at z = 0.2. Such smoothing
also suppresses the effect of the complex shape of the XMM-
Newton point-spread function (Ghizzardi 2001). We estimate the
statistical errors of A and F assuming Poisson noise computed
within a radius of r500, excluding CCD gaps and bad pixels. We
also estimate the systematic error of A caused by uncertainties
in the cluster centers by recalculating A, each time moving the
cluster centers onto one of the neighboring pixels within the
r � 4′′ circle from the nominal cluster center.

The clusters span the ranges A ∼ 0.07–0.15 and F ∼ 0–0.14
(Figure 1). Dynamically disturbed clusters generally have an
asymmetric X-ray morphology, with an offset between optical
and X-ray centers, and are therefore expected to have larger A
and F than undisturbed clusters. To separate the clusters into two
subsamples that represent relatively disturbed and undisturbed
systems, we subdivided the A–F plane into four quadrants: (1)
A < 1.1 and F < 0.05—RX J2129, A 209, A 383, A 1835, and
A 2390, (2) A > 1.1 and F < 0.05—A 2261 and A 1914, (3)
A < 1.1 and F > 0.05 — A 68, A 2631, A 267, and Z 7160,
and (4) A > 1.1 and F > 0.05 — A 115. We classify the
five clusters in quadrant (1)—low A and low F—as undisturbed
clusters, and the remaining seven as disturbed clusters. It is im-
mediately obvious that this classification matches other possible
classification schemes well. For example, four of the five undis-
turbed clusters host a cool core (e.g., Smith et al. 2003; Allen



878 OKABE ET AL. Vol. 721

et al. 2001; Peterson et al. 2003), and the disturbed clusters have
been discussed extensively as merging/cold-front clusters (e.g.,
Okabe & Umetsu 2008; Mazzotta & Giacintucci 2008; Gutierrez
& Krawczynski 2005), in which complicated temperature/
entropy distributions or large offsets between lensing/optical
and X-ray centroids exist (e.g., Finoguenov et al. 2005; Smith
et al. 2005; Sanderson et al. 2009b). In summary, all of the
clusters identified as disturbed in the A–F plane are indepen-
dently confirmed as disturbed by other methods in the literature.
However, we stress again the relative nature of the disturbed/
undisturbed classification and acknowledge that the disturbed
clusters in particular likely comprise clusters in a wide variety
of stages in their dynamical evolution. We will return to this is-
sue later when we assess the impact of a single extreme merging
cluster on our attempts to calibrate the mass–observable scaling
relations.

3. RESULTS

In this section, we present the main empirical results
of the slope, normalization, and intrinsic scatter in the
mass–observable scaling relations and how these depend on the
dynamical state of the clusters. We also discuss the correlation
between gas mass and temperature deviations.

3.1. Scaling Relations and Fitting Methods

If gravitational heating is the dominant mechanism respon-
sible for the X-ray properties of galaxy clusters, the following
scaling relations are expected to hold:

ME(z) ∝ (YXE(z))3/5 h1/2, (1)

ME(z) ∝ MgasE(z) h3/2, (2)

ME(z) ∝ T 3/2 h−1, (3)

where M,Mgas, and T are the total mass, gas mass, and
temperature of a cluster, respectively, and YX = Mgas × T
is the quasi-integrated pressure. These relations, specifically
the exponents of M,Mgas, and T, are usually referred to
as self-similar, following Kaiser (1986). Note that the term
E(z) = H (z)/H0 = [Ωm,0(1 + z)3 + ΩΛ]1/2 accounts for the
redshift evolution of the clusters in a flat universe.

In the following subsections, we therefore fit the functional
form Mz = M0X

γ
z to the data, where Mz = ME(z), M0

is the normalization, Xz is the X-ray observable (i.e., YX, T,
or Mgas) multiplied by E(z) or not as appropriate based on
Equations (1)–(3), and γ is the logarithmic slope. These fits are
done at three overdensities with respect to the critical density:
Δ = 2500, 1000, and 500. The scaling relation slope and
normalization measurements are based on orthogonal regression
performed using the Orthogonal Distance Regression package
(ODRPACK; e.g., Boggs et al. 1987) taking into account the
measurement errors. In general, we ignore the subtle correlations
introduced by measuring the X-ray observables within radii
defined by the weak-lensing analysis, although we do take
them into account in Section 3.3 when we measure the intrinsic
scatter. To check for consistency with other work, we have also
refitted the relations using the bisector modification of the BCES
method (Akritas & Bershady 1996). The difference of the best-
fit scaling relation parameters between the two fitting methods
is a small fraction of statistical uncertainties. For example, the

Table 1
Slopes of the Mass–Observable Relations for the Full Sample

Relation γ Using MWL

Δ:500 1000 2500
(1) (2) (3) (4)

MΔ–Y
γ

X 0.67 ± 0.14 0.59 ± 0.11 0.46 ± 0.11

MΔ–T
γ

0.2–0.5r500
1.49 ± 0.58 1.49 ± 0.46 1.26 ± 0.35

MΔ–M
γ
gas 0.98 ± 0.15 0.86 ± 0.14 0.68 ± 0.15

Notes. A single power-law form of slope γ is considered. The X-ray tem-
perature is derived by the volume average of the deprojected radial temper-
ature profile and using the radii within 0.2–0.5r500 (T = T0.2–0.5r500 ; see
Zhang et al. 2008). Column 1: scaling relations. Columns 2–4: slopes of the
mass–observable relations using weak-lensing masses at the overdensities of
Δ = 500, 1000, and 2500, respectively.

difference of the best-fit slopes and normalizations between the
two methods is typically ∼30% and ∼6% of the statistical error,
respectively. We also did the bootstrap resampling to estimate
the sample variance on the slope parameter and found that it is
�20% of the statistical errors.

3.2. Slope and Normalization

We first fit the scaling relations to the full sample of 12 clusters
with both slope γ and normalization M0 as free parameters. At
Δ = 500, the best-fit slopes of all three relations agree well
with the self-similar model (Table 1). At higher overdensities,
the agreement deteriorates for all three relations, and indeed the
slopes of the M2500–Mgas and M2500–YX relations are discrepant
from self-similarity at ∼2σ–3σ at Δ = 2500. This flattening in
the scaling relations at higher Δ can also be seen graphically in
Figures 2, 3, and 4, in which we show the MΔ–YX, MΔ–TX, and
MΔ–Mgas relations, respectively.

To constrain the normalization parameter M0, we fix the slope
parameters to the self-similar values and repeat the fits. The
measured normalizations are all consistent with those obtained
by Zhang et al. (2008) using the same XMM-Newton data
and independent weak-lensing data. The superior quality and
uniformity of our Subaru data show differences between the
normalizations for disturbed and undisturbed clusters. These
differences are most pronounced at Δ = 500 (see Table 2);
specifically, at fixed YX undisturbed clusters are measured
to be ∼22% more massive than disturbed clusters at ∼1.5σ
significance. Similarly, at fixed T, undisturbed clusters are
measured to be ∼43% more massive than disturbed clusters at
∼1.8σ significance. We confirm that our results are insensitive
to whether or not the slopes are fixed to the self-similar value.

3.3. Scatter

We also measured the intrinsic scatter, σlnM , for the logarithm
of the Y-axis, ME(z), for each mass–observable scaling relation
using the Bayesian method described in the Appendix. Here we
take into account the correlations caused by measuring X-ray
observables within radii defined by the lensing analysis—see
the Appendix. We also confirmed that the best-fit slopes and
normalizations obtained using the ODR methods discussed
above are consistent within errors with those obtained using
the more sophisticated Bayesian method considered here. The
intrinsic scatter in all three relations is well described by a
lognormal distribution.

The M–T relation exhibits the largest intrinsic scatter
(∼0.23–0.33; Table 3) among the three mass–observable
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Figure 2. M–YX relation using weak-lensing masses and the quasi-integrated pressure at the overdensities of Δ = 2500 (left panel), Δ = 1000 (middle panel), and
Δ = 500 (right panel); see also Section 2.3. The solid black, red, and blue lines denote the best fits of the relations using weak-lensing masses for all, undisturbed, and
disturbed clusters, respectively.

(A color version of this figure is available in the online journal.)

Figure 3. MWL
Δ –T relation. The arrangement of panels with overdensity and the line coding are the same as in Figure 2.

(A color version of this figure is available in the online journal.)

Figure 4. MWL
Δ –Mgas relation. The arrangement of panels with overdensity and the line coding are the same as in Figure 2.

(A color version of this figure is available in the online journal.)

relations. We also observe an increase in the intrinsic scatter
with increasing radius (i.e., decreasing the interior overdensity
Δ). The same trend is found in undisturbed clusters, while the
opposite trend is found in disturbed clusters. However, this trend
is not a physical feature of the intracluster gas affected by grav-
itational heating because we used a fixed global temperature

measurement in the radial range of 0.2–0.5r500 for all the over-
densities.

The M–Mgas relation is the tightest of the three, with an
intrinsic scatter in mass of σlnM ∼ 0.12–0.16 at Δ = 500
and 1000. At Δ = 2500, the scatter is roughly double that
at lower overdensity (Table 3), which may be due to different
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Figure 5. Mgas,Δ–T relation. The arrangement of panels with overdensity and the line coding are the same as in Figure 2.

(A color version of this figure is available in the online journal.)

Table 2
Normalization (M0) and Morphological Dependence of the Mass–Observable Relations

Relation All 12 Clusters w/o A1914
All Undisturbed Disturbed All Disturbed

(1) (2) (3) (4) (5) (6)

M500–YX 4.92+0.35
−0.33 5.46+0.57

−0.52 4.47+0.41
−0.37 5.16+0.34

−0.32 4.83+0.41
−0.38

M1000–YX 4.51+0.29
−0.27 4.77+0.43

−0.40 4.28+0.39
−0.36 4.70+0.28

−0.26 4.62+0.41
−0.37

M2500–YX 4.02+0.29
−0.27 4.06+0.49

−0.43 3.99+0.41
−0.37 4.20+0.30

−0.28 4.38+0.43
−0.39

M500–T0.2–0.5r500 2.45+0.27
−0.24 2.94+0.50

−0.42 2.05+0.24
−0.22 2.34+0.13

−0.12 2.20+0.10
−0.10

M1000–T0.2–0.5r500 1.70+0.15
−0.14 1.94+0.24

−0.21 1.50+0.18
−0.16 1.80+0.15

−0.14 1.64+0.19
−0.17

M2500–T0.2–0.5r500 0.97+0.08
−0.07 1.03+0.10

−0.10 0.91+0.12
−0.10 1.02+0.08

−0.07 1.00+0.14
−0.12

M500–Mgas 13.10+0.77
−0.73 13.79+1.23

−1.13 12.53+1.03
−0.96 13.59+0.77

−0.73 13.36+1.09
−1.01

M1000–Mgas 14.46+0.86
−0.81 14.52+1.52

−1.38 14.41+1.13
−1.05 14.91+0.89

−0.84 15.36+1.14
−1.06

M2500–Mgas 17.33+1.36
−1.26 16.85+2.54

−2.21 17.76+1.65
−1.51 18.01+1.46

−1.35 19.45+1.51
−1.40

Notes. The forms of M–YX, M–TX, and M–Mgas relations are given by MΔE(z)2/5 = M0(Yx/3 ×
1014M� keV)5/3 × 1014h1/2M�, MΔE(z) = M0(kBT /5 keV)3/2 × 1014h−1M�, and MΔE(z) =
M0(MgasE(z))h3/2M�, respectively. We fix the slopes to the self-similar values. The X-ray temper-
ature is derived by the volume average of the radial temperature profile in the range of 0.2–0.5r500

(T = T0.2–0.5r500 ; see Zhang et al. 2008). Column 1: scaling relations. Columns 2–4: normalization of the
fit to the relation using weak-lensing masses. The results for the full sample, undisturbed, and disturbed
clusters are presented. Columns 5 and 6: normalization of the mass–observable relations for the 11 clusters
and 6 disturbed clusters, excluding A1914, respectively.

Table 3
Intrinsic Scatter in Mass–Observable Relations

Relation All 12 Clusters w/o A1914
All Undisturbed Disturbed All Disturbed

(1) (2) (3) (4) (5) (6)

M500–YX 0.203+0.066
−0.095 �0.283 0.216+0.098

−0.166 0.154+0.071
−0.098 �0.225

M1000–YX 0.203+0.052
−0.078 �0.283 0.241+0.084

−0.166 0.173+0.057
−0.081 0.243+0.089

−0.204

M2500–YX 0.245+0.053
−0.088 �0.353 0.306+0.091

−0.191 0.245+0.058
−0.097 0.329+0.113

−0.280

M500–T0.2–0.5r500 0.327+0.087
−0.136 �0.503 0.273+0.123

−0.215 0.288+0.093
−0.133 �0.280

M1000–T0.2–0.5r500 0.267+0.078
−0.113 �0.364 0.292+0.120

−0.217 0.228+0.088
−0.125 �0.318

M2500–T0.2–0.5r500 0.226+0.084
−0.117 �0.295 0.328+0.135

−0.244 0.199+0.090
−0.132 �0.411

M500–Mgas 0.123+0.068
−0.102 �0.260 �0.226 0.109+0.062

−0.106 �0.225

M1000–Mgas 0.160+0.070
−0.096 �0.330 0.207+0.103

−0.188 0.147+0.072
−0.104 �0.225

M2500–Mgas 0.241+0.077
−0.114 0.436+0.190

−0.410 0.263+0.121
−0.230 0.240+0.086

−0.127 �0.248

Notes. Intrinsic scatter, σln M , in the mass–observable relations, using weak-lensing masses, for all
12 clusters and the 11 clusters excluding A1914 (Section 3.4), respectively. We refer to the mean of the
posterior probability distribution of each parameter. Column 1: scaling relations; Columns 2–4: intrinsic
scatter for all 12 clusters, undisturbed, and disturbed clusters, respectively. Columns 5 and 6: intrinsic
scatter for the 11 clusters and 6 disturbed clusters, excluding A1914, respectively.
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core properties of individual clusters. For example, cool-core
clusters have denser, cuspier cores than non-cool core clusters
(e.g., Croston et al. 2008; Sanderson et al. 2009a; McCarthy
et al. 2008). Such differences between cluster cores have a
much smaller effect on measurements at larger radii because
the core regions make a small contribution to the total gas mass
measured out to Δ = 1000 and 500. However, note that the
intrinsic scatter is not well constrained for M–Mgas because
the scatter is dominated by statistical errors. A larger sample is
clearly needed to improve the constraints on the intrinsic scatter
in M–Mgas, however, it is important to note that this is the only
relation that appears to have ∼10% intrinsic scatter.

The observed intrinsic scatter in the M–YX relation is inter-
mediate between that of the M–Mgas and M–T relations, at
σlnM ∼ 0.20–0.25 (Table 3). This is a factor of �2 greater than
that originally predicted by Kravtsov et al. (2006) based on their
AMR simulations.

3.4. The Impact of an Outlier

In this section, we highlight the impact of one cluster, A 1914,
on our results. This cluster has previously been identified as a
merging cluster with a complex X-ray morphology, radio halo,
and weak-lensing-based dark matter distribution (Buote & Tsai
1996; Bacchi et al. 2003; Govoni et al. 2004; Okabe & Umetsu
2008). We have also identified it as having the most extreme
X-ray/lensing mass discrepancy among the 12 clusters consid-
ered here (Zhang et al. 2010).

To assess the impact of such clusters on the measured
reliability of X-ray observables as mass proxies, we repeated
the calculations of normalization and scatter discussed in
Sections 3.2 and 3.3 excluding A 1914 (Table 2). At Δ = 500,
the normalization of the M–YX relations for disturbed and
undisturbed clusters are different at just ∼1.2σ significance
when A 1914 is excluded from the disturbed sample, in contrast
to the ∼1.8σ difference based on the full sample of 12 clusters.
We also find that excluding A 1914 reduces the intrinsic scatter
on all of the scaling relations. In particular, the intrinsic scatter
on M–YX is reduced by ∼25% from σlnM ∼ 0.20 to 0.15. Jack-
knife tests on samples of 11 clusters (i.e., removing each cluster
in turn) also confirm that A 1914 is indeed the most significant
outlier among our sample.

These results indicate that outliers in the cluster population
require careful treatment in the construction and application of
mass–observable scaling relations. In summary, reliable cluster
selection functions are required to gain robust constraints. This
will be especially true for future high-redshift surveys because
the fraction of merging clusters is expected to increase with
look-back time (Vikhlinin et al. 2009a).

3.5. Covariance of Deviations

We investigate the covariance of deviations from the best-
fit M–Mgas and M–T relations following recent numerical
simulation studies (e.g., Kravtsov et al. 2006; Stanek et al.
2010). For a given mean scaling relation Y = f (X), the
deviations of each cluster from the mean relation are quantified
as δY ≡ [Y − f (X)] and δX ≡ [X − f −1(Y )]. We use
the mean normalizations for a full sample of 12 clusters
(Figure 5), however, we found that the following results do
not change significantly when the best-fit normalizations of
undisturbed and disturbed clusters are used instead.

The temperature and Mgas deviations, δT /T (MΔ) and
δMgas/Mgas(MΔ), appear to be positively correlated (Figure 6).

We test this quantitatively using Spearman’s rank correlation
coefficient test, obtaining rs = 0.531 ± 0.009. The probability
of obtaining a value of rs greater than or equal to the measured
value is low: P = 0.075 ± 0.006. This test therefore indicates
that the positive correlation is significant. However, the apparent
positive correlation between the temperature and gas mass de-
viations does not show the correlation between intrinsic scatter,
but between total scatter, which is a convolution of measure-
ment errors and intrinsic scatter, because we did not take into
account the measurement uncertainties here. When dealing with
observational constraints on scaling relations, it is therefore es-
sential to include both the covariance of intrinsic scatter and
the measurement errors with which the scatter is convolved in
robust calculations.

3.6. Covariance of Intrinsic Scatter

We simultaneously fit M–T and M–Mgas relations and
measure the covariance of the intrinsic scatter using a multi-
dimensional fitting method described in the Appendix. This
method considers not only the matrix of the observational errors
for individual clusters, Σobs,i , but also the covariance matrix of
the intrinsic scatter, Σint. The covariance of the intrinsic scatter
is given by

Σint =
(

σ 2
t σtg

σtg σ 2
g

)
, (4)

where σ 2
t and σ 2

g are variances for the logarithm of temperature
and gas mass, respectively, and σtg = rσtσg is a covariance with
a coefficient r. Here, we do not need to take into account the
intrinsic scatter on mass, because the gas properties, under a
cluster mass given by the cosmology, only have intrinsic scatter
physically due to the gas evolution. When we estimate cluster
masses from X-ray observations via scaling relations, there is
intrinsic scatter on mass due to the propagation from the intrinsic
scatter of gas. As shown in the Appendix, the observational error
matrix for individual clusters is given by

Σobs =
(

4
9e2

m + e2
t

2
3

(
1 − ∂ ln Mgas

∂ ln M

)
e2
m

2
3

(
1 − ∂ ln Mgas

∂ ln M

)
e2
m

(
1 − ∂ ln Mgas

∂ ln M

)2
e2
m + e2

g

)
,

where em, et , and eg are observational errors for the logarithm
of the mass, temperature, and gas mass, respectively. The
coefficients of em are the slopes of the mass–observable relations
T ∝ M2/3 and Mgas ∝ M , and a term to account for the
propagation of the error on rΔ (derived from the lensing analysis)
to the error on the X-ray observables, ∂ ln Mgas/∂ ln M (see
the Appendix). Since the correlation between the observational
errors of temperature and gas mass is negligible, we set them
to zero. We measure the intrinsic scatter for the M–Mgas
and M–T relations (σg, σt , and r) with their slopes set to
the self-similar prediction. The likelihood (Equation (A2)) is
given in the Appendix. We explore parameter space using the
Metropolis–Hastings algorithm, as described in the Appendix,
restricting ranges of values explored to 0 � σt � 1, 0 � σg � 1,
and |r| � 1.

We first impose a flat prior on σt , σg , and r within the limits
referred to above, and obtain measurements of intrinsic scatter
that are in good agreement with those obtained by fitting the
M–Mgas and M–T relations independently: σg = 0.132+0.066

−0.086

and σt = 0.213+0.055
−0.080 (Table 4). However, the coefficient r is

not well determined due to the tail of the posterior probability
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Figure 6. Normalized temperature deviations from M–T vs. normalized gas mass deviations from M–Mgas, from the best-fit scaling relations for the full sample at the
radii with Δ = 2500 (left), Δ = 1000 (middle), and Δ = 500 (right), respectively. The colors and symbols have the same meaning as in Figure 2.

(A color version of this figure is available in the online journal.)

Table 4
Multi-dimensional Fitting for Covariance of Intrinsic Scatter of Gas Mass and

Temperature at Δ = 500

12 Clusters Flat Prior Gaussian Prior
(1) (2) (3)

σg 0.132+0.066
−0.086 0.121+0.072

−0.061

σt 0.213+0.055
−0.080 0.206+0.043

−0.051

r �0.185 �0.170

P(|r ′| � |r|) �0.565 �0.597

Notes. The model parameters in the covariance of intrinsic scatter for gas mass
and temperature derived from the multi-dimensional fitting for the full sample.
We refer to the mean of the posterior distribution of each parameter. The lower
limit is at a 68.3% confidence level. Column 1: model parameters. Column 2:
results with the flat prior, pprior = 1. Column 3: results with the Gaussian prior
with the best-fit intrinsic scatter derived from the independent measurement
for the mass–observable relation. P(|r ′| � |r|) denotes the probability that the
correlation coefficient of the two random variables for 12 pair realizations is
higher than the observed one.

distribution extending to negative values. Nevertheless, we
derive a 68.3% confidence lower limit of r � 0.185. We also
measure the mode of the marginalized posterior probability
distribution to be r = 0.575.

We then repeat the fit, this time using Gaussian priors
centered on the best-fit measurements of σt and σg . As shown
in the second column in Table 4, all resulting parameters are
consistent with those in the flat prior. This time the mode of
the posterior probability distribution is r = 0.570, and we find
that the lower limit on r is again positive—i.e., it is positive
independent of the prior. The positive coefficient leads to a
large intrinsic scatter of YX = MgasT because the last term
in σ 2

YX
= σ 2

g + σ 2
t + 2rσtσg becomes positive. The positive

coefficient indicates that deviations in gas mass and temperature
are partially correlated.

However, we stress that the small size of our observed sample
severely limits the statistical power of our results—specifically,
we cannot rule out the possibility that the gas mass and tem-
perature deviations are two random variables that are correlated
by accident. To quantify this, we calculated the probability,
P(|r ′| � |r|), that the correlation coefficient of the two random
variables in a sample of 12 drawings, r ′, is higher than the ob-
served value (Pugh & Winslow 1966). Since the probability is
non-negligible (P(|r ′| � |r|) < 0.565 and 0.597; Table 4), we

cannot yet completely exclude this possibility. Therefore, we
need to increase the sample size before we can make definitive
statements on the correlation of intrinsic scatter.

4. DISCUSSION

4.1. Comparison with Previous Observations

First we compare our results with those of our pilot study
(Zhang et al. 2008). The main difference between Zhang et al.’s
analysis and that presented here is that Zhang et al.’s weak-
lensing mass measurements were drawn from the literature,
and thus suffered heterogeneous image quality, observed depth,
and systematic uncertainties relating to background galaxy
selection and faint galaxy shape measurement. Despite these
differences, the overall normalization of our mass–observable
scaling relations agree within the uncertainties with those of
Zhang et al. (2008). However, despite our sample being roughly
a factor of two smaller than that of Zhang et al., we detect
structural segregation in the M–YX and M–T relations at ∼2σ
significance. Our ability to make this detection is likely due
to the factor of �2 smaller statistical errors on weak-lensing
mass measurements of individual clusters, thanks to the superb
quality of our Subaru data.

This is the first time that structural segregation has been
found in the M–YX relation; however, it has been detected
in the M–T relation at a similar amplitude, and level of
significance in previous joint lensing/X-ray studies (Smith
et al. 2005; Pedersen & Dahle 2007). Theoretical studies (e.g.,
Randall et al. 2002) suggest that this segregation may be
caused by cluster–cluster mergers boosting the temperature
of disturbed merging clusters. However, orientation effects
may also contribute to systematic errors in weak-lensing mass
measurements that exaggerate the segregation (Meneghetti et al.
2010). We therefore defer physical interpretation of the observed
segregation to a future careful investigation of the degeneracy
between cluster orientation and residuals on mass–observable
scaling relations.

We also compare the normalizations of our M–YX and M–T
relations at Δ = 500 with the same from Vikhlinin et al.’s
(2009a) X-ray-only study of “relaxed” clusters with Chandra.
Note that, as discussed in Section 3.1, our results are insensitive
to whether we use orthogonal regression or bisector fitting tech-
niques; Vikhlinin et al. used the bisector method. The normaliza-
tions of our M–YX and M–T relations for undisturbed clusters
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agree within the uncertainties with Vikhlinin et al.’s (2009a)
relaxed clusters (Figures 2 and 3). This suggests that orienta-
tion effects may not be a major influence on the normalization
of our undisturbed cluster scaling relations. On the other hand,
it is thus clear that the normalizations of our disturbed cluster
scaling relations differ from Vikhlinin et al.’s results at ∼2σ sig-
nificance. It will therefore be important in the future to study the
mass–observable scaling relations with large samples compris-
ing clusters that span a wide range of dynamical states. This need
will become more acute at high redshift because the fraction of
disturbed clusters likely increases toward higher redshifts.

4.2. Comparison with Simulations

The normalizations of our M–Mgas and M–YX relations are
lower in mass at fixed X-ray observables (Figures 2 and 3) than
the predictions from Nagai et al.’s (2007) simulations. This result
is consistent with our pilot study (Zhang et al. 2008), in which
we compared our joint lensing/X-ray observational results with
a wider range of simulations including those of Borgani et al.
(2004) and showed that the normalizations disagree with the
simulations at >2σ for M–YX and >1σ for M–T and M–Mgas
relations, respectively.

The structural segregation found in our M–T and M–YX
relations—i.e., undisturbed clusters are ∼40% and ∼20% more
massive than disturbed clusters at fixed temperature and fixed
YX, respectively, at ∼2σ significance—disagrees with Kravtsov
et al.’s (2006) simulations, upon which they based their proposal
of YX as a low-scatter mass proxy. In summary, they found
no difference in the normalization of M–YX between clusters
that they classified as “relaxed” and “unrelaxed” (roughly
equivalent to our undisturbed/disturbed classification), and that
their relaxed clusters are less massive at fixed temperatures than
unrelaxed clusters—i.e., opposite to our observational result.

The intrinsic scatter in the M–T and M–Mgas relations at
Δ = 500 (∼20%–30% and ∼10%, respectively) is comparable
to Kravtsov et al. (2006). However, the anti-correlation between
temperature and gas mass deviations from the mean M–T
and M–Mgas relations predicted by Kravtsov et al. that has
motivated much attention on YX as a low-scatter mass proxy
is not supported by our data, although we need to investigate
this for a larger sample. In contrast with Kravtsov et al. (2006),
we find that the lower limit of the positive coefficient for
intrinsic scatter is in better agreement with Stanek et al.’s
SPH Millennium Gas Simulations showing that the coefficients
between the spectroscopic-like temperature and gas fraction for
z = 0 and Δ = 200 are positive irrespective of the process of
preheating and cooling.

Correlated gas mass and temperature deviations imply a pos-
sibility that adiabatic compression/expansion of the intracluster
gas is important in cluster evolution. These adiabatic fluctua-
tions propagate much faster than cooling losses, and thus help
to explain why Stanek et al.’s simple hydrodynamical simula-
tion matches the observations well. Umetsu et al. (2010) have
also suggested that, in the adiabatic expansion phase of a post-
merger, both temperature and (encompassed) gas mass decrease
compared to those before the merger. Another possibility can
be due to the departure from the spherical symmetry. As long
as the intracluster gas is in H.E., even in the elongated gravita-
tional potential well, the gas mass distribution is supposed to be
more round than the distribution of dark matter. In our modeling,
we assume spherical symmetry of the gas and mass profiles, in
which deviations from spherical geometry are transferred into
systematic measurement and may in part lead to a positive cor-

relation between the gas mass and mass. Furthermore, many
possible deviations in mass–observable relations could be rel-
evant to the interpretation of these results. For example, star
formation efficiency affects the total gas mass and the epoch for
cluster formation affects the cluster temperature. Some of these
effects imply other correlations that can be explored in the fu-
ture with a larger sample, e.g., correlations between temperature
deviations and dark matter profile shapes, or between deviations
in the gas mass and total stellar fraction.

4.3. Principal Component Analysis of Observational Data

Finally, we propose a method, based on principal compo-
nent analysis, for constructing and calibrating a low-scatter
mass proxy using solely observational data. Thanks to multi-
dimensional fitting, since we obtained both the intrinsic covari-
ance and the normalization, we do not need to take into account
measurement errors here. By solving the eigenvalue equation
(Σ − σ 2 I) y = 0, where I is the identity matrix, we can obtain
its eigenvalues σ 2

± and eigenvectors y± = ln Y±, as follows:

σ 2
± = 1

2

[
σ 2

t + σ 2
g ± ((

σ 2
t − σ 2

g

)2
+ 4r2σ 2

t σ 2
g

)1/2]
, (5)

Y± = MgasT
p± , (6)

p± = σ 2
t − σ 2

g ± ((
σ 2

t − σ 2
g

)2
+ 4r2σ 2

t σ 2
g

)1/2

2rσtσg

, (7)

where Y− is the mass proxy with the smaller scatter σ−. Note
that if the coefficient r is negative, as predicted by Kravtsov et al.
(2006), then the temperature exponent, p−, is always positive.
In this framework, the scaling relation can be written as

ME(z) ∝ (Y±E(z))3/(3+2p±)h(9−4p±)/(3+2p±)/2 (8)

and the intrinsic scatter on mass when one estimates from X-ray
observables via a new scaling relation is given by

σln M = 3

|3 + 2p±|σ±. (9)

Basically, a combination of highly correlated/anti-correlated
observables gives a new mass proxy with smaller scatter. Un-
fortunately, our sample is too small to constrain the covariance
of the intrinsic scatter well, and to perform this principal com-
ponent analysis. This exercise awaits the enlargement of our
sample. In principle, a combination of the principal component
analysis and the method for measuring the covariance of intrinsic
scatter (see the Appendix) could be applied to multi-dimensional
(i.e., weak-lensing, X-ray, SZ, and optical observable) data sets
both within LoCuSS and in large forthcoming surveys.

5. SUMMARY

We have presented a joint weak-lensing and X-ray analysis
of 12 clusters based on Subaru and XMM-Newton observations
as part of the LoCuSS Survey. The main goal is to calibrate
the scaling relations between cluster mass obtained from weak-
lensing observations (M) and X-ray observables, specifically
the gas temperature, gas mass, and quasi-integrated pressure
(T, Mgas, and YX = Mgas × T ). An accurate understanding of
these relations will be essential to the success of future attempts
to constrain dark energy with clusters via growth of structure
experiments. Our main results are summarized below.
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1. The dynamical state of clusters can be diagnosed empiri-
cally via morphological classification of clusters based on
asymmetry (A) and fluctuation (F) parameters derived from
imaging data from XMM-Newton. Undisturbed clusters are
identified as those with relatively symmetric and smooth
X-ray morphology—A < 1.1 and F < 0.05; disturbed
clusters satisfy either or both of these criteria. Five clusters
are classified as undisturbed and seven as disturbed. This
classification matches those based on alternative measures
such as the presence/absence of cool cores, cold fronts, and
substructures in lensing mass maps.

2. We detected structural segregation in the M–T and M–YX
relations at Δ = 500, in the sense that undisturbed clusters
are ∼40% and ∼20% more massive than disturbed clusters
at fixed T and YX, respectively, at ∼2σ significance.
Segregation in the M–T plane is qualitatively in agreement
with some of the previous observational results (Smith et al.
2005; Pedersen & Dahle 2007); as far as we know these are
the first joint lensing/X-ray results on the M–YX relation.
These results contradict Kravtsov et al.’s predictions upon
which they based their proposal that YX may be a useful
low-scatter mass proxy.

3. The intrinsic scatter in the observed M–T , M–YX, and
M–Mgas relations is measured to be σlnM ∼ 0.3, ∼0.2, and
∼0.1, respectively, at Δ = 500. Mgas therefore appears to be
the most promising mass proxy of these three observables,
especially because the scatter in M–Mgas appears to be
independent of the cluster dynamical state.

4. The best-fit mass–observable scaling relations are sensitive
to the inclusion/exclusion of one cluster in our sample,
namely, A 1914, a well-known merging cluster. If this clus-
ter is excluded from our analysis then the scatter is greatly
reduced—most notably, the intrinsic scatter in the M–YX
relation is reduced by ∼25%. We conclude that a larger,
more complete sample of clusters is required to reliably
calibrate the scaling relations and to robustly measure how
the most extreme merging clusters influence the relations.
This will be particularly valuable as scaling relation studies
proceed to higher redshifts at which merging clusters are
expected to become more prevalent.

5. Temperature deviations from the best-fit M–T relation
and gas-mass deviations from the M–Mgas relation are
positively correlated. The coefficient between the gas mass
and temperature deviations is positive, independent of our
analysis methods, and is found to be r � 0.185. This
result, in particular the lower limit on r, agrees well
with predictions based on Millennium Gas Simulations
(Stanek et al. 2010) and disagrees with predictions based
on Kravtsov et al.’s (2006) simulations. However, we
caution that the chance probability, P(|r ′| � |r|), that the
correlation coefficient of the two random variables in a
sample of 12 drawings, r ′, is higher than the observed one,
is not small. We therefore cannot exclude the possibility that
the measured correlation between gas mass and temperature
residuals is an accident. A larger sample of clusters is
needed to achieve definitive results.

6. Finally, we outlined a new method for constructing a ro-
bust low-scatter mass proxy, Y− = MgasT

p− , calibrated
solely by observational data, based on a principal com-
ponent analysis. This is a generalization of the quasi-
integrated pressure YX = MgasT , proposed by Kravtsov
et al. (2006). In principle, a combination of the princi-
pal component analysis and the method for measuring the
covariance of intrinsic scatter could be applied to multidi-

mensional data sets in order to construct a robust new mass
proxy.

Our future program will concentrate on expanding the sample
of clusters for which high-quality Subaru and XMM-Newton
data are available in order to achieve definitive results on the
issues raised in this article. Key issues will include improvement
of the statistical uncertainties on the scaling relation fits,
characterizing more fully the influence of extreme merging
clusters on the scaling relations, and exploring the balance
between physical and orientation effects in causing the observed
structural segregation in the M–T and M–YX relations.
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APPENDIX

MULTI-DIMENSIONAL FITTING OF DATA WITH
COVARIANCE OF INTRINSIC SCATTER

The measurement of a covariance of intrinsic scatter be-
yond observational errors is of prime importance in order to
understand their intrinsic characteristics. We derive the multi-
dimensional fitting with the covariance of intrinsic scatter, in
the context of the Markov Chain Monte Carlo (MCMC) method
with standard Metropolis–Hastings sampling, taking into ac-
count observational errors.

Here, we suppose a data set (x = {xi, y1i , y2i , . . . , ypi}ni=0)
of n sampling numbers and p + 1 variables. A linear regression
equation defined by ap +bpxi and an intrinsic covariance matrix
C int (p × p) in the y-coordinates are applied to modeling the
relationship between x and yp in the data set. The diagonal
elements in the covariance of intrinsic scatter, C int, are intrinsic
scatter, σ 2

p , for the yp observables. The off-diagonal elements
describe the intrinsic covariance between yp variables.
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A fitting parameter θ is composed of the linear regression
parameters, a, b, and the elements of the intrinsic covariance
matrix. From Bayesian statistics, the posterior probability of the
parameter vector θ is proportional to the conditional probability
of x, p(x|θ ), and a prior probability function, pprior(θ ),

p(θ |x) ∝ p(x|θ )pprior(θ). (A1)

The conditional probability of x, given parameters θ , is the
likelihood described by

p(x|θ) =
n∏

i=0

1

(2π )p/2|det(Ci )|1/2
exp

[−( yi − (a + bx))T Ci
−1

× ( yi − (a + bx))/2
]
, (A2)

where the covariance matrix Ci = Ci ,obs + C int with the obser-
vational error covariance matrix, Cobs, and intrinsic covariance.
The log likelihood of Equation (A2) is given by

− 2L =
∑

i

log(det(Ci )) +
∑

i

( yi − (a + bx))T Ci
−1

× ( yi − (a + bx)). (A3)

The second term on the right-hand side of Equation (A3) is
referred to as the χ2 in some papers (e.g., Akritas & Bershady
1996; Tremaine et al. 2002; Pizagno et al. 2005; Novak et al.
2006; Weiner et al. 2006), and the intrinsic scatter is estimated
by requiring the reduced χ2 to be unity, in the framework
of the χ2 minimization fitting. It is, however, an inadequate
fitting procedure because the first term, depending on the
parameters, cannot be ignored (see also D’Agostini 2005). We
therefore employ the likelihood function for a calculation of
the covariance of intrinsic scatter. The diagonal elements in the
observed error matrix are given by (bp − ∂yp,i/∂xi)2e2

x,i + e2
yp,i

with the observed variances e2
x and e2

yp
in x and yp(x) variables.

Here, ∂yi/∂xi represents the error propagation between two
variables. The off-diagonal elements, Cpp′,i , for sample i are
(bp − ∂yp,i/∂xi)(bp′ − ∂yp′,i/∂xi)e2

x,i + 〈eyp,i
eyp′ ,i 〉. It describes

the correlation between observational errors: the first term is an
error correlation via the same x values, and the second one is
the correlation between observational errors of yp and yp′ . In
this study, we measure the covariance of intrinsic scatter in the
parameter plane of x = ln(M), y = (ln(T ), ln(Mgas)).
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Gavazzi, R. 2005, A&A, 443, 793
Ghizzardi, S. 2001, In-Flight Calibration of the PSF for the MOS1 and MOS2

Cameras, EPIC-MCT-TN-011 (Madrid: ESA)
Govoni, F., Markevitch, M., Vikhlinin, A., VanSpeybroeck, L., Feretti, L., &

Giovannini, G. 2004, ApJ, 605, 695
Gutierrez, K., & Krawczynski, H. 2005, ApJ, 619, 161
Hoekstra, H. 2007, MNRAS, 379, 317
Ilbert, O., et al. 2009, ApJ, 690, 1236
Jing, Y. P., & Suto, Y. 2002, ApJ, 574, 538
Juett, A. M., Davis, D. S., & Mushotzky, R. 2010, ApJ, 709, L103
Kaiser, N. 1986, MNRAS, 222, 323
Kawaharada, M., et al. 2010, ApJ, 714, 423
Komatsu, E., et al. 2009, ApJS, 180, 330
Kravtsov, A. V., Vikhlinin, A., & Nagai, D. 2006, ApJ, 650, 128
Marrone, D. P., et al. 2009, ApJ, 701, L114
Maughan, B. J. 2007, ApJ, 668, 772
Mazzotta, P., & Giacintucci, S. 2008, ApJ, 675, L9
McCarthy, I. G., Babul, A., Bower, R. G., & Balogh, M. L. 2008, MNRAS, 386,

1309
Meneghetti, M., Rasia, E., Merten, J., Bellagamba, F., Ettori, S., Mazzotta, P.,

Dolag, K., & Marri, S. 2010, A&A, 514, A93
Nagai, D., Vikhlinin, A., & Kravtsov, A. V. 2007, ApJ, 655, 98
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1996, ApJ, 462, 563
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493
Novak, G. S., Faber, S. M., & Dekel, A. 2006, ApJ, 637, 96
Oguri, M., Takada, M., Okabe, N., & Smith, G. P. 2010, MNRAS, 405,

2215
Oguri, M., Takada, M., Umetsu, K., & Broadhurst, T. 2005, ApJ, 632,

841
Okabe, N., Takada, M., Umetsu, K., Futamase, T., & Smith, G. P. 2010, PASJ,

62, 811
Okabe, N., & Umetsu, K. 2008, PASJ, 60, 345
Pedersen, K., & Dahle, H. 2007, ApJ, 667, 26
Peterson, J. R., Kahn, S. M., Paerels, F. B. S., Kaastra, J. S., Tamura, T., Bleeker,

J. A. M., Ferrigno, C., & Jernigan, J. G. 2003, ApJ, 590, 207
Piffaretti, R., & Valdarnini, R. 2008, A&A, 491, 71
Pizagno, J., et al. 2005, ApJ, 633, 844
Pugh, E. M., & Winslow, G. H. 1966, The Analysis of Physical Measurements

(Reading, MA: Addison-Wesley), Section 12-5
Randall, S. W., Sarazin, C. L., & Ricker, P. M. 2002, ApJ, 577, 579
Rasia, E., et al. 2006, MNRAS, 369, 2013
Richard, J., et al. 2010, MNRAS, 404, 325
Sanderson, A. J. R., Edge, A. C., & Smith, G. P. 2009a, MNRAS, 395,

764
Sanderson, A. J. R., O’Sullivan, E., & Ponman, T. J. 2009b, MNRAS, 395, 764
Sanderson, A. J. R., Ponman, T. J., Finoguenov, A., Lloyd-Davies, E. J., &

Markevitch, M. 2003, MNRAS, 340, 989
Smith, G. P., Edge, A. C., Eke, V. R., Nichol, R. C., Smail, I., & Kneib, J.-P.

2003, ApJ, 590, L79
Smith, G. P., Kneib, J.-P., Smail, I., Mazzotta, P., Ebeling, H., & Czoske, O.

2005, MNRAS, 359, 417
Stanek, R., Rasia, E., Evrard, A. E., Pearce, F., & Gazzola, L. 2010, ApJ, 715,

1508
Tremaine, S., et al. 2002, ApJ, 574, 740
Umetsu, K., & Broadhurst, T. 2008, ApJ, 684, 177
Umetsu, K., et al. 2009, ApJ, 694, 1643
Umetsu, K., et al. 2010, ApJ, 714, 1470
Vikhlinin, A., Burenin, R., Forman, W. R., Jones, C., Hornstrup, A., Murray,

S. S., & Quintana, H. 2007, in Heating Versus Cooling in Galaxies and
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