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Abstract 

Water is closely relative to our lives, to realize the monitoring and management of 

water quality for both inland and sea water is of great significance. Water quality 

parameters such as Chlorophyll-a (Chl-a), Total suspended solids (TSS) are important 

indicators to assess water quality, and sea surface salinity (SSS) is one of the key variables 

for monitoring and modeling ocean circulation. A variety of researches have been carried 

out to develop methods for detecting these water quality parameters using remote sensing 

methods in optically complex waters. However, there is not a unified algorithm applied 

for all kinds of waters due to the characteristic of regional dependency. 

The objectives of this study are: (1) to develop models to estimate Chl-a and TSS in 

irrigation ponds in Higashihiroshima using in situ hyperspectral reflectance data and 

several regression analyses including (a) a simple linear regression at each waveband of 

reflectance and the first derivative reflectance (FDR); (b) all available two-band 

combination spectral indices (RSI and NDSI); and (c) a PLS regression with full spectra 

and ISE selected spectra (ISE-PLS) using original reflectance and FDR datasets (Chapter 

3); (2) to evaluate the ISE-PLS method’s accuracy to confirm the potential application to 

estimate Chl-a in the Seto Inland Sea comparing with several traditional approaches using 

in situ hyperspectral reflectance data (Chapter 4); (3) to test the applicability of ay(440) 

as a proxy for SSS in the bio-optical model, further, to establish the model for estimating 

SSS using in situ reflectance and water quality datasets in the Seto Inland Sea (Chapter 

5); (4) to evaluate the bio-optical model developed with the Second generation Global 

Imager (SGLI) bands for SSS estimation in the Seto Inland Sea using in situ measurement 

data (Chapter6). 
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In Chapter 3, the author established quantitative models for estimating the Chl-a and 

the TSS concentrations in irrigation ponds in Higashihiroshima, Japan, using field 

hyperspectral measurements and statistical analysis. Field experiments were conducted 

in six ponds and spectral readings for Chl-a and TSS were obtained from six field 

observations in 2014. For statistical approaches, two spectral indices were used, the RSI 

and the NDSI, and a PLS regression. The predictive abilities were compared using the 

coefficient of determination (R2), the root mean squared error of cross validation 

(RMSECV) and the residual predictive deviation (RPD). Overall, ISE–PLS, using FDR, 

showed the best predictive accuracy for both Chl-a (R2 = 0.98, RMSECV = 6.15, RPD = 

7.44) and TSS (R2 = 0.97, RMSECV = 1.91, RPD = 6.64). The important wavebands for 

estimating Chl-a (16.97% of all wavebands) and TSS (8.38% of all wavebands) were 

selected by ISE–PLS from all 501 wavebands over the 400–900 nm range. These findings 

suggest that ISE–PLS based on field hyperspectral measurements can be used to estimate 

water Chl-a and TSS concentrations in irrigation ponds. 

Harmful algal blooms (HABs) occur frequently in the Seto Inland Sea, bringing 

significant economic and environmental losses for the area, which is well known as one 

of the world’s most productive fisheries. In Chapter 4, the author developed a quantitative 

model using in situ hyperspectral measurements in the Seto Inland Sea to estimate Chl-a 

concentration, which is a significant parameter for detecting HABs. Spectra and Chl-a 

data were obtained at six stations from 12 ship-based surveys between December 2015 

and September 2017. In this study, the ISE-PLS regression method along with several 

empirical and semi-analytical methods such as ocean chlorophyll (OC), three-band model, 

and two-band model algorithms were used to retrieve Chl-a. Results showed that ISE-

PLS using both the water-leaving reflectance (RL) and FDR had a better predictive ability 
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with higher R2, lower root mean squared error (RMSE), and higher RPD values (R2 = 

0.77, RMSE = 1.47 and RPD = 2.1 for RL; R2 = 0.78, RMSE = 1.45 and RPD = 2.13 for 

FDR). However, in this study the OC algorithms had no predictive ability and the three-

band and two-band model algorithms did not perform well in areas with lower Chl-a 

concentrations. These results support ISE-PLS as a potential coastal water quality 

assessment method using hyperspectral measurements. 

SSS is playing a critical role for studying biological and physical processes in the 

ocean. In Chapter 5, the author established a model for estimating SSS using in situ 

measurement datasets from FY2015 to FY2016 in the Seto Inland Sea. To estimate SSS, 

a bio-optical model combined with the CDOM absorption coefficient at 440 nm (ay(440)) 

was performed. Results showed that the estimated ay(440) had a reversely linear 

relationship with in situ SSS using winter datasets (R2=0.66), which indicated the ay(440) 

is potential for modeling to estimate SSS, furthermore, the bio-optical model can be used 

for water quality assessment in Seto Inland Sea. 

In Chapter 6, the author evaluated the bio-optical model combined with GCOM-

C/SGLI bands to estimate SSS in the Seto Inland Sea. The in situ spectral and SSS data 

for the year of 2015 were analyzed using a two-band ratio and a bio-optical model. In the 

bio-optical model, the absorption of Gelbstoff in 380 nm (g380) was utilized to build the 

relationship with SSS. According to the spectral pattern, the dataset were separated to two 

kinds of types (i.e., Type A and Type B). Results showed the estimated Chl-a had a linear 

relationship with observed Chl-a both for Type A and Type B dataset (R2 = 0.69 for Type 

A and R2 = 0.76 for Type B), and the estimated g380 also showed a linear relationship with 

observed SSS for both type of dataset (R2 = 0.43 for Type A and R2 = 0.64 for Type B), 
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which showed the proposed bio-optical model based on SGLI bands has a potential 

predictive ability for Chl-a and SSS estimation in the Seto Inland Sea. 
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Chapter 1: General introduction 

1.1. Background 

 

Water quality is one of the main challenges that societies are facing at present, 

threatening human health, limiting food production, reducing ecosystem functions, and 

hindering economic growth (UNESCO, 2015). Water quality deterioration reflected in 

both inland and sea waters, which has become serious issue worldwide during the 21st 

century.  

Inland waters including lakes and ponds are often subjected to sudden environmental 

changes caused by various anthropogenic reasons, such as agricultural, industrial, water 

supply, recreational, and touristic activities (El-Serehy et al., 2018). Agriculture is the 

greatest water consumer in the world, agricultural activities may bring pollution to the 

lakes and ponds, especially when using excess pesticides and fertilizers (FAO, 2009). 

There are about 21,000 irrigation ponds in Hiroshima Prefecture, which is the second 

largest number in Japan. In addition, a quarter of the total irrigation ponds in Japan are in 

Higashihiroshima (Abe & Shinohara, 1996), which indicates the irrigation ponds play an 

important role in agriculture for this area. It is essential to prevent and control 

deterioration of water quality to benefit ecological and human health and economic 

development (UNESCO, 2015). 

Enclosed bays and coastal seas primarily face human occupied areas, anthropogenic 

activities directly influence the organisms living there (Irizuki et al., 2018). The Seto 

Inland Sea is the largest inland sea in Japan and one of the world’s productive fishery area. 

With the intensive industrializing and population density increasing around this area, 
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severe deterioration in the water quality occurred in 1970s, particularly in seas facing 

highly populated and industrial area. As one of the famous marine disasters, red tides 

frequently occurred in the Seto Inland Sea during a period of high economic growth. 

Although red tides have decreased from about 300 cases per year in 1976 to about 100 

cases per year more recently, severe damage to fisheries and significant economic losses 

are still occurring (Fukuyo et al., 2002).  

Evaluating water quality can be defined as measurements of the physical, chemical, 

biological, and microbiological characteristics of water, which is used to alert us to 

current, ongoing, and emerging problems. Water quality can be evaluated according to 

indicators, to know well about water state information can help government or water 

manager making a sound decision to protect and manage water environment. 

Chlorophyll-a (Chl-a) is a key biochemical component in the molecular apparatus that is 

responsible for photosynthesis, presenting in many organisms including algae and some 

species of bacteria (WHO, 2011). It is widely used in ocean and inland waters as a proxy 

for phytoplankton biomass and indicator for eutrophication (Lu et al., 2016). Total 

suspended solids (TSS) is another one of the most commonly used indicators of surface 

water quality (Sikorska et al., 2015). It plays a fundamental role in inland waters as 

different materials including contaminants and pollutants can aggregate to these solids 

and brought in suspension (Giardino et al., 2017). Salinity has a direct effect on the 

stratification and circulation of the global ocean (Yu, 2011). As an indicator of seawater 

density, sea surface salinity (SSS) can help make better understanding in many physical 

and biogeochemical processes in coastal waters. 

Due to the importance of irrigation ponds in Higashihiroshima and the Seto Inland 

Sea, to realize the assessment and monitoring of water quality is essential, especially a 
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shorter temporal interval and wider range observation for water is needed. However, 

traditional measurement of water quality is time consuming and costly based on ship 

survey and laboratory analysis or a buoy system, in addition, sampling is often not enough 

to cover entire water body. Fortunately, remote sensing is generally more comprehensive 

than those directly measured in situ in that they provide greater spatial coverage with finer 

resolution and often increased temporal frequency and resolution (Kim et al., 2017). 

Over the past two decades, various methods are applied in the estimation of Chl-a 

basing on remote sensed dataset, in both inland and coastal waters. In particular, satellites 

data basing on multiple spectral sensors are widely used, algorithms are developed 

according to various combinations of different spectral wavebands. As one of the most 

widely used methods, bio-optical model has been developed and successfully applied to 

satellite data to provide estimates of Chl-a concentration in coastal and oceanic waters 

(Shanmugam et al., 2018), which are based on the inherent optical properties (IOPs) in 

water. The ocean chlorophyll (OC) algorithms are widely used in open oceans as standard 

product algorithms for many satellite sensors, such as Sea-viewing Wide Field-of-view 

Sensor (SeaWiFS), and Moderate Resolution Imaging Spectroradiometer (MODIS). In 

addition, a reflectance ratio model using blue and green bands is acceptable to address 

the open oceans where phytoplankton drive the variation of IOPs of water, while 

inadequate for inland and coastal waters due to the influences from terrestrially materials 

(Zheng & DiGiacomo, 2017). Instead, another two-band model using near infrared (NIR) 

and red is applied in inland and coastal waters for Chl-a retrieval. A three-band model 

also has been proved available for inland water. TSS is another one of the most successful 

parameters that can be measured by means of remote sensing due to the effect of TSS on 

backscattering and water leaving radiance. As a consequent, a variety of empirical or 
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semi-empirical methods have been developed using reflectance at appropriate wavebands 

as correlates. SSS are usually measured from microwave remote sensing in many past 

studies, particularly using the Soil Moisture and Ocean Salinity (SMOS) satellite. 

However, the resolution is too coarse (e.g. of the order of about 150 km of SMOS) to 

monitor SSS in coastal and estuarine zones (Qing et al., 2013).  

Hyperspectral remote sensing has been used widely in recent years for its continuous 

waveband being very informative of water chemical feature. A great deal of researches 

are carried out using hyperspectral remote sensing method to retrieve various ground 

features. Partial least square (PLS) regression is a standard multivariate regression 

method developed by Herman Wold (1966), it has developed to become a standard tool 

in chemometrics and used in chemistry and engineering. PLS regression is particularly 

useful to handle a large number of descriptors even in the presence of co-linearity and 

noise (D’Archivioa et al., 2014). The basic principle is relating two data matrices, the 

predictor variables and the response variables, by a linear multivariate model, the original 

predictor variables are projected onto a small number of latent variables to simplify the 

relationship between both sides. Furthermore, the iterative stepwise elimination (ISE) 

method can be applied to remove useless or less useful predictor variables in PLS 

modelling to improve predictive performance. The combination of iterative stepwise 

elimination method and PLS (ISE-PLS) has proven to be an effective approach in 

chemistry. However, the potential application for water quality quantification has not 

been tested. 
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1.2. Objectives 

 

A variety of researches have been carried out to develop methods for monitoring 

water quality using remote sensing methods in optically complex waters. However, there 

is not a unified algorithm applied for all kinds of waters due to the characteristic of 

regional dependency. In this study, the author aims to develop robust quantitative models 

using hyperspectral data to estimate water quality parameters in irrigation ponds in 

Higashihiroshima and the Seto Inland Sea.  

In order to achieve the above goal, several important works have been conducted. 

Each chapter investigates about a particular issue and tries to solve its own specific 

objectives. The study consists of following objectives:  

(1) To develop models to estimate Chl-a and TSS in irrigation ponds in 

Higashihiroshima using in situ hyperspectral reflectance data and several regression 

analyses including (a) a simple linear regression at each waveband of reflectance and the 

first derivative reflectance (FDR); (b) all available two-band combination spectral indices 

(RSI and NDSI); and (c) a PLS regression with full spectra and ISE selected spectra (ISE-

PLS) using original reflectance and FDR datasets. 

(2). To evaluate the ISE-PLS method’s accuracy to confirm the potential application 

to estimate Chl-a in the Seto Inland Sea comparing with several traditional approaches 

using in situ hyperspectral reflectance data. 

(3). To test the applicability of ay(440) as a proxy for SSS in the bio-optical model, 

further, to establish the model for estimating SSS using in situ reflectance and water 

quality datasets in the Seto Inland Sea. 
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(4). To evaluate the bio-optical model developed with SGLI bands for SSS 

estimation in the Seto Inland Sea using in situ measurement data. 

 

1.3. Overview of the study areas 

1.3.1. Irrigation ponds in Higashi-Hiroshima 

 

The study area is located in Higashihiroshima, Japan, as shown in Fig. 1.1. 

Higashihiroshima is a core city in the central region of Hiroshima Prefecture, with a total 

area of 635.32 km2 covering nearly 7.5% of the prefecture’s total area. Paddy fields, 

totalling 36.8 km2, cover 14.9% of the Hiroshima Prefecture. Consequently, 

Higashihiroshima has the largest rice production of the 86 cities, towns and villages in 

Hiroshima Prefecture (Derbalah et al., 2003). The city has an estimated population of 

183,834 people, and its population density was 289.36 people per km2 in 2011. The 

number of irrigation ponds in Hiroshima Prefecture approaches approximately 21,000. 

This qualifies as the second largest number in Japan; a quarter of the total irrigation ponds 

in Japan are in Higashihiroshima, the average beneficiary area is 3.36 ha, and the average 

number of beneficiary farmhouses is approximately 9 (Abe & Shinohara, 1996). The 

monthly mean temperature ranges from 2.2 °C in January to 25.8 °C in August, and the 

monthly precipitation ranges from 43.3 mm in December to 232.1 mm in July, referring 

to the minimum and maximum values, respectively. To assess changes in water quality 

status and environments, six ponds, including both eutrophic ponds and non-eutrophic 

ponds, were selected for this study. Descriptions of the six ponds are listed in Table 1.1. 
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Figure 1.1. Locations of sampling sites in the irrigation ponds in Higashihiroshima, Japan 

 

Table 1.1. Locations and brief information of sampling sites in the irrigation ponds in 

Higashihiroshima, Japan. 

No. Name of pond 
Alt. 
(m) 

Depth 
(m) 

Area 
(ha) 

Coordinate 

1 Nanatsu-ike 245 2.3 8.1 34°26'06"N 132°41'39" E 
2 Shitami-Oike 221 1.5 2.5 34°24'28"N 132°42'22"E 
3 Okuda-Oike 228 3.3 2.9 34°24'25"N 132°43'43"E 
4 Yamanaka-ike 231 2.6 1.2 34°24'14"N 132°43'12"E 
5 Yamanakaike-kamiike 231 1.1 0.1 34°24'15"N 132°43'14"E 
6 Budou-ike 210 1.6 1 34°24'02"N 132°42'45"E 

 

1.3.2. The Seto Inland Sea 

 

The Seto Inland Sea is the largest inland sea in Japan and one of the world's 

prominent inland seas (Fig. 1.2). It is surrounded by the three main Japanese islands: 

Honshu, Shikoku, and Kyushu, and contains approximately 700 small islands. The Seto 

Inland Sea had beautiful scenery with good water quality and high biodiversity; therefore, 

in 1934, it became the first designated national park in Japan. However, severe 

deterioration in the water and bottom qualities occurred, particularly in seas facing highly 
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populated cities, and intensive industrialization in the coastal plains progressed from 1955 

to 1973. The Seto Inland Sea is rich in fishery resources, with more than 50% of the total 

fish production contributed by aquaculture production. Additionally, there are 

approximately 17 fish farms being operated in the Tashima and Yokota areas near study 

area (Pawar et al., 2001). Consequently, there are a range of organic compounds released 

by fish farm waste that may affect eutrophication due to dissolved nitrogen (Pawar et al., 

2002). The study area has an average water depth of 17.3 m and water temperatures range 

from 7.3°C (winter) to 28.4°C (summer). We selected six sites as sampling stations, which 

are described in Table 1.2. 

 

 
Figure 1.2. Locations of sampling stations in the Seto Inland Sea 
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Table 1.2. Locations and depths of sampling stations in the Seto Inland Sea. 

Station ID Latitude Longitude Depth(m) 
1 34°19' 44'' N 133°15' 24'' E 29 
2 34°20' 31'' N 133°19' 26'' E 17 
3 34°21' 51'' N 133°22' 10'' E 10 
4 34°24' 37'' N 133°24' 44'' E 10 
5 34°22' 01'' N 133°24' 58'' E 21 
6 34°23' 38'' N 133°27' 58'' E 17 

 

1.4. Outline of the dissertation 

 

The dissertation is composed of seven chapters. Chapter 1 clarifies the background, 

the objectives and the study areas about the present study. In chapter 2, several frequently 

used remote sensing algorithms and newly introduced algorithms for water quality 

assessment are explained, including the algorithms developed for detecting Chl-a and 

SSS. Chapter 3 describes a best fitted Chl-a and TSS retrieval method in irrigation ponds 

in Higashihiroshima. In Chapter 4, ISE-PLS method is evaluated in the Seto Inland Sea 

comparing with several frequently used methods. In chapter 5, an improved bio-optical 

method for SSS estimation in the Seto Inland Sea is developed. In chapter 6, a bio-optical 

model based on SGLI bands for SSS estimation is evaluated. In chapter 7, conclusions is 

described. 
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Chapter 2: Remote sensing algorithms for water quality 

2.1. Traditional Chl-a algorithms  

2.1.1. OC algorithm 

 

The ocean chlorophyll algorithms (i.e., OC2, OC3, OC4) are based on the 

relationship between the Chl-a concentration and a blue to green band ratio of remote 

sensing reflectance Rrs. The band ratio of each algorithm consists of 2 to 4 bands in the 

spectrum region of 443 to 555 nm depending on the band element of the satellite sensor.  

Due to the subsurface reflectance in 555 nm is approximately independent of Chl-a 

concentration, the reflectance used in the empirical algorithms are usually expressed as 

ratios relative to their value at 555 nm, i.e., Rrs()/Rrs(555),  is the wavelength. O’Reilly 

et al. (1998) developed the OC2 and OC4 algorithms for Sea-Viewing Wide Field-of-

View Sensor (SeaWiFS) using a modified cubic polynomial relationship between Chl-a 

and a ratio of Rrs, which was the first version of OC algorithms. The newest OC 

algorithms (version 6) ( Hu et al., 2012), yielded better statistical agreement between 

model data and Chl-a than the first version OC algorithm (O'Reilly et al., 1998), is 

formulated as a fourth-order polynomial with five coefficients and can be expressed as: 

(ܽ_ℎ݈ܥ)ଵ݈݃ = ܽ + ܽଵܴ + ܽଶܴଶ + ܽଷܴଷ + ܽସܴସ (2.1)

where R is the ratio of optimal Rrs according to different sensors, the coefficients a0, a1, 

a2, a3, and a4 are different in the OC2, OC3, and OC4 algorithms. Table 2.1 shows used 

bands and coefficients for several commonly used sensors (NASA, n.d.).  
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Table 2.1. Wavebands and coefficients used in OC algorithms for different sensors. 

Algorithm Sensor Blue band Green band a0 a1 a2 a3 a4 

OC4 SeaWiFS 443>490>510 555 0.3272 -2.994 2.7218 -1.2259 -0.5683 

OC4E MERIS 443>490>510 560 0.3255 -2.7677 2.4409 -1.1288 -0.499 

OC3S SeaWiFS 443>490 555 0.2515 -2.3798 1.5823 -0.6372 -0.5692 

OC3M MODIS 443>488 547 0.2424 -2.7423 1.8017 0.0015 -1.228 

OC3E MERIS 443>490 560 0.2521 -2.2146 1.5193 -0.7702 -0.4291 

OC3C CZCS 443>520 550 0.333 -4.377 7.6267 -7.1457 1.6673 

OC2S SeaWiFS 490 555 0.2511 -2.0853 1.5035 -3.1747 0.3383 

OC2M MODIS 488 547 0.25 -2.4752 1.4061 -2.8233 0.5405 

OC2E MERIS 490 560 0.2389 -1.9369 1.7627 -3.0777 -0.1054 

SeaWiFS, Sea-Viewing Wide Field-of-View Sensor; MERIS, MEdium Resolution Imaging Spectrometer; MODIS, 

Moderate Resolution Imaging Spectroradiometer; CZCS, Coastal Zone Color Scanner. 
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OC2 uses the blue/green ratio Rrs (blue)/Rrs (green) and R is described as R = log10 

( ோೝೞ (ୠ୪୳ୣ)
ோೝೞ (୰ୣୣ୬)

). OC3 uses a three-band formulation with a maximum of Rrs band ratios 

Rrs(blue1)/Rrs(green) and Rrs(blue2)/Rrs(green), and R is expressed as R = log10 

( ோೝೞ (ୠ୪୳ୣଵ)வோೝೞ (ୠ୪୳ୣଶ)
ோೝೞ (୰ୣୣ୬)

). Similarly, OC4 uses the maximum of three Rrs ratios 

Rrs(blue1)/Rrs(green), Rrs(blue2)/Rrs(green) and Rrs(blue3)/Rrs(green)—to build the 

formulation, with R expressed as R = log10 (ோೝೞ (ୠ୪୳ୣଵ)வோೝೞ (ୠ୪୳ୣଶ)வோೝೞ (ୠ୪୳ୣଷ)
ோೝೞ (୰ୣୣ୬)

).  

 

2.1.2. Bio-optical model 

 

The process of light absorption and scattering by the various seawater constituents 

such as particulate and dissolved organic matter are described by the inherent optical 

properties, IOPs, including absorption and backscattering coefficients, are the most 

significant parameters governing the light propagation within the water column and thus 

facilitate the estimation of aquatic biomass, primary production, heat flux, and carbon 

pools (Lee et al., 1996). In recent years, various models have been developed to relate 

IOPs to the apparent optical properties (AOPs), including irradiance reflectance and 

remote sensing reflectance Rrs, or to determine IOPs from AOPs (Gordon et al., 1975; 

Morel & Prieur, 1977; Gordon, 1991). 

Remote sensing reflectance is a directional component to the light observed by the 

remote sensor, usually utilized to build relationship with IOPs, the relationship between 

remote sensing reflectance (just beneath the sea surface) and IOPs is defined as: 

௦()ݎ =
,௨(ܮ 0ି)
,ௗ(ܧ 0ି)

 (2.2)
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where ܮ௨(, 0ି)  is the upwelling or water leaving radiance, and ܧௗ(, 0ି)  is the 

downwelling irradiance at null depth (denoted by 0ି). Gordon et al. (1988) described the 

relationship between ݎ௦  and IOPs as: 

௦()ݎ = ݃ଵ ቆ
ܾ()

ܽ() + ܾ()ቇ + ݃ଶ ൬
ܾ()

ܽ() + ܾ()൰
ଶ

 (2.3)

where ଵ݃  and ݃ଶ  are geometrical factors, ܽ()  and ܾ() are total absorption and 

total backscattering coefficient, respectively (all symbols and abbreviations refer to Table 

2.2). According to equation (2.3), a simplified equation is defined as  

௦()ݎ =
݂
ܳ

∗
ܾ()

ܽ() + ܾ() (2.4)

where ݂  is a factor of light field, ܳ is the light distribution factor defined as ܳ = 

 ௨ is the upwelling irradiance. The reflectance just above water, ܴ௦(), usuallyܧ ;௨ܮ/௨ܧ

related to ݎ௦() by an approximation of 0.54 (Austin, 1980), can be expressed as: 

ܴ௦() = 0.54 ∗
݂
ܳ

∗
ܾ()

ܽ() + ܾ() (2.5)

The major light absorbing constituents in seawater are phytoplankton, detrital or 

nonalgal particles and colored dissolved organic matter (CDOM). The total absorption 

can be composed by the absorption of pure water ܽ௪, phytoplankton absorption ܽ, 

nonalgal particles absorption ܽே , and CDOM absorption ܽைெ , which can be 

expressed as: 

ܽ() = ܽ௪() + ܽ() + ܽே() + ܽைெ() (2.6)

where pure water absorption ܽ௪() at each waveband is a specific value, which many 

researches have already measured (Pope & Fry, 1997). Phytoplankton absorption 
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accounts for a significant proportion of the total absorption in oceanic waters and usually 

defined in terms of its pigment-specific coefficients as: 

ܽ() = ܽ [ܽ_ℎ݈ܥ]
∗ () (2.7)

where [ܥℎ݈_ܽ] is Chl-a concentration, ܽ
∗ () is the specific absorption coefficient of 

phytoplankton. Many studies have demonstrated that the ܽ
∗ ()  values regularly 

decrease from 0.18 to 0.01 m2/mg from oligotrophic to eutrophic waters which the 

chlorophyll concentration range 0.02 to 25 mg/m3 (Bricaud et al., 1998). CDOM 

absorption has an exponential decay distribution with increasing wavelength and can be 

determined from their reference values at reference wavelength (e.g. 440 nm) as: 

ܽைெ() = ܽைெ(ߣ)݁[ିௌವೀಾ(ఒିఒబ)] (2.8)

where ܽைெ(ߣ) is the absorption coefficient for CDOM at a reference wavelength ߣ, 

ܵைெ is the slope coefficient of the exponential decrease and the value generally range 

from 0.01 to 0.02, vary with the CDOM concentration (Kirk, 1994). The absorption of 

nonalgal particles has proved to be similar to CDOM absorption as: 

ܽே() = ܽே(ߣ)݁[ିௌಿಲು(ఒିఒబ)] (2.9)

where ܽே(ߣ)  is the absorption coefficient of nonalgal particles, and ܵே  is the 

slope coefficient of the exponential decrease for nonalgal particles. 

The total backscattering coefficient can be separated into contributions by 

backscattering of pure water ܾ௪() and particles ܾ(), and can be expressed as: 

ܾ() = ()ݓܾܾ + (2.10) ()ܾܾ

where ܾ௪()  is the backscattering due to water molecules, ܾ()  is particle 

backscattering. 
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Table 2.2. Symbols and definitions 

Symbol Description unit 

Lu(0-) Upwelling radiance beneath water surface W m-2 sr-1 

Ed(0-) Downwelling irradiance W m-2 

a() Total absorption coefficients m -1 

aw() Absorption coefficients of pure water m -1 

aph() Absorption coefficients of phytoplankton m -1 

aNAP() Absorption coefficients of nonalgal particles m -1 

aCDOM() Absorption coefficients of CDOM m -1 

bb() Total backscattering coefficients m -1 

bbw() Backscattering coefficients of pure water m -1 

bbp() Backscattering coefficients of particles m -1 

Rrs() Remote sensing reflectance above water surface sr -1 

rrs() Remote sensing reflectance beneath water surface sr -1 

 

2.1.3. Three-band model 

 

 The three-band model, developed by Gitelson et al. (2003) and initially applied in 

terrestrial vegetation, has been proved to be a useful method to assess Chl-a in turbid 

productive waters (Dall'Olmo et al., 2003). This method is based on the relationship 

between reflectance ܴ(ߣ)  and two IOPs, i.e., total absorption and backscattering 

coefficients. The relationship can be expressed as: 

(ߣ)ܴ ∝ 
ܾ(ߣ)

(ߣ)ܽ + ܾ(ߣ)
 (2.11)
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where  is dependent on the geometry of the light field emerging from the water body. 

The relationship between Chl-a and three band model can be expressed as: 

Chl_a  (ܴଵ
ିଵ − ܴଶ

ିଵ)  ܴଷ (2.12)

where Ri is the reflectance at a wavelength of i nm. We found the optimal spectral 

ranges for these wavelengths to be, 1 = 660–670 nm, which is maximally sensitive to 

absorption by Chl-a for the reason of building the relationship with Chl-a absorption 

coefficient by the conceptual of ܴ(ߣ); 2 = 690–720 nm, which is minimally sensitive to 

absorption by Chl-a and can be used to decrease the impact by absorption of CDOM and 

nonalgal particles; and 3 = 720–750 nm, which is minimally affected by absorption by 

any constituents and used for decrease the impact by backscattering (Dall’Olmo & 

Gitelson, 2005; Gitelson et al., 2008).  

 

2.1.4. NIR/Red ratio 

 

The NIR/red two-band model has been widely used to retrieve Chl-a concentrations 

in turbid productive waters to identify phytoplankton blooms (Gitelson A. A., 1992). This 

model is a special case of the three-band model, when the Chl-a absorption coefficient is 

much larger than the backscattering coefficient and Chl-a absorption coefficient is much 

large than the sum of the absorption coefficient of CDOM and NAP. The model can be 

formulated as follows: 

Chl_a  ܴଵ
ିଵ  ܴଶ (2.13)

where λ1 is in the red region and λ2 is a NIR band which is similar with 3 in the three-

band model. 
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2.2. Traditional Salinity algorithms  

2.2.1. Microwave method  

Ocean salinity has a significant impact on the density of seawater, and then density 

is one of the key influencing variables for ocean circulation, which plays a crucial role in 

moderating the climate. SSS is also critical for determining the global water balance and 

for estimating evaporation rates. In addition, salinity variations are dominantly driven by 

precipitation, evaporation, and runoff, ice freezing and melting is also an important factor 

in some higher latitude area. Consequently, SSS is a variable that not only can provide 

valuable estimations of rainfall over the oceans but also is fundamental in other processes 

that force our global climate system (Klemas, 2011). 

However, there is a lack of in situ salinity time series measurements over most of 

the global ocean, and only a small fraction of the ocean is sampled on a regular basis. 

Recently, airborne based microwave radiometers have been applied to estimate SSS, for 

instance, airborne scanning low-frequency microwave radiometers (SLFMRs) and 

Salinity, Temperature, and Roughness Remote Scanner (STARRS). Both instruments are 

based on the physical basis for microwave radiometry of the ocean, which can be 

explained by an equation formulated as: 

ܶ = ݁ܶ (2.14)

where ܶ  is the ocean radiometric brightness temperature; T is thermodynamic 

temperature; and ݁  represents the emissivity, which is a function of seawater 

conductivity. Because salinity is crucial for the conductivity, SSS can be estimated by 

retrieval of ܶ and sea surface temperature (SST). The SLFMRs and STARRS are both 

use an L-band radiometer for the primary brightness temperature measurement and an 

infrared radiometer for SST.  
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Spacecraft remote sensing of SSS, for instance, Soil Moisture and Ocean Salinity 

(SMOS) satellite, launched by the European Space Agency in 2009, is also estimated by 

means of ܶ  using the Microwave Imaging Radiometer using Aperture Synthesis 

(MIRAS), which is a novel interferometric radiometer that operates in the L-band 

microwave range. The SMOS satellite maps salinity with 0.1 practical salinity units (psu), 

by averaging over 10–30 days in areas measuring 200 × 200 km. Although satellite-based 

microwave radiometry method can map SSS with a wide range, the spatial resolution is 

too coarse to monitor SSS in coastal and estuarine areas. 

 

2.2.2. Optical method 

 

Unlike the L-band space-borne radiometers, optical multispectral satellites have 

better spatial resolution. For instance, the spatial resolution of MEdium Resolution 

Imaging Spectrometer (MERIS) and MODIS range to several hundred meters, further, 

the Landsat satellite can reach to 30 m for each pixel. Several studies have been conducted 

for SSS retrieval using above satellite data, mainly all using a multiple linear relationship 

between multispectral bands and SSS (Khorram, 1982; Wong et al., 2007; Qing et al., 

2013). SSS has been proved inverse linearly relates to CDOM concentration in coastal or 

estuarine waters (Bowers et al., 2000). Recently, SSS has been derived using the 

absorption coefficient of CDOM, basing on the relationship between the absorption 

coefficient of CDOM and Rrs derived from in situ measurement (Ahn et al., 2008). 
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2.3. Proposed Chl-a algorithm 
 

PLS method was developed in the 1960’s by Herman Wold, originated in the social 

sciences but became popular first in chemometrics. The traditional PLS regression 

equation is described as follows: 

ݕ = ଵݔଵߚ + ଶݔଶ݅ߚ + ⋯ + ݔߚ + ߝ =  ݔߚ + ߝ


ୀଵ

 (2.15) 

where yi (݅ = 1,2, …, ݊) is the response variable that represents Chl-a, and ݅ݔj (݆ = 1,2, …, 

݉) is the predictor variable representing spectral data such as reflectance values for 

spectral bands 1 to m. βn is the estimated weighted regression coefficient, and ε is the 

error vector. In the PLS model, the original predictor variables (X) are projected onto a 

small number of orthogonal latent variables to simplify their relationships with response 

variables (Y) (Li & He, 2008). The progress of PLS calculate the latent variable (݅ݐk) (݇ 

 :shows below (ݎ ,… ,1,2 =

ݕ = ܿଵݐଵ + ܿଶݐଶ + ⋯ + ܿݐ + ߝ =  ܿݐ + ߝ


ୀଵ

   (2.16) 

where 

ଵݐ = ଵݔଵଵݓ + ଶݔଵଶݓ + ⋯ + ݔଵݓ + ߝ =  ݔଵݓ



ୀଵ

  

⋮ (2.17) 

ݐ = ଵݔଵݓ + ଶݔଶݓ + ⋯ + ݔݓ + ߝ =  ݔݓ



ୀଵ

  

The latent variable (݅ݐk) acts as a role of medium, then combine the equation (2.16) and 

(2.17): 
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ݕ = ܿଵ(ݓଵଵݔଵ + ଶݔଵଶݓ + ⋯ + (ݔଵݓ + ⋯ 

(2.18) 

+ܿ(ݓଵݔଵ + ଶݔଶݓ + ⋯ + (ݔݓ +  ߝ

= ൭ ܿݓଵ



ୀଵ

൱ ଵݔ + ൭ ܿݓ



ୀଵ

൱ ݔ +  ߝ

=  ൭ ܿݓ



ୀଵ

൱ ݔ +


ୀଵ

 ߝ

where 

ߚ =  ܿݓ



ୀଵ

 (2.19) 

then, the relation between water quality parameters (yi) and wavebands (xi) is same with 

PLS regression equation (2.15) 

We selected the optimal number of latent variables in the final model using the leave-

one-out (LOO) cross-validation method with a minimum value of the root mean squared 

error (RMSE), which is calculated as follows: 

ܧܵܯܴ = ඨ∑ ൫ݕ − ݕ൯ଶ
 ୀ ଵ

݊
 (2.20) 

where yi and yp represent sample i’s measured and predicted Chl-a, respectively, and n is 

the number of samples in the dataset (n = 59). 

The ISE-PLS uses a model-wise elimination technique (Boggia et al., 1997) that 

permits the removal of useless descriptors to improve predictive performance. This 

process is based on the importance of the predictor zi, which is defined as: 

ݖ =  
ݏ|ߚ|

∑ ݏ|ߚ|
ூ
 ୀ ଵ

 (2.21) 
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where si is the standard deviation of predictor xi. PLS modeling uses all available 

wavebands (501 bands between 400 and 900 nm). Predictors are then evaluated based on 

the value of the importance of predictor zi. The predictor with minimum importance is 

eliminated in each elimination cycle and the remaining predictors are used to recalibrate 

the model (Forina et al., 2003). Finally, a model with maximum predictive ability is 

selected using the minimum RMSE value from the cross-validation. 

 

2.4. Proposed Salinity algorithm 

 

Bio-optical model is widely used to predict the water quality parameters from the 

spectral observation. Water quality parameters (e.g. Chl-a, CDOM, SS) can be estimated 

when the relationship between IOPs and spectral reflectance is built. However, SSS can’t 

be estimated directly using this method, because the salinity is not included in the total 

absorption coefficient in water, and ocean salinity is not easily observed using optical 

satellite for the reason that there is no single band which correlates highly with in situ 

salinity data (Wong et al., 2007). Fortunately, Bower et al. (2000) found SSS linearly 

relates to CDOM concentration in coastal or estuarine waters. This finding provide 

possibility for SSS estimation using the absorption coefficient of CDOM in bio-optical 

model.  

A bio-optical model performed well for Chl-a and CDOM estimation in Tokyo bay 

(Sugihara et al., 1985). The total absorption contributed by pure water, Chl-a, and CDOM, 

and can be expressed as: 

ܽ() = ܽ௪() + ܽ()[ܥℎ݈] + ܽ௬()exp {−ܵ( − )} (2.22)
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where a(λ) is the total absorption coefficient of the sea water, ܽ௪() is the absorption 

coefficient of pure sea water, ac(λ) is the specific absorption coefficient of Chl-a, ay(λ0) is 

the absorption coefficient of CDOM at wavelength λ0. The backscattering can be 

formulated as: 

ܾ() = ܾ௪()/2 + ܤ  (2.23)

where bb(λ) is the total backscattering coefficient, ܾ௪() is the scattering coefficient of 

pure sea water and ܤ is the backscattering coefficient of particles.  

ܴ௦(ߣ) is remote sensing reflectance at the wavelength λ just above the water, which 

usually obtained by satellite sensor or other instruments is used to predict the water 

quality parameters. ܴ௦(ߣ)  has a relationship with remote sensing reflectance just 

beneath water surface ݎ௦(ߣ) as: 

ܴ௦(ߣ) = 0.52 ∗ 1)/(ߣ)௦ݎ − 1.7 ∗ (2.24) ((ߣ)௦ݎ

Morel and Prieur (1977) described the relationship between spectral reflectance and IOPs 

and can be expressed as: 

(ߣ)௦ݎ = 0.33 ∗ ܾ(ߣ)/ܽ(ߣ) (2.25)

Combining the above equations, we can get the relation as follows,  

ܴ௦(ߣ) =
0.33

ߨ
∗

ܾ௪(ߣ)/2 + ܤ

ܽ௪(ߣ) + ܽ(ߣ)[ܥℎ݈_ܽ] + ܽ௬(ߣ)݁ߣ)ܵ−}ݔ − {(ߣ
 (2.26)

if we introduce the X as the coefficients, the following equation can be obtained, 

ଵܺ[ܥℎ݈_ܽ] + ܺଶൣܤ൧ + ܺଷ[ܽ௬(440)] = ܻ (2.27)

where  

ଵܺ = ܴ௦(ߣ)ܽ(ߣ)/ߨ 

ܺଶ =  ߨ/0.33−
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ܺଷ = ܴ௦(ߣ)݁ߣ)0.014−} ݔ −  ߨ/{(440

ܻ = 0.33 ∗ ܾ௪(ߣ)ߨ2 − ܽ௪(ߣ)ܴ௦(ߣ)/ߨ 

when we obtain corrected Rrs data beyond 3 bands, it will be possible to retrieve the three 

unknown parameters Chl-a, Bp and ay440 at the same time to solve a simultaneous linear 

equation. 
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Chapter 3: Development of new chlorophyll-a algorithm in 

Ponds using ISE-PLS method 

3.1. Introduction 

 

Agriculture is by far the greatest water consumer in the world, and consequently, a 

major cause of water pollution. The primary pollutants from agriculture are excess 

nutrients and pesticides (Mateo-Sagasta & Burke, 2010). In agricultural activity, non-

point source pollution, such as irrigation water and surface runoff water containing 

fertilizer from farmland, contributes to excessive nutrient concentrations (Yang et al., 

2008). Meanwhile, excess nutrients that cause eutrophication, hypoxia and algal blooms 

in surface water bodies and coastal areas contribute to the primary global water quality 

problem (Mateo-Sagasta & Burke, 2010). Eutrophication has become a widespread 

matter of concern during the past 50 years, especially in coastal and inland waters 

(Rönnberg & Bonsdorff, 2004). 

The Chl-a concentration in water is the most widely applied parameter to assess the 

water quality status of lakes, particularly with respect to their trophic quality (WHO, 

2011). Since Chl-a is the primary photosynthetic pigment of all plant life (Latif et al., 

2003), the concentration of Chl-a indicates phytoplankton biomass and eutrophication in 

lakes (Lu et al., 2016). The concentration of total suspended solids (TSS) is another 

commonly used indicator for water quality assessment (Sikorska et al., 2015). TSS 

consists of organic and inorganic materials suspended in the water (Fondriest 

Environment, Inc., 2016). Increased TSS decrease light transmission through the water 
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(Bash et al., 2001), and therefore affect light availability to phytoplankton, thus resulting 

in a decrease of phytoplankton primary production (Davies‐Colley & Smith, 2007).  

However, traditional water quality monitoring requires in situ measurements and 

sampling, then returning the samples to the laboratory to measure water quality indicators 

(e.g., Chl-a and TSS), which is costly and time consuming (Shafique et al., 2003). Remote 

sensing makes it possible to monitor the state of the globe routinely, and is cost effective 

and useful, with the benefits of its passive nature and wide spatial coverage (Voutilainen 

et al., 2007). Earlier studies have demonstrated several algorithms developed for satellite 

sensors to estimate ocean and coastal water quality parameters, such as the Chl-a 

algorithm OC3, created for MODIS data, and OC4, created for sea-viewing wide field-

of-view sensor (SeaWiFS) data (O'Reilly et al., 1998). The geostationary ocean color 

imager (GOCI) also shows good performance, using the linear combination index (LCI) 

method to monitor Chl-a (Sakuno et al., 2013). Further, a three-band semi-analytical 

reflectance model, originally developed by Gitelson et al. (2003), and a normalized 

difference chlorophyll index (NDCI) (Mishra & Mishra, 2012), both performed well for 

assessing Chl-a in turbid productive water (Mishra & Mishra, 2012; Dall'Olmo et al., 

2003; Gitelson et al., 2008). For estimating TSS concentrations, an algorithm with a single 

wavelength created for MODIS and MERIS data has been proved to be satisfactory 

(Nechad et al., 2010).  

Unlike ocean and coastal water, inland water usually has a smaller surface area and 

more complicated spectral features, especially irrigation ponds, which are often impacted 

by human use such as agriculture activities. Consequently, inland water quality 

monitoring presents higher requirements for both temporal and spatial resolution of 

satellite sensor data; hence currently used satellite sensors often have limited practical 
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applicability in assessing relatively smaller inland water bodies. Since there are a limited 

number of wavebands for Landsat and other multispectral sensors, finding more 

informative wavebands to improve the performance of water quality estimation is 

necessary. With respect to in situ measurements, a two-band ratio approach, for example 

the ratio spectral index (RSI), has performed well for estimating Chl-a concentrations in 

inland waters (Gitelson et al., 2008; Nechad et al., 2010; Pulliainen et al., 2001), 

especially using the ratio of near-infrared (NIR) regions to red wavebands, such as the 

reflectance ratio of 705 nm to 670 nm performed by Han and Rundquist (1997). 

Normalized difference spectral indices (NDSI) are another type of spectral indices 

frequently used to select the optimum bands for spectral analysis. As similar studies that 

have been done before mainly focused on vegetation parameters retrieval (Inoue et al., 

2008; Stagakis et al., 2010; Inoue et al., 2012), optimum bands have been calculated from 

combinations of all available bands in the hyperspectral spectrum, a considerable range 

for hyperspectral analysis. Water quality parameters retrieval requires a similarly broad 

approach.  

Partial least squares (PLS) regression, which was developed by Wold (1966), is 

widely used to extract valuable information for spectroscopic analysis. PLS regression 

uses all available wavebands without multi-collinearity issues. The eigenvectors of the 

explanatory variables are manipulated such that the corresponding scores (latent 

variables) not only explain the variance of the explanatory variables (wavebands) 

themselves, but also are highly correlated with the response variables (Chl-a and TSS) 

(Song et al., 2014). However, PLS is considered limited because it treats each wavelength 

as independent, which incorporate noise created by non-informative wavelengths 

(Ghasemi et al., 2003). There is increasing evidence to indicate that wavelength selection 
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can affect the performance of PLS analysis (Kawamura et al., 2008), since wavelength 

selection for PLS models is performed to eliminate uninformative variables and choose 

the variables that contribute the most to the predictive ability of the calibration model 

(Swierenga et al., 1998). Iterative stepwise elimination PLS (ISE–PLS), developed by 

Boggia et al. (1997), combines PLS regression and the most useful information from 

hundreds of wavebands into the first several factors (Kawamura et al., 2010; Derbalah et 

al., 2003; Abe & Shinohara, 1996). This method was developed to eliminate useless 

wavebands in PLS analysis.  

The objective of this study is to develop models to estimate Chl-a and TSS using in 

situ spectral reflectance data and statistical approaches. We used several regression 

analyses including (a) a simple linear regression at each waveband of reflectance and the 

first derivative reflectance (FDR) to explore informative wavelength regions for Chl-a 

and TSS estimation; (b) all available two-band combination spectral indices (RSI and 

NDSI); and (c) a PLS regression using original reflectance and FDR datasets. In the PLS 

analyses, the predictive ability of ISE–PLS was compared with that of a standard full 

spectrum PLS (FS–PLS) and the spectral indices (RSI and NDSI). 

 

3.2. Study area 

 

The study area is located in Higashihiroshima, Japan, as shown in Fig. 1.1 in Chapter 

1. To assess changes in water quality status and environments, six ponds, including both 

eutrophic ponds and non-eutrophic ponds, were selected for this study. Descriptions of 

the six ponds are listed in Table 1.1 in chapter 1. 
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3.3. Materials and methods 

3.3.1. Measurement of Water Surface Reflectance 

 

Measurements of water surface reflectance were performed using an ASD FieldSpec 

HandHeld-2 spectrometer (ASD Inc., Boulder, CO, USA) with a spectral range of 350–

1050 nm and a probe field angle of 10°. Spectral readings were taken approximately 1 m 

above the water surface between 10:30 and 13:00 on a day with clear skies. Surveys were 

conducted six times between 3 January 2014, and 28 June 2014. From these data, a total 

of 36 datasets were obtained. 

With respect to the spectral data, the ranges 325–399 nm and 901–1075 nm from 

each spectrum were identified as noise and removed. Subsequently, spectral data were 

smoothed using a moving and normalized Gaussian filter with a sigma (standard 

deviation) of 2.5. The FDR was also computed and compared with the original reflectance. 

 

3.3.2. Water Sampling and Chemical Analysis 

 

The water sampling sites were consistent with the spectral reflectance measurements. 

Immediately after measurement of spectral reflectance, water samples were collected into 

two 1 L containers. The samples were maintained at constant temperature and protected 

from light until they were received at the laboratory for analysis.  

Chl-a and TSS concentrations were determined at the laboratory of the Graduate 

School for International Development and Cooperation (IDEC), Hiroshima University, 

Japan. Chl-a was extracted using 90% acetone, the absorption of Chl-a was measured by 

a spectrophotometer (UVmini-1240, SHIMADZU Co., Kyoto, Japan) and pigment 
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concentration was calculated using the equations from UNESCO. To measure the TSS, 

the water sample was filtered using 47 mm diameter GF/F filters. The filters were 

weighed before and after drying with an oven drier (SANYO Electric Co., Moriguchi, 

Osaka, Japan) at 105 °C for two hours. The TSS contents were quantified by the 

difference in the weight of the filter paper before and after filtration. 

 

3.3.3. Ratio Spectral Index and Normalized Difference Spectral Indices 

 

A combination of spectral indices between all wavebands is performed to select the 

optimum two-band combination. The aim of spectral indices is to construct a 

mathematical combination of spectral wavebands to enhance information content with 

respect to the parameter under study (Stratoulias et al., 2015). Moreover, normalization 

in the NDSI is effective at cancelling atmospheric disturbance or other sources of error, 

while enhancing and standardizing the spectral response to the observed targets (Inoue et 

al., 2008). 

For this study, two of the most commonly used spectral indices (RSI and NDSI) were 

calculated using the reflectance dataset. The forms to express them are as follows: 

RSI(݅, ݆) =
ܴ

ܴ
 (3.1)

NDSI(݅, ݆) =
ܴ  −  ܴ

ܴ  +  ܴ
 (3.2)
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3.3.4. Full Spectrum Partial Least Squares Regression 

 

We performed PLS regression to estimate Chl-a and TSS concentrations using the 

reflectance and FDR datasets (n = 36). The standard FS–PLS regression equation is as 

follows: 

ݕ = ଵݔଵߚ + ଶݔଶߚ + ⋯ + ݔߚ + (3.3) ߝ

where the response variable y is a vector of the water quality parameters (Chl-a and 

TSS), the predictor variables x1 to xi are surface reflectance or FDR values for spectral 

bands 1 to i (400, 401, …, 900 nm), respectively, β1 to βi are the estimated weighted 

regression coefficients, and ε is the error vector. The latent variables were introduced to 

simplify the relationship between response variables and predictor variables. To 

determine the optimal number of latent variables (NLV), leave-one-out (LOO) cross 

validation was performed to avoid overfitting of the model, which was based on the 

minimum value of the root mean squared error (RMSECV). The RMSECV is calculated 

as follows: 

RMSECV = ඨ∑ ൫࢟ − ࢟൯
ୀ  


 

(3.4)

where yi and yp represent the measured and predicted water quality parameters (Chl-a 

and TSS) for sample i, and n is the number of samples in the dataset (n = 36). 

 

3.3.5. Iterative Stepwise Elimination Partial Least Squares Regression 

 

The ISE–PLS is a model-wise technique (Boggia et al., 1997), which is based on the 

wavelengths selection function of the ISE method. To improve the performance of the 
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PLS model, the optimum wavelengths with good predictive ability are selected for model 

calibration. The wavelengths elimination process depends on the importance of the 

predictors (zi), described as follows: 

ݖ =  
࢙|ࢼ|

∑ ࢙|ࢼ|
ࡵ
ୀ  

 (3.5)

where βi is the regression coefficient and si is the standard deviation of predictor, both 

corresponding to the predictor variable of the waveband i. 

Initially, all available wavebands (501 bands, 400–900 nm) are used to develop the 

PLS regression model. Then variables are ranked from most contributed to least 

contributed according to the predictor zi; in other words, the predictor zi represents the 

weight of each variable. The least contributed variable is eliminated and the PLS model 

is recalibrated with the remaining predictor variables (Forina et al., 2004). The model 

building procedure is repeated, and in each cycle the predictor variable with the minimum 

importance (i.e., the less informative wavelength) is eliminated, until the final variable is 

eliminated. To determine the optimum number of wavelengths to include in the final 

model, LOO cross validation is conducted after each calibration. The final model with 

the maximum predictive ability is calibrated by the minimum value of RMSECV 

(D’Archivioa et al., 2014). 

 

3.3.6. Evaluation of Predictive Ability 

 

The coefficient of determination (R2) and RMSECV were selected as indices to 

evaluate the FS–PLS and ISE–PLS calibration models’ accuracy by using LOO cross 

validation. High results for R2 and low RMSECV indicate the best model to predict Chl-

a and TSS concentrations. In addition, the residual predictive deviation (RPD) was used 
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to evaluate the predictive ability of the models, which was defined as the ratio of standard 

deviation (SD) of reference data in prediction to RMSECV (Williams, 2001). For 

determining the performance ability of the calibration models, the goal RPD was at least 

3 for agriculture applications; RPD values between 2 and 3 indicate a model with good 

prediction ability, 1.5 < RPD < 2 is an intermediate model needing some improvement, 

and an RPD < 1.5 indicates that the model has poor prediction ability (D’Acqui et al., 

2010). 

All data handling and linear regression analyses were performed using Matlab 

software ver. 8.6 (MathWorks, Sherborn, MA, USA). 

 

3.4. Results 

3.4.1. Chl-a and TSS Concentrations in Irrigation Ponds 

 

Descriptive statistics are shown in Table 3.1, including the sampling data, the 

number of samples, the minimum (Min), the maximum (Max), the mean, the standard 

deviation (SD) and the coefficient of variation (CV). In total, 36 samples were collected 

from six irrigation ponds in six sets of field measurements (3 January, 19 January, 24 

March, 9 April, 24 May, and 28 June in 2014). Field samples (n = 36) provided a wide 

range of both Chl-a (SD = 46.1 μg/L, CV = 2.0) and TSS (SD = 12.8 mg/L, CV = 1.65). 

In the datasets, Chl-a ranged from 0 to 169.5 μg/L, and TSS ranged from 0.1 to 53 mg/L, 

which indicates that this study involves various water quality conditions from different 

ponds. 
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Table 3.1. Descriptive statistics for the Chl-a and TSS concentrations. 

Date n 
Chl-a (μg/L) TSS (mg/L) 

Min Max Mean SD CV Min Max Mean SD CV 

3-Jan-14 6 0.1 98.7 20.7 39.1 1.9 0.1 16.8 6.1 7.2 1.2 

19-Jan-14 6 0.1 169.5 36 67.5 1.9 0.1 26.5 7.6 11 1.5 

24-Mar-14 6 0 169.1 36.8 67.3 1.8 0.4 38 10.2 15.5 1.5 

9-Apr-14 6 0.5 48.5 8.7 19.5 2.2 0.5 33.5 6.5 13.2 2 

24-May-14 6 0.9 37.7 9.2 14.6 1.6 0.2 26 5.8 10 1.7 

28-Jun-14 6 1.6 133.9 27.1 52.5 1.9 0.3 53 10.4 20.9 2 

Total 36 0 169.5 23.1 46.1 2 0.1 53 7.8 12.8 1.7 

SD = standard deviation; CV = coefficient of variation; n = number of samples. 
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3.4.2. Comparison of Simple Linear Regression Models 

 

In this study, several simple linear regression models were constructed, and the 

accuracy was compared with that of the PLS method. As shown in Table 3.2, distinct 

bands were selected as the optimal bands with respect to accuracy for all models. In the 

model that used the gaussian smoothed water surface reflectance and FDR, the 730 nm 

and 705 nm wavebands were selected, based on the linear correlation coefficient shown 

in Fig. 3.1, to estimate Chl-a concentration (R2 = 0.14 and 0.54); 722 nm and 704 nm 

were selected to estimate TSS (R2 = 0.05 and 0.46). Fig. 3.1 shows the correlation 

coefficient (r) between reflectance/FDR and Chl-a/TSS with regard to each waveband. It 

is clear that FDR obviously improved correlation with Chl-a and TSS; moreover, spectra 

reflectance and absorption features were also enhanced (Fig. 3.1b). An NIR/red algorithm 

developed by Han et al. (1997) was introduced for comparison of the RSI selected 

wavebands and accuracy. The NIR/red model showed a higher R2 and lower RMSE than 

the single waveband models. However, based on the regression between the reflectance 

of each waveband and Chl-a and TSS, the RSI model selected the R719/R662 ratio as the 

best band combination, which enhanced the performance of ratio model, giving the 

highest R2 value of 0.72 for Chl-a. The R717/R630 ratio was the best band combination 

for TSS, with an R2 of 0.52 (Fig. 3.2a, b). A three-band semi-analytical algorithm for 

estimating Chl-a concentration was conducted, as a previous study suggested (Gitelson 

et al., 2007), and the optimal wavebands of model were tuned according to the optical 

properties of the water bodies. Bands 660, 703, and 740 nm were final selected for the 

three-band model with an R2 of 0.71 and RMSE of 29.32. For another algorithm 

introduced in a previous study, the NDCI was evaluated using remote sensing reflectance 
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Rrs at an absorption peak of 665 nm (i.e., Rrs(665)), which is closely related to absorption 

by Chl-a pigments and a reflectance peak of 708 nm (i.e., Rrs(708)), which was sensitive 

to variations in Chl-a concentration in water, with a result of an R2 of 0.60 and an RMSE 

of 28.82. For the NDSI model, bands 719 and 663 nm were the best combination for 

estimating Chl-a (R2 = 0.64), and bands 704 and 698 nm were the best combination for 

TSS (R2 = 0.55) (Fig. 3.2c, d). The results showed the lowest RMSECV in the RSI model 

for Chl-a (24.14) and in the NDSI model for TSS (8.48). Among the models, the RSI or 

the NDSI showed higher R2 values and lower RMSECV values than those of the two 

types of single-band models in the estimation of both Chl-a and TSS. 
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Table 3.2. Regression models used to estimate Chl-a and TSS concentrations with two spectral data types (reflectance and FDR) and 

two spectral indices (RSI and NDSI). 

Parameter Spectral index Model R2 RMSE 

Chl-a 

Reflectancce Chl-a = 0.0004 × R730 + 0.0396 0.14 51 

FDR Chl-a= 1 × 10 −5 × R705 − 0.0004 0.54 51.01 

NIR/red (Han et al. (1997)) Chl-a = 94.748 × R705/R670 − 88.897 0.6 28.78 

Three-band (Gitelson et al. (2003)) Chl-a = 0.0036 × (R−1660 − R−1703) × R740 − 0.0665 0.71 29.32 

NDCI (Mishra et al. (2012)) Chl-a = 253.16 × (Rrs708 − Rrs665)/(Rrs708+Rrs665) + 36.535 0.6 28.82 

RSI Chl-a = 119.27 × R719/R662 − 88.052 0.72 24.14 

NDSI Chl-a = 253.16 × (R719 − R663)/(R719 + R663) + 36.535 0.64 27.19 

TSS 

Reflectancce TSS = 0.0009 × R722 + 0.0501 0.05 14.81 

FDR TSS = 5 × 10 −5 × R704 − 0.0003 0.46 14.83 

RSI TSS = 31.419 × R717/R630 − 17.913 0.52 8.73 

NDSI TSS = 300.45 × (R704 − R698)/(R704 + R698) + 6.3868 0.55 8.48 
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Figure 3.1. Correlation coefficients (r) between water quality parameters (Chl-a and 

TSS) at each wavelength: (a) reflectance; (b) FDR. 

 

 
Figure 3.2. Distributions of R2 between two wavebands using RSI (a) Chl-a; (b) TSS and 

NDSI (c) Chl-a; (d) TSS.  
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3.4.3. FS–PLS and ISE–PLS Models 

 

Calibration and cross validation results between reflectance/FDR spectra and Chl-

a/TSS using FS–PLS and ISE–PLS are shown in Table 3.3. The results showed that the 

optimum NLV ranged between 4 and 8 in FS–PLS and between 5 and 11 in ISE–PLS, 

which was determined by the LOO cross validation based on the lowest RMSECV. The 

RPD ranged between 1.22 and 1.32 (low accuracy) in FS–PLS and between 1.45 and 7.44 

(excellent accuracy) in ISE–PLS. In particular, the selected number of wavebands and the 

percentage to full spectrum (that is, selected wavebands number/all (n = 501) × 100%) 

were calculated to evaluate the informative wavebands for ISE–PLS. Results showed the 

selected wavebands number ranged between 9 and 85, and the percent ratio ranged 

between 1.80 and 16.97. Overall, for Chl-a, ISE–PLS using FDR showed the highest R2, 

highest RPD, and lowest RMSECV (R2 = 0.98, RMSECV = 6.15, RPD = 7.44); NLV = 

11, and 85 wavebands were selected. Similarly, with respect to TSS, ISE–PLS using FDR 

showed the highest R2, highest RPD and lowest RMSECV (R2 = 0.97, RMSECV = 1.91, 

RPD = 6.64); NLV = 11, and 42 wavebands were selected. 
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Table 3.3. Optimum NLV, R2 and RMSECV using the LOO method in FS–PLS and in ISE–PLS using the entire dataset (n = 36), with 

the residual predictive deviation, the number of selected wavebands and the percent ratio with respect to the full spectrum (i = 501). 

Parameter 
Spectral 

Data Type 
Regression 

Calibration Cross Validation Selected 
Wavebands 

Number 

Selected 
Wavebands 

(%) NLV R2 RMSEC R2 RMSECV RPD 

Chl-a 

Reflectance FSPLS 4 0.59 29.26 0.41 35.44 1.28   

Reflectance ISEPLS 6 0.7 25.01 0.6 29.27 1.55 9 1.8 
FDR FSPLS 8 0.99 3.25 0.43 35.15 1.32   

FDR ISEPLS 11 1 1.14 0.98 6.15 7.44 85 16.97 

TSS 

Reflectance FSPLS 6 0.61 7.87 0.35 10.36 1.22   

Reflectance ISEPLS 5 0.62 7.76 0.53 8.73 1.45 13 2.59 
FDR FSPLS 5 0.93 3.39 0.4 9.98 1.27   

FDR ISEPLS 11 1 0.84 0.97 1.91 6.64 42 8.38 

FDR = first derivative reflectance; NLV = number of latent variables; RMSEC = root mean square error from calibration; 

RMSECV = root mean square error from cross validation; RPD = the residual predictive deviation. 
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The relations between observed and predicted Chl-a and TSS are shown in Fig. 3.3. 

The data in this figure were used to evaluate goodness of fit in the FS–PLS and ISE–PLS 

models. Comparisons between the FS–PLS and ISE–PLS models were presented in 

combination with the R2 and RMSE from the cross validation listed in Table 3.3. For Chl-

a, the ISE–PLS using FDR showed a higher R2 and lower RMSECV. The scatter 

distribution also showed a better linear relation, which can be judged by the red dots 

clustered along the 1:1 line in Fig. 3.3b. Similarly, with respect to TSS, the ISE–PLS 

model using FDR showed better results than the others (Fig. 3.3d, red dot). However, 

both red and green dots clustered vertically, particularly in Fig. 3.3a, c, showing a large 

variation in the predicted values and nearly no variation in the observed values, indicating 

that plenty of observed Chl-a and TSS samples had low concentrations. This vertical 

clustering also indicates the FS–PLS and ISE–PLS using reflectance had lower predictive 

abilities than using FDR. 

The selected wavebands in ISE–PLS using the reflectance and FDR datasets are 

shown in Fig. 3.4. In the reflectance dataset, the selected wavebands were primarily in 

the red wavelengths (650–680 nm) for Chl-a. For TSS, the selected wavebands were in 

green wavelengths (560 nm), red wavelengths (620–630 nm) and red-edge wavelengths 

(720 nm). In the FDR datasets, a cluster of wavebands focus on the red region (670–680 

nm, 690–710 nm) for Chl-a, and wavebands were also selected from other regions: blue 

(around 410), green (around 490 nm, 510 nm), red (around 603, 615), and the NIR region 

between 820 nm and 900 nm. Similarly, more wavebands were selected for TSS using 

FDR than using reflectance, especially in the red (around 620 nm, 680 nm, and 700 nm) 

and NIR (around 730 nm) regions. 
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Figure 3.3. Relations between measured and cross-validated prediction values of Chl-a 

(a) Reflectance; (b) FDR and TSS; (c) Reflectance; (d) FDR using FS–PLS and ISE–PLS. 
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Figure 3.4. Selected wavebands in ISE–PLS using reflectance or FDR datasets (n = 36) 

to estimate: (a) and (c) Chl-a; (b) and (d) TSS. Green bars = Chl-a; red bars = TSS. 

 

3.5. Discussion 

3.5.1. Evaluation of the Predictive Abilities of Simple Linear Regression Models 

 

In the present study, models established by single waveband and two waveband 

combinations were compared using PLS. For single waveband models, FDR showed a 

better R2 than smoothed reflectance both for Chl-a and TSS, indicating that the accuracy 

can be improved by enhancing the features of absorption and reflectance from the 

smoothed reflectance. However, all single waveband models showed poor accuracy for 
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estimating both Chl-a and TSS concentrations. According to previous research, single 

band focus on 670–750 nm is better at determining TSS concentrations (Nechad et al., 

2010), especially in turbid water. Single band focus showed no predictive ability in that 

research, and simple linear regression using two wavebands combinations showed poor 

accuracy for TSS, which may indicate that TSS is difficult to detect using single-band or 

two-band combinations in relatively clear water; as shown in our results, most observed 

TSS values were low. The three-band model was successfully used for Chl-a retrieval in 

turbid water bodies (Gitelson, et al., 2008; Gitelson et al., 2007). As for this research, the 

optimal spectral bands selected from the iterative band tuning are in accord with the 

previous research (Dall'Olmo et al., 2003); however, even the result shows a considerable 

R2, but the relatively high RMSE may indicate a low accuracy model, which may be 

attributed to different compositions of optically active constituents (Chl-a, tripton, 

CDOM) (Gitelson et al., 2007). The NDCI is a special case of the NDSI: two bands of 

NDCI are determined by the reflectance peak and spectral absorption peak, and the 

normalizing of two bands reflectance can eliminate uncertainties in the estimation of Rrs 

(Mishra & Mishra, 2012). As a comparison, the result of the NDSI has a slight 

improvement with an R2 of 0.64 and an RMSE of 27.19 than the NDCI with an R2 of 0.60 

and an RMSE of 28.82, which may indicate that a combination of wavebands at 719 and 

663 nm in the NDSI can better reflect the Chl-a variations in this research area. Among 

all tested combinations of the RSI and the NDSI, the best R2 values were obtained using 

the NIR waveband (719 nm) and the red region (662 nm for the RSI, 663 nm for the 

NDSI) to estimate Chl-a concentrations, which agrees with the findings of other research. 

In most available research on the measurement of chlorophyll content in water, the 

absorption trough is located at near 670 nm, caused by absorption of Chl-a (Han & 
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Rundquist, 1997; Huang et al., 2010) and the reflectance peak near 710 nm, caused by 

the fluorescence of Chl-a (Gitelson A. , 1992; Bennet & Bogorad, 1973; Ma et al., 2007) 

On account of these characteristics, the two waveband models, particularly the NIR/red 

ratio, have been widely used for Chl-a retrieval, and a variety of algorithms have been 

based mainly on the ratio of reflectance peak (about 710 nm) to reflectance trough (about 

670 nm) (Han & Rundquist, 1997; Mittenzwey et al., 1991). Similarly, in the present 

study two wavebands, from the NIR and red regions respectively, were selected by the 

NDSI, confirming the water body reflection characteristics. 

 

3.5.2. Evaluation of the Predictive Abilities of FS–PLS and ISE–PLS 

 

As we expected, the PLS models exhibited better predictive abilities than models 

that use single wavebands or the index-based (RSI and NDSI) approaches, which shows 

the PLS method is potentially useful in retrieval of inland water quality parameters (Song 

et al., 2013; Ryan & Ali, 2016). In our PLS analyses, results using ISE–PLS models with 

the FDR dataset showed higher R2 and lower RMSECV values than those of the 

reflectance dataset. These results are consistent with the research of Han and Rundquitst 

(1997), who noted that FDR was better correlated with chlorophyll concentration than 

raw reflectance, and that random noise and the effects of suspended matter could be 

reduced by FDR (Song et al., 2013). After eliminating outliers and useless predictors, 

ISE–PLS calibrated more potential models than FS–PLS, both for Chl-a and TSS, with 

the wavelengths relevant to water quality. As a consequence, predictive ability was further 

enhanced, which is reflected in the results of evaluation indices. PLS-based waveband 

selection greatly improved predictions for both Chl-a (R2 from 0.43 to 0.98, RMSECV 
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from 35.15 to 6.15, RPD from 1.32 to 7.44) and TSS (R2 from 0.40 to 0.97, RMSECV 

from 9.98 to 1.91, RPD from 1.27 to 6.64). The PLS models in combination with 

wavelength selection had an improved performance also supported by other previous 

research (Kawamura et al., 2008; Forina et al., 2004; Chen et al., 2007). However, the R2 

for Chl-a using ISE–PLS reached 0.98, a result that does not rule out the possibility of 

overfitting; therefore, the solution method for this condition should be the subject of 

additional research and validation. 

 

3.5.3. Importance of Selected Wavebands in ISE–PLS 

 

Our results showed 16.97% of all available wavelengths that were selected for 

predicting Chl-a and 8.38% were also selected for predicting TSS by ISE–PLS, which 

indicates that less than 20% of the waveband information from field hyperspectral data 

contributes to the prediction for water quality parameters (Chl-a and TSS) and over 80% 

were redundant. In the reflectance dataset, wavebands primarily in the red wavelengths 

were selected: between 630 and 710 nm for Chl-a; for TSS, 560 nm, 620–630 nm, and 

720 nm. In the FDR dataset, the selected wavebands for estimating both Chl-a and TSS 

involved more regions than the reflectance dataset. Nevertheless, similar wavelengths in 

the visible and NIR regions were selected; blue (410 nm), green (approximately 490 nm, 

510 nm), and red (approximately 603 nm, 615 nm) for Chl-a; and blue (approximately 

420 nm), green (approximately 500 nm), red (approximately 620 nm, 680 nm and 700 

nm), and NIR (approximately 730 nm) for TSS. Intensive absorption by Chl-a resulted in 

reflectance troughs around 440 and 670nm (Fig. 3.4a) (Yacobi et al., 2011). Low 

absorption of algal pigments or the scattering of phytoplankton cells and inorganic 
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suspended materials might cause the reflectance peak near 570 nm (Huang et al., 2010). 

The reflectance spectrum peak near 700 nm had a strong correlation with Chl-a 

concentration (Gitelson A. , 1992; Gitelson et al., 1993). Several previous studies of 

inland water quality also proved these wavelengths have the potential to predict Chl-a 

and TSS concentrations (Hu et al., 2011; Gons, 1999). This study brings obvious evidence 

that the ISE-PLS model may be considered as a unified approach for remote 

quantification of constituent concentrations in water quality assessment. Using this 

method, more informative wavebands can be selected from hundreds of hyperspectral 

wavebands, which indicates the accuracy and efficiency can be enhanced by ISE-PLS 

when it comes to using hyperspectral sensors in satellites with a high temporal and spatial 

resolution to monitor relatively small area inland water quality in the future. 

 

3.6. Conclusions 

 

The present study develops models for estimating Chl-a and TSS concentrations in 

irrigation ponds using water surface reflectance spectral data. Our results show that PLS 

regression analysis has high potential for predicting Chl-a and TSS based on field 

hyperspectral measurements, and that ISE wavebands selection in combination with PLS 

regression analysis can enhance predictive ability. Chl-a and TSS concentrations were 

estimated with high accuracy by using ISE-PLS, which explains 98% of the variance for 

Chl-a and 97% of the variance for TSS. The important wavebands for estimating Chl-a 

and TSS using ISE–PLS represented 16.97% and 8.38%, respectively, of all 501 

wavebands over the 400–900 nm range. The selected wavebands approximately match 

the absorption peaks published by previous researchers. Compared to the estimation of 
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water quality parameters by satellite sensors such as MODIS, ISE–PLS selected more 

informative wavebands, especially the wavelength at approximately 700 nm. These 

results provide useful insights for future analyses on the assessment of water quality in 

irrigation ponds, especially when using satellite imagery. 
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Chapter 4: Validation of new chlorophyll-a algorithm in the 

Seto Inland Sea using ISE-PLS method 

4.1. Introduction 

 

The Seto Inland Sea is an approximately 23,000 km2 semi-enclosed coastal sea in 

western Japan, with an average depth of 38 m. This sea is well-known as one of the 

world’s most productive fisheries due to its abundance of fish and variety of fish species 

(Hashimoto et al., 1997). Approximately 35 million people live around the Seto Inland 

Sea, bringing increased industrialization and urbanization that has made the Seto Inland 

Sea one of Japan’s most industrialized regions (Yoshie et al., 2011). However, 

productivity of fisheries is sensitive and thus vulnerable to anthropogenic stress. 

Eutrophication of coastal waters has affected fishing and other activities by contributing 

to harmful algal blooms (HABs), also known as red tides. HABs frequently occurred in 

the Seto Inland Sea during a period of high economic growth in the 1970s (Nishijima et 

al., 2016). Although HABs have decreased from about 300 cases per year in 1976 to about 

100 cases per year more recently (Yamamoto, 2003), severe damage to fisheries and 

significant economic losses due to HABs are still occurring (Imai et al., 2006). Therefore, 

monitoring HABs is vital for managing the fisheries industry and ensuring sea water 

quality.  

The scientific community and various agencies monitor HABs to manage and 

control them. Many studies have conducted HABs observation, but most have relied on 

conventional in situ ship surveys and buoy stations (Yunus et al., 2015). For each 
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observation, water samples must be collected and analyzed under controlled lab 

environments, which is costly and time consuming. Additionally, the spatial scale of such 

surveys is limited. Remote sensing has been widely applied to monitor, in real time, 

various ocean environment factors on a large scale using spaceborne or airborne 

instruments. Having a high degree of spatial and temporal coverage over a large scale is 

convenient for monitoring HABs. Several studies have shown distributions of HABs 

using satellite imagery and Chl-a concentration measurements (Noh et al., 2018; Zhao 

and Ghedira, 2014). Chl-a concentration in water is a major indicator of a trophic state 

and oceanic Chl-a concentration is the most common property characterizing first trophic 

levels in marine environments (Wang and Liu, 2005). Chl-a acts as a link between nutrient 

concentration and algal production (Gholizadeh et al., 2016), therefore, it can be used as 

a proxy to evaluate HABs.  

Earlier studies indicated bio-optical model was usually used to estimate Chl-a 

concentration in water (Katlane et al., 2012). Several satellite sensor algorithms 

developed to estimate ocean and coastal Chl-a using the remote sensing reflectance (Rrs), 

such as the ocean chlorophyll 2-band (OC2), ocean chlorophyll 3-band (OC3), and ocean 

chlorophyll 4-band (OC4) algorithms used for the standard Sea-viewing Wide Field-of-

view Sensor (SeaWiFS) Chl-a product (O'Reilly et al., 1998; O’Reilly et al., 2000). The 

strong Chl-a absorption in red bands and diminishing Chl-a absorption and increasing 

water absorption in near infrared (NIR) bands (Moses et al., 2011) yields a band ratio 

between the NIR and red bands that has frequently been used to estimate Chl-a 

concentrations (Gitelson et al., 1993; Mittenzwey et al., 1992; Sakuno et al., 2014), Han 

and Rundquist (1997) found that the ratio of reflectance at 705 nm (NIR) to reflectance 

at 670 nm (red) correlated well with Chl-a concentration in a turbid reservoir. 
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Additionally, a three-band semi-analytical reflectance model can be used to assess Chl-a 

concentration by taking advantage of the red and NIR regions’ absorption characteristics. 

This model was originally developed to estimate pigment content in higher plant leaves 

(Dall’Olmo et al., 2003).  

Partial least squares (PLS) regression, a statistical method developed by Wold (1966), 

is an efficient tool for multivariate modeling that is increasingly used to handle high-

dimensional hyperspectral data (Kawamura et al., 2008; Song et al., 2013). Its potential 

application for water quality quantification has been tested (Song et al., 2012), and the 

iterative stepwise elimination PLS (ISE-PLS; Boggia et al., 1997), which combines PLS 

and a wavelength selection function, has proven effective at estimating Chl-a in inland 

case II water (Wang et al., 2017). However, ISE-PLS has not been tested in coastal waters 

or compared with traditional algorithms. 

Our objectives are: (1) to develop models to estimate Chl-a using in situ 

hyperspectral data; (2) to evaluate traditional empirical and semi-analytical algorithms in 

Seto Inland Sea; and (3) to evaluate the ISE-PLS method’s accuracy in coastal waters. 

 

4.2. Materials and methods 

4.2.1. Study area 

 

The study area is in the central part of the Seto Inland Sea near the city of Fukuyama 

as shown in Fig. 1.2. We selected six sites as sampling stations, which are described in 

Table 1.2.  
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4.2.2. Data collection and pre-processing 

 

We conducted 12 ship-based surveys were conducted between December 16, 2015, 

and September 7, 2017, and obtained 59 datasets from six stations. We performed in situ 

measurements of water-leaving reflectance (RL) using a MS-720 (Eiko Co. Ltd, Tokyo, 

Japan) spectrometer, with a spectral range of 350–1050 nm and a spectral interval of 3.3 

nm. We recalculated the spectral interval to 1 nm when exporting data. We gathered 

spectral readings approximately 1 m above the water surface, with a probe field angle of 

25°, between 9:00 and 11:00 under clear sky conditions. We measured Chl-a using a 

Hydrolab DS5 (Hach, Loveland, USA) multiparameter data sonde with sensors for 

measuring Chl-a and other water quality parameters. In this study we used Chl-a data 

from just beneath the water surface. 

With respect to spectral data, we identified reflectance ranges of 325–399 nm and 

901–1075 nm as noise and removed them. We then smoothed the spectral data using a 

Savitzky-Golay filter with 15 smoothing points. We also computed the first derivative 

reflectance (FDR) and compared it with the original water-leaving reflectance for Chl-a 

estimation 

 

4.2.3. Algorithms 

 

In this study we used the newest OC algorithms (version 6; Hu et al., 2012), which 

was formulated as a fourth-order polynomial with five coefficients. The modified OC 

algorithms yielded better statistical agreement between model data and Chl-a than the 
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first version OC algorithm (O’Reilly et al., 1998), which was a modified cubic polynomial 

relationship between Chl-a and a ratio of Rrs.  

 

Rrs () can be represented by the relationship with water-leaving reflectance RL () 

as follows (Oyama et al., 2009): 

R௦() =  R() (4.1)

where  is wavelength. The version 6 OC algorithms use a fourth-order polynomial 

equation that can be written as: 

(ܽ_ℎ݈ܥ)ଵ݈݃ = ܽ + ܽଵܴ + ܽଶܴଶ + ܽଷܴଷ + ܽସܴସ (4.2)

where R and the coefficients a0, a1, a2, a3, and a4 are different in the OC2, OC3, and OC4 

algorithms. OC2 uses the blue/green ratio Rrs(490)/Rrs(555) and R is described as R = 

log10 (ோೝೞ (ସଽ)
ோೝೞ (ହହହ)

). The coefficients are given as a0 = 0.2511, a1 = -2.0853, a2 = 1.5035, a3 = 

-3.1747, and a4 = 0.3383. OC3 uses a three-band formulation with a maximum of Rrs band 

ratios Rrs(443)/Rrs(555) and Rrs(490)/Rrs(555), and R is expressed as R = log10 

(ோೝೞ (ସସଷ)வோೝೞ (ସଽ)
ோೝೞ (ହହହ)

) with coefficients of a0 = 0.2515, a1 = -2.3798, a2 = 1.5823, a3 = -0.6372, 

and a4 = -0.5692. Similarly, OC4 uses the maximum of three Rrs ratios—Rrs (443)/Rrs 

(555), Rrs (490)/Rrs (555) and Rrs (510)/Rrs (555)—to build the formulation, with R 

expressed as R = log10 (ோೝೞ (ସସଷ)வோೝೞ (ସଽ)வோೝೞ (ହଵ)
ோೝೞ (ହହହ)

) and coefficients a0 = 0.3272, a1 = -

2.9940, a2 = 2.7218, a3 = -1.2259, and a4 = -0.5683. The OC4 algorithm has been 

considered a standard method for satellite detection of HABs over global waters (Stumpf, 

2001; Tomlinson et al., 2004). 

The three-band model uses the NIR and red wavebands and is formulated as 

(Dall’Olmo et al., 2003; Dall’Olmo and Gitelson, 2005): 
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Chl_a  (ܴଵ
ିଵ − ܴଶ

ିଵ)  ܴଷ (4.3)

where Ri is the reflectance at a wavelength of i nm. We found the optimal spectral ranges 

for these wavelengths to be, 1 = 660–670 nm, which is maximally sensitive to absorption 

by Chl-a; 2 = 690–720 nm, which is minimally sensitive to absorption by Chl-a; and 3 

= 720–750 nm, which is minimally affected by absorption by any constituent (Dall’Olmo 

and Gitelson, 2005; Gitelson et al., 2008). We expected to find the optimal spectral ranges 

of 1, 2, and 3 for Chl-a estimation by spectrally tuning the conceptual model using a 

stepwise technique. First, we set 2 and 3 to 700 nm and 750 nm, respectively, and then 

linearly regressed using all available bands and Chl-a to obtain the first estimate of 1, 

with which there was a high correlation coefficient (r). After we fixed 1, we set 2 as an 

unknown waveband and linearly regressed to find an optimal 2 based on the best r value 

using the reflectance corresponding to a fixed 1 and an assumed 3. Analogously, we 

confirmed the optimal 3 using the reflectance corresponding with fixed 1 and 2 values. 

The NIR/red two-band model has been widely used to retrieve Chl-a concentrations 

in turbid productive waters to identify phytoplankton blooms (Gitelson, 1992). This 

model is formulated as follows: 

Chl_a  ܴଵ
ିଵ  ܴଶ (4.4)

where λ1 is in the red region and λ2 is in NIR region. We tuned the model to select the 

optimal NIR and red bands for Chl-a retrieval in this research area and compared its 

accuracy with the previous model using wavelengths of 705 nm in the NIR region and 

670 nm in the red region. 

PLS is useful for handling many descriptors even when co-linearity and noise in the 

model building regression are present (D’Archivio et al., 2014). The standard PLS 

regression equation can be expressed as follows: 
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ݕ = ଵݔଵߚ + ଶݔଶߚ + ⋯ + ݔߚ + (4.5) ߝ

where y is the response variable that represents Chl-a, xi is the predictor variable 

representing spectral data such as RL or FDR values for spectral bands 1 to i (400–900 

nm), βi is the estimated weighted regression coefficient, and ε is the error vector. In the 

PLS model, the original predictor variables (X) are projected onto a small number of 

orthogonal latent variables to simplify their relationships with response variables (Y) (Y; 

Li and He, 2003). We selected the optimal number of latent variables (NLV) in the final 

model using the leave-one-out (LOO) cross-validation method with a minimum value of 

the root mean squared error (RMSE), which is calculated as follows: 

ܧܵܯܴ = ඨ∑ ൫࢟ − ൯࢟ 
ୀ  


 (4.6)

where yi and yp represent sample i’s measured and predicted Chl-a, respectively, and n is 

the number of samples in the dataset (n = 59). 

The ISE-PLS uses a model-wise elimination technique (Boggia et al., 1997) that 

permits the removal of useless descriptors to improve predictive performance. This 

process is based on the importance of the predictor zi, which is defined as: 

ݖ =  
࢙|ࢼ|

∑ ࢙|ࢼ|
ࡵ
ୀ  

 (4.7)

where si is the standard deviation of predictor xi. PLS modeling uses all available 

wavebands (501 bands between 400 and 900 nm). Predictors are then evaluated based on 

the value of the importance of predictor zi. The predictor with minimum importance is 

eliminated in each elimination cycle and the remaining predictors are used to recalibrate 

the model (Forina et al., 2003). Finally, a model with maximum predictive ability is 

selected using the minimum RMSE value from the cross-validation. 
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4.2.4. Evaluation of predictive ability 

 

We used the coefficient of determination (R2) and RMSE to evaluate the predictive 

ability of empirical and semi-analytical algorithms such as OC, three-band, and two-band 

model algorithms. Higher R2 values and a lower RMSE indicate better Chl-a estimation 

performance. To evaluate the ISE-PLS predictive ability, we used R2 and RMSE from the 

LOO cross-validation in the final model. Additionally, we introduced the residual 

predictive deviation (RPD), which is defined as the ratio of the standard error of the 

prediction to the standard deviation, as the evaluating indicator. RPD can be expressed as 

RPD = SD/RMSE (Williams, 2001). As shown in a previous study by Chang and Laird 

(2002), an RPD > 2 indicates a model with good predictive ability, 1.4 < RPD < 2 

indicates moderately good model in need of some improvement, and an RPD < 1.4 means 

the model has no predictive ability. 

We performed all data handling and regression analyses using Matlab software ver. 

8.6 (MathWorks, Sherborn, MA, USA). 

 

4.3. Results 

4.3.1. Chl-a characteristics 

 

Table 4.1 shows Chl-a concentration descriptive statistics from this study, including 

stations, number of samples, minimum (Min), maximum (Max), mean, standard deviation 

(SD) and coefficient of variation (CV). 
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Table 4.1. Chl-a concentration descriptive statistics. 
Stations N Min Max Mean SD CV 

1 12 0.83 4.2 2.73 0.95 0.35 
2 12 1.06 6.72 3.82 2.15 0.56 
3 12 1.72 7.84 4.5 1.71 0.38 
4 12 2.31 14.33 8.13 4.54 0.56 
5 6 1.75 5.46 3.92 1.25 0.32 
6 5 1.2 8.74 4.41 2.84 0.64 

Total 59 0.83 14.33 4.67 3.11 0.67 

N, number of samples; SD, standard deviation; CV, coefficient of variation. 

 

4.3.2. Comparison of empirical and semi-analytical models 

 

We used several empirical and semi-analytical models for Chl-a retrieval, the results 

of which are shown in Table 4.2. We initially used three standard empirical algorithms, 

OC2, OC3, and OC4. The first row of Fig. 4.1 shows scatter plots between in situ 

measured Chl-a and Chl-a derived from OC models. The results show a linear 

relationship between measured and modelled Chl-a for all three OC algorithms, with poor 

R2 values (0.36, 0.31, and 0.30, respectively for OC2, OC3, and OC4). In addition, results 

of all three OC algorithms underestimate Chl-a. In view of the sensor differences between 

the hyperspectral spectrometer used for in situ measurements and the SeaWiFS satellite 

sensor, we recalculated the parameters for equation (4.2) by model recalibration using in 

situ Chl-a and Rrs, which was in accordance with specified OC algorithm wavebands. The 

second row of Fig. 4.1 shows scatter plots between recalibrated OC algorithms and Chl-

a. The R2 values for all three OC algorithms were slightly improved (0.39, 0.36, and 0.35 

respectively for OC2, OC3, and OC4), and scattered points were close to the 1:1 line. For 

both the standard and recalibrated OC models, the OC2 algorithm performed better than 
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OC3 and OC4 for Chl-a retrieval in this study; however, its predictive ability remains 

poor due to its low R2 value. 

 
Figure 4.1. Correlation between observed and modelled chlorophyll a (Chl-a) using 

ocean chlorophyll (OC) algorithms. The first row shows results using standard 

coefficients (a) OC2, (b) OC3, and (c) OC4. The second row shows results from 

recalibrated OC models using the dataset of this study (d) OC2, (e) OC3, and (f) (OC4). 
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Table 4.2. Regression models used to estimate Chl-a concentrations. 

Algorithms Results equation 
Bands combination (R), Coefficient a, and 

Intercept b   
R2 RMSE 

OC2 ܥℎ݈_ܽ = 10బାభோାమோమାయோయାరோర 
R = log10 (ோೝೞ(ସଽ)

ோೝೞ(ହହହ)
) 

a = [0.2511 -2.0853 1.5035 -3.1747 0.3383] 
0.36 3.96 

OC3 ܥℎ݈_ܽ = 10బାభோାమோమାయோయାరோర 
R = log10 (ோೝೞ(ସସଷ)வோೝೞ(ସଽ)

ோೝೞ(ହହହ)
) 

a = [0.2515 -2.3798 1.5823 -0.6372 -0.5692] 
0.32 3.95 

OC4 ܥℎ݈_ܽ = 10బାభோାమோమାయோయାరோర 
R= log10 (ோೝೞ(ସସଷ)வோೝೞ(ସଽ)வோೝೞ(ହଵ)

ோೝೞ(ହହହ)
) 

a = [0.3272 -2.9940 2.7218 -1.2259 -0.5683] 
0.30 3.66 

Recalibrated OC2 ܥℎ݈_ܽ = 10బାభோାమோమାయோయାరோర 
R = log10 (ோೝೞ(ସଽ)

ோೝೞ(ହହହ)
) 

a = [-8942.6 -2053.3 -100.25 -3.8257 0.5738] 
0.39 2.65 

Recalibrated OC3 ܥℎ݈_ܽ = 10బାభோାమோమାయோయାరோర 
R = log10 (ோೝೞ(ସସଷ)வோೝೞ(ସଽ)

ோೝೞ(ହହହ)
) 

a = [5204.7 -461.22 -41.033 -4.4207 0.5491] 
0.36 2.50 

Recalibrated OC4 ܥℎ݈_ܽ = 10బାభோାమோమାయோయାరோర 
R = log10 (ோೝೞ(ସସଷ)வோೝೞ(ସଽ)வோೝೞ(ହଵ)

ோೝೞ(ହହହ)
) 

a = [-30610 -4098 -57.405 -0.1942 0.5933] 
0.35 2.53 
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Three-band ܥℎ݈_ܽ = ܴܽ + b 
R = (ܴ(664)ିଵ − ܴ(695)ିଵ)  ܴ(736) 

a = 85.096 b = 7.371 
0.46 2.28 

NIR/red ܥℎ݈_ܽ = ܴܽ + b 
R = ܴ(705)  ܴ(670)ିଵ 

a = 0.0044 b = 0.8863 
0.17 4.88 

NIR/red tuning  ܥℎ݈_ܽ = ܴܽ + b 
R = ܴ(693)  ܴ(666)ିଵ  
a = 66.633 b = -59.755 

0.39 2.40 

OC2, ocean chlorophyll-2; OC3, ocean chlorophyll-3; OC4, ocean chlorophyll-4; NIR, near-infrared. 
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The three-band and two-band algorithms were both based on the NIR region which 

has high absorption by water and the red region which has high absorption by Chl-a. Fig. 

4.2 shows the three-band algorithm tuning process. The optimal 1 appeared at 664 nm 

where the r value is highest when using assumed 2 and 3 values of 700 nm and 750 

nm, respectively. 2 and 3 appeared at 695 nm and 736 nm when using the tuning 

method. These results showed a linear relationship between the three-band algorithm and 

Chl-a concentration with a R2 value of 0.46, as shown in Fig. 4.3. 

 

 
Figure 4.2. Selected wavebands for the three-band model algorithm using the tuning 

method. 

 

 
Figure 4.3. Correlation between the three-band model algorithm and measured 

chlorophyll a (Chl-a). 
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The two-band NIR red model results showed an incompact linear relationship 

between the reflectance ratios of 705 nm and 670 nm and measured Chl-a, with a poor R2 

value of 0.17, as shown in Fig. 4.5a. As with three-band model, we tuned the spectral 

position to obtain the optimal NIR and red wavebands. We initially set the NIR waveband 

705 nm and then selected the optimal red region waveband (which we set from 620 nm 

to 680 nm) based on the highest r value. Fig. 4.4a shows that 666 nm was the optimal red 

waveband with a r value of 0.43. After fixing the optimal red waveband, we selected the 

optimal NIR region waveband, which we set from 680 nm to 740 nm. As shown in Fig. 

4.4b, we selected 693 nm was selected as the best NIR waveband with a r value of 0.63. 

Fig. 4.5b shows a linear relationship between the reflectance ratios of 693 nm and 666 

nm and measured Chl-a, with a R2 of 0.39. 

 

 
Figure 4.4. Selected wavebands for near-infrared/red algorithm using the tuning method. 
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Figure 4.5. Relationship between observed chlorophyll a (Chl-a) concentration and near-

infrared/red reflectance ratio, (a) Ratio of R(705) to R(670); (b) Ratio of R(693) to R(666). 

 

4.3.3. ISE-PLS calibration and validation 

 

Table 4.3 summarizes ISE-PLS calibration and validation results using RL and FDR 

for Chl-a retrieval. As Table 4.3 shows, ISE-PLS had the same R2 values (0.83 for both 

RL and FDR) and slightly different RMSE values (1.29 for RL and 1.28 for FDR) for 

calibration. We also found that ISE-PLS using both datasets had better Chl-a retrieval 

performance than other algorithms, which was indicated by R2 (0.77 for RL and 0.78 for 

FDR) and RPD (2.10 for RL and 2.13 for FDR) values in the validation results. ISE-PLS 

using FDR performed marginally better than ISE-PLS using RL because of the higher R2 

and RPD and lower RMSE (1.47 for RL and 1.45 for FDR) values for validation. Figures 

4.6a and 4.6c show validation plots for ISE-PLS using RL and FDR, respectively. Both 

figures show a close linear relationship between predicted and observed Chl-a with the 

exception of a few scatter points.  

Because of the iterative stepwise elimination function, we selected the optimal 

wavebands using ISE-PLS for both RL and FDR datasets based on the lowest RMSE for 
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validation, as shown in Figs. 4.6b 4.6d. Selected wavebands for RL ranged from 495 to 

496 nm (Perez et al., 2007), 589 to 593 nm (Sasaki et al., 2008), and 660 to 667 nm 

(Dall'Olmo et al., 2005), which had been proven related to phytoplankton absorption, 544 

to 549 nm (Perez et al., 2007), and 689 to 696 nm (Dall’Olmo and Gitelson, 2005), which 

indicated relationship with Chl-a fluorescence, and 730 nm which is also sometimes used 

for Chl-a retrieval (Dall'Olmo et al., 2005). We selected a total of 30 (6%) informative 

wavebands from all 501 wavebands. And for FDR, we selected 10 (2%) informative 

wavebands from all 501 wavebands. 

 

 
Figure 4.6. Relationship between observed and predicted chlorophyll a (Chl-a) (a) water-

leaving reflectance (RL); (c) first derivative reflectance (FDR), and selected wavebands 
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by iterative stepwise elimination partial least squares (ISE-PLS) for Chl-a retrieval (b) 

RL; (d) FDR. 

 
Table 4.3. The coefficient of determination (R2) and root mean square error (RMSE) for 

calibration of iterative stepwise elimination partial least squares (ISE-PLS) and leave-

one-out (LOO) cross-validation using the entire dataset (N = 59), with residual predictive 

deviation (RPD), number of wavebands, and percent ratio in the full spectrum (i = 501). 

Dataset N 

 Calibration  Validation 
Number of 

selected 
wavebands 

Percentage 
of selected 
wavebands 

(%) 

 NLV R2 RMSE  R2 RMSE RPD 

RL 59  6 0.83 1.29  0.77 1.47 2.1 30 6.0  
FDR 59  4 0.83 1.28  0.78 1.45 2.13 10 2.0  

N, number of samples; NLV, number of latent variables; RL, water-leaving reflectance; 

FDR, first derivative reflectance. 

 

4.4. Discussion 

4.4.1. Semi-analytical algorithms for each station 

 

Remote sensing methods for retrieving water quality parameters contain spatial and 

temporal variations because the water body components that affect reflection properties 

vary in space and time. To further clarify the most fitted Chl-a retrieval method in the 

research area, we analysed algorithms using a separated dataset of six stations. Fig. 4.7 

shows the RL and average RL of each station for the research period. As we can see, the 

average RL of each station shows little difference those of the others. Especially at station 

4 (Fig. 4.7d), there is an obvious reflectance peak around 580 nm, which is a result of 

minimum absorption by all pigments (Yacobi et al., 2011). Fig. 1.2 shows that station 4 

is near a river, which could bring various nutrients from land to the coastal area. 
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Consequently, the highest max Chl-a and SD values were obtained at station 4, as shown 

in Table 4.1.  

 

 

Figure 4.7. Water-leaving reflectance (RL) spectra with the spectra average (blue line) for 

each station ((a) to (f) are stations 1 to 6 in turn). 

 

We analysed regressions using all possible band ratios in the 400 to 900 nm range 

and analysed Chl-a concentration for each station, as shown in Fig. 4.8. Two-dimensional 
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correlograms indicate the R2 distribution for all band ratios (250,000 combinations). The 

yellow regions indicate high R2 values for calibration between band ratios and Chl-a 

concentration, with most figures indicating that high R2 values appear in the NIR and red 

regions (near 680–710 nm) and green region (near 500–600 nm). However, Fig. 4.8a 

shows no correlation between NIR/red ratio and Chl-a concentration, which may indicate 

that the NIR/red ratio doesn’t fit for water areas with lower and narrower Chl-a 

concentration ranges, as indicated the lowest mean and SD values shown in Table 4.1, 

which is consistent with a previous study on band ratio analysis (Han and Rundquitst, 

1997). 
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Figure 4.8. Two-dimensional R2 distributions obtained through sequential regressions 

using all band ratios and chlorophyll a (Chl-a) concentrations for each station ((a) to (f) 

are stations 1 to 6 in turn). 

 

We conducted calibrations between the three-band algorithm and Chl-a 

concentration at each station, the results of which are shown in Fig. 4.9. We selected three 

optimal wavebands using a tuning method before conducting calibration for each station. 

It is apparent that station 4 performed better than other stations (1, 2, and 3) with the same 

dataset number (N = 12), with a R2 value of 0.66, using wavebands of 674, 705, and 750 

nm. However, we obtained a poor R2 at station 1, which had the lowest Chl-a 
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concentration in this study, using wavebands of 664, 689, and 750 nm. These results may 

indicate that the three-band algorithm performs well in water with relatively higher Chl-

a concentrations, which is consistent with several previous studies (Dall’Olmo et al., 

2003; Song et al., 2013). Figures 4.9e and 4.9f also showed better R2 values (0.63 at 

station 5 and 0.81 at station 6) with calibration between the three-band algorithm and Chl-

a concentration. This provides a possibility of using the three-band algorithm to estimate 

Chl-a in these areas; nevertheless, a shortness of data (N = 6 at station 5, N = 5 at station 

6) may also provide uncertainty to the results. 
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Figure 4.9. Calibrations between the three-band model algorithm and chlorophyll a (Chl-

a) concentrations ((a) to (f) are stations 1 to 6 in turn). 
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4.4.2. ISE-PLS performance 

 

ISE-PLS using both RL and FDR performed better than other algorithms, including 

the OC, three-band model, and NIR/red two-band model algorithms, with all possible 

band ratios indicated by higher R2 values. In addition, ISE-PLS using FDR performed 

better than ISE-PLS using RL as indicated by higher R2 and RPD values and lower RMSE 

for validation. This may have resulted from derivative analysis reducing random noise 

and removing the effects of suspended matter on Chl-a concentration estimates (Song et 

al., 2013). Because station 4 may have been affected by river nutrients, we carried out 

ISE-PLS regressions using the RL dataset except for at station 4 to decrease the impact of 

different water types. Fig. 4.10 shows the validation plot between observed and predicted 

Chl-a, which was obtained using the LOO method in the ISE-PLS regression. As we can 

see, the maximum Chl-a concentration (from 14.33 to 8.74 μg/L) decreased after 

removing the station 4 dataset. Results shows a close linear relationship between observed 

and predicted Chl-a; however, compared to the R2 value (0.77) obtained by ISE-PLS 

validation using all datasets (N = 59), a relatively lower R2 value (0.72) was obtained 

using the datasets except station 4 (N = 47), which may indicate that ISE-PLS performed 

better in water areas with a wide range of Chl-a concentrations.  
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Figure 4.10. Validation of iterative stepwise elimination partial least squares (ISE-PLS) 

method using lower chlorophyll a (Chl-a) concentration dataset (station 4 not included). 

 

4.5. Conclusions 

 

In this study, we developed various models for estimating water Chl-a concentration 

in the Seto Inland Sea, including ISE-PLS using both RL and FDR and other methods 

such as OC, three-band model, and two-band model algorithms. Our results showed that 

the ISE-PLS method is effective for predicting Chl-a concentration in the Seto Inland Sea 

using in situ measured spectral data. With a higher prediction accuracy, ISE-PLS also 

selects important wavebands that match previously published studies. Additionally, ISE-

PLS using FDR is marginally enhanced compared to using RL for Chl-a retrieval. 

However, OC algorithms are not robust in this present study, and three-band and two-

band model algorithms did not perform well in water areas with lower Chl-a 

concentration. Our results also indicate that the ISE-PLS method can perform better when 

used in water areas with a wide range of Chl-a concentrations. These results provide 

potential insights into coastal water quality assessment by using a Chl-a estimation 

method with hyperspectral measurements. 
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Chapter 5: Development of new salinity algorithm in the Seto 

Inland Sea using simple bio-optical method 

5.1 Introduction 

 

The Seto Inland Sea is a semi-enclosed coastal sea in Japan. It is well known as one 

of the world’s most productive treasury of fishery stocks due to the variety of fish species 

and their abundance (Hashimoto et al., 1997). There are about 35 million people live 

around this sea, basing on this, the Seto Inland Sea is also one of the most industrialized 

regions in Japan (Yoshie et al., 2011). The marine ecological environment inevitably 

affected by human activities. To assessment the sea water quality efficiently, which is 

important for management fishery industry, several researches have been conducted 

mainly using chlorophyll-a (Chl-a) (e.g., Komorita et al., 2016; Nishijima et al., 2016; 

Kimura et al., 2001). Sea surface salinity (SSS) is one of the key variables for monitoring 

and modeling ocean circulation (Berger et al., 2002), furthermore, it is one of the prime 

determinants of the environment in which fish and other marine life live (Marghany, 

2010). 

Colored dissolved organic matter (CDOM) is an important optical component of 

marine and fresh water (Bowers & Brett, 2008). The concentration of CDOM can be 

obtained by a multi-componential based bio-optical model, which depends on the inherent 

optical properties (IOPs) in local sea water. Sugihara et al. (1985) proposed a bio-optical 

model in the Tokyo bay which was fitted for the water quality parameters retrieval. 

Besides, a number of previous researches have shown the CDOM absorption coefficient 
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at 440 nm (ay(440)) is often inversely correlated with salinity with a linear correlation 

(e.g., McKee et al., 1999; Siddorn et al., 2001; Bowers et al., 2000). This proves that 

CDOM can be used as a proxy for SSS. However, this finding has not been validated 

when ay(440) as a proxy for model building such as bio-optical model by previous 

researches. 

In this study, we made the sea water parameters reversion by combining the bio-

optical model and the feature which salinity is linearly correlated with CDOM. Results 

were validated by estimated ay(440) and in situ SSS. 

The objective of this study is to test the applicability of ay(440) as a proxy for SSS; 

Furthermore, to establish the model for estimating SSS using in situ reflectance and water 

quality datasets from FY2015 to FY2016. 

 

5.2 Materials and methods 

5.2.1 Study area 

 

The research sites locations are shown in Fig. 1.2. Six sites were selected from the 

center part of Seto Inland Sea near Fukuyama city. 

 

5.2.2. Data acquisition and preprocessing 

 

For in situ survey, in total of six times surveys were conducted during December 16, 

2015 and December 21, 2016 by using a ship, from which 32 datasets were obtained in 

six sites except for 4 datasets didn’t be obtained due to the weather condition. Water 

surface reflectance measurements were carried out using a portable MS-720 
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spectroradiometer ((EKO Instruments, Tokyo, Japan) with spectral range of 350–1050 

nm coupled with data exporting software. The spectral readings were done by 

approximately 1 m above water surface between 9:00 and 11:00. Chl-a and SSS were 

measured using CTD instrument just under surface water. The statistics for Chl-a and SSS 

are shown in Table 5.1. 

 

Table 5.1. Descriptive statistics of Chl-a and SSS 
  Chl-a (μg/L) SSS (psu) 

Min 1.39  29.48  
Max 23.34  32.80  

Average 6.74  31.17  
N 32  32  

 

For the spectral data, the marginal ranges 350–399 nm and 901–1050 nm from each 

spectrum were removed due to noise. After that, the spectral data was smoothed using 

Savitzky-Golay method with 15 smoothing points. The reflectance spectra from all data 

and an average spectrum are shown in Fig. 5.1. 

 

 
Figure 5.1. Reflectance spectra for all data (N=32) 
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5.2.3. Bio-Optical model 

 

According to Oyama et al. (2009), the radiance reflectance R(λ) is represented by the 

following equation, 

(ߣ)ܴ = (5.1) (ߣ)௦ܴߨ

where Rrs(λ) is remote sensing reflectance at the wavelength λ just above the water, which 

usually obtained by satellite sensor or other instruments is used to predict the water 

quality parameters. The ܴ௦(ߣ) is also given by 

ܴ௦(ߣ) = 0.52 ∗ 1)/(ߣ)௦ݎ − 1.7 ∗ (5.2) ((ߣ)௦ݎ

(ߣ)௦ݎ = 0.33 ∗ ܾ(ߣ)/ܽ(ߣ) (5.3)

where bb(λ) is the total backscattering coefficient and a(λ) is the total absorption 

coefficient of the sea water. Sugihara et al. (1985) proposed the a(λ) equation based on 

the Tokyo bay sea water characteristics, which can be expressed as below, 

ܽ() = ܽ௪() + ܽ()[ܥℎ݈_ܽ] + ܽ௬()exp {−ܵ( − )} (5.4)

ܾ() = ܾ௪()/2 + ܤ  (5.5)

where ܽ௪()  is the absorption coefficient of pure sea water, ac(λ) is the specific 

absorption coefficient of Chl-a, ay(λ0) is the absorption coefficient of CDOM at 

wavelength λ0, the λ0 equal to 440 nm and the spectral slope S has been calculated as 0.014 

nm-1 (Lahet et al., 2000). ܾ௪() is the scattering coefficient of pure sea water and ܤ is 

the backscattering coefficient of particles. Combining the above equations, we can get the 

relation as follows,  

ܴ௦(ߣ) =
0.33

ߨ
∗

ܾ௪(ߣ)/2 + ܤ

ܽ௪(ߣ) + ܽ(ߣ)[ܥℎ݈_ܽ] + ܽ௬(ߣ)݁ߣ)ܵ−}ݔ − {(ߣ
 (5.5)
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if we introduce the X as the coefficients, the following equation can be obtained, 

ଵܺ[ܥℎ݈_ܽ] + ܺଶൣܤ൧ + ܺଷ[ܽ௬(440)] = ܻ (5.6)

where   

ଵܺ = ܴ௦(ߣ)ܽ(ߣ)/ߨ 

ܺଶ =  ߨ/0.33−

ܺଷ = ܴ௦(ߣ)݁ߣ)0.014−} ݔ −  ߨ/{(440

ܻ = 0.33 ∗ ܾ௪(ߣ)ߨ2 − ܽ௪(ߣ)ܴ௦(ߣ)/ߨ 

when we obtain corrected Rrs data beyond 3 bands, it will be possible to retrieve the three 

unknown parameters Chl-a, Bp and ay440 at the same time to solve a simultaneous linear 

equation. For the equation computation, the aw(λ), bw(λ) and ac(λ) are needed, in this study, 

the three coefficients were obtained from Pope and Fry (1997), Morel (1974), and Smith 

and Baker (1987), respectively. The parameters for equation computation are shown in 

Table 5.2. 

Table 5.2. Parameters for equation computation 

wavelength (nm) aw ac bw 
600 0.2224 0.06 0.000762 
680 0.465 0.08 0.000444 
700 0.624 0.02 0.000392 

 

 

Figure 5.2. Correlation between reflectance and Chl-a and SSS 
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Figure 5.3. R2 distribution using two wavebands ratio (all datasets (N=32) for Chl-a (a) 

and SSS (b); winter datasets (N=15) for Chl-a (c) and SSS (d)). 

 

5.3. Results and discussion 

5.3.1. Correlations analysis 

 

In this study, linear correlation analysis was undertaken between water quality 

parameters and surface reflectance at each wavelength. As we can see from Fig. 5.2, Chl-

a has a proportional relation with each waveband, while SSS shows inversely relation 

with wavebands. The absolute value of both correlation coefficient is not satisfactory, but 

we can still find several higher correlated wavebands (e.g., around 600 nm and 700 nm) 

both for Chl-a and SSS. As a consequence, the reflectance from 600nm and 700nm were 

selected in the bio-optical model, as shown in Table 5.2. 
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The algorithm of waveband ratio is widely used for water Chl-a retrieval, in this 

study, we performed the ratio algorithm both for Chl-a and SSS, the results are shown in 

Fig. 5.3. The 2-D correlograms represent the distribution of R2 which obtained by 

sequential regression of all possible reflectance ratios in the spectral of 400–900 nm. 

Results show that the R2 for winter season (N=15) have an obviously improvement both 

for Chl-a and SSS compared with all year datasets (N=32), the higher value areas (i.e., 

white spots) are corresponded to red (around 600 nm) and blue (around 450 nm) 

wavelength both for Chl-a and SSS.  

 

5.3.2. Validation 

 

The relationship between in situ measured SSS and the estimated ay(440) are shown 

in Fig. 5.4. The validation using datasets from winter season were compared with the 

validation using all datasets. As we can see, estimated ay(440) has an inversely 

relationship with in situ SSS  for both datasets, this finding is in accordance with 

previous study which conducted by Bowers et al. (2000). However, the R2 calculated from 

all datasets is not a satisfactory value (R2=0.45), which means the predicted ay(440) may 

not be suitable for the SSS prediction in all year. It is encouraging that the datasets for 

winter season has an enhanced R2 value (R2=0.66) for the relationship between estimated 

ay(440) and in situ SSS, the result is in coincident with the correlation results by ratio 

algorithm, which may indicate that the seasonal variable water components can impact 

the prediction using bio-optical model. This problem can be solved by the sea water 

components variation investigation and corrected IOPs selection with regard to different 
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time. Above all, the results indicates the ay(440) is potential for SSS prediction using bio-

optical model, furthermore, building the predictive model for SSS in Seto Inland Sea.  

 

 
Figure 5.4. Relationship between the measured SSS and the estimated ay(440) (using all 

datasets N=32 (a) and datasets from winter N=15 (b)). 

 

5.4. Conclusion 

 

The present study developed the model based on the CDOM absorption coefficient 

in 440 nm for estimating SSS concentration in Seto Inland Sea. Our results showed that 

the ay(440) is a valuable parameter which can be used for modeling to estimate SSS; The 

bio-optical model can be used in Seto Inland Sea for water quality estimation. These 

results provide useful insights for future analyses on the assessment of sea water quality, 

especially when using satellite imagery. 
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Chapter 6: Validation and modification of new salinity 

algorithm in the Seto Inland Sea using simple bio-optical 

method  

6.1. Introduction 

 

Coastal area is extremely important for the aquaculture such as oysters, shrimp 

fisheries, which is helpful for the global food shortage. Japan is one of the world’s most 

important consumers of fishery products, and with a coastline of 29,751 km, Japan is also 

one of the largest fishery factories. A combination of warm and cold currents flows along 

the coastal area, creating one of the most abundant fishing grounds in the world (FAO, 

2009). Cultivation of lavor is one of the most important aquaculture industries in Japan. 

However, color fading in recent years has become a problem in various areas such as the 

Ariake Sea, the Seto Inland Sea, Ise Bay, Mikawa Bay and Tokyo Bay. The main reason 

of color fading is lack of nutrient salt. Specifically, Dissolved Inorganic Phosphate (DIP) 

is said to be lacking in Tokyo Bay, Dissolved Inorganic Nitrogen, inorganic nitrogen 

concentration (DIN) in the Seto Inland Sea and Mikawa Bay is said to be insufficie. 

Therefore, the observation of DIP and DIN is the most important subject as a survey item 

for "discoloration" countermeasures. However, it generally takes time and effort to 

measure nutrient salt, and the on-site type sensor is expensive (several million yen or 

more), which is unsuitable for planar observation. On the other hand, recent studies have 

revealed that in the Seto Inland Sea, salinity and DIN have a very high negative 

correlation between January and February at the age of aquaculture．This is due to the 
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fact that DIN supplied from rivers exists more in low salt waters. In addition, it has been 

found that colored dissolved organic matter (CDOM) and its associated salt can be 

detected in a noncontact manner by strong light absorption of water containing organic 

matter flowing out of a river to ultraviolet to blue (Binding & Bower ,2003; Qing et al, 

2013)． 

In the field of remote sensing, there have been few studies in which coastal nutrients 

have been contactlessly observed. This is because nutrient salts themselves can’t be 

colored with water even at high concentrations, so it is basically difficult to measure with 

optical sensors. Salinity estimation by RS technology has recently been launched by 

satellites such as SMOS (Europe) and Aquarius (USA) which measure oceanic salinity 

with microwaves at a resolution of about 50 to 100 km, but at the present time, the only 

technique to measure is to apply the optical method used in the CDOM product of the 

ocean color sensor. This method utilizes the relationship between light absorption (g 440) 

and CDOM or "Gelbstoff" and the salt content, and the relationship with reflectance is 

theoretical by Bowers et al. (2000). In this method, the property of exponentially 

absorbing the light in the blue to ultraviolet range is utilized as the CDOM concentration 

increases. As it is known that the concentration of CDOM in terrestrial water is highly 

negative correlated with salinity in the estuary area, salinity can be estimated by RS 

technique as a result (Kowalczuk et al. 2006). However, this technology has only been 

tried in some sea areas such as the Baltic Sea, and case studies are overwhelmingly 

deficient. In addition, the model is mostly a simple model using two wavelength ratios. 

On the other hand, the satellite ocean color sensor, GCOM-C SGLI developed in 

Japan was launched in December 2017 and is currently checking the data for one year. 

This satellite sensor has a 250 m resolution capable of estimating the water quality of 
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more complex coastal areas where there are lavor farms and has the ability to monitor 

coastal water quality (Chl-a and SS) in the observation cycle of 2-3 days have. However, 

salinity products have not been studied yet. Therefore, in this study, the salinity estimation 

method was examined by using a linear Bio-optical model, which is somewhat 

complicated than the non-arithmetic algorithm, for salinity estimation using the SGLI 

band immediately before SGLI stationary operation. 

 

6.2. Materials and Methods 

6.2.1. Overview of GCOM-C/SGLI 

 

The SGLI is the name of "multi-wavelength optical radiometer" mounted on the 

GCOM-C satellite. SGLI is a successor sensor of the global imager (GLI) mounted on 

ADEOS II, and performs multiband observation from near ultraviolet to thermal infrared 

region (380 nm to 12 μm). The observation width is 1150 km, the quantization is 12 bits, 

the observation period is 2 days at mid latitude (around 35 °), and it is within 3 days even 

at low latitude. The main characteristic of SGLI as an ocean observation satellite is high 

spatial resolution compared with the conventional ocean color sensor of 250 m spatial 

resolution. The observation band of SGLI (only the non-polarized part) is shown in Table 

6.1.In this study, six visible bands of VN 2 to VN 7, which can be compared with effective 

spectroscopic measurement data, were targeted. The selected wavelength range almost 

agrees with the MODIS sensor of 1 km resolution. 
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Table 6.1. Specification of GCOM-C/SGLI 

Channel 
Band center Band width IFOV 

(nm) (nm) (m) 
VN1 380 10 250 
VN2 412 10 250 
VN3 443 10 250 
VN4 490 10 250 
VN5 530 20 250 
VN6 565 20 250 

VN7/8 674 20 250 
VN9 763 12 250/1000 

VN10/11 869 20 250 

 

6.2.2. Salinity estimation algorithm for coastal waters 

6.2.2.1. Two-band model 

 

Salinity estimation algorithm of coastal area by optical remote sensing is generally 

estimated through absorption coefficient of dissolved organic substance Gelbstoff (also 

called yellow substance, Gilvin, CDOM etc) contained in water. Specifically, it is known 

that the absorption coefficient (݃ସସ) of Gelbstoff at 440 nm in coastal water has a high 

correlation with salinity (Sal) (Bowers, 2000; Binding & Bower ,2003)． 

݃ସସ ∝ ݈ܵܽ (6.1)

Therefore, the salinity can be estimated if the ݃ସସ  can be estimated from the 

reflectance observed by the satellite． 

On the other hand, the remote sensing reflection factor R - right under the water 

surface is represented by the following model. 

(ߣ)ିܴ =
(ߣ)௨ܮ
(ߣ)ௗܧ

∝
ܾ(ߣ)
(ߣ)ܽ

 (6.2)
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where Lu is the upward radiance, Ed is the downward irradiance, a is the total absorption 

coefficient, b is the total scattering coefficient, and γ is a constant. Of these, a and b are 

further formulated as follows. 

ܽ() = ܽ௪() + ܽ௦()[ܥℎ݈_ܽ] + ܽ௦()[ܵܵܯ] + ܽ௬௦()[݃ସସ] (6.3)

ܽ௬௦() = exp (−ܵ( − )) (6.4)ߣ

ܾ() = ܾ௪() + ܾ௦()[ܥℎ݈_ܽ] + ܾ()[ܵܵܯ] (6.5)

where aw is the absorption coefficient of pure water, and aps, ams, and ays are the specific 

absorption coefficients of [Chl_a], [MSS], and [g440], respectively. Also, S is a constant, 

λ is a wavelength, λ0 is a fundamental wavelength (often 440 nm is used for salinity 

estimation). Furthermore, bw is the scattering coefficient of pure water, bbps, bbms are the 

specific scattering coefficients of [Chl_a] and [MSS], respectively. If the scattering 

coefficient b is much smaller than a and the following relationship holds, the reflectance 

ratio of two wavelengths (1, 2) is expressed as follows. 

ܴଵ

ܴଶ
= ߛ ൬

ܽଶ

ܽଵ
൰ = ߛ ቆ

ܽ௪ଶ + ܽ௦ଶ[ܥℎ݈_ܽ] + ܽ௬௦ଶ[݃ସସ]
ܽ௪ଵ + ܽ௦ଵ[ܥℎ݈_ܽ] + ܽ௬௦ଵ[݃ସସ]ቇ (6.6)

When you select a red band (red) without absorption of yellow substance for wavelength 

1, ays=0, so equation (6.6) is changed to the following equation. 

ܴௗ

ܴଶ
= ߛ ቆ

ܽ௪ଶ + ܽ௦ଶ[ܥℎ݈_ܽ] + ܽ௬௦ଶ[݃ସସ]
ܽ௪(ௗ) + ܽ௦(ௗ)[ܥℎ݈_ܽ] ቇ (6.7)

Solving for g440 used for salinity estimation using equation (6.7) yields the following 

equation: 

݃ସସ = ቆ
ܽ௪(ௗ) + ܽ௦(ௗ)[ܥℎ݈_ܽ]

ܽ௬௦ଶߛ
ቇ ൬

ܴௗ

ܴଶ
൰ −

ܽ௪ଶ + ܽ௦ଶ

ܽ௬௦ଶ
 (6.8)
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In equation (6.8), assuming that aw (red) is significantly larger than aps (red) and assuming 

that aps2 is significantly larger than aw2, it can be expressed by the following equation. 

݃ସସ = ቆ
ܽ௪(ௗ)

ܽ௬ଶߛ
ቇ ൬

ܴௗ

ܴଶ
൰ − ቆ

ܽ௦ଶ

ܽ௬௦ଶ
ቇ (6.9)

Finally, we developed a simple regression model that estimates salinity from reflectance 

ratios of the following two wavelengths using equation (6.1) and equation (6.9) as follows. 

݈ܵܽ = ߙ ൬
ܴௗ

ܴଶ
൰ + (6.10) ߚ

here, α and β are regression constants obtained by regression. In addition, red band of 

wavelength 1 is around 665 to 670 nm and wavelength 2 is around 412 to 555 nm (Bowers, 

2000; Binding & Bower ,2003)． 

 

6.2.2.2. Linear bio-optical model 

 

Apart from the above-described two-band model, a technique for obtaining Chla and 

g440 from multiple wavelengths called Linear Matrix Inversion Method (MIM) has been 

tried in various places although it is not for salinity estimation. Here we consider a model 

that estimates salinity by applying this MIM developed by Sugihara et al. (1983) in Tokyo 

Bay, Japan.  

ܴா
(ߣ)ି =

(ߣ)௨ܧ
(ߣ)ௗܧ

= 0.33
ܾ(ߣ)
(ߣ)ܽ

 (6.11)

ܽ() = ܽ௪() + ܽ௦()[ܥℎ݈_ܽ] + ܽ௬௦()[݃ଷ଼] (6.12)

ܽ௬௦() = exp (−0.0167( − 380)) (6.13)
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ܾ() =
ܾ௪()

2
+ [ܾ] (6.14)

ܴா
(ߣ)ି = 0.33

0.5ܾ௪(ߣ) + [ܾ]
ܽ௪(ߣ) + (ߣ)௦ܽ[ܽ_ℎ݈ܥ] + [݃ଷ଼]݁ߣ)0.0167−}ݔ − 380)} (6.15)

Further, the equation (6.15) is transformed into the form of a linear equation as follows. 

ଵܺ[ܥℎ݈_ܽ] + ܺଶൣܾ൧ + ܺଷ[݃ଷ଼] = ܻ (6.16)

ଵܺ = ܴா
(6.17) (ߣ)௦ܽ(ߣ)ି

ܺଶ = −0.33 (6.18)

ܺଷ = 0.33/2ܴா
(6.19) (ߣ)ି

Since the unknowns are three parameters of [Chl_a], [bp], and [g380], if ܴா
ି of three or 

more wavelengths can be obtained, from the equations (16) to (19), using the least squares 

method. Assuming that there is a relationship such as equation (1) between g380 and 

salinity obtained in this manner, salinity can be estimated from the reflectance of multiple 

bands of three bands or more finally. 

݈ܵܽ ∝ ݃ଷ଼ (6.20)

However, in this case, aw, aps, bw are used as shown in Table 6.2, of which aw is the value 

of Pope and Fry (1997) and aps is the expression of Lee et al. (1998) (This time it was 

fixed as the average Chl-a as 5 mg/m3), bbw is calculated by Morel (1974). 

 

Table 6.2. IOPs for SGLI band 
wavelength 

(nm) 
412 443 490 530 565 674 

aw 0.0047 0.0072 0.015 0.0434 0.0657 0.4494 

apｓ 0.0687 0.068 0.0463 0.0305 0.0174 0.0326 

bw 0.0039 0.0028 0.0018 0.0013 0.001 0.0005 
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6.2.3. Rrs / Chl-a data set 

 

During the period from May 13, 2014 to October 14, 2016, at the 6 stations (Stn.1 

to Stn.6) of the Seto Inland Sea off Fukuyama in Hiroshima Prefecture shown in Fig. 1.2, 

Chl-a salt and spectral reflectance of December 16, 2015, January 13, 2016, March 22, 

June 14, October 13, December 21) were carried out. The Chl-a used for the calculation, 

the salinity is the data of the water depth 0 m. For the measurement, Cyclops-7 

manufactured by Turner designs and DS-5 manufactured by Hydrolab were used, 

respectively. For spectral reflectance measurement, a portable spectroradiometer MS 720 

(EKO Ltd.) was used. The MS 720 has the capability to measure the irradiance (Wm -2 

μm) at a wavelength of 350 to 1050 nm at a step of 3.3 nm. The spectral irradiance on the 

water surface directly above the water surface and the spectral irradiance of the solar 

radiation reflected from the white plate Labsphere were measured three times and 

averaged. The obtained data was converted to irradiance data of 1 nm step using the 

attached software (MS 720_x 64.Exe). Remote sensing reflectance Rrs (sr-1) was 

calculated by referring to the method of Oyama et al.(2009), Calculating the ratio of the 

average values and then dividing by the pi.  

In addition, due to factors such as the rapid tidal current and the structure of the ship, 

we could not measure the spectral reflectance considering the positional relationship of 

ships, instruments, and sun to mitigate the influence of surface reflection. 

Therefore, after-processing to alleviate the influence of water reflection light was 

carried out. As a simple glint correction process of coastal water, there is a method of 

Kutser et al (2013). Basically, this method subtracts the baseline corresponding to the 

glint on the assumption that the reflectance of ultraviolet (350-380 nm) and near infrared 
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(890-900 nm) is 0. However, the Rrs data of this time has large unexplained noise at 

ultraviolet and near infrared wavelengths, and when this method is adopted, a lot of data 

are calculated as negative. Therefore, this time, only a simple offset correction with 0 as 

the minimum value of 700 to 800 nm in each data was performed. Fig. 6.1 shows the 

spectral reflectance characteristics of Rrs before and after offset correction. 

On the other hand, since the offset corrected spectral reflectance is Rrs above the 

water surface, it can’t be compared with the values of the equations (6.2) and (6.11), 

which are reflectance immediately below the water surface calculated by the model. 

Therefore, in this study, we compared each data by dividing the expression of Lee et al. 

(1999) which formulated as equations (6.21) and (6.22). 

ܴି =
௨ܮ

ௗܧ
=

ܴ௦

0.52 + 1.7ܴ௦
 (6.21)

ܴா
ି =

௨ܧ

ௗܧ
= (6.22) ߨ/ିܴ

 

 
Figure 6.1. Characteristic of measured spectral reflectance. (a) Before the offset 

correction, (b) After the offset correction. 
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6.3. Results and Discussion 

6.3.1. Two-band model 

 

Fig. 6.2 shows the SSS estimation result by the two-band model shown by the 

equation (6.10). There was no significant correlation between Type A and Type B. 

However, a completely different relationship was shown between Type A and Type B data 

areas (open circles in the figure). This was thought to be due to the difference in the 

spectral characteristics of the Rrs data of both. Therefore, it seems to be effective to 

analyze the type of both (Type A and Type B) separately. However, unless both types are 

distinguished automatically, it is not a practical body. When spectral characteristics of 

both were visually confirmed, the shapes at 412 nm, 443 nm, and 490 nm differed between 

Type A and Type B. For this reason, as shown in Fig. 6.3, the slopes of these two 

wavelengths were compared. As a result, two different type of dataset are obviously 

separated in Fig. 6.3a. This result shows that Type A and Type B can be separated using 

a scatter diagram of "Slope of Rrs at 412 nm and 443 nm" and "Slope at 443 nm and 490 

nm". 
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Figure 6.2. Relationship between two band ratio model and SSS. (a) Rrs(674)/Rrs(412) vs 

SSS, (b) Rrs(674)/Rrs(443) vs SSS, (c) Rrs(674)/Rrs(490) vs SSS, (d) Rrs(674)/Rrs(443) vs 

SSS, (e) Rrs(674)/Rrs(565) vs SSS 

 

 
Figure 6.3. Scatter diagram of slope for separation between Type A and Type B. (a) 

Rrs(412)/Rrs(443) vs Rrs(443)/Rrs(490), (b) Rrs(412)/Rrs(443) vs Rrs(490)/Rrs(530), (c) 

Rrs(443)/Rrs(490) vs Rrs(490)/Rrs(530). 
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6.3.2. Linear Bio-optical Model 

 

The relationship between estimated Chl-a from bio-optical model and observed Chl-

a is shown in Fig. 6.4a, the estimated Chl-a has a linear relationship with observed Chl-

a both for Type A and Type B dataset (R2 = 0.69 for Type A and R2 = 0.76 for Type B). 

This result indicate Chl-a can be estimated by the bio-optical model with SGLI bands. 

Fig. 6.4b shows the relationship between estimated g380 and observed SSS, the estimated 

g380 also shows linear relationship and observed SSS for both type of dataset (R2 = 0.43 

for Type A and R2 = 0.64 for Type B), which shows the potential of bio-optical model 

with SGLI bands to estimate SSS in the Seto Inland Sea. 

 

 
Figure 6.4. Correlation between Estimated value and Observed value under Type A and 

Type B conditions. (a) Estimated Chl-a and observed Chl-a, (b) Estimated g380 and 

observed SSS. 

 

However, the black dots and circles from Fig. 6.4b are more incompact than that of 

Fig. 6.4a, which indicate the accuracy for SSS estimation using bio-optical model with 
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SGLI bands is no better than Chl-a estimation. In addition, the accuracy for SSS 

estimation for Type A dataset is no better than Type B dataset. 

The separation of different type dataset is a useful way to discuss the estimation for 

parameters (i.e., Chl-a and SSS) using complex spectral data. Because spectral 

reflectance can be affect by different water components, which makes difference for the 

spectral pattern for different regions. To better understand the relationship between 

modeled Chl-a/SSS and observed Chl-a/SSS, Type A and Type B dataset were combined 

into one figure, as shown in Fig. 6.5. Black dots and circles are close to the 1:1 line, which 

displays the potential predictive ability both for Chl-a and SSS. However, more compact 

black dots and circles reveal in Fig. 6.5a, indicates the model is more robust for Chl-a 

than SSS. 

 

 

Figure 6.5. Scatter diagram of observed and modeled water quality parameters under 

Type A and Type B conditons. (a) Estimated Chl-a and observed Chl-a, (b) Estimated g380 

and observed SSS. 
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6.4. Conclusion 

 

In this study, algorithms for SSS estimation with SGLI bands in the Seto Inland Sea 

were developed, including a two-band ratio and a bio-optical model. Results showed the 

two-band ratio is not a better method for SSS estimation using SGLI bands with a poor 

coefficient of determination. On the contrary, proposed bio-optical model based on SGLI 

bands has a potential predictive ability for SSS estimation in the Seto Inland Sea. In 

addition, the separation method for spectral patterns can be applied for improving the 

accuracy. 
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Chapter 7: Conclusions 

The present study develops models for estimating Chl-a and TSS concentrations in 

irrigation ponds using water surface reflectance spectral data. Results showed that PLS 

regression analysis has high potential for predicting Chl-a and TSS based on field 

hyperspectral measurements, and that ISE wavebands selection in combination with PLS 

regression analysis can enhance predictive ability. Chl-a and TSS concentrations were 

estimated with high accuracy by using ISE-PLS, which explains 98% of the variance for 

Chl-a and 97% of the variance for TSS. The important wavebands for estimating Chl-a 

and TSS using ISE–PLS represented 16.97% and 8.38%, respectively, of all 501 

wavebands over the 400–900 nm range. The selected wavebands approximately match 

the absorption peaks published by previous researchers. Compared to the estimation of 

water quality parameters by satellite sensors such as MODIS, ISE–PLS selected more 

informative wavebands, especially the wavelength at approximately 700 nm. These 

results provide useful insights for future analyses on the assessment of water quality in 

irrigation ponds, especially when using satellite imagery. 

The author also developed various models for estimating water Chl-a concentration 

in the Seto Inland Sea, including ISE-PLS using both RL and FDR and other methods 

such as OC, three-band model, and two-band model algorithms. Results showed that the 

ISE-PLS method is effective for predicting Chl-a concentration in the Seto Inland Sea 

using in situ measured spectral data. With a higher prediction accuracy, ISE-PLS also 

selects important wavebands that match previously published studies. Additionally, ISE-

PLS using FDR is marginally enhanced compared to using RL for Chl-a retrieval. 
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However, OC algorithms are not robust in this present study, and three-band and two-

band model algorithms did not perform well in water areas with lower Chl-a 

concentration. Our results also indicate that the ISE-PLS method can perform better when 

used in water areas with a wide range of Chl-a concentrations. These results provide 

potential insights into coastal water quality assessment by using a Chl-a estimation 

method with hyperspectral measurements. 

The present study developed the model based on the CDOM absorption coefficient 

in 440 nm for estimating SSS concentration in Seto Inland Sea. Results showed that the 

ay(440) is a valuable parameter which can be used for modeling to estimate SSS; The bio-

optical model can be used in Seto Inland Sea for water quality estimation. These results 

provide useful insights for future analyses on the assessment of sea water quality, 

especially when using satellite imagery. 

In addition, algorithms for SSS estimation with SGLI bands in the Seto Inland Sea 

were developed, including a two-band ratio and a bio-optical model. Results showed the 

two-band ratio is not a better method for SSS estimation using SGLI bands with a poor 

coefficient of determination. On the contrary, proposed bio-optical model based on SGLI 

bands has a potential predictive ability for SSS estimation in the Seto Inland Sea. Besides, 

the separation method for spectral patterns can be applied for improving the accuracy. 
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Appendix A. The summary of collected water quality data in irrigation ponds in 

Higashihiroshima, Japan. 

Date Station 
Chl-a 
(μg/L) 

TSS 
(mg/L) 

 Date Station 
Chl-a 
(μg/L) 

TSS 
(mg/L) 

29 Sep, 2013 Stn1 78.6428  10.4  19 Jan, 2014 Stn1 169.5454 26.5 
 Stn2 56.1675  33.2   Stn2 42.7523  15.6 
 Stn3 3.3690  0.5   Stn3 0.8687  0.1 
 Stn4 3.1445  0.6   Stn4 1.6688  0.1 
 Stn5 6.3463  2.6   Stn5 0.9734  2.2 
  Stn6 2.1693  0.7    Stn6 0.1048  0.8 

31 Oct, 2013 Stn1 44.2312  40.7  24 Mar, 2014 Stn1 169.0605 19.2 
 Stn2 51.6339  23.4   Stn2 46.6705  38 
 Stn3 2.2973  1.5   Stn3 2.6385  0.9 
 Stn4 2.9538  0.9   Stn4 0.5793  0.4 
 Stn5 1.7559  4.5   Stn5 1.9775  1.7 
  Stn6 2.5810  1.8    Stn6 0.0000  0.9 

16 Nov, 2013 Stn1 5.6515  8.7  9 Apr, 2014 Stn1 0.5475  1.2 
 Stn2 54.3698  31.7   Stn2 48.5398  33.50  
 Stn3 1.6020  0.8   Stn3 0.6453  0.9 
 Stn4 1.7560  0.3   Stn4 0.6748  0.5 
 Stn5 2.4143  2.9   Stn5 1.2925  1.4 
  Stn6 0.8688  1.6   Stn6 0.6712  1.4 

2 Dec, 2013 Stn1 6.5835  2.8  24 May, 2014 Stn1 11.9524  5.2 
 Stn2 42.8922  20.9   Stn2 37.7392  26 
 Stn3 1.6245  0.1   Stn3 0.8618  1.1 
 Stn4 0.5906  0.6   Stn4 1.0956  1.1 
 Stn5 1.3536  3.3   Stn5 1.6796  1.3 
 Stn6 0.9725  1.8    Stn6 1.7512  0.2 

3 Jan, 2014 Stn1 98.7437  16.8  28 Jun, 2014 Stn1 13.4963  4.80  
 Stn2 21.6265  13.7   Stn2 133.9240 53.00  
 Stn3 0.5053  0.1   Stn3 2.7226  0.80  
 Stn4 1.2877  0.9   Stn4 7.9958  2.50  
 Stn5 1.7007  3.6   Stn5 3.1450  1.20  
  Stn6 0.0862  1.5    Stn6 1.6008  0.30  
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Date Station 
Chl-a 
(μg/L) 

TSS 
(mg/L) 

15 Jul, 2014 Stn1 16.1804  11.80  
 Stn2 157.7630  83.6 
 Stn3 2.4173  0.70  
 Stn4 5.4253  1.80  
 Stn5 1.4901  1.30  
  Stn6 1.9517  2.00  

 

 

Station Pond 
Coordinate 

X 
Coordinate 

Y 

Stn1 Nanatsu-ike 132°41'39" E 34°26'06"N 
Stn2 Shitami-Oike 132°42'22"E 34°24'28"N  
Stn3 Okuda-Oike 132°43'43"E 34°24'25"N  
Stn4 Yamanaka-ike 132°43'12"E 34°24'14"N  
Stn5 Yamanakaike-kamiike 132°43'14"E 34°24'15"N  
Stn6 Budou-ike 132°42'45"E 34°24'02"N  
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Appendix B. The summary of collected water quality data in the Seto Inland Sea, Japan. 

Date Station 
Chl-a 
(μg/L) 

SSS 
(psu) 

SST 
(℃) 

 Date Station 
Chl-a 
(μg/L) 

SSS 
(psu) 

SST 
(℃) 

16 Dec, 2015 Stn1 3.95 31.26 15.4  22 Mar, 2016 Stn1 1.84 32.8 11.69 
 Stn2 5.27 31.28 14.89   Stn2 1.39 30.47 11.54 
 Stn3 5.7 31.48 15.05   Stn3 2.46 31.94 11.04 
 Stn4 13.33 30.75 14.61   Stn4 3.5 31.71 11.24 
 Stn5 3.78 30.51 14.55   Stn5 1.75 32.27 11.26 
 Stn1-2 5.65 31.25 14.93   Stn6 2.99 31.99 11.42 
  Ushinokubi 1 4.16 31.39 14.99  

 Ushinokubi 1 1.04 32.47 12.16 

13 Jan, 2016 Stn1 3.15 32.47 12.97    Ushinokubi 2 2.86 32.45 11.66 
 Stn2 6.72 32.04 11.94  14 Jun, 2016 Stn1 2.38 32.12 20.67 
 Stn3 5.11 31.94 11.72   Stn2 5.49 30.55 21.37 
 Stn4 4.94 30.99 10.95   Stn3 6.11 29.48 22.23 
 Stn5 4.12 32.04 11.74   Stn4 14.33 21.99 23.27 
 Stn6 3.83 31.92 11.83   Stn5 3.73 30.22 22.76 

 Stn1-2 3.83 11.47 12.52    Stn6 5.3 31.08 21.61 

 Ushinokubi 1 7.06 31.91 11.68  
     

  Ushinokubi 2 5.86 31.9 11.69  
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Date Station 
Chl-a 
(μg/L) 

SSS 
(psu) 

SST 
(℃) 

 Date Station 
Chl-a 
(μg/L) 

SSS 
(psu) 

SST 
(℃) 

13 Oct, 2016 Stn1 6.77 30.78 24.65  15 Mar, 2017 Stn1 0.83 33.11 11.1 
 Stn2 11.08 30.55 24.24   Stn2 1.06 32.85 10.72 
 Stn3 17.6 30.09 21.61   Stn3 1.72 32.65 10.43 
 Stn4 16.42 29.78 23.72   Stn4 3.9 31.18 10.27 
 Stn5 23.34 30.13 23.97   Stn5 5.46 32.41 10.22 
  Stn6 12.6 30.26 24.11   Stn6 1.2 32.73 10.24 

21 Dec, 2016 Stn1 3.24 31.86 15.54   Stn1-2 0.73 32.94 10.88 
 Stn2 6.11 31.46 14.44    Stn7 0.53 32.69 10.61 
 Stn3 7.84 30.94 13.65  18 Apr, 2017 Stn1 2.86 32.67 14.1 
  Stn4 13.94 30.34 13.2   Stn2 4.22 32.54 14.08 

18 Jan, 2017 Stn1 3.05 32.35 12.59   Stn3 2.67 32.37 14.01 
 Stn2 6.48 32.12 11.2   Stn4 5.01 30.98 15.09 
 Stn3 5.15 31.98 10.74    Stn5b 5.07 25.38 14.77 
 Stn4 6.22 31.69 10.58       
 Stn5 4.69 32.33 11.61       
 Stn6 8.74 32.19 11.24       
 Stn1-2 12.15 32.31 11.89       

  Stn7 2.76 32.11 11.07       
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Date Station 
Chl-a 
(μg/L) 

SSS 
(psu) 

SST 
(℃)  

Date Station 
Chl-a 
(μg/L) 

SSS 
(psu) 

SST 
(℃) 

16 May, 2017 Stn1 2.83 33.16 16.72  16 Aug, 2017 Stn1 1.64 32.89 27.48 
 Stn2 2.43 32.99 17.11  

 Stn2 1.26 32.61 27.57 
 Stn3 4.66 32.51 17.22  

 Stn3 4.06 32.41 27.14 
 Stn4 7.68 32.2 18.15  

 Stn4 8.82 31.29 28.14 
  Stn5b 5.85 32.37 17.75    Stn5b 2.16 32.47 27.14 

18 Jul, 2017 Stn1 2.82 32.66 23.75  
     

 Stn2 2.22 32.59 24.71  
     

 Stn3 3.65 32.54 24.01  
     

  Stn4 2.31 32.35 24.19       
 

Station Coordinate X Coordinate Y  Station Coordinate X Coordinate Y 

Stn1 133°15' 24'' E 34°19' 44'' N  Ushinokubi 1 133°19' 30" E  34°21' 56" N   
Stn2 133°19' 26'' E 34°20' 31'' N  Ushinokubi 2 133°19' 38" E  34°21' 45" N  
Stn3 133°22' 10'' E 34°21' 51'' N  Stn1-2 133°18' 6" E  34°20' 40" N 
Stn4 133°24' 44'' E 34°24' 37'' N  Stn5b 133°16' 11" E  34°20' 11" N  
Stn5 133°24' 58'' E 34°22' 01'' N  Stn7 133°20' 24" E  34°22' 8" N 

Stn6 133°27' 58'' E 34°23' 38'' N     



 

 
 

 


