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General introduction 

 

1. Introduction 

Since the development of polymerase chain reaction (PCR) (1), 

technologies aimed at the analysis of nucleic acid have drastically improved. 

These are applied in the pathogen detection, food poisoning detection, and 

companion diagnostics (2-4), and they are referred to as nucleic acid 

amplification tests (NATs). NAT has become an indispensable diagnostics 

tools for medical care and food industries, as it can be used to detect targets 

from the trace amounts of DNA or RNA. As one example, to detect herpes 

simplex virus (HSV), which may cause severe diseases, such as HSV 

encephalitis and neonatal HSV infections, only 10 copies of HSV DNA are 

necessary (5). However, to perform NAT, complicated procedures and 

expensive instruments are usually required, which prevents a wider 

application of NATs in the developing countries and smaller institutions, such 

as clinics and quarantine stations, despite the large demand in these fields. 

Especially considering the recent pandemics of emerging and re-emerging 

infectious diseases, the point of care (POC)-testing, referring to the diagnostic 
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on site, has attracted attention due to its high infection control potential (6-

8). It is important for the POC-testing tools to be able to operate easily, output 

results quickly and, perform with inexpensive instruments. However, 

generally NAT requires complex procedures, long time for outputting results 

and expensive devices. 

 

2. Enzyme for nucleic acid amplification 

Basically, NAT consists of amplification and detection procedures. 

Various amplification methods besides PCR have been developed. Some 

methods are characterized as isothermal amplification which proceeding 

amplification reaction without thermal cycling (9-12). These methods are 

suitable for POC-NAT, since just a heat regulator is required for the reaction. 

However, main method for nucleic acid amplification is still PCR, because it 

is easy to make multiplex detection forms (13). 

For the amplification procedure, some enzymes are used as reagents. 

The most important enzyme for PCR is thermostable DNA-dependent DNA 

polymerase which catalyzes DNA synthesis using primer oligonucleotides 

and template DNA. In the previous studies, various thermostable DNA-
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dependent DNA polymerases were developed and now we can select the 

enzymes with specialized performances (14-16).  

DNA-dependent DNA polymerase for PCR is roughly divided to two 

groups, one is family A DNA polymerase derived from thermophilic bacteria 

and the other one is family B DNA polymerase derived from thermophilic 

archaea. There are Taq DNA polymerase and KOD DNA polymerase as 

representatives of each group (14, 16). As common features of these enzymes 

are heat residence property and reacting at high temperature (usually around 

70°C). The enzyme possessing 3′-5′ exonuclease (proof-reading) activity, has 

higher accuracy in DNA synthesis, so application of these enzymes to 

diagnostics are important to high precision testing (15, 16). 

As one of basic derivative methods of PCR, reverse transcript (RT)-

PCR which detects RNA is frequently used (17). RT-PCR has additional 

reverse transcript step which synthesizing DNA from RNA templates before 

PCR step. The method is important, not only for the RNA virus detection, but 

also for the ultra-high sensitivity detection, because some RNA molecules (e.g. 

16S rRNA in bacteria) are contained larger copies than genome DNA per one 

cell (18). In the RT step, reverse transcriptase (RNA-dependent DNA 
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polymerase) derived from retrovirus is mainly used (19). Since suitable 

reaction conditions of reverse transcriptase and PCR-use DNA polymerase 

are different, RT and PCR reactions are usually performed separately. 

Therefore, we need two steps complicated operations to perform RT-PCR, and 

it reduces the simplicity of this method. 

 

3. Detection technologies for amplified products 

 The detection procedure of NAT is a step to detect amplified nucleic 

acid over million times in amplification procedure. In the molecular biology 

laboratory, electrophoresis and ethidium bromide staining are widely used to 

detect PCR products (20). However, these methods require technical skill, 

complicated procedures, some special instruments and carcinogenic reagents. 

Therefore, it is difficult to perform PCR products detection in the place 

without such skilled personnel and special instruments.  

To make the detection procedure of NAT simply, some technologies 

have been developed. One is real-time PCR method which monitors amplified 

DNA using intercalating fluorescent dye or probe in real-time (21, 22). As this 

method integrates amplification and detection process, we need no additional 
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operation for detection. However, the machine for real-time PCR is expensive 

and requires regular maintenances, so that it is still difficult to install the 

machine to smaller institutions. 

Paper-based chromatography chip systems are suitable for the 

development of POC-NATs, because they require simple procedures, the use 

of inexpensive instruments, and low manufacturing costs. Previously, 

Corstjens et al., (23) reported the development of a chromatography chip 

comprising a streptavidin immobilized on a chip and anti-digoxigenin (DIG) 

antibody-immobilized phosphor particles. Using PCR and biotin and DIG-

modified primers, the obtained amplified products can be detected on the chip 

as colored lines. However, according to this system, multiplex detection is 

limited by the antigen-antibody combination. Another group developed a 

chromatography chip using DNA-DNA hybridization, comprising 

streptavidin immobilized on a paper chip and single-strand DNA immobilized 

on colloidal gold nanoparticles (24), which enabled the development of 

multiplex detection systems, due to the different complementary sequence 

combinations. However, since PCR products are double-strand DNA, melting 

and temperature regulation are necessary, which reduces the usability of the 
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system. To make the technology more suitable for POC-testing, simplicity and 

rapidity in operation processes are required.  

 

4. Research objective of this thesis 

The objective of this thesis is to develop elemental technologies for a 

simple and rapid NAT which contribute to realize the point of care (POC)-

NAT. Concretely, I focused on the amplification and the detection processes 

of NAT which consisting major procedures of this method, and conducted a 

study to accomplish objectives described below respectively. 

In chapter 1, I tried to develop high fidelity RT-PCR-use enzyme 

possessing both DNA-dependent DNA polymerase activity and reverse 

transcriptase activity, to make RT-PCR procedures a simple format. In 

chapter 2, I tried to develop a simple and rapid detection system for multiplex-

PCR products using a paper base DNA chromatography chip to make 

multiplex-PCR detection procedures simple and rapid format. 
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Chapter 1: Development of thermostable enzyme possessing both reverse 

transcriptase activity and DNA-dependent DNA polymerase activity 

 

1-1. Introduction 

Reverse transcriptase catalyzes DNA polymerization using RNA 

template (RNA-dependent DNA polymerase) (19). This enzyme is applied to 

reverse transcript (RT)-PCR which is useful for RNA virus detection and 

ultra-high sensitivity detection. In this application, reverse transcriptase has 

central roles, and retroviral enzymes, such as the Moloney murine leukemia 

virus (MMLV) or the avian myeloblastosis virus (AMV), are mainly utilized. 

However, retroviral reverse transcriptase has two major drawbacks for the 

application to RT-PCR.  

One is low fidelity in reaction, because of the lack of 3′-5′ exonuclease 

(proof-reading) activity. Application of enzyme with high accuracy is 

preferable for the precise diagnostics. Attempts were made to create a 

retroviral reverse transcriptase with high fidelity. The accuracy of reverse 

transcriptase derived from human immunodeficiency virus type 1 was 

increased by an amino acid substitution at a unique position (25). The 
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addition of an Escherichia coli DNA polymerase III ε subunit (possessing 3′-

5′ exonuclease activity) also increased the fidelity of MMLV reverse 

transcriptase (26).  

The other drawback of retroviral reverse transcriptase is instability 

which requests not only delicate handlings, but also causes insufficient RT 

reactions. Single-strand template DNA or RNA forms unfavorable stem loop-

like structure depending on the nucleotide sequence, especially at low 

temperatures. This unfavorable structure inhibits the DNA synthesis. To 

prevent the inhibition, incubation at temperatures above 50°C is preferred in 

enzymatic DNA synthesis. However, a retroviral enzyme is easily denatured 

in such high temperature. 

To develop a reverse transcriptase with highly stability, several 

approaches have been tried (27–36), and some genetically modified reverse 

transcriptases are available as reagents. The stabilized MMLV reverse 

transcriptase was developed by site-directed mutagenesis following 

suppression of RNase H activity (29, 30). However, it has not been 

accomplished to improve the fidelity and stability of a retroviral enzyme as 

same as a PCR-use DNA polymerase. Also, since suitable reaction conditions 
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of reverse transcriptase and PCR-use DNA polymerase are different, RT and 

PCR reactions are usually performed separately. Therefore, we need two step 

complicated operations to perform RT-PCR with retroviral enzymes. 

 Another approach to create thermostable reverse transcriptase was 

attempted using thermostable DNA-dependent DNA polymerases from 

thermophiles (31-36). Thermophilic archaeal family B DNA polymerases, 

such as from Pyrococcus furiosus (15) or Thermococcus kodakarensis (16) are 

reported to possess a higher accuracy in PCR than enzymes derived from T. 

aquaticus and T. thermophilus. However, these family B DNA polymerases 

were considered unsuitable as a source to develop a thermostable reverse 

transcriptase, because their reaction stalls when an uracil-containing 

template was incorporated (37). On the other hand, some DNA polymerases I 

(PolI) derived from thermophilic bacteria are known to possess reverse 

transcriptase activity (31-34). It has been known that chimeric PolI from 

Thermus species Z05 and Thermotoga maritima possesses reverse 

transcriptase activity while maintaining DNA-dependent DNA polymerase 

activity and thermal stability (36). However, it has been unclear the template 

DNA/RNA recognition system of PolI type DNA polymerase.  
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In this chapter, I have constructed various mutants of DNA 

polymerase I from a newly isolated hyperthermophilic bacterium, 

Thermotoga petrophila K4 and have attempted to identify the key positions 

of amino acid residue for template DNA/RNA recognition. Also, I have tried 

to create the thermostable reverse transcriptase with DNA-dependent DNA 

polymerase activity useful for simple one-step RT-PCR.  
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1-2. Material and methods 

1-2-1. Materials 

 Thermotoga maritima MSB8 (DSM 3109) was obtained from the 

Biological Resource Center, National Institute of Technology and Evaluation 

(NITE), Japan. Escherichia coli DH5α [F−, mcrA, Δ(mrr− hsdRMS− mcrBC), 

Φ80dlacZ, ΔM15, ΔlacX74, deoR, recA1, araD139, Δ(ara leu)7697, galU, galK, 

λ−, rpsL, endA1, nupG] was utilized for plasmid construction. E. coli BL21-

CodonPlus (DE3)-RP [F− ompT hsdSB (rB− mB−) dcm+ Tetr galλ (DE3) endA 

Hte [argU proL Camr]] (Stratagene, USA) and the expression vector pET-21a 

(Novagen, USA) were utilized for overexpression of the target genes. E. coli 

DH5α and E. coli BL21-CodonPlus (DE3)-RP were aerobically cultured in LB 

liquid medium (1% tryptone, 0.5% yeast extract, 1% NaCl; adjusted to pH 7.3 

with NaOH) at 37°C. Plasmid pUC19 was utilized as a vector for cloning the 

DNA polymerase I gene. E. coli TH2 [supE44, hsdS20 (rB− mB−), recA13, ara-

14, proA2, lacY1, galK2, rpsL20, xyl-5, mtl-1, thi-1, trpR624] was used for 

fidelity analysis was obtained from Takara Bio (Japan). The final 

concentration of ampicillin, chloramphenicol and streptomycin, when added 

to LB liquid medium, were 100 μg/ml, 12 μg/ml and 50 μg/ml, respectively.  



12 

 

Restriction enzymes and other enzymes for cloning were obtained 

from Takara Bio (Japan), Toyobo (Japan) or Roche Diagnostics (Switzerland). 

A BigDye Terminator cycle-sequencing ready reaction kit, version 3.1, and a 

DNA sequencer 3130 Genetic Analyzer (Applied Biosystems, USA) were used 

for DNA sequencing analysis. All chemicals and the culture medium were 

obtained from Wako Pure Chemical Industries (Japan) and Nacalai Tesque 

(Japan). 

 

1-2-2. Isolation of the environmental microorganism 

Water samples collected from a hydrothermal vent (73°C) at 

Kodakara Island, Kagoshima, Japan were filtrated with 0.45 μm filter. The 

filters were added to 2× YT liquid medium (1.0% yeast extract, 1.6% tryptone, 

1.0% NaCl) and were anaerobically incubated at 83°C for 12 h. After culturing, 

the grown microorganisms were placed in a 2× YT solid plate (2× YT medium 

containing 1% gelrite® instead of agar) and incubated at 83°C for 12 h. From 

a cultured plate, a single colorless colony was isolated. The isolated 

microorganism (Thermotoga prtrophila K4) on a 2× YT gelrite® plate was 

cultured on the K4 medium with 1.6% tryptone, 1.0% yeast extract, trace 
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minerals (1.5 g of nitrilotriacetic acid, 3 g of MgSO4⋅7H2O, 0.5 g of 

MnSO4⋅5H2O, 1 g of NaCl, 0.1 g of FeSO4⋅7H2O, 0.18 g of CoSO4⋅7H2O, 0.1 g 

of CaCl2⋅2H2O, 0.18 g of ZnSO4⋅7H2O, 0.01 g of CuSO4⋅5H2O, 0.01 g of H3BO3, 

0.01 g of Na2MoO4⋅2H2O, 0.014 g of NiCl2, 0.53 mg of Na2SeO3, 0.93 mg of 

Na2WO4⋅2H2O, 0.92 mg of Na2WO4⋅2H2O, 4 mg of KAl(SO4)2⋅12H2O per liter), 

and artificial sea water (5.54 g of NaCl, 1.4 g of MgSO4⋅7H2O, 1.1 g of 

MgCl2⋅6H2O, 0.45 g of CaCl2⋅2H2O, 0.13 g of KCl, 20 mg of NaBr, 6 mg of 

H2BO3, 3 mg of SrCl2⋅6H2O, 2 mg of citric acid, 10 μg of KI per liter) at 80°C 

under anaerobic conditions. The pH of K4 medium was adjusted to 6.8 with 

KOH. The antibiotics susceptibility analysis of the isolated microorganism 

was carried out with K4 medium containing the final concentration 100 μg/ml 

of rifampicin as described in the previous study (38). 

 

1-2-3. Electron microscopic photography  

Electron micrographs of the isolated microorganism were taken as 

same as the previous report (38). Cultured microorganisms were putted on a 

VECO Cu 400 mesh (Electron Microscopy Sciences, USA) pasted with a 2% 

solution of isoamyl acetate and negatively stained by 1% ammonium 
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molybdate. Electron micrographs of the isolated microorganism were taken 

with a JEM-1010 (JEOL, Japan) with accelerating voltage at 80 kV. An 

imaging plate (Fujifilm, Japan) was used as a detector.  

 

1-2-4. Molecular phylogenetic analysis 

 DNA manipulations were carried out by standard techniques as 

described previously by Sambrook and Russell (20). Genomic DNA of the 

isolated microorganism was prepared by the Sarkosyl method and purified by 

CsCl equilibrium density gradient ultracentrifugation. Molecular 

phylogenetic analysis was performed by comparing nucleotide sequences of 

16S rDNA region. To obtain the sequence of 16S rDNA region, PCR was 

carried out using primers 16SFFw and 16SFRv with 1 unit of KOD Plus 

polymerase (Toyobo, Japan) under the following condition (2 min at 94°C, 

followed by 30 cycles of 15 s at 94°C, 30 s at 60°C, 30 s at 68°C). Primer 

sequences used in this chapter are listed in Table 1. 

 

1-2-5. Cloning and purification of K4 DNA polymerase 

 The PCR product with primer set (Pol-Fw and Pol-Rv) amplifying the 
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open reading frame of DNA polymerase I gene in newly isolated strain K4 

(K4PolI) was digested with Nde I and Sal I and cloned into the pET-21a vector 

digested with the same restriction enzymes. E. coli BL21-CodonPlus (DE3)-

RP was transformed with the constructed plasmid pET-K4PolI. 

Overexpression of K4PolI was induced by the addition of IPTG (final 

concentration, 1 mM). After 3 h of induction, cultured cells were harvested 

with centrifugation (8000× g, 10 min). The cells were disrupted by sonication 

and lysate sample was centrifuged (8000× g, 10 min). The obtained 

supernatant sample was incubated at 85°C for 30 min and centrifuged again 

(8000× g, 10 min). The supernatant of incubated sample was then applied to 

a heparin column (1.6 by 2.5 cm; HiTrapTM heparin; GE Healthcare, USA) 

equilibrated with the buffer A (10 mM Tris-HCl [pH 8.0], 0.1 M NaCl, 1 mM 

DTT, 10% glycerol). Trapped proteins were eluted by a linear gradient of 0.1 

to 1.5 M NaCl in the buffer A. The recovered sample was dialyzed with buffer 

A and applied to an anion exchange column (Mono Q® HR 5/5; GE Healthcare, 

USA). Proteins were eluted by a linear gradient of 0.1 to 1.0 M NaCl in the 

buffer A. The recovered sample was dialyzed with buffer B (10 mM Tris-HCl 

[pH 8.0], 0.5 M NaCl, 1 mM DTT, 10% glycerol) and applied to a gel filtration 
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column (SuperdexTM 200; GE Healthcare, USA) equilibrated with buffer B. 

Fractions containing DNA-dependent DNA polymerase activity were 

collected and dialyzed with buffer A. DNA polymerase activity was confirmed 

by monitoring DNA-dependent DNA amplification of the TK0149 gene from 

Thermococcus kodakarensis using primer set, TK0149-Fw and TK0149-Rv, 

and plasmid pUD2-TK0149 DNA as a template (39). 

 

1-2-6. 3′-5′ exonuclease activity evaluation 

 The 3′-5′ exonuclease activity was evaluated by calculating the 

released dNMP (nmol) from DNA on 1 μg of enzyme in 1 min. The reaction 

mixture (50 μl) contained 50 mM bicine KOH (pH 8.2), 115 mM CH3COOK, 

8% glycerol, 1 mM Mn(CH3COO)2, 0.2 μM 5′ fluorescently labeled synthetic 

oligo-deoxyribonucleotide (3′-5′ EXO), and 20 μg purified polymerase. The 

reaction was started by the addition of an enzyme to the mixture and 

quenched by 50 mM EDTA. The reaction temperature was set at 68°C. 

Reacted samples were then separated on a 10% (w/v) polyacrylamide gel 

(containing 7 M urea) electrophoresis. The fluorescent intensity of separated 

fragments were measured with an Odyssey infrared imaging system (LI-COR, 



17 

 

USA). 

 

1-2-7. Accuracy evaluation in PCR 

 The accuracy of DNA polymerase was examined according to the 

previously reported procedure with slight modifications (40). The rpsL gene 

of E. coli encodes the small ribosomal protein S12 which is the target molecule 

of streptomycin (Sm). E. coli TH2 (rpsL20) shows Sm resistant phenotype 

(Smr) by lack of functional S12 protein. The PCR fidelity was analyzed as the 

mutation frequency in PCR products with the full-length of the plasmid pKF3 

possessing cat gene for chloramphenicol (Cm) resistance and rpsL gene for 

streptomycin sensitive phenotype (Sms). An inverse PCR products using 

pKF3 as a template were self-ligated. E. coli TH2 cells were transformed with 

the amplified and self-ligated pKF3. TH2 cells possessing wild-type rpsL gene 

in pKF3 show Sms and Cmr phenotype. On the other hand, the cells 

possessing mutated rpsL gene show Smr and Cmr phenotype. The mutation 

frequency was calculated as the ratio of the number of TH2 cell colonies with 

Smr and Cmr phenotype to the total number of the Sms and Cmr phenotype. 

An inverse PCR was performed with two adjacent primers, Fw-m and Rv-m, 
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template pKF3 plasmid and DNA polymerase in a 50 μl of optimized reaction 

mixture containing 0.6 mM (NH4)2SO4, 1 mM KCl, 12 mM Tris-HCl (pH 8.0), 

0.01% Triton X-100, 0.0001% BSA, 1 mM MgCl2, 200 μM dNTPs, 0.3 μM of 

primers, and 1 μg of DNA polymerase from isolated microorganism with 

PC707 thermal cycler (Aspec, Japan). The reaction was performed as follows: 

2 min at 94°C followed by 40 cycles of 15 s at 94°C, 30 s at 60°C, and 1 min at 

68°C. The PCR products were blunted with T4 DNA polymerase (Takara Bio, 

Japan) and then self-ligated with Ligation high (Toyobo, Japan) and used to 

transform E. coli TH2. 

 

1-2-8. Modeling of tertiary structure and mutant construction 

 Protein tertiary structure modeling was carried out with a Swiss 

model, and Klenow fragment of E. coli was used as a template (41). All K4PolI 

mutants used in this chapter were constructed by an inverse PCR using 

plasmid pET21a-K4PolI as a template. For the mutant plasmids construction, 

the following primer sets were used: T326A, T326A-Fw, and T326A-Rv; 

L329A, L329A-Fw, and L329A-Rv; Q384A, Q384A-Fw, and Q384ARv; K387A, 

K387A-Fw, and K387A-Rv; F388A, F388A-Fw, and F388A-Rv; M408A, 
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M408AFw, and M408A-Rv; N422A, N422A-Fw, and N422A-Rv; Y438A, 

Y438A-Fw, and Y438A-Rv; F451A, F451A-Fw, and F451A-Rv (see nucleotide 

sequences, Table 1). 5′ terminuses of all primers were phosphorylated by T4 

DNA kinase (Takara Bio, Japan). The 50 μl PCR mixture containing 0.6 mM 

(NH4)2SO4, 1 mM KCl, 12 mM Tris-HCl (pH 8.0), 0.01% Triton X-100, 

0.0001% BSA, 1 mM MgCl2, 200 μM dNTPs, 0.3 μM each of corresponding Fw 

and Rv primer sets, 10 ng template DNA (pET-K4PolI) and 0.5 U of KOD Plus 

polymerase (Toyobo, Japan). The amplified fragments were self-ligated to 

obtain plasmids, pET21a-K4PolI-T326A, -L329A, -Q384A, -K387A, -F388A, 

M408A, -N422A, -Y438A, and -F451A. 

 

1-2-9. Reverse transcriptase activity evaluation 

 RT-PCR was performed for assay of RNA-dependent and DNA-

dependent DNA polymerase activity. Total RNA isolated from T. 

kodakarensis cells, which was collected at the logarithmic growth phase with 

the RNeasy Midi Kit (Qiagen, Germany), was used as the template for RT-

PCR, and the 16S rRNA was selected as the target. In the case of K4PolI 

mutants, reverse transcript reaction and DNA amplification were carried out 
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in one tube. The 50 μl RT-PCR mixture contained 50 mM bicine KOH (pH 

8.2), 115 mM CH3COOK, 8% glycerol, 1 mM Mn(CH3COO)2, 0.3 μM 16S-Fw 

and 16S-Rv primer sets, T. kodakarensis total RNA (100 ng), and 1 μg of 

purified K4 DNA polymerase. RT-PCR was carried out as follows: 1 min at 

55°C, 30 min at 68°C, and 2 min at 94°C followed by 40 cycles of 15 s at 94°C, 

30 s at 60°C, and 1 min at 68°C. The amplified DNA was analyzed with 

agarose gel electrophoresis, and stained with ethidium bromide. In the case 

of reverse transcript with the MMLV reverse transcripatase, complementary 

DNA was synthesized from the total RNA (100 ng) of T. kodakarensis at 42°C 

for 30 min using primer 16S-Rv in a total volume of 20 μl containing 30 mM 

KCl, 50 mM Tris-HCl (pH 8.5), 8 mM MgCl2, 0.3 μM 16S-Rv primer, 1 mM 

dNTP, and 1 μl of MMLV reverse transcriptase (20 unit of ReverTra Ace®, 

Toyobo, Japan). The solution was heated at 85°C for 10 min to inactivate 

MMLV reverse transcriptase. 1 μl of the solution was then added to a 50 μl 

PCR mixture containing 0.6 mM (NH4)2SO4, 1 mM KCl, 12 mM Tris-HCl (pH 

8.0), 0.01% Triton X-100, 0.0001% BSA, 1 mM MgCl2, 200 μM dNTPs, 0.3 μM 

of 16S-Fw 16S-Rv primer sets, and 1 unit of KOD Plus DNA polymerase. PCR 

was performed as follows: 2 min at 94°C followed by 40 cycles of 15 s at 94°C, 
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30 s at 60°C, and 1 min at 68°C. 

 

1-2-10. DNA- and RNA-dependent DNA polymerase activity assay 

 DNA- and RNA-dependent DNA polymerase activity were analyzed 

respectively with comparing the threshold cycle (Ct) values of DNA 

amplification. The Ct value, which is a threshold cycle number needed to 

reach the constant fluorescent intensity, was utilized as a parameter to 

analyze DNA-dependent DNA polymerase activity. ABI PRISM 7000 (Applied 

Biosystems, USA) was utilized as a thermal cycler for PCR and real-time PCR 

fluorescent detector. SYBR® Green I Nucleic Gel Stain (excitation wavelength, 

494 nm; fluorescent wavelength, 521 nm) (Life Technologies, USA) was 

utilized as a double-strand DNA-specific fluorescent intercalator. For the Ct 

value measurement to evaluate DNA-dependent DNA polymerase, 16S rDNA 

of T. kodakarensis was selected as a target region. The 25 μl PCR mixture 

contained 50 mM bicine KOH (pH 8.2), 115 mM KCl, 8% glycerol, 1 mM 

Mn(CH3COO)2, template DNA (50 ng), 5× 104 diluted SYBR® Green I solution, 

0.3 μM primer sets (16S-Fw and 16S-Rv), and 1 μg of wild-type K4PolI or 

mutants. PCR was carried out with the thermal cycler as follows: 1 min at 
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94°C followed by 40 cycles of 15 s at 94°C, 30 s at 60°C, and 1 min at 68°C. 

The fluorescent intensity was analyzed and the Ct value was obtained with 

the supplied software. To investigate RNA-dependent DNA polymerase 

(reverse transcriptase activity), complementary DNA synthesis activity was 

analyzed. Complementary DNA of the 16S rRNA was synthesized using the 

16S-Rv primer by 1 μg of K4PolI or MMLV reverse transcriptase (ReverTra 

Ace®, Toyobo, Japan) using total RNA (5 μg) extracted from T. kodakarensis. 

After the reverse transcription, the samples were reacted with RNase A 

following phenol chloroform treatment to inactivate the enzymes, and 

complementary DNA was collected by ethanol precipitation. Using the 

synthesized complementary DNA as a template, PCR was performed by 

primer sets 16S-Fw and 16S-Rv with 5 unit of Taq DNA polymerase (Roche 

Diagnostics) and 5× 104-fold diluted SYBR® Green I solution. PCR condition 

was as follow; 40 cycles of 15 s at 94°C, 30 s at 60°C, and 1 min at 68°C. The 

fluorescent intensity was analyzed and the Ct value was obtained. 

 

1-2-11. Accession number of nucleotide sequence 

 The nucleotide sequences of DNA polymerase and 16S rDNA derived 



23 

 

from Thermotoga petrophila K4 reported in this chapter have been listed to 

the DDBJ nucleotide sequence database under the accession numbers 

AB547905 and AB547906, respectively. 
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Table 1. Oligonucleotides used in chapter 1. 

No. Primer sequences Primer sequences (5'-3') Mer Remarks 

1 16SFFw TATATGGAGGGTTTGATCCTGGC 23  

2 16SFRv GAAAGGAGGTGATCCAGCCGC 21  

3 Pol-Fw  AAAAAAACATATGGCGAGACTATTTCTCTTTG 32 Nde I recognition 
sequence is underlined 

4 Pol-Rv  AAGTCGACTCACGACCATGTTTTGCC 26 Sal I recognition 
sequence is underlined 

5 3′-5′ EXO  [Cy5.5] GGTCAGTGCTGCAACATTTTGCTGCCGGTC 30 5' end is labeled by 
Cy5.5 

6 T326A-Fw GCTGTAGATCTTGAAGCGTCTTCCCTCGAT 30  

7 T326A-Rv  GAACGAAGGGGATTCTTTCAGCTTCTCTAC 30  

8 L329A-Fw TTGAAACGTCTTCCGCGGATCCCTTCGAC 29  

9 L329A-Rv  GATCTACAGCGAACGAAGGGGATTCTTTC 29  

10 Q384A-Fw CGGAGCAAAGATCGTTGGTGCGAATCTG 28  

11 Q384A-Rv  GGGTCCTCCAGAATTTCTTTGAGCTTTTTC 30  

12 K387A-Fw AGAATCTGGCGTTCGATTACAAGGTGTTG 29  

13 K387A-Rv  GACCAACGATCTTTGCTCCGGGGTCC 26  

14 F388A-Fw  AGAATCTGAAAGCGGATTACAAGGTGTTG 29  

15 F388A-Rv  GACCAACGATCTTTGCTCCGGGGTCC 26  

16 M408A-Fw ACTTTGACACAGCGATAGCGGCTTACC 27  

17 M408A-Rv GCGGAGGAACAGGTTCAACACCCTTCACC 29  

18 N422A-Fw CGAAAAGAAGTTCGCGCTGGACGATCTCG 29  

19 N422A-Rv TTCGGTTCAATAAGGTAAGCCGCTATC 27  

20 Y438A-Fw AAATGACCTCTGCGCAGGAACTCATGTC 28  

21 Y438A-Rv TGTAACCAAGAAATTTCAGCGCGAGATCG 29  

22 F451A-Fw  GTTGTTTGGTGCGAGTTTTGCCGATGTTCC 30  

23 F451A-Rv GGTGAAGAGAAGGACATGAGTTCCTGGTAA 30  

24 16S-Fw GGCAGGATGAAGGCCAGGCTGAAGGTCTTG 30  

25 16S-Rv CGTATTCGCCGCGCGATGATGACACGCGGG 30  

26 PolI-up GCCATAAACACTCCCATACAGGG 23  

27 PolI-down AGAATCAGAGGAATGATTTCGTG 23  

28 PolI-Fw TGAACGAGAAGGTGCTGTCCCGCGGAACTC 30  

29 PolI-Rv ACAACTTTCAGTGCCGTCCCCGTCGAG 27  

30 Fw-m AAAAAGCGCGCACAGCCCAGCTTGGAGCG 29  

31 Rv-m AAAAAGCGCGCGAACCCCCCGTTCAGCCCG 30  
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1-3. Results 

1-3-1. Isolated hyperthermophile Thermotoga petrophila K4 

 A hyperthermophilic microorganism was isolated from a hot spring 

(73°C) at Kodakara Island, Kagoshima, Japan. Pure cultivation was 

performed by isolating a microorganism from a single colony of the 2× YT 

solid medium. Growth of the microorganism was optimized by K4 medium. 

The isolated thermophile was anaerobic heterotrophic rod-shaped 

microorganism with a “toga” which is a unique characteristic of 

Thermotogales (Fig. 1A). The size of the microorganism was about 2 μm× 6 

μm; growth of the microorganism was confirmed at the range of 50-85°C, the 

optimum growth temperature was 80°C (Figs. 1A, B). Genome DNA was 

prepared from the liquid culture, and 16S rDNA region was amplified with 

PCR. Sequencing analysis of 16S rDNA showed that the isolated 

microorganism belonged to the genus Thermotoga, and this strain was most 

closely related to the hyperthermophilic bacterium Thermotoga petrophila 

RKU-1 (99% of 16S rDNA sequence identity) (Fig. 1C). T. petrophila RKU-1 

and T. maritima MSB8 are distinguished on the basis of their antibiotic 

sensitivity against rifampicin (38). Growth of the microorganism was not 
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confirmed in a medium with rifampicin, as same as T. petrophila RKU-1. 

Based on the morphology, growth temperature, phylogenetic analysis, and 

rifampicin sensitivity, I designated the newly isolated strain as Thermotoga 

petrophila K4. 
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Fig. 1. Electron microscopy, growth profile, and phylogenetic tree of newly 

isolated T. petrophila K4. (A) Electron microscopy of T. petrophila K4. The 

arrows indicate the toga (t) and the cell wall (cw). Bar: 1 μm. (B) Effects of 

the temperature on the specific growth rates of T. petrophila K4. The growth 

rates were obtained from calculating a linear regression analysis along the 

logarithmic phase of the growth profile. (C) Phylogenetic neighbor-joining 

tree of the members of thermophilic bacteria including T. petrophila K4 based 

on the 16S rDNA. The sequences of 16S rDNA were got from the 

GenBank/EMBL/DDBJ database. The sequence of Thermococcus 

kodakarensis was used as an out group. Bar length shows rate of the base 

substitution: 0.1 means 1 substitution per 10 nucleotide lengths. The arrows 

show the position of T. petrophila K4. 
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1-3-2. Cloning of the DNA polymerase I gene from T. petrophila K4 

 To clone the DNA polymerase I (PolI) gene from T. petrophila K4, the 

PolI regions of genus Thermotoga were aligned and compared. The alignment 

analysis showed, the regions of the PolI start and stop codons were highly 

conserved in the three Thermotoga genera (T. maritima MSB8, T. petrophila 

RKU-1, and Thermotoga sp. RQ2). Two primers complementary binding to 

the conserved regions, Pol-Fw and Pol-Rv were designed and utilized for PCR 

using a genome DNA of T. petrophila K4 as a template. An about 2600 bp 

DNA fragment was successfully amplified. Sequencing analysis showed that 

it contained part of the PolI region. To obtain further upstream and 

downstream regions, gene walking was performed using a single primer 

method (42). Primer PolI-up that possesses a nucleotide sequence of the 

complementary strand of PolI and primer PolI-down that possesses the 

nucleotide sequence of the sense strand of PolI were utilized for PCR using a 

T. petrophila K4 genome DNA as a template. As the result of reactions, about 

7000 bp and about 1500 bp DNA fragments were confirmed respectively. 

Sequencing analysis revealed amplified fragments contained the 5′ end and 

3′ end regions of the PolI. Next, two kinds of primers (PolI-Fw and PolI-Rv), 
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which were designed to recognize the 5′ and 3′ regions, were ustlized for PCR. 

The 3207 bp DNA fragment that contained entire PolI open reading frame 

consists of 2679 bases coding for a protein with 893 amino acid residues, was 

amplified. The estimated molecular mass of the PolI was 101.7 kDa. Sequence 

comparison analysis showed that the DNA polymerase I from T. petrophila 

K4 (K4PolI) was most closely related to that derived from Thermotoga sp. 

RQ2 (97% identity in amino acid sequence). K4PolI consists of three preserved 

regions, the 5′-3′ exonuclease region, the 3′-5′ exonuclease region, and DNA 

polymerase region. The putative metal catiion-binding sites (Asp323, Glu325, 

Asp389, Asp468, and Tyr464) in the 3′-5′ exonuclease region were also 

conserved, suggesting that K4PolI possesses 3′-5′ exonuclease activity that 

contributes to high accuracy in PCR (15, 16). 

 

1-3-3. Characteristics of K4PolI 

 The recombinant protein of K4PolI was obtained with overexpression 

in E. coli and purified (Fig. 2A), and its enzymatic characteristics were 

analyzed and compared with those of DNA polymerases from various sources. 

As a result of PCR with K4PolI, a specific DNA fragment from the DNA 
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template was obtained (Fig. 2B). The 3′-5′ exonuclease activity of K4PolI was 

investigated with a 5′ fluorescently labeled oligo-deoxyribonucleotide (3′-5′ 

EXO). The 3′-5′ exonuclease activity of K4PolI was confirmed and it was 

calculated as 0.44 nmol min−1 μg−1. Mutation frequency was evaluated 

according to a reported method (40). In this assay, the error rate of K4PolI, 

Taq DNA polymerase, MSB8 DNA polymerase and KOD DNA polymerase 

were 0.35%, 0.50%, 0.46% and 0.26%, respectively (Fig. 2C). 

 To investigate whether K4PolI has the reverse transcriptase activity, 

the RNA-dependent DNA polymerase activity was examined with RT-PCR 

assay. Total RNA from T. kodakarensis was used as template of RT-PCR with 

K4PolI. The reacted sample was analyzed by agarose gel electrophoresis. 

However, no amplified DNA was confirmed (Fig. 2D). It shows that the 

K4PolI does not have the reverse transcriptase activity. 
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Fig. 2. Properties of wild-type K4PolI. (A) 0.1% SDS-10% PAGE of purified 

K4PolI. Lane M shows the molecular weight markers (phosphorylase b, 

97,000; albumin, 66,000; ovalbumin, 45,000). (B) PCR using K4PolI. The 

TK0149 gene of T. kodakarensis was targeted for PCR as described in 

materials and methods, and 688 bp DNA was generated. Agarose gel (0.8%) 

was stained with ethidium bromide. M is a DNA molecular marker; lambda 

phage DNA digested with Hae III. The sizes from the top are 1353, 1078, 872, 

603, 310, 281, 271, 234, 194, 118, and 72 bp. (C) Mutation frequency in PCR. 

The mutation rate was obtained by calculating the percentage (%) of colonies 

with mutated plasmids to the number of total colonies harboring wild-type 

plasmid pKF3 as described in materials and methods. Taq, DNA polymerase 

I derived from Thermus aquaticus; KOD, family B DNA polymerase derived 

from Thermococcus kodakarensis; MSB8, DNA polymerase I derived from 

Thermotoga maritima MSB8; K4, DNA polymerase I derived from 

Thermotoga petrophila K4. (D) RT-PCR using K4PolI. The structured region 

of 16S rRNA from T. kodakarensis was targeted for reverse transcription. 

Reverse transcription and PCR were performed by two primers, 16S-Fw and 

16S-Rv, using total RNA of T. kodakarensis as a template. The arrow shows 

the position of a predicted RT-PCR product (386 bp). M is the DNA molecular 

marker (100 bp DNA ladder; Toyobo, Japan).  



32 

 

1-3-4. Predicted structure of K4PolI 

 As mentioned above, wild-type of K4PolI possesses only DNA-

dependent DNA polymerase activity but not reverse transcriptase activity. 

This characteristic means to be caused by specificity of the template 

recognition. DNA polymerase I derived from bacteria is classified as family A, 

which accepts an uracil containing DNA as a template in DNA synthesis. This 

property differentiates it family B DNA polymerase derived from archaea (37). 

I estimated that K4PolI also accepted an uracil-containing DNA and it 

distinguishes DNA from RNA by recognizing the difference in structure of the 

2′ hydroxyl group of ribose. To get further precise information about template 

DNA binding region of K4PolI, protein crystallization was attempted under 

various conditions with changing the buffers and template oligonucleotides. 

However, successful crystallization was not obtained. The K4PolI structure 

was hence speculated in silico, using the E. coli Klenow fragment (1kfs) as a 

modeling template (41). The modeled structure showed that there was a 

single-strand DNA binding site in the 3′-5′ exonuclease domain of K4PolI. The 

amino acid residues, Thr326, Leu329, Gln384, Lys387, Phe388, Met408, 

Asn422, Tyr438, and Phe451, were estimated to locate around a single-strand 
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DNA template. It was hypothesized that some of these amino acid residues 

played a key role in template DNA/RNA distinction by steric interference 

with the 2′ hydroxyl group of ribose. Brautigam et al. reported the template-

binding situation of Klenow polymerase using oligo-deoxyribonucleotides 

(oligo dA, dC, and dG) and suggested these amino acid residues contribute 

the binding between enzyme and DNA (41). In K4PolI, the amino acid 

residues Thr326, Leu329, Gln384, Lys387, Phe388, Met408, Asn422, Tyr438, 

and Phe451 were selected as the site introduce mutation, and each amino acid 

residue was changed to alanine with the expectation that the mutant would 

accept ribonucleotide by decreasing the side-chain bulkiness surrounding the 

ribonucleotide template (Fig. 3). These K4PolI mutants were designated as 

T326A, L329A, Q384A, K387A, F388A, M408A, N422A, Y438A, and F451A, 

respectively. 
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Fig. 3. Modeled structure of 3′-5′ exonuclease domain with single-strand DNA. 

(A) Structure of a Klenow fragment with single-strand DNA (1kfs). The 

template-binding situation using synthetic oligonucleotides (oligo dA, dC, and 

dG) is indicated. (B) Predicted structure of K4PolI based on the Klenow 

fragment crystal structure (1kfs). 
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1-3-5. Characteristics of the K4PolI mutants 

 All K4PolI mutants were overexpressed in E. coli and purified (Fig. 

4A). The DNA-dependent DNA polymerase activities were confirmed by PCR. 

The PCR products synthesized with the purified mutants are indicated in Fig. 

4B. As all mutated amino acid residues that I focused on are located within 

the 3′-5′ exonuclease domain, the activity was investigated (Fig. 4C). The 3′-

5′ exonuclease values of T326A, L329A, Q384A, K387A, M408A, and Y438A 

were decreased to about 0.7 to 4.5% of those of the wild-type enzyme. No 3′-5′ 

exonuclease activity was confirmed from mutant F388A. Mutants N422A and 

F451A showed 48% and 117% of 3′-5′ exonuclease activity comparing to the 

wild-type enzyme, respectively. 

 Next, I examined whether mutants enable RT-PCR in a single-step 

format to amplify RNA. If DNA is directly amplified from RNA, it appears 

that mutants have both reverse transcriptase and DNA-dependent DNA 

polymerase activity. In addition, mutants were expected to amplify DNA from 

structured RNA as they work at higher temperature condition. To examine 

these two possibilities, the 16S rRNA of T. kodakarensis, which forms a stable 

structure with a free energy change (-ΔG) of -265.6 kcal/mol, was used as a 
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target template RNA. When RT-PCR was performed to generate 

complementary DNA using 16S rRNA-specific primers (16S-Fw and 16S-Rv), 

the mutants T326A, L329A, Q384A, F388A, M408A, and Y438A led to the 

synthesis of only expected size of DNA (Fig. 4D). The mutant F388A also 

generated the DNA but in less amount. In contrast, when MMLV reverse 

transcriptase was used for the complementary DNA synthesis, nonspecific 

DNAs were amplified with specific DNA after PCR with Taq DNA polymerase 

(Fig. 4D). 
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Fig. 4. Properties of K4PolI mutants. (A) 0.1% SDS-10% PAGE of purified 

K4PolI mutants. Lane M shows the molecular weight markers 

(phosphorylase b, 97,000; albumin, 66,000; ovalbumin, 45,000). (B) PCR using 

K4PolI mutants. The TK0149 gene of T. kodakarensis was targeted for PCR 

as described in materials and methods, and 688 bp DNA was generated. 

Agarose gel (0.8%) was stained with ethidium bromide. M is a DNA molecular 

marker; lambda phage DNA digested with Hae III. The sizes from the top are 

1353, 1078, 872, 603, 310, 281, 271, 234, 194, 118, and 72 bp. (C) Relative 3′-

5′ exonuclease activity. The activity of the wild-type K4PolI (0.44 

nmol/min/μg) is defined as 100%. (D) RT-PCR using various enzymes. The 

structured region of 16S rRNA from T. kodakarensis was targeted for reverse 

transcription. Reverse transcription and PCR were performed by two primers, 

16S-Fw and 16S-Rv, using total RNA of T. kodakarensis as a template. The 

arrow shows the position of an RT-PCR product (386 bp). In the case of RT-

PCR with MMLV reverse transcriptase, reverse transcription was performed 



38 

 

with primer 16S-Rv. Using the reverse transcripted DNA as a template, DNA 

was generated by two primers, 16S-Fw and 16S-Rv, with Taq DNA 

polymerase. M is the DNA molecular marker (100 bp DNA ladder; Toyobo, 

Japan).  
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 Next, to examine the performance of mutant enzymes for DNA-

dependent DNA polymerase, Ct values of PCR were analyzed. SYBR® Green 

I was used as a fluorescent intercalator for double-strand DNA. As indicated 

in Fig. 5A, no significant difference was observed in the Ct values among 

T326A, M408A, N422A, and the wild-type. These results showed that amino 

acid mutation to alanine in those positions does not affect their DNA-

dependent DNA polymerase activity. On the other hand, L329A, Q384A, 

F388A, and Y438A showed lower Ct values than the wild-type, indicating that 

they got higher DNA-dependent DNA polymerase activity than the wild-type 

enzyme. 

 Next, reverse transcriptase activity was quantitatively investigated. 

First, complementary DNA of the 16S rRNA region of T. kodakarensis was 

generated using the 16S-Rv primer by various mutants. Total RNA purified 

from T. kodakarensis was used as RNA template. After the reverse 

transcription, the sample was treated with RNase A following phenol 

chloroform extraction to inactivate the enzymes, and generated DNA was 

prepared by ethanol precipitation. Then, the DNA was used as a template, 

and amplified by Taq DNA polymerase with a fluorescent intercalator SYBR® 
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Green I. Under this condition, an enzyme with higher reverse transcriptase 

activity would show a lower Ct value in the PCR. As indicated in Fig. 5B, 

L329A, Q384A, and M408A showed lower Ct values than T326A, F388A, and 

Y438A. The Ct values of K4PolI mutants were higher than those of MMLV, 

which means reverse transcriptase activity of MMLV is higher than those of 

K4PolI mutants. L329A, Q384A, and Y438A mutants showed lower Ct values 

for DNA-dependent DNA polymerase activity than those of other mutant 

enzymes (Fig. 5A). Leu329, Gln384, and Tyr438 seem to be favorable residues 

to modify the substrate recognition specificity without compromising DNA-

dependent DNA polymerase activity. In order to analyze the effect of double 

mutation on DNA polymerase activity, three kinds of mutants were 

constructed. The double-substitution mutants (L329A and Q384A, L329A and 

Y438A, and Q384A and Y438A) were designated as L329A/Q384A, 

L329A/Y438A, and Q384A/Y438A, respectively. No detectable 3′-5′ 

exonuclease activity was observed from these double mutants (Fig. 4D). In 

the RT-PCR analysis, L329A/Q384A showed the lowest Ct value among the 

mutants, indicating the highest reverse transcriptase activity (Fig. 5B). 
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Fig. 5. Quantitative analysis of DNA- and RNA-dependent DNA polymerase 

activity. (A) Comparison of DNA-dependent DNA polymerase activity. For Ct 

value assays in PCR, genome DNA of T. kodakarensis (100 ng) was utilized 

as a template to generate the 16S rDNA region as a target, and the 

fluorescent intensity was investigated. (B) Comparison of RNA-dependent 

DNA polymerase activity. For Ct value assays in the RT reaction, 

complementary DNA of the 16S rRNA region was generated with K4PolI 

derived enzymes or MMLV reverse transcriptase using total RNA obtained 

from T. kodakarensis cells. Following the reverse transcript reaction, a 

sample was treated with phenol chloroform to irreversibly inactivate the 

enzyme. Using reverse transcripted DNA as a template, DNA was generated 

with Taq DNA polymerase. The fluorescent intensity was analyzed by ABI 

PRISM 7000, and the Ct value was calculated using the supplied software. 
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1-4. Discussion 

 In this chapter, a hyperthermophilic bacteria was isolated. This newly 

isolated strain was classified as Thermotoga petrophila and named K4 strain, 

on the basis of phylogenetic analysis as well as its growth profiles, typical 

toga-like shape and rifampicin sensitivity. The DNA polymerase I from T. 

petrophila K4 (K4PolI) possesses sufficient performance to perform PCR was 

obtained (Fig. 2B). K4PolI has 3′-5′ exonuclease activity, which contributes to 

accuracy in PCR (Figs. 2C). K4PolI is applicable for PCR as thermostable 

DNA polymerase with accuracy, as same as the other DNA polymerases with 

the 3′-5′ exonuclease activity. 

 The DNA-dependent DNA polymerase generally accepts DNA and 

dNTP and excludes RNA and rNTP. The precise mechanisms to distinguish 

suitable substrates from unsuitable ones are still unknown. Some approaches 

to clarify the recognition mechanisms have been carried out, and two kinds of 

mechanisms for substrate distinction have been proposed. One mechanism is 

for rNTP/dNTP distinction. The Klenow DNA polymerase accepts only dNTP 

and excludes rNTP by sterically blocking the 2′ hydroxyl group of rNTP 

interacting with Glu710 (43). The bulkiness of the 2′ hydroxyl group of ribose 
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appears to interfere with the substrate-binding site of Klenow DNA 

polymerase. Family B DNA polymerase derived from the hyperthermophilic 

archaea Thermococcus litoralis indicated a similar hindrance effect (44). 

Tyr412 of T. litoralis DNA polymerase acts as a steric gate for the 2′ hydroxyl 

group of ribose and excludes rNTP. Another mechanism has been proposed 

for template recognition. As bacterial DNA polymerase I does not recognize 

the absence of the 5-methyl group in uracil, it accepts an uracil-containing 

template. Also, the 2′ hydroxyl group of ribose is predicted as the factor to 

distinguish DNA from RNA for 3′-5′ exonuclease activity of bacterial DNA-

dependent DNA polymerase (45). In Klenow DNA polymerase, Asn420 and 

Tyr423 in the 3′-5′ exonuclease domain interfered with the 2′ hydroxyl group 

of the template and played a key role for RNA exclusion (46). On the other 

hand, the archaeal family B DNA polymerase does not accept the template 

containing uracil, and DNA synthesis is prematurely ended at the uracil-

containing position; this is a different characteristic from that of bacterial 

DNA polymerase (37). Family B DNA polymerase, therefore, strictly 

recognizes DNA and RNA than bacterial DNA polymerase I.  

In this study, I focused on the 3′-5′ exonuclease domain of K4PolI and 
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introduced mutations to make K4PolI to accept a RNA as the template 

because the modeled structure of K4PolI shows that there is a template DNA-

binding region at the 3′-5′ exonuclease domain (Fig. 3). Among the mutant 

constructs, T326A, L329A, Q384A, F388A, M408A, and Y438A showed 

reverse transcriptase activity with DNA-dependent DNA polymerase activity, 

and they are applicable to simple one-step RT-PCR (Fig. 4D).  

All the mutants that gained reverse transcriptase activity showed 

reduced 3′-5′ exonuclease activity. In the RT-PCR experiment, no specific 

complementary DNA were generated from N422A and F451A (Fig. 4D), which 

have full 3′-5′ exonuclease activity (Fig. 4C) comparable to that of the wild-

type enzyme. The results suggest that gain of the reverse transcriptase 

activity is correlated with loss of the 3′-5′ exonuclease activity. There are 

studies that mutations into 3′-5′ exonuclease domain enhanced reverse 

transcriptase activity (33, 35). On the other hand, RT-PCR product was not 

efficiently synthesized from F388A (Fig. 4D), even though F388A possessed 

no detectable 3′-5′ exonuclease activity (Fig. 4C). To optimize the reverse 

transcriptase activity, further structural study about the template 

recognition site is required. 
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Among the constructed mutants, L329A/Q384A possesses the highest 

reverse transcriptase activity (Fig. 5B). However, in RT-PCR experiments, 

L329A/Q384A generated DNA with less efficiency, as shown in Fig. 4C. This 

may be due to the low DNA-dependent DNA polymerase activity, as indicated 

by the higher Ct value shown in Fig. 5A. To improve the efficiency of RT-PCR, 

additional mutations might be required combining with L329A/Q384A. 

In this chapter, I obtained K4PolI mutants which possess 3′-5′ 

exonuclease activity, reverse transcriptase activity and DNA-dependent DNA 

polymerase activity. Also, RT-PCR is able to be performed at simple one step 

format with these developed enzymes. The mutants will contribute to realize 

POC-NAT as simple RT-PCR-use enzymes. 
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Chapter 2: Rapid nucleic acid amplification test developed using paper 

chromatography chip and azobenzene-modified oligonucleotides 

 

2-1. Introduction 

As simple detection technologies of amplified nucleic acid, DNA 

chromatography methods using a chip made of paper have been improved. 

The detection chip for PCR products with single-strand DNA tags were 

developed as well (47, 48). Kaneka corporation designated this detection 

system as the Kaneka DNA chromatography chip (KDCC) (49), which uses 

special primers with the sequences complementary to the 3′ sequences of the 

target region, and single-strand DNA tag sequence at the 5′ end, containing 

a modification. During PCR, elongation by the DNA polymerases is stopped 

at the modification site and the amplified products with single-strand DNA 

tag are generated, so that they would specifically bind to the DNA probes on 

the chromatography chip and allow colorimetric particle labeling at room 

temperature. After the addition of PCR products on the chip, they can rapidly 

be confirmed as colored lines, without special operation such as 

electrophoresis or fluorescence staining, which simplifies the analysis. 
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 For efficient KDCC-based detection, synthesizing PCR products with 

ssDNA tags at 5′ ends is required, and they are generated by blocking DNA 

polymerase-mediated product elongation, using modification sites in the 

primers. Insufficient elongation inhibition makes the worse performance and 

the detection limit of KDCC, because the tag is covered with complementary 

DNA and not recognized in room temperature. Some modification substances 

that inhibit DNA polymerase elongation have been identified, such as 

fluorescent dyes, methylated base, uracil base, phosphoramidite, azobenzene, 

and C3 (47, 48, 50). These substances can be utilized to introduce modification 

in the used primers, such that DNA polymerase activity is inhibited; therefore, 

they are useful for KDCC. However, they have not been investigated in detail. 

 Shortening time for the amplification is equally important for the 

development of POC-NATs, and several approaches have been performed to 

this end. A thermal cycler with high ramp-rate can be applied in order to 

adjust the arbitrary temperature with high speed (51), while another 

approach may be the application of DNA polymerase with a high extension 

speed, allowing shorter time for DNA synthesis (16). On the other hand, the 

binding efficiency of a primer and a template is strongly correlated with the 



48 

 

applicability of these approaches in specific tests. 

 As primer modifications, non-nucleotide type modifications are more 

suitable, because nucleotide modifications tend to be overcome by DNA 

polymerase (52), resulting in the synthesis of undetectable products with 

KDCC. However, the modifications that do not imitate nucleotides usually 

decline the efficiency of primer-template bindings, so that they interfere the 

proper formation of complementary double-strand DNA (53) and increase the 

time necessary for the efficient amplification in PCR. Therefore, to optimize 

the KDCC-based PCR products detection, the utilization of modifications that 

inhibit the elongation by DNA polymerase and do not affect primer-template 

binding is important. Here, I searched for conjugate substances for the 

optimum primer modification with high elongation efficiently and superior 

primer-template binding property. The candidate substances were applied to 

KDCC detection method as modified primers, and their detection 

performances were analyzed. Additionally, I further developed a rapid and 

sensitive pathogenic virus detection system using the modified primers and 

KDCC. 
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2-2. Material and methods 

2-2-1. Materials 

 In the PCR, bacterial A and archaeal family B DNA polymerases can 

be used. Here, I used family A DNA polymerase derived from thermophilic 

bacteria, Thermus aquaticus (Taq; New England Biolabs, USA) and family B 

DNA polymerase derived from hyperthermophilic archaea, Thermococcus 

kodakarensis (KOD exo (-); Toyobo, Japan) in the assay (14, 16). All 

oligonucleotides (Table 2; (54)) were obtained from Kaneka Eurogentec 

(Belgium). Substances selected as modifications were azobenzene, 

trimethylene (C3), triethylene glycol (S9), and inverted nucleotides (INs) (Fig. 

6). Azobenzene, under visible light, forms trans-isomer, while under ultra-

violet light (UV), it changes a form to cis-isomer (55). Lambda phage DNA 

was obtained from Takara Bio (Japan). HSV-1/2 DNA was obtained from Bio-

Rad (USA). 
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Fig. 6. Modification substances used in this chapter. Shadowed parts of the 

molecules show modification sites. For example, one of the modifications was 

added to between 5′ thymidine and 3′ guanidine. 
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2-2-2. DNA chromatography chip 

 Principle of KDCC is indicated in Fig. 7. Two procedures, PCR 

amplification and detection, are employed to detect target molecules. For the 

amplification, DNA-tag added modified primers are utilized. These primers 

have two domains, a primer domain, capable of hybridizing to the target 

sequence, and a tag domain, which can bind to the solid-phase DNA probe on 

chip or colloidal gold nanoparticles. These two domains are connected with 

the modification site that blocks the DNA polymerase-associated elongation. 

The PCR products amplified with these primers possesses a single-strand 

DNA tag at 5′ end, which specifically binds to the probe DNA on the 

chromatography chip or colloidal gold nanoparticles.  

Following the PCR, one aliquot of amplicon is used for KDCC 

detection, with a development buffer, to develop the PCR products on the 

chromatography chip, through the capillary action. During development, the 

PCR products interact with colloidal gold nanoparticles that immobilizing the 

DNA probes, forming an PCR products-colloidal gold nanoparticle complex. 

As the complex moves on the chromatography chip, it hybridizes with the 

solid phase DNA probes on a chromatography chip, which consists of the 
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sequence complementary to the other tag sequence, and is captured by the 

probe, resulting in a red colored signal originating from the aggregation of 

colloidal gold nanoparticles, which allows the visual detection of the PCR 

products. By utilizing multiple sets of primer pairs with different tags, in 

combination with a multiplex PCR method, it is possible to simultaneously 

detect a number of targets. 
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Fig. 7. Principles of KDCC. (A) Structure of the DNA-tagged primer, with a 

primer domain, hybridizing to the target sequence, and a tag domain, binding 

to the DNA probe on a chromatography chip or colloidal gold nanoparticles. 

These two domains are connected with the modification site. (B) The 

generated PCR products, with ssDNA tags at 5′ end. (C) Captured PCR 

product and colloidal gold nanoparticles on the chromatography chip. (D) 

KDCC detection procedures. PCR product with ssDNA tags can be detected 

as a colored line on the chromatography chip. 
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2-2-3. Elongation inhibition evaluation 

 The elongation inhibition assays were carried out by the previously 

reported method, with slight modifications (50), using Taq and KOD exo (-) 

DNA polymerases. The reaction mixtures of Taq DNA polymerase contained 

0.0125 U/μL Taq DNA polymerase, 10 mM Tris-HCl (pH 8.3), 50 mM KCl, 1.5 

mM MgCl2, 0.2 mM deoxynucleotides (dNTPs), 0.5 μM Cy3-probe, 1 μM of 

each modified oligonucleotide in the total volume of 20 μL. The reaction 

mixtures of KOD DNA polymerase contained 0.0125 U/μL KOD exo (-) DNA 

polymerase, 1× KOD exo (-) buffer, 0.2 mM dNTPs, 0.5 μM Cy3-probe, and 1 

μM of each modified oligonucleotide in 20 μL. Elongation reaction conditions 

were as follows: 1 min at 94°C, followed by 30 cycles of 5 s at 95°C, 5 s at 60°C, 

and 5 s at 72°C. Following the incubation, 1 μL of 0.5 M EDTA was added as 

a reaction terminating reagent to the mixtures, 2.5 μL of each solution were 

mixed with sample buffer containing 10 M urea and 1x TBE buffer (0.089 M 

Tris borate, 0.089 M boric acid, 0.002 M EDTA), and the reacted samples were 

electrophoresed on a 20% denaturing polyacrylamide gel, 7 M urea in TBE 

buffer. Following the electrophoresis, polyacrylamide gels were analyzed with 

fluorescent gel imager, ImageQuant LAS 4000 (GE Healthcare, USA). In this 
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evaluation, 50-mer DNA templates and 5′ Cy3 labeled 17-mer primers were 

used. Each DNA template possessed a modified site at position 25. After 

incubation reaction, if the sequence elongation by DNA polymerase was 

completely inhibited, 25-mer products were generated, whereas, if it was not 

blocked efficiently, 50-mer products were identified (Fig. 8.). 

 

 

Fig. 8. DNA elongation with templates with modified site. DNA polymerase 

generates complementary sequences using the DNA templates until it 

reaches the modified site, where the elongation is blocked or it continues due 

to the translesion synthesis (skipping the modified site). 
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2-2-4. Real-time PCR 

 The reaction mixtures of Taq DNA polymerase contained 0.0125 U/μL 

Taq DNA polymerase, 10 mM Tris-HCl (pH 8.3), 50 mM KCl, 1.5 mM MgCl2, 

0.2 mM dNTPs, 0.3 μM of forward and reverse primers each, and 1/20,000 

SYBR® Green I (Takara Bio, Japan) in 20 μL. The reaction mixtures of KOD 

DNA polymerase contained 0.0125 U/μL KOD exo (-) DNA polymerase, 1× 

KOD exo (-) buffer, 0.2 mM dNTPs, 0.3 μM forward and reverse primers each, 

and 1/20,000 SYBR® Green I in 20 μL. 100 pg/test lambda phage DNA was 

used as a template DNA. Combinations of the primers were as follows: 

azobenzene (forward primer: T50 (Az); reverse primer: R (Az)), C3 (forward 

primer: T50 (C3); reverse primer: R (C3)), S9 (forward primer: T50 (S9); 

reverse primer: R (S9)), IN (forward primer: T50 (IN); reverse primer: R (IN)). 

Non-modified primers (forward primer: T25; reverse primer: R) were used as 

a control. Real-time PCR was carried out with LightCycler® 96 (Roche 

Diagnostics, Switzerland). 

 

2-2-5. Melting temperature assay 

 Tm values of each modified oligonucleotide were evaluated with UV-
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vis spectrophotometer TMSPC-8 (Shimadzu, Japan). Oligonucleotides 

containing modified site (T50 (Az), T50 (C3), T50 (S9) and T50 (In); 1 μM each) 

and a nonmodified oligonucleotide (T50) were hybridized with 1 μM 

complementary oligonucleotide (C25) in the hybridizing buffer (100 mM NaCl, 

10 mM Na2HPO4, 1 mM Na2EDTA, [pH 7.0]) (56). Absorbance at 260 nm of 

the hybridized samples was measured at temperatures between 25°C and 

80°C with a ramp rate of 0.5°C /min. The Tm values were calculated with the 

preprogrammed fitting methods offered in the Tm analysis software provided 

with the TMSPC-8 UV-vis spectrophotometer. 

 

2-2-6. PCR products detection with KDCC 

 Two types of KDCCs were designed. KDCC-1 was constructed with 

linearly immobilizing capture DNA probe (I1) onto the nitrocellulose 

membranes, whereas a detection probe (A1) was immobilized on the colloidal 

gold nanoparticles. KDCC-3 was constructed by linearly immobilizing the 

capture DNA probes (I1, I2, and I3) onto the nitrocellulose membrane and a 

detection probe (A1) on the colloidal gold nanoparticles. Chromatography 

chips were assembled by the previously described protocol (47). 
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 PCR reactions were carried out with both Taq and KOD DNA 

polymerases. The reaction mixtures of Taq DNA polymerase contained 2.5 

U/μL Taq DNA polymerase, 10 mM Tris-HCl (pH 8.3), 50 mM KCl, 1.5 mM 

MgCl2, 0.2 mM dNTPs, and 0.3 μM forward and reverse primers each, in 20 

μL. The reaction mixtures of KOD DNA polymerase contained 2.5 U/μL KOD 

exo (-) DNA polymerase and 1 KOD exo (-) buffer, 0.2 mM dNTPs, and 0.3 μM 

forward and reverse primers each in 20 μL. 100 pg/test lambda phage DNA, 

HSV-1, and HSV-2 DNA sequences were used as template DNAs. PCR 

analyses were carried out with LifeECO (Bioer, China). Following the 

amplification, 5 μL of PCR products were tested on KDCCs, and developed 

with 65 μL of development buffer at room temperature. After 5 min, color 

signals from the chromatography chip were analyzed with immuno-

chromatography reader, C10066-10 (Hamamatsu Photonics, Japan) and 

inspected visually. 
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Table 2. Oligonucleotides used in chapter 2. 

No. Name Primer sequence (5′ to 3′) Mer Remarks 

1 Cy3-P [Cy3]ACCTCTTCCAGCGAGAAC 18 5′ fluorescent 
dye (Cy3) 
modified 

2 T25 GCTATAAGTTCTCGCTGGAAGAGGT 25  

3 T50 TCGAGTGACAGCTAATGTGTGATTGCTATAAGTTCTCGCTGGAAGAGGT 50  

4 T50 (Az) TCGAGTGACAGCTAATGTGTGATT-[Az]-GCTATAAGTTCTCGCTGGAAGAGGT 50  

5 T50 (C3) TCGAGTGACAGCTAATGTGTGATT-[C3]-GCTATAAGTTCTCGCTGGAAGAGGT 50  

6 T50 (S9) TCGAGTGACAGCTAATGTGTGATT-[S9]-GCTATAAGTTCTCGCTGGAAGAGGT 50  

7 T50 (IN) TCGAGTGACAGCTAATGTGTGATT-[IN]-GCTATAAGTTCTCGCTGGAAGAGGT 50  

8 R GATAGGATTAGAAGGTCGAACCGT 24  

9 R (Az) ATTTTTCACTGGGTTTATAGT-[Az]-GATAGGATTAGAAGGTCGAACCGT 45  

10 R (C3) ATTTTTCACTGGGTTTATAGT-[C3]-GATAGGATTAGAAGGTCGAACCGT 45  

11 R (S9) ATTTTTCACTGGGTTTATAGT-[S9]-GATAGGATTAGAAGGTCGAACCGT 45  

12 R (In) ATTTTTCACTGGGTTTATAGT-[IN]-GATAGGATTAGAAGGTCGAACCGT 45  

13 I1 ATCACACATTAGCTGTCACTCGATGCA 27 Capture probe 
(immobilized on 
membrane) 

14 I2 TTAGAGAGTTATCGTAGACCTCGCA 25  

15 I3 TGGCAACATTTTTCACTGGGTTTATAG 27  

16 A1 CTATAAACCCAGTGAAAAATGTTGCCA[C6-SH] 27 

Detection probe 
(immobilized on 
Au nano-
colloid), 3′ C6-
Thiol modified 

17 C25 ACCTCTTCCAGCGAGAACTTATAGC 25 Complementary 
sequence of T25 

18 i1-hsv-1f TGCATCGAGTGACAGCTAATGTGTGAT-[Az]-CTGTGGTGTTTTTGGCATCA 47 

Primers were 
designed based 
on (54) 

19 a1-hsv-1r TGGCAACATTTTTCACTGGGTTTATAG-[Az]-GGTGGTGGAGGAGACGTTG 46 

20 a1-hsv-2f TGGCAACATTTTTCACTGGGTTTATAG-[Az]-CATGGGGCGTTTGACCT 44 

21 i2-hsv-2r TGCGAGGTCTACGATAACTCTCTAA-[Az]-TACACAGTGATCGGGATGCT 45 

Az: Azobenzene, C3: Trimethylene, S9: Triethylene glycol, IN: Inverted nucleotide (thymidine) 
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2-3. Results 

2-3-1. Elongation inhibition efficiency 

 I examined the elongation inhibition efficiency of the modification 

substances; azobenzene, C3, S9, and IN. Following the electrophoresis, the 

inhibition efficiency was calculated from detected fluorescence intensity as 

follows: (25-mer product)/(25-mer product +>25-mer product) [%]. I confirmed 

that azobenzene, C3, S9, and INs inhibited the elongation of sequences when 

utilized both DNA polymerases. Azobenzene modification of the template 

oligonucleotide was shown to be the most efficient (Taq: 100%, KOD: 96.3 

±0.4%), followed by C3 modifications (Taq: 95.7 ±5.2%, KOD: 81.9 ±0.4%), S9 

(Taq: 96.3 ±2.7%, KOD: 77.0 ±2.8%), and, finally, INs (Taq: 84.2 ±7.1%, KOD: 

81.2 ±0.6%) (Fig. 9). While, products longer than 25 nucleotides were detected 

as well after all modifications, except when azobenzene-Taq DNA polymerase 

combination was utilized. 
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Fig. 9. Efficiency of DNA elongation inhibition. Inhibition efficiency was 

calculated based on the fluorescence intensity of (25-mer product)/(25-mer 

product) + > 25-mer product) [%]. (A) Taq DNA polymerase analysis. (B) KOD 

exo (-) DNA polymerase analysis (25-mer product, properly generated 

product; 50-mer, translesion elongated product). 
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2-3-2. Amplification efficiency 

 The amplification efficiencies of each modified oligonucleotide were 

examined with real-time PCR. Lambda phage DNA was utilized as the 

template DNA. The Cq value, which is a quantification cycle number needed 

to reach the constant fluorescent intensity, was utilized as a parameter to 

analyze amplification efficiency. Cq analysis indicated that the PCR with 

azobenzene-modified primers had the lowest Cq values (Taq: 15.1 ±0.09, 

KOD: 13.6 ±0.06), followed by C3-modified (Taq: 16.0 ±0.32, KOD: 15.2 ±0.38), 

S9 (Taq: 16.8 ±0.33, KOD: 15.9 ±0.54), and IN modified (Taq: 17.0 ±0.60, KOD: 

16.7 ±0.38) primers. The Cq values obtained using azobenzene-modified 

primers were shown to be very similar to those Cq values obtained with non-

modified primers (Taq: 15.3 ±0.09, KOD: 13.0 ±0.06) (Fig. 10). 
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Fig. 10. Real-time PCR assay. Amplification efficiency of each modified 

primer was examined. Fluorescence intensity and Cq values were obtained. 

(A) Taq DNA polymerase analysis. (B) KOD exo (-) DNA polymerase analysis. 
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2-3-3. Melting temperature 

 Tm values of each modified oligonucleotide were measured by 

analyzing absorbance of the hybridized samples at 260 nm. The analyses 

indicated that azobenzene-modified primers showed the highest Tm values 

(65.24 ±0.43), followed by the non-modified primer (63.79 ±0.10), S9 (63.55 

±0.52), C3 (63.27 ±0.60), and IN (62.66 ±0.44) (Fig. 11). 
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Fig. 11. Melting temperature (Tm) assays, using modified oligonucleotides. 

Tm values obtained using the modified primers were measured and compared. 
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2-3-4. Detection limit profiles of KDCC 

 Using all modified oligonucleotides as primers, I have carried out the 

PCR analyses. Primer combinations and template DNA were the same as 

described for the assay of amplification efficiency. KDCC-1 was utilized to 

investigate all products, and PCR products obtained by using the azobenzene-

modified primers indicated the lowest detection limit (Taq: 0.3 pg/test, KOD: 

0.03 pg/test) with the same reaction time (Fig. 12). The detection limit was 

shown to be 10-fold lower than that obtained using C3-modfidied primers, 

and 100-fold lower than those obtained using S9- and IN-modified primers. 

Furthermore, by adding a larger amount of template DNA enhanced the 

signal intensity observed on the chromatography chip, showing the potential 

of KDCC for quantitative analyses. 
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Fig. 12. KDCC detection of PCR products. Color signals obtained on chips 

were analyzed visually and with immuno-chromatography reader. (A) PCR 

products obtained using Taq DNA polymerase. (B) PCR products obtained 

using KOD exo (-) DNA polymerase. n. d., no data; minus, color signal was 

not visually detectable; plus sign, color signal was visually detectable; two 

plus signs, easily detectable; three plus signs, a stronger signal. Az, 

azobenzene-modified primers used; C3, C3-modified primers used; S9, S9-

modified primers used; IN, IN modified primers used. 
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2-3-5. Detection of herpes simplex virus (HSV) with KDCC 

 Using KOD DNA polymerase and HSV-1/2 DNA as templates, 

multiplex-PCR assays were carried out. Primers for the virus detection were 

designed as previously reported (54) and azobenzene was used as a modifier 

for primers. KDCC-3 was utilized for the assays. HSV-1 and HSV-2 were 

shown to be properly detected as red colored lines on KDCCs (Fig. 13), while 

the required time for the detection was less than 5 min. 
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Fig. 13. HSV-1/2 detection with KDCC. HSV-1/2 DNA samples were amplified 

with PCR using azobenzene-modified primers. PCR products were assayed on 

KDCC-3, and the signals were visually detected within 5 min. N, non-

template negative control. 
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2-4. Discussion 

 Here, I investigated that the inhibition efficiency depended on the 

type of modification substance utilized, and azobenzene modifications were 

shown to induce the highest levels of elongation inhibition. The elemental 

mechanisms of these processes remain unclear, however, azobenzene 

characteristics, such as bulkiness, hydrophobicity, and intercalation 

properties (55), may relate to this effect. Furthermore, a considerable level of 

translesion elongation products were confirmed to be dependent on the 

modification substance, with the maximum rate of 23% of the total reacted 

products observed for the combination of KOD exo (-) DNA polymerase and 

S9 modifications. Additionally, in KDCC detection analyses, two modified 

primers (forward and reverse primers) were utilized. Since undetectable PCR 

products for KDCC are generated when translesion synthesis occurs, this 

could involve either forward or reverse primers, or both. In case of the 

combination of KOD exo (-) DNA polymerase and S9 modifications, an 

estimated ratio of generating detectable PCR products which possessed 

ssDNA tags both 5′ ends, was calculated to 59.29% (0.772 ×100). This 

presumed value shows translesion synthesis and the synthesis of 
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undetectable products leads to a decline in KDCC detection performance. 

Although the reduction in detection sensitivity can be recovered by increasing 

the number of thermal cycles, longer time for reaction is not suitable for POC-

testing. Therefore, all assays in this chapter pointed to azobenzene 

modifications as superior for the application in KDCC, due to the higher 

inhibition efficiency and the generation of detectable PCR products. 

 The type of DNA polymerase is related to the inhibition efficiency by 

modifications in a template. For example, although some bacterial family A 

DNA polymerases can accept ribonucleotide and uracil base, archaeal family 

B DNA polymerases are inhibited by the presence of ribonucleotide and uracil 

bases (32, 37, 57). Additionally, thymine dimers and abasic sites allow the 

translesion synthesis (52, 58). In this chapter, I investigated the elongation 

efficiencies of Taq and KOD exo (-) DNA polymerases, and showed that KOD 

DNA polymerase was easy to generate translesion elongation. This was more 

prominent when using C3- and S9-modified primers and KOD exo (-) DNA 

polymerase, which reduced inhibition efficiency, whereas the use of 

azobenzene primer led to the inhibition efficiency of > 96%. KOD DNA 

polymerase was shown to possess a high elongation speed and high tolerance 



72 

 

against impurities in DNA synthesis, making it suitable for the application 

in the ultra-rapid PCR and PCR with no purified samples or with crude 

samples (16, 59). As these are the characteristics required for POC-NATs, the 

use of KOD exo (-) represents a suitable approach in the development of tools 

for POC-testing. 

 Speed of the diagnostics is one of the key factors in POC-NAT 

development. To examine the speed of amplification, real-time PCR analysis 

were carried out, and indicated that the reaction speed when using all 

modified primers, except for azobenzene-modified ones, was reduced 

(increased Cq values), compared with that obtained when utilizing no 

modified primers. This may be due to the decline of primer-template 

hybridizing efficiency after the modification, which stalls DNA polymerase 

and induces the formation of inert complexes. On the other hand, when using 

azobenzene modified primers, the speed of amplification remained the same 

rate as that for the non-modified samples when Taq DNA polymerase was 

used, or it was higher than those obtained for other modifications when KOD 

exo (-) DNA polymerase was applied. This high-speed amplification may be 

related to the property of azobenzene, which acts as an intercalator and 
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enhancing primer-template binding. Based on the Tm analysis in this chapter, 

I support this hypothesis as the azobenzene-modified oligonucleotides have 

higher Tm values than other examined modified oligonucleotides (the buffer 

used in this assay was not completely similar to the one used in PCR; 

therefore, the Tm value may be altered in PCR results). Furthermore, this 

counteracts the negative effect of primer modification, and contributes to 

improvement of the amplification speed. The superiority of azobenzene-

modified primers for utilization in KDCC assay was indicated throughout this 

chapter. The lowest detection limit was observed when using azobenzene-

modified primers, with both DNA polymerases used. Additionally, these 

results suggest that, by using azobenzene-modified primers with the KDCCs, 

trace amounts of DNA can be rapidly detected, due to the efficient inhibition 

of DNA polymerase-mediated DNA elongation during the amplification 

procedure, in combination with a higher amplification efficiency compared 

with those obtained when using other modified primers. 

 Finally, rapid multiplex detection system for HSV-1/2 using KDCC 

and azobenzene-modified primers was developed, allowing a rapid (within 5 

min) detection of HSV-1/2 DNA. By combining this system with simple and 
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rapid sample pretreatment and rapid PCR technologies, multiplex POC-

NATs can be developed and widely used in future. 
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General conclusion  

In this thesis study, I tried to develop elemental technologies for a 

simple and rapid NAT to realize point of care-NAT, which was useful for the 

earlier detection of pathogens. To accomplish the objective, I focused on the 

amplification and the detection processes of NAT which consisting major 

procedures of this method. At first, I conducted study about the amplification 

step and a technology to simplify the RT-PCR was developed. Secondly, about 

the detection step, a technology for a simple and rapid multiplex-PCR product 

detection was developed. 

In chapter 1, to simplify the RT-PCR, thermostable proof-reading 

DNA polymerase possessing both reverse transcriptase activity and DNA-

dependent DNA polymerase activity was developed from DNA polymerase I 

derived from newly isolated hyperthermophilic bacterium Thermotoga 

petrophila K4. The firstly-obtained wild-type DNA polymerase I (K4PolI) did 

not have detectable reverse transcriptase activity. Structure modeling of the 

enzyme estimated the site of template recognition. I designed the amino acid 

substituted mutants in the prospected recognition region. Enzymatic analysis 

of the mutants revealed that some of enzymes showed reverse transcriptase 
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activity with enough stability, DNA-dependent DNA polymerase activity and 

proof-reading activity. These K4PoI mutants are capable of applying simple 

one-step RT-PCR.  

In chapter 2, a rapid detection technology for multiplex-PCR products 

was developed using azobenzen-modified primers and a paper-based DNA 

chromatography chip named KDCC. This research firstly discovered that the 

combination of azobenzene-modified primers and KDCC showed excellent 

detection performance than other modifications such as trimethylene, 

triethylene glycol, and inverted nucleotides. Also, the study revealed this 

superior property of azobenzene-modified primers was derived from efficient 

ss DNA tag addition and high-speed amplification in PCR. Constructed HSV-

1/2 detection method with the developed technology will contribute rapid 

detection of pathogens. 

To realize on-site NAT, the industrial study about combining 

developed technologies and building up as a diagnostic system is still 

remained. Also, further improvements in rapidity and usability will be 

required for the wider application. The developed technologies in this study 

are useful for development of the next generation diagnostic device and 
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realize POC-NAT, which contribute to earlier diagnostics of infectious 

diseases in smaller institutions and developing countries.  
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