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Nomenclature 

 

�� The surface area of the pressure bar 

�� The surface area of the specimen 

�� Elastic wave speed in bar material 

� Dynamic stiffness of epoxy/silica 

�� Dynamic stiffness of neat epoxy 

�� Young’s modulus of pressure bars 

�� Stress transmissibility 

�� Impedance mismatch 

����� The estimated loss of energy 

L Length of the striker bar 

��, �� Length and diameter of the specimen, respectively 

��, �� Compressive forces of the specimen at the interfaces of 

input bar-specimen and output bar-specimen, respectively 

T Temperature 

Tg Glass transition temperature  

�� Loading pulse duration (duration of the incident pulse) 

��� Impact speed of the striker bar 

��, �� The velocity of the specimen at the interfaces of input bar-

specimen and output bar-specimen, respectively 

 Hysteretic damping 

�� Incident pulse/incident strain wave 
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��  Reflected pulse/reflected strain wave  

�� Transmitted pulse/transmitted strain wave 

|��|��� The amplitude of the incident strain wave 

|��|��� The amplitude of the reflected strain wave 

|��|��� The amplitude of the transmitted strain wave 

��̇ Strain rate 

�� Strain 

�� Stress 

SP Composition ratio of micro-nanoparticles 
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Chapter 1  
Introduction         

 

1.1 Research background 

The use of structural adhesives is rising with the development of lightweight 

structures, such as aircraft and automobile. Structural adhesives facilitate the joints 

of dissimilar and composite materials, promote homogeneous stress distribution, 

minimize stress concentration, and provide a larger contact surface. They also avoid 

defects and changes in the material properties of the adherends, such as holes and 

heat affected zone produced by fastener and welding.  

The epoxy-based adhesive is well-accepted for joint applications in 

industries owing to its beneficial natures. Compared to other adhesives, the epoxy 

is most lightweight, low in production cost, strong adhesion, good solvent 

(compatibility), curable in a wide range of temperature, highly resistant to heat, 

moisture, and chemicals. However, the epoxy adhesive is naturally brittle, 

vulnerable to crack initiation and growth, and sensitive to the loading rate and 

temperature. Particulate filler is introduced to minimize such drawbacks and 

improve mechanical responses of epoxy adhesive. Silica particle is commonly used 

to improve modulus and toughness which are essential for structural joints. 
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In practice, structural joints should endure various types of loadings under 

extreme environmental conditions, such as crushes, impacts, vibrations, extreme 

operational temperature (-50C ~80C), and corrosive environment. In such 

conditions, the structural adhesive should resist deformation and facilitate 

appropriate energy dissipation to maintain joint rigidity and reliability at a wide 

range of loading rates and temperatures. Therefore, experimental characterization 

of dynamic stiffness and damping of epoxy adhesive is critical for engineering 

design and analysis purposes. In the characterization, mixture variables of 

composite adhesives, e.g., filler/matrix ratio and multi-filler composition ratio, 

should be paid more attention to provide design options for the adhesive to match 

applications. 

Up to date, stiffness and energy absorption behaviors of particulate-filled 

epoxy adhesive under various loading rates have been investigated by many 

researchers. They observed the mechanisms of stiffening and energy dissipation 

and the influencing variables. Section 1.2 introduces an overview of the progress 

and achievements of the previous works. Section 1.3 describes the research 

problems based on the overview of the previous works. Section 1.4 describes the 

objectives in this present study regarding the issues in section 1.3. Finally, a 

summary of this chapter is presented in section 1.5. 
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1.2 Literature review 

1.2.1 The influences of adhesive properties on the joint performances 

Mechanical properties of structural adhesives affect the overall mechanical 

performances of structural joints. For instances, Higuchi et al. [1] reported that the 

increase of adherend/adhesive stiffness ratio increased the maximum principal 

stress at the interface of butt joints under impact tensile loadings. A similar study 

was conducted by Liao and Sawa [2] and demonstrated that the increase of 

adherend/adhesive stiffness ratio increased the normal stress. The more recent study 

was carried out by Hazimeh et al. [3] and showed that joint shear strength increased 

with the adhesive shear modulus. Asgharifar et at. [4] reported that stress 

transmissibility of bonded joints increased with the adhesive modulus. Such 

previous studies emphasized that the characterization of the adhesive properties is 

critical for structural joint design and analysis.   

1.2.2 Stiffness and damping behaviors of neat epoxy adhesive  

The epoxy is one of the most used structural adhesives due to its high 

adhesion and compatibility with various types of materials. The epoxy polymer is 

viscoelastic in natures which are characterized by the storage modulus and the loss 

modulus. The storage modulus and the loss modulus measure the energy stored 

(stiffness) and dissipated (damping) during deformation, respectively. Such 

characteristics depend on the crosslinking density of epoxy which can be modified 

during the polymerization process [5–9]. For example, the densely cross-linked 

epoxy is brittle and exhibits high stiffness but low damping [10–13]. 
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 The stiffness and damping of epoxy are sensitive to the strain rate loadings. 

Increasing the strain rate enhances the modulus but reduces the damping of epoxy 

[14–20]. The increase in modulus and decrease in damping are the results of the 

epoxy embrittlement induced by the increase of loading rate [20,21]. The rate-

sensitivities of modulus and damping depend on the epoxy natures and the loading 

conditions [22].  

The damping performance depends on the deformation behaviors of epoxy. 

Under dynamic compressive loading, the epoxy exhibits elastic and viscoelastic-

plastic deformation [15,16,23]. The hysteretic damping is indicated by stress-strain 

loop responses. The major energy dissipation occurred during nonlinear elastic 

(superelastic) deformation [23]. The epoxy deformation behaviors are also 

influenced by the strain rate. The epoxy exhibits ductile natures at low strain rate 

but changes to brittle at a high strain rate of compressive loadings [20,21] and thus, 

reduces the damping. 

The stiffness of epoxy is also sensitive to the temperature owing to its 

inherent viscoelasticity. The epoxy stiffness decreases nonlinearly with the increase 

of temperature due to the increase in molecular mobility [17,24]. The rate-

sensitivity of epoxy modulus also changes with temperature. The stiffness of epoxy 

is less sensitive to the strain rate at low temperature (-20C) [18]. Thermal stability 

of adhesive stiffness and damping is of interest as the structures experience a wide 

range operating temperature.  
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To conclude the above paragraphs, despite the high performances in 

adhesion and power-to-weight ratio, neat epoxy is brittle and sensitive to loading 

rate and temperature. In practice, adhesive joints should resist deformation and 

dissipate energy in a wide range of loadings and temperatures. In this respect, the 

introduction of reinforcing particles to improve the desired properties of epoxy 

adhesive is necessary. 

1.2.3 Silica-filled epoxy adhesive 

Silica particles are commonly used to stiffen epoxy adhesives owing to their 

rigidity. The modulus of epoxy/silica composite is determined by the composition 

ratio between the rigid particles and the soft epoxy matrix. The modulus increases 

with the increase of the content of silica particles in the composite space [25–43]. 

Mixture laws are used to predict the modulus of epoxy/silica at any particle content 

[41,44–46]. However, the discrepancy between the experimental results and the 

predicted modulus occurs frequently. Such discrepancy is attributed to the presence 

of the interphase which is formed by the matrix-filler interactions and has different 

properties to that of matrix and fillers [26,34]. 

The stiffness of interphase area depends on the matrix-filler interactions and 

the matrix adhesion [39]. Strong adhesion and good matrix-filler interfaces produce 

stiff interphase and hence, improve the overall modulus of epoxy composite 

[26,34,35,40,47]. In contrast, poor interfacial adhesion and matrix-filler 

interactions generate soft interphase and counteract the stiffening effect of silica 

particles [48–52]. The properties of the interphase were verified through nano-
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indentation tests or estimated through a model [57,58]. Then, the more accurate 

prediction of composite modulus was obtained by including the interphase modulus 

in the constitutive model [34,54]. 

The stiffening effect of the interphase area is exploited by increasing particle 

contents or reducing particle sizes. However, a significant stiffening effect can be 

obtained only by varying particle sizes below the certain value [39]. In fact, 

nanoparticles increase the modulus more efficiently compared to microparticles at 

a given weight fraction owing to the larger specific surface area. Nonetheless, the 

modulus of epoxy/nanosilica frequently underperforms the predicted value owing 

to the mixing problems. Poor mixing of matrix and nanoparticles creates holes, 

cavities, and aggregates/agglomerates which reduce the stiffening effect of silica 

particles on the composite [55,56].  

Well-dispersion is required to form large and continuous interphase area in 

the composites and thus, to exploit the exponential stiffening effect of silica 

nanoparticle. However, without any treatment silica particles tend to cluster during 

mixing and reduce the stiffening effect [57,58]. Conventional mechanical mixers 

generate a limited shear force to break a high number of nanoparticle colonies. For 

example, Bondiolli et al. [34] observed that aggregation of silica nanoparticle was 

initiated at 5-wt.%. Sol-gel technique, ultrasonication, mild processing, and silica 

surface treatment were used to prevent and minimize aggregate/agglomerate 

[40,59–61]. However, such techniques are complicated and less effective in cost 

and time to prepare particulate-filled epoxy. 
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Composing particles of different sizes (bimodal) reduce viscosity and 

prevent agglomeration during mixing [58,62–64]. The large particle breaks 

agglomerates into smaller aggregates and improves particle distribution. The 

dispersion quality of bimodal particles depends on the composition ratio and the 

size ratio of large-to-small particles and the absolute size of particles [58,62–64]. 

This alternative technique is simpler and more efficient compared to the previously 

mentioned techniques. 

Synergetic effects were expected from two-size silica particles to improve 

the epoxy performances. Kwon et al. [65] and Dittanet and Pearson [31] mixed 

silica micro-nanoparticles in various size ratios to modify the epoxy properties. 

They found that variations of particle sizes and composition ratios slightly affect 

the modulus but significantly affect the toughness. They found that two-size 

particles generate synergetic toughening by dissipating more energy via complex 

interactions of matrix-filler and interparticle. Shariati et al. [66] composed two-size 

silica nanoparticles but did not find any significant effect on modulus nor energy 

absorption. More recently, Keivani et al. [67] used micro-nanoparticles to reinforce 

epoxy and found that the modulus increases monotonically with increasing the 

portion of silica nanoparticles. Dorigato et al. [68] and Dzenis [69] reported that 

aggregated nanoparticles provide an additional stiffening effect on the epoxy by 

trapping some matrices within the strong aggregates. They proposed a model to 

explain the new reinforcing mechanism induced by particle aggregation.  
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Stress concentration induced by silica particles produces high shear and 

normal strains that promote significant viscoelastic energy loss [70]. The inclusion 

of silica nanoparticles preserves the ductility of epoxy. The improved ductility 

indicates the presence of additional energy dissipation mechanisms induced by 

nanoparticles [33]. There are several mechanisms of energy dissipation induced by 

matrix-nanoparticle interactions such as matrix shear bandings [32], local plastic 

deformations [40], and particles debonding [71]. 

In the previous studies, the synergistic effects of silica micro-nanoparticles 

on the stiffness and damping of epoxy under dynamic loads had not been 

investigated. The reinforcing mechanisms of the epoxy adhesive filled with two-

size silica particles are still unexplained. Epoxy natures, matrix-filler interactions, 

and aggregation must be investigated under dynamic loadings. 

1.2.4 Dynamic responses of epoxy/silica under high loading rate and elevated 

temperature 

The stiffness and damping of epoxy/silica are sensitive to strain rate due to 

viscoelastic natures of the epoxy matrix. Dynamic compressive moduli of 

epoxy/silica increase with increasing strain rate and the content of silica particles 

[48,72,73]. However, the damping decreases with the increase of particle content 

and size owing to the reduced ductility. The decrease of ductility is caused by the 

stress concentration induced by agglomerated particles and the decreased polymer 

mobility which unable to catch up the instant strain generated at high strain rate. 
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Kwon et al. [74] used bimodal micro-nanoparticle to reinforced epoxy and 

investigated the thermal stability of epoxy/silica. They found that the stiffness of 

the composite increased with the portion of silica nanoparticles regardless of the 

temperature. It was noticed that the effect of micro-nanoparticle composition ratio 

on the stiffness was decreased with increasing temperature and was negligible near 

glass transition temperature (Tg). Nonetheless, the effect of micro-nanoparticles on 

the epoxy under impact and elevated temperature are rarely studied.  

1.3 Research problems 

The preceding section overviewed previous studies which are related to the 

characterizations of the epoxy adhesive. Based on that overview, there are several 

issues to notice as follows: 

1) The effect of mono-size silica particles on the modulus and toughness of epoxy 

adhesive under both quasi-static and dynamic loadings had been studied 

intensively. However, the effects of two-size particles on the mechanical 

responses of epoxy adhesive had not been investigated sufficiently, especially 

under dynamic loads. Therefore, the reinforcing effects of silica micro-

nanoparticles remain unclear.  

2) The effect of silica particles on the toughness of epoxy was explored 

immensely. However, the hysteretic damping behaviors of epoxy adhesive had 

been barely studied, particularly for the epoxy reinforced by silica micro-
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nanoparticles. Hysteretic damping is a critical property of adhesive to response 

small strain dynamic loadings such as impact and vibration. 

3) In the interest of thermal stability of epoxy adhesive, the effect of temperature 

on the mechanical responses of epoxy and epoxy/silica had been investigated in 

the previous studies. However, the thermal stability of epoxy modified by silica 

micro-nanoparticles under dynamic loadings has been paid little attention. 

Based on the overlooked issues in the previous study, in the present study, 

we focus on the following issues:  

1) The effects of composition ratio and weight of silica micro-nanoparticles on the 

dynamic performances of bulk epoxy adhesive under impact loadings. 

2) The effect of temperature on the dynamic performances of epoxy modified by 

silica micro-nanoparticles under impact loadings. 

3) The effectivity of two-size particles to improve particle dispersion and to 

generate the subsequence synergistic effects on the epoxy adhesive. 

1.4 Objectives and approach 

Regarding the evaluation of the issues presented in the previous section, the 

objectives of the present study are described as follows: 
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1) To obtain the stress-strain loop responses of the epoxy adhesive modified by 

silica micro-nanoparticles and to estimate the dynamic stiffness and hysteretic 

damping under impact loadings. 

2) To evaluate the effects of composition ratio and weight fraction of silica micro-

nanoparticles on the dynamic responses of epoxy adhesive and to observe the 

possible synergistic effects generated by micro-nanoparticles.  

3) To evaluate the reinforcing performances of silica micro-nanoparticles on the 

dynamic responses of epoxy adhesive at the elevated temperature. 

The contributions of this present study are: 

1) To fill the gap of knowledge on the dynamic responses of epoxy adhesive 

modified with silica micro-nanoparticles under impact loadings, which are 

overlooked in the previous studies. Continuous data on the epoxy adhesive 

performance from quasi-static to high strain rate loadings are necessary for 

structural design and analysis.  

2) To measure the effectiveness and the limitations of two-size silica particles to 

improve particles dispersion using a conventional mixer and the subsequence 

synergetic effects on the epoxy adhesive. 

3) To provide design options or guidelines for modifying the dynamic 

performances of epoxy adhesive by choosing an appropriate composition ratio 

and weight fraction of silica micro-nanoparticles to match certain applications. 
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4) To find the optimum composition ratio of silica micro-nanoparticles that 

maximizes the stiffness and damping performances of epoxy adhesive. 

The detail of the contents is introduced as follows: 

In Chapter 2 [Effects of mixed micro and nano silica particles on the 

dynamic compressive performances of epoxy adhesive], the split Hopkinson 

pressure bar (SHPB) apparatus was used to evaluate the effects of silica micro-

nanoparticles on the dynamic modulus, stress transmissibility, and loss energy of 

epoxy adhesive at the elevated temperature. The limitations of the present SHPB 

technique to produce smooth and closed-loop stress-strain responses are discussed. 

A less-fluctuating stress-strain loop is necessary to estimate hysteretic damping 

accurately. In the absence of smooth stress-strain loops, a new parameter to measure 

the energy absorption performance was introduced. The dynamic stiffness, stress 

transmissibility, and energy loss performances are evaluated for different 

composition ratios and weight fractions of 5-wt.% and 10-wt.% silica micro-

nanoparticles. The stiffening effect of silica micro-nanoparticles at the elevated 

temperature is evaluated. The trade-off between dynamic stiffness and energy loss 

are discussed. Finally, the optimum composition ratio of silica micro-nanoparticle 

that maximizes the energy loss while preserving the stiffness was presented. 

In Chapter 3 [Synergistic effects of silica mixed micro and nanoparticles 

on the stiffness and damping of epoxy adhesives], the SHPB test was modified 

to obtain smooth stress-strain loop responses of the materials by using bonded 

specimen instead of the sandwiched specimen. The validity and reliability, as well 
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as the limitations of the modified technique, are discussed. The dynamic stiffness 

and hysteretic damping are evaluated for the various composition ratios at 

increasing particle content of 2-wt.%, 5-wt.%, and 10-wt.%. The synergetic effects 

of silica micro-nanoparticles are discussed in terms of the contribution of the 

interphase area. The effectiveness of two-size particles to improve particle 

dispersion is also discussed. The mechanism of energy dissipation via damages is 

presented. Finally, the optimum composition ratio of micro-nanoparticle which 

maximizes both stiffness and damping is presented.  

In Chapter 4 [Conclusions], the effects of silica micro-nanoparticles on the 

dynamic responses of bulk epoxy adhesive were summarized based on the results 

of Chapters 2 and 3. Furthermore, the outlooks for the future study in correlation 

with the topic in the present study were described. 

1.5 Summary  

In this chapter, the research topic about the effects of silica micro-

nanoparticles on the dynamic responses of bulk epoxy adhesive is introduced. 

Previous studies related to this topic are overviewed to recognize the achievements, 

to develop motivations, and to describe the necessities and the objectives of the 

present study, which are described as follows: 

1) The dynamic responses of the epoxy modified by silica micro-nanoparticles 

under impact loadings had not been investigated in the previous studies. 
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2) The effects of composition ratio and silica weight fraction of silica particles on 

the dynamic stiffness and hysteretic damping of epoxy adhesive should be 

examined. 

3) The reinforcing effect of silica micro-nanoparticles on the dynamic responses 

of epoxy adhesive at the temperature near the glass transition temperature of the 

epoxy (Tg=55C) under impact loads had not been evaluated. 
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Chapter 2  

Effects of mixed micro and nano silica particles on the 
dynamic compressive performances of epoxy adhesive        

 

  

2.1 Introduction 

Epoxy is widely used both as adhesives and composites in industrial and 

structural applications due to its superiority in strength to weight ratio. 

Understanding the stiffness behavior of epoxy at various strain rate is critical for 

design and analysis purposes. Stiffness behavior is required to estimate the response 

of structures subjected to dynamic loads such as impact and shock. The stiffness of 

epoxy composite depends on the inherent characteristics of its constituent materials 

and their interactions. 

Silica particles are commonly used to enhance the epoxy stiffness due to 

their high modulus and strong adhesion with the epoxy matrix. Strong adhesion of 

epoxy-silica restricts molecular mobility and deformation of the epoxy matrix at the 

interphase area. The interphase area, which is stronger than the matrix, facilitates 

higher load transfer between the epoxy matrix and silica particles and thus enhances 

the epoxy stiffness. The interphase area can be increased by increasing the content 
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of silica particles in the epoxy for a given particle size or reducing the size of silica 

particles for a given weight fraction. Reducing the size of silica particles into nano-

scale effectively improves the stiffness of epoxy because it avoids stress 

concentration induced by larger size silica particles (i.e., micro silica particle) 

[26,32,39,40,88–90].  

Nano silica particles must be well-dispersed in the epoxy matrix to 

effectively increase the stiffness of epoxy [39]. However, without any surface 

modification, high content of nano silica particles tend to aggregate or agglomerate 

in the epoxy which influences the mechanical properties of the epoxy adhesive[68], 

[78]. Moreover, nano silica particles tend to increase the viscosity of the epoxy 

which causes difficulties in the mixing process. Agglomeration of the nanoparticles 

can be prevented by introducing larger size particles, such as microparticles, into 

the mixture. However, the references investigated the influence of two-size silica 

particles on the stiffness of epoxy are very limited. 

The influence of two-size silica particles on the stiffness of epoxy has been 

reported to depend on the size ratio of two particles. Kwon et al. [65] and Adachi 

et al., [79] using relatively small size ratio of silica fillers (i.e., 1.56 and 0.24 m in 

diameters), have reported that the composition ratio slightly influences the bending 

stiffness and static tensile stiffness. However, they found that the epoxy stiffness 

strongly depends on the weight fraction of the silica particles. More recently, using 

larger size ratio (i.e., 42 m and 23, 74, 174 nm in diameters), Dittanet et al. [31], 

showed that the composition ratio of two sizes of silica particles significantly 
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influenced the static tensile stiffness of epoxy. They reported that the nanoparticles 

around microparticles induced stress concentration that weaken the bonding 

strength between epoxy and micro silica. Weak bonding reduces load transfer from 

matrix to particles and thus, reduces the stiffness. However, even though the effect 

of two sizes of silica particles on the static stiffness of epoxy using different size 

ratio were investigated, little attention has been paid to stiffness behavior of epoxy 

filled with micro and nano silica particle subjected to high strain rate loadings.  

In the previous works, the investigations of stiffness behavior of epoxy at 

high strain rate loading have been limited. High strain rate loading restricts the 

molecular mobility of the epoxy matrix and results in a stiffer response [20,80–84]. 

In opposite, the molecular mobility increases with the temperature [20]. Due to 

strong adhesion of silica/epoxy, molecular mobility of the epoxy matrix is more 

restricted as silica particles were introduced, and thus increases the dynamic 

stiffness. Dynamic stiffness exhibits significant dependence on the size of silica 

particles and increases as the size of silica particles reduced into nanoscale [20]. 

The dynamic stiffness is also influenced by the weight fraction and distribution of 

silica particles in the epoxy matrix [20,72,80,84,85]. Moreover, dynamic stiffness 

performance of epoxy is sensitive to the temperature which influences the 

molecular mobility of the epoxy. However, it is important to note that, due to the 

complicated interaction between filler and matrix, the influence of mixed micro and 

nano silica particles on the stiffness at high strain rate has been paid little attention. 

Therefore, the present research contribution is to fill this gap of knowledge and to 

provide experimental evidence for practical implementation. By knowing the 



18 
 

influence of mixed micro and nano silica particles on the dynamic stiffness behavior 

of epoxy adhesive, it is possible to design its stiffness performance for appropriate 

applications. 

The present chapter investigates the dynamic stiffness dependency on the 

composition ratio of micro and nano silica particle as well as silica weight fraction 

at the elevated temperature by means of split Hopkinson pressure bars (SHPB). 

Stress transmissibility and energy absorption are also observed as extended 

performance parameters. 

2.2 Experimental method  

2.2.1 Materials and specimen preparations 

The specimens were made from epoxy adhesive, Scotch-Weld 1838 

branded by 3M™. The neat epoxy has a glass transition temperature (Tg) of 55C 

at which the epoxy natures change from the glassy state to the rubbery state. The 

epoxy was filled with micro and nano silica particles without any surface 

modification. Micro and nano silica are 74 GPa of Young’s Modulus, 17 m and 

34nm in diameters, and with 3.4 m2/g and 80 m2/g in specific surface areas, 

respectively. Micro and nano silica particles were mixed with the epoxy adhesive 

sequentially using a planetary centrifugal mixer (Thinky AR-100). Each size of 

particles was mixed in an appropriate time to obtain a visually homogeneous 

mixture and followed by degassing process to avoid bubbles. The mixture was 

poured into the prepared mold with care, pressed to produce porosity-free 
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cylindrical specimens, as shown in Fig. 2-1, and cured for 24 hours. The specimens 

were 16 mm in diameter (DS) and were smaller than the pressure bars to maintain 

their full contact surfaces during loading. The specimen ratio of thickness to 

diameter, LS/DS = 0.5, was introduced to avoid the inertia effect in the measurement. 

The total weight fractions of mixed micro and nano silica particles in the epoxy 

adhesive were 5 wt.% and 10 wt.% with the composition ratio listed in Tabel 2-1. 

Table 2-1 Composition ratio of silica micro-nanoparticles 

Mixture ratio, SP 
Silica particle diameter 

34 m 17 nm 

0% (pure microparticle) 100% 0% 

25% 75% 25% 

50% 50% 50% 

75% 25% 75% 

100% (pure nanoparticle) 0% 100% 

 

 

Fig. 2-1 The cured specimen and mold for SHPB test 
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2.2.2 Experimental apparatus and data validation 

The split Hopkinson pressure bar (SHPB) test rig used in the present work 

consists of a striker bar, input and output pressure bars, strain gauges (KYOWA 

KFG-2-120-C1-11L5M3R), strain transducers (KYOWA DB-120A) with signal 

conditioners (KYOWA CDV-900A), and a digital oscilloscope (IWATSU DS-

5102) for data recording as shown in Fig. 2-2. The SHPB was designed by 

considering the assumption of one-dimensional stress wave propagation which is 

required to derive the stress-strain equations. All bars were made of stainless steel, 

20 mm in diameter, Young’s modulus of 209 GPa, density of 8750 kg/m3, and 

Poisson ratio of 0.3. Both input and output pressure bars were identical of 2000 mm 

in length. The crowned striker bar of 300 mm in length (�) was propelled as a 

pendulum to generate 140±5 s-1 strain rate and 200 s duration of the incident 

pulse as it stroked the input bar. The loading duration (�� ) and the amplitude 

( |��|��� ) of the incident pulse were calculated using Eqs. (2-1) and (2-2), 

accordingly,  

�� =
2�

��

(2 − 1) 

|��|��� =
1

2

���

��

(2 − 2) 

where ��� is the impact speed of striker bar, and �� is the elastic wave speed in the 

input bar. The results were used to plot the Lagrangian diagram as shown in Fig. 2-

3 and to locate the strain gauges on the bars. The crowned impact face, which is 

adopted from Yokoyama et al. [15,16,23], was used to extend the rise time of the 
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incident pulse and thus, modify the pulse shape. The Fast Fourier Transform (FFT) 

technique was applied to compensate the signal fluctuations induced by wave 

dispersion as adopted from Zhao and Gary [86].  

 

Fig. 2-2 A schematic of the split Hopkinson pressure bar apparatus (all dimensions are in 
mm) 

 The generated incident pulse (�� ) travels through the input bar to the 

specimen which is sandwiched between both pressure bars. Due to impedance 

mismatch at the interface of the input bar and the specimen, some part of the pulse 

is reflected (��) to the input bar while the other part is transmitted (��) to the output 

bar (Fig. 2-2). Incident and reflected pulses are measured at the input bar while the 

transmitted pulse is measured at the output bar using strain gauges. The strain 
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gauges were located at the middle of both pressure bars purposely to avoid signal 

overlap, based on Lagrangian diagram as shown in Fig. 2-3. 

 

Fig. 2-3 Lagrangian diagram to locate the strain gauges in which avoid signal overlap. 

 

Fig. 2-4 Recorded signal of bar alignment. Nearly identical pulses of the incident and 
transmitted, and the absence of reflected pulse confirmed that the bar system is in good 
alignment. 
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The SHPB system was calibrated before the measurement to ensure its 

validity and accuracy. First, the striker bar impacted the pressure bars without 

specimen sandwiched between them. The interface of pressure bars was lubricated 

to minimize the friction; thus, the bar system can be considered as a single bar. As 

can be observed in Fig. 2-4, the transmitted pulse is identical to the incident pulse 

in its shape, amplitude, and duration. No reflected pulse caused by impedance 

mismatch is found in this calibration test which means the pressure bars are 

correctly aligned. By this measurement condition, the reflected pulse found in the 

specimen test as shown in Fig. 2-5 is contributed by the sandwiched specimen only. 

Therefore, the measurement condition is valid to obtain data from the specimen and 

the test system. 

 

Fig. 2-5 A typically measured signals of strain waves on the pressure bars with specimen 
attached. 
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Second, the dynamic equilibrium condition at the specimen was verified 

during compressive loading. Dynamic equilibrium is obtained when the 

compressive loads P1 and P2 at both specimen surfaces are equal. The compressive 

loads are described as follows 

�� = ����{��(�) + ��(�)} (2 − 3) 

�� = ������(�) (2 − 4) 

where �� is cross-sectional area of the bars, �� is Young’s modulus of the bars. 

The compressive loads, as observed in Fig. 2-6, are similar and overlapped which 

means the dynamic equilibrium condition is obtained. Therefore, the influence of 

friction between the bars and the specimen on the SHPB system used in the present 

experiments can be ignored and the accuracy of the obtained data is verified. 

 

Fig. 2-6 Dynamic equilibrium in the specimen was verified by the nearly overlapped 
compressive forces at both ends of the specimen 
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2.2.3 Stress-strain characteristic and stiffness estimation 

Once the measurement condition had been verified for its validity and 

accuracy, strain rate history and stress-strain curve can be obtained from the 

measured strain waves using the following equations: 

�� =
��

��
����(�) (2 − 5) 

��̇ =
2��

��
��(�) (2 − 6) 

�� =
2��

��
� ��(�)�� (2 − 7) 

where, �� is the stress, ��  is the strain, �� and �� are the thickness and the cross-

sectional area of the specimen, respectively, and � is time duration. Strain rate time 

history and stress-strain curves obtained from the calculation are shown in Figs. 2-

7 and 2-8, respectively. The strain rate time history and the stress-strain curve show 

that specimen, due to the low impact load, underwent compressive elastic 

deformation only. 

In the ideal measurement, the working strain rate should be constant during 

loading. However, this ideal condition is practically difficult to obtain. In the 

present research, strain rate always changes during loading as shown in Fig. 2-7. 

Specimen was compressed for the first 170 s loading time then released to its 

original shape for the remaining loading time. However, during compressive 

loading, constant strain rate occurred for a short time near its maximum point. 
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Therefore, in the present research, the strain rate was estimated at its maximum 

point. 

 
Fig. 2-7 Strain rate history in the specimen for a typical measurement. 

 

 

 

Fig. 2-8 Stress-strain response and estimated modulus of a typical measurement 
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The dynamic stiffness of specimen is represented by its modulus which is 

estimated from the initial slope of stress-strain curve as shown in Fig. 2-8. Due to 

low impact loading, only the elastic region was obtained from the measurement. 

Therefore, yielding strength and failure strength were not found in the stress-strain 

curve. However, this elastic region of stress-strain curve is appropriate for stiffness 

estimation. 

 

Fig. 2-9 The hatched pulse area represents the strain energy in the specimen 

 

2.2.4 Estimation of stress transmissibility and energy absorption 

In the present chapter, two approaches were used to define the stress 

transmissibility (��). First, considering the strain pulses as a representative measure 

of load, the stress transmissibility was defined as the amplitude of transmitted pulse 
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(Fig. 2-9). Second, considering the area covered by the pulses as the representative 

measure of energy, the stress transmissibility was defined as the area covered by 

the transmitted pulse (Fig. 2-9). The measures of load and energy of the transmitted 

pulse were normalized by those of the incident pulse, respectively, to compare the 

result of each test. These definitions of the stress transmissibility were formulated 

in the Eqs. (2-8.a) and (2-8.b), respectively. Using the first approach, the impedance 

mismatch (��) between the input bar and the specimen was defined as the amplitude 

of the reflected pulse as described by the Eqs. (2-9). 

�� =
|��|���

|��|���
× 100% (2 − 8. �) 

�� = �� �� �� � �� ��� � × 100% (2 − 8. �) 

�� =
|��|���

|��|���
× 100% (2 − 9) 

The hysteretic damping was difficult to be computed owing to the 

incomplete and fluctuated stress-strain response during specimen recovery 

(unloading) for most of the tests. The main reason for this problem was due to small 

strain applied and improper specimen contact during unloading. Therefore, 

considering the pulse area as a representative measure of energy previously 

mentioned, the damping was estimated by the difference of the area of the strain 

pulses at the input bar with the area of the strain pulse at the output bar. Then, by 

ignoring energy loss through wave dispersion, the damping was formulated as the 
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Eq. (2-10). Although this equation does not quantify the hysteretic damping, it 

facilitates us to qualitatively compare the energy loss for each test condition. 

����� = ��(�� + �� − ��) �� � �� ��� � × 100% (2 − 10) 

 

2.3 Results and discussions on the effects of silica micro-
nanoparticles to the dynamic stiffness and stress 
transmissibility of epoxy adhesive at the ambient 
temperature 

 

 

Fig. 2-10 The effect of particle composition ratio on the dynamic stiffness of epoxy 
adhesive at 5-wt.% silica micro-nanoparticles 

This section describes the effect of the composition ratio of 5-wt.% silica 

micro-nanoparticles on the dynamic stiffness and stress transmissibility of the 

epoxy adhesive at the ambient temperature as mentioned at the early of this chapter.  
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The effect of the composition ratio of 5-wt.% silica micro-nanoparticles on 

the dynamic modulus of epoxy is shown in Fig. 2-10. The dynamic modulus of 

silica-filled epoxy is represented relative to that of neat epoxy (E/E0) to highlight 

the stiffening effect of silica particles. The dynamic modulus of neat epoxy obtained 

from the measurement was 3.2 GPa. The deviation of each specimen was less than 

5%. Dynamic stiffness of silica-filled epoxy varied nonmonotonically with the 

particle composition ratio. A slight enhancement of dynamic modulus was obtained 

by addition of silica microparticle (SP = 0%). Then, the dynamic modulus 

decreased lower than that of neat epoxy as the silica nanoparticles presence (SP = 

25% and 50%). However, maximum stiffness was obtained at a composition ratio 

of 75% nanoparticles and 25% microparticles (SP = 75%). 

The addition 5wt.% of pure silica microparticle (SP = 0%) marginally 

increased the dynamic modulus (E/E0 = 104%). This small enhancement might be 

due to low particles content. In the previous work, Owens and Tippur [73] obtained 

similar results. They found that the dynamic modulus increases with the particles 

volume fraction. However, in the present work, the composition ratio of 75% (SP 

= 75%) results in a remarkable increase of dynamic modulus (E/E0 = 107%) at a 

given weight fraction (5-wt.%). These results suggest that the stronger stiffening 

effect promoted by nanoparticles is resulted from the larger interphase area 

provided.  

The presence of nanoparticles at SP = 25% and 50%, however, counteract 

the stiffening effect of silica particles. There are several possible reasons related to 
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such softening effect. First, microparticles might introduce high-stress 

concentration factor and create damage and thus, reduce the stiffness. Second, 

highly dispersed nanoparticles might shift the glass transition temperature and 

result in lower stiffness. However, the fact that composition ratio of higher 

nanoparticle content (SP = 75%) results in higher stiffness negates the second 

reason. Third, agglomeration of nanoparticles during mixing weakens the matrix-

filler interaction. Agglomerates are very fragile to impact and thus, reduces the 

overall dynamic stiffness of epoxy composites. Moreover, the clustered particles 

might prevent perfect crosslinking of epoxy and result in a softer matrix. SEM 

analysis should be conducted to verify the existence of agglomerates. However, it 

is challenging to observe the microstructure owing to the large difference of particle 

sizes, i.e., microparticle vs. nanoparticle.  

 

Fig. 2-11 The effect of particle composition ratio on the stress transmissibility and 
impedance mismatch according to the Eqs. (2-8.a) and (2-9.a). 
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The stress transmissibility performance and the impedance mismatch of 

each specimen, based on the Eqs. (2-8.a) and (2-9.a) are represented by Fig. 2-11. 

Stress transmissibility (��) varied nonmonotonically with the particle composition 

ration in the similar tendency with dynamic modulus while the impedance 

mismatch (��) is in the opposite. The increased modulus facilitates a higher energy 

transmitted through the specimen and thus, reduces the portion of energy reflected 

due to impedance mismatch.  

2.4 Results and discussions on the effects of silica micro-
nanoparticles on the dynamic responses of epoxy 
adhesive at the elevated temperature 

The influences of two-size silica particles on the dynamic stiffness of epoxy 

were investigated using the SHPB. The dynamic stiffness was estimated from the 

stress-strain curve obtained from the measured strain waves. The dynamic stiffness 

dependence on the composition ratio and the weight fraction of silica particles at 

different temperatures are presented in Fig. 2-12. The composition ratio, varied 

from pure micro silica (SP = 0%) to pure nano silica (SP = 100%), are represented 

by the horizontal axis. To measure the influence of silica particles on the epoxy, the 

dynamic stiffness of epoxy/silica composite is compared with the that of neat epoxy 

which is represented by the dashed line. The dynamic stiffness was firmly 

influenced by both the composition ratio and the weight fraction at the room 

temperature (Fig. 2-12.a). However, the influence decreased and became less 

significant as the temperature approached to Tg (Fig. 2-12.c). Therefore, the 

dependency of the stress transmissibility and the loss energy performance were 
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evaluated at room temperature only as shown in Figs. 2-13 and 2-14, respectively. 

The influence of the composition ratio and the weight fraction of the silica particles 

on the dynamic stiffness, stress transmissibility, and loss energy performance will 

be discussed in the following section. 

Deviations were found in the estimated dynamic stiffness, stress 

transmissibility, and loss energy performances. The deviations were mainly caused 

by the variation in the mixing process of specimens and the included noises in the 

measurement which distorted the shape of strain waves. The effect of specimen 

variations caused by mixing process on the deviations of data was minimized by 

using five samples for each variable in the weight fraction and composition ratio. 

The distorted strain waves influenced the obtained stress-strain curves and thus, 

resulted in the deviations of the estimated dynamic stiffness (Fig. 2-12).  

2.4.1 Effects of silica weight fraction 

In the previous work, the influence of pure nano silica particle on the 

dynamic stiffness of epoxy had been investigated by Ma et al. [84]. It reported that 

the dynamic stiffness increased with the weight fraction of silica particles. In the 

present work, mixed micro and nano silica particles were used to reinforce the 

epoxy adhesive. Regardless the size and the composition of silica particles, 

enhancement on the dynamic stiffness of epoxy due to the increase of silica weight 

fraction was also observed (Figs. 2-12.a and b). The epoxy/silica interphase area 

was increased by silica weight fraction which induced more restriction to the 
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mobility of the epoxy matrix at the interphase and thus, resulted in stiffer 

epoxy/silica composite. 

a)  

b)  

c)  

Fig. 2-12 The dynamic stiffness nonmonotonic dependency on the particle composition 

ratio and weight fraction at (a) T=15C, (b) T=40C, and (c) T=50C 
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In the present work it was observed that the stiffening effect due to 

increasing silica weight fraction was more obvious at room temperature (Fig. 2-

12.a). However, indicated by small difference on the dynamic stiffness 

enhancement between 5% and 10% weight fractions, the stiffening effect was 

decreased with temperature increase (Fig. 2-12.b). Moreover, the influence of silica 

weight fraction on the dynamic stiffness can be neglected as temperature 

approached to Tg (Fig. 2-12.c). Such stiffness change indicated that, as temperature 

approached to Tg, the epoxy matrix became softer and more dominantly governed 

the dynamic stiffness behavior of the epoxy/silica composite. Similar stiffness 

change at high strain rate due to temperature increase had also been obtained by 

Gomez et al. [20], in the case of neat epoxy, and Owens et al. [73], in the case of 

epoxy filled with single size of silica particles. 

The stress transmissibility increased with silica weight fraction at room 

temperature (Fig. 2-13). The increase of silica weight fraction enlarged the 

epoxy/silica interphase area. Due to strong adhesion of epoxy/silica, larger 

interphase area facilitated higher load transfer and thus, increased the stress 

transmissibility. However, the stress transmissibility enhancement of the epoxy 

filled with two sizes of silica particles was negligible compared to that filled with 

single size of silica particles. It indicated that two sizes of silica particles reduced 

the load transfer enhancement resulted from the increase of silica weight fraction. 

It is believed that the reduced load transfer between silica particle and epoxy matrix 

was caused by micro silica particle debonding which will be explained in the 

following section. 
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Loss energy performance of the epoxy/silica composite, despite of high 

deviations, was found to be increased with the weight fraction regardless the 

composition ratio of silica particles (Fig. 2-14). Neat epoxy exhibited low energy 

absorption due to its brittle nature during high strain rate loading. Cracks grew 

easily and resulted in fracture to such neat epoxy [87]. However, the energy 

absorption was found to be increased as silica particles introduced to the neat epoxy 

[88]. Deflected cracks growth due to the presence of silica particles increased the 

energy absorption in the epoxy/silica composite. Therefore, introducing higher 

silica weight fraction increased the energy absorption of epoxy/silica composite. 

 

 

Fig. 2-13 The nonmonotonic effect of particle composition ratio on the stress 

transmissibility at T = 15C according to Eq. (2-8.b). 
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Fig. 2-14 Nonmonotonic dependency of energy loss on the particle composition ratio at 

T = 15C. 

 

2.4.2 Effects of the composition ratio 

Dittanet and Pearson [31] reported that the epoxy stiffness was slightly 

governed by the composition ratio of mixed micro and nano silica particles under 

static loading. It was reported that introducing nano silica weakened the bonding 

between micro silica and epoxy matrix. In the present work, a larger size ratio of 

micro and nano silica particle was used to modify the epoxy under high strain 

loading. Similar weakening effect on the dynamic stiffness and stress 

transmissibility was observed for the epoxy filled with two sizes of silica particles 

at room temperature (Figs. 2-12.a and 2-13). However, compared to the previous 

results of Dittanet and Pearson [31], a higher dependency of the epoxy dynamic 

stiffness and stress transmissibility on the silica composition ratio was found in the 
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present work. It was observed that the composition ratio of mixed micro and nano 

silica SP = 50% resulted in the minimum dynamic stiffness and stress 

transmissibility. Nevertheless, the influence of silica composition ratio on the 

dynamic stiffness became less significant as the temperature approached to Tg (Fig. 

2-12.b for low weight fraction, and Fig. 2-12.c for all weight fractions). 

In contrast with the dynamic stiffness, the loss energy performance of the 

epoxy filled with two sizes silica was higher compared to that filled with pure micro 

or nano silica particles. Loss energy performance also displayed significant 

dependency on the composition ratio of mixed micro and nano silica particles. It 

was observed that the loss energy was maximized at silica composition ratio SP = 

25%. Interestingly, SP = 25% was found to be the optimum composition ratio 

which maximized the loss energy performance while provided high dynamic 

stiffness and stress transmissibility. The existence of the optimum composition ratio 

of micro and nano silica particles suggests that it is possible to modify the dynamic 

performance of the epoxy for appropriate practical applications.  

In this chapter, the previous work of Dittanet and Pearson [31] and Wang et 

al. [26] are used to explain the sources of the weakening effects on the dynamic 

stiffness and the stress transmissibility. Using SEM (scanning electron microscope 

(SEM), Dittanet and Pearson [31] showed that silica microparticles debonded from 

the epoxy matrix. Such particles debonding were induced by the increase of stress 

concentration at the surface of microparticles owing to the presence of 

nanoparticles. Such particles debonding created voids which reduced the load 
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transfer between silica particles and epoxy matrix and thus, reduced the dynamic 

stiffness and stress transmissibility. Furthermore, Wang et al. [26] also reported that 

micro cracks were produced and propagated due to the stress concentration which 

is caused by the large size ratio of the two-size particles. In the present results, such 

particles debonding and cracks initiation are believed to occur during impacts and 

responsible for the decreases of the stiffness and stress transmissibility of the epoxy 

filled with silica micro-nanoparticles. Contrary, both voids created by debonding of 

micro silica particles and micro cracks facilitated more energy dissipation in the 

epoxy matrix. However, the epoxy matrix mobility was increased as the 

temperature approached to Tg and thus, minimized the influences of voids and 

cracks.  

The deviations of the estimated stress transmissibility and loss energy 

performances were large (Figs. 2-13 and 2-14) due to the limitations of the 

experimental apparatus. The strain pulses used in the estimations were fluctuated 

during unloading period owing to the poor contact between specimen and the 

pressure bars. Despite such deviations, it is still worthy to analyze the tendencies of 

the averaged data. 

2.5 Conclusions 

The dynamic responses of epoxy adhesives were obtained using the SHPB 

tests. The effects of particle content and composition ratio of micro-nanoparticles 

on the dynamic responses of epoxy adhesive at the elevated temperature were 
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evaluated. At low temperature, the overall dynamic performances were governed 

by particle content and composition ratio. The dynamic stiffness, the stress 

transmissibility, and the energy loss were increased with the increase of particle 

content. Particle composition ratio exhibits nonmonotonic effects on the dynamic 

responses of epoxy/silica. The presence of micro-nanoparticles improved the 

energy loss at the expense of stiffness and stress transmissibility. At a temperature 

near Tg, however, the epoxy matrix governed the overall dynamic responses and 

thus, were less sensitive to the variations of particle content and composition ratio. 

The overall dynamic responses of epoxy adhesive were maximized by the presence 

of silica micro-nanoparticles at the optimum composition ratio of 25%. 
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Chapter 3  

Synergistic effects of silica mixed micro and 
nanoparticles on the stiffness and damping of epoxy 

adhesives 

 

3.1 Introduction 

In lightweight structural applications such as spacecraft and automobile 

parts, epoxy-based adhesives and composites are superior to metal owing to their 

high strength-to-weight ratio and strong adhesion to different materials. Structures 

subjected to dynamic loads such as vibrations and impacts must be well-designed 

to ensure their safety, reliability, and comfort. Therefore, dynamic stiffness and 

damping characterizations of epoxy are critical for structural design and analysis. 

In practice, high-modulus silica particles are commonly used to stiffen and 

toughen epoxy adhesive by exploiting inter-particle interactions, matrix–filler 

interactions, and the inherent properties of silica particles in a matrix. Well-

dispersed silica nanoparticles stiffen and toughen an epoxy adhesive more 

efficiently than silica microparticles owing to their larger surface-to-volume ratio, 

forming a more substantial matrix–filler interphase area at a given weight fraction 

[27,32,42,76,89–91]. However, without any treatment, high-silica-content 
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nanoparticles are difficult to disperse uniformly using a conventional mechanical 

mixer and tend to aggregate/agglomerate in the epoxy matrix [34,36,37]. 

Composing an appropriate composition ratio between two sizes of silica 

particles for a given size ratio reduces viscosity and breaks up the agglomerate, thus 

improving particle dispersion [62,64,104,105]. Additionally, such bimodal silica 

particles induce more complex matrix–filler and inter-particle interactions, which 

generate concurring effects on epoxy dynamic properties [65,105,106]. 

Nevertheless, such deagglomeration effectivity over a wide range of silica weight 

fractions and its subsequent collaborative effects on epoxy dynamic stiffness and 

damping, especially at intermediate-strain-rate loading, have been given little 

attention. 

Experimental work has been conducted to investigate the synergistic effects 

of two-size silica particles on epoxy stiffness and fracture energy absorption with 

respect to particle composition ratio. Kwon et al.  [65,106] and Dittanet and Pearson 

[31] found an appropriate composition ratio of two-size silica particles that 

cooperatively toughens epoxy and ascribed this to better particle dispersion. 

Shariati et al. [66] found good dispersion at 1.5–6 wt.% for two-size silica 

nanoparticles of 17 and 65 nm diameters but did not find any considerable coactive 

effects on stiffness and fracture energy absorption. Such previous works have 

indicated that the interplay of particle content, size ratio, and composition ratio 

affect the particle distribution and subsequent collaborative effects, which is 

consistent with suggestions made by Greenwood et al. [62], [63] and Dames et al. 
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[64]. It is important to note that these previous studies focused on epoxy behavior 

under static loading, which may differ from that under dynamic loading owing to 

strain rate sensitivity of the epoxy and of matrix–filler interactions. 

The effects of silica particles on epoxy behavior at high-strain-rate loading 

have been investigated using split Hopkinson pressure bars (SHPB). Miao et al. 

[48] and Tian et al. [72] reported that silica nanoparticles stiffen and strengthen 

epoxy composites at both quasi-static and dynamic loading. Silica nanoparticles 

stiffen epoxy efficiently at low-strain-rate loading [72]. Islam et al. [42] showed 

that dynamic stiffness increases with silica particle content dispersed in the epoxy 

matrix. However, such studies focused on single-size silica-filled epoxy dynamic 

behavior at high-strain-rate loading. 

In the previous chapter, the elastic–dynamic stiffness and damping of epoxy 

filled with silica micro-nanoparticles were estimated using SHPB with sandwiched 

specimens under a strain rate loading of 140 s-1. The epoxy filled with two-size 

silica particles exhibited greater damping, but lower stiffness compared to that of 

single silica particles. However, the damping was not precisely quantified because 

of the limitation of the sandwiched SHPB.  

In the present chapter, the objective is to investigate the synergistic effects 

of silica micro-nanoparticles of varied composition ratio and weight fraction on 

epoxy dynamic stiffness and damping in the elastic region. The SHPB method with 

bonded specimens is used to generate a complete loading–unloading elastic stress–
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strain response for epoxy filled with silica micro-nanoparticles and to precisely 

estimate damping.  

The experimental evidence suggest that the deagglomeration effectivity and 

collaborative effects of silica micro-nanoparticles are limited by silica particle 

content and vary with the composition ratio. Silica micro-nanoparticles offer a 

simple and low-cost solution to the nanoparticle dispersion problem in conventional 

mechanical mixers; moreover, they provide options for designing epoxy dynamic 

stiffness and damping to cater for specific applications by varying the composition 

ratio. 

This chapter presents the SHPB method with bonded specimens, data 

validation, and dynamic stiffness and damping estimations. It also reports and 

discusses the effects of silica micro-nanoparticle weight fraction and composition 

ratio on epoxy dynamic stiffness and damping. 

3.2 Experimental method 

The split Hopkinson pressure bar (SHPB) method has been widely used to 

characterize dynamic responses of solid materials. Up to date, the SHPB technique 

has been modified to adapt to tests of the various types of materials and those of 

small strain deformation [15,16,23,95–107]. The dynamic stiffness is represented 

by Young's modulus, which is estimated from the initial stress–strain slope. 

Hysteretic damping, which represents the ability of a material to dissipate 
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mechanical energy, is estimated from the area covered by a complete loading–

unloading (closed-loop) stress–strain curve. 

In SHPB test with sandwiched specimens, precise damping estimation is 

difficult owing to incomplete stress–strain responses, which are ascribed to poor 

bar–specimen contact during unloading. In the present work, epoxy/silica adhesive 

was bonded to both input and output bars to maintain bar–specimen contact and to 

generate closed-loop stress–strain responses.   

3.2.1 Materials and specimen preparation  

The specimens were made from two-parts epoxy brand Scotch-Weld 1838 

(B/A) filled with silica micro-nanoparticles. The physical properties of epoxy and 

silica particles are given in Table 3-1. The weight fraction and composition ratio of 

dispersed silica particles were varied as shown in Table 3-2. The specimens were 

prepared according to the following procedure to ensure consistency: first, silica 

micro-nanoparticles at the desired ratio were mixed with epoxy base (B) and 

accelerator (A) using a planetary centrifugal mixer and were then degassed. Second, 

the pressure bars’ bonded areas were heated and the epoxy specimen of thickness 

and diameter equal to 5 and 20 mm were bonded between them. Finally, the 

specimens were cured at room temperature for 1 h and were then heated to 65 C 

for 3 h. The specimen was cooled to room temperature for 24 h before testing. 
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Table 3-1 Physical properties of epoxy and silica particles 

Physical parameter Micro silica Nano silica 

Epoxy 

adhesive 

Weight density (g/cm3) 2.65 1.21 

Average diameter  34 µm 17 nm - 

Specific surface area (m2/g) 3.4 80 - 

 

 

 

Table 3-2 Calculated surface area of pre-mixed silica micro-nanoparticles. Bracketed 
values indicate the conversion of silica content from weight fraction to volume fraction 
(calculated). 

Composition 

ratio, SP 

Micro 
silica 

Nano 
silica 

Pre-mixed surface area (m2) 

2 wt.%  5 wt.%  10 wt.%  

(1.01 vol.%) (2.55 vol.%) (5.24 vol.%) 

0% 100% 0% 0.27 0.68 1.36 

25% 75% 25% 1.80 4.51 9.02 

50% 50% 50% 3.34 8.34 16.68 

75% 25% 75% 4.87 12.17 24.34 

100% 0% 100% 6.4 16 32 

 

 

3.2.2 SHPB test apparatus 

The SHPB used in the present work was composed of a striker bar, two 

pressure bars, and strain wave measurement instrumentation as shown in Fig. 3-1. 

All bars were made from carbon tool steel SK-5 with Young’s modulus of 206 GPa 

and diameters of 20 mm. The impact side of the striker bar was slightly rounded to 

extend the rise time and avoid fluctuation in the early portion of the generated 
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incident pulse. The appropriate length of the pulse rise time ensures dynamic stress 

equilibrium in the specimen while a smooth incident pulse avoids distortion in the 

early part of the stress–strain response. Both characteristics are critical in obtaining 

valid and accurate data in SHPB tests. 

 

Fig. 3-1 The SHPB apparatus with the bonded specimen (all dimensions are in mm) 

 

A compressive incident pulse (I) of 200 µs in loading duration was 

generated during the impact of the striker bar on the input bar. At the bar–specimen 

interface, some part of the incident pulse is reflected (R) to the input bar and the 

rest is transmitted (T) to the output bar. Strain gauges were positioned in the middle 

of both pressure bars to avoid signal overlapping so that complete strain loading 
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and unloading could be recorded (Fig. 3-2). Such complete strain history for the 

specimen resulted in a completely closed-loop stress–strain response, which is 

required to accurately estimate damping. 

 

Fig. 3-2 Split Hopkinson bar arrangement and Lagrangian diagram showing gauge 
locations that avoid overlap of the measured strain waves. 

 

3.2.3 Calibration and data validity 

A calibration test was conducted on pressure bars without specimens to 

ensure the validity and accuracy of the obtained data. Identical incident and 

transmitted pulses obtained from measurement of pressure bars without specimens 

(Fig. 3-3) indicated good alignment of the SHPB system and ensured that the 

reflected pulse measured in Fig. 3-4 was contributed only by the specimen. 

Fig. 3-4 shows that the crowned striker bar effectively generated a smooth 

incident pulse with appropriate rise time. This ensured that the dynamic equilibrium 
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condition in the specimen during loading and unloading was achieved, as shown in 

Fig. 3-5. The forces at both sides of the specimens are formulated as: 

�� = ����{��(�) + ��(�)} (3 − 1) 

�� = ������(�) (3 − 2) 

where �� is the pressure bars’ cross-sectional area, �� is Young’s modulus of the 

bars, and ��, �� , and �� are the aligned incident, reflected, and transmitted pulses, 

respectively. 

 

 

Fig. 3-3 Recorded signals of bar alignment. Nearly identical pulses of the incident and 
transmitted, and the absence of reflected pulse confirmed that the bar system is in good 
alignment. 
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Fig. 3-4 Recorded stress wave from a typical measurement with a specimen 

 

 

Fig. 3-5 Dynamic stress equilibrium on both sides of the specimen. 
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The nearly constant strain rate during the test period was not obtained, as 

represented by the reflected wave in Fig. 3-4, owing to the limitation of the pulse-

shaping technique used and the bonded constraints at the interface of specimen and 

pressure bars. However, such strain acceleration does not significantly affect the 

estimations and analysis of dynamic stiffness and damping in the present 

measurement condition. 

3.2.4 Estimation of stiffness and damping 

Validated SHPB data were used to generate stress–strain responses (Fig. 3-

6) for the specimens using the following equations: 

�� =
��

��
����(�) (3 − 3) 

��̇ =
2��

��
2��(�) (3 − 4) 

�� =
2��

��
� ��(�)�� (3 − 5) 

where �� is the stress, �� is the strain, �� is the elastic wave speed through the bars, 

�� and �� are the thickness and the surface area of the specimen, respectively, and 

� is the time duration. 

The stress–strain in the small strain range was nearly linear. Dynamic 

stiffness was estimated by fitting the slope of the line to the initial part of the stress–

strain curve in Fig. 3-6. Hysteretic damping was estimated from the integral of the 

closed-loop area of the stress–strain curve using the following equation: 

� = � ��(�) ���(�) (3 − 6) 
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Fig. 3-6 Estimation of stiffness and damping from the slope and closed-loop area of the 
stress-strain response. In the analysis, the strain rate is averaged from the loading part. 

 

 

 
Fig. 3-7 Overlapped stress-strain responses of two epoxy/silica specimens indicate the 
reproducibility and consistency of experiments. 
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The reproducibility and consistency of measured data are indicated by the 

nearly overlapped stress–strain response of two specimens with a given silica 

weight fraction and composition ratio, as shown in Fig. 3-7. 

3.3 Results and discussions 

Tests were conducted to investigate the effects of silica micro-nanoparticles 

on the dynamic compressive stiffness and damping of epoxy adhesive. A set of 

SHPBs with bonded specimens was used to generate stress–strain loops at the 

average strain rate of 80 ± 10 s-1. Several tests were conducted on each specimen, 

and the average value obtained was used in the analyses. 

Stiffness and damping were estimated from the initial slope (modulus) and 

loop area of stress–strain responses, respectively. The effects of silica particles on 

the stiffness and damping of epoxy/silica adhesive were investigated for evaluation. 

Figures 3-8 and 3-9 show the stiffness and damping behaviors of epoxy/silica 

adhesive at silica contents of 2, 5, and 10-wt.%, as the silica composition ratio varies 

from pure microparticles (SP=0%) to pure nanoparticles (SP =100%). 



54 
 

 

Fig. 3-8 Effects of silica content and composition ratio on the dynamic stiffness of epoxy. 

 

 

Fig. 3-9 Effects of silica content and composition ratio on the hysteretic damping of 
epoxy. 
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The epoxy stiffness increased monotonically with increasing nanoparticle 

portion at a silica content of 2-wt.% (Fig. 3-8). The influence became nonmonotonic 

with the increase of silica content to values of 5 and 10-wt.%. The stiffness of epoxy 

silica for any composition ratio increased with the increase of silica content up to 

5-wt.%. However, the epoxy stiffness dropped as the silica particle content 

increased to 10-wt. %. At a silica content of 5-wt.%, it was observed that the 

stiffening effect of two-size silica was superior than that of single-size silica. The 

greatest stiffening effect of two-size silica at 5-wt.% was observed at the 

composition ratio of 25%, where epoxy stiffness increased by 45% compared to 

that of neat epoxy. 

The epoxy damping was nonmonotonically reduced by up to 14% with the 

two-size particles at a low silica content of 2-wt.% (Fig. 3-9). Significant increases 

in epoxy damping occurred with the presence of two-size silica particles of any 

composition ratio as silica content increased to 5-wt.%. The highest epoxy damping 

was obtained at silica content of 5-wt.% and a composition ratio of 50%, where 

damping increased by 40% compared to that of neat epoxy. The damping reduced 

as silica content increased further to 10-wt.%. 

Deviations were observed for both the estimated stiffness and damping. The 

main sources of deviations were variations in the specimens due to the mixing 

process. Initial slope fitting in stiffness estimation and fluctuating stress–strain 

loops near the end of the unloading stage also contributed to stiffness and damping 
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deviations, respectively. Four specimens were used for each test condition to 

minimize deviation. 

3.3.1 Effects of silica micro-nanoparticles on dynamic stiffness 

It has been reported that dispersed silica particles form a matrix–filler 

interphase area stiffer than the matrix and therefore stiffen and restrict deformation 

of epoxy adhesives [26,50]. Epoxy stiffness increases with the interphase area 

formed in the matrix, which is affected by the surface area of silica particles and 

particle dispersion quality.  

 

 

Fig. 3-10 Effects of silica content and pre-mixed surface area on the epoxy stiffness 
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Fig. 3-8 shows the stiffening effect of silica micro-nanoparticles at different 

weight fractions and composition ratios. A collaborative stiffening effect is only 

found on the epoxy filled with 5-wt.% silica micro-nanoparticles. At 5-wt.% silica 

content, micro-nanoparticles generate a stronger stiffening effect on the epoxy 

compared to those of either pure microparticles or pure nanoparticles. Fig. 3-8 also 

reveals that 10-wt.% silica particles generate less stiffening effects on epoxy 

adhesives even though it has a larger surface area owing to the higher particle 

content. This result shows the critical role of particle dispersion in the formation of 

effective interphase area that stiffen epoxy adhesive. As a conventional mechanical 

mixer was used in the present work in the absence of any chemical treatment, 

dispersion quality was affected by particle size and weight fraction. 

Figure 3-10 highlights the effects of silica weight fraction and composition 

ratio on the transformation of particles surface area into effective interphase area 

that stiffens an epoxy adhesive. The surface area was computed from the specific 

surface area of silica particles (Table 3-1) at given composition ratios and weight 

fractions. At a given weight fraction, the surface area increased sequentially with 

the increase of nanoparticles portion from pure microparticles (SP = 0%) to pure 

nanoparticles (SP = 100%) along the horizontal axis of Fig. 3-10. Large surface 

area of 10-wt% silica particles produced lower stiffening effect compared to that of 

5-wt.% silica particles which has smaller surface area. Thus, 5-wt.% silica micro-

nanoparticles formed larger interphase area compared to that 10-wt.% silica. 

Particularly, 5 wt.% silica with a nanoparticle proportion of less than 75% 

effectively form large effective interphase areas, thereby generating a strong 
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stiffening effect. In the case of 2 wt.% silica, micro-nanoparticles have only a weak 

effect on the formation of an effective interphase area. Pure nanoparticles at 2 wt.% 

silica are well dispersed, achieving a large effective interphase area; therefore, these 

provide stronger stiffening effects than those of micro-nanoparticles. Good 

dispersion of low-content silica nanoparticles was observed, which is in agreement 

with previous works by Bondioli et al. [34], Zheng et al. [36], and Feli and Jalilian 

[37]. This result suggests that composing silica micro and nanoparticles in 

appropriate ratios improves their dispersion up to certain weight fraction even when 

using only a conventional mechanical mixer.   

 

Fig. 3-11 (a) The simultaneous effects of silica on the stiffness and strain reducing, E for 

stiffness and S for the strain.  
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Fig. 3-11 (b) Proportional stiffness–strain relation representing the effective interphase 
area formed in the matrix. 

 

The effectiveness of silica micro-nanoparticles in improving silica 

nanoparticle dispersion was verified by comparing the stiffness and strain response 

of the epoxy adhesive. Figs. 3-11.(a) and (b) shows the epoxy stiffness and strain 

responses of the epoxy adhesive used to estimate and compare the effective 

interphase area. As previously mentioned, the interphase area simultaneously 

increases the stiffness and restricts the strain deformation of epoxy. Thus, the epoxy 

with higher stiffness and smaller strain deformation contained a larger interphase 

area. Consequently, neat epoxy exhibited the lowest stiffness and largest strain 

deformation because it contained no interphase area as shown in Fig. 3-11.(a) and 
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the lower-right quadrant of Fig. 3-11.(b). Epoxy filled with 5 wt.% silica micro-

nanoparticles and composition ratio 25% and 50% exhibited the largest interphase 

area which is indicated by high stiffness and small strain as seen in Fig. 3-11.(a) 

and the upper-left quadrant of Fig. 3-11.(b). Epoxy filled with 5 wt.% silica micro-

nanoparticles was the most sensitive to composition ratio variations; this was 

indicated by stronger stiffness–strain response with steeper slopes as shown in Fig. 

3-11.(b). The epoxy filled with 10 wt.% silica micro-nanoparticles exhibited a 

smaller interphase area and was less sensitive to composition ratio compared to the 

case of 5 wt.%. This result confirms that composing silica micro and nanoparticles 

effectively improves nanoparticle dispersion for silica content up to 5 wt.% and 

generates a synergistic stiffening effect. It is worth noting that silica 

nanoparticle:microparticle compositions of 25%:75% or 50%:50% increase epoxy 

stiffness by 45% compared to that of neat epoxy. 

In previous studies, Kwon et al. [65], [93], Dittanet and Pearson [31], and 

Shariati et al. [66], did not obtain a considerable cooperative stiffening effect of 

well-dispersed two-size silica particles. Kwon et al. and Shariati et al. mixed two-

size silica particles, which have smaller size ratios (1.56 µm:0.24 µm and 17 nm:65 

nm in diameter, respectively) than that used in the present work (34 µm:17 nm). 

Such smaller size ratios might be less effective in improving the interphase area and 

generating collaborative stiffening effects. Olhero and Ferreira found that a larger 

size ratio of mixed silica particles resulted in better deagglomeration and thus better 

dispersion [108]. 
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Dittanet and Pearson [31], however, combined silica particles of 42 µm with 

23, 74, and 170 nm, but did not observe any considerable synergistic stiffening 

effect. It was reported by Dittanet and Pearson in the same paper that the stiffening 

effect of the interphase area was negligibly small owing to weak matrix–filler 

adhesion. 

Notably, Fig. 3-11.(b) shows comparable ranges of strain deformations of 

epoxy filled with any silica weight fraction despite their different interphase areas. 

Higher interphase area should restrict deformation of the epoxy adhesive. This fact 

may indicate the existence of additional deformations induced by matrix–filler 

interactions. Particle debonding and stress concentration induce local matrix 

yielding or plastic deformation around the interphase area. The mechanism of such 

deformations and its contribution to energy dissipation is discussed in the next 

section. 

An alternative explanation for the additional strain deformation is a softer 

epoxy matrix due to poor cross-linking between the epoxy base and its hardener. 

Olhero and Ferreira reported that high nanoparticle content increases viscosity, and 

hence it is difficult to obtain homogeneous mixing [108]. Tarrio-Saavedra showed 

that higher nanoparticle content forms agglomerates that prevent perfect mixing of 

some part of the epoxy base and its hardener [109]. 

The results of this paper suggest that the poor dispersion performance of a 

conventional mechanical mixer can be improved by composing appropriate ratios 

of silica micro-nanoparticles. A synergistic stiffening effect is generated by the 
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improved dispersion of silica nanoparticles up to a silica content of 5 wt.%. Beyond 

that silica content, mixed micro-nanoparticles with diameters of 34 µm and 17 nm 

are less effective in improving dispersion. However, using two-size particles, which 

have different size ratios, may generate different results. 

3.3.2 The synergistic effect of silica micro-nanoparticles on hysteretic damping 

Owing to its inherent viscoelasticity, neat epoxy dissipates energy through 

internal friction during deformation, which can be estimated from the stress–strain 

loop area curve, as shown in Fig. 3-6. 

The presence of high-modulus silica particles reduces epoxy deformation 

and thus reduces energy dissipation in the epoxy matrix. Therefore, the energy 

dissipation of epoxy with a silica content of 2 wt.% is lower than that of neat epoxy, 

as shown in Fig. 3-12. Epoxy damping is reduced by 14% by the presence of 2 wt.% 

silica particles. Inter-particle slipping and friction in the nanoparticle aggregates  

might facilitate energy dissipation as demonstrated by Yang et al. [110]. 

The energy dissipation values for epoxy with silica contents of 5 and 10-

wt.%, however, are larger than that for neat epoxy. This increased energy 

dissipation indicates the existence of other energy dissipation mechanisms induced 

by matrix-filler interactions. 
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(a)  

(b)  

Fig. 3-12 (a) The simultaneous effects of silica on the damping and strain reducing, d for 
damping and S for the strain. (b) Damping-strain relation of epoxy/silica and neat epoxy. 
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 There are several mechanisms of energy dissipation induced by matrix–

filler interactions suggested in previous works [31], [67], [111]. Crack pining and 

crack bridging are dominant energy dissipation mechanisms for epoxy filled with 

pure silica microparticles. In epoxy filled only with nanoparticles, energy is 

dissipated by local plastic deformation and matrix shear yielding induced by the 

nanoparticles debonding. 

Epoxy filled with two-size silica particles exhibits superior energy 

dissipation to that of single-size silica particles owing to more complex matrix–

filler interactions [31], [67]. This arises because of synergetic mechanisms which 

boost epoxy energy dissipation such as nanoparticles and microparticles debonding 

followed by subsequent void formation and growth, crack deflection, and 

branching. In the present work, damping increases by 40% compared to that of neat 

epoxy at a silica content of 5 wt.% composed of 50% microparticles and 50% 

nanoparticles. 

The mechanisms mentioned above result in additional strain deformation in 

epoxy with 5 and 10 wt.% silica, as confirmed in the previous subsection. There is 

evidence of yielding or damage occurrence: stress–strain responses deviate [112], 

[113] from linear slopes, as shown in Fig. 3-13. 

There is also evidence of a disturbance in the specimen stress equilibrium 

during unloading, which may indicate damage in the epoxy/silica, as shown in Fig. 

3-14. However, it is not clear whether this disturbance is caused by crack opening 

or by void expansion due to tension in the specimen. Damage also contributes to 
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energy dissipation via cracks in the matrix and matrix/particle slipping in the 

interphase area [110], [114]. 

Epoxy damping decreases as the silica content increases to 10 wt.%. The 

reduced matrix volume is one factor responsible for this lower damping 

performance. However, considering the small matrix volume reduction by the 

addition of 10 wt.% silica particles (equal to 5.24 vol.%, Table 3-2), it is 

inappropriate to ascribe poor damping performance to this matrix volume reduction 

alone. 

As mentioned in the previous section, poor cross-linking between the epoxy 

base and its hardener is likely to occur. Some parts of the matrix that are poorly 

crosslinked do not exhibit viscoelastic properties such as hysteretic damping. Thus, 

the effective matrix volume, which enables energy dissipation, is reduced and 

results in poor damping performance. 

The results in this study suggest that the damping performance of 

epoxy/silica is influenced by both inherent matrix properties and by matrix–filler 

interactions. Damping can be increased by adequate dispersal of an appropriate 

amount of two-size silica particles in an epoxy matrix, which generate cooperative 

matrix–filler interactions to dissipate energy. 
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Fig. 3-13 Yield-like or damage behavior indicated by deviation of the stress-strain 
response from its straight elastic line. 

 

 

Fig. 3-14 Damage indication, which disturbed the stress equilibrium during unloading. 
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3.3.3 Optimum composition ratio and weight fraction of silica micro-

nanoparticles 

 

 

Fig. 3-15 Synergistic effects of mixed silica micro-nanoparticles on stiffness and damping 
performance. 

Fig. 3-15 summarizes the influences of silica micro-nanoparticles on 

dynamic stiffness and hysteretic damping of epoxy adhesives. There was no 

synergy effect at a low silica content of 2 wt.% owing to the dominant effect of 

nanoparticles. Using pure silica nanoparticles was more beneficial than using 

micro-nanoparticles in that doing so efficiently stiffened the epoxy adhesive 

without reducing damping excessively. 

A silica content of 5 wt.% provided a wide range of stiffness and damping 

performance when varying the composition ratio; therefore, it furnishes a wide 

array of options for designing dynamic properties of epoxy adhesives appropriately 
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for their applications. Moreover, both stiffness and damping can be increased by 

45% and 40%, respectively, at the optimum composition ratio of SP = 50%. 

In contrast, a silica content of 10 wt.% was less sensitive to the composition 

ratio and provided only weak performance in terms of stiffness and damping, which 

is a disadvantage in design applications. The best synergy effect at this silica content 

was obtained for higher microparticle proportions relative to nanoparticle 

proportions (SP = 25%). 

3.4 Conclusions 

The synergistic effects of silica micro-nanoparticles on the dynamic 

stiffness and damping of a bonded epoxy adhesive were investigated using split 

Hopkinson pressure bars. The effectiveness of selecting ratios of silica micro and 

nanoparticles for improving silica particle dispersion was discussed. 

In the range of measurement, silica micro-nanoparticles of 34 µm and 17 

nm in average diameter, respectively, effectively improved nanoparticle dispersion, 

providing increased matrix–filler interaction through larger interphase areas. 

Therefore, this composition generated synergistic stiffening and energy absorption 

effects in epoxy with a silica content of 5 wt.%. The synergistic stiffening effect 

was generated by the increased interphase area due to the improved dispersion of 

the silica nanoparticles. The synergistic energy absorption effect was generated by 

yield and damage induced by complex interactions between the epoxy matrix and 

the silica micro-nanoparticles. 
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The effectiveness of silica micro-nanoparticles for improving the dispersion 

of silica particles is limited to 5 wt.% when using a conventional mechanical mixer 

like the one used in this paper. However, there are possibilities for improving 

deagglomeration quality at higher silica contents using an appropriate composition 

ratio of two-size silica particles with a larger particle size ratio. 

The present paper provides experimental observations of epoxy dynamic 

stiffness and damping characteristics influenced by mixed silica micro-

nanoparticles. By obtaining these characteristics, epoxy dynamic performance can 

be engineered for appropriate structural applications wherein epoxy is subjected to 

impact and vibration, such as in automobiles. In future work, another energy 

dissipation mechanism that avoids damage should be considered using hybrid filler 

materials such as a combination of soft and hard fillers. 

Although yield or damage behavior, which contributes to energy 

dissipation, was identified and explained in this paper, a thorough investigation of 

matrix–filler interactions remain for future work to develop a better understanding 

of dynamic damping mechanisms. 
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Chapter 4 Conclusions 

 

4.1 The conclusions of the present studies 

In the present study, the split Hopkinson pressure bar tests have been carried 

out to generate stress-strain responses of the epoxy adhesive under impact loads. 

The stiffness and damping of the epoxy adhesive have been estimated from the 

slope and the loop area of the stress-strain responses, respectively. The influences 

of silica weight fraction and composition ratio of the micro-nanoparticles on the 

stiffness and damping of the epoxy adhesive have been evaluated. The silica weight 

fractions given are 2, 5, and 10-wt.% and the composition ratio was varied from 

pure micro to pure nanoparticles. The evaluation of dynamic performances has been 

conducted at the increased temperature of 15C, 40C, and 50C. Furthermore, the 

results have been evaluated for the synergetic effects of silica micro-nanoparticles 

and the mixture rule which improves both stiffness and damping. 

Silica micro and nanoparticles synergistically provide higher stiffening 

effects and facilitate higher energy absorptions compared to pure micro or 

nanoparticles. Such synergetic effects are generated from the improved particle 

dispersion which increases the intensity of the interactions between the epoxy 

matrix and silica micro-nanoparticles. The superior stiffness of epoxy with two-size 

particles is facilitated by the formation of larger interphase; while the higher 

damping is facilitated by the damages and local plastic deformations induced by the 
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synergetic interactions between micro-nanoparticles and the matrix. The optimum 

composition ratio of 50% at silica weight fraction of 10% maximizes both the 

stiffness and the damping of epoxy adhesive by 45% and 40%, respectively. The 

reinforcing effects of silica micro-nanoparticles are still significant at high 

temperature (T=40C).  

The present study has demonstrated the effectiveness of silica micro-

nanoparticles to modify the stiffness and damping of epoxy adhesive. The mixture 

rule provides a wide range of design options to modify the dynamic performances 

of epoxy adhesive to match the applications. The key result of the present study is 

the simultaneous improvements on both the stiffness and damping provided by 

mixed silica micro-nanoparticles. Both stiffness and damping are crucial to 

maintain the structural rigidity and reliability, as well as to reduce the noise and 

vibration. Furthermore, the results of this study suggest a simple and low-cost 

alternative technique to exploit the reinforcing effects of silica nanoparticles 

without any additional mixing process.  

However, the effectiveness of silica micro-nanoparticles to improve 

particles dispersion and produces such synergistic effects is limited by the viscosity 

of the epoxy matrix, the weight fraction of silica particles, and the mixing process. 

In the present study, pre-heating the epoxy matrix and applying sequential mixing 

of epoxy with silica micro-nanoparticles improve particle dispersion up to 5-wt.% 

even with a conventional planetary-centrifugal mixer. However, this technique is 
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less effective to improve particles dispersion at higher silica weight fraction of 10% 

due to the increase of viscosity with the presence of higher silica content.  

4.2 The outlook for future research 

Regarding the beneficial effect of two-size particles for improving the 

epoxy adhesive performance and the limitations in the present study, it is interesting 

to conduct future works on: 

1. The effects of silica micro-nanoparticles on the structural joint performances 

under impact loadings, including tensile loadings. 

2. Combining silica micro-nanoparticles with particles of high inherent damping, 

such as Pb-Sn hollow-tubes and carbon nanotubes, which improve the damping 

by deforming themselves instead of inducing matrix damages. 

3. Developing the SHPB apparatus to deal with a test at small strain loading which 

is required to characterize elastic behaviors of adhesive materials and other 

materials with similar natures. 
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