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by Novanto YUDISTIRA

Action Recognition contains information over space and time because action

possibly occurs in arbitrary positions, various scales and temporal dynamics

which led to the need of robust yet low computational cost features. The

progress of action recognition or video classification as broader topic has

largely progressed given abundance of common datasets. However, there

are still rooms to improve recent features in which still questionable ranging

from handcrafted to learned features such as spatio temporal auto correla-

tion, multi layered wavelet packet, motion superpixel localization, and mix-

ture expert via deep Convolutional Neural Network (CNN). Results show

that it is either improving state of the art or computationally efficient com-

pared to the existing features.
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Chapter 1

Introduction

We are facing the era where informations are spreading easily through web.

It turns to be beneficial for video understanding due to the abundance of

data (big data) provided by users. As the videos are growing in numbers, it

is required to classify generally based on scenes or human actions. In this re-

search, human action classification is considered as topic to be enhanced and

explored. Action recognition has been tremendous active area of research

with many methods have been proposed. However, several issues need to

be tackled by recent feature extraction either handcrafted or deep learned.

Because the video has high computational complexity due to its dimension

size, it is compulsory to find features that have good trade off between speed

and accuracy. There are several unexplored properties by accommodating

autocorrelation between frames inside spatio temporal space, making use of

temporal dynamics using wavelet approach, precise motion localization via

superpixel, and mixture of expert to blend spatial and temporal stream of

Convolutional Neural Network (CNN).

1.1 Local Autocorrelation

The progress of action recognition become more advanced in terms of com-

putation time and accuracy to recognise. Sadanand et al. (Sadanand and

Corso, 2012) proposes Action Bank that uses orientation filters along space
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and time but this is rather computationally expensive and its applicability is

questionable by the fact that it has such computational complexities to be run

under recent machines. To describe the movement along action cycle, we use

optical flow in which its densities can be categorized as dense or sparse opti-

cal flows. In terms of dense optical flows, recently researchers avoid optical

flows because of wild, non-regular properties and the presence of camera jit-

tering etc which turns into low performance. We employ the edge based mo-

tion to be adopted in our action recognition framework. Edges or its residuals

(Kim et al., 2010)(Sundberg et al., 2011) have ability to specify the movement

objects. We use Canny edge to obtain edge response of all over frames. Edge

plays significant role to suppress the flows that is not part of foreground or

object interest such as human. By suppressing using Canny edge detector,

noise of motion over entire flow field is minimized. These method poten-

tially supports motion compensation which has been an issue to be solved

such as (Jain, Jegou, and Bouthemy, 2013). It is robust to some extent to the

presence of camera motions, yet it does not explicitly handle the camera mo-

tion. In most cases, this will be effective to distinguish the impact of camera

movement and independent actions. We also introduce the motion and vec-

tor autocorrelation over time properties that we will consider through ??.

To realize local autocorrelation derived from motion models, we consider

to utilize spatial binning in the form of histogram of oriented flows (HOF).

Under this framework, we can possibly apply action recognition in real time

cases such as (Matsukawa and Kurita, 2010). As evaluation, KTH action

dataset (Schuldt, Laptev, and Caputo, 2004) is presented and classification

scheme of crossvalidation using linear SVM is employed.

As the first contribution of this paper, to the best of our knowledge, we are

the first to evaluate both efficiency and classification performance of optical

flow and local vector autocorrelation for action recognition over time. It is

called flow based local autocorrelation over time (FLAC over time) and find it
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achieving high recognition rates without loss in speed compared to the state

of the arts. We also consider to propose method that is robust and has low

computational cost utilizing multiresolution of flow fields. Most importantly,

it obtains some informations which are not captured by existing features. We

bring an encoding technique known as vector autocorrelation of flows to the

field of action recognition.

Recent works have been conducted with both autocorrelation and opti-

cal flows. There are researchers have proposed either utilising dense optical

flows such as (Jain, Jegou, and Bouthemy, 2013)(Wang et al., 2011) or autocor-

relation (Matsukawa and Kurita, 2010) for action recognition. One can utilise

the information of every pixel to obtain a dense correspondence, or merely

use sparse feature points (Liu, Yuen, and Torralba, 2016). Basically, sparse

techniques only need to process some pixels from the whole image while

dense techniques process all the pixels or windows. For real time applica-

tions, Lucas-Kanade’s sparse optical flows (Lucas and Kanade, 1981) accu-

racy might be enough since dense optical flows are relatively slower but the

latter has useful advantage to gain more accurate result than the former one.

The most popular of a dense optical flow algorithm is Gunner Farneback’s

Optical Flow (Farnebäck, 2003). Optical flows, despite of its wilderness mo-

tion, has rich information about movement that useful if it is treated properly.

Specifically for dense optical flows, it has characteristic that is useful for sam-

pling larger area rather than sparse optical flows. A rather different view is

adopted in (Wang et al., 2011) where the decomposition of motions is rep-

resented at the trajectory level. In this work, the sequence of motion forms

flow field sequence, however exploiting these trajectories could be the future

issues of our proposed method.

We use flow fields to gather features information rather than pixel-wise of

image frames that has been widely employed. In other parts, action has du-

ration over time or cycles. In pixel level, (Schindler and Van Gool, 2008) has
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explained about how many frames suitable for recognizes. By using some

HOG and scale invariant features (SIFT) descriptor (Lowe, 1999). It is re-

vealed that up 10 frames, 1- 7 frames are enough to capture the action. For

our case, in flow fields level, 5 - 15 flow fields enough to capture snippet of

actions. Trade of between computation and accuracy for large video dataset

become more remarkable for recognition benchmark. Very short cycle will

cause loss information about actions. Rather than using detection and body

tracking that is not reliable and computationally burden in realistic human

action recognition on video, for features derived from pixel-wise, (Shi, Petriu,

and Laganiere, 2013) has made observation on random sampling strategies

using local parts models. For optical flows, (Ke, Sukthankar, and Hebert,

2007) decides how many variation of box sampling there inside video from

optical flows. On other hand, we use multiresolution window and grid sam-

pling over the flow field. It turns out that by using non overlapping sliding

windows is enough to produce comparable performance.

1.2 Deep Wavelet Packet

Intelligent vision system (Otsu and Kurita, 1988) especially action recogni-

tion is growing topics in computer vision and pattern recognition. It is gain-

ing its popularity since Shultz work which also provides well-known dataset

(Schuldt, Laptev, and Caputo, 2004). Correspondingly, there are many real-

world recognition applications that exploit human actions such as surveil-

lance camera, video classification, sports analysis, human-computer inter-

action etc which its application becomes more demanding as the hardware

quality became more sophisticated. It leads action recognition to be chal-

lenging problems since human performs in many ways and camera can take

object in a various manner. For instance, in appearance aspect there are many

kind and color of clothes are attached to human. Occlusion is also another
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problem that sometimes distracts real motion into false or less informative

motion. From camera aspect, various scales of human object are captured be-

cause of distance matter. Moreover, camera can be static or dynamic which is

also emerging problem that remains wide open. From human aspect, action

with its variability of speed, background, clothes, illumination is dynamic.

To tackle this problem, handcrafted HOF itself cannot be used to describe the

variability of dense optical flows. Thus, it is reasonable to make extension

to form sequence of HOF and make some sort of decompositions to discover

general and distinctive pattern. High level is required to give semantic mean-

ing to classes. These issues lead to many feature representations proposed by

researchers to discriminate action types performed by humans.

The focus of recognition should be concentrated more into feature repre-

sentations, especially for action recognition. There are many previous works

that proposed various features whether it is spatiotemporal, template-based,

high level or medium level. Many approaches have been proposed as ac-

tion representation can be categorized into interest point (Chakraborty et

al., 2012) (Klaser, Marszałek, and Schmid, 2008) ,slow features (Sun et al.,

2014)(Theriault, Thome, and Cord, 2013)(Legenstein, Wilbert, and Wiskott,

2010), motion (Fathi and Mori, 2008), high level convolution (Sadanand and

Corso, 2012), and shape and appearance based (Lin, Jiang, and Davis, 2009).

Interest point based needs detection and description step in which the detec-

tion phase plays significant role to find most salient representation of actions.

Its collection of points are sparse enough to be featured but if the detection

fails to produce suitable representation due to occlusion or noise, it turns to

weaken the performance. High level and medium level convolution holis-

tically change the low-level features into more sophisticated measurement

by means convolution (Sadanand and Corso, 2012). Under spatial and time

space, it would be computationally burden. Even though it is biologically

inspired features, there are many other approaches that are comparable to
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the convolution based algorithm which has lower complexity. In this pa-

per, we would like to focus on motion-based features to time-varying motion

distribution to make use temporal dynamics by means Haar Wavelet Packet

decomposition.

Flow, despite its drawback against noise, has some advantages. It has

lower complexity than convolution based thus it would be advantageous

if the flow is densely sampled rather than sparsely such as (Wang et al.,

2011)(Uijlings et al., 2014). In terms of drawbacks, optical flows leave the

problem of occlusion or camera movement that distract motion from true hu-

man motion. Moreover, dense sampling has advantage of smoothness that

can handle fast motion. In challenging dataset such as KTH where the small

jittering on camera occur, human silhouettes appearance and low resolution

will reduce the accuracy of capturing human action cycle given spatiotempo-

ral space. However, for more challenging dataset such as UCF Sports where

the object of interest may appear at different angles relative to camera and

frame to frame change is not smooth, motion-based features produce weak

performance result. Thus, various temporal dynamics within action can be

captured if more detail motion is decomposed and hopefully robust to afore-

mentioned noises.

Many improvements (Sun et al., 2014)(Byrne, 2015)(Lan, Wang, and Mori,

2011)(Wang et al., 2011)(Jain, Jegou, and Bouthemy, 2013)(Matsukawa and

Kurita, 2010)(Ke, Sukthankar, and Hebert, 2007)(Yu, Sommer, and Daniilidis,

2003) have been made utilizing local motion as base representation model.

Motions are various over time especially if execution time is dynamics. We

collect HOFs temporally and enrich each bin as the temporal channel. Specif-

ically, from collected video frames, for every local channel, multi-resolution

histogram is extracted based on Haar Wavelet packet in specified depth.

More precisely, given all of the video, we learn how to decompose based

on the high pass or low pass signal.
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The use of tracking and template based leaves drawback that is high com-

putation which in turns difficult for real-time system. BoF is more robust to

extent template based and tracking in terms of noise and background chang-

ing. More importantly, it preserves discriminative information of local geo-

metric structure of features. The parameter of BoF must be tuned to obtain

optimal class specific codebook. In spatial term, different resolution local

window used for extracting histogram also influence the codebook genera-

tion. However, it is computationally expensive to sample various resolution

sizes. In temporal term, how long the cycle to be considered is taken into ac-

count for forming the features structure, however, translation invariant vec-

tors are required since action occurs in arbitrary frames.

In this section, Deep Local Wavelet Packet Histogram of flow (Packet

Flow) is derived from dense optical flows. Optical flow is generated from

pixel movement from one frame to next frame along a sequence of time-

varying image intensities. Packet Flow has three-fold contribution as

(i) the introduction of Deep Local Wavelet Packet Histogram for each bin

which temporally integrate histograms over a sufficiently long time period

under noise and occlusion in several levels,

(ii) the analysis of Wavelet Packet depth of motion histogram derived from

sequence of flow field which able to reduce spatial noise and extract detail of

temporal dynamics,

(iii) the framework of efficient features computation which using generalized

intersection kernel of SVM classifier and its potential extensions.

Dataset is selected based on assumption that there is no preprocessing

such as detection and tracking. Thus, there is no guarantee of clean optical

flows between frames and action of each sample is in constant movement.

Moreover, video is captured at high rate and various time interval.
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Temporal information has been paid attention in action recognition with

local motion pattern as focus of interest. Some improvements have been pro-

gressed along this path. Motion has been an interesting representation to be

considered as it is intuitively suitable for object moment characterization. In

real case, camera motion sometimes encounters and become the main ob-

stacle for generation or selection of true human optical flow. Especially for

dense optical flow such as (Farnebäck, 2003)(Fleet and Jepson, 1990), optical

flow points are presented in grid form wherever motion presents.

There are issues regarding dense optical flow utilization which are dis-

criminating independent actions or eliminating camera motion. To tackle

the problem, some researchers have adopted motion compensation to reduce

unwanted optical flow due to camera jittering and unrelated actions such

as separating dominant and residual motion without recovering 3D motion

(Jain, Jegou, and Bouthemy, 2013). After such compensation, some features

are used as descriptor. (Jain, Jegou, and Bouthemy, 2013) has proposed fea-

tures derived from kinematic properties. Another researcher has proposed

motion boundary features as descriptor of dense flow (Wang et al., 2011). Af-

ter compensation, by densely sampling with the step size of 5, feature points

are gathered. Dense sampling will cover the entire frame as much as possible

depending on the step size. However, it is considered as computationally ex-

pensive because the greater step size it takes, it would burden time complex-

ity. There is approach to compensating and extracting the features of motion

trajectories but the analysis of temporal information in space and time is yet

to be explored (Jain, Jegou, and Bouthemy, 2013). They also lose the valuable

information provided by local flow field of different temporal dynamics.

There are various application using derivation of temporal information

along image sequence of which in pixel level such as grouping detection by

means game theory (Oshin, Gilbert, and Bowden, 2014) and complex event

by means temporal dynamics (Bhattacharya et al., 2014). Rather than pixel
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wise and gradient wise, we consider HOF originated from flow fields as a

base of our measurement. In practice, we can adapt spatial binning by di-

viding it into subregions spatio-temporally. This way, can produce invariant

capability of being shifted.

Number of cycles or number of frames need to be decided for construc-

tion of local geometric information and it is still open question in action

recognition case (Shi, Petriu, and Laganiere, 2013)(Schindler and Van Gool,

2008). Some other researches have done in pixel space or higher level order. It

is needed to construct best spatio temporal features that optimally represent

local features and also cover intra class variability. In the previous work Yud-

istira and Kurita, 2015, we used autocorrelation similar to (Kobayashi and

Otsu, 2008) in pixel level to capture similarity given spatio temporal space.

Even though it shares similarity in terms of properties, it leaves chances to

be extended since the base representation itself is HOF.

We use bag of features to accommodate spatio temporal geometric infor-

mation. Specifically, class specific codebook generation is adopted to extract

intra class variational clusters which has advantage for discrimination. This

way can minimize noise without lose information about local features com-

pared to pooling. Most of reference, extend its features using BoF method

which has many advantages and applicabilities to be adopted in video (So-

masundaram et al., 2014)(Oshin, Gilbert, and Bowden, 2014)(Wang et al.,

2011). Rather than accumulation or concatenation of local spatio tempo-

ral features, it delivers sparse representation that has been well known to

produce high performance in classification scheme. BoF also promises effi-

cient dimension number of representation to accommodate low complexity

for recognition while also preserve local geometrical features information.

Moreover, in terms of video recognition, it preserves temporal information

especially to capture dynamic motion along space and time.

To define motion dynamics, recent use of motion extraction is done by
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means hand-crafted features such as HOG, HOF and SIFT (Lowe, 1999) (Liu,

Yuen, and Torralba, 2016) machine learned such as Slow Features Sun et al.,

2014(Theriault, Thome, and Cord, 2013), relative motions (Oshin, Gilbert,

and Bowden, 2014), multi-level representation (Wang, Qiao, and Tang, 2016),

rank pooling (Fernando et al., 2017) or Long-short Term motion (Lan et al.,

2015). Trajectories are popular extension of hand-crafted features to define

motion (Chen and Zhang, 2016) (Wang et al., 2011) but lack information

about various temporal dynamics. Slow Features try to adopt the princi-

ple of slowness. In natural scene, change of time scale varies if continu-

ous slow varying motions are obtained from quick varying motion, it would

bring underlying sensory input of brain to gather information about motion.

However, it is computationally expensive since need effort for unsupervised

step to extract slow features. It is termed to be more powerful in handling

noisy motion than Integrated Subspace (Le et al., 2011). There is also pro-

posed method which employs various length of block size inside video called

Long-short Term motion Lan et al., 2015 but it is prone to noise. Rather than

those, starting from handcrafted features, we propose to extend sequence

of HOF and then interpolate along temporal to be decomposed using Haar

Wavelet Packet. This will bring richer information of motion in form of multi-

resolution because there are various signal packets either in high pass or low

pass. Similar works have been done in another topics such as image texture

(Hadjidemetriou, Grossberg, and Nayar, 2004) (Laine and Fan, 1993) and sig-

nal processing (Lee and Shin, 2000)(Gokhale and Khanduja, 2010). This ap-

proach is easy to be implemented and has low complexity to be analyzed in

many levels of detail.
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1.3 Motion Superpixel

Motions, despite its potential drawbacks in terms of camera jittering, noise,

and occlusion, there is an advantage to explore its communal behaviour as

one of the main sources of activity movements over entire video frames. To

this end, superpixels along motion sequences that contain rich time time-

series and geometrical information can be utilized as source of motion infor-

mations. In this study, we used the superpixel approach to segment motion

into structured flow fields. Unlike conven- tional superpixels that segment a

region by using pixel informations, in this proposed method, motion-based

( angular and magnitude) superpixels are independently constructed at each

frame. Unlike pixel-based frames, flow field is a movement of one pixel to

the next frame by its angular and magnitude space which is estimated using

an optical flow algorithm. While superpixels are well established in pixel-

level segmentation, we introduce superpixel segmentation using the super-

pixels extracted via energy-driven sampling (SEEDS) algorithm to discrimi-

nate flow field comprising of flow vectors along the directions of motion. The

contribution of this research is two-fold: firstly, we apply the concept of mo-

tion superpixels and their time evolution to the field of video classification

along with its possible extensions like wavelet decomposition and secondly,

produce evaluation results that demonstrate the usefulness of this method in

producing results comparable to the state of the arts.

SEEDS was proposed by Bergh et al. as a texture imaging algorithm

useful for various object recognition (Bergh et al., 2012). Following this,

video SEEDS was introduced as a method for tracking superpixel continu-

ity through time (Bergh et al., 2013). Energy driven superpixels produced

by growing segmented regions that iterate have been shown to be computa-

tionally efficient and robust. One challenge in using superpixels in video is

determining how to accurately track the actual evolution and endpoint of a
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superpixel. The examination of this problem suggest the possibility of adopt-

ing superpixels in activity recognition tasks, particularly those in flow space.

Figure 1 shows how tracking from one superpixel to its respective superpixel

over time behaves. It should be tracked by following average direction of

flows inside one superpixel or selecting the nearest position of consecutive

superpixel. The consideration about nearest position is because in nature

flows of two consecutive flow fields do not largely change thus constructed

superpixel does not significantly move. Although motion features are usu-

ally represented by optical flows, there are possible extensions, including lo-

cality and the use of higher order local autocorrelation (Shiraki et al., 2006)

based on analysis of autocorrelation between spatially and temporally neigh-

bouring pixels. The viability of such approaches hinges on whether it is

possible to adapt correlations in flow fields and the advantages of doing

this in recognition exercises. The spatio temporal dynamic of activity can-

not be neglected in feature construction. Unfortunately, differential opera-

tor multi scale analysis is prone to losing low frequency information. Re-

cently developed and well founded methods such as spatiotemporal interest

points (STIP) (Laptev, 2005), dense trajectories (Wang et al., 2011), and scale-

invariant feature transform (SIFT) (Lowe, 1999) are prone to bias at coarse

scales while learned features like convolutional neural network (CNN) (Ser-

manet et al., 2013) are prone to overfit if training data is not much. To better

understand spatial and temporal dynamics or time series properties at high

or low frequencies, we propose the use of wavelet packet decomposition.

1.4 Mixture of Expert via Gating CNN

The video classification task has become an interesting topic in computer vi-

sion and pattern recognition because of its dynamic scenes and objects, which

vary either spatially or temporally, making it challenging to design suitable
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and robust handcrafted features. The evolution of convolutional neural net-

works (CNNs) has led to significant changes in the way features are being

learned. For instance, convolutional filters process pixels considering many

aspects such as neighboring pixels and the shapes they form. Therefore, deep

CNNs produce many parameters, which is advantageous for the classifica-

tion task, especially for the classification of video. However, a CNN still

needs gating to determine which modality should have more weight than the

others. For instance, the gating network should be able to a spatial stream’s

output more heavily than a temporal one if spatial cues are more salient than

motion cues, and vice versa.

Video classification using CNN has achieved significant improvement

since the use of a collection of still images and ImageNet weights to be fine

tuned on two stream network. In this paper, we implemented the two-stream

CNN proposed by Simonyan (Simonyan and Zisserman, 2014a) for human

action recognition, which uses spatial and motion streams using the Chainer

framework (Tokui et al., 2015). Space and motion basically complement each

other in nature to characterize activity in videos. There is evidence that inte-

grating RGB channels and optical flow as a representation of space and mo-

tion respectively overcomes severe overfitting while increasing testing accu-

racy (Simonyan and Zisserman, 2014a)(Feichtenhofer, Pinz, and Zisserman,

2016)(Park et al., 2016). However, how to weight each spatial and motion

feature remains an open question.

A feature weighting mechanism is required to find the optimal solution

given a set of solutions. Using a gating scheme enables a network to be better

trained to understand under what conditions the weights of the RGB part

should be increased and under what conditions the optical flow should be

weighted more heavily. Despite its advantages, there is one drawback of

running gating scheme; it requires a large amount of CPU/GPU memory

because of, in the case of bi-modalities, a large architecture of three networks
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(two expert networks and one gating network). In this research, each expert

network is trained independently and the gating network is then trained to

weight each modality before integration.

The gating network scheme is primarily the same as the mixture expert

scheme. It is basically inspired by the associative cortex of the brain, which

can handle information integration from many sources. Based on (Stein,

Stanford, and Rowland, 2009), it is evident that the presence of the asso-

ciative cortex is needed to improve the perception of the environment by

the brain. This conclusion is drawn from a study of cats with a deactivated

cortico-collicular system, where it was found that the ability to integrate tar-

get neurons in the superior colliculus is disrupted. Correspondingly, our

gating CNN scheme follows the natural cortico-colliculus to improve per-

ceptions. Therefore, the main contribution of the gating CNN scheme is to

select local patterns that best describes a decision. Because of the high num-

ber of degrees of freedom of scenes inside videos, spatial information alone

is not enough to describe the target classification, which is sometimes dis-

rupted from one scene to another. Information from one source might be not

enough for a CNN to classify the video, regardless of millions of parameters,

which tend to lead to overfitting. There are three possibilities to overcoming

this problem: adding a larger variety of inputs, increasing training data, or

gaining help from another source. When multisource information is consid-

ered as input, normalization is required to make their spaces comparable. For

instance, if all frames from one modality are at fixed scales, another source

such as motion must be at a fixed scale of the same size to enable the net-

work to perform better with respect to perception. Whenever the output of

softmax cross-entropy is retained from each expert stream, the gating net-

work’s output weights both experts’ output (the output dimensions of the

gating network are two when only two expert networks are used).
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The success of CNNs has led to a new trend in activity recognition re-

search. Video activity recognition is basically formed by a set of images for

which CNNs have demonstrated superior classification. Recently, large im-

age datasets such as ImageNet have been used to enrich the network with

the aim of improving the accuracy of image-based classification tasks. How-

ever, the incorporation of other sources of information is needed to further

improve perceptual accuracy. (Simonyan and Zisserman, 2014a) proposed

a two-stream CNN that use spatial and temporal cues and performs simple

fusion by averaging and using a support vector machine (SVM). Moreover,

(Wang et al., 2016) improved the method of training the two streams by seg-

mental sampling and used predefined fixed weights for the final feature fu-

sion. Many fusion methods have been proposed, for instance, late fusion

using a loss function (Feichtenhofer, Pinz, and Zisserman, 2016) or feature

amplification-multiplication (Park et al., 2016). However, we assume that in-

dependent streams and loss are more natural because each stream has more

freedom to learn depending on its specific task. This motivates us to propose

an independent gating CNN architecture.

To summarize, the main contributions of this work are as follows: 1) We

propose a framework for a gating scheme that is more accurate than if we

use only one expert network or merely predefine fixed weights for many

expert network outputs. 2. We propose our method using two deep models:

expert and gating networks with independent loss functions and adaptively

weighted outputs of every sample.

Previous studies based on still images have significantly contributed to

human activity recognition, such as the two-stream CNN approach used by

Simonyan et al. (Simonyan and Zisserman, 2014a), who proposed a very

deep network for image recognition (Simonyan and Zisserman, 2014b). Their

proposed method was extended to a temporal segment network (Wang et
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al., 2016), which segments the whole video sequence and trains each seg-

ment based on its respective network, achieving higher accuracy. However,

how to fuse or integrate all streams is still an open question. Before deeply

learned features became popular, there were many research approaches to

video classification using various methods, especially handcrafted methods

such as spatiotemporal features (Somasundaram et al., 2014), dense trajec-

tories (Wang et al., 2011), and local autocorrelation (Yudistira and Kurita,

2015). Three-dimensional (3D) CNN was the first attempt to train spatiotem-

poral features for video classification using deep CNNs. However, it had an

overfitting problem due to the lack of available training videos (Karpathy

et al., 2014). Later, a YouTube video dataset was provided and late fusion

and early fusion for 3D CNN were introduced. Slow features can be learned

using deep learning, which is advantageous for action recognition (Sun et

al., 2014), however, the effectiveness of deep learning over handcrafted sys-

tems is still not evident. A breakthrough was proposed with a two-stream

network that uses spatial and motion streams and fuses them by simple av-

eraging and SVM fusion. Furthermore, it gains complementary information,

which in turn improves accuracy. This approach adopts transfer learning

from the large-scale ImageNet dataset and inherits the characteristics of im-

age classification for video action recognition. Time series information was

considered by (Hochreiter and Schmidhuber, 1997)(Gers, Schmidhuber, and

Cummins, 1999) in a long short-term memory network, which is basically a

gated version of a recurrent neural network.

A multiplicative gating scheme has been introduced by previous researchers

for object detection, language modeling, people re-identification (Ahmed,

Jones, and Marks, 2015), or video classification. Gated object detection was

introduced by Xingyu at al. (Zeng et al., 2016) to make use of visual cues of

different scales and resolutions. A gated CNN for language modeling was
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presented by Yann et al. (Dauphin et al., 2016), who proposed a gating mech-

anism that outperforms long short-term memory-based gating. There is one

multiplicative gating scheme for video classification (Park et al., 2016). It in-

troduces feature amplification to perform soft gating on intermediate feature

maps, which is a different approach to our work, which uses an additional

gating network instead. Recently, weighted image segmentation for scene

geometry and semantics has been an issue in deep learning applications

(Kendall, Gal, and Cipolla, 2017). If we consider adding one gating network

for weighting, it is necessary to calibrate measurements because the gating

network itself is for predicting uncertainties. We consider how to manually

define learning rate parameters to stabilize expert networks. How to provide

an adaptive learning rate such as ESGD (Dauphin et al., 2016) remains an

open issue. A natural gating network is able to learn non-linearities such as

natural transformations (Hadsell, Chopra, and LeCun, 2006) for weighting

the expert streams. (Feichtenhofer, Pinz, and Zisserman, 2016) proposed a

fusion scheme for both RGB and optic flow streams in various layer position

and trained it as a model using one loss function. Our approach is different

from this in that we use a separate loss for the RGB, flow, and gating streams,

which are independently trained in a sequential way. The gating output is

trained to weigh both the last layer of the RGB and flow before fusion and

classification.

1.5 Organization of Disertation

This thesis is organized as follows:

In Chapter 2, we develop autocorrelation of consecutive frames along

temporal of flow fields. It is proposed by assumption that motion has corre-

lation given various timestamps. It is shown comparable accuracy and speed

on KTH dataset.
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In Chapter 3, spatio temporal space of video is dynamic, thus, it is better

to explore multiresolution decomposition via wavelet. Results shows that

deeper feature resolution gaining additional information. However, despite

of that, we have to select the decomposition band and level which is possibly

done during experiment. The interesting property of wavelet decomposition

In Chapter 4, motion superpixel is presented which basically localization

based on optical flows to gather precise salient feature. The difficulty of ex-

tracting motion features is mainly camera motion distraction. To this end,

motion compensation is used as pre processing step before superpixel ex-

traction. Every motion superpixel is then feed to bag of features for the sake

of sparseness.

In Chapter 5, gating CNN is proposed to weight each stream of network

(spatial and motion). We propose gating CNN which is gating stream based

on CNN. The difficulty of gating CNN train is as the expert networks are sat-

urated, overfitting is occurred on test data, thus, gating CNN can not training

"real" variation of output expert.
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Chapter 2

Multiresolution of Local

Autocorrelation

We propose method for fast action recognition and comparable performance using

local autocorrelation of optical flows over time. To capture action movement, dense

optical flows is generated along sequence of video. Optical flows sometimes yield

noise of motions that distract object of interest from another object motions and

background. We suppress this by using edge based optical flow. The HOF vector

is extracted from each window resolution and correlate its consecutive flow fields

within cycle using local autocorrelation over time. It will gather richer information

from movement while also gaining discriminative features than standard histogram

methods. Comparison shows that the comparable performance is achieved over state

of the arts.

2.1 Multiresolution

We quantize HOF of flow fields into 10 flow orientations and divide spatial

flow fields into five resolutions (X × Y: 15 × 15, 20 × 20, 25 × 25, 30 × 30,

35 × 35) which is multiresolution (Fig. ??)). The size of spatial resolution

may varies depending on the dimension of video. We decide spatial binning

of every resolution, in which the size of window could be various to form
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FIGURE 2.1: Multiresolution flow field autocorrelation over
time.

histogram along consecutive flows. It also possible to adapt scale invari-

ant features over flow field because the object interest may appear in many

scales. Even though the spatial striding windows are not overlapping, but

for the sake of computational speed, we can show that we still can achieve

comparable accuracy. Even if denser sampling over flow field intuitively

yield higher accuracy, we show that with spatial grid sampling and certain

subsequence of consecutive flows is enough to capture actions.

2.2 Local vector autocorrelation

We present a causal action recognition method which uses only information

from a collection of subsequences (snippets) within full sequence (video) of

flow fields as figured out in Fig. ??). Dense optical flows are densely extracted

from local edges and capture its motion sequence over time inside a snippet.

Autocorrelation is calculated over cycle and motion channels to learn how

correlation between one flow field and another within subsequence of cycle

is. Autocorrelation of temporal related motion path is generated as integra-

tion of these subsequences.
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FIGURE 2.2: Autocorrelation over time across sequence of flow
fields.

Kobayashi et al. (Kobayashi and Otsu, 2008) has published method for

image recognition using vector autocorrelation of intensities gradient named

gradient local autocorrelation (GLAC) and normal local autocorrelation (NLAC)

which related to higher order local autocorrelations (HLAC) (Otsu and Ku-

rita, 1988) and cubic higher local autocorrelations (CHLAC) (Matsukawa and

Kurita, 2010). Different from HLAC and CHLAC that correlates pixel intensi-

ties and GLAC that calculate gradient of intensities, we proposed to use flow

field. Rather than intensity gradient vector, we use HOF vector and sequen-

tially correlate the flow field over time. HOF forms vector that later could be

correlated over cycle. The shift-invariant features that is the nature charac-

teristic of autocorrelation can be naturally applied to local descriptors such

as as in SIFT (Lowe, 1999) or HOG by simply dividing regions into several

subregions (spatial binning). Spatial binning reduces shift-invariance but in-

creases discriminative power and this problem can be solved using integra-

tion of local autocorrelations. Even if the detection problem is considered, lo-

cal autocorrelation needs not shift invariant property due to roughly aligned

person images is compensated by shifting the detection window over the
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subregions inside image. Although GLAC and NLAC are completely shift-

invariant, thus for accuracy comparisons, the image region is divided into

local regions or blocks such as 4 × 4 blocks, and the GLAC/NLAC features

extracted over blocks are integrated into a final feature vector in the simi-

lar mean as as SIFT. In FLAC, similar approach is considered by using vari-

ous resolution of blocks and performing integration for all over local regions

within flow field.

We propose an efficient method to exploit local auto correlation informa-

tion by vectorizing, stacking, summing and normalizing flow local autocor-

relations over time, in which we name it the FLAC over time. The method

was motivated by the result achieved by previous works on actions (Mat-

sukawa and Kurita, 2010) that employ local autocorrelation. The key idea in

our method is to exploit the computation of local autocorrelation into dense

vector field rather than computing pixel-wise autocorrelation as the original

CHLAC does. The use of zero-th order prone to be redundancy (Kobayashi

and Otsu, 2008) which reduce the performance, thus, only local autocorrela-

tion is considered. Local autocorrelation between two vectors is also neces-

sary since the core information is revealed from alteration of object.

This consecutive flow fields reveal such repetitive pattern that can be cap-

tured using autocorrelation. It contains two kinds of vector correlations of

flows histogram: spatial correlations derived from displacement spatial flow

field and orientation vector correlations derived from the products of its the

element values. We do not correlate flow themselves but HOF vectors which

are quantized and represented sparsely. The order of auto-correlation is 1

which enables extraction of sufficient geometric characteristics together with

local displacements ai.

Let the S and s is sequence and subsequence with a number of flow fields

contain inside it respectively. Let F be an flow field and r = (x, y)t be a

position vector in F. Thus, we can formulate s ∈ S, F ∈ s, and r ∈ F. Each
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flow can be represented in terms of the magnitude m =
√

x2 + y2 and the

orientation angle θ = arctan(x, y). The orientation θ is quantized into D

orientation bins by voting weights of its magnitude to the nearest bins, and

is described as a sparse vector f(∈ RD), called the HOF vector.

There are two kind of correlations of flows that are correlations between

reference (Fig 2.3a) with its consecutive vector (Fig. 2.3b) and orientation cor-

relations derived from the products of the its element values (Fig. 2.3c). We

do not correlate flows themselves but HOF vectors which are quantized and

represented sparsely. Thus, the practical formulation of FLAC over time (A)

is given by

A(R, at, t, j) = ∑
s∈S

∑
r∈F

∑
0≤i≤n( f (r))−1

f (r)[i] f (r, r + at, t)[i − j] (2.1)

(??) shows spatial correlations derived from displacement vector and time

interval of which ai and t respectively and orientation correlations derived

from the products of the element values f. This is due to the empirical fact

that, in HLAC, the auto-correlations of binary values, i.e., quantized data,

are better for establishing recognition than those of the pixel values them-

selves. Where f , at, and t is vector of HOF, displacement mask in tth flow

field and tth consecutive flow field relatives to the reference respectively. In

practice, we can apply masking in the center of local region of reference flow

field to calculate HOF (Fig. 3a). For its consecutive flow field given δt, center

location that exactly the same with reference’s center location and its neigh-

boring locations are both employed (Fig. 3b) by the fact that motion between

two consecutive flow field is not largely change. Because the displacement of

flows given certain limit of sequence is not large, we can set ai into low degree

of number. In this work we set the value of ai into 1. The displacement in-

tervals also are the same in horizontal,vertical, and diagonal directions. We
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TABLE 2.1: Accuracy results over four number of flow fields
per subsequence

Resolutions 5 flow fields 10 flow fields 15 flow fields 20 flow fields

15x15 0.72 +/- 0.05 0.79 +/- 0.04 0.78 +/- 0.03 0.79 +/- 0.02
20x20 0.64 +/- 0.05 0.71 +/- 0.06 0.70 +/- 0.02 0.69 +/- 0.07
25x25 0.78 +/- 0.04 0.84 +/- 0.04 0.84 +/- 0.02 0.84 +/- 0.02
30x30 0.59 +/- 0.07 0.64 +/- 0.08 0.65 +/- 0.07 0.64 +/- 0.05
35x35 0.65 +/- 0.07 0.70 +/- 0.06 0.72 +/- 0.05 0.71 +/- 0.06

Combined 0.88 +/- 0.04 0.90 +/- 0.04 0.91 +/- 0.03 0.91 +/- 0.03

want to distinguish either the actor is going down, up, or diagonal within

subsequence.

Autocorrelation between vectors can be applied using various lag. Where

product between reference and its consecutive flow field is defined by dis-

crete autocorrelation of signal at lag j. Lag means how much difference in-

dices of both elements are to be correlated. Commonly, this way is imple-

mented in speech extraction such as (Shannon and Paliwal, 2006). Total rep-

resentation is given by concatenation of n pair between reference flow field

and its counterpart given the values within T and J of t ∈ T : 1 ≤ t ≤ n(s)− 1

and j ∈ J : −(n( f (r) − 1)) ≤ j ≤ n( f (r) − 1) respectively. Each local region

accumulates its own autocorrelations which is then L2-normalized. In the

case of calculating features in many subregions of an flow field, we can ap-

ply a method similar to the integral image approach by summing all over

local windows of flow field, thus the total feature representation is of size

n(A)× n(T)× n(J).

2.3 Experiment

In this experiment, the extracted features are classified by using the linear

SVM. The proposed methods were tested on the KTH dataset (Fig. ??), de-

tails of which are in (Schuldt, Laptev, and Caputo, 2004). KTH consists 600

action videos and 6 classes of boxing, handclapping, handwaving, jogging,
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running and walking. It contains 600 actions. Each class has 100 action videos

represented by 25 different people under four different scenarios, which are

outdoors, outdoors with different scales, outdoors with different clothes, dif-

ferent intensities and indoors with static and homogeneous background. Its

resolution is 120× 160 (height × weight) for all over videos in dataset.

boxing handclapping handwaving

jogging running walking

FIGURE 2.3: Six different action classes of KTH dataset

We set our parameters of each part namely dense optical flow, resolution

windows, orientation bins, number of subsequence interval, HOF weighting,

displacement masks, and normalization method as follows:

[Dense optical flow] Flanerback optical flow parameter setting are 0.5, 3,

15, 3 × 3, 5, and 1.2 for pyramids scale, number of pyramid layer, averaging

window size, number of iteration of each pyramid, size of pixel neighbour-

hood for each pixel to find polynomial expansion, and Gaussian standard

deviation used for derivatives smoothing based on polynomial expansion

respectively.

[Resolution] Resolution windows is the first processing step that may af-

fect the final performance. We applied for KTH dataset 15x15, 20x20, 25x25,

30x30, and 35x35 resolutions as it is most effective, whereas the greater or

less resolutions is not significant to influence performance result.
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[Orientation bins] Orientation bins are evenly spaced over [0,360] degrees

(signed flows). 10 orientation bins in 360 degrees is used in this experiment.

(Kobayashi and Otsu, 2008) shows that finer binning increases performance

while the signed gradient works better than the unsigned gradient. For au-

tocorrelations of orientations, signed flows seem to be preferable.

[Subsequence interval] The parameter to consider length of action cycle

is necessary. By giving T time within subsequence, it is closely related to

the how many flow field per subsequence of full sequence video are to be

processed. Intuitively, the greater number of flow fields can capture more

reliable motion pattern of actions. This subsequence is often called action

snippet.

[HOF Weighting] The weight of HOF is qualitatively defined as magni-

tude of flows, as it affects how strong the flow is respecting to its angular.

This influence the quantisation results of HOF.

[Displacement mask] The displacement mask of consecutive flow fields

relative to reference flow field can be varied. In this experiment we set into

1 for consideration that displacement interval to form motion between two

consecutive flow fields is not large.

[Normalisation] We adopt L2 normalisation which refers to normalisation

by L2-norm. These normalisation are applied to whole feature vector.

For comparison to the other methods, we compare overall performances

of the proposed methods with those of the other previous methods that use

the same KTH dataset. Note that we use stratified k-fold crossvalidation that

produce number of testing data equal for all classes.
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FIGURE 2.4: 10 fold crossvalidation of KTH by means LOOCV

2.4 Results

Table 1 presents our experimental results with 5, 10. 15, and 20 flow fields

within subsequence over KTH dataset. The tests were run with the param-

eters setting that have been described before. For each flow fields per sub-

sequence, we use 15x15, 20x20, 25x25, 30x30, 35x35 resolution windows or

channels and classification is performed using linear SVM with cost param-

eter of 1. The mean accuracy and standard deviation are given by aforemen-

tioned stratified 10 fold crossvalidation. The best performance is revealed

with 15 flow fields within a subsequence using combination of all the resolu-

tion windows. The performance almost always improves as the number flow

fields within subsequence increase until such number of flow fields within

subsequence. For the number of flow fields of 20 within a subsequence, it

can be shown that it has given same accuracy mean as 15 but with larger

deviation. It can be assumed that 5 - 15 number of flow fields within subse-

quence is enough to capture the action cycle. Note that standard deviation is

very low for all results that means how effective and consistent the accuracy

results are.

Table 2 compares our results to state of the arts. On KTH, we obtain 92.3
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TABLE 2.2: Accuracy results over four number of flow fields per subsequence

Methods Performance (KTH dataset) Evaluations fps Frame size

(Somasundaram et al., 2014) 83.4% train-test split 0.6 360x288
(Ke, Sukthankar, and Hebert, 2007) 80.9% LOOCV N/A N/A

(Fathi and Mori, 2008) 90.5% LOOCV 0.2-5 160x120
(Ta et al., 2010) 91.2% LOOCV 0.5 160x120

(Mikolajczyk and Uemura, 2011) 95.3% LOOCV 0.12-0.18 160x120
(Chakraborty et al., 2012) 96.3% random 80:20 train:test 0.9 160x120

Ours 92.3% LOOCV 1.2-16 160x120
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% which is comparable to the state of the arts. Two of which are above and

the rest below our result. As in Fig. ??), the most confusing is between jog-

ging and running class while many methods have been proposed face the

same confusion classes problem. Even though such confusion has been re-

vealed, result shows the capability of shift invariant from FLAC since the

position of running, jogging, and walking can constantly change within se-

quence of frames. The action of jogging and running is quite similar motion

characteristics that we confident these discrimination problem can be done

by modifying parameter of our framework or by adopting bag of features.

In terms of speed performance, by using CPU of 3.7 GHz Quad-Core Intel

Xeon E5, 12 GB 1866 MHz DDR3 ECC, and OSX platform for all extraction

phases, we test on the video of which duration is 360 frames and resolution

is 160x120. Because 15 flow fields per subsequence has been chosen as ideal

cycle length, we use this as comparison to the other published methods. The

running time of extraction depends on the machines, size of video, the size

of resolution window and how many resolution windows to be utilized. The

execution time we have achieved for whole sequence to process canny edge,

dense optical flow, HOF and autocorrelation over time is between 1.2 to 16

fps (frames per second) which is comparable to the others. 16 fps speed can

be realized if only 35x35 resolution windows is utilized. For combination of

all aforementioned resolution windows, it would take 1.2 fps. As in table 2,

there are many methods that use the same KTH dataset or another dataset as

complexity testing which in turn leads to the multiform video size and also

the machines that they used are different, we consider this the difference is

not significant.
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Chapter 3

Deep Wavelet Packet of Local

Dense Optical Flows

Action recognition with dynamic actor and scene has been a tremendous research

topic. Recently, spatio temporal features such as optical flows has been utilized to

define motion represention over sequence of time. However, to increase accuracy,

deep decomposition is necessary either to enrich information under location or time

varying actions due to spatio temporal dynamics. To this end, we propose algorithm

consists of vectors obtained by applying multi-resolution analysis of motion using

Haar Wavelet Packet (HWP) over time. Its computation efficiency and robustness

have led HWP to gain popularity in texture analysis but their applicability in mo-

tion analysis is yet to be explored. To extract representation, a sequence of bin of

Histogram of Flow (HOF) is treated as signal channel. Deep decomposition is then

applied by utilizing Wavelet Packet decomposition called Packet Flow to many lev-

els. It allows us to represent action’s motions with various speeds and ranges which

focuses not only on HOF within one frame or one cuboid but also on the temporal

sequence. HWP, however, has translation covariant property that is not efficient in

performance because actions occur in arbitrary time and sampling’s location is var-

ious. To gain translation invariant capability, we pool each respective coefficient of

decomposition for each level. It is found that with proper packet selection, it gives

comparable results on the KTH action and Hollywood dataset with train-test division

without localization. Even if spatiotemporal cuboid sampling is not densely sampled
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FIGURE 3.1: General architecture of proposed method.

like of baseline method, we achieve lower complexity and comparable performance on

camera motion burdened dataset like UCF Sports that oftenly motion features such

as HOF do not perform well.

3.1 Haar Wavelet Packet

Basically, Haar Wavelet is orthogonal and symmetry signal decomposition

method giving fascinating characteristic for multi-resolution invariant. This

is done recursively every level depending on the depths. To extract Packet

Flows (PF) in spatiotemporal space, we propose a framework as in Fig. ??.

Flow fields are extracted along the frames and cuboid using pre-defined sizes

and used to extract local HOF. To this end, in spatiotemporal space, the length

of flow fields subsequence must be determined. The action appears in a var-

ious temporal sequence that has to be captured. Thus, a collection of HOF

along subsequence of time (Fig. ??) must be decided before deriving Haar

Packet Wavelet using multi-resolution wave analysis. Frequency-based his-

togram for each bin is decomposed into several resolutions depending on

vector size as elaborated in section ??. Over temporal sequence, the output

vector of every subspace is interpolated to gain the advantage of continuous
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time series information while also reduce noise as described in section ??. In

our hypotheses :

1. Deeper decomposition can estimate various resolutions of sampled fea-

tures.

2. Subspace must be selected to obtain good information.

3. Pooling is required to add spatiotemporal translation invariant capabil-

ity in spatiotemporal space.

As explained in section ??, to gather more spatiotemporal invariant, ev-

ery subspace is normalized and then pooled in form of energy. Every level of

decomposition is then quantized into the bag of features (BoF) for the sake of

sparseness. Class specific BoF is used as sparsity transformation as plotted

in section ??. Multi-level BoFs are concatenated to be fed into the classi-

fier. The suitable classifier sparse histogram vector is SVM with generalized

histogram kernel in which described in section ??.

3.1.1 Multi-resolution Haar Wavelet Packet and time-varying

histogram on spatiotemporal space

We are considering each bin sequence of HOF sequence as time series vector

and later is concatenated to be time series histogram. The basis of features

is HOF to compute temporal dynamics of motion between consecutive flow

field frames. The frequency of each bin is decomposed equally into sepa-

rated groups with equally fixed bandwidth. As metrics, the multi-resolution

scheme with Haar Wavelet Packet has been utilized along time interval.
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By decomposing temporal resolution with Haar Wavelet Packet (HWP),

besides enriching HOF bins, instances from the same class are varied to in-

crease similar characteristics. Our proposed method directly implement ex-

isting HWP. In terms of formulation, suppose H is a representation of a se-

quence of HOFs with i is fixed number of bins, s is an index of the bin, n is a

number of sequential HOF in a sequence, and j is an index of HOF inside the

sequence. There is B which is a sequence of bins as part of H overtime giving

timing varying n. Thus, H = {h0, h1, ...hn−1} where for every hj ∈ H has bs ∈

B. Specifically, for each H there exist B = {b0, b1, ...bi−1}. The each sequence

of time-varying b is formulated by giving Bs = {h0(s), h1(s), ...hn−1(s)}.

FIGURE 3.2: Wavelet Packet Tree decomposition based on ini-
tial orthogonal basis

As in Figure ??, Bs is sequence and j is a depth number, x is node number.

We can define each Bs,j+1,2x ((??)) and Bs,j+1,2x+1((??)) as low pass and high

pass function respectively. This refers to classical Haar Wavelet function in

which utilized such that :

B2x(i) =
√

2
2N−1

∑
k=0

h(k)Wx(2i − k) (3.1)

B2x+1(i) =
√

2
2N−1

∑
k=0

g(k)Wx(2i − k) (3.2)

DWPT in time series at first level applies low and high level with :
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N = 1, h(0) = h(1) =
1

2

and

g(0) = −g(1) =
1

2

where :

W2x(i) = Wx(2i) + Wx(2i − 1)

and

W2x+1(i) = Wx(2i)− Wx(2i − 1)

Enriching histogram by Haar Wavelet Packet has multi-resolution char-

acteristics that are ability to capture large or small motion cycles by means

frequent decomposition. Besides, more detail information of various motion

is extracted. There is the psycho visual relation that human visual system is

transmitting objects in the multi scale manner. Its computation efficiency and

constructed wavelet bases have led to gaining popularity in texture analysis.

However, suitable and appropriate wavelet bases depend on the purpose

and can be considered only based on experiment. Meanwhile, the proposed

idea is to decompose each dynamic bin quantization of histogram along tem-

poral space. This is beneficial for capturing discontinuities in every bin. The

general properties of spatiotemporal histogram intersection are explained in

Figure ??. The algorithm is estimated every predefined cuboid volume. We
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FIGURE 3.3: Decomposition of each bin of HOF given n flow
fields. For each bin acts like channel in which frequency of
flow fields are collected and decompose itself into many depths.
Each depth of Wavelet Packet decomposition is pooled based

on its packet.

can define the size of cuboid before undertaking HOF and its temporal se-

quence. Wavelet packet decomposition is performed in multi-level depend-

ing the length of the initial feature vector. The deeper wavelet packet level,

the window size is getting narrower, dense, and more detail in scale. The

deeper level has an advantage of a variety of temporal dynamic of motions.

Because of natural characteristics of WPT, PF is simple and relatively fast to

be implemented. The basic idea of the algorithm is decomposition of his-

togram sequence. Every Wavelet packet contains coefficient to justify the

value of how dominant or distributed the waves are. It has a real-valued

vector that spans across different levels and decompositions.

Classification performance for each level is investigated by various wavelet

packets. All decomposition packets of every level are selected as vector rep-

resentation and investigate its performance. For 40 sequence of motion bin

and 3 depths, there are 4 levels (0,1,2,3). For every level, it constructs wavelet

packets. We investigate every layer used for feature calculations.
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1. Level 0 (S) is represented by sequence of HOF’s frequencies from one bin

channel.

2. Level 1 (A1, D1) is represented by 2 wavelet packets with dyadic high

pass decomposition coefficients (A1) of 10 and low pass decomposition co-

efficients (D1) of 20 each. From then, energy values are calculated as sum of

each packet E1.

3. Level 2 (AA2, DA2, AD2, DD2) is represented by 4 wavelet packets with

dyadic high pass decomposition coefficients (AA2) and low pass decompo-

sition coefficients (DA2) derived from level 1 high pass packet of 10 each and

high pass decompositions (AD2) and low pass decomposition coefficients

(DD2) derived from level 1 low pass packet of 10 each. From then, energy

values are calculated as concatenation of sum of each packet E2.

4. Level 3 (AAA3, DAA3, ADA3, DDA3, AAD3, DAD3,ADD3, DDD3) is

represented by 8 wavelet packets with dyadic high pass decomposition coef-

ficients (AAA3) and low pass decomposition coefficients derived from level

2 high pass filter of level 1 high pass filter, high pass decomposition coeffi-

cients (DAA3) and low pass decomposition coefficients derived from level 2

low pass filter of level 1 high pass filter, high pass decomposition coefficients

(ADA3) and low pass decomposition coefficients (DDA3) derived from level

2 low pass filter of level 1 high pass filter, high pass decomposition coef-

ficients ( AAD3) and low pass decomposition coefficients (DAD3) derived

from level 2 high pass filter of level 1 low pass filter, high pass decompo-

sition coefficients (ADD3) and low pass decomposition coefficients (DDD3)

derived from level 2 low pass filter of level 1 low pass filter, all of which has

5 coefficients. From then, energy values are calculated as a concatenation of
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FIGURE 3.4: Sequence of flow fields can be noisy or discontin-
ued. Smoothing time-varying flow fields signals enriches in-
formation about motion and transform discreet signal into near

continuous signal.

sum of each packet E3.

3.1.2 Curved bell weighted cosine smoothing

Smoothing gives advantage such as giving robustness to outliers and im-

proving generalization performance. Furthermore, Zero-th layer or depth of

packet gram is smoothed in order to form continuous motion frequencies.

It turns deeper layers Consider decomposition packet vector, we use Han-

ning window function f ((??)) which convert vector into taper formed using

weighted cosine of such :

f (n) = 0.5 − 0.5cos(
2πn

M − 1
) (3.3)

where 0 ≤ n ≤ M − 1
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FIGURE 3.5: Two types of dense cuboid with spatio-temporal
grid of either 2 × 2 and 3 × 3 regional division.

Cs = Bs ⊗ f (3.4)

In which is smoothed version following cosine bell curve shape of dy-

namic frequencies. Zero-th layer or depth of packet gram along sequence

is convoluted ((??)) with f to produce final version of feature vector. As a

compensation, dimension of feature vector is getting longer than original

one. Mostly found on signal processing literature, it is used as windowing

function for smoothing purpose. Wavelet Packet vector of no smoothed and

smoothed version can be revealed in Figure ??.

3.1.3 Temporal pooling as translation invariant

Wavelet is generally conforms translation and thus not translation invariant

(Bruna and Mallat, 2013). The integral of coefficients of each sub band is

deemed to be translation invariant. Thus, pooling of normalized feature vec-

tors is one of method to be applied to each sub band in form of energy. Our
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goal is to calculate the energy of each packet by making use of each coeffi-

cient. The energy of coefficients gives unique patterns for each scale or level

and contribute to classification performance. If energies of wavelet packet in

the certain level of every HOF bin are collected and concatenated with all re-

gions within cuboid, it turns out to be final feature representation. We prove

that such signatures bring generalization to describe motion cycles. Suppose

wavelet packets for each level given m sub bands is wm and number of the

coefficient is c, the concatenation of sum of normalized w producing energy

E in level l would be :

El = (
c

∑
i=0

‖w1(i)‖,
c

∑
i=0

‖w2(i)‖, ...,
c

∑
i=0

‖wm(i)‖) (3.5)

Final representation would be a complete set of all wavelet packet ener-

gies across the tree. Later, all of the concatenated energies for all bins in HOF

will be integrated with all regions within cuboid. If we use 10-bin HOF, it

means there are 10 channels, each of which collection of wavelet packet en-

ergies is measured. If we use 10 flow fields over time then it turns out to and

we use cuboid with 9 regions, there will be 720-dimensional feature vector

on the first level of decomposition.

3.1.4 Class specific Bag of Features and its cuboid sampling

method

After HOFs are extracted, it is collected in sequence. Frequencies of each

time frame within sequence along each bin of HOF can be treated as one-

dimensional vectors. Sparse representation derived from Packet Flow en-

ergies within the spatiotemporal region by means dense cuboid. In order

to adapt scale-invariant features, most researchers use multiresolution pyra-

mid that forms scale factor based on the size of windows channel (Wang et

al., 2011)(Laptev et al., 2008). More scaling factor enriches scale information
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and boosts the performance but it is not significant and also there is increased

computational cost that must be taken into account. Thus, we use N × N spa-

tiotemporal cuboid divided into r × r regions to sample optical flow. Packet

flows is obtained inside region of cuboid volume without any information

about positions spatially and temporally but information of structure still

be achieved, to this end, it is advantageous to adopt such region division

cuboid. To enrich local geometrical information, the bounding volume is di-

vided into four and nine dyadic regions as in Figure ??. By concatenating all

of each packet flows from regions inside cuboid, we gain bin of HOF, region

and global level features. Every cuboid final feature vector U for r regions,

cuboid and packet flow depth l will be inferred as:

U = (El1, El2, ..., Elr) (3.6)

where U is concatenated feature of the cuboid with r regions in total.

Given final local geometric feature.

Dense cuboid patches are sampled through spatiotemporal video with

predefined step size that is how many pixels cuboid patches slide. The high

number of step size will burden computation, thus it is better to consider the

size of W × W pixels step in spatial space (Wang et al., 2011) and T frames

step along the temporal sequence (number of flow fields). While Packet Flow

is multiresolution analysis inside regions of the cuboid, it is considered to

choose large cuboid with high step size. The size of resulted feature vector

dimension is independent of the size of window patches. Different size of

the video (dimension) would influence the size of windows channels that re-

liable to cover action motion. The output of each cuboid patches is a Packet

Flow feature vector. It would give same dimensional for all Packet Flows

along the sequence of flow fields. In this research, cuboid is divided into

2 × 2 and 3 × 3 regions (r=2,3). Each type of region-based cuboid and every
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depth of Packet Flow have its own dictionary in which learned separately to

convert original L1-normalized Packet Flows features into k dimensionality

of sparse representation by mean class specific sparse coding. This sparsity

will reduce the influence of noise thus improve robustness against noise such

as camera motions. By using matching and counting in such voting fashion,

the sparse feature vector, later, is L1-normalized such that it will give rise on

compact and fair deviation feature because every video appears in a differ-

ent number of the sequence. Overall sequence of video, voting of codebook

are sum pooled and then L1-normalized giving a final feature vector to be

classified.

BoF has gained its popularity in computer vision topics. In this research,

K-means clustering is used a dictionary generation. All the extracted PF fea-

tures are matched, voted, and L1-normalized with a generated dictionary to

form sparse features. Dictionary learning is constructed from training data

and form D number class specific dictionary. Codebook {C1, C2, ..., Cn} is built

from a collection of Packet flows. Every class has its own codebook and clus-

ter centers, for example class 0 has {C01, C02, ..., C0n}. These sets of codebook

vary depending on resolution attached to them in which accommodate mul-

tiresolution. This will give rise of scale invariant to the recognition system.

Every feature vector generated from patches of the spatiotemporal flow field

is matched with the generated codebook. The numbers of matching feature

are quantized giving voting fashion. After such quantization, the feature

vector is L1-normalized to give fair representation scale. The most promi-

nent votes determine which parts of a region inside sequence of flow field

space that has significant contribution to the motion. This will turn features

into the aforementioned sparse representation that preserving local geomet-

ric information of features. These features are employed as feature input of

classification algorithm.
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FIGURE 3.6: Samples of KTH actions dataset which contains 6
classes

FIGURE 3.7: Samples of UCF Sports dataset with its 10 classes

3.1.5 Classification

We use SVM with generalized histogram intersection kernel (Boughorbel,

Tarel, and Boujemaa, 2005) ((??) ) for classification which is advantageous for

BoF based features. Descriptors from histogram of BoF is normalized and

trained by:

K(x, x′) =
m

∑
i=1

min{|xi |c, |x′i |b} (3.7)

where

(x, x′) ∈ X × Y

min{|xi |b, |x′i |b} is This kernel has positive definite as long as b ≥ 0. We

follow (Boughorbel, Tarel, and Boujemaa, 2005) to set b to 0.25 to be used

along experiments. Because the nature of binary classification of SVM, clas-

sification framework is covered with one against the rest format and counting

the highest score for final decision.
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FIGURE 3.8: Samples of Hollywood 2 dataset which has 12
classes (8 classes is just on figure)

FIGURE 3.9: Effect of various codebook size on accuracy using
packet flow of (a) fourth (b) third (c) second (d) first depth be-

tween 2x2 and 3x3 dense cuboid of KTH action dataset

3.2 Experiment

Dataset and parameter selection are two important set up for experiment

purpose. The detail of dataset and selected parameter are described in detail

in this section. Explanation on experiment setup will clarify and confirm

results provided by proposed method. For cuboid sampling, we use size

of cuboid of N=75 with spatial step size of W = 25 and temporal step size

of T =10 which is less dense than (Wang et al., 2011) and less computation

burden. Sampling steps is not totally overlapping and done for entire video

samples. 15 flow fields per subsequence and 40 flow fields per subsequence
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FIGURE 3.10: Confusion matrix of KTH classification results for
packet flow of (a) first (b) second (c) third (d) fourth and (e) first

and fourth concatenation depth.
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of cuboid length are used for UCF Sports and KTH Actions respectively in

consideration of each average video length.

3.3 Datasets

Dataset we use for entire experiment are KTH Actions dataset (Schuldt, Laptev,

and Caputo, 2004) , and UCF Sports dataset (Soomro and Zamir, 2014). These

are selected in consideration of size varying and conditioned or uncondi-

tioned dataset. The proposed method is tested to analyze its performance to

recognize under different scales, color, illumination, occlusion, noise, back-

ground or foreground clutter, temporal dynamics etc. Performance evalua-

tion for classification is done for the complete sequence of video.

There are 599 videos containing six action classes which are boxing, hand-

clapping, handwaving, running, jogging, and walking ( Figure ??). It con-

tains 2391 sequence in total. All videos have same dimension size of 160

x 120 and captured with 25 fps rate. 25 actors performed six different ac-

tions under different scales, illuminations, and viewpoints. For evaluation,

there is much previous research that follows paper of origin setting by split

dataset into train-validation (16 actors) and test (9 actors) or leave one person

out validation (LOOCV) with different reasons. For the sake of fair compari-

son, train-validation-test split model which is same setting with the original

dataset is used as evaluation for this paper.

UCF sports dataset is unconditioned action dataset gathered from sports

events of various TV stations. There are 150 videos with a resolution of 720

x 480. It consists of Diving (14 videos), Golf Swing (18 videos), Kicking (20

videos), Lifting (6 videos), Riding Horse (12 videos), Running (13 videos),

SkateBoarding (12 videos), Swing-Bench (20 videos), Swing-Side (13 videos),

Walking (22 videos) as in Figure ??. The speed of videos is 10 frame per sec-

ond (fps) in average. For this dataset, we use evaluation setting introduced
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TABLE 3.1: Classification rate of various bag of features based
packet flow of KTH actions

Wavelet Packet depth Number of features Classification rate

Packet flow 1st depth 2046 0.9120

Packet flow 2nd depth 1762 0.8935

Packet flow 3rd depth 2347 0.9000

Packet flow 4th depth 2343 0.9256

Packet flow 1st & 4th depths 3808 0.9306

by lan in which uses specified train test split. The reason is by using LOOCV,

there is a strong correlation between training and testing that make confuse

whether features are derived from action or background. It is proved by in-

creasing SVM parameter C (cost), accuracy is also increasing. For accuracy

parameter, we use mean per class accuracy as a metric which is the same as

baseline method (Lan, Wang, and Mori, 2011). It is counted by a number of

true positives per total samples of each class per number of classes.

Hollywood 2 dataset contains 12 classes of human actions which are an-

swering phone, driving a car, eating, fighting person, get out of the car, hand-

shaking, hug, person, kissing, running, sitting down, sitting up and standing

up. It is gathered by means of combination of script to video alignment and

text-based script classification. It consists of 823 training video sequences

and 884 testing video sequences. This dataset is challenging because it has

complex background and various illumination degrees. Evaluation metric

used in this dataset is mean average precision (mAP) of all classes.

3.4 Results

From Figure ?? we show correlation of codebook size and accuracies given

either 3x3 region of cuboid and 2x2 region of cuboid of KTH actions dataset.

We can measure whether Packet Flows is sparse enough or too sparse by in-

vestigating the graphics change. Even though distribution of both 2x2 and
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TABLE 3.2: Comparison with another methods on KTH Actions

Methods Accuracy

Global information (Wong and Cipolla, 2007) 86.6 %
Dense + HOF (Wang et al., 2011) 88.0 %
Cuboid + HOF (Wang et al., 2011) 88.2 %
Hessian + HOF (Wang et al., 2011) 88.6 %
Salient self similarity global features (Somasundaram et al., 2014) 89.6 %
Dense trajectories (Wang et al., 2011) 89.8 %
GRBM (Taylor et al., 2010) 90.0 %
3DCNN Ji et al., 2013 90.2 %
Dense cuboid + HOF (Wang et al., 2011) 90.5 %
Harris3D + HOG/HOF (Laptev et al., 2008) 91.8 %
Harris3D + HOF (Wang et al., 2011) 92.1 %
Deep learning SFA (Sun et al., 2014) 93.1 %
Our method (Packet flow) 93.1 %

3x3 based cuboid region are similar, they give different result on various

codebook sizes. In general, 3x3 based gives slightly more accuracy com-

pared to the 2x2 based because of more geometrical information available.

This assumption does not hold in case, in contrast with KTH, there are many

occlusion or background clutter which distract motions. For all diagram,

almost 3x3 region based cuboid dominates accuracy rate for any codebook

sizes. This could happen because there is abundance data sample for each

class that helps build local geometrical instance. Moreover, there is little

amount background clutter that possibly confuses between action motions

and camera motions. It seems that sparser distribution gives better accuracy.

The better accuracy result will be obtained if perhaps the size of dataset in-

creases.

Classification rates of KTH actions dataset are shown on Table 1 using

overall accuracy rate. Performance results given various Packet Flows are

presented. It shows standalone (1st, 2nd, 3rd,4th ) and redundant (1st & 4th)

Packet Flows results using concatenation of 2x2 based region and 3x3 based

cuboid region each. Concatenation of 1st and 4th increases accuracy rate.

Even though redundancy and accuracy difference is not significant compared
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TABLE 3.3: Classification rate of various bag of features based
packet flow of UCF Sports

Wavelet Packet selection Number of features mean per class accuracy

1 2324 0.7040%
2 948 0.6740%
3 2309 0.7030%
1,3 4633 0.6700%

with 1st or 4th alone, there is an improvement of classification rate. How-

ever, as more detail temporal dynamics are observed, it leaves uncertainty

in which high degree of freedom arises. Later, it will be proved by compar-

ing KTH dataset which has binomially 6 classes and high-density sample of

each class and UCF Sports which has 10 classes but a low number of sam-

ples. Moreover, heterogeneous or homogeneous sample within class influ-

ences degree of freedom levels. The performance results compared to previ-

ous methods is presented in Table 2. Our proposed method is comparable

to popular state of the arts. Most of state of the arts use flow-based features

combined with another method.

The distribution of overall accuracies of KTH is shown in Figure ?? for

every respective depth of Packet Flow. It shows confusion matrices that

shows true positive rates for each class are obtained in different Packet Flow

of which has 1st, 2nd, 3th, 4th and 1st & 4th depth respectively. The most confu-

sion is between jogging and running even though it shows different distribu-

tion in depth. From these elaboration gives chance to select which temporal

dynamic that is suitable to discriminate actions. From this result we infer

that various resolution level it gives various performance.

For UCF Sports dataset, mean per class average is used as classification

rate in consideration that different from KTH, UCF Sports classes are not well

distributed, there are classes that have only a few members and another class

with overload members. Besides, state of the art lan used mean per class

average as classification accuracy of UCF Sports.
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FIGURE 3.11: Effect of various codebook size on accuracy using
packet flow of (a) first (b) second (c) third depth between 2x2

and 3x3 dense cuboid of UCF Sports dataset

By using sparse packet flow (BoF), we can identify flow in many degrees

of depths. Every depth gives different characteristics such that we can select

the depth that gives highest performance. There is a drawback that is the

more Packet Flows are used there will be more potentially redundancy and

exhaustive computation, however, It reveals good result for static or dynamic

background and even for complex actions such as UCF Sports. Distributions

of correlation between a number of codebook and classification (mean per

class average) are presented in Figure ?? according to its Packet Flow’s depth.

Both 2x2 region and 3x3 region of cuboid compete each other along a num-

ber of codebook per class. The uncertainty arises probably because of high

degree of freedom. Dynamic background caused by camera motions will

reduce role of local geometrical information to discriminate action classes.

However, we can choose the best cuboid which consists of Packet Flow’s

depth and region type of cuboid to be final representation.

Table ?? presents accuracy rate from each depth of Packet Flows. It shows

different accuracy results obtained given 1st depth, 2nd depth, and 3rd depth.
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FIGURE 3.12: Confusion matrix of UCF Sports classification re-
sults for packet flow of (a) first (b) second (c) third depth.

The best accuracy rate is given by Packet Flows of 1st depth with 0.704 accu-

racies. Combining the best of 2 × 2 region and 3 × 3 region cuboid does not

help to boost accuracy result because of the probably high degree of freedom

that turns distribution into uncertainty. If the size of the dataset is bigger,

it means result will converge into certainty and help increase performance

result.

Figure ?? shows confusion matrices of Packet Flows of 1st depth, 2nd depth,

and 3rd depth respectively. Diving, weightlifting, and riding give perfect clas-

sification result. That is because motion of actions is not biased with most

camera movement and significant scale differences which confuse with ac-

tual action motions.

Compared to the state of the arts as in Table ??, with either global and

local BoF without localization, proposed method outperforms both. Even we
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TABLE 3.4: Comparison with another methods on UCF Sports

Methods Accuracy

global bag-of-words 63.1%
local bag-of-words 65.6%
spatial bag-of-words with ∆0/1 63.1%
spatial bag-of-words with ∆join 68.1

Our method (Packet flow 3rd depth) 70.3 %
Our method (Packet flow 1st depth)? 70.4%

outperform with global and local BoF with classification loss (∆0/1) and the

joint loss of localization and classification (∆joint).

Extracting Hollywood 2 dataset requires extensive effort on extracting

features because it can be sampled in various position in spatio temporal

space. However using usual sampling of HOF, by using Packet Flow, it gains

multi-resolution information in which in turn improve accuracy as in Table

??. However, a number of used depths has to be selected by experiment to

suitably choosing advantageous information. Based on experiment on Hol-

lywood 2 dataset, it reveals that depth 1 and depth 2 has mutual information

which gives best accuracy. In Table ??, for comparison to the state of the arts,

selected Packet Flows produces comparable mean accuracy precision com-

pared to Deep learning SFA and another method.

UCF Sports is challenging dataset which is dynamic background poten-

tially distracts motions. Moreover, actors appear in many scales and pose

make recognition is difficult. Due to that, it is reasonable to localize action

along spatiotemporal but since we do not consider localization we compare

cuboid sampling with non-localized methods in which so far is only found

in (Lan, Wang, and Mori, 2011) as in Table ??. Compared to state of arts, our

proposed method does not require space-time scaling and small either size of

cuboid and step size sampling in which computationally expensive. Multi-

resolution analysis that is nature characteristic of Packet Flow can spatially

pool dominant motion and temporally extract detail temporal dynamics. It
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leads to computational efficiency and better performance for action recog-

nition. If localization is adopted and leave one person out cross-validation

evaluation is used, higher accuracy is will be achieved.

Compared to state of the arts, Packet Flow can be extracted inside larger

size of cuboid with larger step size. Table ?? shows comparison of cuboid

sampling given feature points. It is less densely sampled than previous meth-

ods in which give comparable accuracies. The advantage is less computa-

tional effort while Wavelet Packet naturally has low complexity properties.

Many researchers face trade-off difficulty between dense sampling and per-

formance especially in action recognition where information sampling must

be enough to be supplied to learning algorithm. It is proof that Packet Flow

is spatially able to minimise non-dominant motion which is assumed to be

noise and temporally to enrich temporal dynamics information. We found

that without space-time scaling like (Wang et al., 2011) and (Laptev et al.,

2008), comparable accuracy is still obtained by generalized SVM learning.

We only give addition in cuboid division with either 2x2 and 3x3 region in

which from each region Packet Flow is extracted.

3.5 Complexity

This method is implemented using Python and OpenCV. We use CPU of 3.7

GHz Quad-Core Intel Xeon E5, 12 GB 1866 MHz DDR3 ECC, and OSX plat-

form for edge detection, dense optical flow, cuboid, HOF, and Packet Flow

extraction phases. In our setting and our machine, our feature requires, over-

all, 1.3 frames per second to compute depending on a number of HOF bin,

number sequence of HOF within cuboid or number of flow fields, step size

of BoF, and how many Packet Flows to be counted. Based on entire exper-

iments, HOF bin of 8, number of sequence of HOF within cubic of 40 for

KTH and 15 for UCF Sports are used. As in Table ??, compared to previous
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methods, our proposed method is competitive since accuracy is high and

complexity is low. We test on the video of which duration is 360 frames and

resolution is 120 x 160.
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TABLE 3.5: Comparison of cuboid sampling to state the arts

Methods cuboid sizes Sampling step size cells codebook Accuracy

global bag-of-words with ∆0/1

{18σ, 18σ, 10τ}
σ =

√
2, 2, 2

√
2, 4, 4

√
2, 16, 16

√
2, 32

τ =
√

2, 2 50% overlap 9 1 63.1%

local bag-of-words with ∆join

{18σ, 18σ, 10τ}
σ =

√
2, 2, 2

√
2, 4, 4

√
2, 16, 16

√
2, 32

τ =
√

2, 2 50% overlap 9 1 68.1%

Our method (Packet flow 3rd depth) {75, 75, 40} {25, 25, 10} 4 and 9 2 70.3 %
Our method (Packet flow 1st depth) {75, 75, 40} {25, 25, 10} 4 and 9 4 70.4 %
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TABLE 3.6: Mean average precision (mAP) on Hollywood 2
dataset in respect to depth of Packet Flows

HOF HOF + PF depth 1 HOF + PF depth 1 & 2 HOF + PF depth 1 & 2 & 3

0.46 0.475 0.512 0.482

TABLE 3.7: Comparison with another methods on Hollywood
2 dataset

Methods Accuracy (mAP)

Dense trajectories (Wang et al., 2011) 47.7
Dense + HOG/HOF (Laptev et al., 2008) 47.7
Dense trajectories + HOF (Wang et al., 2011) 50.8
GBRM (Taylor et al., 2010) 46.6
Deep learning SFA (Sun et al., 2014) 48.1

Our method (Packet flow 1st & 2nd) 51.2

TABLE 3.8: Complexity comparison with another methods on
KTH Actions

Methods Accuracy Evaluation fps

(Somasundaram et al., 2014) 0.8340 Train test split 0.6
(Fathi and Mori, 2008) 0.9000 Train test split 0.2-5
(Mikolajczyk and Uemura, 2011) 0.9530 LOOCV 0.12-0.18

Our method (Packet flow 1th depth) 0.9120 Train test split 1.3

Our method (Packet flow 1st & 4th) 0.9306 Train test split 0.5
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Chapter 4

Motion Superpixels for Temporal

Video Classification

Superpixels are a representation of still images as pixel grids because of their more

meaningful information compared with atomic pixels. However, their usefulness

for video classification has been given little attention. In this paper, rather than

using spatial RGB values as low-level features, we use optical flows mapped into

hue-saturation-value (HSV) space to capture rich motion features over time. We in-

troduce motion superpixels, which are superpixels generated from flow fields. After

mapping flow fields into HSV space, independent superpixels are formed by itera-

tion of seeded regions. Every grid of a motion superpixel is tracked over time using

nearest neighbors in the histogram of flow (HOF) for consecutive flow fields. To de-

fine the temporal representation, the evolution of three features within the superpixel

region, namely the HOF, the center of superpixel mass, and the neighborhood cor-

relation, are used as descriptors. The bag of features algorithm is used to quantify

final features, and generalized histogram-kernel support vector machines are used as

learning algorithms. We evaluate the proposed superpixel tracking on first-person

videos and action sports videos.
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FIGURE 4.1: Top row: original image; motion superpixels on
flow field. Bottom row: original superpixels from SEEDS; mo-
tion superpixels mapped to the original image (MPEG-4, 21

MB).

4.1 Motion superpixel

Motion superpixels are derived from motion space, in this case, from optical

flows. The SEEDS algorithm creates segmented flows that are iterated using

color distributions and boundary terms. Figure ?? shows the difference be-

tween spatial SEEDS, which oversegments RGB space, and motion SEEDS,

which oversegments flow space. Motion superpixels are constructed where

motion arises and remain in default form when there is no motion or very lit-

tle motion, which depends on a threshold. If a motion superpixel is mapped

to the original RGB space, then the superpixel will react if there is a moving

object. We can filter out stationary superpixels by selecting superpixels for

which the average from the HOF is greater than zero.

Motion superpixels can be any size and shape depending on the initial

seeds in each frame. In Figure ??, a dense optical flow is extracted from the

original frame and mapped into HSV space. The flows from camera motion

dominate the scene, which need to be compensated to obtain the actual mo-

tion triggered by an actor. Coarse to fine superpixel generation is important
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FIGURE 4.2: Top row: original frame of horse riding with
camera motion following actor; dense optical flows; compen-
sated motions. Middle row: motion superpixel from one seed;
motion superpixels from 16 seeds; motion superpixels from 64

seeds. Bottom row: motion superpixels from 256 seeds.
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FIGURE 4.3: Clockwise from top left: original video of runner
with camera following runner; flow field of optical flow which
highlights the runner and the noise from camera motion; flow
field after motion compensation to highlight only the runner?s
actions. The motions of an actor or an object of interest are con-

sidered to be local motions.

not only to capture flows of varying size but also to add beneficial infor-

mation for classification performance. This is especially true for videos that

contain heterogeneous motions such as camera motion, object motion, non-

object motion, and occlusion. We found that concatenating separate bags

for different numbers of seeds captures different yet complementary infor-

mation. This scheme is evaluated in the evaluation section using the UCF

Sports dataset, which contains intense camera motions and occlusions that

distract from flow-based features.

4.2 Motion compensation

Motions or flows within a frame are considered to be motion features. It is

important to apply motion compensation because of camera motion. Video
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captured using handheld devices have a high degree of freedom and often

includes camera motion that distracts from actual motions. Moreover, it may

be difficult to differentiate between actions of interest and the background

from action videos taken in the field. To solve this problem, it is possible to

use affine transformation and random sampling consensus. We use a simi-

lar consensus approach with a rigid transformation that estimates the affine

transformation and removes those parts from the flow field. We use the rigid

affine estimation in equation 1, in which i is a point inside the pixel region of

the current frame Xt and the next frame Xt+1, and find a 2 × 2 matrix A and

a 2 × 1 vector b that minimize the value of r:

r = argmin ∑
i

||Xt+1[i]− AXt[i]
T − b||2. (4.1)

We find a transformation matrix from the reference frame to the next

frame that represents the rigid transformation. In real action recognition,

small camera movements can greatly impact flow alteration. By assuming

that camera motion is rigid, the affine flow field can be removed from the

flow field. After A and b have been found, the rigid prediction of Xt can be

determined. If we assume that the rigid prediction is X̂t+1 then the following

holds:

Xt+1 = Xt+1 − X̂t+1. (4.2)

Figure ?? shows an original image of a runner, where a moving camera

is following the runner. Only the salient movements are required to be pro-

cessed during image recognition. In human motion analysis, articulated mo-

tion is considered to be salient as it creates varied and dynamic flows that

cannot be modeled using affine transformations.
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4.3 Motion superpixel tracks

While dense trajectories track a reference point over time based on flows,

we use superpixels of flows, which contain more meaningful information

and track reference superpixels over time based on the nearest moving point.

Similarly, just as dense trajectories are tracked over multiple scales, motion

superpixels are tracked in varying sizes. Grids for the initial superpixels are

seeded in every frame and are iterated until convergence. Every convergent

superpixel is then tracked with its corresponding superpixels based on the

value nearest to its center of mass. Based on experiments, it is found that us-

ing 250 superpixel seeds per flow field is enough to give baseline results. We

used five different values for the number of superpixel seeds (1, 4, 16, 64 and

256 initial seeds). Temporal information is prominent in activity recognition

tasks. To treat motion superpixels over time, we used the nearest neighbor to

find the superpixel corresponding to a specific super-pixel for times t to t + 1

between two consecutive flow fields. To build the corresponding network

between superpixels, we defined the center of mass for a superpixel region

as follows:

mij = ∑
x,y

A(x, y)xjyi, (4.3)

x̄ =
m10

m00
, ȳ =

m01

m00
. (4.4)

Equation (??) shows the spatial moments mij up to the first order for a

polygon or superpixel, where {i, j} ∈ ({1, 0}, {0, 0}, {0, 1}, {0, 0}) and {x, y}

represents points on the border of the superpixel. Equation (??) gives the

center of mass (x̄, ȳ) of a superpixel. Note that each superpixel contains in-

formation about a set of motions. Each superpixel at time t + 1 may have
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mt2

FIGURE 4.4: Tracking is done by following the nearest center
of mass from a flow field frame mt to the next frame mt1.

moved based on motions contained inside the superpixels at time t. There-

fore, the new central moments at time t + 1 are the central moments at time t

summed according to the average flow vectors (v̄x , v̄y) in the superpixels at

time t as described in equation 5:

ms(t + 1) = ms(t) + (v̄x, v̄y). (4.5)

Under the assumption that motion superpixels in consecutive flow fields

will appear in a position nearest to its reference superpixel whether its shape

changes or not, tracking is done by finding the nearest central moment point

at each iteration. This is similar to tracking by following the path of the center

of mass of superpixels over time as in Figure ??. Along with several flow

fields, this yields a time series of feature evolution. For each superpixel s, the

next superpixel s2 is selected based on the minimum distance between the

centers of mass:
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ds,s2(ms(t + 1), ms2) = s ∈ S, s2 ∈ S2min||(ms2 − ms(t + 1)||. (4.6)

After computing the optical flows, seeds of the superpixels are constructed

and each superpixel is tracked based on its center of mass. A collection of

centers of mass for the given time interval forms a sequence of tracked mo-

tion superpixels (mt, mt+1, mt+2, ...). The tracking is restricted to a time in-

terval because longer track increase the probability of drift or bias from the

initial point. In anticipation of this problem, we predefine the number of

flow fields N in a sequence. If the next superpixel contains a flow field with

all zero values or with no motion, then the sequence is terminated. If the

length of the sequence is less than N, then the track is not saved as a feature.

Conversely, if the track contains N flow fields and all superpixels contain

motions, then the track is saved as a feature vector. In practice, a track length

of L = 10 flow fields is used.

In general, superpixels with no motion are represented in HSV color space

as zero values or in black. This means that there is no presence of motion

in that superpixel region, or that the motion is removed because of motion

compensation. We use the termination criterion of the absence of motion

to prevent non-motion selection. As with dense trajectories (Wang et al.,

2011), dense optical flows are more robust than sparse flows, and thus dense

Farneback optical flows (Farnebäck, 2003) are chosen as the base flows for

the entire process.

Local motion segmentation to form superpixels contains information about

motion flows. A sequence tracked over time will produce a sequence of mo-

tion flows that can be described as a rich motion pattern. Given a number of

flow fields N, the sequence of moments over time M = (∆mt, ∆mt+1, ...∆mN)

has the displaced central moments mt = (mt+1 −mt) = (xt+1 − xt, yt+1 − yt).
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FIGURE 4.5: Edges of related motion superpixels that contain
useful representations.

The resulting vector is normalized by the sum of the magnitudes of the dis-

placement vectors in the central moments sequence:

S∗ =
(∆mt, ∆mt+1, ...∆mN)

∑
t+N−1
i=t ||∆mi||

. (4.7)

The vector S∗ is the final normalized vector in the superpixel tracking

representation. In this research, we only consider N = 10 because varying

N does not significantly influence the accuracy of the results. However, this

does not improve the results in practice. Thus, using a fixed number of flow

fields produces a reliable final superpixel track vector.

4.4 Two-way motion superpixel tracks (bi-tracks)

Tracking along temporal flows requires path selection for dense superpix-

els. By using the nearest centers of mass over time, there is a possibility

that a track will lose the most salient path for describing temporal evolution.

This situation often happens when there are many centers of masses within

a small distance in the next flow field. Selecting the nearest center of mass

is not enough in this case, so we consider multiple selections to ensure that

the generated paths are adequate for temporal representation. We select the



66 Chapter 4. Motion Superpixels for Temporal Video Classification

two nearest centers of mass at the first iteration. The first and second cen-

ters of mass are selected from the first and second flow fields, and only the

nearest center of mass is selected in subsequent iterations. This produces two

paths, which we call a bi-track, for every superpixel in the flow field. It can

be helpful in the case of motion compensation, as in the UCF Sports dataset,

to not remove camera motion, as this can confuse track generation. There is

a possibility of adding more paths by using multiple selections of centers of

mass to enrich feature sampling.

4.5 Feature descriptors

We define four features for evolutionary representations, namely the HOF,

position (center of mass), the correlation with HOF neighborhoods, and the

histogram of gradient (HOG). Every motion superpixel must form a region

which consists of a boundary along with the flow field contained inside it.

The HOF extracted from a flow field consists of several bins with direction

and magnitude quantifiers. Superpixels are connected by edges formed by

connecting centers of mass as in Figure ??. It is possible to define a more

holistic communal representation that changes over time. The communal

representation of a set of neighboring superpixels is defined as the sum of

correlations of the HOFs between one superpixel and its neighboring super-

pixels. For a superpixel se with neighboring superpixels s2e ∈ S2 depending

on the edges e ∈ E, the local correlation is defined as

corr(se, S2, i) = ∑
e∈E

se[i]S2(e)[i − j], (4.8)

where i indexes the feature vector elements and j is the index difference.

In this case, we set to zero only element pairs with the same index. We use
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FIGURE 4.6: Temporal evolution of motion superpixels in se-
quence starting from the upper left corner to the upper right
corner and from the lower left corner to the lower right corner.

HOFs with ten bins so that i takes ten values. By concatenating the corre-

lations with respective to the index, this produces ten correlated elements,

which is similar to correlation by convolution.

As in Figure ??, the evolution of a superpixel’s neighborhood can be cap-

tured by the evolution of correlations in the relevant region. The communal

representation of neighbors changes over time, which gives dynamic infor-

mation about moving objects or parts of objects.

4.5.1 Local Bag of Features & Classification

The BOF is constructed from data gathered by temporal sampling. The sam-

pling step for ten flow fields is used as the subsequent feature vector. We use

a class-specific dictionary formed from three iterations of k-means cluster-

ing. Fast k-means clustering (Bachem et al., 2016) is used, which is provably

computationally cheap even without using a GPU. The number of clusters

in the representation of features is usually determined heuristically by trial-

and-error within a given range for the number of clusters. If the number

of clusters is too small, then the representation may be shallow, whereas if

the number of clusters is too large then the representation becomes nearly
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flat and is hard to generalize. We consider using separate bags for different

descriptors and different superpixel sizes. Previous research has shown that

separating bags is advantageous, especially for different coding scales (Khan,

Weijer, and Vanrell, 2012).

For classification, we use an SVM with a generalized histogram kernel,

which has been shown to be robust in terms of quantification-based features

such as histograms (Boughorbel, Tarel, and Boujemaa, 2005). The definition

of a generalized kernel histogram is

K(x, x′) =
m

∑
i=1

min{|xi|c, |x′i|b}, (4.9)

where xi and x′i are two different histograms that each contain m bins. This

comparison is done for each element i and is iterated until there are m bins.

The values c and b give generalized versions of the histogram kernel to han-

dle fields of different sizes in histogram extraction. For example, the com-

pared histograms are in general extracted from different sized superpixels.

Based on Boughorbel et al. (Boughorbel, Tarel, and Boujemaa, 2005), we let

c = b = 0.25, which gives good results in a large variety of contexts.

4.6 Experiments

Experiments are performed using the UCF Sports dataset (Rodriguez, Ahmed,

and Shah, 2008), (Soomro and Zamir, 2014) in which the scenes are shot un-

der real conditions for sport events and include camera motion. The camera

follows the actors? motion as the objects of interest. Actors also appear at

various scales and their motion is freely articulated with occlusions, making

this dataset challenging for action recognition. The frame rate in the UCF

Sports dataset averages ten frames per second. The dataset contains ten

action classes (diving, golf swing, kicking, lifting, riding a horse, running,
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FIGURE 4.7: Motion superpixels for gymnastic movement.

FIGURE 4.8: Motion superpixels for skateboarding.
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FIGURE 4.9: Motion superpixels for first-person video.

skateboarding, swing-bench, swing-side angle, and walking) with a resolu-

tion of 720 × 480 pixels.

We also try to evaluate the JPL First-Person Interaction dataset ryoo which

is challenging because of the robotic vision. Our framework is suitable for

adaptation to active vision, because the vision of a robot changes dynam-

ically and has characteristics that are similar to camera motion. There are

seven activity classes to be differentiated, and there are positive, neutral, and

negative interactions. In particular, the classes are shaking hands, hugging,

petting, waving, pointing, punching, and throwing. Figures ?? and ?? show

example of features generated from the UCF Sports dataset, and Figure ?? is

generated from the JPL Interaction dataset.

For feeding features into the BOF algorithm, we sample five flow fields

of length ten for both the JPL Interaction dataset and the UCF Sports dataset.

Because of considerations of computing time, the number of initial seeds for

the UCF Sports dataset is 16, 32, 64, and 128, while for the JPL Interaction
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dataset we use 50,150,250, and 350 and 1, 4, 16, 64 and 256. We found these

sizes to be adequate for giving reasonable results. In specific cases, we try

to explore how coarse or fine the flow information should be and how much

locality of flow information is important for recognition in the JPL Interaction

dataset. We also evaluate the datasets using tracks of length L = 10 and

L = 20 to examine differences in the recognition rate. To this end, varying

and fixed sizes of superpixels are compared to demonstrate the influence of

large and small superpixels. The number of iterations of SEEDS is set into

50. A greater number of iterations will construct a more precise superpixel,

but more computational time is required. Several experiments show that

the gain in precision is not significant. We also tried various numbers of

initial superpixels, but again the accuracy does not change significantly. For

evaluation, leave-one-person-out classification is used for the JPL Interaction

dataset, meanwhile leave-one-sample-out classification is used for the UCF

Sports dataset.

For the experimental setup for the JPL Interaction dataset, we first decide

how many clusters to compare between compensated and uncompensated

motion. It is found that 1400-2800 clusters are suitable to give reliable accu-

racy with 150 and 250 seeds, as in Table ??. With 1400 clusters there are 200

clusters for each class (seven classes), while with 2100 clusters there are 300

clusters for each class. Because the number of extracted features is 100000 on

average, a reliable accuracy is achieved when the number of clusters per class

is around 350. Therefore, we use the square root of the number of extracted

features as the total number of clusters for the JPL Interaction dataset. For the

UCF Sports dataset, a quarter of the square root of the number of extracted

features for each class is used for the number of clusters, and therefore the

total number of clusters in the codebook is the square root of the number of

extracted features multiplied by the number of classes.

To confirm that motion compensation is important, we compare results
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TABLE 4.1: Number of codewords relative to accuracy

Cluster number 700 1400 2100 2800 3500

Accuracy 0.78 0.82 0.82 0.82 0.78

TABLE 4.2: Effect of motion compensation

Superpixel seeds Compensated motion Uncompensated motion

250 seeds 0.82 0.75

150 & 250 seeds 0.88 0.79

50 & 150 & 250 seeds 0.85 0.75

50 & 150 & 250 & 350 seeds 0.88 0.81

between compensated and uncompensated motion. Motion compensation

has a significant impact in helping motion superpixels identify desirable fea-

tures. Table ?? shows the differences in accuracy between compensated and

uncompensated motion using various numbers of initial seeds.

Figure ?? shows confusion matrix results for given classes in the JPL Inter-

action dataset using L = 10. We conclude that using various superpixel sizes

obtains significant results because it covers coarse to fine motions, multi-scale

motions, and more sample features.

TABLE 4.3: Comparison with other methods for the JPL Inter-
action dataset

Method Accuracy
Global motion descriptor 72 %
Local motion descriptor 69%

Global & Local +χ2 kernel 82 %
Local temporal motion superpixels 88 %

Compared with other state-of-the-art methods, temporal motion super-

pixels achieve comparable results for the JPL Interaction dataset. Table ??

shows that motion superpixels are better than global and local descriptors

obtained from existing research ryoo



4.6. Experiments 73

(a) (b) (c)

(d) (e)

FIGURE 4.10: Confusion matrices for the JPL Interaction
dataset using L = 10: (a) 1 seed; (b) 1 seed, 4 seeds; (c) 1 seed,
4 seeds, 16 seeds; (d) 1 seed, 4 seeds, 16 seeds, 64 seeds; (e)
1 seed, 4 seeds, 16 seeds, 64 seeds, 256 seeds. The mean ac-
curacies are 67%, 79%, 81%, 84% and 86%, respectively. The
vertical axes represent predictions, and the horizontal axes rep-
resent the truth; from top to bottom and left to right are shak-
ing hands, hugging, petting, waving, pointing, punching, and

throwing.



74 Chapter 4. Motion Superpixels for Temporal Video Classification

(a) (b) (c)

(d) (e)

FIGURE 4.11: Confusion matrix for the JPL Interaction dataset
using L = 20: (a) 1 seed; (b) 1 seed, 4 seeds; (c) 1 seed, 4
seeds, 16 seeds; (d) 1 seed, 4 seeds, 16 seeds, 64 seeds; (e) 1
seed, 4 seeds, 16 seeds, 64 seeds, 256 seeds. The mean accura-
cies are 74%, 76%, 81%, 88% and 89%, respectively. The verti-
cal axes represent predictions, and the horizontal axes represent
the truth; from top to bottom and left to right are shaking hands,
hugging, petting, waving, pointing, punching, and throwing.
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(a) HOF, correlation (b) HOF, correlation, HOG

FIGURE 4.12: Confusion matrix results for leave-one-out classi-
fication on the UCF Sports dataset. The vertical axes represent
predictions, and the horizontal axes represent the truth; from
top to bottom and left to right are diving, golf swing, kicking,
lifting, riding a horse, running, skateboarding, swing-bench,

swing-side angle, and walking.

Figure ?? shows confusion matrix results for motion superpixel tracks

with L = 20. As in Figure ??, more varied and detailed superpixels give

better recognition rates, which indicates that locality is important for captur-

ing flow representations. Comparing Figures ?? and ?? shows that L = 20

gives better confusion results for all superpixel sizes. This reveals that longer

tracks increase the information gain of time series, although this increase is

not significant.

Figure ?? (a) shows the confusion matrix results for the UCF Sports dataset.

Compared with the JPL Interaction dataset, the UCF Sports dataset has a

larger frame size of 720 x 480. Therefore, the initial number of seeds is set

to 16 rather than one. The best confusion accuracy is 79% when using HOF

and correlation descriptors and a single track. Figure ?? (b) shows that there

is an improvement when spatial information is added (HOG) and bi-tracks

(two-way paths) are used. This confirms that both motion and spatial infor-

mation are important descriptors for activity recognition. Moreover, the use

of bi-tracks enriches track information, which could be important for motion
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analysis.

TABLE 4.4: Comparison with other methods on the UCF Sports
dataset.

Methods Accuracy
STIP Sampling foreground only 71.92 %
STIP Sampling background only 73.97%

Dense sampling of STIP 75.34 %
Spatial superpixel (HOF, HOG) 86.7 %

Spatial superpixel (HOF) 87.9 %
Dense trajectories (HOF, HOG, MBH) 88.9 %

Temporal motion superpixel (HOF, correlation) 79 %
Temporal motion superpixel (HOF, correlation, HOG) bi-tracks 89.1 %

Table ?? shows a comparison of features sampled using non-geometric

information such as cuboids. As opposed to superpixels, which give struc-

tural information about pixel boundaries, cuboid sampling is based on an

arbitrary fixed size of the cuboid. We also compare with spatial superpixels

(Dong, Tsoi, and Lo, 2014) for superpixels via RGB images without tracking

or dense trajectories (Wang et al., 2011) for pixel-level tracking. We achieve

the best results using spatial superpixel (using HOF descriptors) and dense

trajectories (using HOF, HOG, and motion boundary histograms (MBH)).

The difficulty with our approach is that even though superpixels contain

more meaningful information, motion superpixel tracking paths have many

possibilities and there is a high probability of losing the optimal path, thus

requiring enrichment from the multi-track approach.

Figure ?? shows confusion matrix of LOO classification result of UCF

Sports under various spatial wavelet packet decompotitions. The best av-

erage classification accuracy is 0.79 (fig. ?? c) with 2 layers spatial wavelet

packet decompositions. It is shown that original features without decompo-

sition achieves 0.74 (fig ?? a) while using 1 layer decompositions achieve 0.74

(fig. ?? b) accuracy which is same as original. Deeper decompositions are

extracted, more scale invariant information is obtained. Running and sket-

boarding classes are most confusing class because there are many actors that
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(a) original (b) 1 layer (c) 2 layers

FIGURE 4.13: Confusion matrices of classification result us-
ing leave one out of UCF Sports dataset of features with spatial
wavelet packet decomposition except the original one. Vertical
part is predict, horizontal part is true, from up to down or left
to right are dive, golf-swing, kick, lift, riding, run, skate, swing-

bench, swing-sideangle, and walk respectively.

are too small to be captured by initial number of dyadic superpixels. There

is possibility to use finer-grain superpixel however computationally too ex-

pensive. Overall, UCF Sports dataset is heavily ill-conditioned with camera

motion in which disadvantageous for motion based features such as optical

flows.

Figure ?? shows confusion matrix of LOO classification result of UCF

Sports dataset under various temporal wavelet packet decomposition. The

best average classification accuracy is 0.77 (fig. ?? c) with 2 layers temporal

wavelet packet decomposition. 10, 20, and 30 sequence of tracks are utilised

to enrich temporal information. This setting is different from spatial one

which only use 10 sequence of tracks. Fig ?? a and ?? b are original features

and features with 1 layer wavelet decomposition respectively. It concludes

that deeper temporal wavelet packet decompositions bring invariant to tem-

poral dynamics by enriching various time interval into sampled features. In

this case, even 10, 20, and 30 time interval tracks give 60 feature vector di-

mension.

Figure 8 shows confusion matrix of LOO classification result of JPL Inter-

action dataset under various number of superpixel seeds. It is shown that if
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(a) original (b) 1 layer (c) 2 layers

FIGURE 4.14: Confusion matrices of classification result using
leave one out of UCF Sports dataset of features with temporal
wavelet packet decomposition. Vertical part is predict, hori-
zontal part is true, from up to down or left to right are dive,
golf-swing, kick, lift, riding, run, skate, swing-bench, swing-

sideangle, and walk respectively.

variation of locality sizes is considered, higher accuracy is obtained. Various

localities which are bounded by superpixels capture whole motions, part mo-

tions, or scale varying motions. Even though it is not significantly increase

accuracy, it shows that there is no additional pattern, especially contribution

of background (caused by camera motions), to help discrimination. Our lo-

cal method outperform global motion and local motion (optical flows) using

SVM with Gaussian kernel alone.
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Chapter 5

Gated Spatio and Temporal

Convolutional Neural Network for

Activity Recognition: Towards

Gated Multimodal Deep Learning

Activity recognition requires visual and temporal cues making it challenging to in-

tegrate these important clues. The usual schemes of integration are averaging and

fixing the weights of both features for all samples. However, how much weight it

needs for each sample and modality, is still an open question. A mixture of experts

via gating Convolutional Neural Network (CNN) is one of the promising architec-

tures to adaptively weigh every sample within a dataset. In this paper, rather than

just averaging or fixed weights, we investigate how natural associative cortex like

network integrates expert’s networks to form of gating CNN scheme. Starting from

Red Green Blue (RGB) and optical flows, we show that with proper treatment, gating

CNN scheme actually works and sheds a light on information integration in future

for activity recognition.
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Activity Recognition: Towards Gated Multimodal Deep Learning

5.1 Gating CNN models

Very deep gating network is introduced to handle the noise and occlusion

in scene for activity recognition. The proposed gating architecture can be

adapted to different contexts depending on the purpose; i.e., gating network

for handling integration of audio, text, image, object of various spatial resolu-

tions, or actions with various temporal segments. This will enable the lower

layers of the network to learn parameters with discriminative power. Fur-

thermore, to the best of our knowledge, despite its simplicity, the proposed

work is the first natural gating CNN to be introduced in video classification.

We use gating network similar or shallower to the expert networks. For ex-

ample, if the gating network is VGG-16, it means that both expert networks

are also VGG-16, ResNet-50 or simple classifier for simplicity.

The use of deep neural network does not necessarily have to be specific

model or size of CNN, however, recently VGG-16 and Residual Net (ResNet)

are popular and achieve state of the art results on image classification (Si-

monyan and Zisserman, 2014a)(He et al., 2016). Thus, besides VGG-16, we

use another popular network called ResNet-50. Figure ?? summarizes mod-

els consist of fusion by averaging, fusion by SVM and gating network. The

reason of using various models is to compare possible fusion schemes in-

cluding our gating CNN. Even though gating network model is similar to

experts one, it is different in terms of output dimension. The dimension of

gating output is 2, one is for weighing spatial expert and another is weighing

motion expert.

In VGG-16 while making network deeper, convolution filter size is smaller

which allow capturing coarse to fine pattern of images. For every output

layer, non-linear activation function of rectified linear unit (ReLU) is used as

it has shown better convergence properties and performance gains with lit-

tle risk of overfitting. Another network models such as ResNet or Inception
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FIGURE 5.1: Various models of gating scheme.

(a) fusion by averaging (b) fusion by concatenation and SVM (c) gated
network similar to expert network

is possible to be chosen and possibly achieve higher accuracy with saving

memory. However, for training gating scheme, VGG-16 and resNet-50 are

suitable as starting point.

5.2 Gated bi-modal CNN Design

We briefly introduce Gated CNN in Section ?? about the pipeline of gated bi-

model CNN. Section ?? explains about general framework about gated CNN.

Section ?? explains about training and testing scheme. Section ?? considers

various combination of gating architecture.

5.2.1 Expert-Gating Pipeline

Training gating network can be applied in two-fold, by parallel learning both

experts and gating network or sequential learning by training experts first

and then gating network. For training gating network and expert network

at the same time, it requires careful initial parameter setting. For example,
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FIGURE 5.2: Expert-Gating training framework.

we have to ensure that during training, spatial expert network and motion

expert network do not exceed each other in terms of accuracy, thus, gating

network can learn true prediction data in sufficiently. Specifically, we use

learning rate of 0.000001 to spatial stream because it tends to converge sig-

nificantly faster compared to the motion stream. This is due to higher match

between RGB frames with pre-trained data, Imagenet. For motion stream,

we use learning rate of 0.0001 as those combination is sufficient enough to

stabilize running in order the gating stream to be able to train enough data.

However, to tune this type of learning for both expert streams and gating

stream is trivial and the result is somewhat not optimum. For instance, if

spatial expert network has reached 10% increase in accuracy compared to

motion expert network, it means learning rate of spatial one must be slowed

down in order to balance the gating scheme. Rather than this type of learn-

ing, we consider splitting the data to train expert network first followed by
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gating network and continue learning after gating is trained. It can be sum-

marized into this pipeline :

1. Random video frames are selected, thus for every iteration is given dif-

ferent input frame. RGB frames are inputted into spatial network while

Flows are inputted into temporal network. The gating stream is in-

putted using concatenation of RGB and Flows for the sake of competi-

tiveness between both modalities.

2. Given input modalities, each expert is trained independently until it

converges.

3. Gating network is trained until the loss is stagnant.

4. On testing, gating output weighs each expert’s output and fuse both

weighted outputs. Then classification is done by selecting maximum

value within dimension as predicted label

5.2.2 Framework Overview

The input of the gating network is concatenation of the spatial and motion

information. Each stream has its own loss function that is updated indepen-

dently, as shown in Figure ??. The gating mechanisms such as the input gates

and output gates follow this equation:

y f inal = x1y1 + x2y2 (5.1)

where:

y1 + y2 = 1 (5.2)

where x1, x2, y = (y1, y2), and y f inal are the outputs of the RGB stream,

optical flow stream, gating stream, and final prediction, respectively. This fu-

sion scheme is presented in Figure ?? model C and in Figure ?? in detail. The
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output gate is an additional fully connected layer with 101 inputs and two

output dimensions. This structure is considered because, in nature, VGG out-

put is 101-dimensional for UCf-101 and 51 for the HMDB-51 dataset (trained

on ImageNet with 1,000 classes). The final fusion of the output of the expert

streams is then normalized using a softmax cross entropy function. Further-

more, for the output of the gating stream, a softmax function is used to trans-

form every feature vector’s element as a float between 0 to 1 while the sum

of a y1 and y2 is 1.

5.2.3 Input, Training-Testing Scheme, and Loss Function

Learning consists of two parts: expert learning and gating learning. To train

the gating network, experts must be trained and produce feature vectors so

that the gating CNN can estimate the proportion of each network relative to

the other.

Dataset: We split the training dataset into half: the first half is for train-

ing the expert networks and the other half is for training the gating network.

However, the whole dataset is used to train the expert network once the gat-

ing networks have been trained.

Input and Data Augmentation: The frame selection for each iteration is

randomized. Hence, for every iteration, the method selects a different frame

for the same video, thus training on all the frames as it iterates. Three net-

works are used for this gating CNN scheme; hence, there are three inputs:

RGB for the spatial expert network, optical flow for the motion expert net-

work, and a concatenation of RGB and optical flow for the gating network.

In this case, RGB contains three channels and the optical flow contains three

consecutive flow fields over time with two flow field differences. There-

fore, for the gating network input, there are six channels for the first layer

of convolution. The optical flow representation is basically transformed into
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a gray-scale image; thus, three consecutive flows give the same amount of

input as the RGB. To overcome overfitting, various pre-processing schemes

such as cropping and flipping were performed. We used four-corner crop-

ping and center cropping along with flipping. All the inputs were resized to

a resolution of 250 × 250 with an arbitrary cropping of size 224 × 224 along

with a horizontal flip. A mean image size of 250 × 250 was computed for the

training set and used to subtract all the images.

Training the expert CNNs: For the spatial stream, pre-trained ImageNet

was used to reduce overfitting. This kind of transfer learning has improved

accuracy by a large margin. For the motion stream, network was trained

from scratch because optical flow features are clear enough to define action,

in contrast to spatial scene information. Whether the pre-trained ImageNet

model or an untrained model is used initially, the effect on test accuracy and

overfitting is still the same for the motion stream. For VGG-16 and ResNet-

50, we used a learning rate of 0.001 for the spatial streams. It decreases to

9/10 of its value every 5,000 iterations with a momentum of 0.9. The max-

imum number of iteration was set as 20,000. For the temporal streams, we

set a smaller initial learning rate (0.0001) in our experiments. It decreases to

9/10 of its value for every 20,000 iterations and uses momentum of 0.9. The

maximum number of iterations was set as 100,000. We also consider transfer-

ring the weight of trained expert streams for VGG-16 using the good practice

approach from (Wang et al., 2015) and used (Wang et al., 2016) for the tempo-

ral segment network to be gated with our trained VGG-16 gating network.

Note that our trained VGG-16 uses the Caffe framework.

Training the gating CNN: For the gating network, we initialized network

weights with pre-trained models from ImageNet. Next, we trained using a

learning rate of 0.001, which decreases to 1/10 of its value every 20,000 iter-

ations. Based on experience, if we set the learning rate to a large value (e.g.,

0.1), the network tended to choose one of the expert streams, which is not
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desirable. Training a very deep network such as VGG-16 is computationally

heavy and it takes a long time to converge. Training a simple classifier uses a

learning rate of 0.001, reducing by 10 % every 5,000 iterations. The maximum

number of iterations was set as 100,000.

Testing the gating CNN: For given video sequence, we sampled 25 frames

equally spaced and fed every frame to its respective stream (3-channel RGB

to the spatial stream and three consecutive flow fields to the motion stream)

and paired RGB and optical flow into the gating stream. Each of 25 softmax

output pairs were then weighted and averaged to predict class.

Testing the two good-practice streams: For a given video sequence, we

sampled 25 equally spaced frames and fed every frame to its respective stream

and paired RGB and optical flow into the gating stream. The gating out-

put weighted all 750 softmax cross entropy outputs and then averaged to

predict the classes. For every frame in the spatial sequence, there were five

crops (four corners and one center) with horizontal flips, thus 10 images were

generated for every frame and 25 × 10 = 250 were generated for every se-

quence. Optical flow only formed the center of 10 stacks of three consecutive

flow fields for 25 images in a sequence multiplied by two, thus generating

50 × 10 = 500 images in total.

Testing the temporal segment network: For given sequence of video,

we sampled 25 equally spaced frames and fed every frame to its respective

stream and paired RGB and optical flow into the gating stream. All 25 soft-

max outputs were then averaged to predict class. For every frame, for the

spatial sequence, there were five crops (four corners and one center) with

flipping; thus, the number of images for every frame was 10. Optical flow

only formed the center of 10 stacks for 25 sequences, thus their total was

25 × 10 = 250.

Loss function: We used a separate loss function for the expert and gat-

ing networks. However, both have basically the same loss function, which
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FIGURE 5.3: Various combinations of expert-gating CNNs.

(a) VGG-16s as the experts & VGG-16/ResNet-50 as the gating (b)
ResNet-50s as the experts & VGG-16/ResNet-50 as the gating (c) ResNet-50s

as the experts & a simple classifier as the gating

minimizes the error of the predefined labels. For the gating network, back-

propagation tried to minimize the loss of the gated feature vector using the

following softmax function:

E = −∑
i

ti log oi (5.3)

where o is the softmax cross entropy of output network v:

o = so f tmax(v) (5.4)

The gradients with respect to the feature vectors at the last layer were

computed from the contrastive loss function and backpropagated to the lower

layers of the network. Once all the gradients were computed at all layers, we

used minibatch stochastic gradient descent to update the parameters of the

network.

5.2.4 Various expert-gating CNN combinations

The base of the expert network can be either two streams of VGG-16 or

two streams of ResNet-50 with its gating. A gating CNN also has many
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possibilities; however, to keep pace with the expert networks, the gating

stream should have the same capability as the expert stream. The architec-

ture of the gating itself is still an open question; however, a combination of

deep and shallow networks (a simple classifier) can reveal its drawbacks and

strengths. Therefore, we prepared several scenarios for expert-gating combi-

nations. VGG-16 has 16 layers while ResNet-50 has 50 layers. We assume that

deeper network will increase the number of degrees of freedom, which dis-

tracts the network from reaching the optimum solution. As shown in Figure

?? a, VGG-16 streams can be attached using a ResNet-50 or VGG-16. Figure ??

b shows that ResNet-50 streams are gated with ResNet-50 or VGG-16. Figure

?? c shows that ResNet-50 streams are weighted by a simple classifier with an

input size of 4,096 (the concatenation output of ResNet-50’s last layer without

the fully connected layer from both experts). The simple classifier consists of

two layers with 4,096 inputs and 1,000 outputs followed by a layer of 1,000

inputs and two outputs.

5.3 Results & Discussions

5.3.1 Datasets & Experiment details

Two challenging dataset are used as evaluation setup which are UCF-101

(Figure ??) and HMDB-51. It has challenging problem because the size of

dataset is small in case of deep learning. UCF-101 consists of 13K videos

with 180 frames per video in average and 101 classes. HMDB-51 consists of

6.8K videos and 51 classes. For training gating network, we use UCF-101

dataset split 1 and use that trained model for entire experiment which suit-

ably increase accuracy for all cases. The split of training and testing scheme is

based on THUMOS13 challenge (Jiang et al., 2014). For entire experiment, we

only use split 1 as analysis of our gating network. We use stochastic gradient
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FIGURE 5.4: UCF 101 dataset containing 101 action classes with
9,537 training videos and 3,783 testing videos

descent as optimizer for both experts and gating network. Due to the lim-

ited memory, we use mini-batch size equal to 12 with momentum of 0.9. The

learning rate is set to 0.0001 and 0.001 for RGB and flow network respectively.

For the extraction of optical flow, we choose the TVL1 optical flow algorithm

implemented in OpenCV with CUDA. The whole training time on UCF101

is around 2 hours for spatial network, 18 hours for temporal network, and 6

hours for gating network with GPU TITAN.

During training of VGG-16 experts, after 40 epoch, training is stopped

and gating CNN is trained using another half of training dataset and evalu-

ation. After that, training is continued until 80 epoch and evaluation is run.

Next, both experts are trained using whole of training dataset until conver-

gence. We also use initial parameter copied from two stream trained on good

practice of (Wang et al., 2015) of which we call VGG-16 good practice and

temporal segment network of (Wang et al., 2016) to be gated with previous
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trained gating.

5.3.2 Results

Our gating experiment steadily outperforms fixed weight scheme. Table ??

shows test accuracy after 40 epochs training. Gating VGG-16 and gating clas-

sifier give the best accuracy along with gating classifier in this state at 71.8 %.

Gating ResNet-50 does not find the best solution even when the loss starts

to converge. Gating network is only trained on this epoch while expert net-

works training is resumed. Table ?? shows that gating classifier still outper-

forms fixed weights even after training 80 epochs. However, in Table ??, after

the expert networks converge, only gating VGG-16 exceeds fixed weights,

while simple classifier one overfits. Meanwhile, ResNet-50 has high degree

of freedom that gives obstacle for gating network approaching optimum so-

lution. After expert networks converge, train achieves nearly 90 % for both

spatial and temporal network while testing 72 % and 76 % which is overfit-

ting. On that situation, gating network cannot be trained because training

dataset has already nearly saturated yielding large margin between training

and testing accuracy.

Table ?? shows result of ResNet-50 experts, gating VGG-16. gating classi-

fier also outperforms fixed weights at 40 epochs. With 80 epochs training as

in Table ??, gating VGG-16 also gives best result in weighting. Gating classi-

fier obtains 77.80 % which is also exceeding fixed weights. However, after the

training is finished and the difference between training and testing accuracy

margin becomes large of 99 % to 78.08 % for spatial stream and 90 % to 74.89

% for motion stream, shallower network (classifier network) overfits testing

data as in Table ??.

We also try gating of two streams CNN with its weight transferred from

good practice of (Wang et al., 2015), our gating VGG-16 shows best accuracy
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TABLE 5.1: VGG-16 40 epochs on UCF-101 (split 1)

RGB weight Flow weight Test Accuracy
1.0 0.0 46.34 %
0.0 1.0 66.80%
0.9 0.1 53.27 %
0.8 0.2 58.72 %
0.7 0.3 63.60 %
0.6 0.4 67.54 %
0.5 0.5 70.05 %
0.4 0.6 71.48 %
0.3 0.7 70.69 %
0.2 0.8 69.18 %
0.1 0.9 69.18 %

gating VGG-16 71.82 %
gating ResNet-50 67.54 %
gating classifier 71.82 %

TABLE 5.2: VGG-16 80 epochs on UCF-101 (split 1)

RGB weight Flow weight Test Accuracy
1.0 0.0 65.47 %
0.0 1.0 69.66 %
0.9 0.1 71.21 %
0.8 0.2 72.04 %
0.7 0.3 73.55%
0.6 0.4 74.23 %
0.5 0.5 76.34 %
0.4 0.6 77.01 %
0.3 0.7 76.22 %
0.2 0.8 73.45 %
0.1 0.9 72.32 %

gating VGG-16 75.5 %
gating ResNet-50 74 %
gating classifier 76 %
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TABLE 5.3: VGG-16 300 epochs (already overfit) on UCF-101
(split 1)

RGB weight Flow weight Test Accuracy
1.0 0.0 72.45 %
0.0 1.0 76.33%
0.9 0.1 79.21 %
0.8 0.2 80.23 %
0.7 0.3 81.54 %
0.6 0.4 82.77 %
0.5 0.5 82.81 %
0.4 0.6 83.5 %
0.3 0.7 82.74 %
0.2 0.8 81.22 %
0.1 0.9 79.61 %

gating VGG-16 83.5 %
gating ResNet-50 81.24 %
gating classifier 82.10 %

while also approaching optimum solution if compared to all defined fixed

weights on UCF-101 (split 1) as in Table ??. For the fixed weight case, com-

bined weight of 0.4 and 0.6 for spatial and temporal stream respectively gives

the best accuracy. However gating CNN is still better than those pre-defined

fixed weights.

When weighting the temporal segment network using our trained gating

CNN, it obtains best result and approaches optimum result compared to the

case of fixed weights as in Table ?? for UCF-101 split 1. The fixed weight of

temporal segment network tends to choose combination 0.5 and 0.5 for spa-

tial and temporal stream (average) as it gives best accuracy result. However

our gating network still outperforms fixed weight by margin of 0.24 % which

confirms our approach that it needs to weight each sample rather than fixed

weights for all samples. We believe that this margin can be improved more

with better gating CNN training protocol for future work. Table ?? shows

result for HMDB-51 on split 1, it shows improvement compared to the best

result of fixed weight (0.5 and 0.5 for spatial and temporal stream respec-

tively) with margin of 0.07 %. HMDB-51 has fewer training data than those
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TABLE 5.4: ResNet 40 epochs on UCF-101

RGB weight Flow weight Test Accuracy
1.0 0.0 69.83 %
0.0 1.0 63.84%
0.9 0.1 71.60 %
0.8 0.2 72.98 %
0.7 0.3 74.36 %
0.6 0.4 75.76 %
0.5 0.5 76.39 %
0.4 0.6 76.39 %
0.3 0.7 74.94 %
0.2 0.8 72.24 %
0.1 0.9 69.49 %

gating VGG-16 77.21 %
gating ResNet-50 74.36 %
gating classifier 77.21 %

TABLE 5.5: ResNet 80 epochs on UCF-101

RGB weight Flow weight Test Accuracy
1.0 0.0 70.47 %
0.0 1.0 64.82%
0.9 0.1 72.21 %
0.8 0.2 74.06 %
0.7 0.3 75.49%
0.6 0.4 76.78 %
0.5 0.5 77.50 %
0.4 0.6 77.11 %
0.3 0.7 76.15 %
0.2 0.8 73.40 %
0.1 0.9 70.55 %

gating VGG-16 78.11 %
gating ResNet-50 75.50 %
gating classifier 77.80 %
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TABLE 5.6: ResNet 300 epochs (already overfit) on UCF-101
(split 1)

RGB weight Flow weight Test Accuracy
1.0 0.0 78.08 %
0.0 1.0 74.89%
0.9 0.1 80.10 %
0.8 0.2 82.08 %
0.7 0.3 83.64 %
0.6 0.4 84.72 %
0.5 0.5 86.22 %
0.4 0.6 86.25 %
0.3 0.7 85.30 %
0.2 0.8 82.97 %
0.1 0.9 79.61 %

gating VGG-16 86.25 %
gating ResNet-50 83.64 %
gating classifier 85.30 %

of UCF-101 that is challenge for gating network training. Due to that, we ob-

serve minor improvements on HMDB-51 results. There still an opportunity

to be improved by means multi task learning.

The results for the UCF-101 and HMDB-51 datasets are given in Table

?? and ?? respectively. For the expert networks that we train using Chainer

(Tokui et al., 2015) framework, the proposed baseline gating scheme outper-

forms all other models. Note that, in this testing, we use data augmentation

of center crop for both spatial and temporal in this experiment to save com-

putation time. We compare our proposed models that are shown in Figure

1 (model A, model B, and model C). It is found that gated CNN with 0.3%

over averaging fusion (model B) while compared to SVM fusion (model C), it

exceeds 1.5%. It also improves both RGB and optical flows alone with 10,2%

and 6.5% respectively. ResNet-50 expert network (ResNet-50 for expert net-

work and VGG-16 for gating network) gives better result based on our exper-

iment compared to VGG-16 expert network with large margin of 6.1%. Result

confirms the mutual information provided by spatial and motion modality.

It also shows integration capability of gating CNN. For HMDB-51, it is found
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TABLE 5.7: Gated good practice of two streams trained by
(Wang et al., 2015) on UCF-101 (split 1)

RGB weight Flow weight Test Accuracy
1.0 0.0 79.34 %
0.0 1.0 83.60%
0.9 0.1 82.10 %
0.8 0.2 84.35 %
0.7 0.3 86.47 %
0.6 0.4 88.16 %
0.5 0.5 89.32 %
0.4 0.6 90.02 %
0.3 0.7 89.67 %
0.2 0.8 88.65 %
0.1 0.9 86.73 %

gating 91 %

that gated CNN is better with 0.5% over averaging fusion. It also improves

RGB or optical flows alone with 5% and 12% respectively. Note that for tem-

poral stream, we use 3 consecutive stacked flow fields with number of dis-

placement from one flow field to the next is 2.

Table ?? shows comparison with another fusion methods. Feichtenhofer’s

fusion method use late fusion with VGGM2048 and VGG-16 with one loss

function. With the same VGG-16, RGB itself achieves 82.61 % and Flows

achieve 86.25 % while its fusion achieves 90.62 %. Our experiment on the

same two stream achieves 91 % with RGB of 79.34 % and Flows of 83.60 %

which means while two expert networks are actually weaker, our gating net-

work achieves comparable performance. Another fusion method is feature

amplification with multiplication, even without any information about RGB

and Flows alone, it achieves 89.1 % in which our result is slightly better with

margin of 1.9 %.

By comparing with the state of the arts we can see that gating CNN im-

proves all the expert type either two stream VGG-16 or temporal segment

networks as in Table ?? for UCF-101 and HMDB-51. We use weight of trained

networks of two stream networks (Wang et al., 2015) that gives the highest
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TABLE 5.8: Gated temporal segment network on UCF-101 (split
1)

RGB weight Flow weight Test Accuracy
1.0 0.0 85.87 %
0.0 1.0 87.89%
0.9 0.1 89.63 %
0.8 0.2 91.63 %
0.7 0.3 92.98 %
0.6 0.4 93.62 %
0.5 0.5 93.86 %
0.4 0.6 93.66 %
0.3 0.7 93.14 %
0.2 0.8 91.8 %
0.1 0.9 89.98 %

gating 94.10 %

accuracy according to their experiments. The main concern is comparison

with just averaging fusion and SVM fusion, gated two streams achieved bet-

ter accuracy with difference of 4.8 % and 0.5 4 % with averaging and SVM

fusion respectively on UCF-101. When compared to two streams good prac-

tice as elaborated in Table ??, it has better accuracy with margin of 0.8 % over

averaging fusion of two streams good practice.

5.3.3 Discussion

We have tried several gating schemes that basically use deep CNN for weigh-

ing. It has shown that VGG-16 give most optimum solution compared to the

deeper network of ResNet-50 and shallower network. In the middle of train-

ing, the simple classifier (2 layers which have 4096 inputs and 1000 outputs)

is robust for approaching optimum solution, however, when as the training

converges, there is a shift of variance between training and test in which sim-

ple classifier does not hold. For deeper network, it tends to have high degree

of freedom as the number of layers is high. As in ResNet-50, even though the

number of parameters is fewer than VGG-16, with deeper layers (50), it fails

to approach optimum solution. Even residual learning of ResNet-50 tends
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TABLE 5.9: Gated temporal segment network on HMDB-51
(split 1)

RGB weight Flow weight Test Accuracy
1.0 0.0 54.31 %
0.0 1.0 62.35%
0.9 0.1 59.15 %
0.8 0.2 63.46 %
0.7 0.3 66.73 %
0.6 0.4 68.95 %
0.5 0.5 69.93 %
0.4 0.6 69.93 %
0.3 0.7 68.63 %
0.2 0.8 67.45 %
0.1 0.9 65.36 %

gating 70.00 %

TABLE 5.10: UCF-101 (split 1)

Methods Accuracy
Spatial streams (3 channels RGB) 72.7 %

Motion streams (3 flow fields) 76.5%
SVM Fusion (model B) 81.5 %
Averaging (model A) 82.7 %

Gating network (model C) VGG-16 83 %
Gating network (model C) ResNet-50 88.5 %

to benefit from the fewer number of parameters if found to be beneficial for

classification not for gating. Further work is to investigate ideal model for

optimally weighing expert networks.
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TABLE 5.11: HMDB-51 (split 1)

Methods Accuracy
Spatial streams (3 channels RGB) 36 %

Motion streams (3 flow fields) 43%
Averaging (model A) 47.5 %

Gating network (model C) 48 %
Temporal segment network (averaging) (Wang et al., 2016) 69.93 %

Our gating network (model C) + expert network of Temporal segment network Wang et al., 2016 70 %
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TABLE 5.12: Comparison with another fusion method

Methods RGB Flow Fusion
Feichtenhofer of late fusion - VGG-M-2048 (Feichtenhofer, Pinz, and Zisserman, 2016) 74.22 % 82.34 % 85.94

Feichtenhofer of late fusion - VGG-16(Feichtenhofer, Pinz, and Zisserman, 2016) 82.61% 86.25 % 90.62
feature amplification + multiplicative (Park et al., 2016) - % - % 89.1 %

Our gating VGG-16 + expert streams of (Wang et al., 2015) 79.34 % 83.60% 91%



10
0C
h

ap
te

r
5.

G
at

ed
S

p
at

io
an

d
T

em
p

o
ra

l
C

o
n

v
o

lu
ti

o
n

al
N

eu
ra

l
N

et
w

o
rk

fo
r

A
ct

iv
it

y
R

ec
o

g
n

it
io

n
:

T
o

w
ar

d
s

G
at

ed
M

u
lt

im
o

d
al

D
ee

p
L

ea
rn

in
g

TABLE 5.13: Comparison with state of the arts

Methods UCF-101 HMDB-51
Slow fusion spatio temporal (Karpathy et al., 2014) 36 % 36 %

Improved dense trajectories (IDT) (Wang and Schmid, 2013) 85.9% 57.2 %
Two stream (averaging fusion) (Simonyan and Zisserman, 2014a) 86.2 % -

Two stream (SVM fusion) (Simonyan and Zisserman, 2014a) 87.0 % -
Two stream of good practice (Wang et al., 2015) 90.2 % -

Our gating stream + good practice of (Wang et al., 2015) (VGG-16 gating) 91 % -
Temporal segment network (Wang et al., 2016) 93.86 % 69.93%

Our gating stream + temporal segment network of (Wang et al., 2016)(VGG-16 gating) 94.1 % 70%
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Chapter 6

Conclusion

In Chapter 2, We have proposed method for extracting action features from

video namely FLAC over time. This framework is based on spatial and orien-

tational flow autocorrelations of local flow fields and derive shift-invariance

and additivity as in HLAC,CHLAC, and GLAC. For FLAC. The optical flows

are sparsely described in terms of magnitude and orientation. Since the au-

tocorrelation statistic is used, these method extracts local region of flow field

over action cycle that extent the use of standard HOF. In experiments for hu-

man action recognition, the proposed methods produce comparable results

compared with state of the arts. It is turned out to be complementary with

spatial binning of HOF and normalisation to capture the action cycles per-

formed by human even the further works remain.

In Chapter 3, We have proposed Wavelet Packet method as contribution.

The proposed method is sparse cuboid with multiresolution Haar Wavelet

Packet along spatio temporal cuboid. The theoretical foundation is delivered

in how to treat dense optical flow using this approach. This feature is em-

bedded with BoF giving it robust to scale variation. The proposed method

is better than state of the arts in which mostly motion-based methods. We

found that even sampling step is not highly dense as previous works, with

bigger cuboid Packet Flow will spatially pool dominant motion by minimis-

ing noise and capture detail of temporal dynamics.

Based on experimental results, we have compared with state of the arts
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using KTH and UCF Sports dataset and found comparable on KTH and out-

performing on UCF Sports. Even though dense optical flow is used as base

of our proposed method, it produces efficient computation and reliable per-

formance. Detail temporal dynamics in multi-resolution and BoF manner are

potentially giving high degree of freedom in performance, thus trial and er-

ror are needed for depth selection. For a small number of classes and high

number of samples in which produce high density per class would converge

description of temporal dynamics of motions. However, large classes and a

little number of samples mean high degree of freedom that will cause uncer-

tainty but still we can discover which resolution is better suited for general-

ization.

For future works, we can be leveraged into concatenation with another

feature such as shape-based descriptors. There is also chance to adapt into

another motion-based features such as trajectory level generation or Slow

Features Analysis (SFA) to enrich motion characteristic in more detailed form.

There are opportunities to improve by making use of optimisation solution,

camera motion removal, or localization methods. Furthermore, as the rise

of deep neural convolutional networks, it could be used to analyze temporal

dynamics to observe its detailed properties for action classifications. More-

over, this method can be adopted in broader motion-based vision topics such

as dynamic scene or action based movie understanding.

In Chapter 4, We have demonstrated local motion superpixel evolution

over time using three principal local features, namely HOF correlation, cen-

ters of mass, and HOG. By tracking the centers of mass of motion superpix-

els over time, feature vectors form time series data that can be used to an-

alyze temporal dynamics. Moreover, superpixels capture locality evolution

for motion that is important for achieving significant video classification per-

formance. To enrich the temporal information, various sizes of superpixels,

spatial and motion descriptors, and two-way tracking with separate BOFs
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can be applied. We have applied our approach to the UCF Sports dataset and

the JPL First-Person Interaction dataset and found it to be comparable with

existing methods. Future research will involve concatenation with global

motion superpixels. There is also a possibility of merging these ideas with

CNNs to better understand locality and its temporal evolution for various

tasks, in particular video classification.

In Chapter 5, We have proposed a baseline gating scheme that able to

weigh expert streams for video activity recognition. In this research, the gat-

ing CNN is trained to decide which network stream is more salient com-

pared to the others adaptively. To this end, independent loss function and

backpropagation are applied for each expert and gating stream, The outputs

from the expert streams are then weighted adaptively by gating CNN for

each sample.

We have conducted experiments on UCF-101 dataset and HMDB-51 dataset

using VGG-16 and resNet-50 to evaluate how deep networks have the ability

of expert selection for each sample rather than fixed weights. Results show

state of the art performance is achieved when compared to another fusion

method. However, gating CNN is burdened from high parameters and de-

gree of freedom while simple classifier tends to overfit with training data.

Therefore, further investigation is required to find ideal structure of gating

CNN and possible regularization method to overcome aforementioned prob-

lems. The gating CNN is potentially useful for various expert networks’ inte-

gration such as multimodal, multiresolution, source or multisegment along

spatiotemporal space. Thus, rather than two modalities, even greater chal-

lenge is, whether gating CNN optimally weigh multiple modalities while

considering the diversity of sources.
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