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Chapter 1. Preface 

All plant cells are surrounded by rigid and semi penetrable layers named cell wall. 

This complex extracellular matrix is the significant material that causes a main 

structural difference between plant and animal cells (1). Plant cell wall which contains 

carbohydrates and proteins affects plant characteristics and growth via its several 

essential functions in plants (2). In molecular terms, the cell wall is highly dynamic 

which modifies during growth and development dependent on cell type and cell 

functions in the plant (3).  

Plant cell wall categorized to the primary and secondary cell wall. All plant cells are 

surrounded by primary cell wall composed of cellulose, hemicellulose and pectin. 

Primary cell wall controls cell morphology via controlling cell growth direction. On the 

other hand, secondary cell wall composed of cellulose, hemicellulose and lignin is 

added to some kinds of mature cells such as xylem fiber cells to support their functions 

(4). From different studies, interaction and interconnection among cell wall polymers 

lead to cell wall integrity besides its flexibility (5, 6). Therefore, studying of cell wall 

composition is fundamental for understanding cell wall biosynthesis and remodeling 

impacts on plant life cycle via the biological function of cell wall such as signaling 

properties. However, little is known about the function of the individual cell wall matrix 

components in cellular signaling (7).  

Cell wall polymers mostly compose of polysaccharides and the simple sugars are 

generally found in different plant tissues in variable proportion. UDP-Galactose 

(UDP-Gal) is one of the most important nucleotide-sugar precursors which is used in 

assembling of cell wall polymers, through cell wall galactosylation processes in Golgi 

body. Among cell wall polymers, pectin and hemicellulose as non-cellulosic part of the 

cell wall (so-called cell wall matrix components) are galactosylated (5, 8, 9).  

Essential factors involved in cell wall matrix galactosylation are 

galactosyltransferases (GalTs), UDP-galactose epimerases (UGE) and UDP-galactose 

transporters (UGT). UGE is an NAD+ dependent enzyme that interconverts UDP-Gal
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from/to UDP-glucose (UDP-Glc) in the cytosol (10). Then this UDP-Gal would be 

transported from cytosol to the Golgi apparatus by the essential function of UGTs, the 

main transporters which located in the membrane of the Golgi body (11). Finally, in the 

Golgi lumen, GTs would use these UDP-Gal as a substrate for synthesis of pectin and 

hemicellulose polymers (9, 12).    

One of the key prospective research areas in plant cell wall is to study the 

relationship between the structural complexity and variation of cell wall polymers and 

their subsequent biological function such as altered mechanical stiffness in plants. In 

our laboratory, Khalil et al., previously reported that tobacco plants transformed with 

the human UDP-galactose transporter 1 gene (hUGT1), the first isolated UDP-galactose 

transporter which is a typical model for UDP-galactose transporter, displayed several 

morphological and physiological alterations, such as enhanced growth, increased 

accumulation of chlorophyll and lignin, a gibberellin-responsive phenotype, and an 

increased proportion of Gal in arabinogalactan proteins (13). 

The aim of my thesis is a study on hUGT1-transgenic tobacco plants, to investigate 

the influence of the expression of this UDP-Gal transporter on cell wall matrix 

hyper-galactosylation. Afterward, I aimed to examine that the cell wall 

hyper-galactosylation impacts on plants phenotypic and physiological characteristics 

which might result from signaling activity of cell wall components.     

My thesis is started by chapter 2 with a general introduction involved some basic 

and essential information about plant cell wall. Since the main material of my study was 

plant cell wall, it has been really important to begin this thesis with a brief introduction 

of cell wall. 

In chapter 3, I examined a hypothesis that extra transportation of UDP-Gal from 

cytosol to Golgi by hUGT1 expression might lead to an alteration of cell wall 

monosaccharide composition. The monosaccharide composition of cell wall matrix of 

leaf and stem in hUGT1-transgenic and control plants was analyzed. Generally, HPLC 

analysis revealed the alteration of monosaccharide composition in pectin and 

hemicellulose. In particular, Gal ratio in total sugar composition of cell wall 
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dramatically elevated in the hemicellulose II and pectin fraction in the 

hUGT1-transgenic plants. Furthermore, oligosaccharide mass profiling (OLIMP) 

revealed that xyloglucan (XG) is the main acceptor of Gal in hemicellulose II. Since the 

degree of galactosylation in XG would be related to the mechanical strength of primary 

cell wall, the hyper-galactosylation of XG might elevate the rigidity of tobacco plants. 

Moreover, an increased Gal tolerance was shown in the hUGT1-transgenic plants. The 

enhanced stream of Gal from cytosol to Golgi body by hUGT1 and consequent 

incorporation of this extra Gal into cell wall component seemed to lead to the increased 

Gal tolerance.  

In chapter 4, I proposed hyper-galactosylation of Gal-containing cell wall 

polysaccharides via the expression of hUGT1 might have an important impact on plant 

growth and development such as plant hardness. Strength test for stem and leaf of 

hUGT1-transgenic and control plants determined by breaking and bending tests 

revealed an increased rigidity in leaf and stem of transgenic plants. This result 

suggested that the hyper-galactosylated side chains of XG were involved in the 

increased strength of cell wall. Subsequent transmission electron microscopic analysis 

supported the cell wall thickness in leaves palisade cells and those of cortex cells and 

xylem fibers in the stem. Besides, the biomass and total cell wall content were measured. 

The biomass and total cell wall materials extracted from the leaves and stems of 

hUGT1-transgenic plants were higher than those of control plants. These results 

supported the increased cell wall thickness. In addition, the cell walls of the 

hUGT1-transgenic plants showed increased lignin contents, which was supported by the 

up-regulation of some genes encoding enzymes which are rate-limiting in lignin 

biosynthesis. From these results, although a possibility of hyper-galactosylation of XG 

is ruled out, the increased rigidity of hUGT1-transgenic plants are mainly caused by the 

increased cell wall thickness and the enhanced lignin accumulation.  
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Chapter 2. General introduction 

2.1. Plant Cell wall  

Plants have a special ability to convert light energy to chemical energy utilized in 

the conversion of inorganic carbon to organic forms and produce simple sugars that play 

an important role in cell survival as energy sources or as structural components of cell 

walls, membranes, and glycoproteins. Most of these photosynthetically fixed carbons 

are incorporated into cell wall carbohydrates; the rest forms glycoproteins, glycolipids 

and storage polysaccharides (14).  

Plant cell wall is positioned on the outer layer of the cell next to cell membrane (1). 

This rigid and supportive layer protects cells and gives them special shape by 

controlling the direction of cell growth. Although cell wall containing pores allow 

molecules and signals to pass between individual plant cells, it acts as a barrier to 

protect the cell against pathogens and plant viruses (9). The cell wall polysaccharides 

would carry important information for cell signalling processes (7). In addition, plant 

cell wall is important sources of industrial raw materials for textile fibers, paper, and 

wood products, and potentially for renewable biofuels or as a nutrition source for 

humans and animals (15, 16).  

 

2.2. Plant cell wall structure 

The plant cell wall is multi-layered, and up to three layers may be found in plant cell 

walls depending on the cell type and its developmental stage. The outer layer from 

plasma membrane is middle lamella which keeps near cells together. Then, in all 

growing plant cells, a thin and flexible primary cell wall layer is formed between the 

plasma membrane and middle lamella. Finally, the last thick and rigid layer named 

secondary cell wall is deposited between the plasma membrane and primary cell wall in 

some particular plant cell types after ceasing of their dividing and growing (Fig. 2.1). 

While all growing plant cells have a middle lamella and primary cell wall, the 

https://www.thoughtco.com/plant-viruses-373892
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secondary cell wall is not found in all cell types. Specialized and matured cells such as 

vessel elements or fiber cells are surrounded by a secondary cell wall. (3) 

The composition and function of each layer vary in different species depending on 

cell types and developmental stages, which shows a relationship between cell functional 

properties and its cell wall composition and structure (4). The primary cell wall is 

comprised of cellulose microfibrils embedded within a matrix of hemicellulose and 

pectin polysaccharides. The pectic polysaccharides include homogalacturonan, and 

rhamnogalacturonan I and II (5, 8) and the hemicellulosic polysaccharides include 

xyloglucans, glucomannans, xylans, and mixed-linkage glucans (3).While the strength 

of primary cell wall supports cell structure, its flexibility allows cells to expand and 

elongate. Once the cells have reached their final size, the secondary cell wall composed 

of cellulose, hemicelluloses and lignin is accumulated inside the primary cell wall. This 

thick secondary cell wall containing lignin provides mechanical support in fiber cells as 

well as strengthening and waterproofing the wall of xylem cells in vascular tissue (6). 

Besides polysaccharides components plant cell walls also contain many proteins and 

glycoproteins (2). For example, arabinogalactan proteins are complex molecules found 

on the plasma membrane and in the cell wall with important roles in plant growth and 

development via possible signaling events at the cell surface (3). 

2.3. Plant cell wall biosynthesis 

According to the analysis of complete genomes a large portion of genes, more than 

2000 genes of plants, are expected to be related to the biosynthesis and remodeling of 

plant cell wall components (17, 18, 19). For example in Arabidopsis, 15% of the genes 

have been identified to cooperate in these processes (20). It is well known that plant cell 

wall biosynthesis is done in multiple cellular compartments (3). While cellulose 

microfibrils are synthesized at the plasma membrane by cellulose synthase complexes 

(CSCs), the cell wall matrix polysaccharides (pectin and hemicelluloses) as 

non-cellulosic part of plant cell wall are synthesized in the Golgi apparatus. Such 

non-cellulosic polysaccharides are transported to the cell surface through the 

intermediacy of within Golgi-derived vesicles which fuse with the cell membrane to 

incorporate into the cell wall (3, 5, 8). 

https://en.wikipedia.org/wiki/Lignin
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Fig 2.1. Plant cell wall structure 
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The enzymatic process that attaches an oligosaccharide side chain to lipids, protein 

or other organic molecules is known as glycosylation. This process is the most common 

posttranslational modification of proteins that occurs in ER and Golgi apparatus (21). 

Galactose is incorporated into the pectin such as rhamnogalacturonan-I and -II, and the 

hemicelluloses such as xyloglucan, which contain galactose residue (8, 22), in Golgi 

apparatus via the function of different kinds of essential enzymes known as 

galactosylation process (3, 5, 8, 9).  

Sugars cannot be used as building blocks for cell components as long as being 

activated. Nucleotide diphosphate sugars (NDP-sugars) are activated forms which 

contain the required energy for the assembly of their sugar moiety on appropriate cell 

component (23). UDP-sugar pyrophosphorylase (USPase; EC 2.7.7.64), which is 

localized in the cytosol, catalyzes a reversible transfer of the uridyl group from UTP to 

sugar-1-phosphate, producing UDP-sugar and pyrophosphate (PPi) (10). The schematic 

process of UDP-glucose (UDP-Glc) synthesis is shown in Figure 2.2. 

In plants, galactosylation of non-cellulosic cell wall polysaccharides in Golgi 

apparatus requires UDP-galactose (UDP-Gal) as a precursor, which is synthesized from 

UDP-glucose (UDP-Glc) by the action of uridine 5’-diphospho-galactose-4-epimerase 

(UGE) in the cytosol (24). It has been reported that a large family of nucleotide sugar 

transporters (NSTs), as integral-membrane proteins that possess 6–10 transmembrane 

domains which range from 45 to 55 kDa in size, is localized in Golgi apparatus 

membrane (11, 25). UDP-galactose transporter (UGT) provides a link between the 

synthesis of UDP-Gal in the cytosol and the galactosylation process in the Golgi lumen 

(11). Furthermore, another important factor in galactosylation is galactosyltransferase 

(GalT) that catalyzes the formation of glycosidic linkages between an activated sugar 

moiety (UDP-Gal) and a specific polysaccharide acceptor. GTs are thought to be 

localized in the Golgi lumen (12). As it is shown in Figure 2.3, the synthesis of matrix 

polysaccharides in Golgi apparatus requires the cooperation of three different kinds of 

essential factors (UGEs, NSTs, and GTs). Finally, products accumulated in Golgi lumen 

are transported to the cell wall via vesicles (3, 9).   
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Figure 2-2. UDP-Glc pyrophosphorylase activity in UDP-Glc synthesis 

Glucose-1-phosphate UDP-Glucose 
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Fig 2.3. The cell wall matrix polysaccharides (pectins and hemicelluloses) are synthesized in the 

Golgi apparatus and transported to the cell surface via Golgi-derived vesicles 
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Chapter 3. Characterization of plants with the hyper-galactosylated 
cell wall components 

 

3.1. Introduction 

Cell wall materials (CWMs) play essential roles not only in plant growth and 

development but also in the response of plants to the environment and in their 

interactions with symbionts and pathogens (26). There are two types of cell walls, 

primary and secondary. Primary cell walls are deposited during cell growth and consist 

mainly of polysaccharides that can be broadly classified as cellulose, cellulose-binding 

hemicelluloses, and pectins. The latter two classes of cell wall components are often 

referred to as matrix polysaccharides, which are synthesized within Golgi cisternae, 

whereas cellulose is generated at the plasma membrane in the form of paracrystalline 

microfibrils (27,15). Secondary cell walls are deposited between the primary cell wall 

and the plasma membrane in confined locations where great mechanical strength and 

structural reinforcements are required, such as the xylem, and are produced after 

primary cell wall deposition and cell expansion are completed.  

In the Golgi apparatus, glycosyltransferases catalyze the glycosidic linkages between 

a sugar moiety and specific polysaccharide acceptor, resulting in various sugar chain 

formations (28). Nucleotide sugar transporters (NSTs) are indispensable because they 

incorporate substrates used in the biosynthesis of matrix polysaccharides into the Golgi 

lumen as glycosyltransferase partners (14). Genes that encode NST family proteins are 

widely found in eukaryotic organisms and have been isolated from animal, plant, and 

yeast cells (29). Among the NST family of proteins, UDP-galactose (UDP-Gal) 

transporters are involved in transporting UDP-Gal into the Golgi lumen (29). UDP-Gal 

transporters have been described in mammals, Drosophila, Caenorhabditis elegans, 

Entamoeba, Giardia, Leishmania, yeast, and other organisms (30). Plant UDP-Gal 

transporters have been reported in Arabidopsis (12) and rice (31). The Arabidopsis 

UDP-Gal/UDP-glucose (UDP-Glc) transporter AtUTr1 and UDP-Gal transporter 

AtUTr2 have been isolated and characterized (32, 33). Subsequently, two additional 
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UDP-Gal transporters, AtUDP-GalT1 and AtUDP-GalT2, were identified (34), and the 

recombinant protein AtNST-KT1 was functionally characterized as a UDP-Gal 

transporter (35). Furthermore, three UDP-Gal transporters have been isolated from 

Oryza sativa (31).  

Recently, Zhang et al. (36) and Song et al. (37) reported that an UDP-Glc transporter 

of rice, OsNST1, modulates cell wall biosynthesis. The bc14 mutant harbors a mutation 

in OsNST1, which shows reduced mechanical strength owing to decreased cellulose 

content and altered wall structure. These findings indicate that absence of or a defect in 

NSTs strongly perturbs the supply of substrates, thus affecting polysaccharide 

biosynthesis and cell wall matrix composition. Although NSTs are likely to contribute to 

carbohydrate production outside the plasma membrane of plant cells, the machinery 

involved in this reaction is not fully understood.  

In previous work, Khalil et al., described the characteristics of tobacco plants 

transformed with the human UDP-Gal transporter 1 gene (hUGT1; 38), designated 

hUGT1-transgenic tobacco plants (13). hUGT1 is the first mammalian nucleotide sugar 

transporter for which a cDNA sequence was identified (38), and the important amino 

acid residues composing transmembrane domains and UDP-Gal recognition sites have 

been thoroughly analyzed (39). Although a number of plant UGTs have been identified 

(12,31–35), they chose hUGT1, as the best-studied UGT, for their investigations. In a 

previous report (13), they demonstrated that hUGT1 was transcribed and translated in 

transgenic tobacco plants and that hUGT1, which showed UDP-Gal transporter activity, 

was mainly localized to the trans-Golgi network and endoplasmic reticulum in tobacco 

cells, similar to human cells (13). These transformants displayed enhanced growth 

during cultivation in soil and axillary shoots showed an altered determinate growth 

habit. Although the hUGT1 expression level and UDP-Gal transport activity were not 

strongly correlated with growth and morphology among the hUGT1-transgenic tobacco 

plants examined, line 23 showed the strongest phenotype described above (13). 

Increased leaf thickness, caused by an increased amount of spongy tissue, increased 

numbers of xylem vessels in the stem, increased accumulation of lignin and chlorophyll, 

and hyper-galactosylated arabinogalactan proteins were observed in hUGT1-transgenic 
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plants. 

Polysaccharides in the plant cell wall not only provide physical support but are also 

signaling substances. For example, oligosaccharides derived from some Gal-containing 

polysaccharides, such as xyloglucan and galactoglucomannan, have biological activities 

(40–44). In addition, arabinogalactan proteins play a crucial role in various 

physiological functions in plant cells (45). Thus, changes in Gal-containing cell wall 

polysaccharides might have an important impact on plant growth and development. 

Hyper-galactosylation of cell wall matrix polysaccharides has been successfully 

achieved by introduction of an UDP-Glc/Gal epimerase gene into potato (46) and a 

galactosyltransferase gene into Arabidopsis (47). However, the introduction of an 

UDP-Gal transporter has not been reported previously. Given that plant cell wall matrix 

polysaccharides are synthesized in the Golgi apparatus, an UDP-Gal transporter must 

play a key role in linking UDP-Gal biosynthesis in the cytosol and galactosylation of 

polysaccharides in the Golgi apparatus. I hypothesized that increased UDP-Gal 

transport activity will drastically affect cell wall matrix polysaccharide structure. In this 

study, I revealed that enhanced UDP-Gal transport activity caused by hUGT1 

expression altered the monosaccharide composition of the cell wall matrix components 

of hUGT1-transgenic plants. In particular, I focused on the increase in the ratio of 

galactose to total monosaccharide residues, so-called “hyper-galactosylation”, in the cell 

wall matrix of transgenic plants. I also showed that the additional UDP-Gal transport 

activity increased the tolerance to galactose, which may be toxic to plant cells. The 

dynamic change in cell wall polymer composition caused by hyper-galactosylation of 

cell wall matrix polysaccharides is discussed. 
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3.2. Materials and methods 

3.2.1. Plant materials and growth conditions  

   As reported previously (13), tobacco (Nicotiana tabacum cv. SR-1) plants were 

transformed with hUGT1 (38), together with a hemagglutinin tag inserted between the 

CaMV 35S promoter and a nopaline synthase gene (nos) terminator, designated 

pBIN-hUGT1. The transformation was mediated by Agrobacterium tumefaciens strain 

LBA4404. As a control, tobacco plants were transformed with the empty vector pBIN19. 

The pBIN19- and hUGT1-transgenic tobacco plants were cultured in vitro for 1 month, 

then transferred to soil in pots and cultivated with the addition of 1:1000 diluted 

Hyponex fertilizer (Hyponex Japan, Osaka, Japan) at 25°C with a 16-h photoperiod 

under a fluorescent daylight lamp (50 mol/m2/s) in a climate-controlled room. After 

growth in the soil for 2 months, the pBIN19- and hUGT1-transgenic tobacco plants 

were harvested and used as a material for CWM extraction.  

 

3.2.2. Extraction of CWM   

To extract CWM from a large number of plant samples, a simplified method devised 

by Foster et al. (48) was employed with several modifications. The eleventh leaf or 

tenth stem internode from the shoot apex of harvested plants were used for CWM 

extraction. Air-dried plant material (60 mg) was ground with 5-mm stainless balls in a 

2-mL screw cap tube (Watson, Tokyo, Japan) using a bead crusher μT-12 (Taitec Corp., 

Saitama, Japan) at 2,600 rpm for 1 min. The homogenate was washed in 1.5 mL of 70% 

ethanol, centrifuged at 9700 × g for 10 min, and the supernatant was removed. The 

pellet was resuspended in 1.5 mL chloroform/methanol [1:1 (v:v)], centrifuged at 9700 

× g for 10 min, and the supernatant was removed. The pellet was resuspended in 500 µL 

acetone, and the solvent was evaporated. To remove starch, the sample was resuspended 

in 1.5 mL of 0.1 M sodium acetate buffer, pH 5.0, and incubated for 20 min at 80°C. 

The sample was mixed with a reagent mixture comprising 35 µL of 0.01% NaN3, 35 µL 

α-amylase (50 µg/mL H2O; from Bacillus species; Sigma-Aldrich Corp., St Louis, MO, 
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USA), and 17 µL pullulanase (18.7 units from Bacillus acidopullulyticus, 

Sigma-Aldrich Corp.), and incubated overnight at 37°C with moderate mixing. After 

incubation, the sample was heated for 10 min at 100°C, centrifuged at 9700 × g for 10 

min, and the supernatant was discarded. The pellet was washed three times with 1.5 mL 

distilled water, resuspended in 500 µL acetone, and air dried. The residue was defined 

as the CWM.  

 

3.2.3. Extraction and fractionation of leaf CWM   

   The eleventh leaf from the shoot apex of harvested plants was used for leaf CWM 

extraction. Leaves of the pBIN19- and hUGT1-transgenic plants (1 g) were ground to a 

powder in liquid nitrogen with a mortar and pestle. The powder was homogenized in 

ice-cold 250 mM potassium phosphate buffer (pH 7.0) with a Teflon homogenizer. The 

homogenate was centrifuged at 2000 ×g for 10 min at 4°C. The pellet was resuspended 

in ice-cold buffer and centrifuged. This step was repeated twice. The pellet was 

resuspended in ice-cold water and centrifuged at 2000 ×g for 10 min at 4°C, and then 

resuspended in ice-cold buffer and centrifuged. This step was repeated three times. Next, 

the pellet was suspended in a 10-fold volume of methanol and incubated for 30 min at 

80°C. After centrifugation at 2000 ×g for 10 min at 4°C, the supernatant was discarded, 

and the pellet was resuspended in methanol and centrifuged again. The supernatant was 

discarded, and the pellet was resuspended in ice-cold water and centrifuged at 2000 ×g 

for 10 min at 4°C. The supernatant was discarded. To remove starch, the pellet was 

incubated in 10 volumes of -amylase solution (0.1 mL -amylase Type I-A; 

Sigma-Aldrich Corp.) in 100 mL of 20 mM sodium phosphate buffer, pH 7.0, 

containing 6 mM NaCl for 24 h at 28°C. After centrifugation at 2000 ×g for 10 min at 

4°C, the pellet was washed twice with ice-cold water. After the resuspension and 

centrifugation, the pellet, defined as a leaf CWM, was recovered.  

To extract the pectin fraction, 50 mM EDTA solution (50 mM EDTA, 50 mM 

acetate-sodium acetate buffer, pH 4.5) was added to the leaf CWM and incubated for 4 

h at 100°C. After centrifugation at 1000 ×g for 10 min, the supernatant was recovered 
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(supernatant-1). Next, 20 mM EDTA solution (20 mM EDTA, 50 mM acetate-sodium 

acetate buffer, pH 4.5) was added to the pellet and homogenized with a Teflon 

homogenizer, and then the same incubation and centrifugation steps were carried out. 

The supernatant (supernatant-2) was recovered and combined with supernatant-1, and 

then dialyzed with water for 48 h at 4°C to yield the pectin fraction. To extract the 

hemicellulose I fraction, the pellet obtained above was resuspended in 1 M KOH/20 

mM NaBH4 solution and incubated for 24 h at 28°C. After centrifugation at 1000 ×g for 

10 min, the supernatant was recovered and dialyzed with water for 48 h at 4°C to yield 

the hemicellulose I fraction. To extract the hemicellulose II fraction, the pellet obtained 

above was resuspended in 4 M KOH/20 mM NaBH4 solution and incubated for 24 h at 

28°C. After centrifugation at 1000 ×g for 10 min, the supernatant was recovered and 

dialyzed with water for 48 h at 4°C to yield the hemicellulose II fraction. 

To quantify each cell wall fraction, the orcinol–sulfuric acid method (49) was 

employed. A colorimetric analysis was carried out by measuring the absorbance at 600 

nm.  

 

3.2.4. Extraction and fractionation of stem CWM   

   Isolation of CWM from stems of the pBIN19- and hUGT1-transgenic plants was 

performed as described by Selvendran and O’Neill (50) with a slight modification. The 

entire stem from harvested plants was used for stem CWM extraction.  In total, 25 g 

(fresh weight) of stems were ground with a mortar and pestle in liquid nitrogen, blended 

with 100 mL (twice the volume of the material) of 1.5% SDS solution containing 5 mM 

Na2S2O5 in a Waring blender, and subsequently homogenized with Ultraturrax (IKA 

Works GmbH & Co., Staufen, Germany). The homogenate was washed twice with a 

double volume of 0.5% (w/v) SDS solution containing 3 mM Na2S2O5, and then 

crushed in the same solution in a pot mill containing ceramic balls at 60 rpm for 15 h at 

4°C. The crushed residue was recovered and washed twice in 100 mL distilled water by 

suspension and centrifugation. The pellet was resuspended in 90% DMSO and 

incubated overnight at room temperature to remove starch. After centrifugation, the 
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pellet was resuspended in 90% DMSO and incubated for 1 h at room temperature, and 

then washed five times with distilled water. The pellet was resuspended in a small 

volume of distilled water and dialyzed overnight at 4°C in distilled water. The pellet 

was recovered using centrifugation and stored at −20°C as a CWM.  

To obtain the pectin I fraction (the 1,2-diaminocyclohexanetetraacetic acid 

(CDTA)-soluble pectin), ~1 g of CWM was extracted using 50 mM CDTA solution, pH 

6.5 (CDTA disodium salt, Sigma-Aldrich Corp.). After centrifugation, the supernatant 

was recovered and concentrated in an evaporator. The fraction was dialyzed overnight at 

4°C in distilled water and stored at −20°C. To obtain the pectin II fraction 

(Na2CO3-soluble pectin), the CDTA-insoluble residue was extracted in 50 mM 

Na2CO3/20 mM NaBH4 solution, pH 10.8. After centrifugation, the supernatant was 

recovered and concentrated in an evaporator. The fraction was dialyzed overnight at 4°C 

in distilled water and frozen at −20°C.  

To obtain the hemicellulose I fraction (the 1 M KOH-soluble hemicellulose), the 

pellet obtained in the previous step was extracted three times in 1 M KOH/20 mM 

NaBH4 solution under N2 gas. After each centrifugation, the supernatants from the 

extractions were recovered, combined, and filtered using a GF/C glass filter. The filtrate 

was adjusted to pH 5.0 by acetic acid, concentrated, dialyzed in deionized water, and 

frozen at −20°C. 

To obtain the hemicellulose II fraction (the 4 M KOH-soluble hemicellulose), the 

pellet obtained in the previous step was extracted three times in 4 M KOH/20 mM 

NaBH4 solution under N2 gas. After each centrifugation, the supernatants from the 

extractions were recovered, combined, and filtered using a GF/C glass filter. The filtrate 

was adjusted to pH 5.0 by acetic acid, concentrated, dialyzed in deionized water, and 

frozen at −20°C. 

The quantification of each cell wall fraction was performed using the 

orcinol–sulfuric acid method as described above.  
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3.2.5. Relative proportion of monosaccharides in CWMs and cell wall matrix 

fractions   

   To analyze the monosaccharide composition, 1 mg CWMs or 2 g of the pectin and 

hemicellulose fractions extracted from leaves and stems of the pBIN19- and 

hUGT1-transgenic tobacco plants were used. Each sample was hydrolyzed to release 

monosaccharides in 2 M trifluoroacetic acid (TFA) solution. The released 

monosaccharides were fluorescently labeled using a p-aminobenzoic ethyl ester (ABEE) 

labeling kit (J-Oil Mills, Inc., Tokyo, Japan) in accordance with the manufacturer’s 

instructions. L-arabinose (Ara), L-fucose (Fuc), D-galactose (Gal), D-galacturonic acid 

(GalA), D-glucose (Glc), D-glucuronic acid (GlcA), D-mannose (Man), L-rhamnose 

(Rha), and D-xylose (Xyl) were used as a standard mixture of the monosaccharides 

found in the cell wall. The ABEE-labeled monosaccharides were analyzed using a 

high-performance liquid chromatography (HPLC) 880 system (Jasco Co., Tokyo, Japan) 

with a Honenpak C18 column (75 mm × 4.6 mm, J-Oil Mills, Inc) at 30°C and an 

FP-1520S Intelligent Fluorescence Detector (Jasco Co.). The HPLC conditions were as 

follows: mobile phase, 0.2 M potassium borate buffer (pH 8.9)/acetonitrile [93:7 (v:v)]; 

flow rate, 1.0 mL/min; fluorescence detection, excitation at 305 nm, and emission at 

360 nm (51). In a preliminary experiment, the proportion of GalA in the leaf pectin 

fraction calculated from the corresponding peak areas of HPLC were extremely low 

compared with that in the pectin fraction isolated from the leaf mesophyll of N. tabacum 

described in a previous report (85.7% as uronic acid; 52). The reduced GalA proportion 

seemed to be caused by the low ABEE-labeling efficiency for GalA. Because such a 

difference in the ABEE-labeling efficiency might be observed for all monosaccharides, 

the ABEE-labeling efficiency of each monosaccharide was estimated using the same 

concentration (200 µM) of standard monosaccharides that are assumed to be released 

from CWMs. As expected, the ABEE-labeling efficiency of each monosaccharide was 

different, so the peak area value was corrected by the ABEE-labeling efficiency. 

Because Glc showed the highest labeling efficiency with ABEE, the relative labeling 

efficiencies of the other monosaccharides at the same concentration were calculated 

(Glc defined as 100%). The labeling efficiency of each monosaccharide was as follows: 

Ara, 98.7%; Fuc, 76.5%; Gal, 91.1%; GalA, 5.3%; Glc, 100%; GlcA, 24.6%; Man, 
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92.2%; Rha, 61.1%; and Xyl, 85.2%. The relative proportion of each monosaccharide in 

the CWMs and cell wall matrix fractions was calculated from the peak area 

corresponding to each monosaccharide.  

 

3.2.6. Oligosaccharide mass profiling (OLIMP)   

   To analyze the galactosylation of xyloglucan, the OLIMP (53) method was 

employed with some modifications. A total of 25 µg freeze-dried leaf hemicellulose II 

was resuspended in 50 L of 100 mM sodium acetate-acetate buffer, pH 5.5, and 0.2 U 

of xyloglucanase (E-XEGP, EC 3.2.1.151, CAZY Family: GH5, Megazyme 

International, Wicklow, Ireland) was added. Then, 25 g of tamarind xyloglucan 

(P-XYGLN, Megazyme) used as the xyloglucan standard was also resuspended in the 

same buffer containing E-XEGP. The mixture was incubated for 16 h at 40°C. After 

centrifugation, the supernatant (10 µL) of the digested sample was recovered. To 

remove salts, BioRex MSZ 501 cation exchange resin beads (Bio-Rad, Hercules, CA, 

USA) were added to the sample and incubated at room temperature for 15 min. For the 

matrix and target plates, 10 mg/mL 2,5-dihydroxybenzoic acid (DHB) in water and 

DE1580TA (Kratos, Shimadzu, Kyoto, Japan) were used, respectively. The target plate 

spotted with DHB and sample mixtures was placed into a MALDI-TOF-quadrupole ion 

trap (QIT) mass spectrometer (AXIMA-QIT, Shimadzu). The machine was set to 

positive mode and the selected mass range was 750–3000 Da. Ions representing specific 

xyloglucan fragments were identified by their mass-to-charge ratio (m/z). The ion 

intensities (% area) of expected enzyme-digested xyloglucan fragments were summed 

to 100%, representing the relative abundance of each fragment. 

 

3.2.7. Galactose tolerance assay   

   Surface-sterilized pBIN19- and hUGT1-transgenic tobacco seeds were sown on 

Murashige and Skoog (MS) solid medium (54) containing 100 mg/L kanamycin. One 
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week after sowing, germinated seedlings were transferred to 100 mL MS solid medium 

containing 0, 0.1, 0.2, 0.3, 0.4, 0.5, or 0.6% Gal in a 500-mL glass culture bottle, and 

cultured at 25°C with a 16-h photoperiod under a fluorescent daylight lamp in a culture 

room. Two weeks after transfer, plants were harvested to observe proliferation, the 

length of roots, and the monosaccharide content of the CWM. The assay was repeated 

three times to evaluate reproducibility. 

3.2.8. Statistical analysis 

   Data were analyzed using one-way analysis of variance employing the F-test with  

= 0.05 or 0.01 as the significance level. 
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3.3. Results 

3.3.1. Altered monosaccharide composition in leaf cell wall polysaccharides of 

hUGT1-transgenic plants   

   I hypothesized that the altered composition of the monosaccharides, particularly 

galactose, in the cell wall of hUGT1-transgenic plants was caused by hUGT1 

overexpression and resulted in enhanced transport of UDP-Gal to the Golgi lumen. To 

test this hypothesis, the monosaccharide composition of CWMs from pBIN19- and 

hUGT1-transgenic plants was analyzed. The CWMs were hydrolyzed with 2 M TFA and 

the released monosaccharides were fluorescently labeled with ABEE. HPLC analysis 

revealed the presence of GlcA, GalA, Gal, Man, Glc, Ara, Xyl, Rha, and a trace amount 

of Fuc, in the leaf CWMs (Fig. 3.1A and 3.1B). To compare the monosaccharide 

composition in the leaf CWMs of pBIN19- and hUGT1-transgenic plants, the relative 

proportion of each monosaccharide detected was calculated from their peak area. In all 

of the monosaccharide analyses, the Glc peak area was not excessively high, indicating 

that starch was successfully removed using -amylase. However, the low peak area of 

Glc, which is an abundant monosaccharide in cell walls, suggested that Glc was not 

completely released from the robust cellulose polymers in the CWMs using 2 M TFA.  

Comparison of the monosaccharide compositions revealed that the relative 

proportions of GlcA, GalA, and Gal in the leaf CWMs of most hUGT1-transgenic plants 

were altered compared with those of pBIN19-transgenic plants (Table 3.1). In particular, 

all hUGT1-transgenic lines exhibited significantly higher Gal proportions compared 

with the pBIN19-transgenic plants (1.20- to 2.76-fold, Table 3.1). The leaf CWMs of 

hUGT1-transgenic plants contained a decreased proportion of GlcA, but an inverse 

correlation between the decreased proportion of GlcA and the increased proportion of 

Gal was not apparent. However, the alteration of the GalA proportion might be 

associated with the increased proportion of Gal because the percentages were inversely 

correlated. Interestingly, the total percentage of GalA and Gal was limited to 76–79% 

regardless of hUGT1 expression. These results suggested that increased UDP-Gal 

transporter activity may have led to increased Gal content, as a proportion of leaf CWM 
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monosaccharides, and this influenced the GalA proportion. Therefore, further 

investigation to clarify the relationship between Gal and GalA proportions in the leaf 

CWMs was carried out. 

To clarify which cell wall polymers in the hUGT1-transgenic plants were associated 

with the increased Gal proportion, CWMs isolated from the eleventh leaves of pBIN19- 

and hUGT1-transgenic plants were subdivided into pectin, hemicellulose I, 

hemicellulose II, and cellulose fractions (Table 3.2). The Gal content in the pectin and 

hemicellulose II fractions was directly influenced by the presence of hUGT1 in the 

Golgi apparatus of hUGT1-transgenic plants. A representative HPLC trace of 

ABEE-labeled monosaccharides in each polysaccharide showed that peaks 

corresponding to GlcA, GalA, Gal, Man, Glc, Ara, Xyl, and Rha were mainly detected 

in all fractions, although faint Fuc and some small additional monosaccharide peaks 

were observed.  

In the pectin fraction, the proportions of GalA, Gal, and Rha in the 

pBIN19-transgenic control plants were consistent with those described in a previous 

report (55). The ratio of Gal to total monosaccharides in the hUGT1-transgenic plants 

was similar to or higher than that in pBIN19-transgenic control plants (Table 3.2). In 

particular, the Gal proportion of hUGT1-transgenic lines 4 and 23 was significantly 

higher (1.55- and 1.44-fold, respectively) than that of the control plants (Table 3.2). The 

pectin fraction contained homogalacturonan, rhamnogalacturonan-I (with pectic 

galactan, pectic arabinan, and type-I arabinogalactan side chains), 

rhamnogalacturonan-II, type-II arabinogalactan, and other polysaccharides. We 

previously reported that the type-II arabinogalactan bound to protein was 

hyper-galactosylated (13). My present results indicated that not only type-II 

arabinogalactan, but also other pectic fraction members containing galactose, were 

simultaneously hyper-galactosylated in the hUGT1-transgenic plants. The total 

percentage of GalA and Gal was limited to 58–60% in the pBIN19-transgenic control 

and hUGT1-transgenic plants (Table 3.2) and a similar limitation was observed in the 

leaf CWM samples (Table 3.1). 
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Fig. 3.1. HPLC traces of ABEE-labeled cell wall monosaccharides isolated from tobacco leaves and 

stems. (A) Standard monosaccharides. (B) Monosaccharides from cell wall material of 

pBIN19-transgenic control tobacco leaves. (C) Monosaccharide from cell wall material of 

pBIN19-transgenic control tobacco stems. Ara, L-arabinose; Fuc, L-fucose; Gal, D-galactose; GalA, 

D-galacturonic acid; Glc, D-glucose; GlcA, D-glucuronic acid; Man, D-mannose; Rha, L-rhamnose; and 

Xyl, D-xylose. Monosaccharaide concentrations were as follows; GlcA, 800 µM; GalA, 3200 µM; Ara, 

Fuc, Gal, Glc, Man, Rha, and Xyl, 200 µM. HPLC was performed using a Honenpak C18 column (75 

mm × 4.6 mm) at 30°C, and ABEE-labeled monosaccharides were detected using a fluorescence detector. 

The HPLC conditions were as follows: mobile phase, 0.2 M potassium borate buffer (pH 8.9)/acetonitrile 

(93:7, v:v); flow rate, 1.0 mL/min; fluorescence detection, excitation at 305 nm, and emission at 360 nm. 
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Table 3.1. Monosaccharide composition of total cell wall polymers in leaves of pBIN19- and 

hUGT1-transgenic tobacco plants  

Monosaccharide 
Mean ± standard deviation (%) 

pBIN19 hUGT1-2 hUGT1-4 hUGT1-14 hUGT1-23 

GlcA 4.87 ± 0.90 3.21 ± 0.47 b 3.17 ± 0.45 b 4.42 ± 0.31 2.89 ± 0.57 b 
GalA 71.71 ± 0.52 70.06 ± 1.74 73.81 ± 1.39 62.37 ± 2.18 b 68.10 ± 1.41 a 

Gal 4.89 ± 0.26 9.64 ± 0.38 b 5.89 ± 0.04 a 13.54 ± 0.32 b 11.77 ± 0.74 b 

Man 1.30 ± 0.17 1.33 ± 0.14 1.07 ± 0.18 1.61 ± 0.0.28 1.50 ± 0.20 

Glc 2.33 ± 0.52 2.29 ± 0.36 2.35 ± 0.52 2.30 ± 0.48 2.16 ± 0.42 

Ara 1.94 ± 0.70 2.36 ± 0.77 2.34 ± 0.60 2.43 ± 0.88 2.74 ± 0.80 

Xyl 9.14 ± 1.85 6.87± 2.33 6.94 ± 1.67 8.76 ± 2.04 6.18 ± 1.33 

Fuc tra tra tra tra tra 

Rha 3.81 ± 0.54 4.24 ± 0.46 4.42 ± 0.54 4.58 ± 0.60 4.66 ± 0.13 

aP < 0.05 and bP < 0.01. 

GlcA, D-glucuronic acid; GalA, D-galacturonic acid; Gal, D-galactose; Man, D-mannose; Glc, 

D-glucose; Ara, L-arabinose; Xyl, D-xylose; Fuc, L-fucose; and Rha, L-rhamnose. Values in parentheses

are the ratio of each monosaccharide (%) to total monosaccharides without glucose. The mean and 

standard deviation of at least three repeated analyses from three independent samples were calculated. 
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Homogalacturonan is the most abundant pectic polysaccharide, comprising ~65% of 

the pectin fraction, and a large portion of the constituent monosaccharides is GalA (56). 

On the other hand, rhamnogalacturonan-I represents 20–30% of the pectin fraction and 

is constituted of GalA, Rha, Gal, and Ara, with a notable amount of Gal contained in the 

side chains. Therefore, occupancy of the determinate cell wall space by 

homogalacturonan might have been diminished by accumulation of 

rhamnogalacturonan-I with Gal-containing side chains increased by the excess amount 

of Gal, resulting in the inverse correlation between Gal and GalA proportions in the 

pectin fraction. To clarify this possibility, the precise ratio of rhamnogalacturonan-I to 

homogalacturonan in the pectin fraction must be determined in a future study.  

In the hemicellulose I fraction, xylan and/or glucuronoxylan were indicated to be 

abundant. No significant alteration in the ratio of Gal to total monosaccharides was 

observed, although the Glc content in all of the hUGT1-transgenic lines was higher 

(Table 3.2). The origin of Glc in this fraction might be callose (-1,3-glucan), because 

no cell wall matrix polysaccharides containing Glc are extracted by 1 M NaOH.  

In the hemicellulose II fraction, the ratio of Gal to total monosaccharides was also 

increased in the hUGT1-transgenic plants, whereas the GlcA, GalA, and Xyl 

proportions slightly decreased. In particular, the Gal proportion of hUGT1-transgenic 

line 23 was two-fold higher than that of the control plants (Table 3.2). The 

hemicellulose II fraction extracted with 4 M KOH contains xyloglucan, 

galactoglucomannan, and other polysaccharides, including, at times, tightly bound 

rhamnogalacturonan-I with pectic galactan and type-I arabinogalactan side chains (57), 

which are hyper-galactosylated candidates in the hemicellulose II fraction.  

These results suggested that hUGT1 expression in the plant cells enhanced the 

transport of UDP-Gal from the cytosol to the Golgi lumen for use in the production of 

non-cellulosic polymers with increased Gal incorporation, resulting in the alteration of 

the cell wall monosaccharide composition. Furthermore, the higher proportion of Gal in 

the hUGT1-transgenic plants (Table 3.1) originated from the increased incorporation of 

Gal in the pectin and hemicellulose II fractions of leaf CWMs (Table 3.2). 
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Table 3.2. Sugar composition in the pectin, hemicellulose I, and hemicellulose II fractions of cell walls in 

leaves of pBIN19- and hUGT1-transgenic tobacco plants  

Cell wall 

component 

Monosac

charide 

Mean ± standard deviation (%) 

pBIN19 hUGT1-2 hUGT1-4 hUGT1-14 hUGT1-23 

Pectin 

 

 

 

GlcA 1.24 ± 0.54 1.32 ± 0.67 1.16 ± 0.56 1.25 ± 0.50 1.16 ± 0.39 

GalA 51.22 ± 9.80 46.40 ± 8.08 44.29 ± 3.68 49.44 ± 8.68 46.02 ± 9.81 

Gal 9.28 ± 1.74 11.95 ± 0.96 14.44 ± 2.94 b 11.20 ± 0.80 13.42 ± 1.60 a 

Man 1.84 ± 0.58 2.30 ± 0.71 2.92 ± 0.26 b 1.83 ± 0.53 2.07 ± 0.83 

Glc 4.64 ± 2.10 5.05 ± 1.06 4.72 ± 0.71 6.03 ± 4.10 6.94 ± 3.68 

Ara 7.88 ± 1.22 7.82 ± 1.50 7.92 ± 0.83 7.65 ± 1.15 10.11 ± 1.79 a 

Xyl 4.10 ± 1.69 5.65 ± 1.87 3.98 ± 1.01 3.36 ± 0.97 3.29 ± 1.69 

Rha 19.36 ± 4.49 19.50 ± 5.89 20.57 ± 4.16 19.25 ± 3.79 16.99 ± 3.69 

Hemicellulose I 

GlcA 6.90 ± 1.23 6.03 ± 0.56 7.38 ± 1.73 5.79 ± 0.58 6.42 ± 1.41 

GalA 12.50 ± 0.94 7.22 ± 0.40 8.16 ± 3.24 11.46 ± 4.14 11.26 ± 3.61 

Gal 7.80 ± 0.49 7.14 ± 0.74 8.61 ± 2.02 8.36 ± 1.31 8.72 ± 2.03 

Man 1.02 ± 0.08 1.41 ± 0.02 2.11 ± 0.97 1.41 ± 0.21 2.23 ± 1.86 

Glc 8.40 ± 0.78 17.49 ± 1.60 b 14.90 ± 1.06 b 13.13 ± 3.16 a 13.94 ± 3.79 a 

Ara 13.20 ± 0.27 8.63 ± 1.82 9.86 ± 3.95 10.12 ± 3.09 11.05 ± 3.06 

Xyl 45.84 ± 3.45 48.71 ± 6.29 44.79 ± 7.47 46.34 ± 9.77 42.62 ± 6.48 

Fuc 0.29 ± 0.07 0.07 ± 0.05 0.13 ± 0.12 0.23 ± 0.13 0.29 ± 0.20 

Rha 4.04 ±1.80 3.19 ± 1.60 4.05 ± 2.19 3.16 ± 2.41 3.49 ± 0.73 

Hemicellulose II 

GlcA 3.23 ± 0.68 1.99 ± 0.05 a 2.53 ± 0.82 2.13 ± 0.19 a 1.84 ± 0.09 b 

GalA 8.90 ± 1.77 6.47 ± 2.71 5.39 ± 1.36 a 6.28 ± 0.74 6.18 ± 1.52 

Gal 3.99 ± 0.49 5.34 ± 0.79 a 6.02 ± 1.24 b 6.25 ± 0.15 b 8.54 ± 0.30 b 

Man 1.39 ± 0.59 2.48 ± 2.15 1.86 ± 0.65 1.93 ± 0.53 2.59 ± 1.28 

Glc 24.05 ± 2.12 28.12 ± 2.04 28.49 ± 4.06 25.53 ± 2.14 27.08 ± 2.52 

Ara 8.98 ± 2.31 9.46 ± 1.41 8.32 ± 0.65 11.11 ± 1.57 10.84 ± 1.07 

Xyl 46.15 ± 3.18 43.33 ± 1.77 44.25 ± 1.69 44.11 ± 1.92 39.63 ± 1.94 b 

Fuc tra tra tra tra tra 

Rha 3.24 ± 0.63 2.71 ± 1.06 3.07 ± 0.52 2.60 ± 0.90 3.25 ± 1.06 

aP < 0.05 and bP < 0.01   

GlcA, D-glucuronic acid; GalA, D-galacturonic acid; Gal, D-galactose; Man, D-mannose; Glc, D-glucose; Ara, 

L-arabinose; Xyl, D-xylose; Fuc, L-fucose; and Rha, L-rhamnose. The percentage was calculated from the ratio of 

each monosaccharide to total monosaccharides. The mean and standard deviation of at least three repeated analysis 

from three independent samples were calculated. 
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3.3.2 Altered monosaccharide composition in stem cell wall polysaccharides of 

hUGT1-transgenic plants 

   Marked differences between leaf and stem CWMs were observed in the relative 

proportions of GalA and Xyl (Fig. 3.1B and 3.1C, Table 3.3). Compared with those in 

leaf CWMs, the proportion of GalA in stem CWMs was greatly decreased, whereas the 

proportion of Xyl was greatly increased, in both pBIN19-transgenic control and 

hUGT1-transgenic plants. These differences might be associated with the stem tissue 

composition, which contains a considerable amount of mature xylem and pith. The 

decrease in the GalA proportion was assumed to reflect the smaller proportion of 

pectic-polysaccharide-rich cells in the stem. A high amount of Xyl is derived from xylan 

in tobacco stems (58,59). Relatively unsubstituted xylans are abundant components of 

the secondary cell walls associated with the xylem (60). By contrast, little Glc was 

released from the stem CWMs because of cellulose crystallization in the secondary cell 

wall (Table 3.3). The GalA proportion in the hUGT1-transgenic plants tended to be 

reduced in comparison with that of the pBIN19-transgenic control. The proportions of 

the other monosaccharides were increased to some degree with little or no statistical 

significance (Table 3.3). The proportion of Gal in two transgenic lines (hUGT1-2 and 

-23) was significantly increased, but was not increased in two other lines (hUGT1-4 and 

-14) (Table 3.3). This difference among lines might be caused by differences in stem 

maturity during the cultivation period, because the plants of each transgenic-line were 

not completely homogeneous and showed some variation in growth rate.  

The stem CWMs were divided into four fractions, namely pectin I (CDTA-soluble), 

pectin II (Na2CO3-soluble), hemicellulose I (1 M KOH-soluble), and hemicellulose II (4 

M KOH-soluble) fractions. A marked difference in the monosaccharide composition 

between hUGT1-transgenic and pBIN19-transgenic control plants was observed in the 

pectin I fraction, which contains homogalacturonan, rhamnogalacturonan-I and -II, and 

type-II arabinogalactan (61). All hUGT1-transgenic lines showed remarkably higher Gal 

proportions compared with the pBIN19-transgenic control (Table 3.4). The Ara and Rha 

proportions in the hUGT1-transgenic lines were also higher.  

 



27 

 

 

 

 

 

Table 3.3. Monosaccharide composition of total cell wall polymers in stems of pBIN19- and 

hUGT1-transgenic tobacco plants  

Monosaccharide 
Mean ± standard deviation (%) 

pBIN19 hUGT1-2 hUGT1-4 hUGT1-14 hUGT1-23 

GlcA 7.67 ± 4.22 8.73 ± 3.56 7.65 ± 2.09 7.68 ± 3.48 9.05 ± 2.15 

GalA 48.46 ± 5.18 35.75 ± 10.68 a 38.87 ± 9.38 42.11 ± 7.76 38.33 ± 11.32 

Gal 4.68 ± 0.38 7.16 ± 1.44 b 4.12 ± 0.97 5.50 ± 1.05 6.28 ± 1.59 a 

Man 2.40 ± 0.68 3.76 ± 1.59 3.03 ± 1.14 3.10 ± 0.92 a 3.37 ± 1.49 

Glc 3.29 ± 1.15 5.58 ± 2.45 4.10 ± 2.17 4.69 ± 1.77 4.80 ± 2.56 

Ara 2.00 ± 0.46 2.34 ± 1.32 2.05 ± 0.44 2.28 ± 0.57 2.21 ± 1.41 

Xyl 29.01 ± 2.25 33.43 ± 3.08 a 32.55 ± 3.69 31.46 ± 3.20 32.50 ± 1.32 

Fuc tra tra tra tra tra 

Rha 2.50 ± 0.37 3.25 ± 0.93 2.82 ± 0.99 3.18 ± 0.85 3.46 ± 0.83 

aP < 0.05 and bP < 0.01. 

GlcA, D-glucuronic acid; GalA, D-galacturonic acid; Gal, D-galactose; Man, D-mannose; Glc, 

D-glucose; Ara, L-arabinose; Xyl, D-xylose; Fuc, L-fucose; and Rha, L-rhamnose. Values in parentheses 

are the ratio of each monosaccharide (%) to total monosaccharides without glucose. The mean and 

standard deviation of at least three repeated analyses from three independent samples were calculated. 
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These results suggested that an increased ratio of rhamnogalacturonan-I to 

homogalacturonan occurred in the hUGT1-transgenic plants.    

In the pectin II fraction, compared with the pBIN19-transgenic control, the Ara 

proportion in hUGT1-transgenic lines was significantly lower, whereas the proportion of 

Xyl was higher. The richest monosaccharide was GalA, but considerable proportions of 

Gal, Ara, Xyl, and Rha were also observed, suggesting that this fraction contains 

homogalacturonan, rhamnogalacturonan-I, and xylogalacturonan, which seem to form a 

covalent linkage in each other (62,63). However, given that xylogalacturonan has not 

been identified previously in tobacco pectic-fraction components, the high Xyl 

proportion may be derived from xylan incorporated in homogalacturonan, which is 

abundant in the tobacco stem. Although xylan is isolated with the hemicellulose I 

fraction, some research suggests that syntheses of pectic polysaccharides and xylan are 

connected via a covalent linkage of the polymers or via synthesis in biosynthetic 

complexes (56).  

In the hemicellulose I fraction, xylan and/or glucuronoxylan were indicated to 

predominate. The Gal proportion was not increased as in the leaf CWM. In the 

hUGT1-transgenic lines, Man proportions were slightly increased. A significant 

difference in Glc proportion between the pBIN19-transgenic control and the 

hUGT1-transgenic plants was observed, but because the proportion for line 4 was higher 

and those of the other lines were lower than that of the control, the variation in Glc 

proportion among the plant lines might be the result of a technical error during 

fractionation.  

The proportions of most monosaccharides in the hemicellulose II fraction were 

altered. The hUGT1-transgenic lines showed a significant increase in Gal proportion. As 

in the leaf analysis, the Gal proportion in the hUGT1-transgenic lines 2 and 14 was 

twice that of the pBIN19-transgenic lines. Potential polysaccharide candidates 

containing Gal extracted in this fraction are xyloglucan and galactoglucomannan (64). 

Furthermore, the proportions of GlcA and Rha increased, whereas those of Man and Glc 

decreased. The decrease in the proportion of Man and Glc was suggestive of a decrease 

in glucomannan, which is the major hemicellulosic component of secondary cell walls.     



29 

 

Galactoglucomannan might be excluded as a candidate Gal acceptor in the 

hemicellulose II fraction, because galactoglucomannan and glucomannan have the same 

backbone structure (5). 

 

3.3.3. OLIMP   

   In the cell wall monosaccharide analysis, the components of the pectin I and 

hemicellulose II fractions were candidates for hyper-galactosylation. Xyloglucan is a 

cell wall matrix polysaccharide involved in cross-linking adjacent cellulose microfibrils 

by hydrogen bonds, and was extracted in the hemicellulose II fraction by 4 M KOH. 

Xyloglucan comprises a backbone of (1→4)--D-Glcp residues substituted at O-6 with 

side chains of -D-Xylp. In dicotyledonous plants, such as tamarind and Arabidopsis, 

xyloglucan contains -L-Fucp-(1→2)--D-Galp attached to the O-2 of some -D-Xylp 

residues, but in tobacco xyloglucan usually contains side chains of -D-Xylp and 

-L-Araf-(1→2)--D-Xylp, forming arabinoxyloglucan, instead of 

-L-Fucf-(1→2)--D-Galp (65). To assist with the description of xyloglucan structures, 

Fry et al. (66) developed an unambiguous nomenclature based on a one letter code 

according to substituents as follows: G, unsubstituted -D-Glcp; X, -D-Xylp-(1

→)--D-Glcp; S,X with -L-Araf-(1→2)-attached; L, X with -D-Galp (1→2)-attached. 

Therefore, tobacco xyloglucan usually includes few Gal residues. However, Sims et al. 

(67) analyzed a xyloglucan secreted from suspension-cultured cells of Nicotiana 

plumbaginifolia using xyloglucan-specific enzyme digestion followed by a mass 

spectrometric analysis, and detected the possible presence of Gal residues in the 

xyloglucan. Truelsen et al. (68) observed the presence of Gal in xyloglucan from the 

suspension-cultured cells and medium of N. tabacum. Thus, even though there is a 

possibility that the high proportion of Gal in the hemicellulose II fraction was from a 

hyper-galactosylated galactoglucomannan (64), I analyzed whether the xyloglucan of 

hUGT1-trangenic plants exhibited addition of Gal residues. The hemicellulose II 

fraction was digested with a xyloglucan-specific enzyme (xyloglucanase E-XEGP; 69) 

and released xyloglucan fragments were analyzed using MALDI-TOF-QIT-MS. 
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Table 3.4. Sugar composition in the pectin I, pectin II, hemicellulose I, and hemicellulose II fractions of 

cell walls in stems of pBIN19- and hUGT1-transgenic tobacco plants.  

Cell wall 

component 

Monosac

charide 

Mean ± standard deviation (%) 

pBIN19 hUGT1-2 hUGT1-4 hUGT1-14 hUGT1-23 

Pectin I 

GalA 69.80 ± 6.25 36.06 ± 3.93 b 45.68 ± 4.84 b 44.70 ± 3.93 b 42.56 ± 5.21 b 

Gal 13.94 ± 3.14 37.72 ± 1.49 b 29.64 ± 4.15 b 30.85 ± 2.25 b 32.09 ± 4.20 b 

Ara 9.71 ± 2.48 15.75 ± 1.16 b 17.33 ± 1.64 b 13.49 ± 1.06 a 14.66 ± 2.32 b 

Rha 6.55 ± 0.98 10.48 ± 4.71 7.34 ± 0.88 10.96 ± 0.68 a 10.70 ± 1.06 a 

Pectin II 

GalA 38.42 ± 9.11 42.5 ± 2.95 35.56 ± 4.72 40.52 ± 2.24 35.27 ± 5.07 

Gal 24.04 ± 2.15 21.59 ± 1.63 22.29 ± 2.69 19.69 ± 0.56 23.79 ± 2.47 

Ara 14.11 ± 2.45 7.53 ± 0.45 b 11.56 ± 0.29 a 8.16 ± 0.22 b 8.7 ± 0.65 b 

Xyl 14.71 ± 2.08 23.04 ± 1.55 b 21.68 ± 0.92 b 26.3 ± 0.84 b 23.89 ± 1.90 b 

Rha 8.73 ± 2.54 5.34 ± 2.01 a 8.91 ± 1.37 5.32 ± 1.41 a 8.35 ± 0.35 

Hemicellulose I 

GlcA 14.83 ± 5.03 16.54 ± 3.07 15.00 ± 1.33 16.36 ± 1.03 14.63 ± 0.53 

Gal 0.92 ± 0.04 0.75 ± 0.14 1.20 ± 0.24 0.96 ± 0.05 0.98 ± 0.27 

Man 1.34 ± 0.10 2.24 ± 0.48 b 1.90 ± 0.20 a 2.01 ± 0.18 a 1.30 ± 0.48 

Glc 5.48 ± 0.68 3.02 ± 0.53 b 6.59 ± 0.55 a 3.55 ± 0.45 b 3.90 ± 0.31 b 

Ara tra 1.06 ± 0.15 tra 0.58 ± 0.36 tra 

Xyl 77.43 ± 4.26 76.37 ± 3.91 75.31 ± 1.73 75.04 ± 1.25 79.21 ± 0.55 

Hemicellulose II 

GlcA 8.91 ± 5.15 13.23 ± 0.50 9.98 ± 2.90 11.51 ± 0.57 11.55 ± 1.18 

Gal 10.66 ± 0.80 21.23 ± 0.32 b 12.25 ± 0.37 b 19.13 ± 0.84 b 10.28 ± 0.33 

Man 14.45 ± 0.89 6.53 ± 0.55 b 13.17 ± 2.55 7.23 ± 0.61 b 6.56 ± 1.50 b 

Glc 11.27 ± 7.27 3.76 ± 0.08 a 7.08 ± 1.53 4.89 ± 0.44 a 4.59 ± 0.87 a 

Ara 7.62 ± 0.16 7.43 ± 0.03 6.64 ± 0.20 b 8.33 ± 0.23 b 4.82 ± 0.09 b 

Xyl 45.7 ± 3.58 41.62 ± 0.21 45.91 ± 3.06 43.74 ± 3.13 58.36 ± 3.25 b 

Rha 3.93 ± 1.34 5.77 ± 0.13 4.98 ± 1.20 5.18 ± 1.62 3.83 ± 1.20 

aP < 0.05, bP < 0.01 

GlcA, D-glucuronic acid; GalA, D-galacturonic acid; Gal, D-galactose; Man, D-mannose; Glc, D-glucose; Ara, 

L-arabinose; Xyl, D-xylose; and Rha, L-rhamnose. The percentage was calculated from the ratio of each 

monosaccharide to total monosaccharides. The mean and standard deviation of at least three repeated analysis from 

three independent samples were calculated. 
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Tamarind xyloglucan was used as a standard. The tamarind xyloglucan digest 

showed a simple mass profile with peaks at 1085, 1247, and 1409 (m/z) corresponding 

to Hex4Pent3 (meaning 4 hexose and 3 pentose, XXXG), Hex5Pent3 (XLXG/XXLG), 

and Hex6Pent3 (XLLG), respectively (Fig. 3.2A), as reported previously (69). However, 

the peak at 1085 (m/z) was small, and additional peaks at 953 and 1115 (m/z) 

corresponding to Hex4Pent2 (XXGG/GXXG) and Hex5Pent2 

(GLXG/XLGG/GXLG/XGLG), respectively, were also detected.  These results may be 

attributable to the MALDI-TOF-QIT-MS detection properties. This instrument equips a 

reflectron with a long flight path and an ion trap. Monosaccharides with comparably 

weaker linkages in oligosaccharides are partially lost by fragmentation during the long 

flight and ion trapping prior to the reflectron analyzer, so called “in-source decay” (70).  

Consequently, it is likely that the additional peaks at 953 and 1115 (m/z) were derived 

from partial xylose-desorption from xyloglucan oligosaccharides corresponding to 1085 

and 1247 (m/z), respectively, because each of the former m/z values were determined 

after subtracting 132 corresponding to anhydroxylose from each of the latter m/z values. 

Indeed, post-source decay (PSD) fragmentation analysis of xyloglucan oligosaccharides 

by MALDI-TOF-MS, which provides sequential information as glycosidic linkage 

cleaving, demonstrated that Hex5Pent2 GXLG and XGLG were possible 

xylose-deficient oligosaccharides derived from Hex5Pent3 XXLG (71). Therefore, the 

additional peaks at 953 and 1115 (m/z) must have represented XXGG/GXXG and 

GLXG/XLGG/GXLG/XGLG, respectively.  

The mass profile from the digested hemicellulose II fraction of tobacco leaves 

differed from that of tamarind. Given that the main peaks of the digested 

oligosaccharides in the mass profile were 923, 953, 1085, 1115, 1217, 1247, 1380, and 

1409 (m/z), which were similar to those of N. plumbaginifolia (67), the mass profile of 

N. tabacum was comparable to that of N. plumbaginifolia (Fig. 3.2B and 3.2C). These 

selected peaks corresponded to xyloglucan oligosaccharides without O-acetylation. In 

addition to the selected peaks, many other peaks were detected, of which some were 

higher than those of the selected peaks. Similar mass profiles have been reported in a 

previous OLIMP analysis of tobacco xyloglucan oligosaccharides digested with the 

same xyloglucan-specific enzyme, E-XEGP (55). Since m/z values of some peaks, for 
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example 834 and 997 (m/z) whose heights were larger than most of the selected peaks, 

were near to those of O-acetylated xyloglucan oligosaccharides of N. plumbaginifolia, 

these peaks might represent O-acetylated oligosaccharides. However, in the present 

hemicellulose II extraction, the polysaccharides were deacetylated by 4 M KOH; 

therefore, these peaks cannot be O-acetylated oligosaccharides. Alternatively, some of 

these additional peaks might derive from desorption of xyloglucan oligosaccharides by 

“in-source decay”, which is one of the properties of MALDI-TOF-QIT-MS as described 

above. Although such additional peaks should be included in an analysis, they were not 

considered here to avoid confusion. Therefore, my present analysis only targeted 

non-O-acetylated peaks because my purpose was to estimate hyper-galactosylation of 

selected peaks that had already been identified.  

In particular, a large peak at 1380 m/z, corresponding to SSGGG, appeared in the 

digest of N. tabacum, which was rarely seen in the digest of tamarind (Fig. 3.2A, 3.2B, 

and 3.2C).  On the basis of the mass profile of N. plumbaginifolia, the peaks at 1247 

(m/z) seemed to represent SXGGG/XSGGG or XLXG/XXLG and the peak at 1409 

(m/z) seemed to represent XLLG, which contain Gal. The peak at 1115 m/z seemed to 

be Hex5Pent2, representing XXGGG, but it might also represent XLGG, which was not 

detected in N. plumbaginifolia. While the peaks at 1115, 1247, and 1409 (m/z) were 

detected in both pBIN19- and hUGT1-transgenic plants, these ion intensities (% area) of 

the hUGT1-transgenic lines were high compared with those of the pBIN19-transgenic 

control line (Fig. 3.2B and 3.2C, Table 3.5). Although MALDI-TOF-MS is used more 

frequently for qualitative analysis of molecules than quantitative estimations, the ion 

intensity (% area) is correlated to the abundance of the oligosaccharides (72). This 

OLIMP result suggested that the xyloglucan of hUGT1-transgenic plants was 

hyper-galactosylated. A more detailed analysis of the XLLG peak using MS/MS is 

currently underway.  

I hypothesized that enhanced UDP-Gal transport to the Golgi apparatus by hUGT1 

contributes to averting the toxicity of Gal contained in the culture medium, resulting in 

increased tolerance to Gal. 
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Fig. 3.2. OLIMP analysis of pBIN- and hUGT1-transgenic tobacco xyloglucan. Xyloglucan contained in 

the hemicellulose II fraction isolated from leaves was digested with E-XEGP, and the released 

oligosaccharides were analyzed using MALDI-TOF-QIT-MS. (A) Mass profile of tamarind xyloglucan as 

an enzyme digestion standard. (B) Mass profile of pBIN19-transgenic tobacco plants as a control. (C) 

Mass profile of hUGT1-transgenic tobacco plant line 23. Numbers indicate the m/z values of each peak. 

Numbers on the left side of the y-axis indicate percentage of mass peaks.  
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Table 3.5. Comparison of ion intensity (% area) of oligosaccharides obtained from the leaf hemicellulose II 

fraction of pBIN19- and hUGT1-transformed tobacco plants 

 Transgenic line   Oligosaccharide    

Pseudomolecular ion [MþNa]+(m/z) 923 953 1085 1115 1217 1247 1380 1409 

Composition  Hex3Pent3 Hex4Pent2 Hex4Pent3 Hex5Pent2 Hex4Pent4 Hex5Pent3 Hex5Pent4 Hex6Pent3 

Glycosyl structure  SXG XXGG SXGG XXGGG SSGG SXGGG SSGGG XLLG 

  XSG  XSGG GLXG  XSGGG   

     XLGG  XLXG   

     GXLG  XXLG   

     XGLG     

          

Ion intensity (% area) pBIN19 8.97 12.73 22.54 13.67 30.6 39.44 100 17.78 

 hUGT1-2 12.94 13.04 23.12 20.31 30.65 55 100 64.22 

 hUGT1-4 15.11 20.26 30.08 33.59 25.31 53.33 100 63.96 

 hUGT1-14 27.58 26.96 44.75 35.17 33.6 57.55 100 55.74 

 hUGT1-23 9.94 14.23 22.54 24.2 22.07 46.17 100 70.81 

 

Leaf hemicellulose II fractions were digested with E-XEG, and released oligosaccharides were analyzed with 

MALDI-TOF-QIT-MS. An unambiguous nomenclature with the letters: G, unsubstituted b-D-Glcp; X, 

a-D-Xylp-(1/6)-b-D-Glcp; S, X with a-L-Araf-(1 /2)-attached and L, X with b-D-Galp (1/2)-attached. Hex, hexose; Pent, 

pentose. 
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   To examine whether the hUGT1-transgenic plants exhibited increased Gal tolerance, 

the hUGT1- and pBIN19-transgenic plants were cultured on MS medium containing 0 

to 0.6% Gal. Figure 3 shows representative results from one of the Gal tolerance assays. 

Similar results were obtained in the other two tests (data not shown). The influence of 

Gal on pBIN19-transgenic plants was apparent at 0.2% Gal. The growth of aerial parts 

was weakly suppressed at 0.3% Gal (Fig. 3.3A), strongly suppressed at 0.4% Gal, and 

completely inhibited at Gal concentrations of 0.5% or higher (data not shown). Roots 

were more sensitive to Gal. At 0.2% Gal, the root tips of pBIN19-transgenic plants 

turned brown and root elongation was suppressed by ~50%. The suppression of root 

elongation was completely inhibited at 0.4% Gal (Fig. 3.3B). However, the 

hUGT1-transgenic plants were tolerant to Gal. The aerial parts were not suppressed at 

0.3% Gal (Fig. 3.3A), weakly suppressed at 0.4% Gal, strongly suppressed at 0.5% Gal, 

and almost entirely inhibited at 0.6% Gal (data not shown), and displayed the same 

responses as those of pBIN19-transgenic plants grown at each 0.1%-low level of the 

Gal concentrations. The roots also showed increased Gal tolerance but root elongation 

was largely inhibited at 0.5% Gal (Fig. 3.3B). Moreover, when hUGT1-transgenic 

plants grew at 0.3% Gal, their root lengths resembled those of pBIN19-transgenic plants 

grown at 0.2%, while hUGT1-transgenics at 0.4% resembled pBIN19-trangenics grown 

at 0.3% Gal (Fig. 3.3B). I hypothesized that the Gal tolerance of hUGT1-transgenic 

plants was caused by enhanced UDP-Gal Golgi transport activity. To determine whether 

Gal in the culture medium was transported to the Golgi apparatus as a substrate for 

Gal-containing cell wall matrix polysaccharide, CWMs from leaves of plants cultured 

on Gal-containing media were isolated to measure the relative proportion of 

monosaccharides. On medium lacking Gal, the monosaccharide compositions of the 

transgenic plants were similar to those of the leaves of plants grown in soil (Table 3.6). 

However, the relative proportions of each monosaccharide in the in vitro cultured plants 

were different from those of the soil-grown plants. In the in vitro cultured plants, the 

proportions of Gal and Ara were higher, whereas those of GlcA and Xyl were lower, 

compared with those of soil-grown plants. The proportions of Gal in the CWMs of the 

hUGT1-transgenic plant lines cultured on 0% Gal medium were higher than those of the 

pBIN19-transgenic control, as observed for plants grown in soil. 
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Fig. 3.3. Galactose (Gal) tolerance of pBIN- and hUGT1-transgenic tobacco plants. (A) Seedlings grown 

on Murashige and Skoog solid medium containing 0.3% D-Gal. White scale bars: 1 cm. (B) Root length 

of pBIN- and hUGT1-transgenic plants grown on Murashige and Skoog solid medium supplemented with 

various concentrations of Gal. The error bar represents the standard deviation. pBIN, pBIN19-transgenic 

control plants; UGT2, -4, -14 and -23, hUGT1-transgenic lines. Statistical significance: *, P<0.05; **, 

P<0.01. 
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Table 3.6. Monosaccharide composition of total cell wall polymers in pBIN19- and hUGT1-transgenic 

tobacco plants cultured in the presence of 0, 0.2, and 0.3% galactose 

Gal 

concentration 
Monosaccharide 

Mean ± standard deviation (%) 

pBIN19 hUGT1-2 hUGT1-4 hUGT1-14 hUGT1-23 

0% GlcA 1.79 ± 0.26 1.65 ± 0.25 1.57 ± 0.17 1.41 ± 0.24 1.44 ± 0.20 

GalA 75.98 ± 4.45 71.09 ± 2.06 71.59 ± 3.63 73.03 ± 3.02 71.55 ± 2.05 

Gal 7.64 ± 1.74 11.07 ± 1.44 a 11.15 ± 1.60 a 9.52 ± 1.46 9.62 ± 1.13 

Man 1.04 ± 0.20 1.46 ± 0.30 a 1.28 ± 0.21 1.26 ± 0.22 1.23 ± 0.15 

Glc 1.98 ± 0.45 2.41 ± 0.45 2.61 ± 1.18 2.53 ± 0.33 4.06 ± 0.47 b 

Ara 3.23 ± 0.55 3.53 ± 0.24 3.74 ± 0.23 3.47 ± 0.30 3.59 ± 0.38 

Xyl 4.96 ± 0.30 4.06 ± 1.11 4.33 ± 0.76 4.38 ± 0.48 3.59 ± 0.38 

Rha 3.39 ± 1.00 4.73 ± 1.16 3.73 ± 0.99 4.40 ± 1.13 4.21 ± 0.87 

0.2% 

GlcA 1.19 ± 0.13 1.34 ± 0.20 1.52 ± 0.14 a 1.38 ± 0.02 1.59 ± 0.19 b 

GalA 76.88 ± 3.89 72.75 ± 2.25 69.61 ± 2.91 a 74.11 ± 4.09 70.56 ± 2.77 a 

Gal 8.14 ± 1.41 10.53 ± 1.33 a 11.69 ± 1.15 b 8.72 ± 1.27 9.92 ± 1.01 

Man 1.09 ± 0.21 1.33 ± 0.19 1.40 ± 0.13 1.21 ± 0.20 1.46 ± 0.22 

Glc 2.04 ± 0.54 2.31 ± 0.38 2.41 ± 0.26 1.92 ± 0.28 2.81 ± 0.75 

Ara 3.29 ± 0.55 3.50 ± 0.08 3.85 ± 0.45 3.74 ± 0.56 4.02 ± 0.38 

Xyl 3.82 ± 0.41 3.71 ± 0.69 4.89 ± 1.03 4.91 ± 0.61 4.80 ± 0.41 

Rha 3.55 ± 0.93 4.54 ± 0.86 4.63 ± 0.75 4.01 ± 1.16 4.84 ± 0.97 

0.3% 

GlcA 1.15 ± 0.07 1.44 ± 0.44 1.47 ± 0.61 1.75 ± 0.57 1.59 ± 0.39 

GalA 78.20 ± 1.25 75.52 ± 5.26 72.38 ± 5.14 69.90 ± 3.88 a 69.44 ± 3.39 a 

Gal 8.23 ± 0.17 10.55 ± 1.93 10.41 ± 2.10 11.61 ± 1.70 a 10.28 ± 0.33 a 

Man 0.96 ± 0.04 1.34 ± 0.30 1.39 ± 0.35 1.54 ± 0.34 a 1.58 ± 0.28 a 

Glc 1.53 ± 0.01 2.08 ± 0.45 2.37 ± 0.58 a 2.19 ± 0.53 2.36 ± 0.33 a 

Ara 2.99 ± 0.22 3.54 ± 0.53 3.41 ± 0.57 3.72 ± 0.28 3.82 ± 0.35 a 

Xyl 3.92 ± 0.36 4.59 ± 0.37 4.57 ± 0.30 4.48 ± 0.68 4.75 ± 0.31 a 

Rha 3.02 ± 0.49 3.94 ± 1.56 3.99 ± 0.96 4.81 ± 1.02 4.30 ± 0.73 

aP < 0.05, bP < 0.01 

GlcA, D-glucuronic acid; GalA, D-galacturonic acid; Gal, D-galactose; Man, D-mannose; Glc, D-glucose; Ara, 

L-arabinose; Xyl, D-xylose; and Rha, L-rhamnose. The percentage was calculated from the ratio of each 

monosaccharide to total monosaccharides. The mean and standard deviation of at least three repeated analysis from 

three independent samples were calculated. 
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However, the relative Gal proportions in hUGT1- and pBIN19-transgenic plants did 

not vary among the 0%, 0.2%, and 0.3% Gal-containing media. The increased Gal 

proportion in the hUGT1-transgenic plants was consistent at the three Gal 

concentrations. These results suggested that the increased Gal tolerance of 

hUGT1-transgenic plants was caused by increased UDP-Gal transport activities. 

However, hUGT1 activity seemed not to increase with increasing Gal concentrations in 

the culture medium. 
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3.4. Discussion 

Nucleotide sugars in the Golgi apparatus are used as substrates in the production of 

complex sugar chains on glycoproteins. In addition, in plant cells, nucleotide sugars are 

also used as substrates in the production of non-cellulosic polymers, such as 

hemicellulosic and pectic polysaccharides. Therefore, the NSTs located in the 

membrane of the Golgi apparatus are indispensable for the transport of specific 

nucleotide sugars from the cytosol to the Golgi lumen, where they are used to produce 

carbohydrates that become components of the plant cell walls. An UDP-Glc transporter 

functions to supply UDP-glucose as a partner of the glucosyltransferase responsible for 

the incorporation of Glc into Glc-containing polysaccharides, which indicates the 

possible role of NSTs in polysaccharide biosynthesis in plant cells (76). However, 

although recent studies have revealed the functions of plant NSTs (31,33–35,77–80), 

few important details about the relationship between the transport of nucleotide sugars 

and the production of cell wall polymers were discerned.  

   Khalil et al., introduced the human UDP-Gal transporter hUGT1, for which the 

function is well characterized among previously reported UDP-Gal transporters, into 

tobacco plant cells (13). I examined whether excessive transport of UDP-Gal affects the 

monosaccharide composition of non-cellulosic cell wall polymers. The results clearly 

indicated that overexpression of hUGT1 caused hyper-galactosylation of CWMs in the 

hUGT1-transgenic tobacco plants (Tables 3.1 and 3.3). The increase in the relative Gal 

proportion in leaf and stem CWMs (the highest increases were 2.76- and 1.55-fold, 

respectively) suggested that the enhanced UDP-Gal transporter activity was enough to 

“hyper-galactosylate” plant cell walls. The hyper-galactosylated polysaccharides were 

the pectin and hemicellulose II fractions in the leaves (Table 3.2), and pectin I and 

hemicellulose II fractions in the stems. Pectic polysaccharides usually consist of 

homogalacturonan, and rhamnogalacturonan-I and -II, which are rich in GalA. Other 

major monosaccharides present in pectic polysaccharides are Rha, Gal, and Ara (40). 

Although Gal was not the only elevated monosaccharide, the relative Gal proportion in 

the pectin fraction was increased. It is presumed that Gal is mainly incorporated in 

pectic galactan and the type-I arabinogalactan side chains as a component of 
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rhamnogalacturonan-I, which are the most likely Gal acceptors. However, because the 

stem pectin II fraction, which showed a high proportion of Gal, was indicated to contain 

rhamnogalacturonan-I, determination of the acceptors of excessive Gal is required in 

future work. Rhamnogalacturonan-II is also a potential candidate Gal acceptor. 

However, considering the low Gal allocation in its considerably conserved structure and 

the lower proportion in pectin (~10%; 56), additional Gal acceptance seemed to be 

limited. By contrast, type-II arabinogalactan is likely to have been hyper-galactosylated 

because an increased Gal proportion in the sugar moiety of the arabinogalactan protein 

was demonstrated in our previous report (13).  

A similar hyper-galactosylation was observed in the hemicellulose II fraction, which 

contains xyloglucan and galactoglucomannan. In contrast to that in Arabidopsis and 

tamarind, tobacco xyloglucan usually contains Glc and Xyl as the main structural 

materials, and Ara instead of Gal and Fuc, giving it the name arabinoxyloglucan (65). 

Therefore, additional Gal incorporation in the hemicellulose II fraction might be limited 

to only galactoglucomannan. Alternatively, being a pectic polysaccharide, 

rhamnogalacturonan-I, which tightly binds to hemicellulosic components (57), may be a 

Gal-acceptor polysaccharide in the hemicellulose II fraction. However, Truelsen et al. 

(68) indicated the possible presence of Gal in the xyloglucan of N. tabacum. The mass 

detection of xyloglucan oligosaccharides released by xyloglucan-specific enzyme 

digestion strongly suggests the presence of Gal in the xyloglucan of N. plumbaginifolia 

(68) and N. tabacum (55). I performed a xyloglucan oligosaccharide analysis of 

hUGT1-transgenic plants digested by xyloglucan-specific enzymes using 

MALDI-TOF-MS (53). The OLIMP analysis revealed a mass peak at 1115, 1247, and 

1409 (m/z), the possible Gal-containing xyloglucan fragments 

GLXG/XLGG/GXLG/XGLG, XLXG/XXLG, and XLLG, respectively, which were 

released from the hemicellulose II fraction of tobacco leaves (Fig. 3.2A and B, Table 

3.5). When the highest peak area of xyloglucan at 1380 m/z, corresponding to SSGGG, 

was used as a peak standard, the peak areas at 1115, 1247, and 1409 (m/z) in the 

hUGT1-transgenic plant lines increased compared with those of the pBIN19-transgenic 

control (Fig. 3.2C, Table 3.5). This result suggested that xyloglucan is an acceptor of 

Gal in the hemicellulose II fraction. It is interesting that the intrinsically low 
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Gal-containing tobacco xyloglucan is hyper-galactosylated by excess UDP-Gal in the 

Golgi lumen. Gal residues of xyloglucan function in the maintenance of the mechanical 

strength of primary cell walls (22). An increased Gal content in xyloglucan might 

increase the tensile strength of the cell wall. Tests to determine whether the 

hUGT1-transgenic plants show altered strength are in progress.  

The hUGT1-transgenic plants exhibited increased Gal tolerance. Increased Gal 

tolerance in transgenic plants has been reported previously. Overexpression of 

UDP-glucose epimerase (UGE) in potato induces strong Gal tolerance (46). 

Overexpression of galactosyltransferase (GalT) in Arabidopsis also confers remarkable 

Gal tolerance (47). However, because Gal tolerance conferred by a UDP-Gal transporter 

gene has not been reported previously, the present study is the first report that enhanced 

UDP-Gal transport activity in the Golgi apparatus may increase Gal-tolerance capability. 

The enhanced stream of Gal from the cytosol to the cell wall via the Golgi apparatus 

contributes to increased Gal tolerance. This result also demonstrates the enhanced 

Gal-transport activity in hUGT1-transgenic tobacco plants. At toxic concentrations Gal 

inhibits plant cell proliferation. However, increased Gal content in the CWMs of 

hUGT1-transgenic tobacco plants under high Gal concentrations was observed, which 

resulted in growth suppression in control plants. At 0.2%, 0.3%, and 0.4% Gal, the 

growth of aerial parts and roots of hUGT1-transgenic plants was almost identical to that 

of pBIN19-transgenic plants grown at each 0.1%-low concentration of Gal, thus the 

increased Gal tolerance appeared to result from the additional UDP-Gal transport 

activity caused by hUGT1 expression. To enhance Gal tolerance, supplementary activity 

of UDP-Gal pyrophosphorylase (also known as UDP-glucose:galactose-1-phosphate 

uridyltransferase), which is responsible for the conversion of Gal-1-phosphate to 

UDP-Gal, might also be required (81). Joersbo et al. (2003) reported that 

Gal-1-phosphate toxicity could be eliminated by expression of E. coli UDP-Gal 

pyrophosphorylase in potato (82). 

Enhanced Gal transport to the Golgi apparatus by hUGT1 expression gave rise not 

only to increased content of Gal in Gal-containing polysaccharides, but also to a 

dynamic change in cell wall polymer composition. The significant decrease in GalA 
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proportion in the pectin fraction suggested that an increased ratio of 

rhamnogalacturonan-I to homogalacturonan (Tables 3.1–3.4); the tobacco-specific 

arabinoxyloglucan, which usually lacks Gal, was also hyper-galactosylated (Table 3.5), 

and increased callose biosynthesis was hypothesized. Although callose is not a cell wall 

matrix polysaccharide, this polymer can be extracted by 1 M NaOH (83) and its 

presence in tobacco leaves has been demonstrated by anti-callose antibody staining (55). 

However, the reason why callose deposition was increased in the hUGT1-transgenic 

plants is unknown. There are many examples of callose synthesis in response to injury, 

cold, heavy metals accumulation, and attack by various pathogens. If, in the 

hUGT1-transgenic plants, the hyper-galactosylation of cell wall matrix polysaccharides 

mimics some stress conditions (84), it is likely that increased callose deposition arises, 

resulting in the increased proportion of Glc in the hemicellulose I fraction. Elucidation 

of the relationship between callose deposition and galactosylation level of cell wall 

matrix polysaccharides is required in the future. These phenomena may suggest 

plasticity in cell wall biosynthesis. 

 Other studies have reported an increased Gal content in the cell walls of transgenic 

plants (46). Among the Gal-containing polysaccharides in the cell wall, some serve not 

only architectural functions but also show signal transduction activities (40). 

Oligosaccharides derived from xyloglucan show biological activities, such as the 

inhibition of 2,4-D-stimulated growth (41) or promotion of growth (42). 

Oligosaccharides derived from galactoglucomannan, one of the hemicellulosic polymers, 

also show an inhibitive effect on 2-4-D-induced cell elongation (43), cause an increase 

in cell population density, and alter the protoxylem/metaxylem tracheary element ratio 

(44). Thus, changes in Gal-containing cell wall polysaccharides might have a strong 

impact on plant growth and development. These results may indicate a novel plant 

modification strategy that may be useful for crop improvement in the future. 

In conclusion, I demonstrated that hUGT1 expression in tobacco plants caused 

hyper-galactosylation of cell wall matrix polysaccharides, dynamic changes in cell wall 

polymer composition, and increased Gal tolerance. To understand the relationship 

among Gal content in cell wall matrix polysaccharides, cell wall dynamics and the plant 
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phenotype,establishment of a regulatable modification method for hyper-galactosylation 

of cell wall components by combinatorial expression of the genes for exogenous 

UDP-galactose epimerase, hUGT1, and galactosyltransferase is currently in progress.  
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Chapter 4. Expression of the human UDP-galactose transporter gene 

hUGT1 in tobacco plants enhanced plant hardness 

 

4.1. Introduction 

The cell wall is the principal structural element responsible for plant forms. The 

deposition and modification of cell wall materials play essential roles not only in plant 

growth, development and support but also in plant responses to environmental and 

pathogen-induced stresses (26). Most photosynthetically fixed carbon is incorporated 

into polymers that construct plant cell walls, which are the most abundant renewable 

resource on earth. Furthermore, cell wall materials are vital dietary components for 

animals, including humans, because they are sources of nutrients. Additionally, they are 

of practical importance for humans as sources of natural fibers for textiles and paper 

products. Thus, the increased production of cell wall polymers in a plant body has the 

advantages of reducing CO2 emissions, as well as accumulating a renewable resource 

that can be used for food and industrial purposes.  

Plants have two types of cell walls. Primary cell walls are synthesized during cell 

growth and consist mainly of polysaccharides that can be broadly classified as cellulose, 

cellulose-binding hemicelluloses and pectins. The primary cell walls provide 

mechanical stability with sufficient extensibility to permit cell expansion during cell 

growth. Cellulose is synthesized at the plasma membrane in the form of paracrystalline 

microfibrils, whereas hemicelluloses and pectins are synthesized within Golgi cisternae 

as matrix polysaccharides (27,15). Secondary cell walls, which are composed of 

cellulose, hemicellulose and lignin, are deposited between the primary cell wall and the 

plasma membrane at specialized cell types, such as xylem elements and sclerenchyma 

cells. They are produced after the cessation of cell growth and confer mechanical 

stability to the plant body, so it can stand against gravitational forces (27).  

In plant cells, as in animal cells, glycoproteins and glycolipids are synthesized in the 

Golgi apparatus. In addition, cell wall matrix polysaccharides, such as hemicellulose 
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and pectin, are biosynthesized in the Golgi apparatus (27,15). To produce the matrix 

polysaccharides, glycosyltransferases carry out sequential additions of sugar residues in 

the Golgi apparatus (28). To biosynthesize matrix polysaccharides, nucleotide sugar 

transporters (NSTs) are indispensable for the translocation of substrates into the lumen 

of the Golgi apparatus and act as partners of the glycosyltransferases (14). Genes that 

encode proteins in the NST family have been isolated from animal, plant and yeast cells 

(29). UDP-galactose transporters are NST family members and are involved in the 

transport of UDP-galactose into the Golgi lumen (29). UDP-galactose transporters have 

been described in humans, rodents, Drosophila, Caenorhabditis elegans, Entamoeba, 

Giardia, Leishmania, yeast (30), Arabidopsis (12) and rice (Oryza sativa) (31). 

Consequently, as in animal cells, plant NSTs must play crucial roles in the import of 

nucleotide sugars into the Golgi apparatus. The Arabidopsis 

UDP-galactose/UDP-glucose transporters AtUTr1 (32), AtUTr2 (33), AtUDP-GalT1, 

AtUDP-GalT2 (34) and AtNST-KT1 (35) have been identified. Furthermore, three 

UDP-galactose transporters, OsUGT1, 2 and 3, have been isolated from rice (31).  

Khalil et al., previously reported on the characteristics of tobacco plants transformed 

with the human UDP-galactose transporter 1 gene (hUGT1; 38), designated 

hUGT1-transgenic tobacco plants (13). hUGT1 is the first known mammalian 

nucleotide sugar transporter, and its structure and functions have been elucidated 

(38,85). Although a number of plant UGTs have been identified (12,31-35), we chose 

hUGT1, as the best-studied UGT, for our investigations. The hUGT1 expressed in 

tobacco plants was mainly localized to the trans-Golgi network and endoplasmic 

reticulum in tobacco cells, and it showed a UDP-galactose transporter activity, as in 

human cells (85). These hUGT1-trasgenic plants displayed enhanced growth during 

cultivation in soil.  

Furthermore, I indicated in the previous chapter that the enhanced UDP-galactose 

transport activity resulting from the expression of hUGT1 altered the monosaccharide 

compositions of cell wall matrix components in the hUGT1-transgenic plants. There 

was an increase in the ratio of galactose to total monosaccharide residues in the 

hUGT1-transgenic plants (86), and the increased galactose ratio, so called 
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hyper-galactosylation, was observed for xyloglucan in hemicellulose, 

rhamnogalacturonan I in pectin (86) and the arabinogalactan proteins (13). This increase 

in the galactose ratio was caused by an excess galactose transport activity from 

cytoplasm to Golgi lumen. This hyper-galactosylation of cell wall matrix polymers 

appeared to increase not only alterations in the cell wall structure but also the perception 

of environmental signals, such as phytohormones. 

The hUGT1-transgenic plants were harder and more rigid to the touch than the 

pBIN19-transgenic plants. Increases in leaf thickness, caused by an enhanced amount of 

spongy tissue, greater numbers of xylem vessels in the stem, and an increased 

accumulation of lignin, were observed in the hUGT1-transgenic plants (13). 

Furthermore, the hyper-galactosylation of xyloglucan, which is a hemicellulose 

polysaccharide, was also presumed to enhance the hardness of hUGT1-transgenic 

tobacco (22). However, this hardness might result not only from these characteristics of 

hUGT1-transgenic plants but from other unknown reasons as well. Here, the practical 

hardness of hUGT1-transgenic plants was confirmed by physical strength measurements 

of leaves and stems using a tensile tester. Next, I determined whether the cell wall 

thickness in hUGT1-transgenic plants was altered. Finally, I demonstrated that the 

hUGT1-transgenic plants displayed an increased accumulation of cell wall materials, 

resulting in an increased biomass. The contribution of the heterologous expression of 

hUGT1 to the increased accumulation of cell wall materials is discussed. 
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4.2. Materials and methods 

4.2.1. Plant materials and growth conditions  

   Tobacco plants (Nicotiana tabacum cv. SR-1) containing hUGT1 (38) driven by the 

CaMV 35S promoter (pBIN-hUGT1) and the empty vector pBIN19 were used as 

hUGT1-transgenic plants and control pBIN19-transgenic plants, respectively, as 

described previously (13). T1 plants of each line were transplanted into soil in pots for 

cultivation. To compare these transgenic plants, wild type tobacco plants without any 

transgenes were also used. These plants were cultured in vitro for 1 month, transferred 

to soil in pots and cultivated with the addition of 1:1,000 diluted Hyponex fertilizer 

(Hyponex Japan, Osaka, Japan) at 25°C with a 16-h photoperiod under a fluorescent 

daylight lamp (50 mol/m2/s) in a climate-controlled room. The leaves and stems of 

plants, prior to reproduction, which were growing in the soil (2.5 months after seeding), 

were used in the present work. The 11th and 16th leaf blades and the 7th, 10th and 15th 

stem internodes, counting from the smallest recognizable leaf (green blade of ~1–2 mm 

in length) at the top of the plants, were used as materials.  

 

4.2.2. Hardness test   

   The hardness levels of the leaves and stems of plants were measured as force 

(Newton, N) using a Compact Table-Top Tensile Tester EZ-SX 500N (Shimadzu Co., 

Kyoto, Japan) controlled by the RAPEZIUM X software for Windows (Shimadzu Co.). 

To determine the hardness of leaves and stems, penetration and bending tests, 

respectively, were employed. In the penetration test for leaf, a 3-mm diameter 

stainless-steel rod was used to make a hole in the 11th and 16th leaves by applying 

pressure from the adaxial side. The leaves were placed on a 52-mm diameter cylinder 

with a 5-mm diameter hole in the center and then were penetrated by the stainless-steel 

rod. In the three-point bending test for stem, the stem segments, which included 10th or 

15th internodes, were laid sideways like a bridge on two acrylic boards (each 10 mm 

thick) vertically standing at intervals of 20 mm. The stems were folded until they were 
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broken with a wedge (20-mm width, 8-mm depth and 14-mm height; cutting edge part, 

20-mm width, 8-mm depth, 8-mm height, and 45° edge angle) at the distal end of the 

5-mm diameter stainless-steel rod. To measure the hardness of the resilient seventh 

internode, the folding test without breaking was carried out. The stems, including 

seventh internodes, were pushed with the wedge described above until a 1-cm fold 

occurred. Plant materials derived from at least three independent plants were used for 

each measurement.  

 

4.2.3. Transmission electron microscopy (TEM)   

The 11th leaf blades and the 10th and 15th stem internodes of the pBIN19- and the 

hUGT1-transgenic tobacco plants cultured in soil were cut into small pieces. The pieces 

were immersed overnight in a prefixation solution [0.1 M sodium cacodylate buffer (pH 

7.2), 2.5% (v/v) glutaraldehyde] under reduced pressure by vacuum-infiltration and 

subsequently washed with 0.1 M sodium cacodylate buffer. Samples were postfixed in 

1.5% (w/v) OsO4 for 2 h in 0.1 M sodium cacodylate buffer on ice and then dehydrated 

in a graded ethanol series [50%, 70%, 80%, 90%, 95% and 100% (v/v)]. The samples 

were substituted with an ethanol–propylene oxide mixture (1:1) once and with 

propylene oxide twice, and embedded in EPOK 812 resin (Oken Shoji, Tokyo, Japan) at 

60°C for 24 h. Ultra-thin sections (70 to 80 nm thick) were obtained with a diamond 

knife on an Ultracut E ultramicrotome (Reichert-Jung, Vienna, Austria), then stained 

with 2% uranyl acetate for 10 min and lead citrate for 5 min, and finally examined with 

a JEM 1200EX or JEM1400 transmission electron microscope (JEOL, Tokyo, Japan) at 

80 kV.  

The cell wall thicknesses were determined by measuring at 10 different locations 

along the cell wall in each of the more than 100 electron microscopic images using 

ImageJ software (https://imagej.nih.gov/ij/). Then, the means and standard deviations 

were calculated. 

 

https://imagej.nih.gov/ij/
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4.2.4. Extraction of total cell wall materials (TCWMs)   

   Before the extraction of TCWMs, the fresh weights (FWs) of the 11th and 16th 

leaves, and the 10th and 15th stem internodes, of soil-cultured plants were measured. 

Then, after air-drying for 16 h at 65°C in a dry oven, the dry weights (DWs) of these 

leaves and stem internodes were measured. The percentage DW/FW (%) was calculated 

as the ratio of DW to FW for each plant material. To extract TCWMs from plant 

samples, the method devised by Foster et al. (48) was employed with several 

modifications, as described in our previous report (86). In total, 60 mg of air-dried 

leaves and stem internodes was used for extraction. The final extracted weight of the 

TCWMs was calculated on a FW basis. Plant materials derived from at least three 

independent plants were used for each measurement. 

 

4.2.5. Quantification of lignin and RT-PCR analysis of lignin biosynthetic genes      

   For lignin extractions, 10 mg of air-dried samples harvested from the 11th and 16th 

leaves, and the 10th and 15th internodes, of the pBIN19- and the hUGT1-transgenic 

tobacco plants cultured in soil were used. These samples were ground with 5-mm 

stainless balls in a 2-mL screw-cap tube (Watson, Tokyo, Japan) using a bead crusher 

μT-12 (TAITEC Corp., Saitama, Japan) at 2,600 rpm for 1 min. The quantification of 

lignin was carried out by modifying the thioglycolic acid method described by 

Bonawitz et al. (87). Finally, based on the lignin standard (Nacalai Tesque Inc., Kyoto, 

Japan), the lignin content in each of the samples was calculated on a FW basis.  

   To determine the transcriptional levels of lignin biosynthetic genes by reverse 

transcription (RT)-PCR, total RNAs were isolated from the 5th leaves of the pBIN19- 

and the hUGT1-transgenic tobacco plants cultured in soil using a NucleoSpin RNA Kit 

(Macherey-Nagel GmbH & Co. KG., Duren, Germany) according to the manufacturer’s 

instructions. Aliquots (1 μg) of the total RNA samples were used as templates for cDNA 

synthesis with ReverTra Ace (TOYOBO Co., Ltd., Osaka, Japan) using an oligo-dT 

17-mer primer. Six sets of primers, which were specific for five tobacco enzyme genes 
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encoding phenylalanine ammonia-lyase (NtPAL), cinnamate 4-hydorxylase (NtC4H), 

4-coumarate:CoA ligase (Nt4CL), cinnamoyl-CoA reductase (NtCCR), and cinnamyl 

alcohol dehydrogenase (NtCAD) in the lignin biosynthetic pathway (87) and the 

internal control, an elongation factor-1α gene (EF-1α) of tobacco, shown in Table 4.1, 

were used for the quantitative PCR (qPCR) analysis with the cDNA described above. 

The qPCR analysis was carried out using PowerUp™ SYBR™ Green Master Mix 

(ThermoFisher Scientific, Waltham, MA, USA) with StepOnePlus™ system (Applied 

Biosystems, Foster City, CA, USA). The steps and cycles for qPCR were as follows; 

50°C for 2 min on hold for the activation of uracil-DNA glycosylase (UDG); 95°C for 2 

min on hold for the activation of Dual-Lock™ DNA polymerase; 40 cycles of 95°C for 

15 s, 55°C for 15 s and 72°C for 1 min for qPCR; and one cycle of 95°C for 15 s, 60°C 

for 1 min and 95°C for 15 s (3% ramp rate between 60°C and 95°C) for the melt curve. 

The qPCR data were analyzed with Comparative Ct (ΔΔCT) using StepOne™ software. 

The means and the standard deviations were obtained from three independent 

experiments. 

 

4.2.6. Statistical analysis   

   The statistical analysis was performed using a one-way analysis of variance 

(ANOVA) employing the F-test (88) for comparisons among the plant lines. Tukey’s 

honestly significant difference (HSD) test (= 0.05 as the significance level) was 

carried out as the post-hoc test. In each experiment, an adequate number of samples 

obtained from three independent plants in the wild type, pBIN19-transgenic control and 

three hUGT1-transgenic lines were used. 
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Table 4.1. Primers for RT-PCR of lignin biosynthetic genes. 

Target (Accession No. 

 of GenBank)  

Primer names Sequences  Sizes 
(bps) 

D63396.1  
NtEF-1α-RT-F 5′-TGGACAGACCCGTGAACATG-3′ 

80 
NtEF-1α-RT-R 5′-CATCCATCTTGTTACAGCAGCAA-3′ 

AB008199.1 
NtPAL-RT-F 5′-TGCTAATGTTCTCGCGGTCTT-3′ 

80 
NtPAL-RT-R 5′-CAGTGAACTCGGGCTTTCCA-3′ 

NM001325516.1 
NtC4H-RT-F 5′-GACTGAACCAGACACCCACA-3′ 

80 
NtC4H-RT-R 5′-GAGGAATTGCCATACGGAGA-3′ 

U50845.1 
Nt4CL-RT-F 5′-AATTTGACATTGCTCCGTTCCT-3′ 

80 
Nt4CL-RT-R 5′-CAGAACAATAGGCGGCACAA-3′ 

A86534.1 
NtCCR-RT-F 5′-TCGCCTCTTGGCTCGTTAAA-3′ 

80 
NtCCR-RT-R 5′-TTTCCGATCATCTGGATTTCG-3′ 

X62344.1 
NtCAD-RT-F 5′-CAGCTATTGGTTGGGCTGCTA-3′ 

80 
NtCAD-RT-R 5′-TTCAGGTCCTGTGTTTCTGAGAGT-3′ 
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4.3. Results 

4.3.1. hUGT1-transgenic plants show enhanced hardness   

   I selected three hUGT1-transgenic tobacco (N. tabacum cv. SR-1) plant lines (Nos. 2, 

4 and 23) obtained by leaf disc inoculation with Agrobacterium tumefaciens strain 

LBA4404 harboring pBIN19 or pBIN-hUGT1 (13). T1 plants of each line were 

transplanted into soil in pots for cultivation. These transgenic plants outwardly 

displayed no phenotypic differences, except for an enhanced growth rate and darker 

green leaves, as described previously, compared with wild type plants and 

pBIN19-transgenic control plants during cultivation in soil for 2 months (13). However, 

the hUGT1-transgenic plants appeared to be robust overall, with thick leaves and stems 

rigid to the touch, compared with wild type plants and pBIN19-transgenic controls.  

To determine the hardness of the leaves and stems of hUGT1-transgenic plants, a 

hardness test using a tensile tester machine controlled by analytical software was 

performed. I chose the 15th internode, counting from the smallest recognizable leaf 

(green blade of ~1–2 mm in length) at the top of the plants, because it was the midstem 

position of vegetatively growing tobacco plants used in my study, and similar to the 

10th internode (counting from the first fully opened leaf at the top) position in the early 

research on alterations of lignin biosynthesis using transgenic tobacco plants by Swalt et 

al. (89). Because the 15th internode is structurally developed, I chose the 10th internode 

as a younger, immature position, in which the early stage of secondary xylem 

differentiation was progressing. For leaves, the 11th leaf (counted in the same way as 

the internodes) was used as the young leaf material because it almost fully expanded, 

while the 16th leaf was used as the mature but not aged leaf material. Initially, I 

investigated the hardness of wild type tobacco plants without any transgenes. In the 

hardness tests, the 11th and 16th leaves of wild type tobacco plants showed 1.08 N and 

1.01 N, respectively, while the 10th and 16th internodes showed 14.53 N and 19.05 N, 

respectively (Table 4.2). The hardness of young stem (7th internode) was 1.92 N. Next, 

I carried out the hardness test using pBIN19-transgenic tobacco plants. The 11th and 

16th leaves of pBIN19 transgenic control plants showed 1.07 N and 1.18 N, respectively, 

while the 10th and 16th internodes showed 19.71 N and 21.86 N, respectively (Table 
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4.2). No significant difference in hardness was found between the leaves of wild type 

and pBIN19-control plants. The hardness of the young stem (7th internode) of 

pBIN19-transgenic plants was 2.75 N, but there was no significant difference between 

the wild-type and pBIN19-transgenic plants. Thus, the hardness of pBIN19-transgenic 

plants was similar to that of wild type plants, although, as a whole, the 

pBIN19-transgenic control line chosen in my study seemed to have a slightly rigid trait. 

However, even with the differences between lines, there was no possibility that the 

inserted T-DNA, including the kanamycin resistant gene, in the pBIN19-transgenic 

plants caused a significant alteration in plant hardness. Thus, I decided to use this 

pBIN19-transgenic plant line as a control instead of wild type plants in subsequent 

experiments.  

The hardness tests revealed that the hUGT1-transgenic tobacco plants were more 

robust than the pBIN19-transgenic control plants, as well as the wild type plants. On 

2.5-month-old hUGT1-transgenic plants, the 11th leaves of lines 2 and 23 were 1.19- 

and 1.32-fold, respectively, greater than those of the control plants (Table 4.2). However, 

the 16th leaf of line 23 was also 1.14-fold greater, although the 16th leaves of all the 

transgenic lines did not show enhanced hardness compared with the control plants 

(Table 4.2). Thus, the enhanced hardness of young leaves of hUGT1-transgenic plants 

was caused by an increase in cell wall thickness, cell wall strength or both.  

The stem hardness of hUGT1-transgenic plants was also enhanced. Because there 

was no difference in stem diameters between the pBIN19- and the hUGT1-transgenic 

plants (Table 4.3), the enhanced stem hardness appeared to be a trait of 

hUGT1-transgenic plants. The 10th internodes of 2.5-month-old hUGT1-transgenic 

plants were 1.06- to 1.50-fold harder than those of pBIN19-transgenic plants. Similar 

levels of increased hardness were found in the bending test using the 15th internodes of 

2.5-month-old hUGT1-transgenic plants, although the hardness levels of internodes of 

both hUGT1-transgenic and control plants were slightly increased (Table 4.2). Even 

though the xylem areas at their 15th internodes were 1.67- to 1.89-fold wider than at 

their 10th internodes (Table 4.4), there was no significant difference in the strengths. It 

may be that, although the xylem area was structurally developed, it had not reached 
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maturity. Furthermore, the hardness of young stems (seventh internode) of the 

2.5-month-old hUGT1-transgenic plant lines examined was similarly greater, by 1.08- to 

1.77-fold, than those of control plants (Table 4.2). The increased stem hardness of 

hUGT1-transgenic plants may be caused by an increase in cell wall thickness and/or cell 

wall materials, as seen in the leaf, but the mechanisms in the leaves and stems might be 

different because the increased stem hardness in the hUGT1-transgenic plants was 

maintained even as they developed.  

 

4.3.2. Increased cell wall thickness in leaves and stems of hUGT1-transgenic plants 

   Although other reasons are possible, an increase in cell wall strength or cell wall 

thickness is the most likely cause of the enhanced hardness. Because the strength of the 

cell wall could not be directly measured, the possibility of alterations in cell wall 

thickness in the hUGT1-transgenic plants was investigated. To determine the cell wall 

thickness, TEM was used to directly analyze the cell architecture in leaves and stems of 

pBIN19- and hUGT1-transgenic plants. The cell wall thickness of mesophyll cells in 

palisade tissues of leaves, and cortical cells close to the outer phloem parenchyma and 

xylem fiber cells in stems, were measured at more than 10 locations per TEM image.  

In the palisade tissue of the leaves, the average cell wall thickness between two 

adjacent cells was greater in the hUGT1-transgenic plants than in the control plants 

(Table 4.5). However, because the boundaries of the cell walls between each adjacent 

cell were not clear, the cell wall thickness could not be accurately measured. 

Furthermore, because the two cells were pushed together, the cell wall thickness 

differed from place to place. Thus, the cell wall thicknesses of cells facing the 

intercellular space were measured. The TEM analysis revealed that the cell walls of 

leaves in the hUGT1-transgenic plants were thicker than those of pBIN19-transgenic 

plants (Fig. 4.1A–D). The cell wall thicknesses of palisade tissue cells in the 11th leaves 

of hUGT1-transgenic plant lines 2 and 23 were 132 nm and 127 nm, respectively, and 

that of pBIN19-transgenic control leaves was 94 nm (Fig. 4.1A–D, Table 4.6). Thus, the 

leaves of the former were 1.40- and 1.35-fold thicker, respectively.  
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Table 4.2. Hardness tests on leaves and stems of pBIN19- and hUGT1-transgenic plant lines 

Organ Position 
 

Mean ± standard deviation (N) 
 

Wild type pBIN19 hUGT1-2 hUGT1-4 hUGT1-23 

Leaf 

11th 

 
1.08 ± 0.04c 1.07 ± 0.10c 1.27 ± 0.03ab 1.10 ± 0.05bc 1.41 ± 0.08a 

16th 

 
1.01 ± 0.07b 1.18 ± 0.02ab 1.19 ± 0.05ab 1.10 ± 0.08ab 1.34 ± 0.17a 

Stem 

internode 

10th 

 
14.53 ± 2.21c 19.71 ± 6.05bc 29.62 ± 4.36a 20.85 ± 3.28abc 25.52 ± 4.49ab 

15th 

 
19.05 ± 2.48c 21.86 ± 2.69bc 31.09 ± 3.69a 27.68 ± 0.30ab 27.33 ± 4.26ab 

7th 

 
1.92 ± 0.31c 2.75 ± 0.13bc 2.96 ± 0.71bc 3.77 ± 0.40ab 4.87 ± 1.08a 

In each test, the mean and standard deviation of three independent plants in wild type, pBIN19-transgenic 

control, and each of the hUGT1-transgenic plant lines were calculated. For comparison among the plant lines, 

a one-way ANOVA employing the F-Test (88) was used. Tukey’s HSD test was carried out as the post-hot test. 

Different lower-case letters indicate significant difference (P<0.05) among the plant lines.    
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Table 4.3. Stem diameters of pBIN19- and hUGT1-transgenic plant lines 

Organ Position 
Mean ± standard deviation (nm) 

Wild type pBIN19 hUGT1-2 hUGT1-4 hUGT1-23 

Stem 

internode 

10th 5.64 ± 0.43a 5.99 ± 0.31a 5.69 ± 0.29a 6.13 ± 1.04a 5.84 ± 0.30a 

15th 5.57 ± 0.25a 5.60 ± 0.58a 5.90 ± 0.24a 6.24 ± 0.34a 5.82 ± 0.68a 

The means and standard deviations of the diameters of four stem internode slices cut from three 

independent plants of each line were calculated. For comparison among the plant lines, a one-way 

ANOVA employing the F-Test (88) was used. Tukey’s HSD test was carried out as the post-hot test. 

Different lower-case letters indicate significant difference (P<0.05) among the plant lines.    
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Table 4.4. Widths of xylem areas in stems of pBIN19- and hUGT1-transgenic plant lines 

Organ Position 
Mean ± standard deviation (μm) 

Wild type pBIN19 hUGT1-2 hUGT1-4 hUGT1-23 

Stem 

internode 

10th 186.8 ± 7.6a 187.9 ± 23.5a 205.7 ± 25.6a 199.0 ± 54.9a 202.4 ± 11.8a 

15th 332.1 ± 63.5a 322.7 ± 9.0a 389.4 ± 37.4a 332.8 ± 85.0a 367.1 ± 6.9a 

The means and standard deviations of the diameters of four stem internode slices cut from three 

independent plants of each line were calculated. For comparison among the plant lines, a one-way 

ANOVA employing the F-Test (88) was used. Tukey’s HSD test was carried out as the post-hot test. 

Different lower-case letters indicate significant difference (P<0.05) among the plant lines.    
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Table 4.5. Cell wall thicknesses of pBIN19- and hUGT1-transgenic plant lines 
 

Organ 

Mean ± standard deviation (nm) 

pBIN19 hUGT1-2 hUGT1-4 hUGT1-23 

Leaf (11th) 

(palisade tissue, double) nm 
98.8 ± 17.9b 146.3 ± 49.1a 100.7 ± 26.7b 115.7 ± 28.3b 

The means and standard deviations of cell wall thickness were calculated from more than 100 electron 

microscopic images of each line. For comparison among the plant lines, a one-way ANOVA employing 

the F-Test (88) was used. Tukey’s HSD test was carried out as the post-hot test. Different lower-case 

letters indicate significant difference (P<0.05) among the plant lines.    
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Fig. 4.1. Cell walls of the pBIN19-transgenic and the hUGT1-transgenic tobacco plants observed by 

transmission electron microscopy. (A– D) Mesophyll cells facing the intercellular space in palisade 

tissues of 11th leaves. (A and C) pBIN19-transgenic plant and (B and D) hUGT1-transgenic plant line 23. 

(C and D) High-power magnifications of the boxes shown in (A) and (B), respectively. (E and F) Cortical 

cells close to the outer phloem parenchyma of 10th internodes in stems of the pBIN19-transgenic (E) and 

the hUGT1-transgenic plant (F). (G and H) Xylem fibers of 10th internodes in stems of the 

pBIN19-transgenic (G) and the hUGT1-transgenic plant (H). Arrows indicate the cell wall width. Scale 

bars: A and B, 2.0 m; C– F, 200 nm; G and H, 2.0 m.  
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Cortical cells close to the outer phloem were used to observe the primary cell walls 

of the stems (Fig. 4.1E and F). The cell wall thickness of cortical cells in the 10th 

internode of the stem was 1.18-fold greater in hUGT1-transgenic plant line 4 than in 

pBIN19-transgenic plants, but there were no significant differences between transgenic 

lines 2 and 23 and the pBIN19-transgenic plants (Table 4.6). Although the cell wall 

thicknesses of cortical cells in 15th internodes of both hUGT1-transgenic and control 

plants were similar or slightly decreased, the difference in the cell wall thickness 

between the hUGT1-transgenic plants and the control plants was more pronounced. 

Additionally, the cell wall thicknesses of xylem fiber cells of hUGT1-transgenic plants 

increased (Fig. 4.1G and H). The increased thicknesses of 10th internodes in the 

hUGT1-transgenic lines 2, 4 and 23 were 1.28-, 1.09- and 1.14-fold, respectively (Table 

4.6). For the 15th internode, lines 2 and 23 showed 1.36- and 1.12-fold increases, but 

line 4 showed a thickness similar to the control (Table 4.6). Thus, the cell wall 

thicknesses of both leaves and stems increased, which was expected based on the 

hardness tests described above.  

 

4.3.3. Increased cell wall accumulation in hUGT1-transgenic plants   

Because the TEM analysis revealed that the cell wall thickness of hUGT1-transgenic 

plants was increased, it was hypothesized that the amounts of cell wall materials was 

also increased. Thus, the total cell wall materials (TCWMs) in the hUGT1-transgenic 

and the control plants were extracted for quantification. The results of two 

quantifications are shown in Table 4.7. The 11th and 16th leaves, and 10th and 15th 

stem internodes, from each plant were dried to determine their DWs. The DW/FW 

values of the 11th and 16th leaves in the hUGT1-transgenic lines were 1.17- to 1.25-fold 

and 1.10- to 1.28-fold greater than those of the pBIN19-transgenic plants, respectively. 

Thus, the solid content in the leaves of hUGT1-transgenic plants was always greater 

than that of the leaves of control plants. However, the DW/FW values of the 16th leaves 

were lower than those of the 11th leaves in both plants, indicating that the former 

contained a greater moisture content. 
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Table 4.6. Cell wall thicknesses of pBIN19- and hUGT1-transgenic plant lines 

Organ 

(Tissue) 

Position 

(unit) 

Mean ± standard deviation 

pBIN19 hUGT1-2 hUGT1-4 hUGT1-23 

Leaf 

(palisade tissue) 

11th 

(nm) 
93.9 ± 13.0c 131.9 ± 15.6ab 93.7 ± 10.6bc 127.2 ± 12.8a 

Stem 

(cortex) 

 

10th 

(nm) 

307.5 ± 64.5b 332.4 ± 40.7ab 364.3 ± 110.8a 323.8 ± 88.4ab 

15th 

(nm) 

251.6 ± 35.8b 333.7 ± 24.0a 305.3 ± 60.9a 358.4 ± 68.6a 

Stem 

(xylem fiber) 

10th 

(μm) 

2.050 ± 0.282b 2.622 ± 0.392a 2.551 ± 0.368a 2.330 ± 0.288a 

15th 

(μm) 

2.182 ± 0.326b 2.974 ± 0.607a 2.168 ± 0.208ab 2.449 ± 0.238ab 

The means and standard deviations of the cell wall thickness were calculated from more than 100 electron 

microscopic images of each line. For comparison among the plant lines, a one-way ANOVA employing the 

F-Test (88) was used. Tukey’s HSD test was carried out as the post-hot test. Different lower-case letters 

indicate significant difference (P<0.05) among the plant lines.    
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The amounts of the FWs that were constituted by TCWMs in the 11th leaves of the 

hUGT1-transgenic lines were 1.21- to 1.38-fold greater than those of the 

pBIN19-transgenic plants. This increase in the TCWMs of the leaves of 

hUGT1-transgenic plants may result from the increased cell wall thickness observed in 

the TEM. However, even though the amounts of the FWs that were constituted by 

TCWMs in the 16th leaves in the hUGT1-transgenic lines were 1.09- to 1.33-fold 

greater than those of pBIN19-transgenic plants, the TCWM amounts themselves were 

less than those of the 11th leaves. The decreases in these amounts appeared to be related 

to the expansion of the vacuoles and the increase in the moisture content during the 

maturation of the 16th leaves. This was corroborated by the decrease in the amount of 

TCWMs in the DW/FW value. The increase in the moisture contents of the 16th leaves 

reduced the hardness compared with younger leaves but caused no difference in leaf 

hardness between the hUGT1-transgenic and control plants, as mentioned previously 

(Table 4.2).  

 The DW/FW values of the 10th and 15th internodes of stems in the 

hUGT1-transgenic lines were 0.92- to 1.26-fold and 0.97- to 1.27-fold greater compared 

with those of pBIN19-transgenic plants, respectively (Table 4.7). Thus, in the case of 

stems, because the moisture content in each sample fluctuated considerably, the solid 

contents of hUGT1-transgenic plants did not appear to be greater than those of control 

plants, unlike for the leaves. The 10th internodes of hUGT1-trangenic plants generally 

showed increased amounts of TCWMs compared with those of control plants. This 

result supported the enhanced hardness of the 10th internodes of hUGT1-transgenic 

plants. In both the hUGT1-transgenic and control plants, the amounts of TCWMs in the 

15th internodes were 1.56- to 1.99-fold greater than those of the 10th internodes (Table 

4.7). For stems, although there was an increase in the thickness of the primary cell wall, 

the secondary cell wall appeared to constitute most of the cell wall. Thus, the increase in 

the cell wall amount showed here resulted from the increase in the amount of secondary 

cell wall. However, because there was almost no difference in the thickness of the 

secondary cell wall between the 10th and the 15th internodes, it was hypothesized that 

the increase in the amounts of TCWMs in the 15th internodes resulted from an 

increased number of xylem cells. Indeed, the widths of the xylem areas in the 15th 
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internodes were greater than those in the 10th internodes (Table 4.4). However, the 

amounts of TCWMs in the 15th internodes were similar between the hUGT1-transgenic 

and the control plants (Table 4.7). This result conflicted with the difference in hardness 

found in the 15th internodes between the hUGT1-transgenic and the control plants.  

Although there are still points to be resolved, these results demonstrated that the 

increased amount of cell wall materials resulted from the increased cell wall thickness 

in hUGT1-transformed plants. This appears to be one reason for the enhanced hardness 

of hUGT1-transgenic plants. 

In previous report, an increased accumulation of lignin was observed in the leaves 

of hUGT1-transgenic plants (13). Thus, the enhanced hardness of the leaves and stems 

of hUGT1-transgenic plants may be explained by the increased accumulation of lignin. 

To confirm the increased accumulation of lignin, lignin was extracted from the 11th and 

16th leaves, and the 10th and 15th stem internodes. The lignin contents in the 11th and 

16th leaves of hUGT1-transgenic plants were significantly greater than those of the 

control plants (Table 4.8), as reported previously (13). The contents in the 11th and 16th 

leaves of hUGT1-transgenic plants were 1.27- to 1.37-fold and 1.27- to 1.34-fold greater, 

respectively, compared with those of the control. Thus, the increased lignin content may 

be a reason for the enhanced hardness of the leaves of hUGT1-transgenic plants. 

However, the lignin contents of the 16th leaves of the hUGT1-transgenic plants 

decreased compared with in the 11th leaves, resulting in a reduction in the hardness of 

the 16th leaves. The decrease in the lignin content may be related to an increase in the 

cells’ moisture contents, which was already shown by the decrease in cell wall mass, 

and finally, the difference in hardness between the hUGT1-transgenic and the control 

plants was reduced or disappeared. 

 

4.3.4. Enhanced lignification in leaves and stems of hUGT1-transgenic plants  

   For stems, the lignin contents of the hUGT1-transgenic plants were also greater 

than those of control plants.  
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Table 4.7. Amounts of total cell wall materials (TCWMs) in growing pBIN19- and 

hUGT1-transgenic plant lines 

Organ 
 Mean ± standard deviation 

pBIN19 hUGT1-2 hUGT1-4 hUGT1-23 

Leaf 

11th 

DW/FW 

(%) 

1st 6.5 ± 0.6b 8.1 ± 0.3a 7.6 ± 0.3a 7.9 ± 0.5a 

2nd 5.7 ± 1.3a 6.8 ± 0.4a 7.0 ± 0.4a 6.9 ± 0.8a 

TCWM 

in FW 

(mg/g) 

1st 32.6 ± 3.8b 41.9 ± 5.1a 39.3 ± 2.3ab 39.4 ± 5.5ab 

2nd 30.3 ± 10.4b 37.2 ± 1.6ab 41.9 ± 3.7a 41.9 ± 3.6a 

16th 

DW/FW 

(%) 

1st 4.6 ± 0.4b 5.9 ± 0.2a 5.7 ± 0.2a 5.7 ± 0.3a 

2nd 5.1 ± 1.0b 5.6 ± 0.4ab 5.9 ± 0.6ab 6.5 ± 0.7a 

TCWM 

in FW 

(mg/g) 

1st 21.7 ± 2.6b 27.7 ± 3.0a 28.6 ± 3.6a 28.0 ± 2.4a 

2nd 19.2 ± 2.7b 20.9 ± 2.0ab 23.5 ± 2.7ab 25.6 ± 3.5a 

Stem 

internode 

10th 

DW/FW 

(%) 

1st 4.7 ± 0.2a 5.9 ± 0.4a 5.4 ± 0.6a 5.2 ± 0.8a 

2nd 6.2 ± 0.6a 6.7 ± 0.1ab 5.7 ± 0.6a 5.8 ± 0.6ab 

TCWM 

in FW 

(mg/g) 

1st 19.2 ± 1.0a 28.5 ± 3.3a 24.5 ± 8.4a 22.5 ± 4.3a 

2nd 27.7 ± 3.6a 30.7 ± 2.1a 22.8 ± 4.6a 26.7 ± 6.7a 

15th 

DW/FW 

(%) 

1st 5.9 ± 0.2b 7.5 ± 0.5a 6.2 ± 1.0ab 6.5 ± 0.2ab 

2nd 7.8 ± 1.2a 8.6 ± 0.7a 7.6 ± 0.4a 7.6 ± 0.6a 

TCWM 

in FW 

(mg/g) 

1st 38.2 ± 1.7a 48.5 ± 0.4a 41.5 ± 10.5a 39.5 ± 6.6a 

2nd 44.9 ± 7.5a 48.0 ± 1.9a 41.6 ± 1.5a 43.3 ± 1.2a 

The means and standard deviations of at least three repeated determinations from two independent 
samples were calculated. For comparison among the plant lines, a one-way ANOVA employing the 
F-Test (88) was used. Tukey’s HSD test was carried out as the post-hot test. Different lower-case letters 
indicate significant difference (P<0.05) among the plant lines.    
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Although the statistical significance of the difference in the 10th internode was 

unclear, the 10th and 15th internodes of the hUGT1-transgenic lines showed greater 

lignin contents compared with those of the control. These greater lignin contents in the 

10th and 15th internodes of the hUGT1-transgenic plants might influence the hardness. 

The lignin contents in the 15th internodes of both the hUGT1-transgenic and the control 

plants were 2.11- to 3.44-fold more than in the 10th internodes. However, the greater 

lignin contents in the 15th internodes did not correlate with a significant increase in the 

hardness. The hardness of the 15th internodes was only slightly increased compared 

with that of the 10th internodes. Based on the above results, it was hypothesized that the 

enhanced accumulation of lignin was promoted by hUGT1 expression in tobacco plants 

and that this accumulation was one reason for the increased hardness of 

hUGT1-transgenic plants. 

 

4.3.5. Up-regulation of lignin biosynthetic genes in hUGT1 transgenic plants 

   hUGT1 expression in plant cells promoted an increase in lignin accumulation. Thus, 

I investigated whether the transcription of genes in the lignin biosynthetic pathway was 

activated in hUGT1-transgenic plants (Fig. 4.2A). A qRT-PCR analysis was performed 

using total RNA from the hUGT1-transgenic plants, as well as the control plants, and 

specific primer sets for the key tobacco lignin biosynthesis enzyme genes encoding 

NtPAL, NtC4H, Nt4CL, NtCCR and NtCAD. The qRT-PCR analysis revealed that four 

of the five lignin biosynthetic genes were up-regulated in the three hUGT1-transgenic 

lines (Fig. 4.2B). The levels of NtPAL, NtC4H, Nt4CL and NtCCR were up-regulated 

1.2- to 1.9-fold, 1.3- to 1.8-fold, 1.4- to 1.7-fold and 1.6- to 2.0-fold, respectively, 

compared with the control, whereas that of NtCAD was similar to the control (Fig. 4.2B). 

The up-regulated level of each enzyme gene was not high but may be sufficient to 

increase the lignin content in leaves, which hardly accumulate lignin. Thus, the hUGT1 

expression in tobacco cells may stimulate the lignin biosynthetic pathway at the 

transcriptional level.  
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Table 4.8. Lignin contents in leaves and stems of pBIN19- and hUGT1-transgenic plant 

lines 

Organ Position 
Mean ± standard deviation (µg/mg FW) 

pBIN19 hUGT1-2 hUGT1-4 hUGT1-23 

Leaf 
11th 2.33 ± 0.49b 2.96 ± 0.16ab 3.19 ± 0.57a 3.17 ± 0.20a 

16th 1.81 ± 0.34b 2.35 ± 0.09a 2.30 ± 0.11a 2.42 ± 0.29a 

Stem 

internode 

10th 2.06 ± 0.34a 2.97 ± 0.39a 3.24 ± 1.44a 2.52 ± 0.82a 

15th 6.73 ± 0.46b 9.17 ± 0.96a 6.84 ± 0.88b 8.66 ± 0.83a 

The means and standard deviations of at least three repeated determinations were calculated. For 

comparison among the plant lines, a one-way ANOVA employing the F-Test (88) was used. Tukey’s 

HSD test was carried out as the post-hot test. Different lower-case letters indicate significant 

difference (P<0.05) among the plant lines 
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Fig. 4.2. Enhanced lignification of hUGT1-transgeic plants. (A) Lignin biosynthetic pathway (87). PAL, 

phenylalanine ammonia-lyase; C4H, cinnamate 4-hydorxylase; 4CL, 4-coumarate:CoA ligase; CCR, 

cinnamoyl-CoA reductase; CAD, cinnamyl alcohol dehydrogenase; H lignin, p-hydroxyphenyl lignin; S 

lignin, syringyl lignin; G lignin, guaiacyl lignin. (B) qRT-PCR analysis using Nicotiana tabacum primers 

specific for NtPAL, NtC4H, Nt4CL, NtCCR and NtCAD19 genes, which encode tobacco homologs of the 

lignin biosynthetic enzymes shown in (A). The tobacco elongation factor-1α (EF-1α) was used as an 

internal control. A pBIN19-transgenic control and three hUGT1-transgenic plants (lines 2, 4 and 23) were 

used. The nucleotide sequences of specific PCR primers for each gene and their amplicon sizes are listed 

in Table 4.1. The data were analyzed with Comparative Ct (ΔΔCT) using StepOne™ software. The means 

and the standard deviations were obtained from three independent experiments. The error bars represent 

standard deviations.  
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4.4. Discussion 

The hUGT1-transgenic plants were harder and more rigid to the touch compared 

with the pBIN19-transgenic control plants. Here, I demonstrated that the 

hUGT1-transgenic plants showed enhanced hardness in leaves and stems (Table 4.2). 

Although the hyper-galactosylation of xyloglucan was presumed to cause the enhanced 

hardness of hUGT1-transgenic tobacco (22), the main reasons for their enhanced 

hardness appears to be the increased thickness of their cell walls (Table 4.6) and the 

increased accumulation of lignin (Table 4.8). Interestingly, the hUGT1-transgenic 

tobacco plants accumulated more cell wall materials compared with control plants 

(Table 4.7). The increased cell wall thickness is likely an important reason why the 

hUGT1-transgenic tobacco plants displayed a robust phenotype, including stiffness to 

the touch and an increased hardness of leaves and stems, although the increased lignin 

accumulation might also be involved. The amounts of TCWMs in the leaves of 

hUGT1-transgenic plants was up to 1.38-fold greater than in leaves of control plants, 

suggesting that the hUGT1-transgenic plants are a possible resource for increased 

biomass production.  

The overexpression of hUGT1 caused several significant alterations in transformed 

tobacco plants. Although the reasons for such unforeseen alterations remain to be 

determined in future studies, it seems likely that the increased amount of galactose in 

the hemicellulosic and pectic polysaccharides of the cell wall was not the direct cause of 

the increased accumulation of cell wall materials. However, since the higher level of 

galactosylated xyloglucan mechanically enhances the plant body strength (22), this 

might be a reason for the increased hardness of hUGT1-transgenic tobacco. Additionally, 

a high level of galactosylation of galactose-containing cell wall matrix polymers is 

related to significant alterations in some signal-transduction pathways, as discussed in 

my previous report (86). This might be a second reason for the increased hardness.  

The hyper-galactosylation of arabinogalactan proteins (AGP) is a third and most 

probable reason for the increased hardness of hUGT1-transgenic tobacco plant. 

Arabinogalactan is composed of arabinose and galactose and is a type of pectic 

polysaccharide. Type I arabinogalactan is a side chain on rhamnogalacturonan-I, 
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whereas type II arabinogalactan is present in AGPs (45). The increased degree of AGP 

galactosylation might be important because AGPs are candidate mediators of cell–cell 

interactions and regulators of cell growth (45). In our previous reports, we have shown 

that AGP polysaccharides are hyper-galactosylated by the expression of hUGT1 (13,86). 

It is likely that hyper-galactosylation of AGPs increased in the sensitivity to external 

signals or hyper-galactosylated AGP molecules themselves acts as functionally 

enhanced signal molecules to increase in the cell wall thickness and lignin 

accumulation. 

There are some candidate AGPs that may be involved in the increases in primary 

and secondary cell walls found in the hUGT1-transgenic tobacco plants. Some reports 

suggested that fasciclin-like arabinogalactan (FLA) proteins contribute to not only 

primary cell wall biosynthesis but also to the biomechanical properties of stems through 

their impact on the synthesis and architecture of the secondary cell wall (90). For 

secondary cell wall, stem cell walls of the Arabidopsis T-DNA insertion mutants Atfla11 

and Atfla12, and their homozygous Atfla11/Atfla12 double mutant, showed significant 

reductions in the concentrations of glucose moieties, which inferred that cellulose 

deposition was reduced. Furthermore, a tensile strength test revealed that the stems of 

Atfla11/Atfla12 double mutants were significantly weaker than those of the wild type 

(90). These are opposite traits to those found in the hUGT1-transgenic tobacco plants. 

Although the up-regulation of tobacco FLA11 and FLA12 orthologs has not been ruled 

out, their hyper-galactosylation might be involved in the increased cell wall 

accumulation in hUGT1-transgenic plants. In addition, the accumulation of lignin in 

leaves of the hUGT1-transgenic plants was significantly increased. The lignin contents 

in the leaves and stems of the hUGT1-transgenic plants were more than 1.37-fold 

greater than those of control plants (Table 4.8). The increased lignin content invokes an 

ectopic accumulation of secondary cell walls in the leaves.  

However, because lignin deposits on the primary cell wall are caused by various 

biotic and abiotic stresses, such as UV irradiation and pathogen infection (87), they 

might not be related to secondary cell wall accumulation. The TEM analysis indicated 

that the cell walls of leaf palisade cells in the hUGT1-transgenic plants were thicker but 
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structurally similar to those of the control plants. Furthermore, in my previous report 

(86), I demonstrated that, except for the increase in the ratio of galactose, the 

monosaccharide composition in the leaves of hUGT1-trangenic plants was the same as 

that in the leaves of pBIN19-transgenic control plants. Thus, an increased quantity of 

primary cell wall materials accumulated in the cell walls of hUGT1-transgenic plants, 

resulting in thicker cell walls. SALT OVERLAY SENSITIVE 5 (SOS5, also called FLA4) 

encodes a fasciclin-like AGP, which acts on the same pathway as the leucine-rich repeat 

receptor kinases FEI1/FEI2 to regulate the biosynthesis of cellulose (perhaps primary 

cell wall) in Arabidopsis (91,92).  The hyper-galactoyslation of tobacco SOS5/FLA4 

ortholog might be involved in the thicker primary cell wall of hUGT1-transgenic plants. 

Because the lignin biosynthesis pathway is usually activated in the stem during 

maturation and there was a possibility that the up-regulation of lignin biosynthesis 

genes might not be clearly recognized, I decided to use leaves, which hardly accumulate 

lignin, to investigate gene expression. Furthermore, the lignification of the 11th leaves 

of the hUGT1-transgenic plants was enhanced and the lignin contents of the 16th leaves 

decreased compared with those of the 11th leaves (Table 4.8), which suggested that the 

enhanced expression of lignin biosynthetic genes has already occurred younger leaves. 

Therefore, I chose the 5th leaves as the material for total RNA extractions. In the leaves 

of hUGT1- transgenic plants, the enzyme genes involved in lignin biosynthetic pathway 

were up-regulated (Fig. 4.2B). Lignin biosynthesis is roughly composed of two 

pathways; the general phenylpropanoid pathway from phenylalanine to 

p-coumaroyl-CoA and the pathway for monolignol synthesis from p-coumaroyl-CoA to 

three monolignols, p-coumaroyl alcohol, sinapyl alcohol and coniferyl alcohol (20, Fig. 

4.2A). Phenylalanine ammonia-lyase (PAL), cinnamate 4-hydorxylase (C4H) and 

4-coumarate:CoA ligase (4CL) are involved in the former pathway, while 

cinnamoyl-CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) are 

common enzymes involved in the synthesis of the three monolignols in the latter 

pathway.  PAL may play an important role initiating the first step, while C4H is the 

rate-limiting enzyme in the lignin biosynthesis pathway (93). The up-regulation of 

NtC4H suggested that the lignin biosynthesis pathway was activated in the leaves of 

hUGT1-transgenic plants. Furthermore, CCR is the enzyme required for the first 
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lignin-specific step in the phenylpropanoid pathway and has an assumed regulatory 

function (93). However, NtCAD was not up-regulated. CAD seemed to be neither a 

regulatory nor a key enzyme in terms of carbon allocation to the pathway, and its action 

is determined by an upstream metabolite process (93). Furthermore, because the 

decrease in CAD activity to ~7% of wild type seemed to have little effect on the total 

amount of lignin (93), it is likely that NtCAD was expressed sufficiently for the reaction 

to proceed.  

Because the promoters of lignin biosynthesis genes, such as PAL and 4CL, contain 

several important cis-elements to bind MYB transcription factors (MYBs) (94), there is 

a possibility that the activation of MYBs is responsible for lignin biosynthesis in 

hUGT1-transgenic plants. Because, in Arabidopsis, the lignin-specific MYBs, 

AtMYB58, AtMYB63 and AtMYB85, regulate lignin biosynthesis (94), I will have to 

confirm whether their tobacco orthologs are up-regulated in my future work. 

Khalil et al., have reported that the introduction and expression of heterologous gene 

hUGT1 alone causes morphological and physiological changes to tobacco plants (13). 

Such results suggest the possibility of additional changes in the plants if the loading of 

UDP-galactose into the Golgi apparatus is more efficient. Because hUGT1 was the first 

isolated UDP-galactose transporter, this molecule is a typical model for UDP-galactose 

transporters. Initially, the amino acids essential for the UDP-galactose transport activity 

of hUGT1 were identified (95). In addition, a detailed analysis of chimeric molecules 

between hUGT1 and the human CMP-sialic acid transporter revealed which of the 10 

transmembrane domains of hUGT1 were essential for the UDP-galactose transporter 

activity (85) and substrate specificity (39). Furthermore, a heterologous combination 

between hUGT1 and UDP-galactose:ceramide galactosyltransferase showed that the 

cellular location of hUGT1 was associated with that of galactosyltransferase, suggesting 

the pliancy of the hUGT1 function (96). I am aiming to develop a new plant 

modification method through the hyper-galactosylation of plant cell surfaces, in 

particular AGPs. For this purpose, the function of the UDP-galactose transporter must 

be improved. Among the plant UDP-galactose transporters reported, there is no isoform 

that has been analyzed as well as hUGT1. Additionally, because hUGT1 has been well 
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characterized, it is considered to be the best material for my purpose. Based on the 

structure–function relationship of hUGT1, I will be able to obtain hUGT1 with 

modifications, such as amino acid substitutions and domain exchanges. As the first step, 

I have already made a modified hUGT1 having optimal codon usage for plants (artificial 

UGT), and the analysis of its function is in progress. 
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Chapter 5. Conclusion 

The rising world population leads to increasing food and fuel demands. Dealing 

with this demand needs increasing plant production. This important challenge has 

encouraged the scientists to modify cell walls into desired features for more efficient 

production and utilization. For instance, modifications of the lignin biosynthesis, 

cellulose deposition, non-cellulosic polysaccharides and cell wall compositions have 

received significant attention from many researchers all around the world. As these 

achievements are promising, the modified products would be used not only for cell wall 

manufacturing but also for the production of super crops.  

   In my thesis, I accomplished to examine the impact of overexpression of UDP-Gal 

transporter gene in galactose content of cell wall components. Then I tried to investigate 

the consequence effect of this cell wall hyper-galactosylation on plant characteristics. 

The obtained results of my research were described as below. 

   In chapter 3, I demonstrated that hUGT1 expression altered the monosaccharide 

composition of pectin and hemicellulose in the cell wall. Since hUGT1 is responsible 

for transportation of UDP-Gal from cytosol to Golgi lumen, expression of hUGT1 

resulted in the elevated ratio of galactose to total monosaccharides in the hemicellulose 

II and pectin fractions of hUGT1-transgenic plants compared with that of control plants. 

Moreover, oligosaccharide mass profiling (OLIMP) revealed a hyper-galactosylation in 

xyloglucan of hemicellulose II. This change in side chains of xyloglucan could impact 

the strength of cell wall which might lead to increased hardness in tobacco plants.  

This possibility was tested in the next step of my study. Finally, I found the enhanced 

galactose tolerance in hUGT1-transgenic plants because of increased galactose 

incorporation in cell wall via the enhanced UDP-galactose transport from the cytosol to 

the Golgi apparatus by hUGT1. 

   In chapter 4, I showed hUGT1 expression in tobacco plant which led to 

hyper-galactosylation of non-cellulosic parts of cell wall components, influencing plant 

hardness.  As determined by breaking and bending tests, the leaves and stems of 

hUGT1-transgenic plants were harder than those of control plants. This interesting plant 
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hardness would be attributed to the positive impact of hyper-galactosylation of side 

chains of xyloglucan on the strength of cell wall. Furthermore, the transmission electron 

microscopic analysis showed the increased cell wall thickness in leaves palisade cells 

and those of cortex cells and xylem fibers in the stem. This result was supported by 

higher biomass and total cell wall materials extracted from the leaves and stems of 

hUGT1-transgenic plants compared to control plants. Besides, lignin content in cell 

walls of the hUGT1-transgenic elevated which is related to the up-regulation of some 

genes encoding enzymes in lignin biosynthesis. 

   Altogether, through this study, the expression of hUGT1 in tobacco plant verified 

the key role of the UDP-Gal transporter in galactosylation of cell wall components. As 

shown in these results, the hyper-galactosylation in pectin and xyloglucan, which are 

the main Gal acceptors in the cell wall, might result in increasing plant biomass which 

is caused by the increased cell wall thickness, and consequently enhanced plant 

hardness. Thus, the remarkable impact of hyper-galactosylation of pectin and 

xyloglucan on plant growth and development might attribute to an alteration of their 

probable signaling activity in the plant, which would be an interesting subject of study 

in future. Furthermore, higher lignification in hUGT1-transgenic plants was a notable 

result of this study. In the future research, the possible relationship between the 

expression of UDP-Gal transporter genes and the regulation of the genes of lignin 

biosynthesis should be investigated. In summary, these results may suggest a new novel 

plant modification strategy that is practical for crop improvement as feedstocks for 

biofuel production in the future. 
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