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Abstract 

Topology optimization is an important and challenging topic in structural design. 

Continuum topology optimization, as an automated conceptual design tool to achieve desired 

structural performance, has received an ever-increasing attention. In conventional topology 

optimization, it is assumed that the external loads and environmental conditions are 

deterministic. In practical applications, however, they usually exhibit large uncertain variability. 

This raises the need of the topology optimization considering load uncertainties. There are two 

major non-deterministic structural optimization frameworks, namely reliability-based design 

optimization (RBDO) and structural robust design optimization. In particular, the latter aims to 

generate optimal designs that are less sensitive to system variability or perform as required even 

in the worst-case scenarios.  

This dissertation presents topology optimization methods of macrostructures and 

microstructures against uncertain dynamic loads, random material properties distribution, and 

random diffuse regions between material phases. In addition, this dissertation also investigates 

topology optimization of the piezoelectric structure to reduce the energy consumption of active 

vibration control.  

In the robust topology optimization problems of structures subjected to uncertain dynamic 

excitations, the unknown-but-bounded dynamic loads/accelerations are described with the non-

probabilistic ellipsoid convex model. The aim of the optimization problem is to minimize the 

absolute dynamic compliance for the worst-case loading condition. For this purpose, a 

generalized compliance matrix is defined to construct the objective function. To find the 

optimal structural layout under uncertain dynamic excitations, we first formulate the robust 

optimization problem into a nested double-loop one. Here, the inner-loop aims to seek the 

worst-case combination of the excitations, and the outer-loop optimizes the structural topology 

under the found worst-case excitation. To tackle the inherent difficulties associated with such 
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an originally nested formulation, we convert the inner-loop into an inhomogeneous eigenvalue 

problem using the optimality condition. Thus, the double-loop problem is reformulated into an 

equivalent single-loop one. This formulation ensures that the strict-sense worst-case 

combination of the uncertain excitations for each intermediate design be located without 

resorting to a time-consuming global search algorithm. 

For the topology optimization problems for designing the microstructures of PnCs by 

considering random-field material properties, this dissertation proposed a robust topology 

optimization framework for achieving a wide band gap design that is insensitive to the uncertain 

material distribution. Herein, the spatial distribution of the material properties is first 

represented by a random field and then discretized into uncorrelated stochastic variables with 

the expansion optimal linear estimation method; stochastic band gap analysis is then conducted 

with polynomial chaos expansion. Furthermore, a robust topology optimization formulation of 

PnCs is proposed on the basis of the relative elemental density, where a weighted objective 

function handles the compromise of the mean value and standard deviation of the PnCs band 

gap. The band gap response is analyzed employing the finite element method for each sample 

of polynomial chaos expansion. In this context, the sensitivities of the stochastic band gap 

behaviors to the design variables are also derived.  

The phase-field based robust topology optimization method for macrostructures and 

microstructures considering random diffuse-region widths between different material phases 

are also proposed. The diffuse regions between two material phases are assumed to satisfy a 

spatial Gaussian random field and discretized into uncorrelated stochastic variables with the 

EOLE method; then stochastic response analysis is conducted with the PCE. In the optimization 

formulation, the design domain is represented with the phase-field function and the explicit 

phase-field curve is updated by solving the Allen–Cahn equation. A weighted summation of the 

mean value and standard deviation of the structural dynamic performance is taken as the 
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objective function of the robust optimization problem. For the macrostructures design problem, 

three types of the dynamic performance functions are considered, including the structural 

dynamic compliance, the fundamental frequency or frequency gap, and the transient 

displacement under impact loads. In the robust microstructures design of PnCs, the weighted 

sum of the mean value and standard deviation of the specified band gap is considered as the 

objective function. 

We also proposed the topology optimization of the electrode coverage over piezoelectric 

patches attached to a thin-shell structure to reduce the energy consumption of active vibration 

control under harmonic excitations. The constant gain velocity feedback control method is 

employed, and the structural frequency response under control is analyzed with the finite 

element method. In the mathematical formulation of the proposed topology optimization model, 

the total energy consumption of the control system is taken as the objective function, and a 

constraint of the maximum allowable dynamic compliance is considered. The pseudo-densities 

indicating the distribution of surface electrode coverage over the piezoelectric layers are chosen 

as the design variables, and a penalized model is employed to relate the active damping effect 

and these design variables. The sensitivity analysis scheme of the control energy consumption 

with respect to the design variables is derived with the adjoint-variable method.  

The proposed optimization methods have been proved with numerical examples, some 

influence factors that affect the optimal solutions are also discussed. These methods may have 

good potentials in the mechanical engineering design for vibrating structures and the design of 

new acoustic metamaterials. 
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1 Introduction 

1.1 Motivation  

Optimization techniques are considered effective for enhancing the dynamic properties of 

vibrating structures and have been studied for several decades. Among optimization methods, 

topology optimization is regarded a powerful design tool that dramatically improves structural 

performance Traditional structural topology optimization are mostly based on deterministic 

assumptions, without considering the inherent uncertainties. In practical applications, however, 

the inherent uncertainties of the structure usually exhibit large variability and have remarkable 

even critical effects on the structural performance. This raises the need of the structural 

optimization considering uncertainties.  

There are generally three types of uncertainties for non-deterministic structural 

optimization problems: (I) material uncertainties, it can be considered simply as uncertain 

parameters or random fields; (II) boundary conditions, including uncertain loads and imperfect 

elastic supports [1]; (III) geometry conditions, it can be considered as manufacturing errors [2-

4]. These uncertainties are very common during the manufacture and use of the structures and 

devices.  

In the structural dynamic optimization problems, most studies on macrostructures designs 

have been conducted for deterministic conditions. Dynamic optimization problems present 

more difficulties than static ones, due to e.g. local optima traps, localized eigenmodes and 

adjacent eigenfrequencies [5, 6]. These difficulties often result in convergence issues and large 

grey areas. However, in vibration/dynamic optimization problems, the structural dynamic 

properties can be affected by many uncertain factors of the real vibration system during its 

design, manufacturing, and service [17,18]. Therefore, the uncertainties in material 

distributions, loading conditions, and geometry boundaries usually have more remarkable effect 
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on the structural dynamic performances and optimal solutions than static ones. There is thus a 

need to propose a more realistic topology optimization method for the design of vibrating 

structures subject to uncertainties. 

On the other hand, the microstructures design of phononic crystals have attracted more 

and more attention. Phononic crystals (PnCs) [7] exhibit band gap effects that can obstruct the 

propagation of sound and elastodynamic waves in specified frequency regimes. The 

development of analysis and design methods for PnCs is thus an important and challenging 

topic. However, in the real applications of PnCs, the uncertainties of material properties and 

manufacturing errors are usually inevitable. The material property uncertainty of PnCs is from 

the inherent material inhomogeneity and also affected by the changing of the environment. 

While the manufacturing errors may include the uncertainties of the boundary geometry and 

diffuse regions between material phases of PnCs, and it has been reported in some literatures 

as shown in Fig.1.1. These manufacturing errors can remarkably change the band gap 

prosperities of PnCs, thus considering the uncertainty of diffuse region is necessary and 

important in the design and optimization of PnCs. How to efficiently handle the diffuse region 

uncertainties of PnCs and implement the corresponding topology optimization are major tasks 

of this paper. 
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Fig.1.1 Examples of uncertainties of the manufacturing errors of PnCs. (a) Scanning electron 

microscope (SEM) image of Au-Si PnC [8], which shows the uncertain boundaries exist in each 

lattice of PnCs; (b) SEM image of a periodic porous film [9], which shows the diffuse regions 

exist between material phases of PnCs; (c) PnCs with a hole wall roughness of about 7nm [10], 

where the hole wall roughness may be considered as the uncertain diffuse region between the 

solid and void phases of the SI membrane type PnCs ); (d) SEM image of the hole surface 

roughness of PnCs [11]. 

 

In short, the uncertainties should not be ignored in the structural dynamic optimization 

problems. This dissertation focuses on the development of robust optimization methods of 

macrostructures and microstructures (phononic crystals) for achieving an optimal design that 

has the best dynamic performance and is insensitive to the uncertain variations. 

 

1.2 Continuum structural topology optimization 

1.2.1 Development of structural topology optimization 

The structural optimization problems usually can be divided into three categories: size 

optimization, shape optimization, and topology optimization, as shown in Fig.1.2. The study of 

topology optimization problems first began from the study of the optimal design of truss 

structures. At the beginning of the 20th century, Michell [12] used analytical methods to 

optimize the topological configuration of truss structures under stress constraints and proposed 

the Michell truss and corresponding optimization criterions. This work opened the prelude to 

the topology optimization. 
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Fig.1.2. Three categories of structural optimization: sizing optimization; shape 

optimization; topology optimization. 

 

Continuum topology optimization began in the early 1980s, Cheng and Olhoff [13] studied 

the minimum compliance optimization of solid plates, they first introduced the concept of 

microstructures into structural topology optimization and achieved the optimal distribution of 

stiffeners of a variable thickness plate. This is a pioneering work for continuum topology 

optimization and has attracted the attention of a large number of researchers. In 1988, Bendsoe 

and Kikuchi [14] introduced the homogenization theory into the continuum topology 

optimization and proposed homogenization method. In the following years, several popular 

topology optimization approaches have been developed, including SIMP (Solid Isotropic 

Material Penalization) method [15], ESO (Evolutionary Structural Optimization) method [16], 

Level-set method [17, 18], Phase-field method [19, 20], MMC (Moving Morphable 

Components) method [20, 21] and so on. These methods have been successfully applied to a 

wide range of structural and multidisciplinary design problems. The detailed introduction and 

review of these topology optimization methods can be found in some literatures [22-24] and 

will not be included in this dissertation. In our study, the density-based topology optimization 

approach (including SIMP and RAMP method) and the phase-field method are used to 

formulated the optimization problems, so these two optimization methods will be briefly 
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introduced in the following subsection. 

 

1.2.2 Density-based topology optimization approach  

One of the most popular density-based topology optimization approach is Simplified 

Isotropic Material with Penalization (SIMP) method, which is proposed by Bendsøe [15] and 

Zhou and Rozvany [25]. In the SIMP method. In this method, the core of this method is to 

establish a power-law penalty relationship between element density and Young’s modulus, it is 

usually expressed as:  

 0( ) ,p
i iE E   (1.1) 

where p  is the penalty factor and 0E  is the Young’s modulus of the solid material. Usually 

the penalty factor is suggested to be taken as 3p , the penalty relationship between element 

density and Young’s modulus is illustrated in Fig.1.3. 

 

Fig.1.3 Penalty relationship between element density and Young’s modulus in SIMP 

method. 
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The original intention of the SIMP method is just to reduce the complexity of the 

homogenization method and make the optimization easier to get a convergence to a 0-1 solution. 

In the following years, some studies are carried out to complete the theoretical basis of the 

SIMP method. For example, Bendsøe and Sigmund [26] provided a physical justification of 

SIMP method. Petersson [27] proved that the topology optimization problem with the 

compliance objective is a convex problem with a unique solution when the penalty factor 1p . 

Jog and Haber [28] the essential reason for the checkerboard phenomenon is that the stiffness 

of the elements with checkerboard pattern is overestimated in numerical modeling. Haber [29] 

proposed perimeter constraints control method and Sigmund [30] founded a well-known 

sensitivity filter technique to prevent checkerboard formation and mesh dependency of the 

optimal solution. In recent years, more and more researches on structural topology optimization 

problems based on SIMP method have been conducted., and the SIMP method has been applied 

to the optimization problems of different fields [31]. 

During the development of SIMP method, some researchers also devoted to propose some 

different forms of density interpolation schemes. Herein, Rational Approximation of Material 

Properties (RAMP) [32] is a popular interpolation scheme, the penalty relationship between 

element density and Young’s modulus based on RAMP method can be given as: 

 void solid void
E

( )
1 (1 )

e
e

e

E E E E
p

 (1.2) 

Where Ep  is the penalty factor. The original intention of RAMP method is to reduce the 

non-convex nature brought by SIMP method. The main difference between the RAMP method 

and the SIMP method is that when 0i RAMP method can still provide a non-zero gradient, 

this may let the optimization problem easier to get a convergence.  

On the other hand, the conventional power-law penalization model in the SIMP method 



 

7 

 

may lead to spurious local vibration modes due to inconsistent penalization of the sti ness and 

the mass matrices [33]. It has been shown that the RAMP model [34] is capable of removing 

localized vibration modes. The essential reason of the RAMP method can avoid localized 

vibration modes is that ratio between penalization on mass and sti ness is still a limited value 

even when the relative density e  is near to zero. The ratio between penalization on mass and 

sti ness when -3
void solid=10E E  and -3

void solid=10E E  are illustrated in Fig.1.4. 

 

 

Fig.1.4 Ratio between penalization on mass and sti ness in RAMP method. 

 

1.2.3 Phase-field based topology optimization method 

The phase-field method, which was first proposed by Cahn and Hilliard [34], can handle 

the motion relating to domain states and shapes. A phase-field-based topology optimization 

method has been proposed [7,35–37] and applied to structural and multi-physics design 
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problems. Recently, Gain and Paulino [38] employed a fully unstructured polygonal finite 

element mesh in implementing a phase-field method for structural topology optimization. Jeong 

et al. [39] developed a stress-constrained topology optimization method using the phase-field 

model to represent topological changes. Garcke et al. [40] proposed a phase-field-based 

topology optimization method of finding optimal shapes of fluid domains in stationary 

incompressible Navier–Stokes problems. Xia et al. [41] first considered topology optimization 

problems of composites accounting for the complete fracturing process, using the phase-field 

method to approximately represent propagating cracks. Moreover, Takezawa and Kitamura [42] 

and Wu et al. [43] employed the phase-field-based topology optimization method for a photonic 

crystal metamaterial. 

This section briefly introduces deterministic topology optimization with the phase-field 

method for structural vibration problems. More details on the phase-field method can be found 

in the literature [7,35,37]. 

In the phase-field method, the shape of the structure in the design domain is represented 

by two phases 1  and 2  and the boundary layer  between the two phases as shown in 

Fig. 1.5. The boundary layer, which is called the diffuse region, is defined by a smooth 

interpolation function χ  between the two phases. The whole design domain representation 

D  ( 1 2D ) can thus be formulated with the phase-field function  as  

 
1

2

1   ,
    0 1 ,

0   .

χ
χ
χ

  (1.3) 
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Fig. 1.5 Illustration of the phase-field model.  

 

Here, 1  means that material 1 is chosen while 0  means that material 2 is chosen. 

A value within the range 0 1  means that there is a diffuse region (denoted ), which 

consists of both candidate materials. With the above formulation, the state of the design domain 

can be determined by minimizing the Van der Walls free energy equation: 

 2 1  d ,
2D

F f  (1.4) 

where  is a positive coefficient that determines the effect of each term and controls the width 

of the diffuse interface region [48,49]. In Eq. (1.4) , the first term only affects the diffuse region 

while f  in the second term represents a double-well potential function, which should be 

set to satisfy the conditions 

 0 0,  1 , 0 1 0,t

t

J
f f f f

J
  (1.5) 

where tJ   is the sensitivity of the objective function tJ   with respect to the design 

variables  at the current virtual time t , and  is a positive scaling coefficient.  

To satisfy Eq. (1.5), a double-well potential function can be set as 
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 .t

t

J
f W w g

J
χ   (1.6) 

As suggested in [34], the function w  should satisfy 0 1 0 1 0w w w w , 

and g   should be a function such that 0 0g  , 1 1g  , and 0 1 0g g  . The 

notations W χ   and t tJ J   are coefficients of these functions. The coefficient 

W χ   determines the height of the wall of the double-well potential, which affects the 

thickness of the diffuse region, and it is set to be 1 4W χ   in this study. The functions 

w  and g  are chosen following a previous study [50]:  

 22 1w , 3 26 15 10 .g  (1.7)  

The double-well potential function f  is then expressed as  

 
22 5 4 31 1 6 15 10 .

4
J t

f
J t

  (1.8) 

The double-well potential f  and functions w  and g  are sketched in Fig. 1.6. 
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Fig. 1.6. Sketches of (a) double-well potential f , (b) function w , and (c) g . 

To minimize the objective function value J t , the optimization should proceed in the 

direction in which the van der Walls free energy of Eq. (1.4) is minimized, and the change in 

the phase-field function   with respect to virtual time t   is thus assumed to satisfy the 

equation 

 ,
F

M
t

  (1.9) 

where M  is a variation rate. By substituting (1.4) into (1.9) and using the definition 

of the functional derivative, the time evolution of the phase-field function based on the Allen–

Cahn equation [47] can be given as 

 2 2 .f
t

  (1.10) 

 Substituting (1.8) into (1.10), the time evolutional equation can be expressed as 
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 2 2 11 30 1 .
2

J t
t J t

  (1.11) 

The structural topologies can be expressed with an explicit phase-field curve by employing 

the phase-field function in Eq. (1.3). In evaluating the structural dynamic performance (e.g., 

the eigenfrequency or displacement response), the virtual elasticity tensor *D  and the mass 

density *  in the diffuse region are defined using the interpolation functions k   and 

m : 

 

1

1
1 2*

2
2

if ,
1   0< 1   if    ,

if ,
k k k

D χ
D D D χ

χD

  (1.12) 

 

1

1
1 2*

2
2

if ,
1   0< 1   if    ,

if ,
m m

χ
χ
χ

 (1.13) 

with   

 
1pk , 2pm , (1.14) 

where, 1D  , 2D  , 1   and 2   are respectively the usual elasticity matrices and mass 

density for each material. In Eq. (1.14), 1p  and 2p  are penalty factors, similarly to those used 

in the solid isotropic material with penalization method [1]. We here set 1 3p  and 2 1p  as 

suggested in the literature [7]. Obviously, when 2D 0  and 2 0 , the phase of material 2 

reduces to a void phase. 
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1.3 Macro-/micro- structures optimization design for dynamic problems 

1.3.1 Macrostructures design of structural vibration problems 

Since large vibrations are harmful to the structural safety and functionality, many studies have 

been devoted to the control of structural vibration. According to the control mechanisms, 

structural vibration control methods can be divided into three categories: active control, passive 

control, and semi-active control, the control categories and common control devices are shown 

in Fig. 1.7.  

 

Fig. 1.7 Different control categories and control devices. 

 

(a) Passive control  

The passive control, which does not require additional control energy and only needs 

simple control device, can usually achieve a good control performance. Usually, the passive 

control devices include damping springs, damping materials, and sound-absorbing/shock 

absorbing foams.  
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Structure optimization especially topology optimization is high technology and with great 

potential for application in structural vibration and noise control. Here, where and how to place 

the material is the core problem for achieving the best dynamic performance. Taking the 

eigenfrequency optimization as an example: In 1965, Niordson [35] first proposed the size 

optimization for a beam section and this is the first attempt of the structure dynamic 

optimization. After that Olhoff [36] proposed the shape optimization method for the vibrating 

beams, and in 1992, Diaz and Kikuhci [37] introduced the topology optimization in to the 

eigenfrequency design for plate structures, these three works are just three major types of 

structural optimization methods. Nowadays, all the popular topology optimization methods, 

such as the homogenization method, SIMP method, level-set method, ESO method, phase-field 

method, and MMC method, have all successfully applied in the structural dynamic optimization 

[38]. 

Many researchers have treated dynamic topology optimization of main load-bearing 

structural components. For instance, Larsen et al. [39] considered the optimal material layout 

of plates for minimizing the global vibration level and maximizing the energy transport. Yoon 

[40] compared several model reduction techniques in the SIMP-based structural topology 

optimization for frequency responses. Du and Olhoff [41, 42] studied the topology optimization 

for reducing vibration level and sound radiation of bi-material structures under harmonic 

excitations. Shu et al. [43] investigated structural topology optimization for minimizing 

frequency response based on level set method, and extended the approach to problems 

concerning sound radiation properties of vibrating structures. Rosi et al. [44] optimized the 

positions of piezoelectric patches for reducing the radiated sound power of thin plates using the 

piezoelectric shunt damping effect. Some studies employed genetic algorithms (Xu and Jin [45] 

or other biologically inspired optimization approaches (Sabbatini et al. [46] for optimizing the 

structural configurations to reduce the dynamic responses. 
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With the purpose of ensuring effective vibration reduction, some studies have been 

devoted to the layout design of the damping layer attached to the main load-bearing structure 

(i.e. the host structure made of base material). Zheng et al. [47] studied the optimal placement 

of damping patches for minimizing the structural vibration level with the Genetic Algorithm. 

Chia et al. [48] employed the cellular automata algorithm to find the optimal layout of the 

damping layer. Kang et al. [49] proposed an artificial damping material model-based topology 

optimization method for minimizing the dynamic response under harmonic excitations, and this 

model is then extended to topology optimization of damping layers in sound radiation structures 

[50]. Kim [51] optimized distribution of the damping material attached to a given host structure 

by maximizing the modal loss factor. 

 

(b) Active control 

The active control requires additional control energy. In the implement of the active 

control, structural vibration is first perceived by the sensors, a certain control strategy is selected 

and corresponding calculations are performed, then control forces or moments are applied by 

actuators into the vibration systems. The active vibration control system is mainly composed 

of three parts: sensors, controllers and actuators. Herein, the sensors sense external force 

information or system response information; the controllers receive the sensor information and 

give the control signals to the actuators through a certain control algorithm; actuators produce 

corresponding control forces into the vibration system; then the vibration reduction can be 

achieved. Active control strategies have been proved effective in reducing the structural 

vibration level. Many studies on active vibration control of thin-shell structures focus on 

arranging the spatial distribution of control transducers (e.g. piezoelectric actuator/sensor 

patches). To achieve the best control performance, however, finding the optimal layouts of the 

piezoelectric actuators/sensors patches in accordance with the employed control algorithms 
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becomes highly important. 

Classical and optimal active control algorithms [52, 53] are frequently used to suppress 

structural vibration in engineering applications. It is clear that the control performance can be 

significantly improved by optimizing the configuration of the actuator and sensor patches, 

including their numbers, positions and topologies. Most early studies in this area rely on 

exhaustive search [54] or heuristic optimization strategies [55] to determine the positions and 

sizes of the piezoelectric actuator/sensor patches. Onoda and Haftka [56] proposed an 

exhaustive search method for optimizing the structural stiffness distribution, location of 

controller, and control gains in a beam-like space structure. In more recent works, Bruant et al. 

[57] employed different criteria in the optimization of actuator/sensor locations with genetic 

algorithms. Darivandi [58] optimized the placement of piezoelectric actuators under optimal 

linear quadratic regulator (LQR) control with a subgradient-based optimization tool. Takezawa 

et al. [59] proposed a novel optimization methodology for the placement of piezoelectric 

elements in real-scale truss structures for suppressing multi-modal vibration with semi-active 

control. 

Topology optimization is regarded as a powerful tool for innovative structural design. 

Among various methods (see review paper [60]), the solid isotropic material with penalization 

(SIMP) approach [15, 25] has become popular and been widely used. Similarly as the SIMP 

approach, artificial piezoelectric material models with penalization on piezoelectricity have 

been introduced to the topological design of piezoelectric structures [61, 62], with which the 

intermediate densities of piezoelectric materials can be effectively suppressed during the 

optimization process. Based on these and similar models, the topology optimization of 

piezoelectric material distribution has been successfully applied in the design of the 

piezoelectric actuators/sensors [63, 64] and energy harvesters [65-68]. Besides, Ou and Kikuchi 

[69] proposed an integrated design procedure combining the homogenization-based topology 
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optimization method and an independent modal space control.  

Some studies have been devoted to reduce the structural vibration with active control by 

optimizing the piezoelectric material distribution. For instance, Silva and Kikuchi [70] 

introduced an electromechanical coupling factor into the topology optimization of piezoelectric 

material distribution. Wang et al. [71] studied the optimal piezoelectric actuators/sensors 

distribution under CGVF control with a genetic algorithm. Drenckhan et al. [71] used the 

homogenization method to optimize the piezoelectric actuator placement on a beam with 

proportional feedback control. Mello et al. [72] proposed a topology optimization methodology 

to design the piezoresistive membrane and flexible substrate simultaneously for maximizing 

the sensor sensitivity to external loading. Zhang and Kang [73] considered the topology 

optimization of the piezoelectric sensor/actuator distribution with CGVF control for 

minimizing the steady-state response under harmonic loads. 

 

(c) Semi-active control 

Semi-active control is between the active control and the passive control. It also requires 

additional control energy; however, the energy is not directly applied to the system through the 

actuator. Instead, the actuator is used to change the system's stiffness effect, damping effect, or 

local resonance characteristics to achieve control. Semi-active control mainly has the 

advantages of low price, low energy consumption, small volume and weight. Commonly used 

semi-active control elements include: controllable elastic and inertial elements (such as shape 

memory alloys), controllable dampers (such as magnetorheological, electrorheological 

dampers), controllable dynamic absorbers and so on. 

Many studies have been devoted to the vibration control of plate/beam structures 

incorporating MR or ER fluid layers. Yalcintas and Dai [74, 75] studied the dynamic responses 
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of a simply supported beam comprising a layer of MR and ER fluid using an energy approach. 

Ying et al. [76] carried out numerical simulations of the micro-vibration response of a 

stochastically excited sandwich beam with a MR elastomer core. Rajamohan et al. [77, 78] and 

Hoseinzadeh and Rezaeepazhand [79] investigated finite element modeling of a laminated 

composite structures containing fully and partially treated MR fluid layer. Yeh [80] discussed 

vibration characteristics and MR damping effects of sandwich rectangular plates with MR 

elastomer damping treatment. These studies have proved that the structural dynamic 

performance can be improved by including MR or ER fluid layers. It was also shown that the 

vibration characteristics can be significantly changed by adopting partially treated MR fluid 

layer [81]. Clearly, for further improving the overall semi-active control performance, it is 

highly desirable to determine the best locations and geometries of the MR (or ER) segments. 

This just highlights the need to optimize the layout of MR/ER layers in semi-active control 

applications.  

Layout design optimization of MR/ER layers in sandwich plates has been considered in a 

few academic studies. An early attempt was done by Gong and Lim [82], who optimized the 

lengths and locations of the MR fluid segments for achieving relatively higher natural 

frequencies in a sandwich beam using analytical and experimental results. In more recent 

studies, Snamina [83] optimized the location of an active MR fluid patch in a sandwich plate 

for suppressing selected vibration modes with direct search. Rajamohan et al. [84] developed 

an optimization method based on sequential quadratic programming and genetic algorithms for 

determining the optimal location of MR fluid segments in a partially treated MR sandwich 

beam to maximize the modal damping factors. In general, existing optimization methods can 

only handle a relatively small number of design variables, thus limiting the control performance 

improvement. For achieving the best overall control performance, more advanced optimization 

techniques should be developed, such as topology optimization. Up to now, only a few studies 

considered this topic, for example, Zhang and Kang [85] investigated topology optimization of 
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the magnetorheological (MR) fluid layer in a sandwich plate for improving the semi-active 

vibration control performance. 

 

1.3.2 Microstructures design of phononic crystals 

 Phononic crystals (PnCs) [7] exhibit band gap effects that can obstruct the propagation of 

sound and elastodynamic waves in specified frequency regimes. PnCs have potential in a wide 

range of practical applications, such as sound and vibration reduction [86, 87], waveguides and 

filters [88], and acoustic cloaks [89, 90], their applications can be found in Fig. 1.8 . The 

microstructures and material components of PnCs, as a class of artificial periodic composite 

material, should be designed and manufactured to satisfy the requirements of applications. The 

development of analysis and design methods for PnCs is thus an important and challenging 

topic. 

 

Fig. 1.8 Phononic crystal material and bandgap structure: (a) Kinematic sculpture [91]; (b) 

Acoustic metamaterials [92]; (c) L-shaped acoustic wave waveguide microstructure [93]; (d) 

Phononic crystal microstructure with negative stiffness and mass [94]; (e) Cylindrical acoustic 

cloak for surface waves [95]; (f) Three-dimensional acoustic ground cloak [96]. 



 

20 

 

A general phononic crystal material microstructure design method is: Based on the 

formation mechanism of phononic crystals (the principle of Bragg scattering [7] and local 

resonance [2, 8]), Studying the influence of the geometric and physical properties of different 

material components on the bandgap characteristics, find a kind of initial microstructures with 

a specified bandgap, and then a microstructure of the PnCs can be obtained through the 

parameters design and optimization. Some good performance phononic crystal materials have 

been designed and manufactured in some studies by adjusting the volume fraction of the 

component materials, lattice constants, the shapes of scatterers. For example, Wen and Wang 

studied the influence of the volume fraction and lattice size on the start and cutoff frequencies 

of the bandgap for one-dimensional PnCs. Jensen[97] performed the simulation of acoustic 

bandgap characteristics of two-dimensional periodic structures with the springs-masses model. 

Chocano[98] designed the acoustic cloak by optimizing the distribution of aluminum columns 

in the structure based on genetic algorithms. The above research works provide groundbreaking 

basis for the analysis and design of the phononic crystal structure, but limited by the total 

number of variables, it is difficult to achieve a substantial increase of the bandgap performance. 

Thus, the topology optimization techniques are necessary to be introduced into the 

microstructure design of PnCs. 

Topology optimization has been successfully applied to the design of PnCs [97, 99-101]. 

In recent years, many novel and attractive designs have been produced using topology 

optimization methods [102]. For instance, Jensen and Sigmund [97, 103] first proposed a 

topology optimization method based on solid isotropic material interpolation with penalization 

(SIMP) for the design of one- and two-dimensional band gap structures and PnCs. Hussein et 

al. [104] and Dong et al. [105, 106] employed the genetic algorithms based topology 

optimization method for the design of the unit cell of PnCs with a maximum band gap. Li et al. 

[107, 108] employed a bidirectional evolutionary structural optimization (BESO) method to 

optimize the design of phononic band gaps with a specified bulk or shear modulus constraint. 
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Hedayatrasa et al. [109] presented a study on topology optimization and experimental 

validation for achieving a maximum band gap and in-plane stiffness design of porous phononic 

plates. In addition, PnC-based functional devices, such as wave filters [99, 110], waveguide 

tubes [111], multiphase architected materials for energy dissipation [112], and self-collimation 

devices [113], have also been designed via topology optimization.  

  

1.3.3 Topology optimization of piezoelectric smart structures under active control 

Topology optimization of piezoelectric smart structures has received increasing attention. Early 

works in this field include topology optimization penalization models for piezoelectric 

materials [67, 70] and structural static deformation control with piezoelectric actuators [114, 

115]. For example, Kögl and Silva [61] proposed a piezoelectric material penalization model 

for topology optimization of the piezoelectric constant and polarization of piezoelectric 

actuators. Ruiz et al. [116] proposed a topology optimization method for designing in-plane 

piezoelectric transducers for static response control by simultaneously optimizing the load-

bearing structure and the electrode profile over piezoelectric material. Mello et al. [117] 

presented topology optimization of a quasi-static piezoelectric transducer configuration 

attached to a metallic plate. Some researchers also considered topology optimization of 

piezoelectric structures under active vibration control. Wang et al. [71] studied topology 

optimization of the piezoelectric actuator/sensor configuration for structural vibration reduction 

based on constant gain velocity feedback (CGVF) control using a genetic algorithm. Donoso 

and Sigmund [118] presented a parametric optimization model for finding the optimal thickness 

and width profile of piezoelectric bimorph actuators with active damping to reduce the tip 

deflection. Takezawa et al. [59] proposed a method for shape optimization of piezoelectric truss 

structures for vibration reduction based on an energy recycling-type semi-active control. Zhang 

and Kang [119] investigated the optimal layouts of piezoelectric actuator/sensor layers to 
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reduce the transients dynamic response based on active control. 

 

1.4 Robust topology optimization  

Robust topology optimization is an important and challenging topic in structural design. In 

conventional topology optimization, it is assumed that the external loads and environmental 

conditions are deterministic. In practical applications, however, they usually exhibit large 

uncertain variability. This raises the need of the topology optimization considering load 

uncertainties. There are two major non-deterministic structural optimization frameworks, 

namely reliability-based design optimization (RBDO) [120, 121] and structural robust design 

optimization [122, 123]. In particular, robust optimization aims to generate optimal designs that 

are less sensitive to system variability, or perform as required even in the worst-case scenarios. 

 

1.4.1 Robust optimization for different types of uncertainties 

There may be three types of uncertainties for non-deterministic structural optimization 

problems: (I) material uncertainties, it can be considered simply as uncertain parameters or 

random fields [124, 125]; (II) boundary conditions, including uncertain loads [126-129] and 

imperfect elastic supports [1]; (III) geometry conditions, it can be considered as manufacturing 

errors that is important when the structural response is sensitive to the structural topology [2-

4]. 

 Robust topology optimization methods have been employed to generate robust structural 

configurations for these uncertainties. For instance, Jalalpour and Tootkaboni [130] presented 

a computationally efficient method for reliability-based topology optimization for continuum 

domains under material property uncertainty, where the response statistics are estimated with 
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second-order stochastic perturbation. A robust topology optimization algorithm was also 

proposed by Changizi and Jalalpour [131] for frame structures under geometric or material 

uncertainties. Wu et al. [132] proposed a new non-probabilistic robust topology optimization 

approach for structures under interval uncertainty using the expansion of Chebyshev 

polynomials, and the method was also extended to the level-set based topological design of 

metamaterials under hybrid uncertainties of material [133]. 

Among all the uncertainties typically treated in non-deterministic structural optimization 

problems, the load uncertainty is often considered as the most significant type of uncertainties 

in practical structural design problems [134]. Given precise statistical information, the load 

uncertainty can be described by a probability distribution function and well treated with 

reliability-based method [135, 136]. In this case, some useful techniques can be used to improve 

the computational efficiency in certain circumstances, including univariate dimension reduction 

[137] and analytically derived sensitivities [127]. 

In robust optimization considering manufacturing errors, there are several typical ways to 

account for spatially varying boundary shapes. In the density-based topology optimization 

framework, a projection density filter (such as the Heaviside projection function [44,45] ) can 

be employed to simulate the under-etching and over-etching of structural boundary errors 

during the manufacturing process [21]. In the framework of level-set methods, a random 

velocity method [46] or a stochastic level set perturbation model [33] can be used to model 

geometric uncertainties of structural boundaries. The above methods provide sharp and clear 

boundaries in robust structural design. However, for structures composed of multiple material 

phases, there are usually continuous diffuse regions between material phases in real applications, 

and it is thus necessary to introduce diffuse regions into the optimization model when 

considering manufacturing-related uncertainties.  
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1.4.2 Robust optimization against probability and non-probability uncertainties 

In the analysis and optimization design of engineering structures considering uncertainties, 

one basic step is to establish a suitable mathematical model to deal with uncertain factors. 

Usually, there are several types of models, including Mathematical statistics based probability 

model, non-probabilistic models, and fuzzy models. 

Probabilistic models are usually built on the basis of probability density function 

information. The uncertainty information is generally represented through a random variable or 

random field with a certain probability distribution, and the response of the structure is also 

assumed to be a random distribution. Then, the statistical characteristics, such as the mean, the 

variance, and the failure probability, are solved with the statistical theories. For example, the 

Material properties uncertainty can be represented through with the probability density function 

and covariance function, as shown in Fig. 1.9. 

 

Fig. 1.9 Material properties uncertainty based on random field models. 

 

Previous studies have contributed to structural robust designs with random material 

distributions. Chen et al. [137], for example, proposed the level-set-based robust shape and 

topology optimization method for structures and compliant mechanisms, where the Karhunen–

Loeve (K-L) expansion is employed to characterize the random material property field and the 
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univariate dimension-reduction method is adopted in the analysis of the statistical moment. 

Zhao and Wang [128] proposed a robust topology optimization approach considering random 

field loading uncertainty based on Karhunen-Loeve expansion. Schevenels et al. [138] 

presented a robust topology design method of macro-/micro-structures, accounting for spatially 

varying manufacturing errors. In their method, the random field is discretized into uncorrelated 

random variables using the expansion optimal linear estimation (EOLE). Tootkaboni et al. [125] 

proposed the topology optimization method of continuum structures to produce robust designs 

in the presence of random material properties by combining polynomial chaos expansion (PCE) 

with the topology optimization method. Keshavarzzadeh et al. [139] comprehensively studied 

the computational framework for robust- and reliability-based design optimization with 

intrusive and non-intrusive PCE approaches and extended their method to the topological 

design of continuum structures under uncertainty [140]. 

However, in many practical engineering design problems, the precise probability 

distribution of uncertain fields are not available due to limited number of sample data [141]. A 

typical example in aerospace engineering is illustrated in Fig.1.10, in which sufficient 

probability information of uncertain excitations actually exerted on the payload structure during 

different stages of a launching process can be hardly obtained through ground experiments. 

Moreover, the load uncertainties are often bounded in nature. For description of these 

uncertainties, probabilistic models with interval bounds can be applied under certain 

assumption of probability distribution. However, they may lead to unreliable results when no 

sufficient samples are available. In such circumstances, a more realistic option is to describe 

these unknown-but-bounded load uncertainties with ellipsoidal convex models [142]. For 

example, two types of unknown-but-bounded excitations modelled with ellipsoidal convex 

models for the dynamic optimization problems are shown in Fig. 1.11. Here, the ellipsoidal 

models provide a smooth and differentiable mathematical representation of the bounds of the 

uncertainties, and are thus enable gradient-based optimization algorithms to be used in 
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reliability analysis and design optimization. However, structural robust optimization 

considering uncertain-but-bounded loads often leads to optimization problems under worst-

case scenario of loading condition, which usually requires to be found by a global optimization 

algorithm.  

 

Fig. 1.10 Uncertain dynamic loads exerted on the payload structure during a launch 

mission. 
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Fig. 1.11 Structures under unknown-but-bounded dynamic loads or dynamic ground 

accelerations. 

 

In most works on structural optimization regarding the worst-case loading condition, a 

double-loop optimization formulation is treated [1, 135, 143]. For example, Jung and Cho [144] 

developed a reliability-based topology optimization of geometrically nonlinear structures under 

loading uncertainty. Luo et al. [1] performed continuum topology optimization under a non-

probabilistic reliability constraint based on the multi-ellipsoidal convex model, and the worst-

case load was found by solving the inner-loop mathematical programing problem. In real 

applications, the double-loop optimization problems will be expensive (if possible) to solve 

[143], and the sensitivity of the outer-loop optimization is even more difficult to be determined 

since it has no explicit expression. Thus, some researchers developed various single-loop 

approaches using the sequential approximation programing (SAP) method [145] to improve the 

computational efficiency of the optimization problem. However, for robust topology 

optimization problems with uncertain-but-bounded loads, finding the worst-case loads directly 

instead of solving the inner-loop problem may be a more reasonable choice [146]. Takezawa et 

al. [147] first proposed a maximum eigenvalue-based approach for continuum topology 

optimization under uncertain static loads with zero nominal values. Brittain et al. [148] 

considered a similar problem by solve the inner-loop problem directly based on Karush-Kuhn-

Tucker optimal conditions. Kocvara [149] and Zhao et al. [150] extended these methods into 

cases of uncertain static loads with nonzero nominal parts. 

 

1.5 Thesis organization 

This dissertation presents robust topology optimization of macrostructures and microstructures 

for dynamic problems, and the topology optimization of piezoelectric smart structures is also 
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performed. In this chapter, the motivation for this research and some fundamental concepts are 

briefly introduced. The other chapters are organized as follows. 

Chapter 2 investigates robust topology optimization of structures subjected to unknown-

but-bounded dynamic loads/ground accelerations. The robust topology optimization 

formulation considering uncertain-but-bounded excitation is presented using the ellipsoidal 

convex model. Then the single-loop reformulation of the originally nested problem on the basis 

of inhomogeneous eigenvalue analysis is proposed. Sensitivity analysis for the worst-case 

dynamic response is derived. Numerical examples are also presented to demonstrate the validity 

of the proposed method, and the obtained robust optimal solutions are compared with their 

deterministic counterparts. 

Chapter 3 investigates a robust topology optimization method for designing the 

microstructures of PnCs by considering random-field material properties. The deterministic 

band analysis method of PnCs with the FEM is first presented. Then the stochastic response 

analysis method combining the EOLE method with the PCE approach for the random material 

property distribution is addressed. The robust formulation of the topology optimization for 

PnCs with uncertainties and derives the sensitivity analysis for the stochastic band gap response 

is proposed. Numerical examples is presented to demonstrate the validity of the proposed robust 

optimization method and discusses robust designs for different band gap orders and different 

waves propagating modes. 

In Chapter 4, a phase-field-based topology optimization method of vibrating structures 

that reduces the dynamic performance variability under diffuse-region uncertainties is 

developed. Herein, the spatial distribution of the widths of diffuse regions in a multi-material 

structure is first represented by a random field and then discretized into uncorrelated stochastic 

variables using the expansion optimal linear estimation method; stochastic response analysis is 

then conducted with polynomial chaos expansion. The stochastic structural dynamic responses 
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and the corresponding sensitivities are evaluated by polynomial chaos expansion based on finite 

element analysis at each sampling point. Numerical examples show that the proposed method 

generates meaningful optimal topologies for structural dynamic robust optimization problems 

with the framework of the phase-field method. The phase field-based method is applied into 

the robust topological microstructural design of PnCs under diffuse region uncertainties. 

In Chapter 5, topology optimization of the electrode coverage over piezoelectric patches 

attached to a thin-shell structure is proposed to reduce the energy consumption of active 

vibration control under harmonic excitations. The constant gain velocity feedback control 

method is employed, and the structural frequency response under control is analyzed with the 

finite element method. In the mathematical formulation of the proposed topology optimization 

model, the total energy consumption of the control system is taken as the objective function, 

and a constraint of the maximum allowable dynamic compliance is considered. The sensitivity 

analysis for total energy consumption of the active control system is derived. Numerical 

examples are presented to demonstrate the validity of the proposed method, and the differences 

between the proposed optimization model and the traditional volume minimization model are 

also discussed based on the numerical solutions. 

Finally, Chapter 6 summarizes the findings in this dissertation, and describes promising 

avenues to explore in future research. 
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2 Robust topology optimization of vibrating structures 

subject to uncertain dynamic loads 

In this chapter, we consider the robust topology optimization of structures subjected to 

unknown-but-bounded dynamic loads/ground accelerations. Structural robust optimization 

considering uncertain-but-bounded loads often leads to optimization problems under worst-

case scenario of loading condition, which usually requires to be found by a global optimization 

algorithm. However, structural dynamic topology optimizations under bounded load 

uncertainty have not been treated in literature, partly because they have even greater challenges 

in finding the worst-case scenario. This is due to the fact that the outer-loop optimization 

problem strongly depends on the solutions of the inner-loop problem, and the worst-case load 

is also remarkably affected by the material distribution. As a result, the interdependence of the 

double-loops leads to convergence difficulties and high computational costs. 

In this chapter, the excitation uncertainty is described with an ellipsoidal convex model. A 

nested double-loop problem is first formulated for the robust topology optimization. Since the 

dynamic compliance may become negative when the external excitation frequency is higher 

than the structural fundamental frequency, the absolute dynamic compliance is taken as the 

objective function. We then propose a method to seek the worst-case objective function value 

directly by evaluating the maximum/minimum eigenvalues and the corresponding eigenvectors 

of an inhomogeneous eigenvalue problem. Here, a generalized compliance matrix is introduced 

as a mapping of the structural dynamic compliance matrix to the load uncertainty space. The 

outer-loop optimization problem is solved by a gradient-based mathematical programming 

method. To this end, the sensitivity analysis of the worst-case objective function value is derived 

with the adjoint variable method.  
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2.1 Robust topology optimization formulation 

2.1.1 Structural frequency response under uncertain excitation 

The load uncertainty is the most significant type of uncertainties in many practical structural 

design problems. The ellipsoid convex models are suitable to describe uncertain-but-bounded 

load variations [151]. Recently, a mathematical formulation for constructing the minimum-

volume ellipsoidal model from measured data was proposed by Kang and Zhang [152]. 

Two types of bounded uncertain external loads may be encountered in structural design 

problems, namely those with zero and nonzero nominal values, as shown in Fig. 2.1. The latter 

ones are more common in practice but more difficult to handle. In this study, we consider the 

robust topology design of structures under uncertain-but-bounded harmonic excitations with 

nonzero nominal values. Here, the loading condition with zero nominal values can be regarded 

as a specific case.  

 

Fig. 2.1 Uncertain loads with zero and nonzero nominal values 

 

In this study, we consider a structural design problem under uncertain-but-bounded 

harmonic external excitation or ground acceleration, as shown in Fig. 1.11.  
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(a) Uncertain external excitations 

Based on the ellipsoidal convex models, an uncertain harmonic excitation i tep  can be 

divided into a nominal part 0
i tep  and a bounded variation part i teWq , as 

 0    1.i t i te ep p Wq q  (2.1) 

Clearly, the bound of the uncertain loads expressed by Eq. (1) forms an ellipsoid in the 

uncertainty space. Here, 3q R  is referred to as the normalized uncertain load vector defined 

in the standard uncertainty space; 3 3W R  is a positive semi-definite matrix defining the 

orientation and specific ratio of the ellipsoidal model [1].  

We consider an n -DOF dynamic system, thus the global excitation vector ( ) i tt ef F  

has the dimension 1n . The global load magnitude vector F  can be related to the mentioned 

load magnitude vector by introducing a matrix 3
p

nH R  as 

 p 0 ,i t i t i te e eF Hp H p Wq  (2.2) 

 

T

p

0 1 0 0 0
0 0 1 0 0 ,
0 0 0 1 0

H

T1 0 0 0
,0 1 0 00 1 0 00 1 0 0

0 0 1 00 0 1 0
 (2.3) 

where H  has value 1 at the entries of loaded degrees of freedoms and 0 elsewhere. 

The governing equation for the finite element model of a damping-free structure under 

uncertain external excitations is 

 p 0 ,i t i tt t e e+ =Mu Ku F H p Wqu Kt  (2.4) 
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where n nM R   and n nK R   are the mass matrix and the stiffness matrix, respectively;

1ntu C  and 1ntu Cu Ct  are the vectors of displacement and acceleration, respectively. We 

are concerned with only the steady-state response tu  , which can be expressed as

ei ttu U  , with the vibration amplitude 1nU R  . Thus the governing equations of the 

dynamic system can be simplified as  

 2
p 0 = ,M K U F H p Wq  (2.5) 

where the expression 2M K  is known as the structural dynamic stiffness matrix.  

 

(b) Uncertain ground accelerations 

For the ground acceleration case, after introducing a connecting matrix 3
a

nH R , we 

express the load vector ( )tf  as  

 a 0 1 1( ) e ( )e ,  1,i t i ttf F MH a Wa a  (2.6) 

 

T

a

1 0 0 1 0 0
0 1 0 0 1 0 .
0 0 1 0 0 1

H
1 0
0 10 10 1
0 00 0

 (2.7) 

Here, 1a  is the normalized uncertainty vector of the ground acceleration. 

Furthermore, the governing equation for the steady-state response can be rewritten as 

 2
a 0 1( ).M K U F MH a Wa  (2.8) 

Equations (2.5) and (2.8) can be solved with the model superposition method [40, 49] or 

the direct method [153]. In this study, we employ the latter approach. 
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2.1.2 Optimization formulation 

We intend to optimize the structural topology for minimizing the frequency response under 

the worst-case dynamic excitation. The dynamic compliance T 2=C U K M U  has been 

used by many researchers in dynamic topology optimization. However, the dynamic stiffness 

2K M  may become negative semi-definite if the excitation frequency  is sufficiently 

higher than the fundamental frequency of the structure. This will make the dynamic compliance 

negative [154]. Considering this possibility in the optimization formulation, we chose the 

absolute value of the dynamic compliance as the objective function: 

 
-1T 2 T 2 = = .f C U K M U F K M F  (2.9) 

Here, minimizing the dynamic compliance is equivalent to maximizing the dynamic 

stiffness of structures subjected to time-harmonic external loads of given frequency and 

amplitude. Using the dynamic compliance as the objective function was first proposed by Ma 

et al. [155] and then extended to represent the damping effect of the vibrating system. Recently, 

the dynamic compliance has been re-defined as a more general form with a complex function 

by Takezawa et al. [156]. For the uncertain external excitation case, the absolute dynamic 

compliance in Eq. (2.9) can be further written as 

 

-1T T 2
0 p p 0

T
0 p 0

 

       = ,

C p Wq H K M H p Wq

p Wq Q p Wq
 (2.10) 

where T 2
p p p( )Q Z K M Z   with 2 1

p p=( )Z K M H  . In what follows, we refer to the 

matrix pQ  as the generalized compliance matrix to map the structural dynamic compliance 
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matrix to the load uncertainty space. 

 For the uncertain ground acceleration case, the absolute dynamic compliance reads 

 
T 2 1

a 0 1 a 0 1

T
0 1 a 0 1

 ( ) ( ) ( )

       = ( ) ( ) ,

C MH a Wa K M MH a Wa

a Wa Q a Wa
 (2.11) 

where the generalized compliance matrix T 2
a a ( ) aQ Z K M Z , with 2 1

a a=( )Z K M MH .  

Taking the uncertain ground acceleration case as example (which is more complex), we 

state the robust topology optimization problem as  

 

1 1

e e

T
0 1 a 0 11 1

v
1 1

e

min    = max max ( ) ( ) ,

s.t.      0,

          0 1 1,2,...,   ,

N N

e e e
e e

e

f C

x V f V

x x e N

x a a
a Wa Q a Wa

 (2.12) 

where the vector 
e

T

1 2, , ..., Nx x xx   denotes the element-wise density design variables 

describing the structural layout, with eN  being the total number of finite elements in the design 

domain. The symbol vf  is the volume fraction ratio and eV  denotes the volume of the the  

element. The lower bound of the design variables is set to be 610x  in this study.  

The conventional power-law penalization model in the Solid Isotropic Material with 

Penalization (SIMP) model may result in spurious local vibration modes due to inconsistent 

penalization of the stiffness and the mass matrices [5].Hence the Rational Approximation of 

Material Properties (RAMP) model [32] is adopted in the optimization formulation. It has a 

nonzero gradient for the zero density value, and is thus capable of removing localized vibration 

modes in low density value elements. In the RAMP model, the Young’s modulus is interpolated 

as 
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e
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Here, voidE   and solidE   denote the Young’s modulus in void elements and fully solid 

elements, respectively. solidx   is the interpolated mass density, and the material density 

penalization coefficient is set to be E 4p  . The RAMP model provides a consistent 

penalization of the stiffness and the mass matrices in the areas of low density elements, which 

can avoid the local vibration modes 

Thus, the global stiffness matrix K  and mass matrix M  are given by 
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Here, eK  and eM  are the element stiffness matrix and element mass matrix computed 

with the properties of the fully solid material, respectively.  

 
so

T

Ω

T
lΩ id

dΩ,

dΩ.

e

e

e

e

J

JN

K

M

B DB

N
 (2.15) 

Here, B   and N   are the displacement-strain matrix and shape function matrix in the 

local coordinate system, respectively. The notation D  is the usual elasticity matrixes of the 

solid material, and J   is determinant of the Jacobian matrix of the corresponding iso-

parametric transformation.”   

 

2.2 Single-loop reformulation with inhomogeneous eigenvalue problem 

The robust optimization problem (2.12) is by definition a nested double-loop optimization 
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problem. The inner-loop problem 
1

T
0 1 a 0 11

max ( ) ( )
a

a Wa Q a Wa  is often called “anti-

optimization” and aims to find the worst-case excitation combination (usually strongly 

depending on the structural topology), while the outer-loop is to optimize the material 

distribution under such a worst-case loading condition with a gradient-based mathematical 

programming algorithm. In particular, the inner-loop problem should be solved to the global 

optimum, in order to ensure that the “real” worst-case scenario is found. This presents a great 

challenge to the solution of the robust topology optimization. This thus motivates the study of 

a solvable reformulation of the originally nested optimization problem, which will be 

elaborated in what follows. 

Without loss of generality, we now consider the uncertain ground acceleration case. The 

objective function of problem (2.12) needs to find both the maximum and the minimum values. 

The Lagrange function of the dynamic compliance reads 

 T T
0 1 a 0 1 1 1( ) ( ) 1 .C a Wa Q a Wa a a  (2.16) 

The Karush-Kuhn-Tucker optimality condition can be established by differentiating the 

Lagrangian function (2.16) with respect 1a  as 

 a 1 a 0 1
1

2 2 2 .C WQ Wa WQ a Ia
a

 (2.17) 

Thus, the extreme values of Eq. (2.16) can be obtained by solving the following problem 

 
T T

a 1 a 0

T
1 1

,

1.

I W Q W a W Q a

a a
 (2.18) 

To show the nature of Eq. (2.18), we simplify it as Α b   where 

T
aΑ W Q W  , 0a   and T

a 0b W Q a  . Eq. (2.18) is called an inhomogeneous 
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eigenvalue in literature [157]. Effective solution methods of inhomogeneous eigenvalue 

problem have been developed [158]. 

It has been proved by Kocvara [149] and Thore et al. [159], the extreme values of the 

objective function can be obtained by the eigenvectors max
1a  and min

1a  associated with the 

maximum eigenvalue max   and the minimum eigenvalue min   of the eigenvalue problem 

(2.18) as 

 
max T max

max 0 1 a 0 1

min T min
min 0 1 a 0 1

   = ( ) ( ) ,

   = ( ) ( ) .

C

C

a Wa Q a Wa

a Wa Q a Wa
 (2.19) 

If the nominal part of the uncertain excitation is a zero vector ( 0a 0  ), Eq. (2.18) 

degenerates into a standard eigenvalue problem. The topology optimization of a structure under 

static loads that have zero nominal values and are bounded by a circle has been treated by 

Takezawa et al. [147]. However, in presence of non-zero nominal part ( 0a 0 ), Eq. (2.18) 

takes the form of the aforementioned inhomogeneous eigenvalue problem.  

A simple way to compute all the eigenvalues of such an inhomogeneous eigenvalue 

problem is to convert it into a quadratic eigenvalue problem expressed by [158] 

 T TT T T T T
0 0 a a 2 2

.
2

1 10 I a a

W Qa W Qa W Q W W QW W Q W a a2 22 22

 (2.20) 

After the eigenvalues of the original inhomogeneous eigenvalue problem (2.18) are 

obtained by solving the eigenvalue problem (2.20), the eigenvectors 1a  of the corresponding 

eigenvalues can be further evaluated as follows 

 

1T T
a a 0

1

,

.

a W Q W I W Q a

aa
a

Ta W QT

a .
a

 (2.21) 
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The non-symmetric eigenvalue problem (2.20) can be solved with a standard algorithm, 

and the computational cost would be very low since the dimension of the problem is usually 

small. For instance, the dimension of the inhomogeneous eigenvalue problem is at most 6 6 , 

which is the case when uncertainties arising from both transitional and rotational excitations 

are considered in a 3D problem. On the contrary, such a case would be extreme difficult to be 

treated with conventional double-loop approaches relying on anti-optimization techniques to 

find the worst-case scenario. 

Through above derivation and solution procedures, we can determine the extreme dynamic 

compliance with  max
1a  and min

1a  in Eq. (2.19), and thus we rewrite the objective function in 

optimization problem (2.12) with 

 max min max max .f C C  (2.22) 

Such an objective function is not smooth and this poses a major difficulty when solving 

the optimization problem with a gradient-based algorithm. To circumvent this, the K-S 

aggregation function [160], which provides a sufficiently smooth conservative envelope, is 

adopted to approximate the maximum value of the objective function as  

 max min
max min

1max  KS = ln e e ,C Cf C C  (2.23) 

where  is the aggregation parameter. The choice of aggregation parameter has been discussed 

in detail in Poon and Martins [161]. We set =10  in the numerical examples. 

With the objective function (2.23), the nested double-loop optimization problem (2.12) 

reduces to a differentiable single-loop optimization problem as 
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This method achieves a relatively high efficiency mainly due to the fact that the dimension 

of the eigenvalue problem to determine the worst-case load combination is only the number of 

uncertain loads. As comparison, in the double-loop methods [1], the computational model of 

the gradients of the objective function w.r.t. the uncertain load is of the order of the total degree 

of freedom. The comparison between the two methods will be given in the numerical examples. 

 

2.3 Sensitivity analysis 

The optimization problem in (2.24) is solved by a gradient-based mathematical programming 

algorithm, which requires sensitivity analysis of the objective function with respect to the 

design variables. For a specified excitation, the sensitivity of the absolute dynamic compliance 

to the the  element gives (taking ground acceleration as example) 

 

T
0 1 a 0 1

T Ta 1
0 1 0 1 0 1 a

( ) ( )

     =  ( ) ( ) 2( ) .

e e

e e

C
x x

x x

a Wa Q a Wa

Q aa Wa a Wa a Wa Q W
 (2.25) 

Here, only terms / exQ  and 1 / exa  need to be further derived. 

 

(a) Derivative of the generalized compliance matrix / exQ  
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The term T 2
a a a( )  Q Z K M Z   (with 2 1

a a=( )Z K M MH  ) cannot be easily 

evaluated directly. To overcome this difficulty, we rewrite the matrix Q   by including the 

product of an adjoint matrix 3nL R  and the governing equation as  

 T 2 T 2
a a a a a( ) ( ) + .Q Z K M Z L K M Z MH  (2.26) 

Differentiating the matrix Q   with respect to the design variable e( 1, 2, ..., )ex e N  

gives 

T 2
T aT 2 T Ta a

a a a a

   ( )  ( ) .
e e e e ex x x x x

MHQ Z K M MMH L K M Z L Z L H (2.27) 

Let 2 1
a a=( )L Z K M MH , we rewrite Eq. (2.27) as 

 T T 2 Ta
a a a a a a

     .
e e e e ex x x x x

Q M K M MH Z Z Z Z H  (2.28) 

Here, the derivatives of the mass matrix and the stiffness matrix with respect to the design 

variables can be calculated as 

 
e

1

,
N

e
eex

M M  (2.29) 

 
e

E
2

1 E E

1 1 .
1 (1 ) 1 (1 )

N
e

e
ee e e

p x x
x p x p x
K K  (2.30) 

 

(b) Derivative of the normalized uncertainty vector of ground acceleration 1 / exa  

Differentiating both sides of the first equation in Eq. (2.18) with respect to the design 

variable e( 1, 2, ..., )ex e N , it yields  
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1T T a1

a 0 1 1 ,
e e ex x x

Qa I W Q W W a Wa Ia  (2.31) 

where the term ex  can be calculated as follows. 

Differentiating both sides of the second equation in Eq. (2.18) with respect to 

e( 1, 2, ..., )ex e N , one can rewrite Eq. (2.18) as 

 
1T T

1 a a 0 ,a I W Q W W Q a  (2.32) 

 T 1
1 0.

ex
aa   (2.33) 

Substituting (2.32) into (2.33) yields  

1T
1aT T T T

1 a 0 a 0

2 1T T T T T T Ta a
1 a a 1 1 a 0

      

0.

e e

e e e

x x

x x x

I W Q W Qa W Q a I W Q W W a

Q Q
a I W Q W I W W I W Q W a a I W Q W W a

(2.34) 

Then the expression of ex  can be given as  

 

1 1T T T T T Ta a
1 1 1 a 0

1T T
1 a 1

.e e

e

x x
x

Q Qa I W QW W Wa a I W Q W W a

a I W Q W a
(2.35) 

By substituting Eqs. (2.27), (2.31) and (2.35) into (2.25), we can obtain the derivative 

of the absolute dynamic compliance.  

For the aggregated function of the maximum/minimum absolute dynamic compliance, its 

derivative becomes  
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 max maxmin minmax minC C
e e e e .C CC C

e ee

f
x xx

 (2.36) 

 

2.4 Numerical examples 

In this section, numerical examples are presented to illustrate the validity of the proposed 

sensitivity analysis procedures and the topology optimization formulation. In all the examples, 

four-node quadrilateral (Q4) elements are used in the finite element modeling. The GCMMA 

optimizer [162] is employed for solving the optimization problem. The optimization process 

will be terminated when the relative difference of the objective function values between two 

adjacent iteration steps satisfies the convergence criterion 4
new old old/ 5 10f f f .  

 

2.4.1. Sensitivity analysis of a clamped bracket with uncertain ground acceleration 

The first example considers the sensitivity analysis of the upper-edge clamped rectangle 

bracket under bounded ground accelerations, as shown in Fig. 2.2. The design domain has 

geometrical dimensions 1 3 ml   and 2 2 ml  . The material (aluminum) has the Young’s 

modulus 10 2
solid 6.9 10  N/mE  , Poisson’s ratio solid 0.33  , and the mass density 

3
solid 2700 Kg/m . An uncertain time-harmonic ground acceleration is applied, which has a 

nominal part 0e
i ta   (

T 2
0 = 0  10 m/sa  , p2 f   and pf  =40 Hz) and a variation part 

1e
i tWa  ( 1 1a , 28 0

=  m/s
0 6

W ). 

In order to verify the sensitivity analysis algorithm, we first calculate the derivative of the 

absolute dynamic compliance. The structure is discretized with 216eN  uniform-sized Q4 
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elements, with a total number of DOFs 494n , and the element numbers are arranged in an 

ascending order from the lower left to the upper right. Such a coarse mesh is employed here for 

ease of graphical illustration of the sensitivity analysis results. The relative densities of all the 

elements are given a uniform value of 0.5.  

The predicted values of the sensitivities 
max

( 1, 2, ..., 216)eC x e  by using the 

present method are shown in Fig. 2.3. For the purpose of comparison, the sensitivity results 

obtained using the finite difference method (FDM) with 0.1% perturbation are also given in Fig. 

5. It’s found that the sensitivity results obtained by the present method agree very well with 

those by the FDM, while the computational time cost ratio between the present method and the 

FDM is 1:30.07. Indeed, this ratio increases rapidly as the number of elements increases. 

 

Fig.2.2 Clamped rectangle bracket under uncertain ground acceleration.  
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Fig. 2.3 Sensitivities of the maximum absolute dynamic compliance 
max

C  with respect 

to element densities. 

 

2.4.2 Topology optimization of the clamped bracket with uncertain ground acceleration 

We consider the same structure as in the pervious subsection. The same uncertain time-

harmonic ground acceleration as in the pervious subsection is considered, and a concentrate 

mass 200 Kgm  is added at the middle point of the lower edge (red point in Fig. 2.2). The 

design domain is discretized now into a 60 40  finite element mesh with the total number of 

DOFs 5002n . The upper limit of the volume fraction ratio of the damping material is given 

as v 0.5f   and the initial values of the design variables are set to be 

0.5 1,2,...,2400ex e  . The sensitivity filter technique [30] with a radius of 

min 0.075 mr is applied for suppressing the checkerboard patterns and mesh dependency of 

the solution. For improving the convergence and numerical stability of the dynamic topology 

optimization, the Young’s modulus of the void phase voidE  is chosen to be void solid0.1E E  , 

and an artificial damping damping 0.001C K M   is applied at the beginning of the 

optimization process. They then gradually decrease after 20 iterations until reaching zero, and 
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it affects the final optimal solution very slightly. 

The optimization process converged after 40 iterations. The iteration histories of the 

objective function and the material volume are presented in Fig. 2.4, which shows a steady 

decrease of the objective function value during the iterations. In fact, the objective function 

value has decreased from 22.272 10 N m  for the initial design to 20.685 10 N m  for 

the final optimal solution. Some intermediate designs and the final optimal design (the 40th 

iteration) are given in Fig. 2.5. In the figures, the arrows indicate the directions of the worst-

case acceleration within the given uncertainty bound of the ellipsoid model (The blue arrow, 

green arrow and red arrow indicate the nominal part, variation part and total uncertain excitation, 

respectively). It can be observed that designs of two adjacent iteration steps may have different 

worst-case load directions but very similar topologies and shapes. It can be observed that there 

are two symmetrical extreme load cases for the initial design (there is still a little different due 

to the modelling and numerical errors), the procedure chose one of them as the worst-case one 

and optimized it. In the second iteration, the worst-case load changed to the other side, the 

optimization had to minimize the response for the case. Then in the following iterations, the 

optimal solutions switched between the two cases, as well as the differences of the two designs 

were decreasing during the process. And finally, both the two designs came to the same one. 

This trend can be also noted in Table 2.1, in which the objective function and the worst-case 

acceleration direction for the last ten iterations are summarized. Despite of the frequently 

switching of the worst-case excitation directions, the optimization process still achieved a 

steady convergence. Moreover, the optimized structure exhibits perfect symmetry, which 

implies effectiveness of the present method. 
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Fig. 2.4 Iteration histories of objective function and volume fraction ratio. 

 

    
Iteration 5 Iteration 6 Iteration 12 Iteration 13 

    
Iteration 25 Iteration 26 Iteration 39 Iteration 40 
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Fig. 2.5 Some intermediate designs and the final robust optimal design. 

Table 2.1 Objective function and worst-case acceleration direction for last ten iterations. 

Iter. Num. 
Obj. 

( 210  N m ) 
Direction of 
variation part Iter. Num. 

Obj. 
( 210  N m ) 

Direction of 
variation part 

31 0.710 (-0.911, -0.413)T 32 0.707 (0.909, -0.416)T 

33 0.702 (-0.907, -0.421)T 34 0.701 (0.906, -0.424)T 

35 0.695 (-0.904, -0.428)T 36 0.694 (0.902, -0.431)T 

37 0.690 (-0.900, -0.435)T 38 0.691 (0.900, -0.440)T 

39 0.685 (-0.898, -0.440)T 40 0.685 (0.897, -0.442)T 

 

For comparison, the optimal design for the same structures under deterministic 

acceleration (the nominal part) is shown in Fig. 2.6. Apparently, there are obvious differences 

between this deterministic optimal design and the robust optimal design shown in Fig. 2.5. 

 

Fig. 2.6 Deterministic optimal design under nominal ground acceleration.  

 

For further evaluating the change of the structural dynamic performance after optimization, 

the eigenfrequencies for the initial design and optimal design are summarized in Table 2.2. It is 
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found that the first eight eigenfrequencies all increase after optimization, and move far away 

from the specified excitation frequency (60 Hz). The absolute dynamic compliance sweep of 

the robust optimal design (obtained under P 60 Hzf  excitation) under the worst-case ground 

accelerations for each individual excitation frequency point in the range of P 20-100 Hzf  

are plotted in Fig. 2.7. For comparison, the curve of the absolute dynamic compliance for a 

fully solid design ( 1.0 for 1,2,...,2400ex e ) is also given. It is seen that the optimal design 

has a better dynamic propriety than the fully solid design in this wide frequency range. The 

worst-case accelerations and the optimal design both change as the excitation frequency 

increases. The influence of the excitation frequency will be further discussed later. 

 

Table 2.2 Comparisons of eigenvalue analysis results of the initial design and the robust 

optimal design. 

Order 
Natural frequencies of initial 

design (Hz) 

Natural frequencies of robust 

optimal design (Hz) 

1 156.0 222.2 

2 241.7 387.6 

3 365.3 405.8 

4 469.2 565.6 

5 476.7 721.0 

6 571.6 807.9 

7 664.9 908.0 

8 715.8 1025.9 
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Fig. 2.7 Absolute dynamic compliance sweep of the robust optimal design and the fully 

solid design for different excitation frequencies.  

  

In the following, we study the dependence of the optimal topology on the excitation 

frequency. Here, we consider the same structure and uncertain ground acceleration magnitude 

as mentioned, but four different excitation frequencies pf  =40, 90, 130 and 180 Hz. The 

obtained optimal solutions are shown in Fig. 2.8. It is found that the optimal design undergoes 

significant changes as the excitation frequency increases. This can be explained by the fact that 

higher-order eigenmodes may be excited by a higher excitation frequency. 

    

(a) 
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(b) 

    

(c) 

     

(d) 

Fig. 2.8 Robust optimal designs and worst-case ground accelerations obtained under 

different excitation frequencies: (a) pf = 40 Hz; (b) pf = 90 Hz; (c) pf = 130 Hz; (d) pf = 

180 Hz.   

2.4.3. Robust topology optimization of a cantilever beam with uncertain external 

excitation 

 In this example, we consider a rectangular cantilever beam, as shown in Fig. 2.9. The 

design domain has geometrical dimensions 1 2 ml   and 2 1 ml  . The structure is 

composed of the same material as in the previous examples. An uncertain external excitation is 
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applied at the bottom-right corner, and it has the nominal part 0e
i tp  

(
T5

0 =2 10 sin30 ,cos30 Np
T

N30cos30 ) and variation part ei tWq  ( 1q , 5 1 0
=10  N

0 0.5
W ), 

with the excitation frequency pf =60 Hz ( p2 f ). The design domain is discretize by a 

60 40  finite element mesh with the total number of DOFs 5002n . The upper limit of the 

volume fraction ratio of the material is given as v 0.5f  and the initial values of the design 

variables are set to be 0.5 1,2,...,2400ex e . 

 

Fig. 2.9 Cantilever beam under uncertain external excitation. 

 

The optimization process converged after 107 iterations. The iteration histories of the 

objective function and the material volume are presented in Fig. 2.10, which shows a steady 

decrease of the objective function value during the iterations. In fact, the objective function 

value has decreased from 2292.8 N m   for the initial design to 470.4 N m   for the final 

optimal design. The optimization solution and the worst-case load are given in Fig. 2.11. Again, 

the arrows indicate the directions of the worst-case excitation within the given ellipsoidal bound. 

Here, the worst-case direction of the variation part is T-0.4904, -0.8715  . The fundament 

frequency of the structure moves from 100.8 Hz for the initial design to 202.4 Hz for the optimal 
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design. 

 

Fig. 2.10 Iteration histories of objective function and volume fraction ratio. 

 

        

Fig. 2.11 Robust optimal design and worst-case excitation direction.  

 

For comparisons, we now consider two cases with deterministic loading conditions: (1) 

vertical excitation ei tp ( T52 10 0,1 Np , p=2 f , pf =60 Hz); (2) nominal excitation 

0e
i tp   (

T5
0 =2 10 sin30 cos30 Np

T
N30cos30  , pf  =60 Hz). The optimal solutions for the two 
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deterministic cases are given in Fig. 14. The dynamic compliances for the robust design and 

the two deterministic optimal designs are compared in Table 2.3. As can be seen, the robust 

optimal topology (Fig. 2.11) is similar to that obtained under the deterministic vertical 

excitation, but it has an improved dynamic compliance value in presence of uncertain 

excitations. Moreover, the robust optimal solution exhibits a different force transmission path 

as compared with the deterministic optimal solution obtained under the nominal excitation. 

(a) (b) 
Fig. 2.12 Deterministic optimal designs under (a) vertical excitation; (b) nominal 

excitation 

 

Table 2.3 Comparisons of optimal designs for the robust design and deterministic designs ( pf

=60 Hz). 

Dyn. 
compl.( N m ) 

Roubst opt. 
design (Fig. 13) 

Deter. opt. design 
under vertical 

excitation (Fig. 14 (a)) 

Deter. opt. design 
under nominal 

excitation (Fig. 14 (b)) 

uncertain 
excitation 

(worst-case) 

470.4 475.0 1013.1 

vertical excitation 526.3 500.3 4230.5 

nominal excitation 262.1 266.3 235.2 
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The double-loop method is now added to provide a comparison. As usual, the worst-load 

case is obtained with a gradient-based optimization algorithm and the adjoint sensitivity method. 

For comparison, we implement the double-loop method for this example and present the results 

in Fig. 2.13. The optimization results and the worst-case excitation obtained with the double-

loop method are basically the same with that by the present method shown in Fig. 2.11 It is 

shown that optimization process with the double-loop method converged after 104 iterations, 

and the objective function value for the optimal design is 470.18 N m ,which is nearly same 

with the objective value obtained with the proposed method. However, the double-loop method 

totally calls 3983 times of finite element analysis for finding the worst-case excitation during 

the optimization process, while the proposed method only needs to solve the low-dimension 

inhomogeneous eigenvalue problem for 107 times. 

 

Fig. 2.13 The optimal design and worst-case excitation direction for the double-loop 

method. 

 

The frequency response sweeps of the absolute dynamic compliance for the robust optimal 

design (Fig. 2.11) and the deterministic optimal design (Fig. 2.12(a)) in the respective worst-

excitation case are compared in Fig. 2.14. As shown in the figure, the robust optimal design is 

better than the deterministic design when the structures is under an uncertain dynamic 
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excitation in the whole frequency range between 40 Hz and 80 Hz. 

 

Fig. 2.14 Absolute dynamic compliance sweep of the robust optimal design (Fig. 2.11) and the 

deterministic optimal design (Fig. 2.12(a)) in the respective worst-case excitation.  

 

2.5 Summary  

This chapter deals with robust topology optimization of structures under bounded 

uncertain excitations. The uncertain excitations are modeled with a non-probabilistic ellipsoidal 

convex model. The aim of the optimization design is to minimize the absolute dynamic 

compliance for the worst-case dynamic excitation. We define the objective function by 

introducing a generalized compliance matrix. The considered robust design problem takes the 

form of a nested double-loop optimization problem, which can be hardly treated directly with 

general solution methods (in particular, the inner loop requires global optima to be found). To 

overcome this inherent difficulty, we propose a reformulation of the robust optimization 

problem by replacing the inner-loop with an inhomogeneous eigenvalue analysis for finding 

the maximum absolute dynamic compliance and convert the originally nested problem into a 

single-loop optimization problem. This reformulation ensures that the globally worst-case 
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combinations of the uncertain load variations can be found at a low cost. Thus, the worst-case 

dynamic compliance can be minimized with a gradient-based mathematical programming 

method. To this end, we have also derived the adjoint-variable sensitivity scheme of the 

inhomogeneous eigenvalue problem. Numerical examples are presented to illustrate the 

effectiveness and efficiency of the proposed framework. The obtained optimal topologies are 

also compared with conventional deterministic solutions, which shows the significance of the 

robust topology optimization. 

It should be pointed out that we consider the unknown-but-bounded dynamic 

loads/accelerations with three different components, which is a typical case in practical 

applications (for instance, all the acceleration forces acted on a structure are normally 

correlated). The proposed method is not limited by the dimensionality of the convex model and 

thus can be employed to problems with more uncertain load parameters. However, it is unusual 

to assume that the magnitudes of multiple excitations are bounded by a high-dimensional 

ellipsoidal convex model in practice. In the cases of multiple uncertain excitations, multiple 

low-dimensional ellipsoidal models can be employed to represent the uncertainties.  
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3 Robust topological microstructures design of phononic 

crystals considering material distribution uncertainty 

Most existing topology optimization methods for PnCs are implemented under deterministic 

conditions. In practical applications, however, PnCs usually exhibit a random distribution of 

material properties resulting from manufacturing processes (e.g. selective electron beam 

melting [163] and e-beam lithography[164]). It has been found that the band gap properties of 

photonic/phononic materials are sensitive to the microstructure configuration and material 

properties [165]. Unavoidable uncertainties may greatly change or even eliminate band gaps. 

There is thus a need for a more realistic topology optimization method with which to generate 

a robust PnC configuration that is less sensitive to the material distribution uncertainty. 

The topology optimization of phononic band gaps with uncertainties has seldom been 

studied [102]. To date, the only attempt made for the topology optimization of PnCs with 

uncertainties is based on the nonprobability interval model and genetic algorithm [166]. There 

has been little research on the robust topology optimization of PnCs with random field material 

properties. 

This chapter provides a robust topology optimization framework for achieving a wide band 

gap design that is insensitive to the uncertain material distribution. Herein, the random material 

property field is assumed to consist of the density function determining the mean value/standard 

deviation and a covariance function describing the spatial variability of the random field, and 

the Young’s modulus fields of PnCs are assumed to be a Gaussian random field. Such 

uncertainties may considerably affect the band gaps of PnCs, as illustrated in Fig. 3.1. To predict 

the stochastic band gap, the EOLE method is first introduced to discretize the random Young’s 

modulus fields into several uncorrelated uncertain variables, and the mean width of the band 

gap and the standard deviation are then calculated with the non-intrusive PCE method. Herein, 
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the PCE coefficients are obtained from the deterministic band gap analysis results obtained with 

the finite element method (FEM) at specified quadrature points, and the deterministic band gaps 

of PnCs are aggregated with the Kreisselmeier–Steinhauser (KS) function [167] of the 

frequency data for each wave vector. Furthermore, the robust topology optimization problem is 

formulated using the rational approximation of material properties (RAMP) model [32], where 

the objective is defined as a weighted sum of the mean value and the negative of the standard 

deviation of the band gaps. The sensitivity analysis schemes for the stochastic band gap 

response and deterministic band gaps at sampling points of PCE are derived, and the 

optimization problem is solved with a gradient-based mathematical programming algorithm. 

 

Fig.3.1 Schematic of the band gap variation of PnCs due to the random distribution of 

material properties. 

 

3.1 Deterministic band analysis of PnCs with the FEM 

The governing equation for wave propagation in a three-dimensional inhomogeneous isotropic 

elastic continuum can be expressed as 

 ,r U r r U r U   (3.1) 
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where ,x yr   is the position vector, T, ,u v wU   is the displacement vector along 

coordinate directions x, y, and z, r  is the material density,  is the gradient operator,

r  and r  are Lamé coefficients, and Young’s modulus E  and shear modulus G   are 

respectively expressed as 3 2 /E  and G . 

We consider that elastic waves only propagate on the x–y plane (i.e., / 0zU  ). 

Governing equation (3.1) can thus be split into two coupled in-plane modes in Eq. (3.2) and 

one out-of-plane mode in Eq. (3.3): 

 

2

2

2

2

2

,

2

u u v u v
t x x y y y x

v v u v u
t x x y y y x

r r r r r

r r r r r
  (3.2) 

 
2

2 .w w w
t x x y y

r r r  (3.3) 

For the band calculation of an infinitely periodic structure, the global problem can be 

solved by analyzing the smallest repetitive unit cell. According to the Floquet–Bloch theorem, 

the displacement vector gives 

 
T

, ,i i te ek rU r k U r
Tie eikTT

U r   (3.4) 

 
T

, , .ie k RU r R k U r k  (3.5) 

Here, U rU r   is a periodic displacement field of r   with the same periodicity as the 

structure, ,x yk k k  is the plane wave vector limited to the first Brillouin zone (Bloch wave 

vector),   is the angular frequency ( 2 f  , f   is the circular frequency), and 

c c,a aR  is the lattice periodicity vector of the square PnC unit cell with width ca  . 
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By substituting (3.4) into (3.2) or (3.3) and through finite element discretization, the 

generalized eigenvalue equation is obtained as 

 2 0,K k M U   (3.6) 

where K k  and M  are respectively the stiffness and mass matrices of the periodic unit cell.  

The band structure of elastic waves can be obtained by solving the generalized complex 

eigenvalue problem (3.6) for any values of wave vector k . Owing to periodicity in the Bloch–

Floquet condition and symmetry of the unit cell structure, the whole band structure can be 

determined from the irreducible Brillouin zone; i.e., the wave vector k  can be restricted to the 

boundary of the curve of the triangular ΓXM  zone shown in Fig. 3.2. 

 

Figure 3.2. Schematic illustration of the irreducible Brillouin zone ΓXM . 

 

The band structure for homogeneous single-phase materials shows that eigenmodes exist 

for all frequencies [103], which means elastic waves within all frequencies may propagate 

through the structure. To achieve a band gap structure, a multi-phase material cell (two material 

phases in the present study) should be introduced.  
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3.2 Stochastic band gap analysis with material distribution uncertainty  

The random field is usually characterized by means of a probability density function p r  

(from which the mean value and the standard deviation at a fixed position r  can be determined) 

and a spatial covariance function 1 2,C r r  describing how the random field varies in space. 

In this study, we consider the material distribution uncertainty of a two-material (two-

phase) phononic crystal. Herein, the mass densities of the two materials are regarded as 

deterministic over the whole cell domain; the Young’s modulus fields of PnCs are uncertain 

and assumed to satisfy a Gaussian random field with mean values 
1E  and 

2E  and standard 

deviations 
1E  and 

2E .  

The random Young’s modulus field E rE r  can be further expressed as  

 + ,EE r r rE r EE  (3.7) 

where r   is a standard zero-mean, homogeneous Gaussian random field with standard 

deviation E . 

The relationship between values of Young’s modulus at any two positions 1r  and 2r  may 

be determined by a squared exponential covariance function as  

 
2

1 22
1 2 2, exp ,E E L

r r
C r r  (3.8) 

where    denotes the Euclidean distance and L   is the correlation length. 
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3.2.1 Discretization of random material property fields with EOLE 

It is common practice to use several random variables instead of random fields to represent 

the uncertainty in material properties. The standard Gaussian random field r   can be 

discretized with the EOLE method (similar to K-L expansion-based methods). Here, N  

representative nodal points T
s 1 2, ,..., Nr r r r  are first selected in the random field domain, 

and the dimensions of the infinite random material property fields can be reduced into an N

dimensional vector T
1 2, ,..., Nv r r r  , and the random field r   can be 

expressed as 

 T

1

1 ,
N

i k
k k

vr ψ C r  (3.9) 

where 
T

1 2, ,..., NC C CvC r r r r r r r  . 1,2,...,k k N   denotes 

uncorrelated Gaussian random variables; i.e., E 0k  , E k j kj   ( E  is the 

mathematical expectation, kj  is the Kronecker delta). k  and kψ  are the eigenvalues and 

eigenvectors of the covariance matrix vC  ( k k kvC ψ ψ ), and the matrix vC  is defined as 

 
1 1 1

1

, ,
.

, ,

N

N N N

C C

C C
v

r r r r
C

r r r r

111C 11C 1

.
C NC NC

  (3.10) 

To reduce the dimensionality of the problem, the series expressed by Eq. (3.9) can be 

truncated into M  terms ( M N  ) with the M   largest eigenvalues. Approximating the 

expression of the random field, r  is then reformulated as 

 T

1

1 .
M

i k
k k

vr ψ C r  (3.11) 
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The uncertain Young’s moduli of the two materials in the PnCs cell are considered. In this 

study, the nodal points of EOLE are fixed at all finite element centers (where the finite elements 

of the unit cell are discretized with uniform square elements), and the two random fields for the 

two material components share the same discrete points. The locations of the nodal points in 

the PnCs unit cell are shown in Fig. 2.3. It is noted that the two materials of PnCs are assumed 

to have independent random fields of Young’s modulus. Therefore, if M  terms of uncorrelated 

random variables are truncated in each material phase, a total of EOLE 2N M  uncorrelated 

random variables will be used in the discretization of the random field of the material property.  

 

Fig. 2.3 Locations of the EOLE nodal points in the PnC unit cell 

 

The average error variance EOLEe  over the design domain can be employed to evaluate 

the accuracy of the random field discretization; it can be expressed as [168]  

 

2T

EOLE D
1 1D

Var1  d 1 ,
Var

N M
k j

j k k

e
s

vψ Cr r
r

r
d  (3.12) 

where DS   is the area of the domain of the unit cell and jvC   is the thj   column of the 
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covariance matrix vC . The term DS  vanishes owing to the use of the uniform nodal points 

and mesh. 

 

3.2.2 Stochastic response analysis with PCE 

After discretizing the random field of input material properties E rE r   with several 

uncorrelated random variables 
EOLE1,..., Nξ   (recalling EOLE 2N M  )via the EOLE 

method, the stochastic response g ξ  of the PnCs (i.e., the band structure in this study) can 

be predicted employing polynomial chaos (PC) expansion. PC-expansion-based uncertainty 

analysis is summarized as [139, 169] 

 
0

,i i
i

g gξ ξ  (3.13) 

where i ξ  denotes PC bases, which are orthogonal with respect to the probability density 

of the random variables. If the input fields are Gaussian variables, the PC bases should be 

Hermite polynomials (where general PC bases for different types of random variables can be 

found in [170]). The orthogonal property of PC bases is expressed as 

 2E E .i j i ij  (3.14)  

In practice, a few PC terms are enough to maintain the prediction accuracy and are able to 

reduce the computational cost. The expression of (3.13) can be truncated as 

 
PCE

0
,

N

i i
i

g gξ ξ  (3.15) 

where PCE 1N  is the number of coefficients, which depends on the number of random 

variables EOLEN  and the polynomial order P . PCEN  can be determined as 
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 EOLE
PCE

EOLE

!
1 .

! !
N P

N
N P

 (3.16) 

A nonintrusive approach [139] for calculating the PC coefficients ig   of the response 

g ξ   is employed. By post-multiplying k   in Eq. (3.15) and introducing the orthogonal 

property (3.14), the coefficients ig  give  

 PCE2

E
,   0,1,..., .

E
k

k
k

g
g k N

ξ
  (3.17) 

Here, the value of 2E k  can be easily obtained because there are analytical expressions 

for orthogonal polynomials, and the term E kg ξ  is calculated as  

 
1

d ,
gN

g g g
k k k

g
E g g g wξ ξ ξ ξ ξ ξ ξ ξ  (3.18) 

where ξ   is the probability density of the uncorrelated random variables ξ  ,  

EOLE1 2, ,...,g g g g
Nξ ξ ξ ξ   and gw   are the thg   quadrature point and the corresponding weight 

coefficient, gN  is the total number of quadrature points, and  is the integration domain. For 

the stochastic response analysis of PnCs consisting of two materials, the number of dimensions 

of the random variables via the EOLE method is usually not low ( ELOE 4N ), and the sparse 

grids quadrature techniques [171] can thus be used to reduce the number of quadrature points.  

After obtaining the polynomial expansion of (3.15), the mean value g ξ  and the 

standard deviation g ξ  of the response g ξ  (band gap in this study) can be evaluated 

as  

 0 d ,
D

g g gξ ξ ξ ξ  (3.19) 
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PCE2 2 2

1
d E .

N

i iD
i

g g g gξ ξ ξ ξ ξ ξ ξ  (3.20) 

 

3.3 Robust topology optimization of PnCs with a random-field material 

property  

3.3.1 Objective function  

For the deterministic design optimization of PnCs, it is desired to achieve the largest possible 

wavelength through the design of the specific unit cell. There are several choices of objective 

functions, including maximizing the band gap [172, 173] or relative band gap [103, 105] 

between two consecutive orders of frequencies, and minimizing the wave magnitudes at 

specified points subjected to the external excitation loads within a frequency range [174]. We 

here choose maximizing the band gap between bands j  and 1j  as the objective function, 

which can be expressed as [172]  

 D 1 1 1max :   min max ,k kn n
i j i i j if k k   (3.21) 

where kn  and ik  are the number of considered wave vectors and the thi  considered wave 

vector of k  for the generalized eigenvalue problem (3.6), and 1j ik  and j ik  are the 

1thj  and thj  eigenvalues of the generalized eigenvalue problem with ik . Such a min-

max objective function is generally differentiable, which presents difficulties when solving the 

optimization problem with gradient-based algorithms. We thus employ the K-S aggregated 

function [167], which is sufficiently smooth and provides an envelope surface of the minimum 

and maximum function values. In this way, the objective function for the band gap is rewritten 

as 
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 1 1 1
D

1 11 2

1 1max :  ln e ln e ,
k k

j i j i

n n

i i
f k k1 lnD

1
D ln  (3.22) 

where 1  and 2  are the aggregation parameters of the K-S function. Herein, 1  should be 

a negative real number so as to achieve the minimum envelope and 2  is a positive number so 

as to have the maximum envelope. The magnitudes of 1  and 2  have a crucial effect on the 

approximation accuracy of the K-S function, and the choice of values of aggregation parameters 

can be found in the literature [111]. 

The above objective function (3.22) can be used in the deterministic topology 

optimization. For robust design optimization problems of PnCs, the robustness index can be 

formulated by the weighted sum of the mean value and the negative of the standard deviation 

of the K-S function with respect to the uncertain parameters as [126] 

 D Dmax : ,  , , ,f f fx ξ x ξ x ξ, ,Df fDD ξ  (3.23) 

where x   and ξ   are respectively the design variables (which will be discussed in the next 

subsection) and uncertainty parameters. The mean value and standard deviation of the band gap 

can be obtained from Eqs. (3.19) and (3.20).  is a positive weight coefficient, which can be 

considered to balance the mean value and standard deviation and affects the optimization result 

remarkably.  

 

3.3.2 Robust topology optimization formulation 

The task of robust structural design optimization is to minimize the variability of the 

structural performance, thus the standard deviation of the structural performance is usually 

introduced into the design objective along with the mean value, rendering a multi-criteria 

optimization problem [175]. In this study, a prescribed relative weight factor  is employed 
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to investigate the trade-o s between the mean value and the standard deviation. 

With the above objective function (3.23), we propose the robust topology optimization 

formulation that aims to find a maximum band gap design that is less sensitive to uncertainty 

in the material distribution. The optimization formulation is written as 

 
1 1 1

D D

D
1 11 2

2

max : ,  , , ,

1 1s.t.   :  ln e ln e ,

         0,

          0 1,     1,2,..., .

k k
j i j i

n n

i i

e e

f f f

f

x e N

k k

x ξ x ξ x ξ

K k M U

, ,Df fDD ξ

1 lnD
1fD ln

 (3.24) 

Here, the vector 1 2, ,...,
eNx x xx  denotes the element-wise design variables describing 

the distribution of material 1 (epoxy) and material 2 (plumbum) of the PnC unit cell, with eN  

being the total number of finite elements in the unit cell. Here, 1ex  indicates that the element 

is filled with material 2 while 0ex  indicates that the element is filled with material 1. For 

the topology optimization, interpolation models should be employed to relate the material 

properties with the design variables. Here, the RAMP model [32] is adopted, and Young’s 

modulus ,e eE x ξ   and the mass density e   of the the  element (with the element center 

located at er ) are expressed by  

 1 2 1, , , , ,
1 1

e
e e e e e

e

xE x E E E
p x

ξ r ξ r ξ r ξ   (3.25) 

 1 2 1 ,
1 1

e
e

e

x
p x

 (3.26) 

where 1E , 2E , 1 , and 2  are respectively the Young’s moduli and mass densities of materials 

1 and 2. The parameter p  is set to 4 to penalize intermediate density such that there is a clear 
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0/1 material distribution in the optimal solution. In addition, the Heaviside density filter [176] 

is adopted to produce a clearer boundary shape of the design. It is recalled that Young’s moduli 

of the two materials are considered as random field functions, while the mass densities of the 

materials are assumed to be deterministic in the present study. Here, the RAMP interpolation 

model is employed. It is capable of avoiding spurious local vibration modes, which usually 

appear in low-density regions when the traditional power-law SIMP model is used (some 

numerical techniques can be adopted to bypass this issue, see e.g. Du and Olhoff [177]). 

The optimization problems can be solved with a gradient-based mathematical 

programming algorithm, which requires sensitivity analysis of the band gap with respect to the 

design variables; sensitivity analysis is discussed in the following subsection. 

 

3.4 Sensitivity analysis 

Combining the EOLE method with PC expansions, the mean value and standard deviation of 

the objective function are obtained using the band gaps at the specified deterministic sampling 

points gξ  in Eqs. (3.18)–(3.20). Sensitivity analysis for the optimization problem (3.24) can 

therefore be conducted in two steps: (1) analysis of the deterministic sensitivity of the band gap 

at specified sampling points and (2) analysis of the mean value and standard deviation of the 

band gap via PC expansion. 

 

3.4.1 Deterministic band gap sensitivity at the specified sampling points  

 The deterministic band gap sensitivity of the K-S function-aggregated objective function 

at the thk  sampling point kξ   of the random variables ξ   in the PC expansion can be 

calculated as 
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 (3.27) 

Herein, only the sensitivities of the two consecutive eigenfrequencies ( 1d , /dg
j i exk ξ  

and d , /dg
j i exk ξ  ) at each wave vector ik   need to be further calculated. They can be 

obtained as follows. 

In the case that there are no repeated eigenfrequencies, the sensitivity of the thj  

eigenfrequency with respect to the the  design variable can be easily obtained as 

 

T 2
, d

d,
,

2

g
i

j j jg
e ej i

e j

x x

x

K k ξ MU U
k ξ

  (3.28) 

where jU   is the eigenvector corresponding to the eigenvalue j   of the generalized 

eigenvalue problem (3.6), and has been normalized by the mass matrix M   so that 

T 1j jU MU . 

In some configurations of PnCs, one eigenfrequency may correspond to two eigenvectors. 

We suppose that a repeated eigenfrequency  has two normalized orthogonal eigenvectors 

1U  and 2U  ( T
1 2 0U MU ). Because any linear combination of the two eigenvectors is also an 

eigenvector with the same eigenfrequency, the eigenvector U  can be expressed as  

 1 1 2 2 ,c cU U U  (3.29) 

 T 2 2
1 21  when 1 .c cU MU  (3.30) 

By substituting (3.29) into (3.28), we get  
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2

2 2
1 11 2 22 1 2 122 ,

e

c g c g c c g
x

  (3.31) 

with  

 T 2
, d ,   , 1,2.

d

g
i

ab a j b
e e

g a b
x x

K k ξ MU U  (3.32) 

The extreme values of 2
ex   can be evaluated by introducing a Lagrange function 

2 2 sub 2 2
1 11 2 22 1 2 12 1 22 1L c g c g c c g c c   with the Lagrange multiplier sub  . By 

differentiating the Lagrange function with respect to the two constants 1c   and 2c , we have 

the eigenfrequency sub-problem  

 11 12 1 1sub

21 22 2 2

0
,

0
g g c c
g g c c

  (3.33) 

the solution of which gives eigenvalues and corresponding eigenvectors: 

 
Tsub

l l l1 l2
Tsub

h h h1 h2

with ,
.

with ,

c c c

c c c
 (3.34) 

The sensitivities of the repeated eigenfrequency can be obtained from  sub
l  and sub

h  as   

 
sub
l l l1 1 l2 2

sub
h h h1 1 h2 2

, with eigenvector  ,
.

,  with eigenvector   

gg
ii

g
e i

c c

x c c

k ξ U U Uk ξ

k ξ U U U
 (3.35) 

We can now obtain the sensitivities of single and repeated eigenfrequencies with respect 

to the design variables. Furthermore, the sensitivity of the deterministic band gap at a specified 

sampling point can be evaluated by substituting (3.28) or (3.35) into (3.27). 
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3.4.2 Stochastic band gap analysis with PC expansions 

 Having obtained the band gap sensitivity D , g
ef xx ξgfD , g   at the specified sampling 

points, the stochastic band gap sensitivity D , / ef xx ξfD , /  can be defined as  
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D D
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,
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N
i

i
ie e

f f
x x
x ξ x

ξD
N

ifDf ffPCE
D

NP x
 (3.36) 

By employing the nonintrusive differentiation approach [139], the coefficient terms 

Di ef xx xf xxDi  are evaluated as  
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 (3.37) 

Furthermore, the mean value and standard deviation of the stochastic band gaps are 

obtained as  
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  (3.38) 
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With the above derivation, the sensitivity of the objective function of the topology 

optimization problem (3.24) can finally be obtained as 
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(3.40) 

 

3.5 Numerical Implementations 

The robust topology optimization procedure is implemented on the MATLAB platform; a 

flowchart is presented in Fig. 3.4. At the beginning of the procedure, the periodic displacement 

boundary conditions based on the Floquet–Bloch theorem in Eq. (3.4) are set, and the design 

variables that indicate the epoxy/plumbum distribution in the unit cell of PnCs are initialized. 

The random fields of Young’s modulus are then discretized with the EOLE method according 

to Eq. (3.11). Next, Young’s modulus sampling quadrature points in the PC expansions (3.18) 

for both material components are determined. After analyzing the deterministic target band gaps 
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and the corresponding sensitives at the specified sampling points, the mean value and standard 

deviation of the band gap and corresponding sensitivity can be obtained with PCE from Eqs. 

(3.23) and (3.40). The design variables are updated by the globally convergent method of 

moving asymptotes (GCMMA) [162] optimizer. The iteration procedure is repeated until the 

difference between values of the objective function in two adjacent iteration steps falls below 

a prescribed value. 

 

Fig. 3.4 Flowchart of the robust topology optimization for PnCs considering stochastic 

material property uncertainties. 
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3.6 Numerical examples 

3.6.1 Verification of the stochastic response analysis 

Before presenting the robust optimization design procedure, we first provide an example that 

verifies the effectiveness of the stochastic response analysis method based on EOLE and PCE. 

Herein, a typical PnC unit cell design with a square plumbum inclusion (material 2) surrounded 

by the epoxy matrix (material 1) is considered. The unit cell has width c 0.02ma  and the 

length of the inclusion is 0.002 m. The mean values of Young’s moduli of the two materials are 

1 4.35GPaE   and 2 40.8GPaE  , and they have the same coefficient of variation 

0.1E E  and correlation length 0.04mL ; the deterministic Poisson ratio and mass 

densities of the two materials are respectively 1 2 0.37  , 3
1 1180 kg m   , and 

3
2 11600 kg m . The unit cell is discretized with a 20 20  coarse mesh in this verification 

example to reduce the computational cost. 

Random fields of Young’s modulus for the two materials of the PnC unit cell are first 

represented by EOLEN   random variables with the EOLE method. The practical measure of 

checking whether the number of truncations is sufficient is given by Eq. (3.12). The average 

error variance when using EOLE 4N   terms (where each material phase has two terms) is 

EOLE 3.96%e , which can be considered sufficient for balancing the computational precision 

and computational cost. 

In the stochastic response analysis with PCE, we choose the polynomial order 3P  and 

the total number of coefficient terms of PCE in Eq. (3.16) is PCE 1 35N  . To reduce the 

computational cost of the quadruple integrations (due to EOLE 4N ) in Eq. (3.18), sparse grids 

with third-order precision [171] are adopted, and the total number of quadrature points reduces 

to 41gN . The computational results of the mean value and standard deviation of the third 
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frequencies of the PnC unit cell with different plane wave vectors k  are summarized in Table 

3.1, and Monte-Carlo (MC) simulations with 10,000 samples are performed for comparison. It 

is found that the mean values of the current PCE method agree well with the MC results with a 

maximum difference of 0.02%. The difference in standard deviations for the two methods is a 

larger but still under 1%. We thus deem that the current polynomial order and the coefficient 

terms are enough to provide sufficient computational precision. 

 

Table 3.1 Comparisons of the third frequencies of PnCs between PCE and MC simulation.  

Wave vector 

0 c/ ak k  
Mean value (kHz) Standard deviation (kHz) 

PCE MC Diff. PCE MC Diff. 

0 ,k  39.321 39.313 0.02% 1.847 1.864 -0.91% 

0 0.8 ,0.8k  39.970 39.962 0.02% 1.869 1.886 -0.90% 

0 0.6 ,0.6k  40.986 40.979 0.02% 1.898 1.915 -0.89% 

0 0.4 ,0.4k  40.732 40.725 0.02% 1.866 1.883 -0.90% 

0 0.2 ,0.2k  39.278 39.275 0.01% 1.788 1.804 -0.89% 

0 0,0k  39.321 39.313 0.02% 1.847 1.864 -0.91% 

0 0.2 ,0k  40.203 40.194 0.02% 1.877 1.895 -0.95% 

0 0.4 ,0k  41.475 41.467 0.02% 1.934 1.952 -0.92% 

0 0.6 ,0k  43.556 43.546 0.02% 2.027 2.046 -0.93% 

0 0.8 ,0k  46.201 46.191 0.02% 2.123 2.143 -0.93% 

0 ,0k  46.832 46.824 0.02% 2.139 2.159 -0.93% 

0 ,0.2k  44.668 44.660 0.02% 2.053 2.073 -0.96% 

0 ,0.4k  40.465 40.456 0.02% 1.866 1.884 -0.96% 

0 ,0.6k  35.811 35.804 0.02% 1.651 1.667 -0.96% 

0 ,0.8k  38.399 38.396 0.01% 1.750 1.766 -0.91% 
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3.6.2 Robust topology optimization results 

This subsection presents robust topology optimization results and discusses important 

factors in the design of the PnC unit cell. In all examples, the unit cell is discretized into 

40 40  uniform square elements. The material properties of the two components are the same 

as those in the previous subsection. The aggregation parameters of the Kreisselmeier–

Steinhauser function (3.22) are set as 1 5  and 2 5  initially and their absolute values 

are increased by 0.5 per optimization iteration until they reach 30. The optimization iterations 

stop when the difference between two consecutive objective functions is less than 45 10 . 

We first optimized the stochastic band gap of coupled in-plane modes (in Eq. (3.2)) 

between the sixth and seventh bands of the PnC. Here, both materials are assumed to have a 

variation 0.1 in Young’s moduli, and the correlation length 0.04mL . The weight factor 

in the objective function (3.23) is taken as 4 . The initial design is chosen such that the 

unit cell has a circular plumbum inclusion (with radius of 0.004 m) surrounded by epoxy matrix, 

as shown in Fig. 3.5(a), and the mean dispersion curves of the in-plane modes are illustrated in 

Fig. 3.5 (b). Figure 5 shows that the initial design has no band gap between the sixth and seventh 

bands of the PnC, but a narrow band gap between the third and fourth bands. The optimization 

process converged after 54 iterations. Changes in the mean value and standard deviation of the 

band gap during the optimization process are presented in Fig. 3.6, and the optimal solution of 

the PnC unit cell and its dispersion curves are presented in Fig. 3.7. It is found that a sixth band 

gap (i.e., a band gap between the sixth and seventh bands) emerges and its mean value increases 

during the optimization. Although the standard deviation increases in the first few iterations, it 

decreases after the appearance of the sixth band gap, realizing a design insensitive to uncertainty 

in the material distribution. The optimal design has a mean band gap of 29.69 kHz and a 

standard deviation of 1.16 kHz. For comparisons, a deterministic optimization design is also 

implemented, with the optimal solution presented in Fig. 3.8. In terms of the material 
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uncertainty for the obtained deterministic design, the design has a mean band gap of 34.68 kHz 

and a standard deviation of 2.41 kHz. Although the deterministic design has a larger mean value 

of the band gap, the robust design still has better stochastic performance in terms of the 

objective function (3.23) and is less sensitive to uncertainty in the input material distribution. 

A remarkable difference can be found between the robust design in Fig. 3.7 and the 

deterministic design in Fig. 3.8. 

 
 

(a) (b) 

Fig. 3.5. Initial design and its dispersion curves. (a) Initial design of PnC with nine unit 

cells and (b) mean value of dispersion curves of coupled in-plane modes. 
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Fig. 3.6. Iteration histories of the mean value and standard deviation of the sixth band 

gap. 

 
 

(a) (b) 

Fig. 3.7 Robust optimal design for the sixth band gap of coupled in-plane modes and its 

dispersion curves. (a) Optimal design with nine unit cells; (b) mean value of dispersion 

curves. 

 

 
 

(a) (b) 

Fig. 3.8 Deterministic optimal design for the sixth band gap of coupled in-plane modes 

and its dispersion curves when considering uncertainty in the material distribution. (a) 

Optimal design with nine unit cells; (b) mean value of dispersion curves. 

  

We further study the optimal design for other coupled in-plane modes. Another two band 
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gaps, the third band gap (i.e., the band gap between third and fourth bands) and the eighth band 

gap, are considered, and the optimal solutions and corresponding mean values of dispersion 

curves are given in Fig. 3.9. For optimization of the third band gap, the optimal design in Fig. 

3.9 (a) and (b) can provide an in-plane mode band gap with a mean value of 21.46 kHz and a 

standard deviation of 0.90 kHz, and the eighth-order band gap with a mean value of 4.56 kHz 

and a standard deviation of 0.29 kHz is obtained from Fig. 3.9 (c) and (d). It is noted that not 

every order of the band gaps can be easily achieved because it is nearly impossible to open the 

first six band gaps except the third band gap of the plumbum/epoxy PnCs [105].  

 
 

(a) (b) 

 
 

(c) (d) 

Fig. 3.9 Robust optimal design for the third and eighth band gaps of coupled in-plane 

modes and their dispersion curves. (a) Optimal design for the third band gap; (b) mean value 



 

82 

 

of dispersion curves of the third band gap design; (c) optimal design for the eighth band gap; 

(d) mean value of dispersion curves of the eighth band gap design. 

 

In the following, we present the robust optimization of a PnC in the case of the out-of-

plane mode. Unlike the case of the in-plane mode, the optimal designs can be obtained with 

different band gap orders. Here, seven robust optimal designs and their dispersion curves for 

the different orders of band gaps (from the second order to the eighth order) are presented in 

Fig. 3.10, and the mean values of the band gap property and the standard deviations are 

summarized in Table 3.2. It is found that some of the optimized designs exhibit an asymmetrical 

material distribution (such as Fig. 3.9 (c), Fig. 3.10 (g), and Fig. 3.10 (i)). This is natural because 

the proposed optimization method imposes no symmetric-related design constraints. In addition, 

asymmetrical PnC designs have been shown to have larger band gaps than the optimal 

symmetrical structures [178]. 

 
 

(a) (b) 
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(c) (d) 

 
 

(e) (f) 

 
 

(g) (h) 
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(i) (j) 

 
 

(k) (l) 

 
 

(m) (n) 

Fig. 3.10 Robust optimal design of coupled in-plane modes and their dispersion curves: 

(a)–(b) second band gap, (c)–(d) third band gap, (e)–(f) fourth band gap, (g)–(h) fifth band 

gap, (i)–(j) sixth band gap, (k)–(l) seventh band gap, and (m)–(n) seventh band gap. 



 

85 

 

 

Table 3.2 Mean and standard deviation of robust designs with different orders of band gaps. 

Orders of 
band gap 

Mean higher band 
bottom (kHz) 

Mean lower band 
top (kHz) 

Mean band gap 
width (kHz) 

Std. deviation of band 
gap width (kHz) 

2-3 band 95.15 41.33 53.82 2.04 
3-4 band 92.46 51.15 41.31 1.56 
4-5 band 138.76 54.42 84.34 4.02 
5-6 band 150.15 69.50 80.65 3.24 
6-7 band 158.19 73.36 84.83 3.51 
7-8 band 171.04 72.95 98.09 3.53 
8-9 band 191.68 80.81 110.87 4.45 

 

We now investigate the effect of the weight coefficient  in Eq. (3.23), which balances 

the band gap width and the robustness of the design in the presence of a random material 

distribution. The robust optimizations of the sixth in-plane mode band gap are implemented 

with nine different weight coefficients; the mean values and standard deviations of band gaps 

for these designs are summarized in Table 3.3. Table 3.3 shows a conflict between the mean 

band gap and the standard deviation: a less sensitive but narrower band gap design is obtained 

as the weight coefficient   increases. However, if   is too large (e.g., 14   in this 

example), a PnC unit cell without a band gap property will be achieved. Two optimal solutions 

with 0  and 4 are respectively given in Figs. 3.8 (a) and 3.7 (a); optimal configurations of 

the PnC unit cells with other weight coefficients are illustrated in Fig. 3.11. Remarkable 

differences can be observed from these optimized designs, indicating that the weight coefficient 

 plays an important role in the robust topology optimization formulation. 

 

Table 3.3 Mean values and standard deviations of the optimized designs obtained with 

different values of weight coefficient . 
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Weight 
Coefficient  

Mean value of bandgap 
(kHz) 

Standard deviation 
(kHz) 

0 34.68 2.41 
0.1 34.50 2.69 
1 34.44 2.03 
4 29.69 1.16 

5.5 9.32 0.63 
6.5 8.35 0.51 
8.5 6.83 0.36 
12.5 0.95 0.16 
14           -2.82(no bandgap) 0.12 

 

   

(a) (b) (c) 

   
(d) (e) (f) 

Fig. 3.11 Robust optimal solutions for the sixth in-plane band gap with different values 

of the weight coefficient : (a) 0.1 , (b) 1.0 , (c) 5.5 , (d) 6.5 , (e) 8.5 , 

and (f) 12.5 . 

 

The effect of the variation coefficient  of Young’s moduli of the two materials is studied 
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for the present example (where 0.1 in all previous examples). The seventh band gap of the 

out-of-plane modes is considered as the target band, and the weight coefficient of the objective 

function is fixed at 4 . Changes in the mean band gap and the standard deviation with an 

increase in the coefficient of variation is shown in Fig. 12, and five representative optimal 

solutions ( 0.02,  0.08,  0.20,  0.30  and 0.40) are given in Fig. 13. Figure 12 shows that as 

the variation coefficient increases from 0.02 to 0.46, the mean value of the band gap reduces 

about 20% while the standard deviation increases by a factor of 12.59, and the optimal solutions 

in Fig. 13 are similar to each other. These results imply that the optimal solution for achieving 

a specified band gap actually consists of a basic configuration obtained by maximizing the mean 

band gap design and detailed modifications based on the standard deviation caused by the 

random material field. 

 

Fig. 3.12 Mean band gaps and standard deviations of the optimal designs obtained for 

different coefficients of variation of Young’s moduli. 
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(a) (b) (c) 

  

(e) (f) 

Fig. 3.13. Robust optimal designs obtained for different variation coefficients of Young’s 

moduli: (a) 0.02 , (b) 0.08 , (c) 0.20 , (d) 0.30 , and (e) 0.40 . 

 

3.7. Summary 

This chapter proposed a robust topology optimization method for designing the microstructure 

of PnCs under a random distribution of material properties. Uncertainty in the material 

properties is a nonnegligible factor in the design of the PnC microstructures. We here employ 

the EOLE method to discretize the random material Young’s modulus fields into several 

uncorrelated uncertain variables. The stochastic band gap response is then predicted with the 

PCE method, where the PCE coefficients are determined by calculating the band gap of PnCs 
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with the FEM at specified quadrature points. A new robust topology optimization formulation 

is proposed to achieve an insensitive PnC microstructure design by introducing an objective 

function balances the mean band gap and standard deviation.  

Numerical examples were presented to illustrate the effectiveness and efficiency of the 

proposed framework. A comparison with the deterministic PnC optimal design shows that the 

proposed robust optimization method can provide a PnC microstructure design with a relatively 

wide band gap that is less sensitive to random material uncertainties. Additionally, the weight 

factor of the objective function was shown to be able to effectively balance a broad mean band 

gap and a small band gap variation.  
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4 Phase-field based robust topology optimization of vibrating 

structures with random field uncertainty 

For structures composed of multiple material phases, there are usually continuous diffuse 

regions between material phases in real applications, and it is thus necessary to introduce diffuse 

regions into the optimization model when considering manufacturing-related uncertainties. 

Phase field-based topology optimization involves the diffuse region naturally and the random 

widths of the diffuse region between different material phases can be simulated by evaluating 

the phase-field function with a given spatially varying field of the diffuse region width, allowing 

convenient stochastic response analysis and corresponding optimization. 

The present work develops a phase-field-based topology optimization method of vibrating 

structures that reduces the dynamic performance variability under diffuse-region uncertainties. 

Herein, the diffuse regions between two material phases are assumed to satisfy a spatial 

stochastic field and are discretized into uncorrelated stochastic variables using the EOLE 

method; stochastic structural dynamic response analysis is then conducted with PCE. To 

achieve a less-sensitive optimal design, a robust topology optimization formulation that 

minimizes the weighted sum of the mean value and standard deviation of the structural dynamic 

performance is formulated. The structural dynamic compliance, fundamental 

frequency/frequency gap, and transient responses. In the framework of the phase-field method, 

the structural shape is represented by the phase-field function defined in the design domain, 

and initial non-uniform diffuse regions are generated by evolving the phase-field function. With 

the stochastic structural dynamic responses and the corresponding sensitivities obtained 

employing the PCE method for each sampling point, the phase-field function is updated using 

a time-dependent reaction–diffusion equation called the Allen–Cahn equation [179]. An 

artificial double-well potential used in the equation is derived from sensitivity analysis to move 
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the front in the direction of the decreasing objective function. 

 

4.1 Objective functions of dynamic topology optimization problems 

The governing equations of the finite element model of a structure subjected to dynamic loads 

are 

  
0 0 0 0

,

, ,T T

T T T T+ + =Mu Cu Ku f

u v u u

u Cu KuT TTTTT

T 0 00 0u v0 0T 0 0

 (4.1) 

where T  is the real time; n nM R , n nC R  and n nK R  are respectively the mass 

matrix, damping matrix, and stiffness matrix; 1( ) nTu R  , 1nTu Rnu RT  , and 1nTu Ru RT  

are respectively vectors of transient displacement, velocity, and acceleration; ( )Tf   is the 

external excitation; and 1
0

nu R  and 1
0

nv R  are respectively the initial displacement and 

initial velocity. Here, n  is the number of degrees of freedom (DOFs). The structural damping 

C  is assumed to be Rayleigh damping: 

  1 2 ,C M K   (4.2) 

where 1  and 2  are Rayleigh damping coefficients. 

 The topology optimization of dynamic structures usually focuses on three types of 

structural dynamic behavior functions: (a) the frequency response under harmonic/periodical 

excitations, (b) the fundamental frequency or frequency gaps, and (c) the transient response 

under impact loads. We thus consider three types of objective functions as follows. 

 

(a) Frequency response under harmonic/periodical excitations 
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 When the excitation ( )Tf  in Eq. (4.1) is a harmonic load ( ) i TT ef F or periodic load 

(it can be expressed by a series of harmonic loads), and only the steady-state response is of 

interest, the steady-state displacement response Tu   can be expressed as ei TTu U  

with the complex amplitude of vibration 1nU R . The governing equations (4.1) can then be 

rewritten as  

  ,WU F   (4.3) 

with  

  2 ,iW M C K   (4.4) 

where W   is called the dynamic stiffness matrix [180], and   is the frequency of the 

external excitation ( )Tf . Equation (4.3) can be solved with the mode superposition method 

[40] or the full method (i.e., by calculating -1U W F ) [153], and the latter method is adopted 

in the present study because it provides higher accuracy.  

 In the topology optimization problem for reducing the structural frequency response, the 

dynamic compliance and displacement at a specified position are frequently used as effective 

measures of the vibration level for a given excitation frequency or frequency range. We here 

take the dynamic compliance defined by Ma et al. [180] and Yoon [40] as the first type of 

objective function in the optimization model: 

  
2 2T R T I

1 ,J F U F U  (4.5) 

where RU  and IU  are respectively real and imaginary parts of the displacement vector U . 

 

(b) Fundamental frequency or frequency gap 
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 In problems of topological design for maximizing the fundamental eigenfrequencies and 

the gap between two consecutive eigenfrequencies, the structural damping is usually neglected 

and governing equations (4.1) of the dynamic problems can be reformulated into an equation 

for the eigenvalue problem as 

  
2 ,K M φ 0

  (4.6) 

where  is the eigenfrequency and Φ  is the corresponding eigenmode. Usually, only the 

first jN   real eigenfrequencies need to be considered, and the governing equation can be 

rewritten as  

  

2 , 1,..., ,
, 1,..., .

j j j j

j k jk j

j N
j N

Kφ Mφ
φ Mφ

  (4.7) 

 It is here assumed that the corresponding eigenvectors 1,...,j jj Nφ   are M  

orthonormalized, and jk  is the Kronecker delta. 

 To obtain the maximum value of the fundamental frequency, the design objective can be 

chosen to minimize the negative minimum value of the first jN  real eigenvalues as  

  
2

2 1 .J   (4.8) 

 In some applications, to reduce the undesirable vibration and noise emission levels, the 

objective function of the optimization problem is chosen to be the gap between two adjacent 

eigenvalues 2
n  and 2

1n  of specified orders n  and 1n : 

  2 2 2
2 1 .n nJ   (4.9) 
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(c) Transient dynamic response with respect to the impact load 

 When the structure is excited by an external impact load, governing equations (4.1) can 

be solved with direct time-integration methods under given initial conditions. The 

unconditionally stable Newmark algorithm is employed for this purpose in the present study.  

 The aim of the optimal design for the structural transient dynamic optimization problem 

is usually to reduce the vibration level over a specified time interval 1 2,T T . Considering the 

dynamic response that is only directly related to displacement ( )Tu   and time T  , the 

objective function can be formulated in the form 2

1

( ), d
T

T
g T T Tu . Several types of structural 

behaviors can be considered in real applications for different requirements [119, 181]. We here 

focus on the optimization problem of reducing the vibration response at a specified position, 

and the objective function can thus be chosen to minimize the squared displacement response 

of a target DOF au  in the time interval 1 2,T T , which is expressed as  

  2

1

2
3 a= ( )d .

T

T
J u T T   (4.10) 

 Using the above objective functions (4.5) and (4.8)–(4.10) and the phase-field-based 

description model, the deterministic topology optimization problem for structural vibration can 

be stated as 

  

f

f

1 2 3

0
1

1

f

Minimize   ,  or ,

subject to   0,

                  ,..., ,

                  0 1,   1,...., .

N

e e
e

N

e

J J J

V V

e N

   (4.11) 

 Here, 0V  denotes the upper limit of the allowable volume of material 1 in the bi-material 
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distribution optimization problem and f1,  2,...,  eV e N  is the volume occupied by the e th 

phase-field calculation point. The symbol fN   denotes the total number of phase-field 

calculation points used in the topology optimization model. The present study selects phase-

field calculation points at all element centers of the finite element model; therefore, fN  is 

equal to the total number of finite elements eN  in the design domain.  

 

4.2 Phase-field-based robust topology optimization considering uncertain 

diffuse regions 

4.2.1 Modeling of non-uniform diffuse regions via the evolution of phase-field 

functions  

In existing topology optimization studies based on the phase-field description, diffuse regions 

between two material phases are usually considered to have deterministic and uniform widths 

throughout the design domain.  

We consider the case that the diffuse regions between two candidate materials are 

nonuniform and their widths are a random Gaussian field. We first study the modeling of the 

diffuse region for a deterministic but nonuniform diffuse region width distribution; i.e., the 

width of the diffuse region ,i ji j  has an independent value at each point ,i jχ . In the stage of 

setting up the phase-field method, the design domain is first assigned using two candidate 

material phases with two different values of , 1 or 0i j  without diffuse regions (as shown in 

Fig. 3), and the phase-field functions are then evolved by solving Eq. (1.11) using the finite 

difference method. Here, the time step t   needs to satisfy the Courant–Friedrich–Levy 

condition ( 2 22 0.5t x t y   in the two-dimensional case) to achieve stable 
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convergence. A semi-implicit discretizing scheme is introduced to keep the value of the phase-

field function within the range 0 1  , and the evolutional equation of the phase-field 

function 1
,
n
i j  in the ( 1n ) th iteration at point ,i jχ  is then obtained as 

11
, , , ,, , 1, , 1, , 1 , , 12

, 2 2 1
, , , ,

1 0,2 2  for
 

 for1 0,

n n n nn n n n n n n n
i j i j i j i ji j i j i j i j i j i j i j i j

i j n n n n
i j i j i j i j

r r

t x y r r
 

(4.12) 

where  

 , ,
1 30 1 .
2

n n
i j i j

J t
r

J t
  (4.13) 

Here, x   and y   are respectively the spatial steps in the x and y directions. The 

coefficient ,i j  at point ,i jχ  can be expressed in terms of the diffuse-region width ,i ji j  as 

, , 6i j i j 6i j  for the current selection of the double-potential function in Eq. (1.8) [182].  

In Eq. (4.13), the second term, which includes the sensitivity of the objective function,   

drives the phase-field functions to the optimal solution, while the first term only controls the 

diffuse-region part. If one wants to obtain a design with a specified diffuse region from the 

current design (with or without a diffuse region), the evolution of the phase-field function is 

only driven with the diffuse-region term (i.e., the first term in Eq.(4.12)) by specifying ,i j  at 

each calculation point. Equation (4.12) thus reduces to 

 
1

, , 1, , 1, , 1 , , 12
, 2 2

2 2
.

n n n n n n n n
i j i j i j i j i j i j i j i j

i jt x y
 (4.14) 

At the beginning of optimization, the initial design is obtained by the diffuse-region 

evolution of Eq. (4.14) with a design without diffuse regions and a field of the diffuse region 
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width as shown in Fig. 4.1, and the corresponding material properties in the uncertain diffuse 

region are interpolated with Eqs. (1.12) and (1.13). 

 

Fig. 4.1. Sketch of setting the initial design with the nonuniform diffuse region 

employing the phase-field method. 

 

The numerical experience of the authors is that the diffuse-region evolution of Eq. (4.14) 

usually converges within 20–40 steps in obtaining the initial design. (The convergence criterion 

is set as the maximum relative difference in all phase-field functions between two consecutive 

evolutions being less than 310 ). Fig. 4.2 gives two examples of the diffuse-region evolution 

results for square design domains with a circular/square core and different values of specified 

diffuse-region widths in four quadrants; the evolution results are obtained after 34 and 42 

iterations, respectively. In addition, the evolution of the diffuse region may have much faster 

convergence during the optimization process because the change in design variables between 

two consecutive steps is usually not large. 
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Fig. 4.2 Diffuse-region evolution with specified nonuniform diffuse-region widths. 

  

4.2.2 Robust topology optimization formulation 

The task of current robust optimization is to find the best vibration performance design 

that is less sensitive to the random diffuse-region width field for two material components [133]. 

The robustness measure (i.e., the objective function) is thus formulated as the weighted sum of 

the mean value ,J ξξ   and standard deviation ,J ξξ  of the structural dynamic 

performance function ,J ξξ  in Eqs. (4.5) and (4.8)–(4.10):  

 Minimize :   , , , ,f J Jξ ξ ξ, ,,,,,,  (4.15) 

where 1 2 3, , ,  , ,or , .J J J Jξ ξ ξ ξ, .3J J Jor1 2 3222 ξ   (4.16) 

Here, the positive weight coefficient  is used to balance the mean value and standard 

deviation in the optimization formulation. 

The present study considers the uncertain width of the diffuse region as a random field ξξ  
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over the whole design domain, while the random field only affects the material distribution of 

the two candidate materials inside the diffuse region . In fact, it can be formulated as the 

uncertain parameters of the phase-field functions. The material property functions k  and m  

with respect to the elasticity tensor and mass in the diffuse interface domain in Eq. (1.14) are 

then rewritten as  

 

1

2

, ,

, .

p

p

k

m

ξ ξ

ξ ξ

1 ,
p

ξ
2 .

p
ξ

  (4.17) 

The virtual elasticity tensor * ,D ξξ   and mass density * ,ξξ   in Eqs. (1.12) and 

(1.13) are thus both related to the random diffuse region field ξξ . Furthermore, the stiffness 

matrix ,K ξξ  , mass matrix ,M ξξ  , and damping matrix ,C ξξ   in the governing 

equations (4.1), (4.3), and (4.6) are affected by the random field. The global stiffness and mass 

matrices can be further expressed with the phase-field function value at each element e  as  

 
1 1(1) (2)

1
, 1 ,

eN p p

e e e e
e

K ξ ξ k ξ k ,
eNe

1 (2)1 (2)1p p11 (1)p11 (1) ( )( )1( )( ) 1   (4.18) 

 
2 2(1) (2)

1
, 1 ,

eN p p

e e e e
e

M ξ ξ m ξ m ,
eNe

2 (2)2 (2)2p p22 (1)p22 (1) ( )( )1( )( ) 1  (4.19) 

where (1)
ek , (1)

em , (2)
ek , and (2)

em  are respectively the elemental stiffness and mass matrices 

for materials phase 1 and 2.  

With the above definitions of the objective function and random field, we formulate the 

robust optimization problem as 
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  (4.20) 

The structural stochastic dynamic response and sensitivity analysis techniques are 

addressed to solve the phase-field-based robust topology optimization problem in the following 

section. 

 

4.3 Sensitivity analysis of the stochastic dynamic response 

In the stochastic dynamic response analysis scheme based on the EOLE and PCE, the 

objective function is obtained using the structural dynamic response at the specified 

deterministic sampling points gη . Sensitivity analysis for the optimization problem (4.20) can 

therefore be conducted in two steps.  

 

4.3.1 Deterministic sensitivity of structural dynamic responses 

 The present study considers three different types of structural dynamic performances in 

Eq. (4.16). The deterministic sensitivities of the structural dynamic response ,J η   at 

specified sampling points can be derived with direct or adjoint variable approaches. The 
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deterministic sensitivity of the frequency response 1 , gJ η  , the natural frequency or 

frequency gap 2 , gJ η , and the transient dynamic response 3 , gJ η  with respect to the 

phase-field functions (design variables) at the thg sampling point gη  of the random variables 

η  are respectively presented in the followings. 

 

(a) Sensitivity analysis of the frequency response 

In the case of steady-state response optimization, the structural dynamic compliance 1J  

in Eq. (4.5) only explicitly depends on the amplitude of the displacement response , gU η  

(in Eq. (4.3)), which depends on the phase-field function value   and the specified thg

sampling point gη   . The sensitivity of 1 , gJ U η   can then be derived with the adjoint 

variable-based sensitivity analysis scheme as follows. 

First, two adjoint vectors 1μ   and 2μ   are introduced and the objective function 

1 , gJ U η  can be rewritten as 

 T T
1 1 2( ) ( ),J J U μ WU - F μ WU - F  (4.21) 

where W  and F  respectively denote the conjugates of the dynamic stiffness matrix W  

and excitation amplitude vector F . 

Differentiating Equation (4.21) with respect to phase-field functions at the the element 

gives 
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R
T T T T1
1 2 1 2R

I
T T1
1 2I

d
d

.

e e e e

e

JJ

J i i

W W Uμ U μ U μ W μ W
U

U μ W μ W
U

 (4.22) 

Let the adjoint variables satisfy the equations  

T R T T I T
T 1 1
1 R I 2 2 2 2T R T I T R T I

T T

2 2T R T I

1 1
2 2

1                                       ,
2

J Ji iF U F F U Fμ S
U U F U F U F U F U

F UF
F U F U

 

(4.23)

T R T T I T
T 1 1
2 R I 2 2 2 2T R T I T R T I

T T

2 2T R T I

1 1
2 2

1                                        .
2

J Ji iF U F F U Fμ S
U U F U F U F U F U

F UF
F U F U

 (4.24) 

With the adjoint vector solutions to Eqs. (4.23) and (4.24), the derivative of the objective 

function for the thg sampling point gη  can be determined using 

 T 2
1

d
2Re .

d

g g g g
g

e e e e

J
i

η M η C η K η
μ U η  (4.25) 

Here, Re    denotes the real part of the complex vector. 
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(b) Sensitivity analysis of the structural natural frequency 

In the case that the structure has no repeated eigenfrequencies, the sensitivity of the thj  

eigenfrequency with respect to the phase-field function value assigned to the the  element for 

the thg sampling point gη  can be easily obtained as 

 

T 2

.
2

g g

j j jg
e ej

e j

K η M η
φ φ

η
 (4.26) 

For some structural configurations, one eigenfrequency may correspond to two 

eigenvectors. The repeated eigenfrequency   can be assumed to have two normalized 

orthogonal eigenvectors 1φ   and 2φ   ( T
1 2 0φ Mφ  ). The eigenvector φ   can thus be 

expressed with a linear combination of 1φ  and 2φ  as  

 1 1 2 2 ,c cφ φ φ  (4.27) 

and 2 2
1 2 1c c   we have T 1 φ Mφ   when 2 2

1 2 1c c  . Substituting (3.29) into (3.28) 

gives 

 

2
2 T 2 2 T 2
1 1 1 2 2 2

T 2
1 2 1 2           2 .

g g g g

j j
e e e e e

g g

j
e e

c c

c c

K η M η K η M η
φ φ φ φ

K η M η
φ φ

(4.28) 

The extreme values of 2
ex   can be evaluated by introducing a Lagrange function 

2
sub 2 2

1 2 1
e

L c c   with the Lagrange multiplier sub  . By differentiating the 

Lagrange function with respect to the two constants 1c   and 2c , we have the eigenfrequency 

sub-problem 
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T 2 T 2
1 1 1 2

1 1sub

2 2
T 2 T 2
2 1 2 2

0
,

0

g g g g

j j
e e e e

g g g g

j j
e e e e

c c
c c

K η M η K η M η
φ φ φ φ

K η M η K η M η
φ φ φ φ

 (4.29) 

the solution of which gives eigenvalues and corresponding eigenvectors: 

 
Tsub

l l l1 l2
Tsub

h h h1 h2

with , ,

with , .

c c c

c c c
 (4.30) 

The sensitivities of the repeated eigenfrequency can be obtained from  sub
l  and sub

h  as   

 
sub
l l l1 1 l2 2

sub
h h h1 1 h2 2

with eigenvector  ,

 with eigenvector   .

gg

g
e

c c

c c

η φ φ φη

η φ φ φ
 (4.31) 

The sensitivities of single and repeated eigenvalues of the objective function 2 , gJ η  

in (4.8) with respect to the the  phase-field calculation point at the thg sampling point gη  can 

then be obtained. In the case that the objective function is the gap between two adjacent 

eigenvalues 2
n  and 2

1n  in Eq. (4.9), it is only required to calculate the sensitivities of both 

orders of the natural frequencies and perform the subtraction operation.  

 

(c) Sensitivity analysis of the structural transient dynamic response 

The sensitivity of the transient dynamic behavior function 2

1

2
3 a= ( )d

T

T
J u T T  with respect 

to the phase-field function value assigned to the the  element for the thg sampling point gη  

can be easily obtained as 
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2 12 2
a a3 0 0

, d , d,
,

T Tg gg

e e e

u T T u T TJ η ηη
 (4.32) 

where the two terms on the right-hand share the same form but have different end times. 

Therefore, only the sensitivity of the integral * 2
3 a0

, , d
Tg gJ u T Tη η   needs to be 

calculated. By introducing a time-depended adjoint vector Tλ , the Lagrangian function can 

be obtained as 

 
* *

2 T
a0 0

( , ) , d  d .
T TgL u T t T T+ +u λ η λ Mu Cu Ku f  (4.33) 

Differentiating the Lagrangian function L   with respect to the design variable 

e( 1, 2, ..., )ex e N  using the chain rule (assuming that ( ) 0eTf ) gives  

* * *2
T Ta

0 0 0
d  d  d

T T T

e e e e e e e e

uL T T Tu M C K u u uλ u + u + u λ M + C + K
u

. (4.34) 

Integrating by parts for the last term of Eq. (4.34) and noting that the initial conditions 

are independent of the design variables, the derivative of the Lagrangian function eL

becomes 

 

* *
T T T T

0 0

* *
T * T * T *

d d

( ) ( )         + ( ) ( ) ( ) .

T T

e e e e e

e e

L gt T

T TT T T

M C K uλ u u + u λ M λ C λ K
u

u uλ M λ C λ M

TTTTTTTTT T TT T TT T TT T T

*( *)*( ) )*(T *T *T *T *TT

 (4.35) 

As equation (4.35) holds for arbitrary Tλ  , the adjoint vector can be chosen as the 

solution to the adjoint equations  



106 

 

 

T T T 2
a 0

T *

T *

2 ,

( ) 0,
( ) 0,

gu

T
T

λ M λ C λ K η p

λ
λ

T T TT Tλ M

T *( )*λ
 (4.36)  

where 1
0 0,..., 0,1, 0,..., 0 np R , with 1 at the target DOF entry and 0 elsewhere. The 

above adjoint equations (4.36) with terminal conditions are first converted into initial-value 

equations using the time mapping *= -T T T*T T T*= - , and they are then readily solved using the implicit 

Newmark method in a manner similar to the structural transient-response analysis. 

By substituting the solution Tλ of Eq. (4.36) into (4.35), the derivative of the objective 

function *
3 , gJ η  at the thg sampling point gη  can be obtained as 

*
2 2

1 1

*
1 13 T (1) (2) (1) (2)

2 1 20

1 1(1) (2) (1) (2)
2 1 1

,

                     d .

g
T p pg g

e e e e e e
e

p pg g
e e e e e e

J
p p

p p T

η
λ η m m u η m m

η k k u η k k u

2211 2p1

e1111

 (4.37) 

In deterministically obtaining the sensitivity of the different types of the structural 

dynamic response, the derivatives of the mass matrix and stiffness matrix with respect to the 

the phase-field design point at the thg sampling point gη  are obtained as  

1 1

1

(1) (2)

1 (1) (2)1
1

1
,

eN p pg g
g e e e e pge

e e e
e e

p
η k η kK η

η k k   (4.38)

2 2

2

(1) (2)

1 (1) (2)1
2

1
.

eN p pg g
g e e e e pge

e e e
e e

p
η m η mM η

η m m  (4.39) 
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4.3.2 Stochastic sensitivity analysis of dynamic responses via PCE 

After obtaining the deterministic sensitivities of different types of the structural dynamic 

response to each phase-field calculation point , g
eJ η  at the specified sampling points, 

the sensitivity of the stochastic response function can be calculated using  

 
PCE

0

,
.

N
i

i
ie e

J jη
η  (4.40) 

Here, the coefficients i ej   can be obtained by using the nonintrusive 

differentiation approach [59] as  

 1
PCE2 2

,,
E  

,  0,1,..., .
E E

g gN
g g

i i
gei e

e i i

JJ
w

j
i N

ηη
η

 (4.41) 

Furthermore, the sensitivities of the mean value and standard deviation of the stochastic 

dynamic responses with respect to the phase-field function value associated with the the  

element can be expressed as  

 

r

0

2
0 0

1

 , ,
d =

,  E
                       ,

g

e e e

N
g g g

g

e

J J j

J w

η η
η η

x η η
  (4.42)
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η η η
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 (4.43) 

Finally, the sensitivity of the objective function of the robust topology optimization 
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problem (4.56) is obtained as 

 
PCE

2 2
0 0

1

1

 , ,,

,  E E
               = .

,

g

e e e

N
g g g i

i iN
g e

ie

J JJ

jJ w j

J

η ηη

xx η η

η

 (4.44) 

 

4.4 Numerical implementations 

A flowchart of the robust topology optimization procedure is presented in Fig. 4.3. At the 

beginning of the procedure, the random field of diffuse-region widths over the design domain 

is discretized using the EOLE method, and the diffuse-region-width sampling quadrature points 

used in the PCE are then determined. Next, an initial phase-field function for two material 

phases is defined over the whole design domain without diffuse regions, and the diffuse regions 

are then generated by solving the evolutional equation of the phase-field function (4.14) for 

the sampling quadrature points. After analyzing the deterministic dynamic responses and the 

corresponding sensitives at the specified sampling points, the mean value and standard 

deviation of the structural dynamic response and corresponding sensitivity can be obtained with 

PCE according to Eq. (3.40). The phase-field functions will be updated by solving the Allen–

Cahn equation (1.10) with the semi-implicit discretizing scheme (4.12) between iterations and 

be updated by solving the evolutional equation (4.14) to ensure the sampling quadrature points 

of the diffuse-region widths satisfy the random-width field within each iteration. Specifically, 

the phase field is evaluated with the diffuse-region random width field until the maximum 

relative difference in phase-field functions between two consecutive evolutions is less than 

310  at the beginning of each iteration, and the evolution of the optimization is then 

implemented by solving the Allen–Cahn equation with the scheme in (4.12) again. These 
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optimization procedures are repeated until the difference between values of the objective 

function in two adjacent iteration steps falls below a prescribed value ( 410  in the numerical 

examples). 

 

Fig. 4.3 Flowchart of the phase-field-based robust topology optimization for vibrating 

structures considering stochastic diffuse-region uncertainties. 

 

4.5 Numerical examples of vibrating structures 

This section presents numerical examples to show the validity of the proposed optimization 

formulation. Here, different types of robust objective functions, namely the frequency 

responses, fundamental frequency, frequency gap, and structural transient dynamic response, 
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are considered. The effects of important factors on the robust optimization are also discussed. 

 

4.5.1 Robust topology optimization of beam structures for reducing the frequency 

response 

(a) Optimization results of cantilever beams 

 The first example considers the robust topology optimization of a rectangular cantilever 

beam under an external harmonic excitation, as shown in Fig. 4.4. The design domain has 

geometrical dimensions 1 2 ml   and 2 1 ml  . The force i Tf T Fe   (with 610 NF  , 

2 f , and f =100 Hz) is applied at the mid-point of the free edge. The properties of the 

two candidate materials are that material 1 has a Young’s modulus 11 2
1 2.1 10  N/mE  , 

Poisson’s ratio 1 0.3 , and mass density 3
1 7800 kg/m  while material 2 has a Young’s 

modulus 10 2
2 3.0 10  N/mE , Poisson’s ratio 2 0.3 , and mass density 3

2 3500 kg/m . 

The random field of the diffuse-region width satisfies a Gaussian distribution with mean value 

0.12mξ , coefficient of variation 0.15 , and correlation length 1mL . The 

structure is discretized with 5000 100 50eN  uniformly sized Q4 elements, with the total 

number of DOFs being 10302n .  

 

Fig. 4.4 Rectangular cantilever beam under an external harmonic excitation. 
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 In the optimization model, the trade-off weighting factor between the mean value and 

standard deviation of the frequency response is taken as 10  in the objective function. The 

upper limit of the allowable amount of material 1 is set as 50% of the design domain. The initial 

design is given as circles filled with material 2 and surrounded by material 1. After 19 steps of 

the diffuse-region evolution with Eq. (4.11), the mean configuration of the initial design with 

the uncertain diffuse region is that shown in Fig. 4.5(a). In the initial design, the structure has 

a mean frequency response of 1783.6 N m and a standard deviation of 29.6 N m. The 

optimization process gets convergence after 124 iterations, and the mean configuration of the 

optimal design is obtained as in Fig. 4.5(b). The history of the objective function of the 

optimization process is shown in Fig. 4.6, showing that the mean and standard deviation of the 

frequency response for optimal design are respectively 365.73 N m and 0.98 N m. The mean 

values of first five orders of eigenfrequencies for the initial design and optimal design are 

summarized in Table 4.1, showing the first three eigenfrequencies have moved away from the 

external excitation frequency remarkably.  

  
(a) (b) 

Fig. 4.5 Initial mean design and optimal mean design for the cantilever beam under 

harmonic excitation. 
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Fig. 4.6 Iteration histories of the mean value and standard deviation of the structural 

dynamic compliance.  

 

Table 4.1 Comparison of mean values of eigenfrequencies of the initial and optimized 

designs. 

Order Initial design (Hz) Optimized design (Hz) 

1 120.6 192.9 

2 425.0 537.2 

3 475.7 587.7 

4 999.7 1046.3 

5 1280.0 1140.7 

 

(c) Influencing factors 

 This subsection discusses several parameters that affect the optimal solutions. We first 

consider the effect of the weighting factor  for the mean value and standard deviation. All 

settings and parameters are selected the same as those in the previous example except for four 
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different cases of weighting factors: 1,  30, 50, and 100 . The optimized designs are shown 

in Fig. 4.7. The mean values and standard deviations for these cases are summarized in Table 

4.2. It is seen that as the weighting factor increases (i.e., the standard deviation plays a more 

important role), the solution changes remarkably and the optimization ends with larger mean 

dynamic compliances and smaller standard deviations. 100   Sawtooth-like boundaries 

appear in the optimized design for a very large weighting factor 100 , as shown in Fig. 

4.7(d).  

  
(a) (b) 

  
(c) (d) 

Fig. 4.7 Optimized designs of a cantilever beam obtained with different weighting 

factors: (a) 1; (b) 30 ; (c) 50 ; (d) 100 . 

  

Table 4.2 Comparison of the mean value and standard variance of dynamic compliance 

for different weighting factors 

Weighting factor  Mean value of dyn. compl. 
( N m ) 

Standard variance of dyn. 
compl. ( N m ) 

1 365.62 1.04 

10 365.73 0.98 
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30 369.07 0.90 

50 372.58 0.84 

100 379.03 0.68 

The effect of the coefficient of variation (COV)  is then studied. The same parameters 

are used in this example except for four different COV values: 0.05,  0.15,  0.25, and 0.35 . 

The optimization solutions are presented in Fig. 4.8, and the mean values and standard 

deviations of the dynamic compliance are compared in Table 4.3. Figures 4.5(b) and 4.8 show 

that nearly the same topologies are obtained for different values of the COV, while Table 3 

shows the mean value becomes a little larger and the standard deviation increases nearly 

linearly with the COV. This implies that a change in the COV may not change the optimization 

solution obviously but can still affect structural robustness.  

   
(a) (b) (c) 

Fig. 4.8 Optimized designs of a cantilever beam obtained with different COVs: (a) 

0.05 ; (b) 0.25 ; (c) 0.35 . 

 

Table 4.3 Comparison of the mean value and standard variance of dynamic compliance 

for different COVs. 

COV  Mean value of dyn. compl. 
( N m ) 

Standard variance of dyn. 
compl. ( N m ) 

0.05 364.07 0.46 

0.15 365.73 0.98 

0.25 368.02 2.07 

0.35 370.43 2.87 
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The effect of the mean value of the diffuse-region width is also studied. The COV is now 

fixed at  0.15 , and all parameters are the same as those in the pervious example except for 

the different diffuse-region widths. Here, four other mean values of the diffuse-region width 

0.04,  0.08,  0.16,  and 0.20m  are considered. The optimization solutions are given in Fig. 

4.9 and the corresponding mean value and standard deviation are listed in Table 2.4. It is found 

that the mean value of the dynamic compliance increases with that of the diffuse-region width, 

and some structural members with the ‘strong’ material (i.e., material 1) become thinner. This 

is because there is a larger relatively-weak region in the final design when the diffuse region 

broadens, which may weaken the structural dynamic performance. 

  
(a) (b) 

  
(c) (d) 

Fig. 4.9 Optimization solutions of a cantilever beam obtained for different diffuse-region 

widths: (a) 0.04m ; (b) 0.08m ; (c) 0.16m ; (d) 0.20m . 

 

Table 2.4 Mean value and standard deviation of dynamic compliance for different 

diffuse-region widths. 

Mean diffuse region width  Mean value of dyn. Standard deviation of dyn. 
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compl. ( N m ) compl. ( N m ) 

0.04 353.70 0.97 

0.08 355.10 1.12 

0.12 365.73 0.98 

0.16 378.53 0.84 

0.20 391.39 0.72 

 

(b) Robust design obtained under different excitation frequencies  

 The effect of the excitation frequency on the optimal design is studied in this subsection. 

The same structure as used in the pervious example considered, and the optimizations are made 

under four different external excitations pf  1000, 2000, 3000, and 4000 Hz. The 

optimization solutions are shown in Fig. 4.10. It is seen that as the excitation frequency 

increases, the optimal solution tends to become a more complex shape and the load transmission 

path becomes less clear. This can be explained as that the higher vibration modes are excited 

by higher-frequency excitation, and the ‘strong’ material tends to distribute in the more isolated 

areas to suppress local vibrations. Because the current optimization problem is a bi-material 

optimization problem without any void phase in the design domain, the loading path has no risk 

of interruption with such material distributions. For the case of external frequency pf  2000 

Hz (i.e., the optimized design in Fig. 4.10(b)), vibration amplitude contours of the mean initial 

design and the mean optimal design are shown in Fig. 4.11. It is seen that the mean maximum 

vibration amplitude reduces by a factor of about 5, and the local vibration modes vanish after 

the optimization. 
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(a) (b) 

  
(c) (d) 

Fig. 4.10 Optimized design obtained under different excitation frequencies: (a) pf

1000 Hz; (b) pf 2000 Hz; (c) pf 3000 Hz; (d) pf 4000 Hz. 

 

 

 

 

 

(a) 
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(b) 

Fig. 4.11 Mean vibration level of the cantilever beam under excitation at pf 2000 Hz 

for (a) the initial design and (b) the optimized design.  

 

4.5.2 Robust topological design for structural eigenfrequencies 

(a) Optimization for the structural fundamental frequency 

We now study the robust topology optimization for structural eigenfrequencies. A two-

edge fixed rectangular beam is considered as shown in Fig. 4.12. The design domain consists 

of two candidate materials, namely materials 1 and 2, and the geometrical dimensions of the 

beam are 1 5 ml  and 2 1 ml . The uncertain width of the diffuse region between the two 

material phases is assumed to satisfy a Gaussian distribution with a mean width of 0.2mξ , 

COV of 0.15  , and correlation length of 1mL  . The structure is discretized with 

4500 150 30eN   uniformly sized Q4 elements and f e 5000N N   phase-field 

calculation points located at each element center. In the optimization model, the fundamental 

eigenfrequency (4.8) of the beam is excepted to be maximized, and the weighting factor is 

taken as 10  in the objective function (4.15). The volume constraint for material 1 is 50%. 
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Fig. 4.12 Two-edge fixed rectangular beam. 

 

 The optimization process can not get a fast convergence in this example since some orders 

of eigenfrequencies become repeated during the optimization. Thus, the optimization process 

is terminated after 200 iterations (the change of the objective functions between two 

consecutive iterations has become relatively small), the weighted objective function increases 

from 737 Hz (where the mean value is 715 Hz and the standard deviation is 2.18 Hz) for the 

initial design to 1074.7 Hz (where the mean value is 1065.4 Hz and the standard deviation is 

0.93 Hz) for the optimized design after the optimization process. The iteration history and 

optimal solution are respectively given in Figs. 4.13 and 4.14. Compared with the benchmark 

optimal result given by Du and Olhoff [41] for optimization of the bi-material structure 

topology in the deterministic case, the optimal result obtained with the proposed method has 

the same tendency of the material distribution but some small bars and local bulk areas vanish. 

This is naturally due to the optimal design having greater robustness, while the local and small 

material patches are usually easily affected by uncertainty inputs (i.e., the diffuse-region field 

in this study). The iteration histories of the mean values of the first three eigenfrequencies are 

given in Fig. 4.15, showing that all mean values of the first three eigenfrequencies increase 

after optimization.  
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Fig. 4.13 Iteration history of the objective function of the eigenfrequency optimization. 

 

Fig. 4.14 Optimization solution of the two-edge fixed beam maximizing the fundamental 

frequency. 
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Fig. 4.15 Iteration histories of the mean values of the first three eigenfrequencies. 

 

The effects of the mean diffuse-region width are also studied. The optimization solutions 

obtained with three other mean diffuse-region widths ξ 0.1, 0.3, and 0.4m are shown in Fig. 

4.16. The mean values and standard deviations of the fundamental frequencies for the optimal 

designs obtained with different diffuse-region widths are summarized in Table 4.5. A higher 

mean fundamental frequency is obtained for a narrower diffuse region because the effect of the 

uncertain field is weak and there are larger areas of diffuse material in the case of a wider diffuse 

region (e.g., Fig. 4.16(c)), which may affect the mechanical properties of the whole structure. 

 

 

 

 
(a) 

 
(b) 

 

(c) 

Fig. 4.16 Optimization solutions for eigenfrequency optimization with different diffuse 

region widths: (a) ξ 0.1m; (b) ξ 0.3m;  (c) ξ 0.4m.  
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Table 4.5 Mean values and standard deviations of the fundamental frequencies for 

optimized designs obtained for different mean diffuse-region widths. 

Mean diffuse 
region width  

Mean value of fundamental 
eigenfrequency (Hz) 

Standard deviation of fundamental 
eigenfrequency (Hz) 

0.1 1132.6 1.77 

0.2 1100.4 0.78 

0.3 1022.3 0.56 

0.4 1006.5 0.46 

 

(b) Optimization for the frequency gap 

This subsection implements the robust optimization of maximizing the gap between two 

adjacent frequencies. A two-edge clamped beam structure with a concentrated mass 

4
c 2 10  kg m  attached at the midpoint of the lower edge (point A) is considered as shown 

in Fig. 2.12. The same materials and geometrical dimensions of the beam are chosen as in the 

pervious example.  

In the optimization model, the gap between the second and third eigenfrequencies is 

maximized, the weighting factor is taken as 1, and the volume constraint for material 1 is 

50%. The diffuse region width is assumed to have a mean width 0.2mξ , COV 0.15 , 

and correlation length 1mL  . The optimization solution is shown in Fig. 4.17. The 

optimization changes the mean value and standard deviation of the eigenfrequency gap from 

678.1 and 0.84 Hz to 1863.8 and 1.96 Hz, respectively. The iteration histories of the mean 

values of the first four eigenfrequencies are given in Fig. 4.18. The eigenfrequency gap between 

the second and third eigenfrequencies is clearly increased by the optimization. Meanwhile, the 

third and fourth eigenfrequencies become approximately repeated and alternately rise after 
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about 50 iterations, demonstrating that the proposed sensitivity analysis and optimization model 

work well.  

 

Fig. 4.17 Robust optimal design of the two-edge clamped beam for maximizing the 

frequency gap between the second and third frequencies. 

 

 

Fig. 4.18 Iteration histories of the mean values of eigenfrequencies. 

 

Two mean diffuse-region widths 0.1ξ   and 0.3 m are further studied. The optimal 

solutions are shown in Fig. 4.19. Figures 19 and 21 show that the main configuration of the 

optimal design changes only very slightly for different mean diffuse-region widths except for 

the boundary-layer widths. The mean values of the frequency gap between the second and third 

frequencies for the cases 0.1ξ , 0.2, and 0.3 m are respectively 1906.5, 1863.8, and 1798.1 
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Hz while the standard deviations are respectively 0.83, 1.96, and 3.52 Hz. The results show that 

a higher mean value of the diffuse-region width reduces both the mean frequency gaps of the 

optimal designs and structural robustness.  

 

 

(a) 

 

(b) 

Fig. 4.19 Robust optimal designs for maximizing the frequency gap for different mean 

diffuse-region widths: (a) 0.1ξ  m; (b) 0.3ξ  m. 

  

4.5.3 Robust topology optimization of the damping material coverage over plate 

structures under impact loads 

We now study the robust topological design of structures under impact loads. A cantilever 

plate structure with a damping material covering both faces excited by an impact force ( )TF  

at the mid-point of the free end (point I) is considered as shown in Fig. 4.20. Here, the base 

structure is considered as the non-design domain while the distribution of the damping material 

is designable, which implies the optimization problem considered in this example is a solid–

void phase robust topology optimization problem. The plate has geometrical dimensions 

1.2 ma  , 0.8 mb  , and 2
b 1 10 mt   for the host layer and 3

d 5 10 mt   for the 
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damping layer. The material properties of the base structure are 11 2
b 2.1 10  N/mE  , 

3
b 7800 kg/m  , and b 0.3   while the material properties of the damping layer are 

8 2
d 2.2 10  N/mE , 3

d 980 kg/m , and d 0.49 . The damping coefficients of the base 

structure are 6= =1 10 . The time history of the impact force ( )TF  is shown in Fig. 4.21. 

The terminal time considered in the objective function is =0.1 sT  and the time step used in 

the time integration is -4=2 10  sT . 

The structure is discretized with 2400 60 40eN   uniformly sized four-node 

quadrilateral Mindlin shell elements and f e 2400N N   phase-field calculation points 

located at each element center. The Gaussian distribution of the uncertain diffuse regions 

between two material phases is assumed to have a mean width of 0.12mξ  , COV of 

0.15 , and correlation length of 1mL . 

 

Fig. 4.20 Cantilever damping plate excited by an impact force. 
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Fig. 4.21 Time history of the impact load. 

 

In the optimization model, the squared displacement response of the load point in the time 

interval 0,0.1s  is chosen as the target dynamic response index, and the objective function 

with a weighting factor of 10  is minimized. The volume constraint for material 1 is taken 

as 50%. The optimal solution and suggested damping material coverage (obtained by extracting 

phase-field function boundaries at the mid-line of the diffuse region) are shown in Fig. 4.21. 

The mean value and standard deviation of the squared displacement of the load point decrease 

from 1.96 2m  and 2 22 10 m  to 1.39 2m  and 4 27 10 m , respectively. The time histories of 

the mean displacement at the load point for the initial design and optimized design are shown 

in Fig. 4.22, revealing that the vibration level at the load point is reduced remarkably by 

optimization. The first five eigenfrequencies of the plate structures are summarized in Table 

4.6. It is seen that these eigenfrequencies change very little during the optimization process, 

which can be explained as that the lower-order eigenfrequencies of the structure have no 

remarkable effect on the transient-response optimization under impact loads. Additionally, 

robust optimization with two other values ( 0.06mξ  and 0.18 m) of the mean diffuse-region 

width are also implemented; the optimal designs are shown in Fig. 4.24. Compared with the 

optimal solutions of the frequency response (Figs. 4.5 and 4.7) and fundamental frequency (Figs. 

4.14 and 4.16) for different diffuse-region widths, the differences among the optimal designs 
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of the transient response for different diffuse-region widths are much more obvious, possible 

because the transient dynamic optimization problems have more local solutions and are more 

readily affected by uncertain parameters.  

(a) (b) 

Fig. 4.22 Optimized design of the cantilever damping plate under impact loads: (a) 

optimal solution; (b) suggested damping coverage (obtained by extracting the mid-line of the 

diffuse region). 

 

Fig. 4.23 Time history of the mean displacement at the load point. 

Table 4.6 Eigenfrequencies of the plate structures for the initial design and optimized 

design. 

Order Initial design (Hz) Optimized design (Hz) 

1 7.81 7.74 
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2 26.21 26.17 

3 48.49 48.43 

4 88.39 89.13 

5 120.60 119.87 

 

 

  
(a) (b) 

Fig. 4.24 Optimal solutions for the cantilever damping plate obtained with different 

values of the mean diffuse-region width: (a) 0.06mξ ; (b) ξ = 0.18 m. 

 

In the following, we consider the same plate as in the previous example but with different 

load times loadT   0.01 and 0.03 s, while the mean diffuse-region width is fixed as 

0.12mξ . The optimized designs and suggested damping coverage are shown in Fig. 4.25. 

The load time has a remarkable effect on the final optimal solution. This is a natural 

consequence of the different external loads exciting different modes of vibrations, and the 

optimization process driving the evolution of phase-field function to a design that suppresses 

the corresponding vibration modes.  
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(a) (b) 

  
(c) (d) 

Fig. 4.25 Optimized designs of cantilever plates under different impact loads: (a) 
loadT  0.01 s; (b) loadT  0.03 s. 

 

4.6 Robust topology design of phononic crystals with random diffuse via 

phase-field method 

The manufacturing errors uncertainties can remarkably affect the band gap properties of PnCs, 

thus it is necessary to considering uncertainties in the design and optimization of the 

microstructures of the unit cell. The material property uncertainty of PnCs is from the inherent 

material inhomogeneity and also affected by the changing of the environment. While the 

manufacturing errors may include the uncertainties of the boundary geometry and diffuse 

regions between material phases of PnCs. How to efficiently handle the diffuse region 

uncertainties of PnCs and implement the corresponding topology optimization are major tasks 

of this chapter. 

The chapter aims to develop a phase field-based topology optimization framework for 
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achieving a robust microstructural design of PnCs under diffuse region uncertainties. Herein, 

the diffuse regions between two material phases are assumed to satisfy a spatial Gaussian 

random field and discretized into uncorrelated stochastic variables with the EOLE method; then 

stochastic band gap analysis is conducted with the PCE. Herein, the PCE coefficients are 

obtained from the deterministic band gap analysis results obtained with the finite element 

method (FEM) at specified quadrature points, and the deterministic band gaps of PnCs are 

aggregated with the Kreisselmeier–Steinhauser (KS) function of the frequency data for each 

wave vector. For achieving a less sensitive optimal design of PnCs, a phase-field based robust 

topology optimization formulation to minimize the weighted sum of the mean value and 

standard deviation of the specified band gap is formulated. 

 

4.6.1 Material distribution presentation of PnCs via phase-filed model 

 We first introduce the phase field method into the representation of the unit cell of a 2D 

phononic crystal composed of plumbum inclusions (represented with 1  ), epoxy matrix  

(represented with 2 ), and a diffuse layer  between the material phases. The whole design 

domain (the unit cell) thus can be formulated with with the phase-field function  as 

  
1

2

1   ,
    0 1 ,

0   .

χ
χ
χ

  (4.45) 

 Here, 1  means that material 1 is chosen while 0  means that material 2 is chosen. 

A value within the range 0 1  means that there is a diffuse region (denoted ), which 

consists of both candidate materials. The illustration of a unit cell of PnCs with diffuse regions 

represented by the phase-field model is shown in Fig. 4.26. 
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Fig. 4.26. The outline of a phononic crystal and its unit cell considering diffuse region 

represented by the phase-field model . The triangle in the unit cell represents the Brillouin 

zone. 

 

In evaluating the band gap analysis of PnCs, the virtual elasticity tensor *D  and the 

mass density *   in the design domain can be defined by introducing the interpolation 

functions k  and m  as 

1

1
1 2*

2
2

if ,
1   0< 1   if    ,

if ,
k k k

D χ
D D D χ

χD

  (4.46) 

1

1
1 2*

2
2

if ,
1   0< 1   if    ,

if ,
m m

χ
χ
χ

 (4.47) 

where, 1D  , 2D  , 1   and 2   are respectively the usual elasticity matrices and mass 
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density for each material. Here, the interpolation functions are chosen as the RAMP model for 

its ability to avoid spurious local modes in dynamic optimization problem, they are expressed 

by 

 
1 1

k
p

, 
1 1

m
p

, (4.48) 

In Eq. (4.48), the parameter p  is used to penalize the intermediate value of the phase-

field function, it is usually set to be 4p . 

 

4.6.2 Design variables evolution of the unit cell of PnCs 

 In this study, the material distribution of two candidate material phases in the unit cell are 

represented and evaluated by solving the Allen–Cahn equation. In the practical application of 

the phase-filed method, the unit cell is first assigned using two candidate material phases with 

two different values of , 1 or 0i j  without diffuse regions in the setting up stage. Here, the 

diffuse regions between two candidate materials are assumed to have a nonuniform diffuse 

region width distribution; i.e., the width of the diffuse region ,i ji j  has an independent value at 

each point ,i jχ . For obtaining a design with a specified diffuse region from the current design 

(with or without a diffuse region), the evolution of the phase-field function is only driven with 

the diffuse-region term by specifying ,i j   at each calculation point. By using the finite 

difference method, the evolutional equation of the phase-field function 1
,
n
i j  in the ( 1n ) th 

iteration at point ,i jχ  is then expressed as 

 
1

, , 1, , 1, , 1 , , 12
, 2 2

2 2
.

n n n n n n n n
i j i j i j i j i j i j i j i j

i jt x y
 (4.49) 
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Here, x   and y   are respectively the spatial steps in the x and y directions. The 

coefficient ,i j  at point ,i jχ  can be expressed in terms of the diffuse-region width ,i ji j  as 

, , 6i j i j 6i j  for the current selection of the double-potential function. After the diffuse-region 

evolution of Eq. (4.49), one can obtain a unit cell design consisting with two material phases 

and a nonuniform diffuse region layer. 

In the following evolution process of design variables for the topology optimization of 

PnCs, the evolutional equation of the phase-field function can be formulated from Eq. (4.50) 

with the finite difference method as 

11
, , , ,, , 1, , 1, , 1 , , 12

, 2 2 1
, , , ,

1 0,2 2  for
 

 for1 0,

n n n nn n n n n n n n
i j i j i j i ji j i j i j i j i j i j i j i j

i j n n n n
i j i j i j i j

r r

t x y r r
 

  
(4.50)

 

with  , ,
1 30 1 .
2

n n
i j i j

J t
r

J t
  (4.51) 

Here, the time step t   needs to satisfy the Courant–Friedrich–Levy condition 

( 2 22 0.5t x t y  in the two-dimensional case) to achieve stable convergence. 

In this study, we consider the case that the diffuse regions between two candidate materials 

satisfies a random Gaussian field. Thus, the phase-field functions will be updated with the 

sensitivity of the objective function in the second term of Eq. (4.50) and the uncertain diffuse 

region width field which affects the first term of (4.50) until the evolution process achieves a 

convergence. 
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4.6.3 Robust topology optimization formulation 

 The task of current robust optimization is to find the band gap structure design of PnCs 

that is less sensitive to the random diffuse-region width field for two material components. Here, 

the robustness index can be formulated by the weighted sum of the mean value ,J ξξ  

and the negative of the standard deviation ,J ξξ  with respect to the uncertain parameters 

as  

 maximize :  , , , ,f J Jξ ξ ξ, ,,  (4.52) 

where the positive weight coefficient   is used to balance the mean value and standard 

deviation in the optimization formulation. 

The present study considers the uncertain width of the diffuse region as a random field ξξ  

in the whole unit cell, while the random field only affects the material distribution of the two 

candidate materials inside the diffuse region . Thus, the interpolation functions of Eq. (4.48)

related to the random diffuse region field ξξ  can be further rewritten as 

 ,
1 1

k
p

ξ
ξ

ξ

ξ
ξ

ξ
, ,

1 1
m

p

ξ
ξ

ξ

ξ
ξ

ξ
, (4.53) 

Furthermore, the stiffness matrix ,K ξξ , mass matrix of the unit cell are affected by the 

random field. The global stiffness and mass matrices can be further expressed with the phase-

field function value at each element e  as 

 (1) (2)

1
, 1 ,

1 1 1 1

eN
e e

e e
e e ep p

ξ ξ
K ξ k k

ξ ξ

eNe

ξ ,e e11
1 11 11 11 11 11 11 11

111   (4.54) 
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 (1) (2)
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ξ ,ee 11
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where (1)
ek , (1)

em , (2)
ek , and (2)

em  are respectively the elemental stiffness and mass matrices 

for materials phase 1 (plumbum) and phase 2 (epoxy). 

With the above definitions of the objective function and random field, we formulate the 

robust optimization problem as 

 

1 1 1

f

1 11 2

2

1

Maximize  :  , , , ,

1 1 subject to : ln e ln e ,

                   0,

                    ,..., ,    

                    0 1,

k k
j i j i

n n

i i

N

e

f J J

J k k

ξ ξ ξ

K k M U

, ,,,,,

f  1,...., .                 e N

 (4.56) 

The symbol fN  denotes the total number of phase-field calculation points used in the 

topology optimization model. The present study selects phase-field calculation points at all 

element centers of the finite element model; therefore, fN  is equal to the total number of finite 

elements eN  in the design domain. The above problem (4.56) can be solved with a gradient-

based mathematical programming algorithm, which requires band gap and corresponding 

sensitivity analysis. Thus, the following subsection will address the band gap and sensitivity 

calculation procedure under random diffuse region widths of the unit cell of PnCs. 

 



 

136 

 

4.7 Numerical examples of Robust topology optimization of PnCs 

4.7.1 Influence of the diffusion region width 

We first provide an example that shows the influence of the diffuse region width on the  

dispersion curves of the phononic crystals. Herein, a typical PnC unit cell design with a circle 

plumbum inclusion (material 2) surrounded by the epoxy matrix (material 1) is considered. The 

material 1 has the Young ’ s modulus 1 4.35GPaE , Poisson’s ratio 1 0.37 , and the mass 

density 3
1 1180 kg m , the material properties of material 2 are 2 40.8GPaE , 2 0.37 , 

and 3
2 11600 kg m  . The unit cell has width c 0.02ma   and the radius of the circular 

inclusion is 0.005 m. Here, three different cases of diffuse region widths are considered as 

shown in Fig.4.27: (a) without diffuse region, (b) with a uniform diffuse region (diffuse region 

width 4
diffuse 4 10 mh ), and (c) with non-uniform diffuse region (diffuse region width is 

40 ~ 8 10 m ). For verifying the influence of the diffuse region, the second band gap (i.e., a 

band gap between the second and third bands) and the fourth band gap of out-of-plane modes 

for the three reference designs are shown in Fig. 4.28. It is seen that, the diffuse region width 

has remarkably effect on the dispersion curves of the of the phononic crystals, this also proves 

the importance of robust optimization of the phononic crystals considering the diffuse region 

width. 

   



 

137 

 

(a) (b) (c) 

Fig. 4.27 Unit cells of phononic crystals with different diffuse regions: (a) without 

diffuse region; (b) with uniform diffuse regions; (c) with non-uniform diffuse regions. 

  

(a) (b) 

Fig. 4.28 Dispersion curves of out-of-plane modes for different reference designs: (a) the 

second band gap; (b) the fourth band gap. 

 

4.7.2 Robust topology optimization of out-of-plane mode 

 We first present robust topology optimization results and discusses important factors in 

the design of out-of-plane modes of the PnC unit cell. Here, the unit cell consists of two kinds 

of candidate materials: epoxy (material 1) and plumbum (material 2). The material properties 

of the two components are the same as those in the previous subsection. The unit cell has width 

c 0.02ma  and is discretized into 100 100  uniform square elements. The K-S aggregation 

parameters are set as 1 5  and 2 5  initially and their absolute values are increased by 

0.5 per iteration until they reach 30. The optimization iterations stop when the difference 

between two consecutive objective functions is less than 41 10 . 

In the robust optimization problem, the random field of the diffuse-region width between 

two material phases satisfies a Gaussian distribution with mean value 48 10 mξ  , 
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coefficient of variation 0.2  , and correlation length 0.02mL  . Here, the fifth 

stochastic band gap of the PnCs is considered as the optimization target, and the weight factor 

between the mean band gap and the standard deviation is taken as 1. The initial design is 

chosen such that the unit cell has seven circular plumbum inclusions (with radius of 0.002 m) 

and the diffuse regions with the a mean width of 48 10 m  , the initial design and its 

dispersion curves of out-of-plane modes are shown in Fig. 4.29. It can be seen that there is not 

band gap between the fifth and sixth bands. The optimization process converged after 46 

iterations, the history of the objective function is given in Fig.4.30. After optimization, an 

optimized design with the mean and standard deviation of the band gap 51.50 kHz and 0.285 

kHz respectively can be obtained as shown in Fig. 4.31(a) and its dispersion curves are given 

in Fig 4.32(b).In the robust optimized design, the total volume ratio of the plumbum inclusions 

is 27.2%. It is found that a relatively wide mean band gap can be achieved after the optimization 

process. 

  

(a) (b) 

Fig. 4.29 Initial design and its dispersion curves. (a) Initial design of PnC with nine unit 

cells and (b) mean value of dispersion curves of out-of-plane modes. 
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Fig. 4.30 Iteration history of the weighted objective function of the fifth band gap. 

 

  

(a) (b) 

Fig. 4.31 Optimized design and its dispersion curves. (a) Initial design of PnC with nine 

unit cells and (b) mean value of dispersion curves of out-of-plane modes. 

 

Next, we examine the effect of the weight factor in the objective function (4.52). Another 

two weight factors 30  and 50  are considered, and the optimized solutions are given 

in Fig.4.32. The mean values and standard deviations of the band gap for designs with different 

weight factors are summarized in Table 4.7. It is seen that as the weighting factor increases, the 
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optimized unit cell solution changes remarkably, and a relatively narrow mean band gap design 

is obtained for achieving a smaller standard variance of band gap 

  
(a) (b) 

Fig. 4.32 Optimized designs of nine unit cells with different weighting factors: (a) 

30 ; (b) 50 . 

 

Table 4.7 Comparison of the mean value and standard variance of band gap for different 

weighting factors 

Weighting factor  
Mean value of band gap 

(kHz) 

Standard variance of band 

gap (kHz) 

1 51.50 0.285 

30 48.15 0.249 

50 20.62 0.168 

 

The effect of the mean diffuse region width is then studied. Two different mean diffuse 

region values 44 10 m  and 31.6 10 m  are considered. The optimization solutions are 

given in Fig.4.33, and the mean value and standard deviation for different diffuse region widths 

are summarized in Table 4.8. It can be observed that the optimized solutions for different cases 
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share the similar distribution tendency, and for the case with thinner diffuse region can achieve 

a relatively wider band gap. 

  
(a) (b) 

Fig. 4.33 Optimization solutions of a cantilever beam obtained for different diffuse-

region widths: (a) 44 10 m ; (b) 31.6 10 m . 

 

Table 4.8 Mean value and standard deviation of band gap for different diffuse-region 

widths 

Mean width of diffuse layer 

 (m) 

Mean value of band gap 

(kHz) 

Standard variance of band 

gap (kHz) 

44 10  57.42 0.196 

48 10  48.15 0.249 

31.6 10  37.96 0.233 

 

In the following, we present the robust optimization of a PnC for different band gap orders. 
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Here, another five robust optimal designs and their dispersion curves for the different orders of 

band gaps (from the second order to the seventh order) are presented in Fig. 4.34. The mean 

value and standard deviation of the band gap for the optimized solutions obtained by respective 

orders are given in Table 4.9, the total volume ratios of the plumbum inclusions are also listed 

in Table 4.9. it can be easily found that the designs show significant difference for different 

orders and exhibit different dispersion curves. 

(a) (b) 

(c) (d) 
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(e) (f) 

(g) (h) 

(i) (j) 

Fig. 4.34 Robust optimized design of out-of-plane modes and their dispersion curves: 

(a)–(b) second band gap, (c)–(d) third band gap, (e)–(f) fourth band gap, (g)–(h) sixth band 

gap, (i)–(j) seventh band gap. 
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Table 4.9 comparisons of robust optimized designs with different orders of band gaps 

Orders of band gap Volume ratios of the 
plumbum inclusions 

Mean band gap 
width (kHz) 

Std. deviation of 
band gap width 

(kHz) 

2-3 band 27.0% 18.12 0.171 

3-4 band 40.2% 17.84 0.053 

4-5 band 24.9% 67.28 0.105 

5-6 band 27.2% 48.15 0.249 

6-7 band 31.2% 76.97 0.323 

7-8 band 28.2% 59.10 0.307 

 

4.7.3 Robust topology optimization of in-plane mode 

In this subsection, we further study the optimal design for other coupled in-plane modes. 

The unit cell is discretized into 80 80  uniform square elements. The material properties of 

the two components are the same as those in the previous subsection. In the Gaussian random 

distribution field model of the diffuse-region, the mean width is 42.7 10 mξ , coefficient 

of variation 0.2  , and correlation length 0.02mL  . In the robust optimization 

formulation, the sixth band gap (i.e., the band gap between sixth and seventh bands) is 

considered, and the weight factor between the mean band gap and the standard deviation is 

taken as 1. The initial design is chosen same with the pervious example that the unit cell 

has seven circular plumbum inclusions (with radius of 56.7 10  m), its design and dispersion 

curves of in-plane modes are plotted in Fig.4.35. It is observed that there is no band gap between 

the sixth and seventh bands, after optimization process, a band gap with the mean and standard 

deviation of the band gap 7.61 kHz and 0.06 kHz respectively in the optimal design. The 

optimal solutions and corresponding mean values of dispersion curves are given in Fig. 4.36. 
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In the optimal design, the volume ratio of the plumbum inclusions is 30.7%. 

  
(a) (b) 

Fig. 4.35 Initial design and its dispersion curves of coupled in-plane modes. (a) Initial 

design of PnC with nine unit cells and (b) mean value of dispersion curves.  

 

  
(a) (b) 

Fig. 4.36 Optimal design and its dispersion curves of coupled in-plane modes. (a) Initial 

design of PnC with nine unit cells and (b) mean value of dispersion curves.  

 

4.8 Summary 

We proposed a phase-field-based topology optimization method for minimizing dynamic 
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responses of structures with diffuse-region width uncertainty. Herein, a diffuse region between 

two material phases was assumed as a spatial stochastic field and discretized into uncorrelated 

stochastic variables employing the EOLE method. Stochastic structural dynamic response 

analysis was then conducted with PCE. To produce a less-sensitive optimal design, a robust 

topology optimization formulation with a weighted objective function handling the mean value 

and standard deviation of the structural dynamic performance was formulated. The structural 

dynamic performance can be chosen as structural frequency responses, frequency proprieties, 

and transient responses. These correspond respectively with the dynamic compliance, structural 

fundamental frequency or frequency gap, and the transient displacement under impact loads. In 

the framework of the phase-field method, the bi-material design domain is represented with the 

phase-field function, and initial non-uniform diffuse regions are generated by evolving the 

phase-field functions. The proposed phase field-based robust topology optimization method  

has also applied into the microstructure design of PnCs against random diffuse regions between 

material phases. Numerical examples demonstrated that the proposed phase-field-based 

topology optimization can handle different types of structural dynamic robust optimization 

problems. The numerical results showed that the characteristics of the external excitations (e.g., 

the excitation frequency and the action time) have remarkable effects on the optimal solutions.  

The results also show that the phase-field based approach can provide a relatively wide band 

gap design that is less sensitive to random diffuse region uncertainties between material phases.  
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5 Topology optimization of piezoelectric smart structures for 

minimum energy consumption  

Smart structural systems with piezoelectric actuators and sensors are considered an effective 

method to reduce structural vibration for avoiding possible structural failure or system 

performance degradation. Piezoelectric actuators are often used for providing active damping 

in active vibration control system. The control effectiveness is one of the major concerns in the 

design of an active control system. Another important criterion of the active control system is 

the power consumption. In many practical cases (such as miniature devices and aerospace smart 

structures), only a limited energy supply may be available. Thus, achieving the desired 

structural vibration level using as little energy as possible is considered ideal for active control 

systems. 

Many attempts have been made to improve the effectiveness of piezoelectric active control 

structures, including designing high performance controller algorithms [183], choosing suitable 

type of amplifiers [184], and finding the optimal placement/configuration of piezoelectric 

patches [185]. It is clear that the active control effect can be promoted by optimizing the 

numbers and positions of piezoelectric actuators. Early studies mostly focused on exhaustive 

search [54] or heuristic optimization strategies [55] to find the optimal positions and sizes of 

the piezoelectric patches. In more recent works, Bruant et al. [57] and Xu et al. [186] studied 

the optimal placement of piezoelectric patches using genetic algorithms. However, the number 

of design variables is very limited because of the high computational cost when using heuristic 

optimization strategies. Thus it may be difficult to obtain a realistic optimal design with genetic 

algorithms. This just demonstrates the need for topology optimization in the conceptual design 

of piezoelectric smart structures. Existing studies have primarily focused on improvement of 

the vibration control effectiveness with the topology optimization techniques and no energy 
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consumption index was considered. 

Electrical energy consumption has been discussed in some studies on the vibration control 

and design optimization of smart piezoelectric structures. Brennan and McGowan [187] first 

proposed a method for predicting the energy consumption of piezoelectric actuators in active 

vibration control systems. Mukherjee and Joshi [188] studied the shape optimization of 

piezoelectric actuators for minimizing the energy consumption to achieve a specified maximum 

static response. Chevva et al. [189] presented a minimum actuation energy control strategy for 

minimizing the total input energy in the active control. Zorić et al. [190] optimized the sizes 

and locations of the piezoelectric patches with Linear-Quadratic Regulator (LQR) control by 

using exhaustive heuristic search. In more recent works, topology optimization methods have 

been introduced for reducing both the structural vibration level and control the energy 

consumption simultaneously with optimal control strategies. For instance, Goncalves et al. [191] 

proposed a new controllability-based topology optimization method to determine the optimal 

piezoelectric material distribution in the LQR control system by considering the control 

spillover effects. Hu et al. [192] investigated topology optimization for piezoelectric thin-shell 

structures under LQR optimal control by reducing the structural dynamic compliance and 

energy consumption simultaneously. Howerver, topology optimization methods based on the 

optimal control strategy actually provide a compromise between the energy consumption and 

control performance. 

This chapter proposes a topology optimization method for obtaining the best electrode 

coverage of the piezoelectric material layer which requires the minimum energy consumption 

to achieve a specified vibration level of a plate with active control. As shown in Figure 1, two 

piezoelectric layers are adhered to the top surface of a thin-walled structure in a collocated 

manner. In the control system, each sensor patch is connected to a charge amplifier, and the 

control voltage of the corresponding actuator patch can be obtained from the sensor output by 
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using the CGVF control algorithm of the controller. The steady-state structural response of the 

structure under harmonic excitation is evaluated with finite element analysis. In the topology 

optimization model, the objective function is the total energy consumption of the active control 

system; the dynamic compliance of the structure is taken as a vibration level measure for the 

whole structure, and it is imposed by a specified upper bound. With the density-based topology 

optimization model, the elemental pseudo-densities indicating the presence/absence of 

electrode coverage of the piezoelectric layer are taken as design variables. The penalization 

models of the piezoelectric effects and energy consumption are employed to suppress the 

elements with intermediate pseudo-densities during the optimization process. The stiffness and 

mass matrices of the host and piezoelectric layers do not change during the optimization process 

because the changes in the electrode coverage only affect the piezoelectric effect and energy 

consumption of each piezoelectric patch. The sensitivity analysis scheme for the total energy 

consumption of the piezoelectric actuators is derived with the adjoint-variable method, and the 

optimization problem is solved with a gradient-based mathematical programming algorithm. 

 

5.1 Frequency response analysis under CGVF control 

5.1.1 Finite element modeling of the piezoelectric laminated plate 

We consider a laminated plate with attached piezoelectric material layer and designable 

electrode coverage, as shown in Fig. 5.1. The constitutive relations for the host layer and 

piezoelectric layer are  

 
H

E T

               in host layer,
     in piezoelectric layer.

σ C ε
σ C ε e E

 (5.1) 

Here, σ   and ε   are the mechanical stress vector and the mechanical strain vector, 

respectively; HC  and EC  are the elasticity matrices of the host layer and piezoelectric layers, 
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respectively; e  is the piezoelectricity matrix and E  is the vector of the applied electric field. 

 

Fig. 5.1 Schematic illustration of a piezoelectric laminated plate under active vibration 

control.  

In the present work, a four-node Mindlin shell element with small strain assumptions is 

employed. The displacement components u , v  and w  at point ( , , )x y z  can be given as 

 
0

0

0

( , , , ) ( , , ) ( , , ),
( , , , ) ( , , ) ( , , ),

( , , , ) ( , , ).

x

y

u x y z t u x y t z x y t
v x y z t v x y t z x y t

w x y z t w x y t

 (5.2) 

Here, 0u , 0v  and 0w  are the mid-plane displacement components, and x  and y  are 

the rotations of transverse normal about the y  and x  axes, respectively. 

After finite element discretization, the governing equations of a laminated structure with 

bonded piezoelectric actuator/sensor patches under an external harmonic force tf   and 

piezoelectric control force a ( )tf  are given as 

 a ( ),t t t t t+ + =Mx Cx Kx f fMx Cx Kxt ttttt  (5.3) 

where n nM R  , n nC R   and n nK R   ( n   is the number of degree of freedom) are the 

mass matrix, damping matrix and stiffness matrix, respectively; 1( ) ntx R , 1ntx R 1ntx Rt , and 
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1ntx Rtx Rt   are the vectors of time-varying displacement, velocity, and acceleration, 

respectively. The control force a ( )tf  depends on the control algorithm and will be discussed 

in the following section.  

 

5.1.2 Active control force in CGVF control 

The control voltage is applied in the thickness direction. The electric voltage aφ  and the 

electric field intensity zE  in the actuator layer are expressed as 

 e
T1 2

a a a a,  ,  ... , ,Nφ  (5.4) 

 
e

e

T1 2T1 2
 z ,  ,..., - ,  - ,...,  -   ,

N
N z z z

z z zE E E
h h h

E  (5.5) 

where eN   is the total number of actuator elements; a (  =1,2, ... ,N )e
ee   and 

 (  =1,2, ... ,N )e
z eE e  are the electric voltage and the electric field intensity, respectively,  of the 

the  actuator elements.  

The actuation force a ( )tf  in Eq. (5.3) is 

 a uφ a( ) ( ),t tf K φ  (5.6) 

where 
a

T
uφ u φ adK B eB  is the structural electro-mechanical matrix of the actuator layer , 

uB and φB  are the strain-displacement matrix and the electric field-potential matrix, and a  

is the volume occupied by the actuator layer.  

The actuator voltage a ( )tφ , which depends on the output sensor voltage s ( )tφ  and the 

constant control gain matrix aG  in the CGVF control, is written as  
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 a a s( ) ( ).t tφ G φ  (5.7) 

The sensor voltage output vector s ( )tφ  is expressed as 

 s s φu( ) ( ),t tφ G K x( ),(  (5.8) 

where e1 2
s s s sdiag( , ,  ... ,  )NG G GG  is the diagonal gain factors matrix of charge amplifiers. 

Each diagonal gain of the charge amplifiers matrix stands for an independent control gain for 

its own sensor/actuator pair, implying that the numbers of sensors and actuators are equal. The 

gain factors matrix is diagonal means that the control pairs do not affect each other. Here, 

s

T T
φu Φ u= dK B e B  is the mechano-electronic matrix for the sensor layer, with s  denoting 

the volume occupied by the sensor layer. 

By substituting Eqs. (5.8) and (5.7) into Eq. (5.6), the control voltage becomes 

 a a s φu( ) ( ).t tφ G G K x( ).(  (5.9) 

Thus, the active control force a ( )tf  can be rewritten as 

 a A( ) ( ),t tf C x( ),(  (5.10) 

 A uφ a s φu.C K G G K  (5.11) 

Here, AC  in Eq. (5.11) is defined as the active damping matrix. 

 

5.1.3 Frequency response analysis 

 Substituting Eq. (5.10) into Eq. (5.3), we can rewrite the dynamic equation as  
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  At t t t+ + =Mx C C x Kx fAMx C C x KxAt t tA t tA  (5.12) 

In this study, the external excitation is a harmonic one in the form of ei ttf F  (with  

frequency 2 f  and amplitude F ), and only the frequency response is of concern. The 

steady-state displacement response tx  can be expressed as ei ttx X , where X  is the 

vibration displacement amplitude. Thus, the dynamic equation (5.12) can be further expressed 

as   

 2
A( )iM C C K X F  (5.13) 

As mentioned, the mass, stiffness, and damping effects of the electrode coverage are 

negligible. Thus the matrices M , K , and C  in the governing equation (5.13) are assembled 

as 

 

e

e

e e

h a s
1

h a s
1

h h
1 1

,

,

,

N
e e e

e
N

e e e

e
N N

e e

e e

M M M M

K K K K

C K M

 (5.14) 

where h
eK  and h

eM  are the element stiffness matrix and the element mass matrix of the host 

structure and  remain unchanged during the optimization process; s
eK  , a

eK  , s
eM   and a

eM  

denote the element stiffness and mass matrices of the piezoelectric actuator/sensor layers. The 

structural damping of the piezoelectric layers is neglected here, because the structural damping 

effect of piezoelectric layer is much smaller than that of the base structure, and the active 

damping effect of the piezoelectric plays a dominate role in the structural vibration reduction 

[58, 71].Thus, the total structural damping effect contains only the contribution of the host layer, 

for which the damping coefficients are denoted by  and . Here, the damping of the base 
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structural can effectively avoid undesirable resonance. 

The actuator voltage a tφ   in Eq. (5.9) can also be given as a a
i tt eφ Φ  , and the 

active control voltage amplitude aΦ  , which is a complex number vector, is then   

 a a s Φu .iΦ G G K X  (5.15) 

It is noted that the active damping AC  and control voltage amplitude aΦ  are related to 

the structural electro-mechanical matrix of the actuator layer uφK  and the mechano-electronic 

matrix of the sensor layer ΦuK , which are affected directly by the electrode coverage. Thus the 

expressions with the design variables will be presented in the next section. 

The response analysis of the non-proportionally damped system in Eq. (5.13) can be 

efficiently solved with the complex mode superposition method [73] or the direct method [153]. 

In this study, we employ the latter approach. 

 

5.2. Topology optimization formulation  

Our objective is to minimize the electrical energy consumption of the piezoelectric actuators. 

The total actuator energy consumption P ρ  is given as [187]  

 
2

cap a
1 1

,
2

Ne Ne ee e

e e
P P Cρ ρ ρ   (5.16) 

where cap /   1,2,...,
e e

eC A h e N  is the effective capacitance of each actuator,  is the 

permittivity of the piezoelectric material and eA  is the surface area of the the  actuator; all 

the actuators share the same geometric dimension ; In this study, all of the actuators have the 

same effective capacitance capcap /   1,2,...,
e e

eC C A h e N  because they share the same 
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geometric dimensions and material; the symbol 
2

a
e   stands for the norm of the actuator 

voltage amplitude and can be expressed as 

 
2 22

a a aRe Im .e e eρ ρ ρ  (5.17) 

Here, the symbols Re( )  and Im( )  denote the real and imaginary parts of a complex 

number.  

Using the vector and matrix forms, the total actuator energy consumption P   can be 

rewritten as 

 

T T
cap a a a a

3
R T R I T I

cap

Re( ) Re( )+Im( ) Im( ) ,
2

  = ( ) +( ) ,
2

P C

C

ρ Φ Φ Φ Φ

X AX X AX
 (5.18) 

where the matrix 
T

a s Φu a s ΦuA G G K G G K , and RX  and IX  are the real and imaginary 

parts of the displacement vector X , respectively. 

In this study, the dynamic compliance [193] is considered a vibration response measure to 

be restricted in the optimization model. Its expression is [40] 

 
2 2T R T I .c F X F X  (5.19) 

 The dynamic compliance constraint is equivalent to restricting the maximum allowable 

value of structural dynamic stiffness subjected to time-harmonic external loads of given 

frequency and amplitude. The details of explanations and discussions on dynamic compliance 

can be founded in [154]. 

With the above objective function and constraint, the topology optimization problem is 

formulated as 
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2
A

2 2T R T I
max

e

min.  ( )

s.t.    ( ) = ,

        ,

        0 1 , 1,2,..., .    e

P

i

c

e N

ρ
ρ

M C C K X F

F X F X
 (5.20) 

 Here, the vector 
e

T

1 2, ,..., Nρ  collects the element-wise density design variables 

describing the electrode layout over the piezoelectric layers, both actuator and sensor layers 

share the same distribution of electrode coverage and design variables. The symbol maxc  

denotes the specified highest allowable dynamic compliance value, it can be chosen by 

considering specific application requirements. The lower bound of the relative density  is 

set to be 610  in this study.  

It is noted that, the signs and magnitudes of the actuator voltages are determined by the 

active control law. To be specific, they are calculated using Eqs. (5.7)-(5.8) for the CGVF 

control considered in this study. Thus in the final optimal designs, the piezoelectric control pairs 

only exist at the locations with non-zero densities. 

By introducing the piezoelectric property penalization model, the piezoelectricity matrix 

can be expressed as [194] 

 1piezo .p
e ee e  (5.21) 

Then the active damping matrix AC  in Eq. (5.11) can be further given as 

 1

A uΦ a s Φu
1

.
eN

p e e e e
e

e
C K G G K  (5.22) 

Here, the symbol 1p  is the penalty factor, and we chose 1 3p  following the suggestion 

in [61, 195]. It is noted that the elasticity, piezoelectric and mass matrices of the sensors and 
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actuators are not penalized and keep unchangeable during the optimization process.  

 The total energy consumption P   can also be expressed with a density-based  

interpolation model as 

 
3 T2 R R I T I

cap a cap
1 1

+ ( ) ,
2 2

Ne Ne
e

e e e e e e
e e

P C Cρ X A X X A X  (5.23) 

with  2
T

a s Φu Φu    .pe e e e e
e G GA K K  (5.24) 

Recalling Eq. (5.18), one sees that the elemental matrix eA   in Eq. (5.24) reflects the 

relation between the displacements and the energy consumption of the e  th element. Here, 

2 1p   is a penalization factor when computing the energy consumption. Because the total 

energy consumption in Eq. (5.24) has been indirectly penalized by the penalization factor 

1 3p   through its effect on the elemental dynamic response eX  , we suggest here 2 1p  , 

though other choices may also work. If the penalization factor 2p  is larger than 1, the energy 

consumption of the intermediate density element will be artificially reduced by the penalization 

model and lead to a solution with a ‘gray’ electrode coverage. 

The volume constraint, which is usually considered in the compliance minimization 

topology optimization, is not included in our optimization model. Comparative results 

regarding the effects of discarding the volume constraint in the considered problems will be 

given in a numerical example.  

 

5.3 Sensitivity analysis 

In this chapter, the topology optimization problem is solved by a gradient-based mathematical 

programming algorithm. Thus, the sensitivity analysis of the objective function and constraint 
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function with respect to the elemental densities needs to be developed. To evaluate the 

sensitivity of the total energy consumption P , we first introduce two adjoint vectors 1λ  and 

2λ  to formulate the Lagrangian function ,L X A  as 

 T T
1 2, ,L P X A λ WX F λ WX F   (5.25) 

where W   and F   denote the conjugates of the dynamic stiffness matrix

2
A( )iW M C C K  and the excitation amplitude vector F , respectively.  

Differentiating Eq. (5.25) with respect to the the  design variable yields 

 

R
T T T T
1 2 1 2R

I
T T
1 2I

d ,
d

                  .

e e e e e

e

L P P

P i i

X A A W W Xλ X λ X λ W λ W
A X

Xλ W λ W
X

 (5.26) 

Letting the fourth and fifth terms on the right-hand side of Eq. (5.26) be equal to zero, the 

adjoint variables can be obtained by solving the following equations  

 T
1 R I

1
2

P Piλ W
X X

, T
2 R I

1 .
2

P Piλ W
X X

 (5.27) 

The two adjoint variables satisfy 1 2λ λ ,  and 1λ  is the solution to the following adjoint 

equation  

 
3 3TT R I T

1 cap capR I

1 .
2 2 2

P Pi C i Cλ W X X A X A
X X

 (5.28) 

The derivative of the objective function in Eq. (5.26) can be further expressed as 

 T
1

d 2Re ,
d e e e

L P A Wλ X
A

 (5.29) 
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in which  

 
1

2
A A

1
1 uΦ a s Φu

( )
,

       ,
e e e

p e e e e
e

i

p G G

M C C K CW

K K

 (5.30) 

and 

 
3 T TR R I I

cap ,
2e e e

P CA A AX X X X
A

 (5.31) 

with  2
T1

2 a s Φu Φu .p e e e e
e

e

p G GA K K  (5.32) 

Substituting Eqs. (5.28) and (5.30)-(5.32) into Eq. (5.29), the derivative of the total 

energy consumption P  can be obtained as 

 
2

1

3 T T1
cap a s 2 Φu Φu Φu Φu

1 1 T

T T

1 uΦ

R R I I

Φu

2

         2 Re

pe e e e e e
e

p
e

e

e e

P C G G p

p

K K K K

W X AK

X

K X

X X X
(5.33) 

The sensitivity of the structural dynamic compliance c  can be derived in a similar way 

and can be found in [40]. 

 

5.4 Numerical examples 

Numerical examples are presented to confirm the validity of the proposed topology 

optimization methodology, and the differences between the present optimization model and the 

minimum-volume optimization model are also discussed. The proposed method is implemented 

on the Matlab platform, and the globally convergent method of moving asymptotes (GCMMA) 

[162] algorithm is employed to solve the optimization problem. The optimization process is 
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terminated when the relative difference between the objective function values of two adjacent 

iterations becomes less than 410 . 

 

5.4.1 Topology optimization for four-edge clamped plate 

A numerical example involving four-edge clamped squared plate is presented first to 

confirm the validity of the proposed topology optimization methodology. The four-edge 

clamped piezoelectric laminated plate with two piezoelectric layers covered with electrodes and 

attached to the top surface of the host layer is shown in Fig. 5.2. The length and thickness of 

the host layer are 0.1ma  and 4
h 10 mt , respectively. Two piezoelectric layers share the 

same length with the host layer, and the thicknesses of both layers are s a 510 mt t . The 

geometric parameters are not realistic, though they satisfy the basic assumption that the 

damping of the piezoelectric layers is much smaller than those of the host structure. The 

material of the host layer is defined as an isotropic elastic material with aluminum constitutive 

properties (modulus of elasticity h 10 26.9 10  N/mE , Poisson’s ratio h 0.3  and the mass 

density h 32700 kg/m ), and the material properties of the piezoelectric sensor and actuator 

layers (PZT-5A) are given in Table 5.1. The damping coefficients of the host structure are 

5= =1 10  . The sensor charge amplifier has a gain factor of 4
c =2 10  V/AG  , and the 

control gain of the CGVF control is a =100G  . A time-harmonic external force ( ) ei tf t F  

(with 2F N, 2 f  and f =240 Hz) is applied at the center of the plate. 
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Fig. 5.2  Four-edge clamped piezoelectric laminated plate with designable electrode 

coverage under an external harmonic excitation at its center. 

 

Table 5.1 Material properties of piezoelectric sensor/actuator layers.  

Elasticity constant 10 2 10 2
11 22 1210.76 10  N/m  6.31 10 N/m , C C C  

10 2 10 2
13 23 336.39 10  N/m  10.04 10 N/m , C C C  

10 2 10 2
44 661.96 10  N/m  2.22 10 N/mC C  

Mass density   piezo 37800 kg/m  

Piezoelectricity 
constant 

2 2
31 32 339.6 C/m ,  15.1 C/me e e , 2

33 15.1 C/me  
2

15 25 12.0 C/me e  

Dielectric constant 91.15 10  F/m 

 

The plate (design domain) is discretized by 50×50 uniform-sized four-node Mindlin shell 

elements with 2601 nodes and 13005 degree of freedoms (DOFs) (including constrained ones). 

The first five eigenfrequencies of the laminated plate are 82.6 Hz, 168.5 Hz, 168.5 Hz, 248.1 

Hz, and 302.4 Hz. They will not change during the optimization process because only the 

electrode coverage layout is designable (recall that the mass and stiffness of the electrode are 

negligible). In the optimization model, the upper limit value of structural dynamic compliance 

is 35.5 10 N m   and the initial values of the design variables for indicating the electrode 
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coverage are set to be 0.6 1,2,...,2500e e . The well-known sensitivity filter technique 

[196], with a filter radius of 3
min 4 10  mr , is employed for preventing mesh dependency of 

the optimal solution. 

The optimization process converged after 32 iterations, and the iteration history is given 

in Figure 3. It can be observed from Fig. 5.3 that the total energy consumption of the active 

control system decreases from 1.91 W for the initial design to 1.61 W for the optimal design. It 

is necessary to point out that the compliance dynamic for the initial design ( 36.7 10 N mc ) 

is larger than the allowable maximum value ( 35.5 10 N mc  ) and thus the objective 

function increases in the first four iterations to satisfy the dynamic compliance constraint . The 

optimal solution (red color denotes density 1 and blue color denotes zero density) and suggested 

electrode coverage (by deleting low-density elements) are given in Fig 5.4. The electrode 

coverage over the piezoelectric material layer is 46.2%. The optimal solution is significantly 

different from the optimal solution for minimizing dynamic compliance [73]. It can be observed 

that no electrode coverage is distributed in the areas around the loading point; this occurs 

because the implementation of the piezoelectric control forces around the loading area, which 

has higher vibration velocity amplitudes, requires more electrical power supply. The vibration 

amplitude under the CGVF control for the initial design and optimal design is shown in Fig 5.5. 

This figure indicates that the global vibration level has been reduced uniformly after 

optimization. Here, the maximum vibration amplitudes for the initial and optimal designs are 

0.33 cm and 0.27 cm, respectively. The real and imaginary part of the applied actuator voltage 

amplitude are shown in Fig 5.6, which shows that the distribution of real and imaginary part of 

the control voltage agrees very well and they have opposite signs.  
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Fig. 5.3 Iteration histories of the energy consumption and dynamic compliance 

constraint. 

 

  

Fig. 5.4 Optimal layout of electrode coverage for the four-edge clamped piezoelectric 

laminated plate: (a) design variable density contour and (b) optimal distribution of electrode 

plotted with threshold density value threshold =0.5 . 
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(a) (b) 

Fig. 5.5 Vibration amplitude for the initial and optimal design: (a) initial design 

(maximum vibration amplitude is 0.33 cm) and (b) optimal design (maximum vibration 

amplitude is 0.27 cm). 

 

  

(a) (b) 

Fig. 5.6 Actuator voltage amplitude for optimal design: (a) real part and (b) imaginary 

part. 

 

For comparison, we consider three different reference designs with similar area coverage 

of electrodes (46.24%~48%) (recall that the optimal solution in Fig. 5.4 has a 46.2% electrode 

coverage), as shown in Fig. 5.7. The dynamic compliances and energy consumptions are 



 

165 

 

summarized in Table 5.2. It is found that the optimal design (Fig. 5.4) has the lowest energy 

consumption in all the designs that satisfy the dynamic compliance constraint, while the 

reference designs either have high energy consumptions (the designs in Figs. 5.7(a) and (c)) or 

violate the dynamic compliance constraint (the design in Fig. 5.7(b)). 

 
Fig.5.7 Three reference designs: (a) Case A: center electrode coverage design (total 

electrode coverage ratio is 46.24%), (b) Case B: design with vertical striped electrode 

coverage (total electrode coverage ratio is 48%) and (c) Case C: design with central and 

vertical striped electrode coverage (total electrode coverage ratio is 48%). 

 

Table 5.2 Comparisons of the dynamic compliances and energy consumptions for the 

optimal design and reference designs. 

 Electrode 
coverage ratio 

Energy 
consumption (W) 

Dynamic 
compliance (N•m) 

Optimal solution 46.2% 1.61 5.5 10-3 

Reference design A 46.24% 3.37 5.2 10-3 

Reference design B  48% 1.47 5.8 10-3 

Reference design C  48% 3.19 5.2 10-3 

 

The influence of the dynamic compliance constraint on the optimal design is also studied. 
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The same plate treated in the previous example is considered except with two different limiting 

values for dynamic compliance 36.0 10 N m  c and 35.0 10 N m . The optimal designs 

are illustrated in Fig. 5.8. These optimized topologies are similar, except that some regions 

become larger as the upper limit of the dynamic compliance decreases. Moreover, the electrode 

coverages for the piezoelectric layers in the two cases are 32.6% and 59.3%, respectively.  

 

Fig. 5.8 Optimal solutions under different dynamic compliance constraints: (a) 
36.0 10 N m c and (b) 35.0 10 N moptimal design. 

 

To explore the influence of the external excitation frequency and dynamic compliance 

constraint, we also perform the optimal design under excitation of 208Hz excitation (middle 

point between the third and fourth eigen-frequencies of the structure) and three different 

dynamic compliance constraints 3 3
max 2.4 10 2.6 10c   and 32.8 10  N m  (it cannot 

be set to 35.5 10  N m  because the vibration level under 208 Hz excitation is much smaller 

than that of 240 Hz excitation). The optimized designs are given in Fig. 5.9. They show some 

similar patterns but not identical shapes as compared with the solutions obtained at 240Hz 

excitation frequency (Figs. 5.4 and 5.8). This is because the optimization results under 208Hz 

excitation are affected by both the third and fourth eigenmodes, while the solutions for 240Hz 

mainly reflect the influence of the fourth eigenmode. 
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(a) (b) (c) 

Fig. 5.9 Optimal solutions (red color implies the electrode coverage) under 208 Hz 

excitation and different dynamic compliance constraints: (a) 3
max 2.4 10  N mc , (b) 

3
max 2.6 10  N mc and (c) 3

max 2.8 10  N mc . 

 

5.4.2 Topology optimization for cantilever plate with two different optimization models   

(a) Optimization for minimizing energy consumption 

We now consider the topological design of the electrode layout in a cantilever piezoelectric 

laminated plate for minimizing the total energy consumption, as shown in Fig. 5.10. The plate 

has side lengths 1.6 ma   and 0.8 mb  , and the thicknesses of the host layer and 

piezoelectric layers are 3
h 4 10 mt   and s a 45 10 mt t  , respectively. The material 

properties of the host layer and piezoelectric layers are the same as in the previous example. 

The damping coefficients of the host structure are 4= =1 10 . The sensor charge amplifier 

has a gain factor of 5
c =10  V/AG , and the control gain of the CGVF control is a =150G . A 

time-harmonic external force ( ) ei tf t F   (with 100F  N, 2 f   and f  =7 Hz) is 

applied at the mid-point of the free edge. The design domain of the piezoelectric laminated 

plate is discretized by 80×40 uniformly-sized shell elements with 3321 nodes and 16605 DOFs. 

The first Eigen frequencies are 1.22 Hz, 5.20 Hz, 7.65 Hz, 16.99 Hz, and 21.46 Hz. The 

objective function is to minimize the total energy consumption at the excitation frequency f

=7 Hz, and the dynamic compliance of the structure is restricted by 4.4 N m . All the design 
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variables are set as 0.6 1,2,...,3200e e  in the initial design.  

 

Fig. 5.10  Cantilever piezoelectric laminated plate under an external harmonic excitation 

at the mid-point of the free edge. 

 

The optimization process converged after 95 iterations, yielding the optimal solution 

shown in Figure 11. It is found from Fig. 5.9 that the electrode distribution is moved away from 

the neighborhood area of the loading point to avoid an energy consumption that is too high. Fig. 

5.11 shows that some isolated electrode parts are distributed around the inflection points and 

corner points for reducing the local vibration. The iteration history of the objective function and 

the dynamic compliance index are plotted in Fig. 5.12. The energy consumption increases in 

the first iteration to satisfy the dynamic compliance constraint and then decreases from 29.07 

W for the second iteration to 18.21 W in the final solution. In the optimized design, the electrode 

coverage is 46.1%. It can be observed from the vibration level contours of the initial and optimal 

designs given in Fig. 5.13 that the overall vibration level is notably reduced after optimization. 

Here, the maximum vibration amplitudes for the initial and optimal designs are 5.21 cm and 

4.40 cm, respectively. The applied actuator voltage amplitude is shown in Fig. 5.14, and the 

maximum absolute values of the real and imaginary parts are 546.4 V and 819.4 V, respectively.  
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Fig. 5.11 Optimal layout of electrode coverage for the cantilever piezoelectric laminated 

plate: (a) design variable density contour and (b) optimal distribution of electrode plotted with 

threshold density value threshold =0.5 . 

 

 

Fig. 5.12 Iteration histories of the energy consumption and dynamic compliance 

constraint. 

 



 

170 

 

 

  
(a) (b) 

Fig. 5.13 Vibration amplitude for the initial and optimal design: (a) initial design 

(maximum vibration amplitude is 5.21 cm) and (b) optimal design (maximum vibration 

amplitude is 4.40 cm). 

 

  

(a) (b) 

Fig. 5.14 Actuator voltage amplitude for optimal design: (a) real part and (b) imaginary 

part. 

 

(b) Comparison with minimum-volume design 

In this section, we present the topology optimization for minimizing the volume fraction 

ratio under the constraint of dynamic compliance. The optimization model is expressed as  
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where eV  denotes the volume of the electrode over the the  piezoelectric patch, and 0V  is the 

total volume of the electrode with the full coverage. This optimization model is employed here 

for comparing with the proposed energy consumption optimization method. Thus, the same 

structure as in the pervious subsection is now considered, but the design objective is to 

minimize the material volume fraction ratio.  

The optimization process converges after 72 iterations, and the optimal solution is given 

in Fig. 5.15. This solution is obviously different from that of the energy consumption 

optimization (Fig. 5.9). It has a total electrode coverage of 25.5%, which is lower than the 

energy consumption solution (46.1%), but it has a higher power requirement of 21.44 W (as 

compared with 18.21 W for the energy consumption optimization). As shown in Fig. 5.16, this 

design has nearly the same vibration level as the minimum energy consumption design, and the 

maximum vibration amplitude of the minimum-volume design is 4.40 cm. This is because both 

solutions reach the upper bound of the allowable structural dynamic compliance. However, a 

remarkably different control voltage distribution can be observed in Fig. 5.17. In this specific 

example, although the proposed energy consumption minimization model yields a larger 

electrode coverage than the volume-minimization design, it substantially reduces the electric 

power requirement, considering that the peak absolute values of the control voltage are much 

higher (927.2V for the real part and 1586.8 V for the imaginary part). 
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Fig. 5.15 Optimal electrode coverage layout of a cantilever piezoelectric laminated plate 

for volume fraction minimization: (a) design variable density contour and (b) optimal 

distribution of electrode plotted with threshold density value threshold =0.5 . 

 

 

Fig. 5.16 Vibration amplitude for the optimal design of volume minimization 

optimization (maximum vibration amplitude is 4.40 cm). 
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(a) (b) 
 

Fig. 5.17 Actuator voltage amplitude for optimal design of volume minimization 

optimization: (a) real part and (b) imaginary part. 

 

Furthermore, we present another 16 sets of optimization results under different dynamic 

compliance constraints in the range of max 4 ~ 4.8 N mc   (sampling points are uniformly 

distributed with an interval of 0.05 N m ). Both optimization models yield larger electrode 

coverage for providing higher control forces, when the allowable dynamic compliance is 

assigned a smaller value (corresponding to more stringent vibration reduction requirement). 

The energy consumption and volume fraction ratio for the optimal designs obtained with the 

two optimization models are given in Figure 18 and Figure 19, respectively. It can be observed 

that the energy consumption-minimization designs have lower power requirements in all 16 

cases.   



 

174 

 

 

Fig. 5.18 Comparison of the energy consumption with volume-minimization solutions 

and energy minimization solutions. 

 

 

Fig. 5.19 Comparison of the volume fraction of volume-minimization solutions and 

energy minimization solutions. 

 

 

5.5 Summary 

This chapter proposes a method for topology optimization of piezoelectric laminated plates for 
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minimizing the energy consumption with CGVF control under harmonic excitation. A new type 

of objective function, which is to minimize the total energy consumption in the active control 

system, is introduced into the topology optimization formulation, and the optimization problem 

is restricted by a upper limit of allowable dynamic compliance. A pseudo-density model with 

penalization for indicating the absence and presence of surface electrodes is used in the 

topology optimization model, and artificial models with penalization for both piezoelectric 

properties and energy consumption calculations are employed for suppressing intermediate 

density values. In this context, the sensitivity of the total energy consumption with respect to 

the design variables is derived using the adjoint-variable method. Numerical examples 

demonstrate the validity of the proposed method. It is shown that the proposed method is 

capable of reducing the energy consumption of the active vibration control. This highlights the 

importance of properly considering the energy consumption performance in the design of active 

control structures, in particular miniature smart devices. 
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6 Concluding remarks 

Topology optimization methods of macrostructures and microstructures against uncertain 

dynamic loads, random material properties distribution, and random diffuse regions between 

material phases are proposed in this dissertation. In addition, this dissertation also investigates 

topology optimization of the piezoelectric structure to reduce the energy consumption of active 

vibration control. The following results were achieved. 

(1) Robust topology optimization methods of structures subjected to unknown-but-bounded 

dynamic loads/ground accelerations are investigated. Herein, the single-loop reformulation 

of the originally nested problem on the basis of inhomogeneous eigenvalue analysis is 

proposed. Sensitivity analysis for the worst-case dynamic response is derived.  

(2) A robust topological design method of the microstructures of PnCs considering random-

field material properties is proposed. The stochastic response analysis method combining 

the EOLE method with the PCE approach for the random material property distribution is 

addressed. The sensitivity analysis for the stochastic band gap response is derived. 

(3) A robust phase-field-based topology optimization method is developed for the design of 

vibrating structures under diffuse-region uncertainties. The design domain is represented 

with the phase-field function and the explicit phase-field curve is updated by solving the 

Allen–Cahn equation. Herein, three types of the dynamic performance functions are 

considered, including the structural dynamic compliance, the fundamental frequency or 

frequency gap, and the transient displacement under impact loads. The phase-field based 

robust topology optimization method is also applied into the microstructures design of 

PnCs considering random diffuse-region widths between different material phases. For 

achieving a less sensitive optimal design of PnCs, a phase field based robust topology 
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optimization formulation to minimize the weighted sum of the mean value and standard 

deviation of the specified band gap is developed. 

(4) A topology optimization method is proposed for obtaining the best electrode coverage of 

the piezoelectric material layer which requires the minimum energy consumption to 

achieve a specified vibration level of a plate with active control. In the topology 

optimization model, the objective function is the total energy consumption of the active 

control system; the dynamic compliance of the structure is taken as a vibration level 

measure for the whole structure, and it is imposed by a specified upper bound. With the 

density-based topology optimization model, the elemental pseudo-densities indicating the 

presence/absence of electrode coverage of the piezoelectric layer are taken as design 

variables. The sensitivity analysis scheme for the total energy consumption of the 

piezoelectric actuators is derived with the adjoint-variable method, and the optimization 

problem is solved with a gradient-based mathematical programming algorithm. 
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