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ASYMPTOTIC PROPERTY OF DIVERGENT FORMAL
SOLUTIONS IN LINEARIZATION OF SINGULAR VECTOR FIELD

MASAFUMI YOSHINO

Abstract. We study asymptotic properties of divergent formal solutions appear-
ing in the linearization problem of a sigular vector field without a Diophantine
condition or an existence of additional first integrals. We will give an asymptotic
meaning to divergent formal solutions constructed by a singular perturbative solu-
tion (cf. [6]).

1. Introduction

A linearizing transformation of a singular vector field satisfies a certain semilinear
Fuchsian system of equations of several variables. (cf. (2.2)). The system has a formal
power series solution under a general nonresonance condition, while formal solutions
are divergent in general. (cf. [3] and Proposition 3.1 of [7]. ) The convergence of
the series can be proved under a Diophantine condition or an existence of additional
first integrals. In this paper we study equations of two independent variables, and
we shall give an asymptotic meaning to a formal solution without any Diophantine
condition or an existence of additional first integrals.

In [6], we constructed a singular perturbative solution with respect to a singular
perturbative parameter ε by resumming a singular perturbative formal solution. If
the so-called Poincaré condition and the nonresonance condition are verified, then by
analytic continuation with respect to ε up to ε = 1 we obtain the classical Poincaré
solution. In this paper we are interested in the case where the Poincaré condition or a
Diophantine condition is not verified. By the same method as in [6] we can construct a
singular perturbative solution and make an analytic continuation with respect to ε up
to a sector with vertex at ε = 1 as well. On the other hand the analytic continuation
of the resummed singular perturbative solution does not necessarily converge when
ε → 1.

Our goal in this paper is to show that the analytic continuation of the resummed
singular perturbative solution is an asymptotic expansion of a certain analytic solution
in a multi sector of the space variables uniformly with respect to ε in a sector with
vertex at ε = 1. More precisely, we can show the assertion for equations with nonliear
part satisfying certain support conditions (cf. (2.19) and (2.20) ) for which a small
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denominator may appear. (See also [7].) We hope that our new approach to a
linearization problem via an equation with singular perturbative parameter might be
generalized to the case of general independent variables. We also remark that our
proof does not use the so-called Newton method in constructing a solution, which
make the proof simpler than the one based on the Newton method.

This paper is organized as follows. In section 2 we state our results. In section 3
we prepare a necessary lemma. In the last section we prove our main theorem.

2. Statement of results

Let x = (x1, x2) ∈ C2 be the variable in C2 and let R be the set of real numbers.
For a 2-square constant matrix Λ, we denote by LΛ the Lie derivative of the linear
vector field xΛ · ∂x

LΛ := [xΛ ∂x, · ] = 〈xΛ, ∂x〉 − Λ,(2.1)

where 〈xΛ, ∂x〉 =
∑2

j=1(xΛ)j(∂/∂xj), with (xΛ)j being the j-th component of xΛ. It
is well known that the following system of equations is the linearizing equation of the
singular vector field xΛ · ∂x + R(x)∂x

LΛu = R(x + u(x)),(2.2)

where u = t(u1, u2) is an unknown vector function and the function

R(y) = t(R1(y), R2(y))(2.3)

is holomorphic in some neighborhood of y = 0 in C2 such that R(y) = O(|y|2) when
|y| → 0. In order to study (2.2) we consider the following equation with the parameter
ε

Lε
Λu ≡ ε〈xΛ, ∂x〉u − uΛ = R(x + u(x)),(2.4)

then we let ε → 1.
In the following we assume that Λ is a diagonal matrix whose components are given

by 1 and −τ < 0, where τ > 0 is an irrational number. Hence we have

〈xΛ, ∂x〉 = x1∂1 − τx2∂2.(2.5)

We first construct a formal solution of (2.4) uW (x, ε) in a formal power series of ε

uW (x, ε) =
∞∑

ν=0

ενuW
ν (x) = uW

0 (x) + εuW
1 (x) + · · · ,(2.6)

where the coefficients uW
ν (x) (ν = 0, 1, . . . ) are holomorphic vector functions of x in

some open set independent of ν. We will substitute the expansion (2.6) into (2.4).
We first note

ε〈xΛ, ∂x〉uW − uWΛ =

∞∑
ν=0

(ε〈xΛ, ∂x〉uW
ν (x) − uW

ν (x)Λ)εν ,(2.7)

R(x + uW ) = R(x + uW
0 + uW

1 ε + uW
2 ε2 + · · · )(2.8)

= R(x + uW
0 ) + εuW

1 (∇R)(x + uW
0 ) + O(ε2).
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By comparing the coefficients of ε0 = 1 and ε, we obtain

uW
0 (x)Λ + R(x + uW

0 ) = 0.(2.9)

〈xΛ, ∂x〉uW
0 = uW

1 Λ + uW
1 (∇R)(x + uW

0 ).(2.10)

Because Λ is invertible and uW
0 (x) = (|x|2) when x → 0, we can determine uW

0 as
a holomorphic vector function in some neighborhood of the origin x = 0 from (2.9).
On the other hand, by noting that Λ + (∇R)(x + uW

0 ) is an invertible matrix in
some neighborhood of the origin x = 0 by the assumption R(x) = O(|x|2), we can
determine uW

1 as a holomorphic function in some neighborhood of the origin x = 0
from (2.10). In order to determine uW

ν (ν ≥ 2) we compare the coefficients of εν of
both sides of (2.4). Namely, we differentiate (2.4) with respect to ε, ν times and we
put ε = 0. Then, we obtain

〈xΛ, ∂x〉uW
ν−1 = uW

ν Λ + uW
ν (∇R)(x + uW

0 )(2.11)

+ (terms consisting of uW
i , i ≤ ν − 1).

Clearly we can determine uW
ν as a holomorphic function in some neighborhood of

the origin x = 0 from (2.11). Hence we can determine uW . We note that uW
ν ’s are

holomorphic in some neighborhood of the origin independent of ν in view of the above
argument.

By expanding uW
ν (x) (ν = 0, 1, . . . ) into the power series of x, uW

ν (x) =
∑

α uW
ν,αxα,

and summing up with respect to ν, we obtain the formal expansion of uW (x, ε),

uW (x, ε) =
∑
α∈�2

+

uW
α (ε)xα(2.12)

with uW
α being the formal power series of ε. In [6] we proved that, if τ is irrational,

then the formal series uW
α (ε) converges in some neighborhood of ε = 1 independent of

α such that uW (x, ε) coincides with a unique formal power series solution of (2.4), a
classical Poincaré series. Hence we can construct the solution of (2.2) from uW (x, ε)
by setting ε = 1 in the class of formal power series. Note that we do not use any
Diophantine condition in the argument.

In order to give an analytical meaning to this argument, we begin with the resum-
mation of uW (x, ε) when ε is in some sector. We define ũW (x, ε) = uW (x, ε)−uW

0 (x).
Then the (formal) Borel transform of ũW is defined by

B(ũW )(x, ζ) :=
∞∑

ν=1

uW
ν (x)

ζν−1

(ν − 1)!
.(2.13)

Because uW
ν (x) is holomorphic in some neighborhood of the origin x = 0 independent

of ν, the expansion uW
ν (x) =

∑
α uW

ν,αxα converges in a common neighborhood of the
origin independent of ν. By substituting the expansion into (2.13) we obtain

B(ũW )(x, ζ) =
∞∑

ν=1

∑
α

uW
ν,αxα ζν−1

(ν − 1)!
.(2.14)
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Let us assume that the right-hand side of (2.14) absolutely converges in some neigh-
borhood of (x, ζ) = (0, 0). (For the rigorous proof of this fact we refer [6].) Then, by
changing the order of the summation we obtain

B(ũW )(x, ζ) =
∑

α

∞∑
ν=1

uW
ν,α

ζν−1

(ν − 1)!
xα.(2.15)

We define the Laplace transform ŨW (x, ε) of B(ũW )(x, ζ) by

ŨW (x, ε) :=
∑

α

L

( ∞∑
ν=1

uW
ν,α

ζν−1

(ν − 1)!

)
xα,(2.16)

where the operator L is given by

Lf(ε) =

∫ ∞

0

e−ζ/εf(ζ)dζ.

Here we assume an appropriate growth condition on f(ζ). We define

UW (x, ε) := ŨW (x, ε) + uW
0 (x).

If we recall that the Borel transform is the inverse of the Laplace transform, UW (x, ε)
gives a holomorphic function of ε in a sectorial domain with the asymptotic expansion
uW (x, ε). We call UW (x, ε) a resummation of a singular perturbative solution uW .
For the direction ξ, (0 ≤ ξ < 2π) and the opening θ > 0 we define the sector Sξ,θ by

Sξ,θ =

{
ε ∈ C; |arg ε − ξ| <

θ

2
, ε 	= 0

}
.(2.17)

The following theorem was proved in [6]. (cf. Theorem 2 of [6]. )

Theorem 1. There exist a direction ξ, an opening θ > 0 and a neighborhood Ω0 of
the origin x = 0 such that UW (x, ε) is holomorphic in (x, ε) ∈ Ω0 × Sξ,θ and satisfies
(2.4). The formal solution uW (x, ε), (2.12) is an asymptotic expansion of UW (x, ε)
in Ω0 × Sξ,θ with respect to ε ∈ Sξ,θ.

We note that one can take ξ any direction such that ξ 	= 0, π. Suppose τ < 0,
namely the Poincaré condition is verified. By Theorem 4 of [6] UW (x, ε) can be
analytically continued with respect to ε up to ε = 1 when x is in some neighborhood
of the origin independent of ε.

We now consider the case τ > 0, irrational. By Theorem 4 of [6] UW (x, ε) can
be analytically continued with respect to ε up to a neighborhood of ε = 1 such that
Im ε > 0 ( or Im ε < 0) when x is in some neighborhood of the origin which may
depend on ε. By well known results on the divergence of the linearizing transformation
in the case of non Diophantine case we cannot expect the convergence of uW (x, ε)|ε=1

as a formal power series of x. (cf. [7]). In the following we study the asymptotic
meaning of the series.

Let η1 and η2 be such that η1 > 0, 0 < η2 < π/2 and η1 + η2/τ < π/2. Let S1 ⊂ C

and S2 ⊂ C be sectors with the openings η1 and η2, respectively, namely Sj := {xj ∈
C; | arg xj | < ηj/2}, (j = 1, 2). For 0 < ρ ≤ 1 we define Sj,ρ := Sj ∩ {|xj | < ρ}. Let
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θ, 0 < θ < π be given. We denote by C±,θ the cone with vertex at ε = 1 with opening
θ

C±,θ := {ε ∈ C; | arg(ε − 1) ∓ π/2| < θ/2}.(2.18)

We define C±,θ,ρ = C±,θ ∩ {|ε| < ρ}. For α = (α1, α2) ∈ Z2
+ we set |α| = α1 + α2.

We assume that R(x) is holomorphic in some neighborhood of the origin with the
Taylor expansion given either by

R(x) =
∑

α=(α1,α2)∈�2
+,α1−τα2<−2τ

Rαxα,(2.19)

or

R(x) =
∑

α=(α1,α2)∈�2
+,α1−τα2>2τ

Rαxα.(2.20)

Then our main result in this paper is the following

Theorem 2. Suppose that either (2.19) or (2.20) is satisfied. Let 0 < θ < π. Then
there exists ρ > 0 such that (2.4) has a solution u±(x, ε) being holomorphic in S1,ρ ×
S2,ρ × C±,θ,ρ such that, for every ε ∈ C±,θ,ρ and ν = 0, 1, 2, . . .

u±(x, ε) −
∑
|α|≤ν

uW
α (ε)xα = O(|x|ν+1), when x → 0, x ∈ S1,ρ × S2,ρ.(2.21)

Remark 1. If τ < 0, namely the Poincaré condition is verified, then we may take
u±(x, ε) in Theorem 2 as an analytic continuation of UW (x, ε) up to ε = 1. (cf. [6]).
Theorem 2 assures the existence of a similar function in the case τ > 0. We expect
that our argument here also works for a resonant case after appropriate modifications,
which is left for a future problem.

3. Preliminary lemma

In this section we prove the solvability of (2.4) modulo flat functions. We define

Sρ := S1 × S2 ∩ {(x1, x2) ∈ C
2; |x1||x2|1/τ < ρ, |x2| < ρ}.(3.1)

For every n ≥ 1 we choose the smallest positive integer kn such that n − τkn < 0.
Namely, kn is determined by the relation −τ < n − τkn < 0. We set αn = (n, kn).
Let UW (x, ε) =

∑
α∈�2

+
uW

α (ε)xα be the one given in Theorem 1. Then we have

Lemma 3. Suppose that (2.19) is satisfied. Let 0 < θ < π. Then there exist ρ > 0
and a function V (x, ε) being holomorphic in Sρ × C±,θ,ρ and continuous up to the
boundary such that, for every n (n = 0, 1, 2 . . . ) there exists g̃n(x, ε) holomorphic in
Sρ × C±,θ,ρ and continuous up to the boudary such that, for every ε ∈ C±,θ,ρ

R(x + V ) − Lε
ΛV = xαn g̃n(x, ε), x ∈ Sρ,(3.2)

V (x, ε) −
∑
|α|≤n

uW
α (ε)xα = O(|x|n+1), when x → 0, x ∈ Sρ.(3.3)

Moreover there exist infinitely many αnν (ν = 1, 2, . . . ) and θ′, 0 < θ′ < 1 independent

of αnν such that x−1−θ′
2 g̃n(x, ε) is holomorphic and bounded in Sρ × C±,θ,ρ.
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Remark 2. If (2.20) is satisfied, then we interchange the roles of x1 and x2. Then
Lemma 3 holds true. The proof is the same as that of Lemma 3.

Proof of Lemma 3. We divide the proof into 12 steps.
Step 1. For the sake of simplicity we denote C±,θ and C±,θ,ρ by C and Cρ, respectively.

We will look for U ≡ U(x, ε) in the form

U = a0 + b0 +
∞∑

j=1

xαj (aj + bj),(3.4)

with aj ≡ aj(x1, ε) and bj ≡ bj(x2, ε) being holomorphic and bounded in S1 × Cρ and
S2,ρ × Cρ, respectively, and

a0 = O(x2
1), bj = O(x2

2), j = 0, 1, 2, . . . ,(3.5)

such that the functions Un−1 (n ≥ 1)

Un−1 := a0 + b0 +
n−1∑
j=1

xαj (aj + bj)(3.6)

satisfy

Rn−1 := Lε
ΛUn−1 − R(x + Un−1) = xαnR̃n−1(x, ε)(3.7)

for some R̃n−1(x, ε) being holomorphic in Sρ ×Cρ and continuous up to the boundary

such that R̃n−1 = O(x2
2) as x2 → 0.

Step 2. We will construct aj and bj in (3.4) formally. We first rewrite UW (x, ε) =∑
α∈�2

+
uW

α (ε)xα in the following form

UW = ã0(x1, ε) + b̃0(x2, ε) +
∞∑

n=1

xαn(ãn(x1, ε) + b̃n(x2, ε)),(3.8)

where the formal power series ãn(x1, ε) and b̃n(x2, ε) (n = 0, 1, . . . ) satisfy

ã0(x1, ε) = O(x2
1), b̃n(x2, ε) = O(x2

2), n = 0, 1, 2, . . .(3.9)

We consider the case τ > 1. We note kj ≤ j for every j. We determine ã0(x1, ε) and

b̃0(x2, ε) as the Taylor series in UW consisting of powers of x1 and x2 only, respectively.

By subtracting ã0 + b̃0 from UW we see that the resultant term is divisable by x1x2.
Hence we can choose terms which are divisable by xα1 . By determing ã1 and b̃1

similarly as ã0 and b̃0 we subtract xα1(ã1 + b̃1) again and see that the remaing term
is divisable by xα1x1x2. Hence it is divisable by xα2 . We repeat the argument and we
can rearrange the series UW in the above form. We note that because we may have
k1 = k2 = · · · = k	 for some � > 1, the expression is not unique in general.

Next we consider the case 0 < τ < 1. Because we have kj > j for some j the
situation is different from the case τ > 1. We first show that the support of the
Taylor expansion of UW is contained in the convex cone Γ0 := {(α1, α2) ∈ R2; αj ≥
0, α1−τα2 < −2τ}. To see this, we recall that UW is the formal power series solution
of (2.4) such that UW = O(|x|2). On the other hand, by (2.19) the term of degree 2 in
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the expansion of R vanishes. Because Lε
Λ preserves monomials, it follows that terms

with degree 2 in UW also vanishes. Next the terms of degree 3 in R is given by the
constant times x3

2. Indeed, by the support condition on R, α1 − τα2 < −2τ we have
α2 ≥ 3 if α1 ≥ 1. Because Lε

Λ preserves monomials, it follows that terms with degree
3 in UW has the weight α1 − τα2 < −2τ . Let us suppose that the assertion holds
for every term xα in UW up to |α| ≤ ν. Consider the monomial xβ , β = (β1, β2),
|β| = ν + 1 appearing from R(x + u). We may consider (x1 + u1)

k(x2 + u2)
m for

k +m ≤ ν +1 instead of R(x+u) without loss of generality. In order to estimate the
weight β1−τβ2 from the above for every xβ appearing from (x1 +u1)

k(x2 +u2)
m, it is

sufficient to consider terms which contains xk
1 because the weight of terms appearing

from (x1 +u1)
k is less than or equals to k. As for the weight of terms appearing from

(x2 + u2)
m it is largest when xm

2 appears because the weight of every monomial in
u2 is strictly smaller than −2τ by inductive assumption. Because k − τm < −2τ by
(2.19), we see that every monomial xβ , |β| = ν + 1 appearing from R(x + u) has the
desired property. Hence the support of the Taylor expansion of UW is contained in
Γ0.

In order to write UW in the form (3.8) we determine ã0 and b̃0 similarly as in the

case τ > 1. Subtracting ã0 + b̃0 from UW we see that the resultant term is divisable
by x1x2. Moreover, since k1 satisfies that −τ < 1−τk1 < 0, it follows that m ≥ k1 +2
if (1, m) is on the support of UW . Hence the resultant term is divisable by xα1x2

2. We
now determine a1 and b1 as in the case τ > 1 and consider UW −∑1

j=0 xαj (aj + bj),

where xα0 = 1. It satisfies the same support condition as UW . Hence we can proceed
in the same way by noting that m ≥ kn + 2 if (n, m) is on the support of UW . This
proves that UW can be expanded in (3.8).

Step 3. We will determine a0 and b0 such that

R0 := Lε
Λ(a0 + b0) − R(x + a0 + b0) = xα1R̃0(x, ε)(3.10)

for some holomorphic function R̃0(x, ε) in Sρ×Cρ being continuous up to the boundary

such that R̃0 = O(x2
2). Putting x2 = 0 or x1 = 0 in (3.10) we see that w := a0 (resp.

w := b0), w = (w1, w2) satisfies the system of equations

εx1∂1w1 − w1 = R1(x1 + w1, w2),(3.11)

εx1∂1w2 + τw2 = R2(x1 + w1, w2),(3.12)

respectively

−ετx2∂2w1 − w1 = R1(w1, x2 + w2),(3.13)

−ετx2∂2w2 + τw2 = R2(w1, x2 + w2).(3.14)

We note that ã0 (resp. b̃0) is the formal solution of (3.11)–(3.12) (resp. (3.13)–(3.14)).
We will show that ã0 = 0. By (2.19) we have R(x1, 0) ≡ 0. It follows that the terms
of order x2

1 in R(x1 + w1, w2) appear from the terms of the form (x1 + w1)w2 or w2
2.

By (3.9) these terms are O(x3
1). In order to see that the coefficients of x2

1 of w1 and
w2 vanish, we note that εν − 1 	= 0 and εν + τ 	= 0 for all integers ν ≥ 2 and ε ∈ C±,θ

because Im ε 	= 0. Hence, the coefficient of x2
1 in ã0 vanishes. Next, the coefficients
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of x3
1 in the right-hand sides of (3.11)–(3.12) vanish by the similar argument because

ã0 = O(x3
1). Hence the coefficient of x3

1 in ã0 vanish by (3.11) and (3.12). By induction
we obtain ã0 = 0. By the condition Rj(x1, 0) ≡ 0 (j = 1, 2), we can put a0 = 0.

We consider (3.13)–(3.14). By the nonresonance condition in proving ã0 = 0 and

(3.5) we see that (3.13)–(3.14) has a unique formal power series solution b̃0 = (w̃1, w̃2).

By the well-known Briot-Bouquet theorem, b̃0 converges in some neighborhood of the
origin. (cf. [2]). We set b0 := b̃0. By taking ρ sufficiently small we may assume that
b0 is holomorphic in {|x2| < ρ}. We can easily see that b0 is holomorphic with respect
to ε in some neighborhood of ε = 1. By taking ρ sufficiently small we may asssume
that b0 is holomorphic in {|ε − 1| < ρ}.

We will estimate the remainder term R̃0 in (3.10). By (3.13) and (3.14) we have

Lε
Λb0 = R((0, x2) + b0).

Hence, by setting y1 = (x1, 0) and y2 = (0, x2) + b0(x2, ε) and by recalling R(0) = 0
we have

R0 = −R(y1 + y2) + R(y2) = −
∫ 1

0

x1(∂x1R)(t1y1 + y2)dt1.(3.15)

By (2.19), if (1, m) is on the support of R, then we have m ≥ k1 + 2. Hence R0

satisfies R0 = xα1R̃0 for some R̃0 being holomorphic and bounded when x ∈ Sρ and

ε ∈ Cρ and satisfying R̃0 = O(x2
2).

Step 4. We will determine a1 and b1. For 0 ≤ t ≤ 1 we set

ut = b0(x2, ε) + txα1(a1(x1, ε) + b1(x2, ε)),(3.16)

and we determine a1 and b1 (b1 = O(x2
2)) such that

R1 := Lε
Λ(b0 + xα1(a1 + b1)) − R(x + b0 + xα1(a1 + b1))(3.17)

= Lε
Λ(xα1(a1 + b1)) + T1 + R0 = xα2R̃1(x, ε),

T1 := R(x + u0) − R(x + u1),

for some holomorphic function R̃1(x, ε) in Sρ×Cρ being continuous up to the boundary

such that R̃1 = O(x2
2).

We first show

R0 = −xα1β1(x2, ε) + xα2Ω(x, ε)(3.18)

for some holomorphic functions β1(x2, ε) and Ω(x, ε) in Sρ × Cρ being continous up
to the boundary. Indeed, by Taylor’s formula the integrand in the right-hand side of
(3.15) is written in

x1(∂x1R)(t1y1 + y2) = x1(∂x1R)(y2) +

∫ 1

0

t1x
2
1(∂

2
x1

R)(t1t2y1 + y2)dt2.
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Hence, by (3.15) we have

R0 = −x1(∂x1R)(y2) −
∫ 1

0

dt1

∫ 1

0

t1x
2
1(∂

2
x1

R)(t1t2y1 + y2)dt2(3.19)

≡ −xα1β1(x2, ε) + xα2Ω(x, ε).

By the support condition on R and (3.19) the function Ω(x, ε) is a bounded holomor-
phic function on Sρ ×Cρ. Hence we obtain the desired decomposition of R0. We note
that β1 = O(x2

2) and Ω = O(x2
2) by (2.19) and (3.19).

We consider T1. By Taylor’s formula we have

x−α1T1 = −
∫ 1

0

(a1 + b1)∇R(x + ut)dt.(3.20)

We set

Θ1 := ∇R(x1, 0), Θ2 := ∇R((0, x2) + b0(x2, ε)).(3.21)

First we shall show that Θ1 identically vanishes. Indeed, by (2.19) and R(x) = O(|x|2)
we obtain R(x) = O(x3

2), from which we have the assertion. By letting x2 → 0 in
(3.20) and by recalling b0(0, ε) ≡ b1(0, ε) ≡ 0 we see that the right-hand side of
(3.20) tends to 0. Similarly, by letting x1 → 0 in (3.20) we obtain −(b1 + a1(0, ε))Θ2.
Therefore we have

T1 + xα1 ((b1 + a1(0, ε))Θ2) = xα1x1x2T̃1(x, ε),(3.22)

for some T̃1(x, ε) holomorphic and bounded in Sρ × Cρ. Indeed, x−α1 times the left-
hand side of (3.22) is divisable by x1x2 by definition.

In order to obtain the equations for a1 and b1, we note, for U given by (3.4),

(x1∂1 − τx2∂2)(U − b0) =
∑

xαn(x1∂1 − τx2∂2 + n − τkn)(an + bn).(3.23)

By (3.17), (3.18) and (3.22) we have

R1 = xα1(Lε
Λ + ε − ετk1)a1 + xα1(Lε

Λ + ε − ετk1)b1 − xα1β1(x2, ε)(3.24)

− xα1(b1 + a1(0, ε))Θ2 + xα1x1x2T̃1(x, ε) + xα2Ω(x, ε).

Step 5. We will solve the equations for a1 and b1. By equating the coefficients of
xα1 in (3.24) which are functions of x1 we obtain

(Lε
Λ + ε − ετk1)a1 = 0.(3.25)

Clearly, a1 = ã1(x1, ε) ≡ 0 is the unique formal power series solution of (3.25) by
assumption. Indeed, this follows from the assumption that Im ε 	= 0. Hence we may
set a1 = 0.

As for b1, we obtain

(Lε
Λ + ε − ετk1)b1 = b1Θ2 + β1(x2, ε).(3.26)

Let b̃1(x2, ε) =
∑∞

n=2 γ
(0)
n (ε)xn

2 be the unique formal power series solution of (3.26).

Clearly, γ
(0)
n (ε) is holomorphic in Cρ and continuous up to the boundary. We define
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‖γ(0)
n ‖ as the maximum of |γ(0)

n (ε)| on the closure of Cρ. Let 0 < δ < 1 be a positive
small number chosen later and define, for x2 ∈ S2,ρ,

b
(0)
1 =

∞∑
n=2

γ(0)
n (ε)φn(x2)

2xn
2 ,(3.27)

where

φn(x2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − exp

(
− δn

(‖γ(0)
n ‖ + 1)x2(n − 1)!

)
, ( if ‖γ(0)

n ‖ 	= 0),

1 ( if ‖γ(0)
n ‖ = 0).

(3.28)

In order to show the convergence of (3.27) we recall the inequality

|1 − e−z| < |z|, Re z > 0.(3.29)

Noting that Re x2 > 0 (x2 ∈ S2,ρ) and

δn

(‖γ(0)
n ‖ + 1)(n − 1)!

≤ 1,

we have that, for x2 ∈ S2,ρ, γ
(0)
n 	= 0 and n ≥ 2

|γ(0)
n (ε)||xn

2 ||φn(x2)|2 ≤ |γ(0)
n (ε)||xn

2 |
(

δn

(‖γ(0)
n ‖ + 1)|x2|(n − 1)!

)2

≤ |x2|n−2δn

(n − 1)!
.(3.30)

Hence the series in (3.27) converges uniformly on S2,ρ × Cρ, and the limit function is
holomorphic in (x, ε) ∈ S2,ρ × Cρ and bounded on its closure. Indeed, we have

∑
n≥2

|γ(0)
n ||xn

2 ||φn(x2)|2 ≤ δ2
∑
n≥2

|x2|n−2δn−2

(n − 2)!
≤ δ2eδ|x2|.(3.31)

If x2 ∈ S2,ρ and δ > 0 is sufficiently small, then the right-hand side term can be

made arbitrarily small. One can easily show that (cf. [1], p.68 ) b̃1 is the asymptotic

expansion of b
(0)
1 when x2 → 0, x2 ∈ S2,ρ. Moreover we can easily see that b

(0)
1

solves (3.26) asymptotically. Namely we have, for every n = 0, 1, 2, . . . , there exist

R
(0)
n (x2, ε) being holomorphic and bounded in S2,ρ × Cρ such that, for every ε ∈ Cρ

(Lε
Λ + ε − ετk1)b

(0)
1 − b

(0)
1 Θ2 − β1 = xn

2R
(0)
n (x2, ε), x2 ∈ S2,ρ, x2 → 0.(3.32)

Step 6. For a holomorphic and bounded (vector) function v = v(x2, ε) in S2,ρ ×Cρ,
we define the norm of v by

‖v‖ := sup
x2∈S2,ρ, ε∈Cρ

|v(x2, ε)|.(3.33)

We similarly define the norm of a (vector) function v = v(x1, ε) on S1 × Cρ.
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In order to solve (3.26) in S2,ρ we define the approximate sequence w(ν) = (w
(ν)
1 , w

(ν)
2 )

(ν = 0, 1, 2, . . . ) by w(0) = b
(0)
1 and

(Lε
Λ + ε − ετk1)w

(1) = β1 + w(0)Θ2 − (Lε
Λ + ε − ετk1)w

(0),(3.34)

(Lε
Λ + ε − ετk1)w

(ν) = w(ν−1)Θ2, ν = 2, 3, . . .(3.35)

If we can show the uniform convergence b1 := w(0) + w(1) + · · · on S2,ρ × Cρ, then b1

is the desired holomorphic solution of (3.26) in S2,ρ × Cρ.
We will estimate w(j). In order to solve (3.34)–(3.35) we recall that for every g

holomorphic and bounded in S2,ρ with all derivatives vanishing at the origin and a
complex number λ 	= 0, the solution of the equation (x2∂2 − λ)u = g is given by

u = (x2∂2 − λ)−1g =

∫ 0

−∞
e−λtg(etx2)dt,(3.36)

where the integral converges by the assumption on g if Re λ ≥ 0. It follows that w
(1)
1

is well defined, holomorphic and bounded in S2,ρ.
We shall prove that there exist constants η0 > 0 and 0 < r0 < 1 such that

‖w(ν)
k ‖ ≤ η0r

ν
0 , k = 1, 2; ν = 0, 1, . . . ,(3.37)

where η0 > 0 can be chosen arbitrarily small if we take δ > 0 sufficiently small.

Clearly, if we can prove (3.37), then the limit wk := w
(0)
k + w

(1)
k + · · · (k = 1, 2) exists

on S2,ρ × Cρ and b1 := (w1, w2) gives the desired solution. We will estimate w(1) by
(3.34) and (3.32). For simplicity, let us denote the right-hand side of (3.34) by h0.
We take n in (3.32) sufficiently large so that (Lε

Λ + ε − ετk1)
−1h0 is well defined. In

view of the formula (3.36) we see that the norm of w(1) can be made arbitrarily small
on S2,ρ × Cρ by taking ρ sufficiently small because there appears a power xn

2 .
As for the estimate of w(ν), we can recursively estimate the term in view of the

recurrence relation (3.35) and the smallness of Θ2. Indeed, Θ2 vanishes up to order 2
by the assumption R(x) = O(x3

2).

Next we will show that b̃1 is the asymptotic expansion of b1 :=
∑∞

ν=0 w(ν) . Because

b̃1 is the asymptotic expansion of b
(0)
1 we will show that

∑∞
ν=1 w(ν) ∼ 0 when x → 0.

In order to show this, let � ≥ 2 be a given integer and consider the sum
∑∞

ν=1 w̃(ν),

where w̃(ν) = x−	
2 w(ν). If we can show the uniform convergence of

∑∞
ν=1 w̃(ν) on S2,ρ,

then we see that b1 − b
(0)
1 vanishes up to order � when x2 → 0. Because � ≥ 2 is

arbitrary, this proves that the asymptotic expansion of b1 is equal to b
(0)
1 .

We define g̃(z) := z−	g(z). Then, we get from (3.36)

ũ(x2) := x−	
2 u(x2) =

∫ 0

−∞
e−λt+	tg̃(etx2)dt.(3.38)

We note that e−λt+	t is integrable if � is sufficiently large. Hence we can estimate ũ in
terms of g̃. By (3.34) we can estimate w̃(1) in terms of the right-hand side of (3.34).
By (3.35) we can similarly estimate w̃(ν) in terms of g̃ with g = w(ν−1)Θ2. Because
g̃(z) = z−	w(ν−1)Θ2 = w̃(ν−1)Θ2, this proves the uniform convergence of

∑∞
ν=1 w̃(ν).
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Step 7. We will show (3.17) for some R1 = O(x2
2). We want to prove

T1 + xα1b1Θ2 = xα2T̃1,(3.39)

for some holomorphic and bounded function T̃1(x, ε) on Sρ×Cρ such that T̃1 = O(x2
2).

If we can prove this, then (3.18), (3.26) and (3.39) imply (3.17) for R̃1 = T̃1 + Ω.
We first show that αj + α1 ≥ αj+1 for every j ≥ 1. Indeed, by definition we have

−τ < j − τkj < 0 for every j. Hence, by adding the inequalities for j = j and
j = 1 we obtain −2τ < j + 1 − τ(kj + k1) < 0. By the minimality of kj+1 we have
kj + k1 ≥ kj+1.

In order to show (3.39) we first note, by (3.20) and a1 = 0

−x−α1T1 − Θ2b1 =

∫
b1 (∇R(x + b0 + txα1b1) − Θ2) dt.(3.40)

By the definition of R and Θ2 we can easily see that ∇R(x + b0 + txα1b1) − Θ2 is
divisable by xα1 with the quotient being holomorphic and bounded in Sρ × Cρ. In
view of (3.40) and 2α1 ≥ α2 we have (3.39).

We easily see that the support of T1 is contained in the set {(α1, α2) ∈ Z2
+; α1 −

τα2 < −2τ} in view of (3.40). It follows that T̃1 = O(x2
2). Because the support of R0

is contained in the set {(α1, α2) ∈ Z2
+; α1 − τα2 < −2τ}, the same assertion holds for

that of R1.
Step 8. We will determine a2 and b2. We set u1 = b0 + xα1b1, and we determine

a2(x1, ε) and b2(x2, ε) (b2(0, ε) ≡ 0) such that

R2 := Lε
Λ(xα2(a2 + b2)) + T2 + R1 = xα3R̃2(x),(3.41)

where R̃2(x) = O(x2
2) and

T2 := −R(x + u1 + xα2(a2 + b2)) + R(x + u1),(3.42)

and R1 is given by (3.17) with a1 = 0. In the following we do not indicate the
dependency with respect to ε explicitly if there is no fear of confusion. We will show
that

T2 = −xα2b2(x2)Θ2 + xα2x1x2T̃2(3.43)

for some bounded holomorphic function T̃2 in Sρ × Cρ. Indeed, by Taylor’s formula
and by similar calculations in proving (3.22) we can easily see that the term of order
O(xα2) in T2 is given by −xα2(b2(x2) + a2(0))Θ2. Moreover, we have

T2x
−α2 + (b2(x2) + a2(0))Θ2 = O(x1x2)

in view of the definition of the remainder term.
Next, let R1 = xα2(T̃1(x)+Ω(x)) be given by (3.17). Because the term Lε

Λ(xα2(a2+
b2)) cancels with the corresponding terms in T2 +R1 of order O(xα2), we look for the
decomposition

R1 = −xα2(γ2(x1, ε) + β2(x2, ε)) + xα3Ω1(x, ε)(3.44)

for some γ2(x1, ε) and β2(x2, ε), β2 = O(x2
2) holomorphic in S1 and S2,ρ, respectively,

and Ω1 being holomorphic in Sρ × Cρ. In order to compute γ2 and β2 we restrict
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T̃1(x, ε) + Ω(x, ε) to x2 = 0 or x1 = 0. By the definition of Ω(x, ε) in (3.19) and the
assumption (2.19) we have Ω(x1, 0, ε) ≡ 0. Next, by (3.40) and b1(0) = 0 we have

T̃1(x1, 0, ε) ≡ 0. Hence we have γ2 = 0. By defining

β2(x2, ε) = −T̃1(0, x2, ε) − Ω(0, x2, ε)

we will show (3.44). In view of (3.40) and (2.19) we see that T̃1(x, ε) − T̃1(0, x2, ε) is

divisable by xα1 . By α2 + α1 ≥ α3 we see that xα2(T̃1(x, ε) − T̃1(0, x2, ε))is divisable
by xα3 . On the other hand, by (3.19) and (2.19) xα2(Ω(x, ε)−Ω(0, x2, ε)) is divisable
by xα3 . We also note that β2(x2, ε) = O(x2

2).
Therefore we will determine a2 and b2 by the equations

(Lε
Λ + 2ε − ετk2)a2 = 0,(3.45)

(Lε
Λ + 2ε − ετk2)b2 = (b2 + a2(0))Θ2 + β2.(3.46)

We easily see that ã2 = 0 and we can take a2 = 0. Because (3.46) has the formal

power series solution b̃2, we define b
(0)
2 by the formula similar to (3.27). Then b

(0)
2 has

an asymptotic expansion b̃2. We note that the modulus of b
(0)
2 can be taken arbitrarily

small in a neighborhood of the origin by taking δ in (3.27) sufficiently small. In order
to solve (3.46) we construct the approximate sequence w(ν) (ν ≥ 1) by the relations
like (3.34) and (3.35). We can easily see that b2 := w(0) + w(1) + · · · converges in

S2,ρ × Cρ and gives a holomorphic solution of (3.46) with asymptotic expansion b̃2.
We can show that

T2 = −xα2b2Θ2 + xα3 T̃2(3.47)

for a possibly different holomorphic function T̃2 = T̃2(x, ε) in Sρ × Cρ such that T̃2 =
O(x2

2). We can also prove that the support of T2 is contained in the set {(α1, α2) ∈
Z

2
+; α1 − τα2 < −2τ}. Indeed, these facts follow from the support conditions of R

and b2 by applying Taylor’s formula in integral form to (3.42).
Step 9. We will determine an and bn. Suppose that we have determined aj = 0 and

bj , bj = O(x2
2) as holomorphic and bounded functions on S2,ρ × Cρ for all j ≤ n − 1

satisfying (3.7) up to n such that the support of Rn−1 is contained in {(α1, α2) ∈
Z2

+; α1 − τα2 < −2τ}. We will determine an(x1, ε) (resp. bn(x2, ε)) such that

Un := Un−1 + xαn(an(x1, ε) + bn(x2, ε))

satisfies (3.7) with n replaced by n + 1. Let x1 and x2 be so small that R(x + Un) is
well defined. First we consider

Rn := Lε
ΛUn − R(x + Un) = Lε

ΛUn−1 − R(x + Un−1)(3.48)

+ Lε
Λ(xαn(an + bn)) + R(x + Un−1) − R(x + Un)

= Rn−1 + Lε
Λ(xαn(an + bn)) + Tn,

where Tn = R(x + Un−1) − R(x + Un).
We want to write

Rn−1 = xαnR̃n−1(x, ε) = −xαn(γn(x1, ε) + βn(x2, ε)) + xαn+1Ωn(x, ε).(3.49)



14 MASAFUMI YOSHINO

Indeed, by an approriate choice of βn and γn we have R̃n−1(x, ε)+βn +γn = O(x1x2).
By the support property of Rn−1 we may define γn = 0. Moreover, by (2.19), we
have βn = O(x2

2). We will show that the O(x1x2x
αn) term in Rn−1 is O(xαn+1). This

is clear when τ > 1 because kn+1 = kn or kn+1 = kn + 1. On the other hand, if
0 < τ < 1, then, in view of the support property of Rn−1 the O(x1x2x

αn) term in
Rn−1 is O(xαn+1) and, consequently, O(x2

2x
αn+1) by the same condition.

In order to obtain the equations for an and bn we note

Tn = −xαn

∫ 1

0

(an + bn)∇R(x + Un−1 + txαn(an + bn))dt(3.50)

= xαn(bn + an(0, ε))Θ2 + O(x1x2x
αn).

Therefore, by dividing (3.7) with n replaced by n + 1 by xαn and by setting x2 = 0
we obtain, in view of (3.23) and (3.48)

(Lε
Λ + nε − knτε)an = 0.(3.51)

As in the previous case, the formal solution ãn of (3.51) vanishes and we may define
an = 0. Next we consider the equation for bn. We divide (3.7) with n replaced by
n + 1 by xαn . Then, by setting x1 = 0 we obtain

(Lε
Λ + nε − knτε)bn = bnΘ2 + βn(x2, ε).(3.52)

By the same argument as for b1 we can determine bn as a bounded holomorphic
function on S2,ρ × Cρ such that bn = O(x2

2). Therefore we can determine the formal
solution U in (3.4).

We can see from (3.48) and the inductive assumption for Rn−1 that the support
of Rn is contained in {(α1, α2) ∈ Z2

+; α1 − τα2 < −2τ}, because the support of Tn

is contained in the same set. In order to prove (3.7), note that O(x1x2x
αn) terms in

(3.50) are, indeed, O(x2
2x

αn+1), which can be shown by the support condition on R.
Step 10. We make the Borel-Ritt type argument to the formal series (3.4). By

definition we have αn = (n, kn), −τ < n − τkn < 0. Hence we have limn→∞ αn/n =
(1, τ−1). By the definition of Sρ we can show that there exists N ≥ 1 such that for
any n ≥ N we have Rexαn/n > 0 on Sρ. Indeed, by setting xj = rje

iθj for j = 1, 2
with 0 < r1 < ∞, 0 < r2 ≤ ρ, |θj | ≤ ηj , we obtain

xαn/n = r1r
kn/n
2 exp(i(θ1 + θ2kn/n)).

By the assumption η1 + η2/τ < π/2 and the relation kn/n → τ−1, we see that there
exists N > 0 such that for n ≥ N , we have |θ1 + θ2kn/n| < π/2. This shows the
assertion.

Suppose δ > 0. Then we define

γn := max
x,ε

{‖x−1
2 bn‖ + 1, ‖x−1

2 ε(−τx2∂x2 + n − τkn)bn)‖},(3.53)

and define V (x, ε) on Sρ × Cρ by

V (x, ε) =
∞∑

n=0

bn(x2, ε)ϕn(x)2xαn ,(3.54)
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where ϕn = 1 for 0 ≤ n < N , and for n ≥ N

ϕn(x) = 1 − exp

(
− δn

γnxαn/n(n − 1)!

)
.(3.55)

In order to show that V (x, ε) is holomorphic in Sρ × Cρ we make a similar argument
as for (3.27). Let Re xαn/n > 0 on Sρ. Then we have, for n ≥ N

|bn||ϕn|2|xαn | ≤ ‖x−1
2 bn‖|x2x

αn |
(

δn

γn|xαn/n|(n − 1)!

)2

(3.56)

≤ δ2n|x2x
αn(1−2/n)|((n − 1)!)−2.

Because αn(1 − 2/n) = (n − 2)(1, kn

n
), we see that the sum∑

δ2n|x2x
αn(1−2/n)|((n − 1)!)−2

convergers on Sρ × Cρ. Hence the series (3.54) converges on Sρ × Cρ.
Step 11. We will show (3.3). Take any positive integer n ≥ N and write

V (x, ε) =
n∑

j=0

xαjbj(x2, ε) +
n∑

j=0

xαjbj(x2, ε)(ϕj(x)2 − 1)(3.57)

+

∞∑
j=n+1

xαj bj(x2, ε)ϕj(x)2 ≡ V1 + V2 + V3.

First, we show that V2 = O(x2
2x

αn+1) when x → 0, x ∈ Sρ. Indeed, for j ≥ N we have

ϕj(x) − 1 = − exp

(
− δj

γjxαj/j(j − 1)!

)
.

For every ν ≥ 1 the right-hand side is O(|xαjν/j |) on Sρ when x → 0. Hence, by taking
ν sufficiently large, it is divisable by xαn+1 with the quotient bounded holomorphic
in Sρ. Because bj = O(x2

2), we have V2 = O(x2
2x

αn+1). Next we will show that
V3 is divisable by xαn+1 with the quotient being bounded holomorphic in Sρ × Cρ.
Because αj ≥ αn+1 for every j ≥ n + 1 and bj = (x2

2) it is sufficient to prove that
|x2x

αj−αn+1| < ρj−n−1 on Sρ for every j > n + 1.
Indeed, by definition we have j − τkj < 0 and −τ < n + 1 − τkn+1 < 0. It follows

that

kj − kn+1 > τ−1(j − n − 1) − 1.

Therefore, since |x2| < 1 and |x1||x2|1/τ < ρ on Sρ, we have

|x2x
αj−αn+1 | = |x1|j−n−1|x2|kj−kn+1+1 ≤ |x1|j−n−1|x2|τ−1(j−n−1)

≤ (|x1||x2|1/τ)j−n−1 ≤ ρj−n−1.

Therefore we have (3.3).
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Step 12. We will prove (3.2). We set g = R(x + V )−Lε
ΛV , where R(x + V ) is well

defined for sufficiently small δ > 0 in view of the definition of V . We write V in the
form (3.57) and for x sufficiently small we write

g = R(x + W ) − Lε
ΛW + R(x + W + V3) − R(x + W ) − Lε

ΛV3,(3.58)

where V = W + V3 and W := V1 + V2.
We want to show that Lε

ΛV3 = xαn+1A1(x, ε) for some holomorphic and bounded
function A1 = O(x2) on Sρ × Cρ. Indeed, if a derivation in Lε

Λ is applied to ϕj(x)2,
then, by the same argument as for the convergence of V , we see that the resultant
series is convergent and divisable by x2

2. We also note that every term in the series
has the factor xαj with αj ≥ αn+1. If Lε

Λ is applied to the term xαjbj(x2, ε) in
xαjbj(x2, ε)ϕj(x)2, then we have

Lε
Λ(xαj bj) = xαj (ε(−τx2∂x2 + j − τkj) − Λ) bj(x2).(3.59)

In view of (3.53) and the proof of the convergence of V (x, ε) we see that the sum of
terms in the right-hand side (3.59) converges and bounded when Sρ × Cρ.

In view of the estimate of V3, we can see that A1 is divisable by x2. it is also easy
to see that if 0 < θ′ < 1 satisfies −(1 − θ′)τ < n + 1 − τkn+1 < 0, then we have
|x2|1−θ′|xαj−αn+1 | ≤ ρj−n−1. In fact, for every 0 < θ′ < 1 there exist infinitely many
kn such that −(1− θ′)τ < n+1− τkn+1 < 0. For those n’s we have A1 = O(|x2|1+θ′).

Next, by Taylor’s formula we have

R(x + W + V3) − R(x + W ) =

∫ 1

0

V3 · ∇R(x + W + tV3)dt.

It follows that R(x+W +V3)−R(x+W ) = xαn+1A2(x, ε) for some holomorphic and
bounded function A2 in Sρ×Cρ. In view of the estimate of V3 and ∇R(x+W +tV3) =
O(x2) we see that A2 = O(x2

2).
We consider

R(x + W ) − Lε
ΛW = R(x + W ) − Lε

ΛV1 − Lε
ΛV2.

It is easy to see that Lε
ΛV2 = xαn+1A3(x, ε) for some holomorphic and bounded func-

tion A3 in Sρ × Cρ such that A3 = O(x2
2). Indeed, the functions ϕj(x)2 − 1 in V2 and

Lε
Λ(ϕj(x)2 − 1) can be divisable by an arbitrary power of xαj/j = x1x

dj/j
2 such that

the quotinent is holomorphic and bounded in Sρ × Cρ. Because dj/j > τ−1, we see
that it is O(x2

2x
αn+1).

We take ρ′ ≤ ρ sufficiently small such that for every x with |x1||x2|1/τ < ρ′ and
|x2| < ρ the values x + V1, x + V1 + V2 are in the domain of R. Then we have

R(x+V1 +V2)−R(x+V1) =
∫ 1

0
V2 ·∇R(x+V1 + tV2)dt. Clearly, the right-hand side

function can be written in xαn+1A4(x, ε) for some holomorphic and bounded function
A4 in Sρ × Cρ with |x1||x2|1/τ < ρ′ such that A4 = O(x2

2). Now we have

R(x + W ) − Lε
ΛW = R(x + V1 + V2) − R(x + V1) + R(x + V1) − Lε

ΛV1 − Lε
ΛV2.

By the definition of V1 we see that R(x + V1) − Lε
ΛV1 = xαn+1A5(x, ε) for some

holomorphic and bounded function A5 in x ∈ Sρ, |x1||x2|1/τ < ρ′ such that A5 =
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O(x2
2). It follows that F (x) := x−αn+1(R(x+W )−Lε

ΛW ) is holomorphic and bounded
in Sρ such that |x1||x2|1/τ < ρ′. Because R(x + W )− Lε

ΛW is holomorphic in Sρ and
xαn+1 does not vanish in ρ′ ≤ |x1||x2|1/τ ≤ ρ, we see that F (x) is also holomorphic in
Sρ. In order to prove the boundedness of F (x) in Sρ, we will show the boundedness
of F (x) when ρ′ ≤ |x1||x2|1/τ ≤ ρ. We may assume, without loss of generality, that
0 < |x2| < 1. We note

|xαn+1 | = (|x1||x2|1/τ |x2|
kn+1
n+1

− 1
τ )n+1 ≥ (ρ′)n+1|x2|

�
kn+1
n+1

− 1
τ

�
(n+1)

.

Because

kn+1

n + 1
− 1

τ
<

1

n + 1

it follows that

|x2|
�

kn+1
n+1

− 1
τ

�
(n+1)

> |x2|.
On the other hand, we have R(x + W ) − Lε

ΛW = O(x2). This proves that F (x) is
bounded when ρ′ ≤ |x1||x2|1/τ ≤ ρ. Because n is arbitrary, we have proved (3.2).
This completes the proof of the lemma.

4. Proof of Theorem

Proof of Theorem 2. We prove Theorem 2 in case (2.19) is satisfied. We can
similarly argue in case (2.20) is verified by changing the roles of x1 and x2. Let V be

given by Lemma 3. Let αN = (N, kN) satisfy that x−1−θ′
2 g̃N(x, ε) is holomorphic and

bounded in Sρ ×C±,θ,ρ as in Lemma 3. In order to solve (2.4), set u(x) = v(x)+V (x)
and consider

Lε
Λv = R(x + V + v) − Lε

ΛV = R(x + V + v) − R(x + V ) + g,(4.1)

where g := R(x + V ) − Lε
ΛV .

Let ρ > 0 and N ≥ 1 be an integer. For a holomorphic and bounded (vector)
function

h = (h1, h2) = xαN h̃(x, ε) = xαN (h̃1, h̃2)

in Sρ×Cρ with h̃(x, ε) being holomorphic and bounded in Sρ×Cρ, we define the norm
of h by

‖h‖N := sup
x∈Sρ,ε∈Cρ

(|x−αN h1(x, ε)| + |x−αN x
−1−θ′/2
2 h2(x, ε)|).(4.2)

Let XN be the set of functions h being holomorphic and bounded in Sρ × Cρ such
that ‖h‖N < ∞. Clearly, XN is the Banach space with the norm (4.2). We choose a
sequence αN = (N, kN), N = Nν(ν = 1, 2, . . . ) such that for every pair αN and α	 in
the sequence with N > � we have

dN − N

τ
≥ d	 − �

τ
.
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Because q − p/τ is dense on R if p and q run in Z, we can choose {αN} satisfying
the condition. We shall show that XN is continuously embedded into X	. Indeed, for
every h = xαN h̃N ∈ XN we have

xαN h̃N = xα�xαN−α�h̃N = xα�(x1x
1/τ
2 )N−	x

dN−d�−(N−	)/τ
2 h̃N .

Because dN − d	 − (N − �)/τ > 0 by assumption, we see that there exists C > 0 such
that ‖h‖	 ≤ C‖h‖N . This proves the assertion.

For ‖h‖N < ∞ we define

v := −1

ε

∫ ∞

0

e−Λt/εh(etΛx, ε)dt.(4.3)

Because |xN
1 eNtxkN

2 e−kN τt| = |xN
1 xkN

2 et(N−τkN )| ≤ |xN
1 xkN

2 | for all t ≥ 0, we see that
h(etΛx, ε) in the integrand is bounded if x ∈ Sρ, ε ∈ Cρ, t ≥ 0. In order to show that
the integral (4.3) converges we may consider the second component. In the integrand
the following factor appears:

etτ/εe−(1+θ′/2)τt, t ≥ 0.

Therefore, if ε is sufficiently close to 1, then the integral converges. We easily see
that v is the solution of the equation Lε

Λv = h, namely v = (Lε
Λ)−1h, where (Lε

Λ)−1

has the expression (4.3). Moreover, we have ‖v‖N < ∞.
We want to define the approximate sequence {v(k)} by

v(0) := (Lε
Λ)−1g, v(1) := (Lε

Λ)−1(R(x + V + v(0)) − R(x + V )),(4.4)

v(k) := (Lε
Λ)−1(R(x + V + v(0) + · · · + v(k−1))

−R(x + V + v(0) + · · ·+ v(k−2))), k = 2, 3, . . .

It is easy to see that if v :=
∑∞

k=0 v(k) converges, then v solves (4.1). In order to see
that v(k)’s are well defined, we note, from the definition of V in Lemma 3 and (2.19)
that g(x, ε) = xαN g̃(x, ε) for some bounded holomorphic function g̃ in Sρ × Cρ such

that g̃ = O(x1+θ′
2 ). Especially we have ‖g‖N < ∞. Hence v(0) ∈ XN . In order to

estimate v(0) we obtain, in view of (4.3) and (4.4)

‖v(0)‖N ≤ sup
1

|ε|
∫ ∞

0

et(N−τkN )
(|e−t/εg̃1(e

tΛx, ε)|(4.5)

+ |etτ/ε−τt−θ′τt/2(x
−1−θ′/2
2 g̃2)(e

tΛx, ε)|
)

dt ≤ Cρθ′/2‖g‖N ,

for some constant C > 0 independent of N since N − τkN < 0 and |x2| < ρ. Indeed,

there appears (x2e
−tτ)θ′/2 from g̃1(e

tΛx, ε) and (x
−1−θ′/2
2 g̃2)(e

tΛx, ε).
By (4.5) the function R(x + V + v(0))−R(x + V ) is well defined if δ > 0 and ρ > 0

are sufficiently small, and it is divisable by x2
2. Hence v1 is well defined. Moreover we
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have

‖v1‖N ≤ C

∥∥∥∥
∫ 1

0

v(0) · ∇R(· + V + tv(0))dt

∥∥∥∥
N

(4.6)

≤ C

∫ 1

0

‖v(0)‖N |‖R|‖dt = C‖v(0)‖N |‖R|‖,
where |‖R|‖ = supx ‖∇R(x)‖. Take ρ > 0 so that C|‖R|‖ < 1/2. Then we have that
‖v(1)‖N ≤ ‖v(0)‖N2−1. Hence v(2) is well defined and it has the same property as v(1) if
v(0) is sufficiently small. Moreover we have the estimate ‖v(2)‖N ≤ ‖v(0)‖N2−2. In the
same way, we can determine v(k) as bounded holomorphic functions in Sρ × Cρ such
that ‖v(k)‖N ≤ ‖v(0)‖N2−k, (k = 1, 2, . . . ). This proves that the limit v :=

∑∞
k=0 v(k)

exists in Sρ×Cρ in ‖ ·‖N -norm. By the definition of the norm we have v(x) = O(xαN )
as x → 0. The limit function v is independent of N because XN is continuously em-
bedded into X	 for every N > �. Because there exist infinitely many N , this proves
Theorem 2.
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