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ABSTRACT: Aerosol particle filtration in most penetrating
particle size (MPPS) region is of great challenge for
conventional nonwoven filter mats. The present work,
therefore, redesigns conventional filter mats by introducing
porous structure. A combination of thermally induced phase
separation and breath figure mechanism was employed to
synthesize porous cellulose triacetate fibers, in conjunction
with the volatile solvent methylene chloride. The ambient
humidity, the concentration of the polyvinylpyrrolidone
(PVP) secondary polymer, and the ethanol cosolvent were
all adjusted to modify the Taylor cone formation, jet stability,
and fiber porosity. After fiber formation, the PVP was removed to obtain a superhydrophobic material. To distinguish the effect
of pores, the performance of porous and nonporous nanofibers having similar sizes was conducted. Tests were performed using
various dust particle sizes, and the results show that the collection efficiency of the porous fibers, resulting from particle
diffusion, inertial impaction, and interception, was improved. Interestingly, the efficiency of the porous fibers in the MPPS
region was exceptionally enhanced (up to 95%), demonstrating that the presence of dynamic pores greatly contributes to
particle capture.

1. INTRODUCTION

The use of electrospun nonwoven fiber mats with high specific
surface areas could lead to greatly improved performance in
many different applications, including biotechnology mem-
branes, air filtration, sensors, tissue engineering and repairs,
drug delivery, and solar and fuel cells.1−7 Unlike conventional
rigid porous structures, these porous structures made from
nonwoven fibers mats are dynamic systems in which both pore
size and shape can change.8,9 Multilevel-structured fibers mats
are also attractive because they offer additional heterogeneous
interfaces that can play important roles in a variety of practical
applications.10,11

Many researchers have successfully fabricated nonwoven
porous fiber mats from various polymers by a number of
different methods, including electrospinning.12,13 The filtration
performance for a particle size >0.25 μm has also been
reported. However, a lack of information regarding the
structure−performance relationship in such porous fibers
remains an obstacle, particularly in the most penetrating
particle size (MPPS) region of the filtration evaluation. It is
also not clear to what extent the aerosol filtration performance
is enhanced by the presence of pores or the formation of
nanofiber. For these reasons, the present study examined the
correlations between porous structure and aerosol filtration
performance through various filtration mechanisms.

Cellulose triacetate (CTA) was chosen for this work because
it is superhydrophobic and thus suitable for aerosol particle
filtration and can also be dissolved in highly volatile solvents
such as methylene chloride (MC).14 A combination of
thermally induced phase-separation and the breath-figure
mechanism was employed to fabricate test specimens. In
addition, ethanol (EtOH) was used as a cosolvent to control
the MC evaporation rate so that polymer stretching could be
achieved.15,16 Because porous and nonporous (NP) fibers were
compared, this investigation is expected to improve our
understanding of the structure−property relationship in terms
of aerosol filtration performance. Various sizes of dust particles
were employed to carefully evaluate the filtering ability, based
on particle diffusion, inertial impaction, and interception, and
the MPPS region.

2. RESULTS AND DISCUSSION
2.1. Morphologies of CTA Nanofibers and Effects of

CTA Concentration and Humidity. The electrospinning
characteristics of a polymer are affected by its physical
properties, including electrical conductivity, surface tension,
and viscosity.17,18 Solvent selection is also important in
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determining the formation of a Taylor cone and in adjusting
the polymer elongation.19 A low boiling-point solvent will
evaporate rapidly (almost immediately after ejection from the
needle), thus restricting polymer elongation and leading to
either a clogged needle or a scattered Taylor cone.14 In
contrast, a high viscosity precursor can slow the evaporation of
the solvent. Therefore, finding the appropriate balance
between the solvent evaporation rate and the viscosity of the
polymer precursor is vital to obtain well-structured fibers.
Polymer precursors with various concentrations of CTA and

solvent of MC/EtOH ratios (vol/vol) of 90/10 were
evaluated. The viscosities of the polymer precursors were
found to increase in proportion to the CTA concentration,
with values of 21, 101, and 305 cp for 3, 5, and 7 wt % CTA,
respectively. As shown in Figure 1a−c, the morphology of the
electrospun precursor was transformed from dented surface
particles to beaded fibers and finally to fibers with dented
surfaces, as the CTA concentration was increased from 3 to 5
to 7 wt %, respectively. Interestingly, the viscosity of the
precursor affected not only the final morphology of the spun
product but also the surface pattern. The dents were
broadened, and the number of dents were reduced when a
higher viscosity precursor was used, likely because of the
decreased solvent evaporation rate.
Porous structures were formed because of a combination of

thermally induced phase separation and the breath figure
mechanism. In this type of process, rapid solvent evaporation
rapidly decreases the temperature at the surface of the jet.
Once phase separation occurs, the evaporation of the solvent-
rich phase (i.e., the polymer-poor phase) leaves behind voids
that result in the formation of pores along the fiber.12,20−24

Subsequently, ambient water vapor tends to condense on the
cool surface of the polymer jet and forms into droplets as the
surface temperature is further decreased, leaving porous
imprints after the water evaporates.25−27 Therefore, at a high
polymer concentration, the number of dents was decreased
because the temperature drop at the surface of the jet was not

as extreme and only a small number of water droplets
condensed. Delayed evaporation will also result in a higher
solvent content in the jet, meaning that improved elongation
can be obtained. Therefore, the dented surface was stretched
during elongation to form long dimples with a shallow pattern.
As a result, some of the electrospun fibers had a twisted
appearance.
Employing a high humidity environment during electro-

spinning can also increase the extent of water vapor
condensation.5,19 To evaluate this effect, relative humidity
values of 35, 50, and 70% were used to synthesize porous CTA
fibers. Figure 1a,d,g demonstrates that the depth of the surface
pattern was increased to form pores as the humidity was
increased. Furthermore, the number of pores was increased,
and these pores were uniformly distributed over the surfaces of
the electrospun fibers. This phenomenon was also observed
when using a high-viscosity polymer precursor. A higher pore
concentration on the beads was obtained from a precursor
containing 5 wt % CTA, whereas dented surfaces were present
on the surfaces of fibers prepared from a precursor containing
7 wt % CTA, as can be seen in Figure 1.

2.2. Size-Controlled CTA Fibers by Secondary
Polymer Addition. The final morphology of the electrospun
fibers is significantly affected by the elongation of the
polymeric precursor and by the amount of water vapor
condensed on the jet surface. In particular, the ambient
humidity determines the quantity of pores on the fiber
surfaces, although pores will only form on exposed surfaces
such as the exteriors of spherical particles and beads. In
contrast, pores are typically not found on the fiber surfaces,
likely because there is not enough space for phase separation
and because the solvent rapidly evaporates from these thin
surfaces, meaning that water vapor does not have time to
occupy the fiber jet surface before the solvent evaporates and a
solid fiber is formed. Therefore, secondary polymer addition,
which can tune the Taylor cone shape and postpone the
solvent evaporation, is extremely helpful in this process. A

Figure 1. Scanning electron microscopy (SEM) images of CTA spun at a relative humidity of 35% from solutions containing (a) 3, (b) 5, and (c) 7
wt % CTA, at a relative humidity of 50% from solutions containing (d) 3, (e) 5, and (f) 7 wt % CTA, and at a relative humidity of 70% from
solutions containing (g) 3, (h) 5, and (i) 7 wt % CTA, respectively. Polymer precursors were made using MC/EtOH ratios (vol/vol) of 90/10 as
the solvent.
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hydrophilic polymer such as polyvinylpyrrolidone (PVP) is
optimal, especially if this polymer can be obtained in a variety
of molecular weights to allow adjustment of the polymer
precursor viscosity. This approach tends to prevent the
formation of beads, and employing PVP also promotes the
condensation of water vapor on the surface of the jet and slows
solvent evaporation, as is evident from Supporting Information
Figure S1.
On the basis of the polymer precursor viscosity after PVP

addition, a solution containing 5 wt % CTA was selected for
the fabrication of the composite fibers. This precursor was
predicted to allow the formation of narrow composites with a
definitive pore morphology. Figure 2 presents SEM images

showing the effects of the PVP molecular weight on the porous
morphology. It is evident that pores were uniformly formed on
the surfaces of the beads and fibers upon adding the PVP.
These pores tended to form cylindrical and slit shapes as a
result of water evaporation during elongation of the polymeric
fibers.5 The application of a high voltage to the collector plate
resulted in the precursor experiencing a strong attractive force,
leading to significant elongation and therefore stretching the
pores from spherical to oval shapes. The porous morphology
was also affected by the molecular weight of the PVP, as shown
in Figure 2a−d. The pores were lengthened as the PVP
molecular weight was increased, with values of approximately
180 and 235 nm for the 10 and 40 kDa PVP, respectively. The

Figure 2. SEM images of porous fibers before immersion in 80 °C water for 3 h, prepared at a relative humidity of 70% from polymer precursors
containing MC/EtOH ratios (vol/vol) of 90/10 as the solvent, 5 wt % CTA, and (a) 0 wt % PVP, (b) 2 wt % 10 kDa PVP, (c) 2 wt % 40 kDa PVP,
and (d) 2 wt % 1300 kDa PVP. SEM images of porous fibers after immersion, made with the addition of (e) 0 wt % PVP, (f) 2 wt % 10 kDa PVP,
(g) 2 wt % 40 kDa PVP, and (h) 2 wt % 1300 kDa PVP.

Figure 3. SEM images showing the effects of PVP concentration and molecular weight on porous morphology before immersion, applying a relative
humidity of 70% in conjunction with 5 wt % CTA. High-resolution images are included as insets.
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addition of the highest molecular weight PVP (1300 kDa)
formed long, slit-shaped, shallow pores. The PVP tended to
reach the surface of the jet and the higher molecular-weight-
producing longer pores. Furthermore, the 1300 kDa PVP
slowed the solvent evaporation rate and therefore promoted
the formation of shallow pores.
Pure CTA fibers are required for filtration applications, and

therefore the prepared fibers were purified by immersion
process prior to filtration trials. The fiber and pore
morphologies did not show any significant changes after the
immersion process, as shown in Figure 2e−h. Using the low
and medium molecular-weight PVP, the lengths of the pores
were increased from 180 and 235 to 250 and 285 nm, whereas
the fiber diameters were slightly decreased from 780 and 850
to 630 and 710 nm, respectively. These results confirm that the
PVP migrated and accumulated on the surfaces of the spun
fibers.
Figure 3 demonstrates that the porosity of the nanofibers

was increased in proportion to the concentration of PVP, up to
2 wt %. However, at a higher concentration of PVP (i.e., 3 wt
%), the porosity of the CTA nanofibers was significantly
decreased because the solvent could not evaporate rapidly.
The PVP removal process evidently altered the porous

structure, such that the pore diameters were decreased while
the lengths were increased, as can be seen in Supporting
Information Figure S2. This effect is attributed to stretching of
the polymer when immersed in water during the PVP removal
process. The PVP was firmly attached to the surfaces of the
CTA fibers, including the pore surfaces, and so as it slowly
dissolved in the water, it pulled at the fiber surfaces to create a
stretching force that altered the porous morphology.
2.3. Size-Controlled CTA Fibers by Co-Solvent

Addition. The other factor that may affect the morphology
of the fibers is the solvent. To determine the boundary
conditions at which porous or NP fibers would be obtained,
various EtOH/MC volume ratios were evaluated using a
precursor solution containing 5 wt % CTA and 2 wt % 10 kDa
PVP. Figure 4a−e shows that the porosity was inversely
proportional to the EtOH concentration in the precursor. A
polymer precursor made using 100 vol % MC produced a
highly porous ribbon fiber. During this trial, a skin was formed
after the jet left the needle and the MC was evaporated, after
which the tube formed by the skin collapsed under
atmospheric pressure to produce a wide, flat, ribbonlike
fiber.13,28 In addition, pores were formed from the imprints of
the evaporating solvent and water vapor.
The addition of EtOH reduced the evaporation rate of the

solvent, and mixtures of spiny, porous ribbons and straight

porous nanofibers were formed when using 5 vol % EtOH in
the precursor. Increasing the EtOH concentration to 10 vol %
produced solely the straight porous nanofibers. In this case, the
formation of hollow shells that subsequently collapsed did not
occur because there was no sudden solvent evaporation. The
addition of a higher EtOH concentration further slowed the
solvent evaporation, and therefore straight fibers were also
obtained from solvents containing 15 and 20 vol % EtOH.
Pores could not be observed in these fibers because the slow
evaporation of the solvent prevented phase separation. In the
case of porous fiber, Figure 4f−h confirms that the pores were
increased in size following the immersion process. Whereas, in
the case of straight fiber, pores still cannot be observed even
after immersion process, as shown in Figure 4i,j. It confirms
that the high concentration of EtOH produced dense fiber.

2.4. Aerosol Filtration Performance of Nonwoven
CTA Fiber Mats. The effects of pore formation on the fiber
surfaces on the filtration performance have not yet been
studied in detail. To date, the performance of mats with and
without pores has been examined without considering the size
of the fibers. Generally, porous fibers will have a much smaller
diameter compared to NP fibers when prepared using the same
concentration of polymer because of the low viscosity of the
polymer precursor and the rapid evaporation of the solvent.
However, it is unclear whether collection efficiency is improved
because of the smaller fiber diameter or the presence of pores.
Therefore, in this study, fibers having similar sizes were
prepared and assessed to confirm the effect of pores.
Aerosol particle permeation tests and pressure-drop

measurements were performed using multilayer air filters
composed of straight microfiber mats and nanostructured CTA
fibers, employing an atmosphere containing dust particles with
diameters in the range of 0.03−0.3 μm. Various particle-
capture mechanisms, including diffusion, MPPS, interception,
and inertial impaction could be investigated by varying the size
of the dust.
Because the multilayer filters were quite inhomogeneous, the

basis weights of the filters were used as a parameter in these
trials. As noted, the basis weight was 3.35−3.54 g m−2. It has
been widely reported that the filtration performance is greatly
affected by the filter morphology, particularly by the fiber
diameter. In the present study, we found that the presence of
pores on the surfaces of single fibers enhanced the aerosol
filtration performance, as shown in Figure 5a,b. Interestingly,
filter mats containing porous fibers exhibited outstanding
particle-collection efficiency for all dust particle sizes, even
within the MPPS region. Generally, particle collection
efficiency at MPPS region is less than 85%, even for filter-

Figure 4. SEM images of spun polymers obtained from precursors containing 5 wt % CTA and 2 wt % 10 kDa PVP at a relative humidity of 70%,
with MC/EtOH ratios (vol/vol) of (a,f) 100/0, (b,g) 95/5, (c,h) 90/10, (d,i) 85/15, and (e,j) 80/20, both (a−e) before immersion and (f−j) after
immersion.
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containing nanofiber.3 However, with the introduction of
porous fiber, values of approximately 95 and 93% were
obtained at face velocities of 1.4 and 5.3 cm s−1, respectively.
The particle capture efficiencies via the diffusion mechanism
were also exceptional, with values as high as 99 and 99.5% for
face velocities of 1.4 and 5.3 cm s−1, respectively. The
interception and inertial impaction mechanism also resulted in
very high efficiencies of approximately 97% for both face
velocities. These values were about 18% higher than the
efficiencies obtained with NP fibers having the same diameter.
The parameters of porous and NP multilayer filters,

including size distribution, filter thickness, and solid volume
fraction were similar, as shown in Supporting Information
Figure S3 and Table S1. Therefore, it can be concluded that
the improved aerosol particle collection efficiency noted above
can likely be attributed to the presence of pores on the entire
surfaces of single nanofibers, which nearly doubled the surface
area of the fibers.29 The surface areas of the porous and NP
fibers were determined using the Brunauer−Emmett−Teller
method and found to be approximately 23.5 and 14.3 m2 g−1,
respectively. The N2 adsorption (ADS)−desorption (DES)
curves in Figure 5c indicate that both the porous and NP fibers
generated type-II isotherm curves, indicating that they were
macroporous materials. In the case of the NP fibers, the
macropores are ascribed to voids between nonwoven fibers. In
contrast, the macropores on the porous fibers are composed of
both pores on the surfaces of single fibers and voids among
nonwoven fibers. The NP fibers produced a much wider
hysteresis gap than that of the porous fibers, equivalent to type
H2 hysteresis.30 This hysteresis reflects the delayed con-
densation and pore blocking/percolation effects because of the
presence of a disordered pore network within the nonwoven
mat. In the case of the porous fibers, hysteresis was not
observed, indicating that the pores were completely accessible
as a result of the channels formed on the surfaces of single
fibers.
A packing filter containing porous nanofibers generated a

pressure drop on the order of 140 Pa, close to twice that
obtained using the NP fibers (65 Pa). This result can likely be
attributed to the large number of dust particles that were
collected and eventually blocked the pores of the fibers.

3. CONCLUSIONS

The synthesis of porous CTA nanofibers via electrospinning
was evaluated in detail, using thermally induced phase
separation and the breath figure mechanism in conjunction
with MC. Ambient humidity and the concentrations of the
PVP secondary polymer and EtOH cosolvent were adjusted to
control the fiber diameter and porosity. The PVP was
subsequently removed by immersing the fibers in warm
water to prevent morphological change of fiber during filtration
application. Porous and NP fibers having similar sizes were
compared to elucidate the effect of pores on aerosol filtration
performance. Trials with a variety of dust particle sizes
demonstrated that the porous fiber particle-capture efficiencies
based on particle diffusion, inertial impaction, and interception
were superior. The efficiency of the porous fibers within the
MPPS region was also significantly improved (to 95%),
providing evidence that the presence of dynamic pores can
greatly improve particle capture.

4. METHODS

4.1. Electrospinning to Produce Nonwoven Fibers
Mats. Precursor solutions were made by dissolving CTA
(Sigma-Aldrich, St Louis, MO, USA) and PVP (Mw = 10, 40,
or 1300 kDa; Sigma-Aldrich, St Louis, MO, USA), as a
secondary polymer, in mixtures of MC and EtOH (containing
0−20 vol % EtOH). These solutions were used to prepare
porous fibers via electrospinning. The PVP was heated at 80
°C for 1 h to reduce its moisture content prior to use. The
electrospinning system was composed of a gas-tight syringe
(1000 μm, Hamilton, Reno, NV, USA) with a 27G needle, a
syringe pump (PHD 2000, Harvard Apparatus, Holliston, MA,
USA), two high-voltage generators with positive and negative
polarity (HER-30P1, Matsusada Precision Inc., Shiga, Japan), a
temperature controller (PAU-300S-HC, Apiste Corp., Osaka,
Japan), a heater (HLT-61, Hitachi Ltd., Tokyo, Japan), a
humidity controller (AHCU-1, KITZ Corp., Chiba, Japan), a
chamber, and an aluminum collector plate. Typically, a positive
voltage of 10 kV was applied to the syringe needle to obtain a
stable liquid jet, and a counter voltage of −4 kV was applied to
the aluminum collector plate. The precursor solution was
pumped at 4 μL min−1. To evaluate the phase separation and
the breath figure mechanism, trials were run with the chamber
environment conditioned to relative humidities of 35, 50, or
70%. The syringe position was set at a fixed distance of 12 cm
from the collector plate. The morphology of the porous fibers
mats in the high humidity environment was stabilized by
immersing the fibers in 80 °C water for 3 h.

4.2. Characterization of Precursors, Porous Fibers
Mats, and Aerosol Filtration Performance. The viscosity
of the aqueous solutions was evaluated using a Brookfield DV-
III rheometer (Brookfield, Middleboro, MA, USA). The
morphologies of the spun porous fiber mats were observed
by field-emission SEM (S-5000, 20 kV, Hitachi High-Tech.
Corp., Tokyo, Japan).
Aerosol filtration properties were assessed by electrospinning

a precursor solution on the surface of a base filter to obtain
multilayer filter membranes. Circular microfiber mats (Nippon
Muki Co., Ltd., Tokyo, Japan) consisting a nonwoven fabric
made of polypropylene with polyethylene terephthalate fibers,
with a basis weight of 3.35−3.54 g m−2 and a diameter of 5.23
cm, were used as the base filters. The performance of each of
the prepared multilayer filters was evaluated using atmospheric

Figure 5. Effects of pores on the penetration of various aerosol
particles at a face velocity of (a) 5.3 and (b) 1.4 cm s−1. (c) N2 ADS−
DES isotherms of porous and NP fibers prepared from precursors
containing 5 wt % CTA and 2 wt % 10 kDa PVP. Monolayer gas ADS
data are included as an inset to (c).
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dust particles with sizes in the range of 0.03−0.3 μm. These
filters were exposed to isopropanol vapor overnight, prior to
each measurement, to eliminate the effects of the electrostatic
deposition of dust particles. Details of the measurement
procedure have been provided in a previous publication.2,3
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