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ABSTRACT: A solid solution of GaN and ZnO (GaN:ZnO) is promising as a photocatalyst for 

visible light-driven overall water splitting to produce H2. However, several obstacles still exist in 

the conventional preparation procedure of GaN:ZnO. For example, the atomic distributions of Zn 

and Ga are non-uniform in GaN:ZnO when a mixture of the metal oxides, i.e., Ga2O3 and ZnO, is 

used as a precursor. In addition, GaN:ZnO is generally prepared under harmful NH3 flow for 

long durations at high temperatures. Here, a facile synthesis of GaN:ZnO with homogeneous 

atomic composition via a simple and safe procedure is reported. A layered double hydroxide 

(LDH) containing Zn2+ and Ga3+ was used to increase the uniformity of the atomic distributions 

of Zn and Ga in GaN:ZnO. We employed urea as a nitriding agent instead of gaseous NH3 to 

increase the safety of the reaction. Through the optimization of reaction conditions such as heat-

treatment temperature and content of urea, single-phase GaN:ZnO was successfully obtained. In 

addition, the nitridation mechanism using urea was investigated in detail. NH3 released from the 

thermal decomposition of urea did not directly nitride the LDH precursor. X-ray absorption and 

infrared spectroscopies revealed that Zn(CN2)-like intermediate species were generated at the 

middle temperature range and Ga–N bonds formed at high temperature along with dissociation 

of CO and CO2. 
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■ INTRODUCTION 

Depletion of fossil fuels and related environmental issues have become a matter of serious 

concern for human society.1–3 The search for clean and sustainable energy resources to address 

such issues is an important challenge for scientific communities. One of the most promising 

approaches to obtain a sustainable energy source is direct hydrogen (H2) production via 

photocatalytic water splitting using semiconductor particles.4–8 Although TiO2 is an efficient 

photocatalyst, it can only work in the ultraviolet (UV) region because the band gap of TiO2 is 

wider than 3 eV.9 The sunlight that reaches the Earth’s surface consists of nearly 45% visible 

light, 50% infrared (IR) radiation, and a smaller amount (only 4%) of UV radiation.10 Therefore, 

great efforts have been devoted to developing novel photocatalysts that have overall water 

splitting capability under visible light irradiation.6–8,11,12 Chalcogenide materials, such as CdS, 

have a band edge potential suitable for water splitting under visible light irradiation.13 However, 

photocatalytic systems using such chalcogenides have not been successfully established because 

the instability of these materials limits oxygen production.14,15 Metal nitrides and oxynitrides are 

potential candidates for stable visible light-driven photocatalysts for water splitting because the 

potential energy of N 2p orbitals is higher than that of O 2p orbitals.12,16–19 In 2005, Maeda, 

Domen, and co-workers discovered that wurtzite gallium zinc oxynitride, a solid solution of GaN 

and ZnO (GaN:ZnO), can work as a photocatalyst to accomplish overall water splitting under 

visible light irradiation.20 Conventionally, GaN:ZnO is prepared by nitriding a mixture of metal 

oxides, i.e., Ga2O3 and ZnO, under anhydrous NH3 flow at high temperature (>800 °C).20–24 

However, this method is not favorable because of the risk associated with harmful NH3 gas at 

high temperatures.25,26 In addition, a relatively long reaction period is required to ensure that the 

two types of solid particles fuse to form a solid solution. Even after nitriding Ga2O3 and ZnO for 
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15 h, the obtained GaN:ZnO has non-uniform atomic distributions of Zn and Ga.24 Recently, 

Dukovic and co-workers reported the control of the elemental distribution in GaN:ZnO 

nanocrystals synthesized by the nitridation of a mixture of ZnO and ZnGa2O4 nanocrystals.27,28 

When the product was prepared at relatively low temperature, highly inhomogeneous GaN:ZnO 

particles with Ga and N enrichment near the surface and small aggregated particles with an 

ambiguous crystal structure were obtained. As the reaction temperature was raised (>800 °C), the 

elemental distribution of the product became increasingly more homogeneous. However, this 

approach still used high temperature and NH3 gas to obtain GaN:ZnO with uniform Zn and Ga 

distributions.  

In this study, we propose a facile method to prepare GaN:ZnO solid solutions that addresses 

the obstacles associated with their conventional preparation route. We use a layered double 

hydroxide (LDH) composed of Zn2+ and Ga3+ (hereafter denoted as Zn–Ga LDH) as a precursor 

of GaN:ZnO instead of a mixture of Ga2O3 and ZnO. Typically, LDHs are synthetic clay 

materials that can be denoted as [(M2+)1−x(M3+)x(OH)2]x+(An−)x/n yH2O.29–32 They contain brucite-

like layers in which divalent cations (M2+) are replaced by trivalent cations (M3+), leading to a 

positively charged layered structure. The positive charges of the layers are compensated by the 

interlayer anions, such as CO3
2−. Zn–Ga LDH can be synthesized by several solution processes, 

including co-precipitation, hydrothermal, and sol–gel methods.33–37 Because Zn2+ and Ga3+ are 

homogenously mixed in such solution-based processes, these ions are also homogenously mixed 

on the atomic scale in the LDH brucite-like layers. Therefore, uniform distributions of Zn and Ga 

in GaN:ZnO can be obtained when Zn–Ga LDH is used as a precursor. Several groups have 

prepared GaN:ZnO with high Zn contents using Zn–Ga LDH as a starting material via relatively 

short heat-treatment processes.37–41 Chen and Skrabalak found that Zn volatilization during 
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nitridation can be suppressed by maintaining a low partial pressure of O2.39 The suppression of 

Zn volatilization leads to materials with narrower band gaps and fewer structural defects. 

However, nitridation using gaseous NH3 was still required to obtain GaN:ZnO even when Zn–Ga 

LDH was used as a precursor. Here, we use urea as a nitriding agent instead of gaseous NH3. 

Urea is cheap, non-toxic, non-corrosive, and can easily be handled because it is in a solid state at 

ambient temperature.42 Therefore, urea is used as a raw material in the manufacture of many 

chemicals, such as various plastics, urea–formaldehyde resins, and adhesives.43 We consider it 

feasible to prepare GaN:ZnO using a conventional furnace. Several groups have reported the 

preparation of metal oxynitrides and nitrides using urea as a nitriding agent.44–46 Rao and co-

workers synthesized ternary metal oxynitrides with formulas of MTaO2N (M = Ca, Sr, or Ba), 

MNbO2N (M = Sr or Ba), LaTiO2N, and SrMoO3−xNx by heating the corresponding metal 

carbonates and transition metal oxides with excess urea.44 Giordano et al. achieved the controlled 

synthesis of TaON and Ta3N5 using a method employing Ca2+ and urea.46  However, the 

nitriding mechanism when using urea is still not clear. Here, we optimize the transformation 

conditions from Zn–Ga LDH to GaN:ZnO, including heat-treatment temperature and duration 

and mixing ratio of urea. The obtained samples are characterized by scanning electron 

microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-vis 

diffuse reflectance spectroscopy, and inductively coupled plasma-optical emission spectroscopy 

(ICP-OES). In addition, we investigate the nitridation mechanism of Zn–Ga LDH to obtain 

GaN:ZnO in the presence of urea as a nitriding agent. In particular, the X-ray absorption fine 

structure (XAFS) technique is used to resolve the local environments of Ga and Zn during 

transformation of Zn–Ga LDH to GaN:ZnO. Both X-ray absorption near edge structure 

(XANES) and extended X-ray absorption fine structure (EXAFS) analyses are conducted, in 
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combination with IR spectroscopy. Finally, we propose the nitridation mechanism when using 

urea as a nitrogen source. 

 

■ EXPERIMENTAL SECTION 

Materials. Gallium(III) nitrate octahydrate (Ga(NO3)3·8H2O; ≥99.0%), zinc(II) nitrate 

hexahydrate (Zn(NO3)3·6H2O; ≥99.0%), gallium oxide (β–Ga2O3 (monoclinic (space group: 

A2/m)); 99.99%), zinc oxide (ZnO; 99.5%), urea (99%), sodium carbonate (Na2CO3; 99.8%), and 

sodium hydroxide (NaOH) solution (1 mol dm–3) were purchased from Kishida Chemical Co., 

Ltd. (Osaka, Japan.). Ethanol (≥99.5%) was obtained from Nacalai Tesque, Inc. (Kyoto, Japan.). 

All reagents were used as received without further purification. The water used in all 

experiments was deionized with a Millipore Milli-Q system (Merck Millipore, Billerica, MA, 

USA). 

 

Preparation of Zn–Ga LDH. Zn–Ga LDH was synthesized as reported previously.37 

Briefly, Ga(NO3)3·8H2O (5 mmol) and Zn(NO3)3·6H2O (10 mmol) were dissolved in deionized 

water and the metal ion concentration was adjusted to 0.15 mol dm–3. The pH of the solution was 

adjusted to 8 by addition of an aqueous solution containing Na2CO3 (1.0 mol dm–3) and NaOH 

(3.0 mol dm–3). The mixture was incubated at 80 °C for 24 h to obtain a precipitate of Zn–Ga 

LDH. The precipitate was filtered and then washed with deionized water several times. Finally, 

the sample was dried overnight under vacuum.  

 

Preparation of GaN:ZnO. Zn–Ga LDH was mixed with urea using an agate mortar and 

pestle. The mixture was heated at various temperatures (600–900 °C) under a N2 flow (500 mL 
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min–1) using an alumina crucible boat in a horizontal tube furnace. The temperature of the 

furnace was raised to the final temperature over a fixed period of 3 h. The heating duration at the 

final temperature was varied from 2 to 24 h. For comparison, a mixture of Ga2O3 and ZnO 

([Zn]/[Ga] = 2) was used  a precursor instead of Zn–Ga LDH. In this case, [urea]/[Ga] was fixed 

to 3. The mixture of Ga2O3, ZnO, and urea was heated at 800 °C for 4 h under a N2 flow (500 

mL min–1). 

 

Characterization. Structural information about samples was obtained by XRD (D8 

Advance, Bruker AXS, Germany) using Cu-K radiation. SEM images were captured with a 

Hitachi S–4800 microscope. TEM images were captured with a JEOL JEM–2010 microscope 

operating at 200 kV. Samples were prepared by depositing a droplet of each dispersion on 

carbon-coated copper grids covered with elastic carbon films, and drying in air overnight. Molar 

ratios of Zn and Ga were determined using energy-dispersive X-ray (EDX) spectroscopy with a 

JED2300-T (JEOL) attached to the TEM. Ga and Zn contents were measured via ICP-OES using 

a Thermo Scientific iCAP 6500. UV–vis–near-infrared diffuse reflectance spectra were 

measured by a spectrophotometer (V-670, JASCO, Tokyo, Japan). The band gap (Eg) of the 

synthesized GaN:ZnO solid solution in this work was estimated using a conventional equation as 

follows.4 

 

Eg (eV) = 1240 / λ (nm)                                                  (1) 

 

where λ represents an absorption edge wavelength of the material. XAFS measurements were 

conducted on the BL01B1 beamline of the SPring-8 synchrotron facility (Hyogo, Japan) using a 
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ring energy of 8 GeV to acquire Zn and Ga K-edge spectra. XAFS data were acquired at room 

temperature in transmission mode using a Si(111) double-crystal monochromator. A pair of Rh-

coated mirrors was used to eliminate higher harmonics. XANES spectra were processed using 

the Athena software package.47 Standard spectra of Ga2O3, ZnO, gallium nitride (GaN), zinc 

gallate (ZnGa2O4), and zinc cyanamide (Zn(CN2)) were also collected. GaN was purchased from 

Mitsuwa Chemicals Co., Ltd., Japan. We synthesized ZnGa2O4 and Zn(CN2) (details are given in 

the Supporting Information). Fourier transform infrared (FT-IR) spectra were collected over the 

range of 2500–400 cm−1 with a JASCO FT/IR–4200 spectrometer fitted with a diffuse 

reflectance accessory. The gases released during the heat-treatment process were analyzed using 

a quadrupole mass spectrometer (Q-MS). The mixture of Zn–Ga LDH and urea was heated under 

a flow of He gas. 

 

■ RESULTS AND DISCUSSION 

Optimization of Transformation Conditions from Zn–Ga LDH to GaN:ZnO. Initially, 

Zn–Ga LDH, which was used as a precursor of GaN:ZnO, was prepared by a typical solution 

process. Figure 1a shows an XRD pattern of the product that was prepared from the solution 

containing Ga(NO3)3 and Zn(NO3)3. All the diffraction peaks can be attributed to a rhombohedral 

lattice with R3m, which is commonly used to describe LDH structures.30 No peaks from 

impurities were discerned, indicating the high purity of the product. In addition, the diffraction 

peaks are sharp and symmetric, strongly suggesting that Zn−Ga LDH with relatively high 

crystallinity was obtained. The basal spacing corresponds to that of a CO3
2−-containing LDH.29 

An SEM image of the Zn–Ga LDH sample is shown in Figure 1b. Similar to the previous 

reports,33–35 the obtained Zn–Ga LDH crystallized into well-shaped hexagonal platelets with 
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diameters of ca. 200–500 nm and a thickness of 50 nm. EDX analysis revealed that the [Zn]/[Ga] 

ratio of the sample was 2. Therefore, Zn–Ga LDH with an equal mixing ratio of cations to that of 

the raw materials was obtained. 

 

 

 

 

 Figure 1. (a) XRD pattern and (b) SEM image of Zn–Ga LDH. 
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Next, we examined the transformation of Zn–Ga LDH to GaN:ZnO using urea as a nitriding 

agent. After calcination of Zn–Ga LDH in the presence of urea, highly crystalline GaN:ZnO was 

obtained. Figure 2 shows optical photographs and XRD patterns of products obtained from 

mixtures of Zn–Ga LDH and urea with various mixing ratios after calcination. We used molar 

ratios of Ga in Zn–Ga LDH to urea ([urea]/[Ga] = R) of 2, 3, 4, 6, and 8. The calcination 

temperature and duration were fixed at 800 °C and 4 h, respectively. As depicted in Figure 2a, 

the mixture of Zn–Ga LDH and urea was white before calcination. After calcination, the 

products ranged from yellow (R = 6 and 8) to brown (R = 2, 3, and 4). These colored samples 

with visible light absorption clearly indicate that Zn–Ga LDH was transformed into GaN:ZnO. 

The XRD patterns in Figure 2b show that the obtained products consist of a single hexagonal 

wurtzite phase similar to that of GaN and ZnO. The peak positions lay between those of GaN and 

ZnO.24 These results revealed that the obtained products were solid solutions of GaN and ZnO. 

In particular, the mixture with R = 3 gave a single phase of wurtzite structure without any other 

peaks. For the sample produced using R = 2, impurity peaks assignable to ZnGa2O4 spinel were 

found in addition to the peaks of GaN:ZnO. In contrast, the obtained product was a mixture of 

GaN:ZnO and Zn(CN2) when R > 4. The (101) diffraction peaks shifted to higher 2θ angles with 

increasing urea content (Figure S3). This indicates that the zinc concentration in the solid 

solution decreased because of the formation of Zn(CN2) as a by-product. These results 

corresponded well with the yellowish color of the products obtained using a high ratio of urea. 

Therefore, the optimal mixing ratio to obtain GaN:ZnO without any impurities is R = 3; we used 

this ratio in subsequent experiments.  
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Figure 2. (a) Optical photographs and (b) XRD patterns of products obtained from 

mixtures of Zn–Ga LDH and urea with various mixing ratios (R = 2, 3, 4, 6, and 8) after 

calcination at 800 °C for 4 h. 

 

Figure 3 display XRD patterns of products obtained from mixtures of Zn–Ga LDH and urea 

after calcination at various temperatures for 4 h. The calcination temperature was varied from 
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600 to 900 °C. Reactions performed at all calcination temperatures resulted in products that 

could be indexed to a wurtzite phase of GaN:ZnO. When the calcination was carried out at 600 

and 700 °C, Zn(CN2) formed as a by-product. Therefore, a calcination temperature higher than 

800 °C should be used to obtain single-phase GaN:ZnO. The 101 diffraction peak of the product 

obtained at 900 °C appeared at higher 2θ angle than that of the material obtained at 800 °C 

(Figure S4). In addition, the product obtained at 900 °C was yellow, whereas that obtained at 

800 °C was brown (Figure S5). These results indicate that the zinc concentration of the solid 

solution decreased by volatilization of the zinc component during calcination at high temperature. 

The observed peak shift is reasonable because the ionic radius of Zn2+ (0.74 Å) is larger than that 

of Ga3+ (0.61 Å).48 

 

 

 

Figure 3. XRD patterns of products obtained from mixtures of Zn–Ga LDH and urea after 

calcination at various temperatures (600, 700, 800, and 900 °C) for 4 h. 
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The influence of calcination duration on the transformation of Zn–Ga LDH to GaN:ZnO 

was also investigated. Figure 4 presents XRD patterns of products obtained from mixtures of 

Zn–Ga LDH and urea after calcination at 800 °C for various periods (2–24 h). As shown in 

Figure 4a, the wurtzite hexagonal structure of GaN:ZnO without any impurity phases was 

obtained after calcination for 2 h. When the calcination period was longer than 12 h, peaks 

assignable to ZnGa2O4 spinel appeared (Figure 4b). The 101 diffraction peaks shifted to higher 

2θ angles with lengthening calcination period (Figure S6a). The zinc concentration of GaN:ZnO 

was decreased by volatilization of the zinc component during long periods of calcination. The 

products changed from brown to yellow as the calcination period lengthened (Figure S6b). This 

also supports volatilization of the zinc component during calcination. However, the shift of the 

101 diffraction peak was suppressed after 10 h (Figure S6a). Therefore, these results indicate that 

calcination for long periods induced not only volatilization of the zinc component but also 

decomposition of GaN:ZnO to ZnGa2O4. For comparison, we tried to prepare GaN:ZnO using a 

mixture of Ga2O3 and ZnO instead of Zn–Ga LDH. An XRD pattern of the product obtained 

from the mixture of Ga2O3, ZnO, and urea (Ga:Zn:urea molar ratio = 1:1:3) after calcination at 

800 °C for 4 h is displayed in Figure S7. Peaks that indexed to not only GaN:ZnO but also 

ZnGa2O4 and Zn(CN2) were observed. Therefore, use of Zn–Ga LDH is essential to obtain 

single-phase GaN:ZnO when using urea as a nitriding agent. 
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Figure 4. XRD patterns of products obtained from mixtures of Zn–Ga LDH and urea after 

calcination at 800 °C for various periods (2–24 h). (b) Magnified patterns of products 

obtained by calcination for 12 and 24 h. 
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Characterization of GaN:ZnO Prepared from Zn–Ga LDH and Urea. Figure 5a shows 

a TEM image of GaN:ZnO prepared from Zn–Ga LDH and urea (R = 3) by calcination at 800 °C 

for 4 h. Comparison of this image with the SEM image of Zn–Ga LDH in Figure 1b clearly 

revealed that the hexagonal shape of Zn–Ga LDH was destroyed and the sample consisted 

primarily of well-crystallized particles with diameters of ca. 20–50 nm. It is noteworthy that 

nanocrystalline GaN:ZnO was obtained from the LDH precursor with a diameter of micrometer- 

scale. As mentioned above, a large amount of Zn (ca. 50%) is lost during nitridation process. 

Such volatilization of Zn likely leads the decomposition of huge platelets of precursor into 

nanocrystalline nature of products. EDX spectroscopic analysis was carried out for several spot 

areas. The results revealed that there was almost no deviation in the atomic composition of the 

material from spot to spot, even in different primary particles. Previously, Maeda and co-workers 

reported that GaN:ZnO prepared by nitridation of Ga2O3 and ZnO using NH3 gas possessed a 

non-uniform atomic composition even in the same primary particle.24 In such a case, 

simultaneous diffusion of constituent ions of the starting mixture and nitridation occurred at the 

solid–solid boundary between Ga2O3 and ZnO. In contrast, the constituent cations, i.e., Ga3+ and 

Zn2+, were homogeneously mixed in the liquid-phase preparation process of Zn–Ga LDH. 

Although the authors of previous reports mentioned that the use of Zn–Ga LDH provided 

products with a uniform arrangement of Zn and Ga, no direct evidence for the uniform atomic 

composition of the same primary particle was given.37–40 Our results suggest that Zn–Ga LDH is 

able to provide GaN:ZnO with highly uniform atomic composition. The bulk atomic composition 

of GaN:ZnO calcined at different temperatures was investigated by ICP-OES and is summarized 

in Table 1.49 The Ga/Zn ratio in GaN:ZnO prepared  by calcination for 4 h is close to 1. This 
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result is well-corresponded to the result of EDX analysis. The Zn concentration tended to 

decrease with increasing calcination temperature, in good agreement with the XRD results. As 

mentioned in the previous section, volatilization of Zn induced by the high temperature during 

calcination decreased the Zn concentration of GaN:ZnO. Even after calcination for 10 h, the 

atomic ratio of Zn was 44.6%. Usually, GaN:ZnO prepared by the traditional method using a 

mixture of oxides as a precursor has a low Zn content (<30–40%). The use of Zn–Ga LDH 

enabled formation of Zn-rich GaN:ZnO. These results agreed well with those of previous papers 

for the preparation of GaN:ZnO using Zn–Ga LDH.37–40 A UV–vis diffuse reflectance spectrum 

for GaN:ZnO prepared from Zn–Ga LDH and urea (R = 3) by calcination at 800 °C for 4 h is 

shown in Figure 5b. Consistent with optical photographs (Figure 2), the absorption edge of 

GaN:ZnO was at 530.2 nm, which is at longer wavelength than those of GaN and ZnO. The band 

gap (Eg) of the obtained GaN:ZnO was roughly estimated to be 2.34 eV, which was smaller than 

that of GaN:ZnO prepared by the conventional process using Ga2O3 and ZnO24,28 and 

corresponded to that of previously reported GaN:ZnO prepared from Zn–Ga LDH and nitrided 

using gaseous NH3.37–39 These results suggest that GaN:ZnO prepared from Zn–Ga LDH and 

urea is of high quality comparable with that prepared by the conventional procedure using Ga2O3, 

ZnO, and NH3 gas. The absorption edge and the Eg of GaN:ZnO prepared by calcination at 

900 °C for 4 h is 451.7 nm and 2.75 eV, respectively (Figure S8). The blue shift of the 

absorption edge, i.e., the increase of the Eg, is consistent with the decrease of Zn content in 

GaN:ZnO by the volatilization. These results suggest that the band gap of GaN:ZnO prepared 

from Zn–Ga LDH and urea can be tuned by the calcination temperature. 
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Figure 5. (a) TEM image and (b) UV-vis diffuse reflection spectrum of GaN:ZnO prepared 

from Zn–Ga LDH and urea (R = 3) by calcination at 800 °C for 4 h. EDX spectroscopic 

analysis results are also given in (a).  
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Table 1. Relative Atomic Contents of Ga and Zn in GaN:ZnO Prepared from Zn–Ga 

LDH and Urea (R = 3) by Calcination at 800 °C for Various Periods 

Calcination duration / h Ga Zn 

2 0.480 0.520 

4 0.514 0.486 

8 0.537 0.463 

10 0.554 0.446 

 

Nitridation Mechanism of Zn−Ga LDH to Form GaN:ZnO. Previously, several research 

groups reported the preparation of metal oxynitrides, such as TaON and LaTiO2N, using urea as 

a nitriding agent.44,46 Thermal decomposition of urea in the absence of H2O can be written as 

follows:50 

 

H2NCONH2     NH3 + HCNO (140 °C)                                                   (2) 

H2NCONH2     H2O + H2CN2 (140 °C)                                                   (3) 

 

Gomathi and co-workers argued that NH3 generated by decomposition of urea can react with 

metal carbonates and transition metal oxides to yield metal oxynitrides.44 Conversely, in the 

typical synthesis of GaN:ZnO by ammonolysis, the nitridation of metal oxides usually occurs at 

relatively high temperatures (e.g., 800 °C).20–24 Judging from the heating rate, the NH3 generated 

by decomposition of urea should flow away from the reaction tube before reaching the reaction 

temperature (>600 °C) in the current system because the reaction was carried out under a N2 
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stream. Therefore, to determine the behavior of the urea-decomposed species, we performed 

heat-treatment at lower temperatures. Figure 6 shows XRD patterns of the products obtained 

from mixtures of Zn–Ga LDH and urea after heat-treatment at 100, 200, and 500 °C. For the 

mixture heated at 100 °C, diffraction peaks indexed to Zn–Ga LDH and urea were observed in 

the XRD pattern and no other peaks were found. This suggests that no decomposition of LDH or 

urea occurred at 100 °C. In contrast, these peaks completely disappeared and unknown peaks 

were found for the sample heated above 200 °C. This result indicates that Zn–Ga LDH and urea 

decomposed between 100 and 200 °C, corresponding with the decomposition temperature of 

urea (140 °C). Unknown peaks were observed in the pattern of the samples heated at 200 and 

500 °C. Therefore, intermediate compounds are believed to form in this temperature region. We 

predict that these “unknown” intermediate species play important roles in the nitridation of Zn–

Ga LDH to form GaN:ZnO. 

 

 

 

Figure 6. XRD patterns of products obtained from mixtures of Zn–Ga LDH and urea after 

heat-treatment at 100, 200, and 500 °C for 4 h. 
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XAFS is an excellent method to investigate the local bonding and short-range order of 

complex systems such as GaN:ZnO because it can afford very high sensitivity and elemental 

specificity.51 Therefore, we tried to identify the intermediate species found in the XRD patterns 

in Figure 6 using XAFS measurements. First, Ga and Zn K-edge XANES studies were carried 

out. Ex-situ Ga and Zn K-edge XANES spectra of mixtures of Zn–Ga LDH and urea heat-treated 

at 100, 200, 300, 400, 500, 600, 700, and 800 °C are given in Figure 7b and d. In addition, 

XANES spectra of reference standards, i.e., Zn–Ga LDH, ZnO, Ga2O3, GaN, Zn(CN2), and 

GaN:ZnO, were also measured (Figure 7a and c). The shapes of spectra for both Ga and Zn 

drastically changed after the heating temperature reached to 200 °C, indicating the collapse of 

the structure of LDH. In Ga K-edge XANES spectra, the contribution from the Ga–N local 

structure analogous to GaN or GaN:ZnO was not found at intermediate temperatures (200–

600 °C). A contribution from Ga2O3 was observed when the heating temperature reached 200 °C 

(Figure 7b). The peaks assignable to crystalline Ga2O3 were not found in the XRD patterns of the 

sample prepared at these temperature ranges (Figure 6). Therefore, though the intermediate 

species have local structure corresponded to Ga2O3, it cannot be detected by XRD because it was 

not well-crystallized or in the amorphous state. This contribution disappeared in the spectra for 

the samples heat-treated above 600 °C. The spectrum for the sample treated at 700 °C exhibited 

near-edge features consistent with those of GaN. These results suggest that Ga components are 

not directly nitrided by NH3 generated via the decomposition of urea. In Zn K-edge XANES 

spectra of the samples treated above 200 °C, the shape of the spectra indicates the formation of 

intermediate states containing chemical environments similar to that of Zn(CN2) (Figure 7d). A 

contribution from ZnO was identified when the heating temperature reached to 500 °C and 
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remained in the spectrum of the sample treated at 600 °C. The Zn K-edge XANES spectrum of 

the sample heat-treated at 800 °C agreed well with that of GaN:ZnO. Thus, the XAFS 

measurements confirm the optimal synthesis temperature of GaN:ZnO derived from XRD 

measurements (800 °C).  

We also carried out in-situ Ga and Zn K-edge XANES studies (Figure S9). The in-situ 

XANES measurements were conducted using pellets composed of mixtures of Zn–Ga LDH, urea, 

and diluent heat-treated at temperatures from 100 to 800 °C. The variation of in-situ XANES 

spectra almost corresponded to that of the ex-situ spectra. Therefore, the ex-situ XANES results 

reflect well the nitridation process from Zn–Ga LDH to GaN:ZnO. To examine the contributions 

of chemical species to the Ga and Zn K-edge XANES spectra during heat-treatment of the 

mixtures of Zn–Ga LDH and urea, we fitted the absorption coefficients with linear combinations 

of Zn–Ga LDH, Ga2O3, and GaN:ZnO for Ga and Zn–Ga LDH, Zn(CN2), and GaN:ZnO for Zn 

(Figure S10). The results suggest that the sample in the intermediate state during heat-treatment 

in the region from 200 to 600 °C contained chemical species with a local structure similar to that 

of Zn(CN2).  
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Figure 7. (a, b) Ga K-edge and (c, d) Zn K-edge ex-situ XANES spectra of samples. 

Spectra of standard samples (Zn–Ga LDH, GaN, Ga2O3, Zn(CN2), ZnO, and GaN:ZnO) are 

given in (a) and (c). Spectra of mixtures of Zn–Ga LDH and urea heat-treated at 100, 200, 

300, 400, 500, 600, 700, and 800 °C are given in (b) and (d).  

 

Ga and Zn K-edge ex-situ EXAFS spectra of mixtures of Zn–Ga LDH and urea heat-treated 

at 100, 200, 600, and 700 °C are displayed in Figure 8. Here we focused on the first coordination 

shell region. The Ga and Zn K-edge ex-situ EXAFS spectra for standard materials, i.e., Zn–Ga 
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LDH, ZnO, Ga2O3, GaN, Zn(CN2), and GaN:ZnO, were also examined. In the sample heat-

treated at 100 °C, both Ga and Zn existed in Ga–O and Zn–O coordination environments of Zn–

Ga LDH, respectively. Consistent with the XRD and XANES results, the peaks assignable to 

Zn–Ga LDH remained in the EXAFS spectrum of the sample heat-treated at 100 °C. The peak 

positions of both Ga and Zn were shifted markedly to shorter distances when the heat-treatment 

temperature was raised to 200 °C. The XRD results revealed that the LDH structure collapsed 

when the samples were heat-treated above 200 °C. In the Ga K-edge EXAFS spectra, the peak 

appeared at the position corresponding to the Ga–O coordination environment of Ga2O3. When 

the heat-treatment was carried out at 600 °C, the peak was still found at the same position 

(Figure 8b). Conversely, the peak shifted to longer distance corresponding to the generation of 

the Ga–N coordination environment of GaN:ZnO for the sample heat-treated at 700 °C. These 

results indicate that Ga–N bonds were generated in the high temperature region (>700 °C) during 

the heat-treatment process. These results also suggest that NH3 generated at ca. 140 °C does not 

directly induce nitridation of Zn–Ga LDH to GaN:ZnO. In the Zn K-edge EXAFS spectra, there 

is no distinct difference between the positions of the peaks from the Zn–O coordination 

environment of ZnO and Zn–N coordination environment of Zn(CN2) (Figure 8d).  
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Figure 8. Fourier-transformed EXAFS spectra at (a, b) the Ga K-edge and (c, d) Zn K-edge. 

Spectra of standard samples (Zn–Ga LDH, GaN, Ga2O3, Zn(CN2), ZnO, and GaN:ZnO) are 

given in (a) and (c). Spectra of mixtures of Zn–Ga LDH and urea heat-treated at 100, 200, 

600, and 700 °C are given in (b) and (d). 
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Formation of metal cyanamide species was also supported by FT-IR spectroscopy 

measurements, as shown in Figure 9. Diffuse-reflectance FT-IR spectra were obtained for 

mixtures of Zn–Ga LDH and urea heat-treated at 100, 200, 500, 700, and 800 °C (Figure 9a). For 

reference, FT-IR spectra of Zn–Ga LDH, urea, and Zn(CN2) are also given in Figure 9b. Pristine 

Zn(CN2) displayed strong characteristic absorption bands around 1880–2170 cm−1 corresponding 

to the asymmetric stretching modes of [NCN]2−.52–55 These bands are consistent with previous 

reports of Zn(CN2) and also with the IR spectra of the cyanamides of cobalt, nickel, and 

manganese.54,55 The FT-IR spectrum for the sample heat-treated at 100 °C was similar to that for 

pristine Zn–Ga LDH and did not contain any peaks around 2000 cm−1. In contrast, strong 

absorption bands assignable to [NCN]2− were found in the spectrum for the sample heat-treated 

at 200 °C. These bands also existed in the spectra for the samples heat-treated at 500 and 700 °C. 

Therefore, C and N components in urea are converted to [NCN]2− species after decomposition 

around 150 °C and these Zn(CN2)-like species exist as intermediates during heat-treatment. The 

characteristic absorption bands of [NCN]2− completely disappeared in the spectrum for the 

sample heat-treated at 800 °C. This suggests that the intermediate cyanamide species 

decomposed at high temperature (700–800 °C) to give the oxynitride solid solution; i.e., 

GaN:ZnO. These results agreed well with those of XRD and XAFS measurements.  
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Figure 9. FT-IR spectra of (a) mixtures of Zn–Ga LDH and urea heat-treated at 100, 200, 

500, 700, and 800 °C and (b) standard samples (Zn–Ga LDH, urea, and Zn(CN2)). 
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To further investigate the nitridation process using urea, the evolved gas was analyzed by 

Q-MS. This technique detects the gases released during heat-treatment using He as a carrier gas. 

The obtained Q-MS curves are presented in Figure 10. During heating of a mixture of Zn–Ga 

LDH and urea, CO2 (m/z = 44), H2O (m/z = 18), NH3 (m/z = 17), and HCNO (m/z = 43) were 

generated in the temperature range from 130 to 250 °C. As shown in Figure 6, crystalline phases 

of Zn–Ga LDH and urea disappeared after heating at 200 °C. In addition, it has been reported 

that the decomposition of urea occurs at 140 °C, as shown in Eq. (1). Therefore, this result 

coincides with the decomposition of Zn–Ga LDH and urea. It is clear that the release of NH3 gas 

caused by urea decomposition occurred until the temperature reached to 300 °C. Therefore, 

direct nitridation of Zn–Ga LDH to form GaN:ZnO by NH3 gas is impossible because NH3 gas 

does not exist in the temperature region required for formation of oxynitrides, e.g., 850 °C. At 

temperatures above 600 °C, CO2 (m/z = 44) and CO (m/z = 28) were released. The peak at m/z = 

28 could also correspond to N2; however, the presence of a fragment with m/z = 12 

corresponding to C and absence of a fragment with m/z = 14 corresponding to N confirmed that 

the peak at m/z = 28 originated from CO rather than N2. Before reaching this temperature range, 

the release of CO2 from interlayer CO3
2− via decomposition of Zn–Ga LDH was already 

completed. This suggests that the origin of CO2 and CO is decomposition of Zn(CN2)-like 

species, which were detected in the FT-IR spectra.  
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Figure 10. Q-MS analysis of gas evolution during heat-treatment of a mixture of Zn–Ga 

LDH and urea. The inset shows magnified data for CO2 and CO from 450 to 700 °C. 

 

Considering the results of XRD, XAFS, FT-IR, and Q-MS analyses, we proposed a 

nitridation mechanism of Zn–Ga LDH to form GaN:ZnO using urea as a nitrogen source, which 

is shown in Scheme 1. First, Zn–Ga LDH and urea decompose around 150 °C and release CO2, 

H2O, and NH3 gases. Then, the Zn component in LDH forms the Zn(CN2)-like species by 

reaction with HCNO and/or H2CN2 generated by urea decomposition. The Ga component in 

LDH also forms the Ga2O3-like intermediate at this stage. When the temperature reaches 600 °C, 

decomposition of the Zn(CN2)-like species occurs through reaction with the Ga2O3-like 

intermediate. At this stage, generation of Ga–N bonds and release of CO2 and CO gases started. 

Finally, crystallization of the solid solution of GaN:ZnO in wurtzite phase was completed at 

800 °C.  
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Scheme 1. Schematic outlining the formation mechanism of GaN:ZnO using Zn–Ga LDH and 

urea as a precursor and nitriding agent, respectively 

 

 

 

■ CONCLUSIONS 

A new method for the facile preparation of GaN:ZnO solid solutions was developed. The use of 

Zn–Ga LDH as a precursor provided uniform atomic distributions of Zn and Ga in GaN:ZnO. In 

addition, urea was used as a safe solid-state nitriding agent, avoiding the need for corrosive NH3. 

By the optimization of reaction conditions such as heat-treatment temperature and ratio of urea, 

single-phase GaN:ZnO was successfully obtained. A lower heat-treatment temperature and 

higher ratio of urea gave Zn(CN2) as a by-product. Conversely, ZnGa2O4 formed as a by-product 

when the ratio of urea was low or heat-treatment was carried out for more than 12 h. We 

carefully analyzed the nitridation mechanism. First, Zn–Ga LDH and urea decomposed to 

generate Zn(CN2)- and Ga2O3-like species as intermediates at ca. 150 °C. Second, the Zn(CN2)-
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like species decomposed and G–N bond generation started around 600 °C. Finally, the 

crystallization of the solid solution of GaN:ZnO in wurtzite phase was completed at 800 °C. We 

revealed that the formation of Zn(CN2)-like species played an important role during the 

nitridation process and NH3 gas released from the decomposition of urea did not act as a 

nitriding agent in this system. Because of the safety, low cost, and simplicity of this process, we 

believe that nitridation using urea will open up opportunities for facile synthesis of various metal 

oxynitrides. In addition, the characterization strategy used in this work, i.e., ex-situ and in-situ 

XAFS, FT-IR, and Q-MS measurements, should be extremely effective to analyze the formation 

process of oxynitrides using urea as a nitriding agent. Therefore, the preparation and 

investigation of the nitridation mechanism of various kinds of oxynitrides are currently being 

performed by our research team.  
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GaN:ZnO solid solutions were prepared using Zn–Ga layered double hydroxide (LDH) as a 

precursor and urea as a nitriding agent. NH3 released from the thermal decomposition of urea did 

not directly nitride the LDH precursor. A Zn(CN2)-like intermediate species was generated at the 

middle temperature range and Ga−N bonds formed at high temperature along with dissociation 

of CO and CO2. 
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■ Preparation of Standard Samples for XAFS Measurements 

Zinc Gallate (ZnGa2O4). Ga2O3 (10.0 g) and ZnO (4.35 g) were mixed in an agate mortar and then 

ethanol (10 mL) was added as a dispersant. The slurry was well mixed for 3 h and then dried at 100 °C 

for 24 h. The dried powder was passed through a 150-mesh sieve to remove any large agglomerates. A 

cylindrical pellet was prepared by pressing the powder with a pressure of 1 ton cm–3. ZnGa2O4 was 

obtained by sintering the pellet at 1000 °C for 24 h in air. An XRD pattern of the obtained ZnGa2O4 is 

shown in Figure S1.  

 

 

 

 

 

 

 

Figure S1. XRD pattern of pure ZnGa2O4.  

 

 

 

 

 



 S3

Zinc Cyanamide (Zn(CN2). ZnO was mixed with urea in an agate mortar. The molar ratio of urea to 

ZnO was fixed at 5. The mixture was first heated at 200 °C for 2 h and then at 700 °C for 2 h in an 

alumina crucible inside a horizontal tube furnace under a N2 flow (500 mL min–1). An XRD pattern of 

the obtained Zn(CN2) is shown in Figure S2. 

 

 

 

 

 

 

 

 

Figure S2. XRD pattern of pure Zn(CN2).   
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Figure S3. Shift of the 101 diffraction peak position in XRD patterns of GaN:ZnO obtained 

from mixtures of Zn–Ga LDH and urea as a function of the molar ratio of Ga in Zn–Ga LDH 

to urea ([urea]/[Ga]). 

 

 

 

 

Figure S4. Shift of the 101 diffraction peak position in XRD patterns of GaN:ZnO obtained 

from mixtures of Zn–Ga LDH and urea calcined at different temperatures. 
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Figure S5. Optical photographs of products obtained from mixtures of Zn–Ga LDH and urea 

after calcination at various temperatures (600, 700, 800, and 900 °C) for 4 h.  
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Figure S6. (a) Shift of the 101 diffraction peak position in XRD patterns of GaN:ZnO 

obtained from mixtures of Zn–Ga LDH and urea calcined for different durations. (b) Optical 

photographs of products obtained from mixtures of Zn–Ga LDH and urea after calcination at 

800 °C for various periods (2, 4, 6, 8, 10, 12, and 24 h). 
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Figure S7. XRD pattern of the product obtained from a mixture of Ga2O3, ZnO, and urea 

(Ga:Zn:urea molar ratio = 1:1:3) after calcination at 800 °C for 4 h.  
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Figure S8. UV-vis diffuse reflection spectrum of GaN:ZnO prepared from Zn–Ga LDH and 

urea (R = 3) by calcination at 900 °C for 4 h. 
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Figure S9. (a) Ga K-edge and (b) Zn K-edge in-situ XANES spectra of mixtures of Zn–Ga LDH and 

urea heat-treated at temperatures from 100 to 800 °C. Spectra of standard samples (Zn–Ga LDH, GaN, 

Ga2O3, Zn(CN2), ZnO, and GaN:ZnO) are also given. 
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Figure S10. Linear combination fitting results for (a) Ga and (b) Zn K-edge XANES spectra 

during heat-treatment of a mixture of Zn–Ga LDH and urea. Absorption coefficients were 

fitted with linear combinations of Zn–Ga LDH, Ga2O3, and GaN:ZnO for Ga and Zn–Ga LDH, 

Zn(CN2), and GaN:ZnO for Zn. 


