

(日本化学会誌, 1996, (3), p. 303~306)
 ② 1996 The Chemical Society of Japan

HZSM-5 ゼオライトの脱アルミニウム速度に及ぼす水蒸気分圧の影響

(1995年11月15日受理)

岩見吉博·佐野庸治*·川上雄資

1緒 言

ゼオライトは、[SiO₄] と [AlO₄] の四面体がその頂点に位置 する酸素原子を共有して三次元網目状に結合した結晶性アルミノ ケイ酸塩であり,結合様式により数多くの結晶形状を持つ. [AlO₄] 四面体は負の荷電を有しているため,これを中和するた めに陽イオンが存在している.この三次元網目構造と陽イオンの 存在が,ゼオライト特有の分子ふるい作用,イオン交換能,固体 酸性などの物理的および化学的性質を発現させており,吸着剤, 触媒など様々な分野に用いられている.

しかし、ゼオライトが水蒸気あるいは高温下にさらされると骨 格構造からの脱アルミニウムが進行し、ゼオライトの物理的化学 的性質の変化を引き起こす.また、脱アルミニウムの程度が大き ければ結晶構造そのものが破壊されることがある.そのため、ゼ オライトの脱アルミニウムは物性の制御および構造の安定性とい う観点からゼオライト化学における重要な問題であり、様々なゼ オライトを用いて数多くの研究が行われている^{1)~6)}.著者らも HZSM-5 ゼオライトの脱アルミニウム挙動について検討してお り、100%水蒸気雰囲気下での脱アルミニウム速度は見かけ上ゼ オライト骨格構造中のアルミニウム量の二次に整理できることを 既に報告した^{7),8)}.しかし、脱アルミニウムの機構あるいはその 速度に及ぼす水蒸気分圧の依存性などを含め、その詳細について はまだ十分には明らかにされていない.

本研究では,種々の水蒸気分圧下でのHZSM-5 ゼオライトの 脱アルミニウム速度を固体高分解能NMRを用いて詳細に検討 したので報告する.

2 実 験

2.1 ゼオライトの調製

ZSM-5 ゼオライトの調製は,以下のようにして行った. コロ イダルシリカ(キャタロイド SI-30,触媒化成製,SiO₂=30.4 wt%,Na₂O=0.38 wt%),硝酸アルミニウム,水酸化ナトリウ ム,テトラプロピルアンモニウムプロミド(以下 TPABr と略記) および蒸留水から以下のようなモル組成を有する水性ゲル混合物 を調製した.

 $SiO_2/Al_2O_3 = 70$, OH⁻/SiO₂=0.1, TPABr/SiO₂=0.1, H₂O/SiO₂=40

得られた水性ゲル混合物を300 mlのステンレススチール製オー

北陸先端科学技術大学院大学 材料科学研究科,923-12 石川県能美郡辰口町旭台 15

トクレーブに仕込み,160 ℃,自己圧下において24 時間かきま ぜながら水熱合成を行った.反応後生成した固形物を蒸留水で十 分に洗浄し,120 ℃で乾燥した後,空気中500 ℃で20 時間焼成 した.さらに,0.6 M(mol/dm³) 塩酸水溶液を用いて室温で24 時間イオン交換後,500 ℃で8 時間焼成し HZSM-5 ゼオライト とした.

2.2 ゼオライトのスチーミング処理

スチーミング処理は、常圧流通式装置を用い、12から24メッ シュに成型したゼオライト約1.2gを石英管に充塡し、600℃で 水蒸気分圧を0,0.1,0.25,0.5,1kg/cm²と変えて行った.なお、 全ガス(窒素+水蒸気)の流量は0.531 mol/hと一定にした.

2.3 ゼオライトのキャラクタリゼーション

ゼオライトの結晶子径および結晶形態は,走査型電子顕微鏡 (日立製 S-4100)を用いて観察した.

ゼオライトの組成分析は, 蛍光X線分析装置(Philips PW2400)を用いて行った.

固体高分解能 ²⁷Al MAS NMR スペクトルは, ヴァリアン製 VXR-400を用いて, 共鳴周波数 104.3 MHz, パルス幅 1.73マイ クロ 秒, 待ち時間 1 秒, 積算回数 4000 回の条件で室温で測定し た. 外部標準には硝酸アルミニウム九水和物を用いた. なお, 測 定を行う前に, ゼオライトは塩化アンモニウム飽和水溶液を含む デシケータ中に24 時間以上放置し, 水を飽和吸着させた.

3 結果および考察

合成したゼオライトは ZSM-5 ゼオライト特有の X 線回折パ ターンを示し、その結晶化度も高かった. 走査型電子顕微鏡観察 の結果から、結晶子径は均一で約 $3 \times 6 \mu m$ であった. また、蛍 光 X 線分析により求めた SiO₂/Al₂O₃ 比は63であった.

3.1 種々の水蒸気分圧下でのスチーミング処理

脱アルミニウム処理後のゼオライト骨格構造中のアルミニウム 量を精度よく測定するために、まず脱アルミニウム処理前の種々 のAl/(Si+Al)比のゼオライトの²⁷Al MAS NMR スペクトル を測定し、骨格構造中の四配位アルミニウムに帰属される53 ppm 付近のピークの積分値とAl/(Si+Al)比の関係について調 べた⁹⁾.図1にその結果を示す.なお、縦軸は飽和吸着した水の 重量分を差し引いてゼオライト1g当たりに換算したものであ り、その測定誤差は約5~10%であった.以後この検量線 (y=-7.73×104x²+9.98×103x+7.49, x: Al/(Si+Al)比, y:ゼ オライト1g当りの53 ppm ピークの積分値)を用いて脱アルミ ニウム処理後のゼオライト骨格構造中のアルミニウム量を算出し

Fig. 1 Relationship between Al/(Si+Al) ratio and peak intensity of 53 ppm per 1 g of HZSM-5 zeolite.

た.

図2には種々の水蒸気分圧下でのスチーミング処理にともな うゼオライト骨格構造中のアルミニウム量の経時変化を示す.骨 格構造中のアルミニウム量はスチーミング初期において急激に減 少し、その後処理時間とともに徐々に減少した.また、脱アルミ ニウムは水蒸気分圧が高いほど激しく進行した.なお、水蒸気分 圧0kg/cm²の窒素雰囲気下での熱処理の場合には、脱アルミニ ウムは進行しなかった.

以上のことから HZSM-5 ゼオライトの脱アルミニウムは木蒸 気分圧に著しく影響されることが明らかになったので,次に脱ア ルミニウム速度に及ぼす水蒸気分圧の影響について定量的な検討 を加えた.図3には種々の水蒸気分圧下でのスチーミング処理 後のゼオライト骨格構造中のアルミニウム量の逆数,あるいはそ の二乗とスチーミング時間との関係を示す.いずれの水蒸気分圧 の場合においても骨格構造中のアルミニウム量の逆数の変化量と スチーミング処理時間との間には直線関係は得られなかった(図 3(A)).一方,骨格構造中のアルミニウム量の逆数の二乗の変化 量とスチーミング時間との間には原点を通る良好な直線関係が得

- Fig. 2 Time dependence of framework aluminum contents of HZSM-5 zeolite during steaming at 600 °C and various water vapor pressures.
 - $\blacksquare: P_{\rm H_2O} = 0 \text{ kg/cm}^2.$
 - •: $P_{\rm H_{20}} = 0.1 \, \rm kg/cm^2$.

 - $\mathbf{x}: P_{\text{H}_{20}} = 1 \text{ kg/cm}^2.$

られた(図3(B)). すなわち, *t*をスチーミング処理時間, *A*₀を スチーミング処理前の骨格構造中のアルミニウム量, *A* を時間*t* における骨格構造中のアルミニウム量, *k*を脱アルミニウムの見 かけの速度定数とすれば

$$1/2 \times \{(1/A)^2 - (1/A_0)^2\} = kt \tag{1}$$

式が成立している.ここで(1)式を時間*t* で微分すれば, _-dA/dt=kA³ (2)

となる.したがって,水蒸気分圧 0.1~1 kg/cm² の本実験条件 下ではスチーミング処理による HZSM-5 ゼオライトの脱アルミ ニウム速度は,見かけ上骨格構造中のアルミニウム量の三次に比 例することが明らかとなった.この結果は,100%水蒸気雰囲気 下での脱アルミニウム速度は骨格構造中のアルミニウム量の二次 に比例するという以前の実験結果と異なる^{7),8)}.この違いが何に

- •: $P_{\rm HzO} = 0.1 \, \rm kg/cm^2$.
- $A: P_{\rm H-0} = 0.25 \, \rm kg/cm^2.$
- $\bullet: P_{\rm He0} = 0.5 \, \rm kg/cm^2.$
- $\mathbf{X}: P_{\mathrm{Ho}} = 1 \mathrm{kg/cm^2}.$

Fig. 4 Relationship between rate constant and water vapor pressure.

起因するものか正確には明らかではないが、今回は検量線を用い てスチーミング処理後のゼオライトの骨格構造中のアルミニウム 量を測定したためその精度が向上したことによるものと考えてい る.図4には種々の水蒸気分圧下での脱アルミニウムの見かけ の速度定数と水蒸気分圧の関係を示す、この直線の傾きから求め た脱アルミニウム速度の水蒸気分圧依存性は約1.5次であった、

3.2 スチーミング処理における脱アルミニウム機構

以上の結果から,スチーミング処理にともなう HZSM-5 ゼオ ライトの脱アルミニウムは図5(A)のような過程を経て進行して いると推定した.なお,スチーミング処理条件下では

H⁺+H₂O \neq H₃O⁺ (3) の平衡は原系に片寄っており、ゼオライト細孔内にプロトンとし て存在していると仮定した. ゼオライト骨格構造からの脱アルミ ニウムは Si-O-Al 結合の加水分解反応であり、ゼオライト中の Brønsted 酸点に基づくこのプロトンは細孔内を自由に動き回る 触媒として作用する^{10),11)}. 遷移状態での配置 A5 が空間的に可 能であるのかどうかについては現段階では明らかではないが、 A5 から A6 の過程が律速段階で、A1 から A5 まではすべて平衡 と仮定すれば、

 $K_1 = [A2]/[A1][H^+], K_2 = [A3]/[A2][H_2O],$ $K_3 = [A4]/[A3][H^+], K_4 = [A5]/[A4][OH^-]$

となり、脱アルミニウムの速度式は

- $-dA/dt = k'[A5] = k'K_4[A4][OH^-]$
 - $=k'K_{3}K_{4}[A3][H^{+}][OH^{-}]$
 - $=k'K_2K_3K_4[A2][H^+][H_2O][OH^-]$

= k'K₁K₂K₃K₄[A1][H+]²[H₂O][OH-] (4) となる.ここで[H+] は電荷のバランスを保つために骨格構造 中のアルミニウム濃度[A1] とほぼ等しいと考えられ,脱アルミ ニウム速度は見かけ上骨格構造中のアルミニウム量の三次に比例 することになり,実験結果を説明することができる.なお,この 脱アルミニウム機構では,脱アルミニウム速度が水蒸気分圧に 1.5 次の依存性を示すことを説明するため,A5においてOH-の 存在を仮定している.OH-の生成の詳細については現段階では 明らかではないが,図5(B)のように考えている.ゼオライト中 のプロトンが Si-O-Si 結合の加水分解反応の触媒として作用す る.反応式で表せば

Fig. 5 Plausible mechanism of dealumination of HZSM-5 zeolite by steaming.

(B)

H₂O+O²⁻
$$\neq$$
2OH⁻ (5)
となる、平衡定数をK₅ とすれば、
K₅=[OH⁻]²/P_{H₂O}[O²⁻]
ここで[O²⁻] はほぼ一定と考えられるから、
[OH⁻]=(K₅P_{H₂O}[O²⁻])^{0.5}=K₅^{'0.5}(P_{H₂O})^{0.5} (6)
(K₅'=K₅[O²⁻])
したがって、脱アルミニウムの速度式は
-dA/dt=k'K₁K₂K₃K₄K₅^{'0.5}[A1]³(P_{H₂O})^{1.5}
=k[A1]³(P_{H₂O})^{1.5} (7)
(k=k'K₁K₂K₃K₄K₅^{'0.5})

となる.

4 結 論

HZSM-5 ゼオライトの脱アルミニウム速度に及ぼす水蒸気分 圧の影響を²⁷AI MAS NMR を用いて詳細に検討した.脱アルミ ニウム速度は水蒸気分圧に大きく依存し,水蒸気分圧が0.1~1 kg/cm²の場合には見かけ上ゼオライト骨格構造中のアルミニウ ム量の三次に比例すること,および水蒸気分圧に対して約1.5次 の依存性を示すことが明らかとなった.

本研究は文部省科学研究費補助金重点領域研究「特殊反応場の 触媒化学一極限環境触媒一」の助成によって行われた.記して感 謝する.

また,本研究を遂行するにあたり有益な助言を頂いた,工業技 術院物質工学工業技術研究所の高谷晴生計測化学部長に感謝の意 を表す.

- 1) 今井哲也, 佃 岩夫, 野島 繁, 日化, 1994, 967.
- 2) 坂本栄治, 荒川 剛, 荒井弘通, 日化, 1994, 874.
- G. N. Rao, A. N. Kotashane, Appl. Ctal. A-General, 119, 33(1994).
- J. Datka, W. Kolidziejsjski, J. Klinowski, Catal. Lett., 19, 159(1993).
- 5) E. B. Lami, F. Fajula, D. Anglerot, T. D. Courieres, Microporous Mater., 1, 237(1993).
- E. Loeffler, U. Lohse, Ch. Peuker, G. Oehlmann, L.M. Kustov, V. L. Zholobenko, V. B. Kazansky, *Zeolites*, 10, 266(1990).
- T. Sano, K. Suzuki, H. Shoji, S. Ikai, K. Okabe, T. Murakami, S. Shin, H. Hagiwara, H. Takaya, *Chem. Lett.*, 1987, 1421.
- 8) 鈴木邦夫,佐野庸治,清住嘉道,萩原弘之,新 重光, 高谷晴生,日化,1989,1818.
- 9) C. A. File, J. M. Thomas, J. Klinowski, G. G. Gobbi, Angew. Chem., Int. Ed. Engl., 22, 259(1983).
- 10) T. Baba, Y. Inoue, H. Shoji, T. Uematu, Y. Ono, *Microporous Mater.*, 3, 647(1995).
- P. Sarv, T. Tuherm, E. Lippmaa, K. Keskinen, A. Root, J. Phys. Chem., 99, 13763 (1995).

-Note-

Effect of Water Vapor Pressure on Dealumination Rate of HZSM-5 Zeolite

Yoshihiro IWAMI, Tsuneji SANO* and Yusuke KAWAKAMI

Japan Advanced Institute of Science and Technology; Tatsunokuchi, Ishikawa 923-12 Japan

Dealumination rate of HZSM-5 zeolite under various water vapor pressures was investigated by means of 27 Al MAS NMR. The dealumination rate was markedly dependent on the water vapor pressure. Under water vapor pressure ranging from 0.1 to 1 kg/cm², it was found that the dealumination rate was apparently third-order dependent on the content of framework aluminum and approximately 1.5-order dependent on water vapor pressure. Based on these results, a plausible mechanism of dealumination of HZSM-5 zeolite by steaming was proposed.