広島大学学術情報リポジトリ Hiroshima University Institutional Repository

Title	UV and IR Spectroscopy of Cold H2O+-Benzo-Crown Ether Complexes
Author(s)	Inokuchi, Yoshiya; Ebata, Takayuki; Rizzo, Thomas R.
Citation	Journal of Physical Chemistry A , 119 (45) : 11113 - 11118
Issue Date	2015-11-12
DOI	10.1021/acs.jpca.5b07033
Self DOI	
URL	https://ir.lib.hiroshima-u.ac.jp/00046472
Right	Copyright (c) 2015 American Chemical Society This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry A, copyright c American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see 10.1021/ acs.jpca.5b07033.
Relation	

UV and IR Spectroscopy of

Cold H₂O⁺–Benzo-Crown Ether Complexes

Yoshiya Inokuchi,^{‡,*} Takayuki Ebata,[‡] and Thomas R. Rizzo[†]

Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan and Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015,

Switzerland

E-mail: y-inokuchi@hiroshima-u.ac.jp

Abstract

The H₂O⁺ radical ion, produced in an electrospray ion source *via* charge transfer from Eu³⁺, is encapsulated in benzo-15-crown-5 (B15C5) or benzo-18-crown-6 (B18C6). We measure UV photodissociation (UVPD) spectra of the (H₂O•B15C5)⁺ and (H₂O•B18C6)⁺ complexes in a cold, 22-pole ion trap. These complexes show sharp vibronic bands in the 35700–37600 cm⁻¹ region, similar to the case of neutral B15C5 or B18C6. These results indicate that the positive charge in the complexes is localized on H₂O, giving the forms H₂O⁺•B15C5 and H₂O⁺•B18C6, in spite of the fact that the ionization energy of B15C5 and B18C6 is lower than that of H₂O. The formation of the H₂O⁺ and H₂O can be attributed to the encapsulation of hydrated Eu³⁺ clusters by B15C5 and B18C6. On the other hand, the main fragment ions subsequent to the UV excitation of these complexes are B15C5⁺ and B18C6⁺ radical ions; the

charge transfer occurs from H_2O^+ to B15C5 and B18C6 after the UV excitation. The position of the band origin for the $H_2O^+\bullet B18C6$ complex (36323 cm⁻¹) is almost the same as that for Rb⁺•B18C6 (36315 cm⁻¹); the strength of the intermolecular interaction of H_2O^+ with B18C6 is similar to that of Rb⁺. The spectral features of the $H_2O^+\bullet B15C5$ complex also resemble those of the Rb⁺•B15C5 ion. We measure IR-UV spectra of these complexes in the CH and OH stretching region. Four conformers are found for the $H_2O^+\bullet B15C5$ complex, but there is one dominant form for the $H_2O^+\bullet B18C6$ ion. This study demonstrates the production of radical ions by charge transfer from multivalent metal ions, their encapsulation by host molecules, and separate detection of their conformers by cold UV spectroscopy in the gas phase.

Keywords: lanthanide, europium, 18-crown-6, 15-crown-5, encapsulation, water, crown ether, infrared, ion trap, electrospray, solvent effect

*To whom correspondence should be addressed.

[‡]Hiroshima University

[†]École Polytechnique Fédérale de Lausanne

1. Introduction

One of the advantages of electrospray in mass spectrometry is its ability to introduce ions from solution directly into vacuum without destroying them, even if molecules are large and non-volatile.¹⁻² However, the electrospray process sometimes occurs under harsh conditions due to high electric fields, inducing a number of chemical reactions. In addition, the reduction of the positive charge from multiply charged metal ions often occurs in electrospray, which is due to their higher ionization energy (IE) than that of solvent molecules.³ In our experimental efforts to produce host-guest complexes of metal ions by electrospray, we found that when using solutions of lanthanide salts and host molecules, radical ions of solvent are efficiently produced and encapsulated in the host cavities. In this study, we report the production of the H_2O^+ radical ion and its encapsulation in the cavity of benzo-15-crown-5 (B15C5) or benzo-18-crown-6 (B18C6) using electrospray, forming (H₂O•B15C5)⁺ and $(H_2O \bullet B18C6)^+$ complexes. In order to examine the electronic and geometric structures of these complexes, we perform UV photodissociation (UVPD) and IR-UV double-resonance spectroscopy in a cold, 22-pole ion trap.⁴ On the basis of the spectroscopic results, we can determine the structure of these complexes and investigate charge transfer (CT) processes that occur within them.

2. Experimental Method

The experiment is performed with a tandem mass spectrometer equipped with a nanoelectrospray ion source.⁴⁻⁶ We inject a solution of EuCl₃•6H₂O and B15C5 or B18C6 (~200 μ M each) in methanol/water (~98:2 volume ratio) *via* the nanoelectrospray source. While (H₂O•B15C5)⁺ and (H₂O•B18C6)⁺ complexes are produced in this source, we cannot find bare Eu³⁺ ion or complexes containing it. Mass spectra of the EuCl₃•6H₂O solutions with B15C5 and B18C6 are displayed in Fig. 1S of the Supporting Information. These spectra clearly show that the $(H_2O\bullet B15C5)^+$ and $(H_2O \bullet B18C6)^+$ complexes are formed, and that the $H_3O^+ \bullet B15C5$ or $H_3O^+ \bullet B18C6$ complex is not seen in this experiment. The signals m/Z = -1.0 above the $(H_2O \bullet B15C5)^+$ and $(H_2O \bullet B18C6)^+$ complexes (m/Z = 287 for B15C5 and 331 forB18C6) can be assigned to the complexes having one ¹³C atom. The parent ions of interest are selected in a quadrupole mass filter and injected into a 22-pole RF ion trap, which is cooled by a closed-cycle He refrigerator to 6 K. The trapped ions are cooled internally and translationally to ~10 K through collisions with cold He buffer gas,^{4-5,7-8} which is synchronously injected into the trap. The trapped ions are then irradiated with a tunable UV laser pulse, which causes some fraction of them to dissociate. The resulting charged photofragments, as well as the remaining parent ions, are released from the trap, analyzed by a second quadrupole mass filter, and detected with a channeltron electron multiplier. The UVPD spectra of parent ions are obtained by plotting the yield of a particular photofragment ion as a function of the wavenumber of the UV laser. We also measure conformer-specific infrared spectra using IR-UV double-resonance spectroscopy. In these experiments, the output pulse of an IR OPO precedes the UV pulse by ~100 ns and counter-propagates collinearly with it through the ion trap. Absorption of the IR light by the ions in a specific conformer induces the depopulation of the ground state, resulting in the reduction of the net UV absorption of this conformer.⁹ The wavenumber of the UV laser is then fixed to a vibronic transition of this conformer for monitoring the conformer-selective IR-induced depletion of the UVPD yield, and the wavenumber of the OPO is scanned in the light-atom stretching region (2600–3800 cm⁻¹) while monitoring the number of fragment ions. IR-UV

depletion spectra are obtained by plotting the yield of a particular photofragment as a function of the OPO wavenumber.

3. Results and Discussion

3.1 (H₂O•B18C6)⁺ complex

Figures 1a and 1b display the UVPD spectra of the $(H_2O\bullet B18C6)^+$ and Rb⁺•B18C6 complexes, respectively; the latter spectrum was reported in our previous study.¹⁰ The spectrum of the $(H_2O\bullet B18C6)^+$ complex is measured by monitoring the yield of B18C6⁺ photofragment. Neutral B18C6 exhibits band origins at 35167 cm⁻¹ and around 35650 cm⁻¹ for four conformers.¹¹ Hence, the vibronic bands in the spectrum of the $(H_2O\bullet B18C6)^+$ complex can be assigned to the absorption of the B18C6 component. This suggests that B18C6 in the $(H_2O\bullet B18C6)^+$ complex remains neutral, and the complex has the structure H_2O^+B18C6 . In the case of alkali metal ion–B18C6 complexes, M⁺•B18C6, the position of the band origin reflects the strength of the intermolecular interaction between M⁺ and B18C6; being located at 36398, 36315, and 36234 cm⁻¹ for the K⁺, Rb⁺, and Cs⁺ complexes, respectively.¹⁰ As shown in Fig. 1a, the H_2O^+B18C6 complex (36315 cm⁻¹). In addition, the vibronic structure is quite similar between the spectra of H_2O^+B18C6 and Rb⁺•B18C6. This suggests that the strength of intermolecular interaction of H_2O^+ with B18C6 is comparable to that of Rb⁺.

In order to determine the structure and examine the coexistence of multiple conformers, we measure IR spectra of the $H_2O^+\bullet B18C6$ complex by IR-UV double-resonance spectroscopy. Figure 2a shows the IR-UV spectrum of the $H_2O^+\bullet B18C6$ complex along with that of the Rb⁺•B18C6 ion (Fig. 2b) from our previous

study.¹⁰ These spectra are obtained by fixing the UV frequency at the respective band origins (36323 and 36315 cm⁻¹). In the case of H_2O^+ •B18C6, the frequency of the IR OPO was scanned up to $\sim 3700 \text{ cm}^{-1}$, but no band was observed in the 3200–3700 cm⁻¹ region (see Fig. 2S of the Supporting Information). For the Rb⁺•B18C6 complex, all the strong vibronic bands in the UVPD spectrum (Fig. 1b) show the same IR-UV spectrum as that in Fig. 2b.¹⁰ Similarly, all the IR-UV spectra of the H₂O⁺•B18C6 complex are identical for the strong vibronic bands in Fig. 1a, indicating that there is only one dominant conformer. Weak vibronic bands in the $36150-36300 \text{ cm}^{-1}$ region of Fig. 1a are attributed to a minor conformer because of their different vibronic structure from that of the main conformer from 36323 cm⁻¹. In the IR-UV spectrum of the Rb⁺•B18C6 ion (Fig. 2b), absorption of the CH stretching vibrations is observed mainly around 2900 cm⁻¹. The IR spectrum of the H_2O^+ •B18C6 complex measured at 36323 cm⁻¹ shows strong absorption in the 3000–3200 cm⁻¹ region in addition to weaker bands due to the CH stretches at ~ 2900 cm⁻¹. Hence, the strong bands at 3026 and 3051 cm^{-1} can be assigned to the OH stretching vibrations of the H₂O⁺ component. The frequency of the symmetric (v_1) and asymmetric (v_3) OH stretching vibrations of H_2O^+ in the gas phase was reported to be 3212.86 and 3259.04 cm⁻¹, respectively.¹² It is thus likely that the OH groups of the H_2O^+ component in the H_2O^+ •B18C6 complex form hydrogen bonds with the B18C6 part.

We then examined theoretically the possibility that the complex in this study was not the H_2O^+ cluster but the H_3O^+ one. We performed the conformational search, geometry optimization, and calculations of electronic transitions for the $H_3O^+\bullet B18C6$ complex; the details of the calculations were explained in the Supporting Information. As mentioned above, the position of the band origin reflects the strength of the intermolecular interaction between cations and B18C6, and calculated transition energies by time-dependent density functional theory (TD-DFT) reproduce the observed ones in the UVPD spectra very well, with an accuracy of ~20 cm⁻¹.¹⁰ As seen in Fig. 3S of the Supporting Information, the most stable form of the $H_3O^+\bullet$ B18C6 complex is predicted to have the transition to the first excited state at 36736 cm⁻¹, much higher than that observed in Fig. 1a (36323 cm⁻¹). Hence, it is probable that the complex formed in this experiment is surely the $H_2O^+\bullet$ B18C6 ion.

3.2 (H₂O•B15C5)⁺ complex

Figure 3a shows the UVPD spectrum of the $(H_2O\bullet B15C5)^+$ complex. The band origin of neutral B15C5 is found at 35645, 35653, and 36217 cm⁻¹ for three conformers.¹³ The vibronic bands of the $(H_2O\bullet B15C5)^+$ complex in Fig. 3a are thus assignable to the absorption of the B15C5 part; the H₂O part mainly carries the positive charge in this complex, giving a structure of the form H₂O⁺•B15C5. As mentioned above, the H₂O⁺ radical ion interacts with the B18C6 component similarly to the Rb⁺ ion. Figure 3b displays the UVPD spectrum of the Rb⁺•B15C5 complex.¹⁰ The vibronic bands of the Rb⁺•B15C5 complex are attributed to three isomers (Rb-I, Rb-II, and Rb-III).¹⁰

We apply IR-UV spectroscopy to the $H_2O^+\bullet B15C5$ complex in the CH and OH stretching regions. Figure 4 shows the IR-UV spectra of the $H_2O^+\bullet B15C5$ ion with those of conformers Rb-II and Rb-III of Rb⁺•B15C5.¹⁰ The IR-UV spectra of the $H_2O^+\bullet B15C5$ complex are measured by monitoring the photofragment yield at the UV positions (1–4) highlighted by arrows in Fig. 3a. The four IR-UV spectra of the $H_2O^+\bullet B15C5$ complex show different spectral features. Hence, there are at least four isomers for the $H_2O^+\bullet B15C5$ complex in our experiment. In contrast to the case of the

 H_2O^+ •B18C6 complex described above, it is not possible to identify clearly the OH stretching bands of the H_2O^+ component in these congested IR spectra. However, since the Rb⁺ complex has strong CH stretching bands only in the 2870–2990 cm⁻¹ region (Figs. 4e and 4f),¹⁰ the strong bands below 2800 cm⁻¹ in the IR spectra of the H_2O^+ complex can tentatively be assigned to the OH stretching vibration(s).

Zwier and coworkers and our group have reported that the vibronic structure of B15C5 around the band origin is a good diagnosis of the conformation around the phenyl ring; conformers in which the β carbon atoms (C4 and C14 atoms, see Scheme 1 of Ref. 10) are displaced largely from the plane of the phenyl ring show intense Franck-Condon progressions.^{10, 13-14} The vibronic structure of the H₂O⁺•B15C5 complex is quite similar to that of the Rb⁺•B15C5 ion in the 36300–36900 cm⁻¹ region, which corresponds to Rb-II and Rb-III. In the isomers that show Rb-II and Rb-III (isomers Rb-A and Rb-B, see Figs. 7 and 8 of Ref. 10), the β carbon atoms are located largely out of the benzene plane. This suggests that isomers 3 and 4 of H₂O⁺•B15C5 have the β carbon atoms displaced largely from the phenyl plane, similar to Rb-A and Rb-B of Rb⁺•B15C5. In contrast, isomers 1 and 2 of H₂O⁺•B15C5 show strong origin bands, and their progressions are not so extensive. This suggests that the β carbon atoms of isomers 1 and 2 are located almost in the benzene plane.

We performed the conformational search, geometry optimization, and calculations of electronic transitions also for the $H_3O^+\bullet B15C5$ complex. The calculated results are shown in Fig. 4S of the Supporting Information. The electronic transition energy of the most stable $H_3O^+\bullet B15C5$ conformer is estimated as 36969 cm⁻¹, higher than those of the $H_2O^+\bullet B15C5$ isomers in the UVPD spectrum (Fig. 3a).

Therefore, the complex examined in this study is not $H_3O^+\bullet B15C5$ but surely $H_2O^+\bullet B15C5$.

3.3 Energetics of the (H₂O•B18C6)⁺ and (H₂O•B15C5)⁺ complexes

Figure 5 shows schematic potential energy surfaces proposed for the $(H_2O \cdot B18C6)^+$ complex. The right- and left-hand sides in Fig. 5 represent the dissociation limit to $(H_2O + B18C6^+)$ and $(H_2O^+ + B18C6)$, respectively. The energy of these dissociation limits is obtained from the IEs of H₂O (12.65 eV) and benzene (9.24384 eV).¹⁵⁻¹⁶ We performed the geometry optimization of $(H_2O \cdot B18C6)^+$ at the M05-2X/6-31+G(d) level of theory using the GAUSSIAN 09 program package.¹⁷ However, all the optimized structures have the $H_2O\bullet B18C6^+$ form; the stable structures of the $(H_2O \bullet B18C6)^+$ complex are shown in Fig. 6S of the Supporting Information. Since the UVPD spectra in Fig. 1 demonstrate that the strength of the intermolecular interaction of H_2O^+ with B18C6 is almost the same as that of Rb⁺, the binding energy (BE) between H_2O^+ and B18C6 is estimated to be 2.02 eV, which is the calculated value between Rb⁺ and B18C6 in our previous study¹⁰ and close to the experimental value between Rb⁺ and 18-crown-6 (1.98 eV).¹⁸ The band origin of the H₂O⁺•B18C6 complex is found at 4.50 eV (36323 cm⁻¹) as shown in Fig. 1a. The BE between H_2O and B18C6⁺ is estimated as 0.58 eV by our quantum chemical calculations described above. The energy of the H₂O⁺•B18C6 complex is substantially (~1.97 eV) higher than that of the $H_2O \cdot B18C6^+$ ion due to higher IE of H_2O than that of B18C6. As shown in Fig. 7S of the Supporting Information, the H₂O•B18C6⁺ forms are calculated to have at least one strong OH stretching vibration in the 3300-3700 cm⁻¹ region, which is not consistent with the measured IR-UV spectrum in Fig. 2S of the Supporting

Information. This confirms that the charge sits on the water and the complex that we observe in our experiment exists as $H_2O^+\bullet B18C6$.

The main photoproduct of $H_2O^+\bullet B18C6$ is $B18C6^+$, indicating that the CT occurs from H_2O^+ to B18C6 after the UV excitation,

$$H_2O^+ \bullet B18C6 + h\nu \rightarrow H_2O^+ \bullet B18C6^* \rightarrow H_2O + B18C6^{+*}$$
(1).

In the H₂O⁺•B18C6 complex, the distribution of the positive charge will be similar to the non-bonding orbital of the H₂O moiety. Therefore, in order for the H₂O⁺•B18C6 complex to transfer an electron or the positive charge between B18C6 and H₂O⁺, the non-bonding orbital of H₂O and π orbitals of the benzene ring should be fairly overlapped. Probably the overlap is not necessarily sufficient in the stable form of the H₂O⁺•B18C6 complex, providing a long lifetime to this complex. After the UV excitation of the H₂O⁺•B18C6 complex, the internal conversion (IC) occurs to the electronic ground state, providing enough internal energy for the structural change to promote the sufficient overlap of the molecular orbitals between H₂O and B18C6, leading to the CT from H₂O⁺ to B18C6. Benzene radical cation has a (π , π) excited state at ~ 2.8 eV above the electronic ground state.²⁶⁻²⁷ Therefore, the electronic state of the fragment B18C6⁺ can be the ground state or the excited (π , π) state. Since the IE of B15C5 is similar to that of B18C6, the situation described above for H_2O^+ •B18C6 is applicable to $H_2O^+\bullet B15C5$. The UV spectra of the $H_2O^+\bullet B18C6$ and $H_2O^+\bullet B15C5$ show quite sharp features. The width of the vibronic structures ($\sim 2.7 \text{ cm}^{-1}$) imply that the lifetime of the excited states is longer than ~2.0 ps. However, CT processes usually occur with a timescale shorter than 1 ps.²⁸ Hence, the first step after the photoexcitation is probably the IC from the first excited state to the ground state, followed by the CT and dissociation.

Another interesting finding in this study is that the positive charge is localized not on the crown ethers but on H₂O in the $(H_2O \bullet B18C6)^+$ and $(H_2O \bullet B15C5)^+$ complexes, in spite of the fact that the IE of H₂O is higher than that of the crown ethers. In addition, our experiment does not show the formation of the H₃O⁺•B18C6 or $H_3O^+ \bullet B15C5$ complex; the H_2O^+ radical cation undergoes ultrafast proton transfer reactions with neutral H₂O in neat liquid water and water clusters within a few hundreds of fs, providing H_3O^+ and $OH^{.19-24}$ These results in this study can be attributed to encapsulation effects of B18C6 and B15C5. In the mass spectrum of B15C5 (Fig. 1S(a) of the Supporting Information), Eu²⁺•B15C5 and Eu²⁺•B15C5•H₂O complexes are also observed with H₂O⁺•B15C5. This result implies following formation processes of the H_2O^+ complexes. In solution, the Eu³⁺ ion is stabilized by solvation. In the (EuCl₃•6H₂O + B15C5) solution, the Eu³⁺ ion can be encapsulated inside the B15C5 cavity together with a few H_2O molecules. This may be possible, because the Eu³⁺ ion has an ionic radius (0.95 Å for 6 coordination number) smaller than that of Na⁺ (1.02 Å).²⁵ The H₂O molecules may be bonded to the Eu³⁺ ion separately from each other through $Eu^{3+} \bullet \bullet OH_2$ bonds. In the desolvation process, the Eu^{3+} ion undergoes the CT from Eu³⁺ to water,³⁻⁴

$$\mathrm{Eu}^{3+} + \mathrm{H}_2\mathrm{O} \quad \rightarrow \quad \mathrm{Eu}^{2+} + \mathrm{H}_2\mathrm{O}^+ \tag{2}.$$

The third IE of Eu is 24.92 eV,²⁵ which is substantially higher than the IE of H₂O (12.65 eV).¹⁵ When the CT occurs from Eu³⁺ to H₂O inside the cavity, the H₂O⁺ cation does not have a chance to react with other H₂O molecules to form H₃O⁺. The Eu²⁺ and H₂O⁺ ions produced in the B15C5 cavity separate from each other, providing the H₂O⁺•B15C5, Eu²⁺•B15C5, and Eu²⁺•B15C5•H₂O complexes. The mass spectrum of B15C5 shows that the H₂O⁺•B15C5 complex is much more abundant than Eu²⁺•B15C5 and

 $Eu^{2+} \bullet B15C5 \bullet H_2O$ (Fig. 1S(a)). This is probably because the H_2O^+ ion has a matching in size with B15C5 much better than Eu^{2+} or $Eu^{2+} \bullet H_2O$.

4. Summary

In our electrospray ion source, charge transfer from Eu³⁺ to water occurs and produces the H_2O^+ radical cation in the cavity of B15C5 or B18C6, forming the H₂O⁺•B15C5 or H₂O⁺•B18C6 complex. We observed the UVPD spectra of the $H_2O^+\bullet B15C5$ and $H_2O^+\bullet B18C6$ complexes in a cold, 22-pole ion trap. These complexes show sharp bands in the UV region similar to the S_1 - S_0 transition of neutral B15C5 and B18C6, suggesting that the positive charge in the complexes is localized on H₂O. On the other hand, the primary fragment ions subsequent to UV excitation of these complexes are B15C5⁺ and B18C6⁺, which means that charge transfer occurs from H_2O^+ to B15C5 and B18C6 subsequent to UV photoexcitation. The vibronic structure of the H₂O⁺•B18C6 complex is quite similar to that of Rb⁺•B18C6, implying that the strength of the intermolecular interaction of H₂O⁺ with B18C6 is comparable to that of Rb^+ . The UV spectral features of the H₂O⁺•B15C5 complex also resemble those of the Rb⁺•B15C5 ion. We measure IR-UV spectra of these complexes in the CH and OH stretching region; four conformers are identified for the H₂O⁺•B15C5 complex, but there is only one for the H₂O⁺•B18C6 ion. In this study, we have demonstrated the production of radical cations by charge transfer from multivalent metal ions, their encapsulation by host molecules, and separate detection of their conformers by cold UV spectroscopy in the gas phase.

Acknowledgment

This work is partly supported by the Swiss National Science foundation through grant 200020_152804 and École Polytechnique Fédérale de Lausanne (EPFL). YI and TE thank the support from JSPS through the program "Strategic Young Researcher Overseas Visits Program for Accelerating Brain Circulation".

Supporting Information Available: Electrospray mass spectra (Fig. 1S), an IR-UV spectrum of $H_2O^+\bulletB18C6$ in the 2500–3700 cm⁻¹ region (Fig. 2S), calculated UV spectra of the $H_3O^+\bulletB18C6$ and $H_3O^+\bulletB15C5$ complexes (Figs. 3S and 4S), the structure of the most stable conformers for $H_3O^+\bulletB18C6$ and $H_3O^+\bulletB15C5$ (Fig. 5S), the optimized structures of the (H_2O^+B18C6)⁺ complex (Fig. 6S), the calculated IR spectra for the (H_2O^+B18C6)⁺ complex (Fig. 7S), and a full list of authors of Ref. 17. This material is available free of charge *via* the internet at http://pubs.acs.org.

Figure 1. The UVPD spectra of the (a) $(H_2O\bullet B18C6)^+$ and (b) $Rb^+\bullet B18C6$ complexes (Ref. 10).

Figure 2. The IR-UV spectra of the (a) $(H_2O\bullet B18C6)^+$ and (b) $Rb^+\bullet B18C6$ complexes (Ref. 10).

Figure 3. (a) The UVPD spectrum of the $(H_2O \cdot B15C5)^+$ complex. (b) The UVPD spectrum of the Rb⁺ $\cdot B15C5$ complex (Ref. 10). Arrows indicate the position where the IR-UV spectra are measured for the $(H_2O \cdot B15C5)^+$ complex.

Figure 4. The IR-UV spectra of the (a–d) $(H_2O\bullet B15C5)^+$ and (e, f) Rb⁺ $\bullet B15C5$ complexes (Ref. 10). The numbers 1–4 indicate the UV position where these IR-UV spectra are observed for the $(H_2O\bullet B15C5)^+$ complex (see Fig. 3a).

Figure 5. Potential energy surfaces proposed for the $(H_2O \cdot B18C6)^+$ complex. The vertical axis is the energy with respect to the energy of $H_2O + B18C6$.

References

(1) Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M., Electrospray Ionization for Mass-Spectrometry of Large Biomolecules. *Science* **1989**, 246, 64-71.

(2) Kebarle, P.; Verkerk, U. H., Electrospray: From Ions in Solution to Ions in the Gas Phase, What We Know Now. *Mass Spectrom. Rev.* **2009**, *28*, 898-917.

(3) Blades, A. T.; Jayaweera, P.; Ikonomou, M. G.; Kebarle, P., First Studies of the Gas Phase Ion Chemistry of M^{3+} Metal Ion Ligands. *Int. J. Mass Spectrom. Ion Processes* **1990**, *101*, 325-336.

(4) Svendsen, A.; Lorenz, U. J.; Boyarkin, O. V.; Rizzo, T. R., A New Tandem Mass Spectrometer for Photofragment Spectroscopy of Cold, Gas-Phase Molecular Ions. *Rev. Sci. Instrum.* **2010**, *81*, 073107.

(5) Inokuchi, Y.; Boyarkin, O. V.; Kusaka, R.; Haino, T.; Ebata, T.; Rizzo, T. R., UV and IR Spectroscopic Studies of Cold Alkali Metal Ion-Crown Ether Complexes in the Gas Phase. *J. Am. Chem. Soc.* **2011**, *133*, 12256-12263.

(6) Inokuchi, Y.; Ebata, T.; Rizzo, T. R.; Boyarkin, O. V., Microhydration Effects on the Encapsulation of Potassium Ion by Dibenzo-18-Crown-6. *J. Am. Chem. Soc.* **2014**, *136*, 1815-1824.

(7) Boyarkin, O. V.; Mercier, S. R.; Kamariotis, A.; Rizzo, T. R., Electronic Spectroscopy of Cold, Protonated Tryptophan and Tyrosine. *J. Am. Chem. Soc.* **2006**, *128*, 2816-2817.

(8) Rizzo, T. R.; Stearns, J. A.; Boyarkin, O. V., Spectroscopic Studies of Cold, Gas-Phase Biomolecular Ions. *Int. Rev. Phys. Chem.* **2009**, *28*, 481-515.

(9) Nagornova, N. S.; Rizzo, T. R.; Boyarkin, O. V., Exploring the Mechanism of IR–UV Double-Resonance for Quantitative Spectroscopy of Protonated Polypeptides and Proteins. *Angew. Chem. Int. Ed.* **2013**, *52*, 6002-6005.

(10) Inokuchi, Y.; Boyarkin, O. V.; Kusaka, R.; Haino, T.; Ebata, T.; Rizzo, T. R., Ion Selectivity of Crown Ethers Investigated by UV and IR Spectroscopy in a Cold Ion Trap. J. Phys. Chem. A **2012**, *116*, 4057-4068.

(11) Kusaka, R.; Inokuchi, Y.; Ebata, T., Water-Mediated Conformer Optimization in Benzo-18-Crown-6-Ether/Water System. *Phys. Chem. Chem. Phys.* **2009**, *11*, 9132-9140.

(12) Dinelli, B. M.; Crofton, M. W.; Oka, T., Infrared Spectroscopy of the v_3 Band of H₂O⁺. *J. Mol. Spectrosc.* **1988**, *127*, 1-11.

(13) Shubert, V. A.; James, W. H.; Zwier, T. S., Jet-Cooled Electronic and Vibrational Spectroscopy of Crown Ethers: Benzo-15-Crown-5 Ether and 4'-Amino-Benzo-15-Crown-5 Ether. *J. Phys. Chem. A* **2009**, *113*, 8055-8066.

(14) Shubert, V. A.; Muller, C. W.; Zwier, T. S., Water's Role in Reshaping a Macrocycle's Binding Pocket: Infrared and Ultraviolet Spectroscopy of Benzo-15-Crown-5- $(H_2O)_n$ and 4'-Aminobenzo-15-Crown-5- $(H_2O)_n$, n = 1, 2, J. *Phys. Chem. A* **2009**, *113*, 8067-8079.

(15) Snow, K. B.; Thomas, T. F., Mass Spectrum, Ionization Potential, and Appearance Potentials for Fragment Ions of Sulfuric Acid Vapor. *Int. J. Mass Spectrom. Ion Processes* **1990**, *96*, 49-68.

(16) Nemeth, G. I.; Selzle, H. L.; Schlag, E. W., Magnetic Zeke Experiments with Mass Analysis. *Chem. Phys. Lett.* **1993**, *215*, 151-155.

(17) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. *et al.*, In *Gaussian 09, Revision A.1*; Gaussian, Inc.: Wallingford CT, 2009.

(18) Rodgers, M. T.; Armentrout, P. B., Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation. *Mass Spectrom. Rev.* **2000**, *19*, 215-247.

(19) Tachikawa, H.; Takada, T., Proton Transfer Rates in Ionized Water Clusters $(H_2O)_n$ (n = 2-4). *RSC Advances* **2015**, *5*, 6945-6953.

(20) Ma, J.; Schmidhammer, U.; Pernot, P.; Mostafavi, M., Reactivity of the Strongest Oxidizing Species in Aqueous Solutions: The Short-Lived Radical Cation $H_2O^{\bullet^+}$. J. Phys. Chem. Lett. **2014**, 5, 258-261.

(21) Li, J.; Nie, Z.; Zheng, Y. Y.; Dong, S.; Loh, Z.-H., Elementary Electron and Ion Dynamics in Ionized Liquid Water. *J. Phys. Chem. Lett.* **2013**, *4*, 3698-3703.

(22) Furuhama, A.; Dupuis, M.; Hirao, K., Reactions Associated with Ionization in Water: A Direct Ab Initio Dynamics Study of Ionization in $(H_2O)_{17}$. J. Chem. Phys. **2006**, 124, 164310.

(23) Marsalek, O.; Elles, C. G.; Pieniazek, P. A.; Pluhařová, E.; VandeVondele, J.; Bradforth, S. E.; Jungwirth, P., Chasing Charge Localization and Chemical Reactivity Following Photoionization in Liquid Water. *J. Chem. Phys.* **2011**, *135*, 224510.

(24) Gauduel, Y.; Pommeret, S.; Migus, A.; Antonetti, A., Some Evidence of Ultrafast H_2O^+ -Water Molecule Reaction in Femtosecond Photoionization of Pure Liquid Water: Influence on Geminate Pair Recombination Dynamics. *Chem. Phys.* **1990**, *149*, 1-10.

(25) Lide, D. R., CRC Handbook of Chemistry and Physics. 82nd Edition; CRC Press LLC: Boca Raton, London, New York, Washington, D. C., 2001.

(26) Ohashi, K.; Nishi, N., Photodissociation Spectroscopy of Benzene Cluster Ions: $(C_6H_6)_2^+$ and $(C_6H_6)_3^+$. J. Chem. Phys. **1991**, 95, 4002-4009.

(27) Ohashi, K.; Nishi, N., Photodissociation Dynamics of $(C_6H_6)_3^+$: Role of the Extra Benzene Molecule Weakly Bound to the Dimer Core. *J. Chem. Phys.* **1998**, *109*, 3971-3982.

(28) Messina, F.; Bräm, O.; Cannizzo, A.; Chergui, M., Real-Time Observation of the Charge Transfer to Solvent Dynamics. *Nat. Commun.* **2013**, *4*, 2119.

