IN=PNE S VAE D

A fast pseudorandom number
generator and a fast stream
cipher
(R LB i B &

QEHA N — AlES)

20094

INS YNy NE SR EE ST
BRI

el WER

(B B R R A BeAWT TR R 2



1. E£#H

H &

A fast pseudorandom number generator and a fast stream
cipher

(EEBELE ARG B L OmE A U — A 5)

Y 2SS

2. RNEm

(1) SIMD-oriented Fast Mersenne Twister: a 128-bit

(2)

Pseudorandom Number Generator,

Mutsuo Saito and Makoto Matsumoto,

Monte Carlo and Quasi-Monte Carlo Methods 2006,
Springer, (2008) 607-622.

A Fast Stream Cipher with Huge State Space and
Quasigroup Filter for Software,

Matsumoto, M., Saito, M., Nishimura, T. and Hagita,
M.

Selected Areas in Cryptography 2007, Lecture Notes
in Computer Science (LNCS), vol. 4876, (2007)
246-263.



. H




A fast pseudorandom number generator and a
fast stream cipher

Mutsuo Saito

Introduction

In this thesis, we describe two topics about pseudorandom number generators
(PRNGs). The first topic is a PRNG itself and the second is a stream cipher.

One of the biggest applications of PRNGs is Monte Carlo Simulations. The
advances of computers have been making the scale of scientific simulations larger
and larger. Such a simulation often requires high speed and high quality PRNGs.

For the last decade, Mersenne Twister (MT)[21] has been widely used for
scientific simulations and has gotten high respect. In Chapter 1, we propose
a new PRNG which is much faster and has better quality of randomness than
MT.

The new PRNG is based on a Single Instruction Multiple Data[30] (SIMD)
feature of recent CPUs. We call it SIMD-oriented Fast Mersenne Twister
(SFMT). SFMT generates a sequence of 128-bit integers, and use each of them
as four 32-bit integers or two 64-bit integers. We calculate the dimension of
equidistribution which shows one property of randomness of SFMT, a criteria
for pseudorandomness.

Chapter 1 is a joint work with Makoto Matsumoto. This content is written
in [29)].

Chapter 2 treats a stream cipher. Stream cipher is a kind of encoding method
of cryptography, and widely used in Internet technology. As commercial use of
Internet is getting larger, the importance of stream cipher is getting larger.

Stream cipher is a kind of PRNG, and it needs to satisfy extra request that
the outputs are difficult to be predicted. In many cases, stream ciphers are
designed using non-linearity, and it is difficult to predict the output but often
difficult to analyze their behavior theoretically.

We prove a theorem that assures the period and the equidistribution prop-
erty of PRNG with a quasi-group filter. We implement an instance called
CryptMT.

CryptMT ver.3 use a variant of SFMT as its mother generator, that means,
mother generator is 128-bit based, and its filter is also 128-bit SIMD based. We
show CryptMT ver.3 is very fast, especially in core 2, the newest CPU of Intel,
with theoretically assured long period.

Chapter 2 is a joint work with Makoto Matsumoto, Takuji Nishimura, and
Mariko Hagita. The content is published in [26].



Chapter 1

A fast pseudorandom number generator,
SEMT

1 Introduction

Computer Simulation is one of the most important techniques of modern science.
Recently, the scale of simulations is getting larger, and faster pseudorandom
number generators (PRNGs) are required. Power of CPUs for usual personal
computers is now sufficiently strong for such purposes, and necessity of efficient
PRNGs for CPUs on PCs is increasing. One such generator is Mersenne Twister
(MT) [21], which is based on a linear recursion modulo 2 over 32-bit words. An
implementation MT19937 has the period of 219937 — 1.

There is an argument that the CPU time consumed for function calls to
PRNG routines occupies a large part of the random number generation, and
consequently it is not so important to improve the speed of PRNG (cf. [27]).
This is not always the case: one can avoid the function calls by (1) inline-
expansion and/or (2) generation of pseudorandom numbers in an array at one
call.

Our aim of this chapter is to design a fast MT-like PRNG (i.e. Linear
Feedbacked Shift Register) considering new features of modern CPUs on PCs.

1.1 Linear Feedbacked Shift Register (LFSR) generators

An LFSR method is to generate a sequence Xg, X1, X2, ... of elements Fy by a
recursion

xi+N = Q(Xi,Xi+17~-~,Xz‘+N—1), (1)
where x; € FY and ¢ : (FY)Y — FY is an Fy-linear function (i.e., the multipli-
cation of a (wN X w)-matrix from the right to a wN-dimensional vector) and
use it as a pseudorandom w-bit integer sequence. In the implementation, this
recursion is computed by using an array W[0..N-1] of N integers of w-bit size,
by the simultaneous substitutions

W0l « W[1], W[1] < W[2], ..., W[N-2] < W[N-1], W[N-1] < g(W[0],...,WIN-1]).

The first N — 1 substitutions shift the content of the array, hence the name
of LFSR. Note that in the implementation we may use an indexing technique
to avoid computing these substitutions, see [15, P.28 Algorithm A]. The array
W[0..N-1] is called the state array. Before starting the generation, we need to
set some values to the state array, which is called the initialization.

Mersenne Twister (MT) [21] is an example with

g(WO7 L. ,WN,1) = (W0|W1)A +wyr,

where (wg|wy) denotes the concatenation of the 32 — r most significant bits
(MSBs) of wq and the r least significant bits (LSBs) of wy, A is a (32 x 32)-
matrix for which the multiplication wA is computable by a few bit-operations,



and M is an integer (1 < M < N). Its period is 232NV ~" — 1, chosen to be a
Mersenne prime. To obtain a better equidistribution property, MT transforms
the sequence by a suitably chosen (32 x 32) matrix T, namely, MT outputs
x0T, x1T,x5T, ... (called tempering).

An advantage of Fa-linear generators over integer multiplication generators
(such as Linear Congruential Generators [15] or Multiple Recursive Generators
[16]) was high-speed generation by avoiding multiplications. Another advantage
is that the behavior of generated pseudorandom number sequence is theoretically
well studied and its dimension of equidistribution can be calculated easily.

1.2 Single Instruction Multiple Data (SIMD)

Single Instruction Multiple Data (SIMD) [30] is a technique employed to achieve
data level parallelism. Typically, four 32-bit registers are combined into a 128-bit
register, and a single instruction operates on the 128-bit register. There are two
types of SIMD instructions. One is to operate four 32-bit registers separately
(e.g. addition and subtraction.) The other is to operate on the 128-bit integer
(e.g. 128-bit shift operation.)

SIMD is also called Multimedia Extension because main target applications
of SIMD are multimedia applications, which use huge data like image or sound.
LFSR uses a large internal state array, so SIMD can be used to accelerate its
generation.

Streaming SIMD Extensions 2 (SSE2) [14, Chapter 4-5] is one of the SIMD
instruction sets introduced by Intel. Pentium M, Pentium 4 and later CPUs
support SSE2, but Itanium and Itanium 2 do not. AMD Athlon 64, Opteron
and Turion 64 also support SSE2. These CPUs have eight 128-bit registers and
each register can be divided into 8-bit, 16-bit, 32-bit or 64-bit blocks.

AltiVec [12] is another SIMD instruction-set supported by PowerPC G4 and
Gb5. These CPUs have thirty-two 128-bit registers and each register can be
divided into 8-bit, 16-bit or 32-bit blocks.

Our purpose is to design a PRNG which can be implemented efficiently both
in SSE2 and AltiVec.

Intel C compiler has an ability to handle SSE2 instructions. GCC C com-
piler, which is more widely used, also has macros and inline functions to handle
SSE2 and AltiVec instructions directly.

2 SIMD-oriented Fast Mersenne Twister

In this chapter, we propose SIMD-oriented Fast Mersenne Twister (SFMT)
pseudorandom number generators. They are LFSR generators based on a re-
cursion over F1?8. We identify the set of bits {0,1} with the two element field
Fy. This means that every arithmetic operation is done modulo 2. A w-bit
integer is identified with a horizontal vector in Fy, and + denotes the sum as
vectors (i.e., bit-wise exor), not as integers. We consider three cases: w is 32,
64 or 128.



2.1 Memory and period

Long period is desirable for PRNGs, however, long period generator needs large
memory. This is a primary trade-off of PRNGs. We decided to make a set of
generators, each of them has different period and different memory size. Table 1
shows memories and periods of SFMT. The column MEXP means the Mersenne
exponent: namely, 2MEXF 1 is a prime (called a Mersenne Prime). We obtained
parameters for SEMT with period 2MEXP — 1 for 607 > MEXP > 216091. For
the minimum MEXP 607, SFMT consumes about 80 byte and has a period of at
least 2607 —1 ~ 5.31 x 10'¥2. For the maximum MEXP 216091, SFMT consumes
about 26K byte and has a period of at least 2216091 _ 1 ~ 7.46 x 1065049,

In this chapter we mainly describe about SFMT19937 (i.e. a particular
SFMT with MEXP = 19937), however, what we describe applies to SEMT with
any MEXP.

Table 1: memories and periods

MEXP | size of array memory least period
607 5 80 byte ~5.31 x 10752
1279 10 160 byte =~ 1.04 x 103%°
2281 18 288 byte ~ 4.46 x 10%6
4253 34 544 byte ~ 1.90 x 10'28°
11213 88 1,408 byte o~ 2.81 x 10337
19937 156 2,496 byte ~ 4.32 x 10%09!
44497 348 5,568 byte =~ 8.55 x 1013394
86243 674 10,784 byte ~ 5.37 x 10?5951
132049 1032 16,512 byte o~ 5.13 x 1039750
216091 1689 27,024 byte o~ 7.46 x 1055949

2.2 The recursion of SFMT

We choose g in the recursion (1) as

g(WOw..,WN,l) = woA+wyB+wy oC+wy_1D, (2)

where wo, W)y, ... are w(= 128)-bit integers (= horizontal vectors in F4?8), and
A, B,C,D are sparse 128 x 128 matrices over Fy for which wA, wB, wC,wD
can be computed by a few SIMD bit-operations. The choice of the suffixes
N — 1, N — 2 is for speed: in the implementation of g, W[0] and W[M] are
read from the array W, while the copies of W[N-2] and W[N-1] are kept in two
128-bit registers in the CPU, say r1 and r2. Concretely speaking, we assign
r2 — rl and r1 <« “the result of (2)” at every generation, then r2 (r1) keeps
a copy of W[N-2] (W[N-1], respectively). The merit of doing this is to use the
pipeline effectively. To fetch W[0] and W[M] from memory takes some time. In
the meantime, the CPU can compute wy_oC and wy_1D, because copies of
wpy_o and wy_1 are kept in the registers. This selection was made through
experiments on the speed of generation.

By trial and error, we searched for a set of parameters of SFMT, with the
period being a multiple of 21937 —1 and having good equidistribution properties.
The degree of recursion N is [19937/128] = 156, and the linear transformations
A, B,C, D are as follows.



128 bit
Wo

_|—>1<2<35|2

z 2o ®
[ j1>2>85r2
Wh-2

Wit 2% s ) ———

Figure 1: A circuit-like description of SEMT19937.

128
o wA = (w << sl2)+w.

This notation means that w is regarded as a single 128-bit integer, and
wA is the result of the left-shift of w by si2 bits. There is such a SIMD
operation in both Pentium SSE2 and PowerPC AltiVec SIMD instruction
sets (SSE2 permits only a multiple of 8 as the amount of shifting). Note
that the notation + means the exclusive-or in this thesis.

32
o wB :=(w >> srl)&(mask).
This notation means that w is considered to be a quadruple of 32-bit
integers, and each 32-bit integer is shifted to the right by sr1 bits, (thus
the eleven most significant bits are filled with Os, for each 32-bit integer).
The C-like notation & means the bitwise AND with a constant 128-bit
mask.

In the search, this constant is generated as follows. Each bit in the 128-bit
integer is independently randomly chosen, with the probability to choose
1 being 7/8. This is because we prefer to have more 1’s for a denser
feedback.

128
o wC :=(w >> sr2).
This is the right shift of a 128-bit integer by 8 bits, similar to the first.

32
e wD = (w << slI).

Similar to the second, w is cut into four pieces of 32-bit integers, and each
of these is shifted by 18 bits to the left.

All these instructions are available in both Intel Pentium’s SSE2 and Pow-
erPC’s AltiVec SIMD instruction sets. Figure 1 shows a concrete description of
SFMT19937 generator with period a multiple of 219937 — 1. Table 2 shows the
parameter sets for all MEXPs.



Table 2: parameter sets

MEXP M sll sl2 srl sr2 MASK
607 2 15 24 13 24 TFFTFB2F FF777B7D EF7TF3F7D FDFF37FF
1279 3 18 8 1 8 FFFFFD7D B3FDAFF9 37F5EFFB FFFFFFFB
2281 12 19 8 5 8 F2F7CBBF F7FFEF7F FDFFFFFE BFF7FFBF
4253 17 20 8 7 8 FFFFF7BB 3EFFFFFB 9FFFFF5F 9F7BFFFF
11213 68 14 24 7 24 TFFFDBFD DFDFBFFF FFFFFFEF EFFFF7FB
19937 | 122 18 8§ 11 8 BFFFFFF6 BFFAFFFF DDFECB7F DFFFFFEF
44497 | 330 5 24 9 24 9FFD7BFF BFBF7BEF DFBEBFFF EFFFFFFB
86243 | 366 6 56 19 8 BF9FF3FF FD77EFFF BFF7FF3F FDBFFBFF
132049 | 110 19 8 21 8 CFF77FFF FFFEFFFA FB6EBF95 FFFFBBSF
216091 | 627 11 24 10 8 FFDDFBFB BFFFFA7F BFFFFFFF BFF7BFF7
This table shows parameter sets of SFMT for MEXPs from 607 to 216091.

The parameters sl2 and sr2 are selected to be multiple of 8.

2.3 Endianness

Let x[0..3] be an array of 32-bit integers of size four. There are two natural
ways to convert the array to a 128-bit integer. One is to concatenate in the
order of x[3]x[2]x[1]x[0], from MSBs to LSBs, which is called the little-endian
system, adopted in Pentium. The converse is the big-endian system adopted in
PowerPC, see [10].

The descriptions in this thesis is based on the former. To assure the portabil-
ity for both endian systems, we implemented two codes: one is for little-endian
system (SSE2 of Pentium) and the other is for big-endian system (AltiVec of
PowerPC), to assure the exactly same outputs as 32-bit integer generators. In
the latter code, the recursion (2) is considered as a recursion on quadruples of
32-bit integers, rather than 128-bit integers, so that the content of the state
array coincides both for little and big endian systems, as an array of 32-bit
integers (not as 128-bit integers). Thus, shift-operations on 128-bit integers in
the little-endian system is different from that in the big-endian system. Pow-
erPC supports arbitrary permutations of 16 blocks of 8-bit integers in a 128-bit
register, which can emulate the shift in (2).

2.4 Block-generation

In the block-generation scheme, the user of the PRNG specifies an array of
w-bit integers of the length L, where w = 32, 64 or 128 and L is specified by
the user. In the case of SFMT19937, wL should be a multiple of 128 and no
less than NV x 128, since the array needs to accommodate the state space (note
that N = 156). By calling the block generation function with the pointer to
this array, w, and L, the routine fills up the array with pseudorandom integers,
as follows. SEFMT19937 keeps the state space S in an internal array of 128-bit
integers of length 156. We concatenate this state array with the user-specified
array, using the indexing technique. Then, the routine generates 128-bit integers
in the user-specified array by recursion (2), as described in Figure 2, until it fills
up the array. The last 156 128-bit integers are copied back to the internal
array of SFMT19937. This makes the generation much faster than sequential
generation (i.e., one generation per one call) as shown in Table 5.



128 bit

156 internal g
array

user-

copied
back to
internal
array

Figure 2: Block-generation scheme

3 How to select the recursion and parameters.

We wrote a code to compute the period and the dimensions of equidistribution
(DE, see §3.2). Then, we searched for a recursion with good DE admitting a
fast implementation.

3.1 Computation of the Period

An LFSR that obeys the recursion (1) may be considered as an automaton, with
the state space S = (F¥)Y and the state transition function f : S — S given
by (wo,...,Wn—1) — (W1,...,Wn_1,9(Wo,...,Wn_1)). As a w-bit integer
generator, the output function is 0 : S — F¥, (wq,...,Wy_1) — Wy.

Let xy be the characteristic polynomial of f : § — S. If xy is primitive,
then the period of the state transition takes the maximal value 24™(%) — 1 [15,
§3.2.2]. However, to check the primitivity, we need the integer factorization of
this number, which is often hard for dim(S) = nw > 10000. On the other hand,
the primarity test is much easier than the factorization, so many huge primes
of the form 2P — 1 have been found. Such a prime is called a Mersenne prime,
and p is called the Mersenne exponent, which itself is a prime.

MT and WELL(28] discard r specific bits from the array S, so that nw —r
is a Mersenne exponent. Then, the primitivity of x; is easily checked by the
algorithm in [15, §3.2.2], avoiding the integer factorization.

SFMT adopted another method to avoid the integer factorization, the re-
ducible transition method (RTM), which uses a reducible characteristic polyno-
mial with a large primitive factor. This idea appeared in [13] [3][4]. We briefly
recall it.



Let p be the Mersenne exponent, and N := [p/w]. Then, we randomly
choose parameters for the recursion of LFSR (1). By applying the Berlekamp-
Massey Algorithm to the output sequence, we obtain x r(¢). (Note that a direct
computation of det(tI — f) is time-consuming because dim(.S) = 19968.)

By using a sieve, we remove all factors of small degree from xf, until we
know that it has no irreducible factor of degree p, or that it has a (possibly
reducible) factor of degree p. In the latter case, the factor is passed to the
primitivity test described in [15, §3.2.2].

Suppose that we found a recursion with an irreducible factor of desired degree
pin xs(t). Then, we have a factorization

Xf = ¢pbr,

where ¢, is a primitive polynomial of degree p and ¢, is a polynomial of degree
r = wN — p. These are coprime, since we assume p > r. Let Ker(g) denote
the kernel of a linear transformation g. By putting V, := Ker (¢,(f)) and
V. :=Ker (¢,(f)), we have a decomposition into f-invariant subspaces

S=V, @&V, (dimV,=p, dimV, =r).

Note that the characteristic polynomial of the restriction f, of f to V}, is ¢,(¢),
and that of the restriction f,. to V, is ¢,(t). For any state s € S, we denote
5 = sp+S5; for the corresponding decomposition with s, € V,, and s, € V;.. Then,
the k-th state f*(s) is equal to f}(sp)=+ fF(s,). This implies that the automaton
is equivalent to the sum of two automata f, : V,, — V,, and f, : V. — V... To
combine two linear automata by sum is well-studied as combined Tausworthe
generators or combined LESRs, see [7] [17] [18]. Their purpose is to obtain a
good PRNG from several simple generators, which is different from ours.

The period length of the state transition is the least common multiple of
that started from s, and that started from s,. Hence, if s, # 0, then the period
is a nonzero multiple of 2P — 1.

To assure that s, # 0, we look some number of bits in the state space S more
than r = dim V. bits. For example, we pick one of W[i]. By looking at only the
bits in W[0], we have a projection 7 : S — Viy,,, where we assume dim Viy, > r.
Now the image m(V;) C Vi, is a proper subspace. If we equip the standard
inner product in Vyy,, then there is a nonzero vector which is orthogonal to
m(V;). We call such a vector the period certification vector (PCV). Such vector
can be obtained by solving a linear equation, representing the orthogonality to
all ¢,,(f)(b) for b moves in a fixed basis of S.

The inner product of PCV and any vector in 7(V}.) is zero. Hence, if a state
s € S has non-zero inner product PCV - w(s) = 1, then it implies that s ¢ V.,
and thus s, # 0, which assures the period at least 2” — 1 for f. Note that
this inner product is taken in Viy,, i.e., looking at the bits in W[0] of s. If the
inner product happens to be 0, then change one bit in 7(s), where PCV has
1, so that the inner product becomes one. In sum, the initial state can not be
chosen arbitrarily: one bit in W[0] is computed from the rest bit in W[0], to
assure the period being a multiple of 2P — 1. Table 3 lists the period certification
vectors(PCV).

Remark 3.1. The number of non-zero terms in xf(t) is an index measuring
the amount of bit-mizing. In the case of SFMT19937, the number of nonzero



Table 3: period certification vectors

MEXP PCV1 PCV2 PCV3 PCV4
607 | 0x00000001 0x00000000 0x00000000 0x5986F054
1279 | 0x00000001  0x00000000 0x00000000 0x20000000
2281 | 0x00000001 0x00000000 0x00000000 0x41DFA600
4253 | 0xa8000001 0xAF5390A3 0xB740B3F8 0x6C11486D
11213 | 0x00000001 0x00000000 O0xE8148000 O0xDOC7AFA3
19937 | 0x00000001 0x00000000 0x00000000 0x13COEE84
44497 | 0x00000001  0x00000000 0xA3AC4000 OxECC1327A
86243 | 0x00000001 0x00000000 0x00000000 0xE9528D85
132049 | 0x00000001  0x00000000 0xCB520000 0xC7E91C7D
216091 | 0xF8000001 O0x89E80709 0x3BD2B64B 0x0C64B1E4

terms is 6711, which is much larger than 135 of MT, but smaller than 8585 of
WELL19957c [28]. Table 4 shows number of non-zero terms in x¢(t) for all

MEXPs of SFMT.

Table 4: number of non-zero terms in x ¢ (¢)

MEXP | degree of x7(t) non-zero term ratio
607 640 288 0.45
1279 1280 082  0.45
2281 2304 966  0.42
4253 4352 1830  0.42
11213 11264 4266  0.38
19937 19968 6711  0.34
44497 44544 12484  0.28
86243 86272 7069  0.08
132049 132096 18158  0.14
216091 216192 6826  0.03

3.2 Computation of the dimension of equidistribution

We recall the definition of dimension of equidistribution (cf. [7][17]).

Definition 3.2. A periodic sequence with period P

X = X0, X1, XPp_1,Xp = X0, .-+

of v-bit integers is said to be k-dimensionally equidistributed if any kv-bit pat-
tern occurs equally often as a k-tuple

(Xivxi-i-lv s 7xi+k—1)

for a period i = 0,..., P — 1. We allow an exception for the all-zero pattern,
which may occur once less often. (This last loosening of the condition is techni-
cally necessary, because the zero state does not occur in an Fo-linear generator).
The largest value of such k is called the dimension of equidistribution (DE).



We want to generalize this definition slightly. We define the k-window set
of the periodic sequence x as

Wk(X) = {(Xiaxi+17 s 7Xi+k71)|i =0,1,... ,P - 1}'7

which is considered as a multi-set, namely, the multiplicity of each element is
considered.

For a positive integer m and a multi-set 7', let us denote by m - T the multi-
set where the multiplicity of each element in 7" is multiplied by m. Then, the
above definition of equidistribution is equivalent to

Wi(x) = (m-F5*)\ {0},

where m is the multiplicity of the occurrences, and the operator \ means that
the multiplicity of 0 is subtracted by one.

Definition 3.3. In the above setting, if there exist a positive integer m and a
multi-subset D C (m - Fy¥) such that

Wi(x) = (m-F5*)\ D,

we say that x is k-dimensionally equidistributed with defect ratio #(D)/#(m. -
Fy*), where the cardinality is counted with multiplicity.

Thus, in Definition 3.2, the defect ratio up to 1/(P + 1) is allowed to claim
the dimension of equidistribution. If P = 219937 — 1 then 1/(P + 1) = 2719937,
In the following, the dimension of equidistribution allows the defect ratio up to
9—19937_

For a w-bit integer sequence, its dimension of equidistribution at v-bit accu-
racy k(v) is defined as the DE of the v-bit sequence, obtained by extracting the
v MSBs from each of the w-bit integers. If the defect ratio is 1/(P + 1), then
there is an upper bound

k(v) < [logy (P +1)/v].

The gap between the realized k(v) and the upper bound is called the dimension
defect at v of the sequence, and denoted by

d(v) := [logy(P +1)/v] = k(v).

The summation of all the dimension defects at 1 < v < 32 is called the total
dimension defect, denoted by A.

There is a difficulty in computing k(v) when a 128-bit integer generator
is used as a 32-bit (or 64-bit) integer generator. SFMT generates a sequence
Xq, X1, X2, . . . of 128-bit integers. Then, they are converted to a sequence of 32-
bit integers x0[0], Xo[1], %X0[2], X0[3], x1[0], x1[1], . . ., where x[0] is the 32 LSBs of
x, x[1] is the 33rd-64th bits, x[2] is the 65rd-96th bits, and x[3] is the 32 MSBs.
(This is called the little-endian system, see [10], for the notion of endianness,
and §7 for an implementation in a big-endian system).

Then, we need to modify the model automaton as follows. The state space
is 8" := 5 x{0,1,2,3}, the state transition function f’':S" — 5’ is

v (syi+1) (ifi<3),
fls) = { (F(5).0) (ifi=3)

10



and the output function is
o8 =T33 (wo,...,Wn_1),4) — Wolil.

We fix 1 < v < w, and let og(s,4) be the k-tuple of the v MSBs of the
consecutive k-outputs from the state (s, 7).

Proposition 3.4. Assume that f is bijective. Let k' = k'(v) denote the maxi-
mum k such that
op(—,i) 1V, = FEY 51 op(s,4) (3)

are surjective for all i = 0,1,2,3. Take an initial state s satisfying s, # 0.
Then, the 32-bit output sequence is at least k' (v)-dimensionally equidistributed
with v-bit accuracy with defect ratio 27P.

Moreover, if 4 < k'(v) + 1, then for any initial state with s = s, # 0 (hence
s = 0), the dimension of equidistribution with defect ratio 2P is exactly k' (v).

Proof. Take s € S with s, # 0. Then, the orbit of s by f has the form of
(Vp, —{0}) x U C V,, x V., since p > r and 2P — 1 is a prime. The surjectivity
of the linear mapping oy (—, ) implies that the image of

o (—,1) : Vi x U — F8Y

is m - F5V as a multi-set for some m. The defect comes from 0 € V,,, whose ratio

in V, is 27P. Then the first statement follows, since Wy (x) is the union of the
images op/(—,%)((V, — {0}) x U) for ¢ =0, 1,2, 3.

For the latter half, we define L; as the multiset of the image of og/41(—, 1) :
Vp, — IE‘ék/'H)U. Because of s, = 0, we have U = {0}, and the union of (L; —{0})
(i =0,1,2,3) as a multi-set is Wjr11(x). If the sequence is (k' +1)-dimensionally
equidistributed, then the multiplicity of each element in Wy 11(x) is at most
2P x 4/2(K +1)v,

On the other hand, the multiplicity of an element in L; is equal to the car-
dinality of the kernel of og/41(—,7). Let d; be its dimension. Then by the
dimension theorem, we have d; > p — (K’ + 1)v, and the equality holds if and
only if ogr41(—, %) is surjective. Thus, if there is a nonzero element x € ﬁg’:OLi,
then its multiplicity in Wy 41(x) is no less than 4 x 21’_(’“/“‘1)”, and since one of
orr+1(—, 1) is not surjective by the definition of &, its multiplicity actually ex-
ceeds 4x 2P~ (K" +1)v_which implies that the sequence is not (k'4+1)-dimensionally
equidistributed, and the proposition follows. Since the codimension of L; is at
most v, that of N3_,L; is at most 4v. The assumed inequality on &’ implies the
existence of nonzero element in the intersection. O

The dimension of equidistribution k(v) depends on the choice of the initial
state s. The above proposition implies that k'(v) coincides with k(v) for the
worst choice of s under the condition s, # 0. Thus, we adopt the following
definition (analogously to ¢ in [17]).

Definition 3.5. Let k be the maximum such that (3) is satisfied. We call this
the dimension of equidistribution of v-bit accuracy, and denote it simply by k(v).
We have an upper bound k(v) < |p/v].

We define the dimension defect at v by

d(v) == |p/v] — k(v) and A =" d(v).

11



We may compute k(v) by standard linear algebra. We used a more efficient
algorithm based on a weighted norm, generalizing [7].

Here we briefly recall the method in [7]. Let us denote the output v-bit
sequence from an initial state sy by

bij €y
o(so) = (bio,b20, .-, bwo),
o(s1) = (b11,b21, .-, bu1),

We assign to the initial state s, € S a v-dimensional vector with components
in the formal power series A = Fy[[t]]:

0o 0o 00
U)(So) = Zbljt],Zijt‘],...,vajtj,
7=0 7=0 7=0

This assignment w : S — F? is an Fa-linear function.
We consider the formal Laurent series field F' = Fa((t)) D A, and define its
norm and the norm on F? by

0o
Z aiti

i=—m

[(z1,...20)|| := _ max {]z4|}-
=1,2,..., v

= 2™ (a_pm #0), |0]=0

The polynomial ring Fa[t '] is discrete in F, and consider an Fa[t~!]-lattice
L C FV defined by

e; = (0,..,0,t750,...,0) the i-th component is t~!, others being 0
L = Tyt e, ..., e0, w(s))

Basic theorems used in [7] are the following.

Theorem 3.6. Suppose that the PRNG satisfies the mazximal period condition.
If the covering radius of L is 27%~1, then the dimension of the equidistribution
of the output v-bit sequence is k.

Theorem 3.7. The covering radius of L is 27 %=1 if and only if the shortest
basis of L has the norm 27°F.

We may apply this method to SFMT19937, but only as a 128-bit integer
generator, since SFMT19937 is not an Fa-linear generator as 32 or 64-bit integer
generator. Instead, we need to check the surjectivity of

op(—,1) : Vp — F’;”

for i = 0,1,2,3. For simplicity we treat only the case ¢ = 0, since other cases
follow similarly.

12



Let x; be the j-th output 128-bit integer of SFMT19937, and let b; ,, € Fo
be its m-th bit (LSB considered 0-th bit). Then, the consecutive k tuples of
most significant v bits of the 32-bit integer output sequence is the rectangular
part in:

v bits
z;[0] + 531,05,305 -, 0j,31-041, 05310, -, bj0
zi[1] © bj63,b562; - bj63—v+1,05,63—0, o, D32
k tuples :
z;[3] ¢ bji27,05,126, -, 051270115 05,1270, -+, b 96
e [k mod 4]

The corresponding part in the 128-bit sequence is marked by the parentheses in
the following;:

v bits v bits v bits v bits
—— — — —
X5 bj’127,...,...,bjgg),...,...,bjﬁg,...,...,bj,gl,...,...,bj,o
b tupl
Z upies v bits v bits
—
xj-i—(%}—l : bj7127,...,bj,g5,...,bj,63,...,...,bj,31,...,...,bj,o
(k' mod 4) 32-bit words

If we remove the last v x (kK mod 4) bits, then the rest %41} bits among the
32-bit integers is identical to the same number of bits in the 128-bit integer
sequence

v bits v bits v bits v bits
k — T~ —
’74—‘ tuples X : bj731, veey bj,633 veey bj795, veey bj71277 ceey (4)

We may apply the lattice method to this 4v-bit sequence, and let k&’ be the
dimension of the equidistribution. Then, we have an estimation of k(v) as 32-bit
integer sequence by

4k < k(v) < 4(K' +1).

To obtain the exact value of k(v), we introduce another norm, named weighted
norm, on F*'. We consider a 4v-bit integer sequence as in (4), and define the
norm of weight type u (u = 0,1,2,3) on F*¥ as follows.

(4—u)v 4
(@1, @40) || = max{ max {|;|}, max {2[a;[}}
i=1 i1=4v—uv+1

If u = 0, then this is the supremum norm treated already. It is easy to check
that this gives an ultra norm for any w.

Theorem 3.8. Let u to an integer with 0 < uw < 3, and let FV equipped with
the weighted norm of type u. Then, the covering radius of L with respect to this
norm is < 27771 if and only if

o(4r 4+ u,0) : V,, — Ty

s surjective.

13



Proof. The surjectivity is equivalent to that there are enough points in L so
that its (4r +w)v bits corresponding to the weight-type u assume every possible
bit pattern. This implies that the covering radius of L is at most 2771,

The converse follows in the same way. O

As explained above, by applying the usual (non-weighted) lattice method to
4v-bit sequence, we obtain a closest lower bound 4k’ < k(v) < 4(k’ + 1). So,
using the above theorem for u = 1,2, 3, we can check whether o(4k’ + u,0) is
surjective or not, to obtain the maximum k¢ such that o(ko,0) is surjective.

A slightly modified method gives the maximum k; such that o(k;,4) is sur-
jective (for each ¢ = 1,2,3). Now, k(v) is obtained as the minimum of k;,
1 =0,1,2,3. Thus, the algorithm to compute k(v) is shown in Figure 3.

Input: v
Output: &
Loopi=0,1,2, 3
Loop weight-type u =0, 1, 2, 3
Compute the norm of the shortest basis of 4v-bit integers
with respect to the weight-type u. Let 27"~! be the norm
of the shortest basis. Put k; ,, := 4r + u.
End Loop
Let k; be the maximum of k; ,, (u=0,1,2,3).
End Loop
Output the minimum value of k; (i =0,1,2,3) as k.

Figure 3: algorithm of weighted norm method

We use Lenstra’s reduction method to obtain a shortest basis from a gen-
erating set. Since the lattice L is independent of the weight type u, in this
algorithm, after obtaining a shortest basis with weight type 0, we may apply
Lenstra’s algorithm to this shortest basis with respect to the weight-type 1.
This is much faster than starting from the generating set in the definition of L.

A similar algorithm is applicable when SFMT19937 is considered as a 64-bit
integer sequence generator.

4 Comparison of speed

We compared two algorithms: MT19937 and SFMT19937, with implementa-
tions using and without using SIMD instructions.

We measured the speeds for four different CPUs: Pentium M 1.4GHz, Pen-
tium IV 3GHz, AMD Athlon 64 3800+, and PowerPC G4 1.33GHz. In returning
the random values, we used two different methods. One is sequential genera-
tion, where one 32-bit random integer is returned for one call. The other is
block generation, where an array of random integers is generated for one call
(cf. [15]). For detail, see §2.4 above.

We measured the consumed CPU time in second, for 108 generations of 32-bit
integers. More precisely, in case of the block generation, we generate 10° of 32-
bit random integers by one call, and this is iterated for 10? times. For sequential
generation, the same 10® 32-bit integers are generated, one per call. We used the

14



inline declaration inline to avoid the function call, and unsigned 32-bit, 64-bit
integer types uint32_t, uint64_t defined in INTERNATIONAL STANDARD
ISO/IEC 9899 : 1999(E) Programming Language-C, Second Edition (which
we shall refer to as C99 in the rest of this thesis). Implementations without
SIMD are written in C99, whereas those with SIMD use some standard SIMD
extension of C99 supported by the compilers icl (Intel C compiler) and gcc.

Table 5 summarises the speed comparisons. The first four lines list the
CPU time (in seconds) needed to generate 108 32-bit integers, for a Pentium-M
CPU with the Intel C/C++ compiler. The first line lists the seconds for the
block-generation scheme. The second line shows the ratio of CPU time to that of
SFMT(SIMD). Thus, SFMT coded in SIMD is 2.10 times faster than MT coded
in SIMD, and 3.77 times faster than MT without SIMD. The third line lists the
seconds for the sequential generation scheme. The fourth line lists the ratio,
with the basis taken at SEMT(SIMD) block-generation (not sequential). Thus,
the block-generation of SFMT(SIMD) is 2.00 times faster than the sequential-
generation of SFMT(SIMD).

Roughly speaking, in the block generation, SFMT(SIMD) is twice as fast
as MT(SIMD), and four times faster than MT without using SIMD. Even in
the sequential generation case, SFMT(SIMD) is still considerably faster than
MT(SIMD).

Table 5: The CPU time (sec.) for 10® generations.

| CPU/compiler | return [[ MT | MT(SIMD) [ SFMT [ SFMT(SIMD) |

Pentium-M block || 1.122 0.627 0.689 0.298
1.4GHz (ratio) 3.77 2.10 2.31 1.00
Intel C/C++ seq 1.511 1.221 1.017 0.597
ver. 9.0 (ratio) || 5.07 4.10 3.41 2.00
Pentium IV block || 0.633 0.391 0.412 0.217
3GHz (ratio) | 2.02 1.80 1.90 1.00
Intel C/C++ seq 1.014 0.757 0.736 0.412
ver. 9.0 (ratio) || 4.67 3.49 3.39 1.90
Athlon 64 3800+ | block || 0.686 0.376 0.318 0.156
2.4GHz (ratio) 4.40 2.41 2.04 1.00
gce seq 0.756 0.607 0.552 0.428

ver. 4.0.2 (ratio) || 4.85 3.89 3.54 2.74
PowerPC G4 block || 1.089 0.490 0.914 0.235
1.33GHz (ratio) 4.63 2.09 3.89 1.00
gce seq 1.794 1.358 1.645 0.701

ver. 4.0.0 (ratio) || 7.63 5.78 7.00 2.98

This table shows the CPU time measured in second for 108 generations
of 32-bit integers, for four different CPUs and two different return-value
methods. The ratio to the SEMT coded in SIMD is listed, too.

Table 6 lists the CPU time for generating 10® 32-bit integers, for four PRNGs
from the GNU Scientific Library and two recent generators. They are re-coded
with inline specification. Generators examined were: a multiple recursive gener-

15



Table 6: The CPU time (sec.) for 10% generations by six other PRNGs.

’ CPU \return H mrg \ rand48 \ rand \ random?256g2 \ well \ xor3

Pentium M | block || 3.277 | 1.417 | 0.453 0.230 1.970 | 0.296
seq 3.255 | 1.417 | 0.527 0.610 2.266 | 1.018

Pentium IV | block | 2.295 | 1.285 | 0.416 0.121 0.919 | 0.328
seq 2.395 | 1.304 | 0.413 0.392 1.033 | 0.702

Athlon block | 1.781 | 0.770 | 0.249 0.208 0.753 | 0.294

seq 1.798 | 0.591 | 0.250 0.277 0.874 | 0.496

PowerPC | block || 2.558 | 1.141 | 0.411 0.653 1.792 | 0.618
seq 2.508 | 1.132 | 0.378 1.072 1.762 | 1.153

This table shows the CPU time (sec.) for 10° generations of 32-bit
integers, by siz other PRNGS.

Table 7: Dimension defects d(v) of MT19937 and SFMT19937.

v |MT SFMT]| v |MT SFMT]| v |MT SFMT| v |MT SFMT
dn| 0 0] d(9) | 346 1 d(17)[ 549 543 d(25)| 174 173
d@2)| o *2 | d(10) | 124 0|[d(18) | 484 478/ d(26)| 143 142
d(3) | 405 1 d(11)| 564 0| d(19)| 426 425 d(27)| 115 114
d4)| 0 *2|(d(12) | 415 117 d(20)| 373 372 d(28)| 89 88
d(5) | 249 2|ld(13)| 287 285/ d(21)| 326  325| d(29)| 64 63
d(6) | 207 0|[d(14)| 178 176||d(22)| 283 282 || d(30)| 41 40
d(7) | 355 1]la(15)| 83  *85|[d(23)| 243 242 d(31)| 20 19
d®)| o *1|ld(i6)| 0 *2 |l d(24) | 207 206 || d(32)| 0 *1

This table shows Dimension defects d(v) of MT19937 and SFMT19937
as a 32-bit integer generator. The mark * means that MT has a smaller
defect than SFMT at that accuracy.

ator mrg [16], linear congruential generators rand48 and rand, a lagged fibonacci
generator random256g2, a WELL generator well (WELL19937c in [28]), and
a XORSHIFT generator xor3 [27] [20]. The table shows that SFMT(SIMD) is
faster than these PRNGs, except for the outdated linear congruential generator
rand, the lagged-fibonacci generator random256g2 (which is known to have poor
randomness, cf. [23]), and xor3 with a Pentium-M.

5 Dimension of equidistribution

Table 7 lists the dimension defects d(v) of SFMT19937 (as a 32-bit integer
generator) and of MT19937, for v = 1,2,...,32. SFMT has smaller values of
the defect d(v) at 26 values of v. The converse holds for 6 values of v, but the
difference is small. The total dimension defect A of SFMT19937 as a 32-bit
integer generator is 4188, which is smaller than the total dimension defect 6750
of MT19937.

We also computed the dimension defects of SEMT19937 as a 64-bit (128-bit)

16



integer generator, and the total dimension defect A is 14089 (28676, respec-
tively). In some applications, the distribution of LSBs is important. To check
them, we inverted the order of the bits (i.e. the i-th bit is exchanged with the
(w — 4)-th bit) in each integer, and computed the total dimension defect. It
is 10328 (21337, 34577, respectively) as a 32-bit (64-bit, 128-bit, respectively)
integer generator. Throughout the experiments, d(v) is very small for v < 10.
We consider that these values are satisfactorily small, since they are comparable
with MT for which no statistical deviation related to the dimension defect has
been reported, as far as we know.

Table 12 in Appendix shows the k(v) and d(v) (in parentheses) for all MEXPs
of SEMT as 32-bit integer generators, and Table 13 and 14 show those as 64-bit
integer generators.

6 Recovery from 0-excess states

For an LFSR with a sparse feedback function g, we observe the following phe-
nomenon: if the bits in the state space contain too many 0’s and few 1’s (called
a 0-excess state), then this tendency continues for many steps, since only a small
part is changed in the state array at one step, and the change is not well-reflected
to the next step because of the sparseness.

We measure the recovery time from 0-excess states, by the method intro-
duced in [28], as follows.

1. Choose an initial state with only one bit being 1.
2. Generate k pseudorandom numbers, and discard them.

3. Compute the ratio of 1’s among the next 32000 bits of outputs (i.e., in
the next 1000 pseudorandom 32-bit integers).

4. Let 4 be the average of the ratio over all such initial states.

We draw graphs of these ratio v, (1 < k < 20000) in Figure 4 for the fol-
lowing generators: (1) WELL19937¢, (2) PMT19937 (3) SFMT19937, and (4)
MT19937.

Because of its dense feedback, WELL19937c shows the fastest recovery among
the compared generators. SFMT is better than MT, since its recursion refers
to two most recently computed words (W[N-1] and W[N-2]) that acquire new
1s, while MT refers only to the words generated long before (W[M] and W[0]).
PMT19937 shows faster recovery than SFMT19937, since PMT19937 has two
feedback loops. The speed of recovery from 0-excess states is a trade-off with
the speed of generation. Such 0-excess states will not happen practically, since
the probability that 19937 random bits have less than 19937 x 0.4 of 1’s is about
5.7x 107177, The only plausible case would be that a poor initialization scheme
gives a 0-excess initial state (or gives two initial states whose Hamming distance
is too small). In a typical simulation, the number of initializations is far smaller
than the number of generations, therefore we may spend more CPU time in the
initialization than the generation. Under the assumption that a good initial-
ization scheme is provided, the slower recovery of SFMT compared to WELL
would perhaps not be a great issue.

17



osf ' : —==
e WELL19937¢
0.4 e PMT19937
- SFMT19937 - - - --
MT19937 —-—-~-
03[
g
02r
,
P
.
o1l e
.
0 ‘e mmm———m—mm—m— == T T T T m e e
0 5000 10000 15000 20000

Figure 4: v (k= 0,...,20000): Starting from extreme 0-excess states.

v (K = 0,...,20000): Starting from extreme 0-excess states, discard
the first & outputs and then measure the ratio 7y, of 1’s in the next
1000 outputs. In the order of the recovery speed: (1) WELL19937c, (2)
PMT19937, (3) SFMT19937, and (3) MT19937.

7 Portability

Using CPU dependent features causes a portability problem. We prepare (1)
a standard C code of SFMT, which uses functions specified in C99 only, (2)
an optimized C code for Intel Pentium SSE2, and (3) an optimized C code for
PowerPC AltiVec. The optimized codes require icl (Intel C Compiler) or gec
compiler with suitable options. Here we mention again that SFMT implemented
in standard C code is faster than MT.

There is a problem of the endian when 128-bit integers are converted into
32-bit integers. When a 128-bit integer is stored as an array of 32-bit integers
with length 4, in a little endian system such as Pentium, the 32 LSBs of the
128-bit integer come first. On the other hand, in a big endian system such
as PowerPC, the 32 MSBs come first. The explanation above is based on the
former. To assure the exactly same outputs for both endian systems as 32-bit
integer generators, in the SIMD implementation for PowerPC, the recursion (2)
is considered as a recursion on quadruples of 32-bit integers, rather than 128-bit
integers, so that the content of the state array coincides both for little and big
endian systems, as an array of 32-bit integers (not as 128-bit integers). Then,
shift operations on 128-bit integers in PowerPC differs from those of Pentium.
Fortunately, PowerPC supports arbitrary permutations of 16 blocks of 8-bit
integers in a 128-bit register, which emulates the Pentium’s shift by a multiple
of 8.

8 Conclusions of Chapter 1

We proposed the SFMT pseudorandom number generator, which is a very fast
generator with satisfactorily high-dimensional equidistribution property.

18



8.1 Trade-off between speed and quality

It is difficult to measure the generation speed of a PRNG in a fair way, since it
depends heavily on the circumstances. The WELL [28] generators have the best
possible dimensions of equidistribution (i.e. A = 0) for various periods (21924 —1
to 219937 —1). If we use the function call to the PRNG for each generation, then
a large part of the CPU time is consumed for handling the function call, and
in the experiments in [28] or [27], WELL is not much slower than MT. On the
other hand, if we avoid the function call, WELL is slower than MT for some
CPUs, as seen in Table 5.

Since A = 0, WELL has a better quality than MT or SEMT in a theoretical
sense. However, one may argue whether this difference is observable or not. In
the case of an Fy-linear generator, the dimension of equidistribution k(v) of v-
bit accuracy means that there is no constant linear relation among the kv bits,
but there exists a linear relation among the (k+1)v bits, where kv bits ((k+1)v
bits) are taken from all the consecutive k integers (k + 1 integers, respectively)
by extracting the v MSBs from each. However, the existence of a linear relation
does not necessarily mean the existence of some observable bias. According to
[22], it requires 10%® samples to detect an Fo-linear relation with 15 (or more)
terms among 521 bits, by weight distribution test. If the number of bits is
increased, the necessary sample size is increased rapidly. Thus, it seems that
k(v) of SFMT19937 is sufficiently large, far beyond the level of the observable
bias. On the other hand, the speed of the generator is observable. Thus, SFMT
focuses more on the speed, for applications that require fast generations. (Note:
a referee of [29] pointed out that statistical tests based on the rank of Fo-matrix
is sensitive to the linear relations [19], so the above observation is not necessarily
true.)

19



Chapter 2
A fast stream cipher, CryptMT

In this chapter, we pursue a fast stream cipher in software. We assume that
the machine has plenty of memory, and a fast integer multiplication instruction.

9 Stream Cipher

Let B be the set of symbols. Throughout this chapter, we assume B to be the
set of one byte integers, which is identified with F§, where Fo = {0,1} is the
two-element field. We consider a stream cipher based on a key-stream generator
over B. A generator receives a key k in the set of possible keys K, then generates
a sequence of elements

bo(k), by (K), ..., bu(K), ..., € B.

A plain text (a sequence of elements of B) is encrypted by taking bitwise exor
with the sequence (b, (k)), and then decrypted by the same method.

9.1 Combined Generator
Such a sequence is typically generated by a finite state automaton.

Definition 9.1. A finite state automaton A without input is a quadruple A =
(S, f,0,0), where S is a finite set (the set of states), f : S — S is a function
(the state transition function), O is a set (the set of the output symbols), and
0:S — O is the output function.

For a given initial state sq, A changes the state by the recursion s, :=
flsn—1) (n=1,2,3,...) and generates the sequence

0(s0),0(s1),0(s2),... € O.

For a stream cipher, we prepare an initializing function init : K — S, and
take O := B. By setting so := init(k), the automaton A generates a sequence
of elements in B. Its period is bounded by #(.5).

To obtain a secure generator, larger #(S) and complicated f and o are
desirable. However, if f is complicated, then the analysis of the sequence (such
as computing the period and the distribution) often becomes difficult. A typical
choice is to choose an Fa-linear transition function. We take S := F¢ and choose
a linear transition function f. Then, the period can be computed by the linear
algebra and polynomial calculus. In particular, the following linear feedback
shift register generators (LFSRs) are widely used: S := (F¥)"™ where w is the
word size of the machine (e.g. w = 32 for 32-bit machines), and the transition
is

flzi,xa, ..., Tp_1,2n) = (T2, 23, ..., Tpn, g(T1,. .., Tpn))- (5)
Here g : (FY)™ — FY is a linear function called the feedback function. This
state transition is equivalent to the recursion

Li4n = g($i7xi+17--~7$i+nfl) (i:O,1,2,...).

20



The output of LFSR is given by
0:S—=FY, (x1,...,2,) — 1,

which is not secure as it is. A software implementation technique using a cyclic
array ([15, P.28 Algorithm A]) reduces the computation of f to that of g and an
index change. Consequently, the computation time is independent of the size of
n, which allows a fast generator with huge state space. This type of generator
is common for the pseudorandom number generation in Monte Carlo method
(PRNG for MC), such as Mersenne Twister (MT19937) [21], whose period is
219937 —1.

As a stream cipher, any linear recurring sequence is vulnerable, so we need
to introduce some non-linearity. A conventional method is to choose a “highly
non-linear” o : S — O. In this context, o is called a filter.

One of the estimators of the non-linear property of a function is the algebraic
degree.

Definition 9.2. Let h(cy,ca,...,c,) be a boolean function, i.e.,
h:Fy — Fo.
Then, the function h can be represented as a polynomial function of n variables
C1,C2, ..., Cn with coefficients in Fy, namely as a function
h = Z arcr
Tc{1,2,...,n}
holds, where ar € ¥y and cr := [[,cpci. This representation is unique, and

called the algebraic normal form of h. Its degree is called the algebraic degree of
h.

Let h; n(so) denote the i-th bit of the n-th output b, (so) of the generator for
the initial state so. This is a boolean function, when we consider sg € S = F4 as
d variables of bit. Thus, an adversary can obtain sy by solving the simultaneous
equations h; »(so) = 0;, for unknown s¢ for various ¢ and n, where o; ,, are the
outputs of the generator observed by the adversary. This is the algebraic attack
(see for example [6], [5]).

A problem of a linear generator with filter is the following. Since any s,
is a linear function of the bits in sy = init(k), the algebraic degree of h; ,,(so)
is bounded from the above by the algebraic degree of the i-th bit of the filter
function o, namely that of the function

OiZSi)Fgﬂ)FQ.

To attain the high-speed generation, o; cannot access so many bits in .S, and
its algebraic degree is bounded by the number of accessed bits. This decreases
the merits of the large state space. A filter with memory, which is just a finite
state automaton with input, solves this conflict (see §10.3 for its effect on the
algebraic degree).

Definition 9.3. A finite state automaton A with input is a five-tuple A =
(S,1, f,0,0). The data S,0,0 are same with Definition 9.1. The difference is

21



@ TS O, )——» output
Y T A

f, S, f S,

Mother generator Filter with memory

Figure 5: Combined generator.

that it has another component I (the set of input symbols), and that the state
transition function is of the form f : I x S — S. For an initial state sy and
an input sequence ig,i1,... € I, A changes the state by s, = f(in—1,5n—1)
(n=1,2,3,...).

Definition 9.4. (A combined generator with filter with memory.)

Let Apr := (Swm, far, Oar,on) be an automaton without input (called the
mother generator, M for mother). Let Ap := (Sp,Ip, fr,Op,0r) be an au-
tomaton with input (called the filter with memory, F' for the filter). We assume
that Oy = Ip. Consider a pair of initial states syr0 € Sy and spo € Sp. We
generate a sequence of Oy = Ip by Ay with initial state sy, and pass it to
Ap with initial state spo, to obtain a sequence of O as the output sequence.
This amounts to considering an automaton C without input, named the com-
bined generator: the state space Sc of C' is Sy X Sg, the transition function
is

fo: (smysr) = (fu(sm), frlom(sm), sr)),

and the output function is
oc : (sm,sF) — op(sF) € Op.
Figure 5 describes a combined generator.

Example 9.5. The output function oc in the above definition depends only on
S, but we may consider a function depending both Sp; and Sp.

Such an example is famous SNOW stream cipher [8] [9]. The mother gener-
ator of SNOWZ2.0 is an LFSR with 512-bit state space, and its filter has 64-bit
state space. Non-linearity is introduced by four copies of one same S-box of 8-bit
size, based on arithmetic operations in 28-element filed Fas.

SNOW has no rigorous assurance on the period and the distribution of the
generated sequence. We shall introduce the notion of quasigroup filter, which
allows to compute the period and distribution property.

10 Quasigroup Filter
Definition 10.1. A function f : X XY — Z is said to be bi-bijective if f(—,y) :
X — Z, x— f(x,y) is bijective for any fixred y, and so is f(x,—):Y — Z, y —

flx,y) for any fized x. If X =Y = Z, this coincides with the notion of a
quasigroup.

22



A quasigroup filter is an automaton in Definition 9.3 where the state tran-
sition function f: 1 x S — S is bi-bijective.

Example 10.2. (Multiplicative filter).

Let I = S be the set of odd integers in the ring Z./23% of integers modulo 232.
Let f : I xS — S be the integer multiplication modulo 232. This is a quasigroup
(actually the multiplicative group of the ring 7Z./232).

We choose op : S — Op = B as the function taking the 8 MSBs from the
32-bit integer.

Example 10.3. If we correspond a 32-bit integer x to a 33-bit odd integer 2z+1
modulo 233, then the multiplication formula

2z +1)x 2y+1)=22zy+z+7y) +1

gives a quasigroup structure

X :(x,y) — Xy :=2zy+x+y mod 2%

on the set of 32-bit integers. We can consider the corresponding multiplicative
filter with I = S being the set of 32-bit integers.

Modern CPUs often have a fast integer multiplication for 32-bit integers.
We shall discuss mathematical property of such filters in §10.3.

Example 10.4. (CryptMT1: MT with multiplicative filter)

We choose an LFSR described in (5) as the mother generator Apr, with
On =TY. We can choose its parameters so that the period is a large Mersenne
prime Q = 2P — 1 (e.g. p = 19937 as in the case of MT19937 [21]). By iden-
tifying Opp as the set of w-bit integers, we can use the multiplicative filter Ap
described in Example 10.3. We call this generator as MT19937 with multiplica-
tive filter. The output function or : Sp — O = F$ is extracting 8 MSBs. This
generator is called CryptMT Version 1 (CryptMT1) [24].

10.1 k-dimensional Distribution

Let k& be an integer, and let A be an automaton without input as in Defini-
tion 9.1. We define its k-tuple output function o*) by

o) 25— OF 5= (o(s),0(f(5)): 0(f(5)), -, o(f*7 () (6)

(i.e. o®) maps the state to the next k outputs). Consider the multi-set of the
possible output k-tuples for all states:

O .= {o"(s) |s € S}.
This is the image of S by o*) counted with multiplicities.

Definition 10.5. The output of the automaton A is said to be k-dimensionally
equidistributed if the multiplicity of each element in O®) is same.

This type of criteria is commonly used for PRNG for MC: MT19937 as a 32-
bit integer generator has this property with & = 623. This criterion is equivalent
to the uniformness of the function o(*) defined below.

23



Definition 10.6. A mapping g : X — Y is uniform if the cardinality of g~ (y)
is independent of y € Y. A bijection is uniform, and the composition of uniform
mappings is uniform.

A filter with memory is uniform if its output function is uniform.

Example 10.4 is uniform. The next proposition shows that a uniform quasi-
group filter increases the dimension of equidistribution by 1.

Proposition 10.7. We keep the set-up of Definition 9.4. Assume that Ap is
a uniform quasigroup filter. Suppose that the output of Ay is k-dimensionally
equidistributed. Then, the combined generator C is (k+1)-dimensionally equidis-
tributed.

Proof. Consider the k-tuple output function of the mother generator 05\? :

Sy — O, as in (6). Then, the k-dimensional equidistribution property is
equivalent to the uniformness of 05\];). The (k + 1)-tuple output function o(clfﬂ)

of the combined generator C' is the composite

(k) k41
k41 o, xIdgs u o
o 1 Sy x S LI Ok i S 2 gkt 2B okl
where the second map p is given by

o ((.’Ek,.’l}k,l, LRI 7m1)7y1) = (yk+l7yk7 cee 7y1)

where y;’s are inductively defined by y;+1 := fr(xi,y:) (i =1,2,...,k). The
last map 0];;“ is the direct product of k 4+ 1 copies of op. The quasigroup
property of fr implies the bijectivity of p. The last map is uniform. Since the

composition of uniform mappings is uniform, we obtain the proof. O

Corollary 10.8. CryptMT1 explained in FExample 10.4 is 624-dimensionally
equidistributed.

We mean by a simple distinguishing attack of order N to choose a real
function F' with N variables and to detect the deviation of the distribution of
the values of F' applied to the consecutive N-outputs. If N does not exceed the
dimension of the equidistribution, then one can observe no deviation from the
true randomness, under the assumption of uniform choice of the initial state.

By this reason, it seems very difficult to apply a correlation attack or a
distinguishing attack to such generators. For example, to observe some deviation
of MT19937 with multiplicative filter in Example 10.4, one needs to observe
the correlation of outputs with the lag more than 624. Because of the high
nonlinearity of the multiplicative filter discussed below, we guess that this would
be infeasible.

10.2 A Theorem on the Period

Theorem 10.9. Consider a combined generator C' as in Definition 9.4. Let
sum0 be the initial state of the mother generator Ay, and assume that its state
transition is purely periodic with period P = Qq for a prime Q and an integer
q. Let S° C Sy be the orbit of the state transition. Let k be an integer.
Assume that the k-tuple output function of the mother generator og\lfl) 1 8° — OF,

24



as defined in (6) is surjective when restricted to S°. Suppose that Ap is a
quasigroup filter as in Definition 10.7.

Let r be the ratio of the occupation of the mazximum inverse image of one
element by op : Sp — Op in Sp, namely

r= ggﬁ{#(OEl(b))}/#(Sﬂ
If
rm D S g (#(SR))?,

then the period of the output sequence of C is a monzero multiple of Q.

Proof. We may replace Sj; with the orbit starting from sg. Then, replace Sy,
with its quotient set where two states are identified if the output sequences from
them are identical. Thus, we may assume #(Sy;) = P, where P is the period
of the output sequence of A,;. In this proof, we do not consider multi-sets.

Consider the k-tuple output function og 1 as in the proof of Proposition 10.7:

05\3) XIdSF

i
otV L Sy x Sp P Ok x Sp £ SR 2, ok
Since og\lf[) is surjective and p is bijective (by the quasigroup property), the image
I C Oyt of Sy x {yo} by po (og\’}) x Idy) has the cardinality #(Oy)%. By the
assumption of the pure periodicity of x; and the bijectivity of fr, the output
sequence op(y;) (i = 0,1,2,...) is purely periodic. Let p be its period. Then,
OI}H(I ) C O’lﬁfl can have at most p elements. op is uniform, so we can regard it
as n-to-one correspondence, then o’;j'l is n**1-to-one correspondence. And then
ﬁ% < nF*1 because I € S%™. Therefore #(I) < pn**'. The definition
F
of r means n = r#(SF), then

4(1) < plr(Sr) .
Since #(0)* = #(I) and #(0y) = #(Sr), we have an inequality
rm D < p(S).

The period P’ of the state transition of C' is a multiple of P = Qgq. Since
the state size of C is P X #(Sp), P’ = @Qm holds for some m < ¢#(SF).
Consequently, p is a divisor of @m. If p is not a multiple of @, then p divides
m, and then p < g#(SF). Thus we have

r= D < g3 (Sp)?,
contradicting to the assumption. O

Example 10.10. For MT19937 with multiplicative filter, this theorem shows
that any bit in the output sequence has a period being a multiple of the prime

219937 _ 1 as follows.

We have Q = 21997 — 1 and ¢ = 1. If op : Sp — Op = FJ* is extracting
some m bits from the 32-bit integers, then r = 2¥~"™ /2% = 2=™_ The inequality
condition in the theorem is now

27n(k:+1) > 221117

25



and hence if this holds, then the m-bit output sequence has a period which is a
multiple of Q.

In the case of MT19937 and the multiplicative filter, since k = 623 and
w = 32, the above inequality holds for any m > 1, hence any bit of the output
has a period at least 219937 — 1.

10.3 A Proposition on the Algebraic Degree of Integer

Products
Definition 10.11. Let us define a boolean function ms n of (s —1)N wvariables,
as follows. Consider N of s-bit integer variables x1,...,xN. Let

Cs—1,iCs—2,i """ Co,i

be the 2-adic representation of x;, hence c¢;; = 0,1. We fiz co; = 1 for all
i =1,...,N, i.e assuming x; odd. The boolean function ms N has variables
i (7=12,...,s—1,i=1,2,...,N), and its value is defined as the s-th digit
(from the LSB) of the 2-adic expansion of the product x1xo -+ x N as an integer.

Proposition 10.12. Assume that N,s > 2. The algebraic degree of ms n is

bounded from below by
min{2°72, gllog; N }.

Let h(ci,ca,...,¢,) be a boolean function as in Definition 9.2, and h =
ZTC{l 2,....n} ATCT be its algebraic normal form.
The following lemma is well known.

Lemma 10.13. [t holds that ap = ) ;- M(U), where h(U) := h(cy,. .., cp)
with ¢; = 0,1 according to 1 ¢ U, € U, respectively.

Proof of Proposition. For s = 2, the claim is easy to check. We assume s > 3.

Case 1. s —2 <log, N. In this case, it suffices to prove that the algebraic
degree is at least 2°~2. Take a subset T of size 2572 from {1,2,..., N}, say T =
{1,2,...,2°72}. Then, we choose ¢1,1,¢12,...,C; 952 as the #T variables “ac-
tivated” in Lemma 10.13, and consequently, the coefficient of ¢ 1¢12 ¢y 252
in the algebraic normal form of mg y is given by the sum in Fs:

ar = Z (s-th bit of &1 --- 2, where ¢;; =1 if and only if j =1 and i € U).
ucr

Note that cp; = 1. It suffices to prove ar = 1. Now, each term in the right
summation is the s-th bit of the integer 3#Y, so the right hand side equals to

2572 25—2
> [( . ) X the s-th bit of 3™ | .

m=0

However, the well-known formula

(ery)QS_2 x25_2+y25_2 mod 2

implies that the binary coefficients are even except for the both end, so the
summation is equal to the s-th bit of 32 .

26



A well-known lemma says that if z =1 mod 2’ and z Z 1 mod 2*! for
i>2, then 22 =1 mod 2™ and 22 #1 mod 272, By applying this lemma
inductively, we know that

32777 _ (1+ 8)2573 =1 mod?2%, #1 mod2°t!.

This means that s-th bit of 32"~ is 1, and the proposition is proved.

Case 2. s—2 > |logy(N)]. In this case, we put ¢ := |logy(N)|+2, and hence
s >t and 272 < N. We apply the above arguments for T' = {1,2,...,2(72},
but this time instead of ¢; ;, we activate

{Cs_t+2,i | 1€ T}

The same argument as above reduces the non-vanishing of the coefficient of the
term cs_ty21 - Cs_tq2.9t—2 to the non-vanishing of

22 2t72
Z K ) x the s-th bit of (1 4 257t+2)™

m=0 m
Again, only the both ends m = 0 and m = 22 can survive, and the above
summation is the s-th bit of (1 4 257/"2)!=2_ Since s — t + 2 > 2, the lemma
mentioned above implies that

(1+2742)27" =1 1mod 2°, % 1 mod 2°1,
which implies that its s-th bit is 1. O

This proposition gives the algebraic degree of the multiplicative filter, with
respect to the inputs x1,...,zxN.

This proposition implies that we should use MSBs of the multiplicative filter.
On the other hand, using 8 MSBs among 32-bit integers as in Example 10.2
seems to have enough high algebraic degree. We check this using a toy model.

10.4 Simulation by Toy Models

Since the filter has a memory, it is not clear how to define the algebraic degree
or non-linearity of the filter. Instead, if we consider all bits in the initial state as
variables, then each bit of the outputs is a boolean function of these variables,
and algebraic degree and non-linearity are defined.

However, it seems difficult to compute them explicitly for CryptMT3, be-
cause of the size. So we made a toy model and obtained experimental results. Its
mother generator is a linear generator with 16-bit internal state, and generates
a 16-bit integer sequence defined by

Xj+1 = (% >> 1) @ ((x;&1) - a),

where >> 1 denotes the one-bit shift-right, (x;&1) denotes the LSB of x;,
a = 1010001001111000 is a constant 16-bit integer, and (x;&1) - a denotes the
product of the scalar (x,;&1) € Fy and the vector a.

Then it is filtered by

yj+1 = (x5]1) x y; mod 216,

27



Table 8: Table of the algebraic degrees of output bits of a toy model.
Y1 1 1 1 1 1 1 1 1 1 1 1.1 1 1 1 O
y2 |14 13 12 11 10 9 8 7 6 5 4 3 2 1 1 0
y3 |15 15 14 13 12 11 10 9 8 6 4 3 2 1 1 0
yg |15 16 15 14 13 12 11 10 9 7 5 4 2 1 1 0
ys |16 16 15 15 14 13 12 11 10 7 5 4 2 1 1 0
Yo 16 16 15 15 15 14 13 11 10 9 7 4 2 1 1 0
Y7 16 15 16 16 15 15 14 13 12 9 7 4 2 1 1 0
ys |15 15 15 16 16 15 15 14 13 10 8 4 2 1 1 0
Yo |16 15 16 15 15 16 15 15 13 10 8 4 2 1 1 0
yi0| 15 16 16 16 16 16 15 15 14 12 8 4 2 1 1 0
yi1 | 15 16 16 15 15 15 16 15 15 12 8 4 2 1 1 0
yi2 |15 16 16 16 16 15 16 16 15 13 8 4 2 1 1 0
yi3 | 16 15 15 15 15 15 16 15 16 13 8 4 2 1 1 0
y14 | 15 15 16 15 15 16 16 15 16 15 8 4 2 1 1 0
yi5 | 15 16 16 16 15 16 16 16 15 14 8 4 2 1 1 0
yie |16 15 16 15 15 15 15 15 16 14 8 4 2 1 1 0

Table 9: The non-linearity of the MSB of each output of a toy model.

output Y1 Yo Y3 Y4 Ys Y6 Y7 ys Yo
nonlinearity | 0 32112 32204 32238 32201 32211 32208 32170 32235

where (x;|1) denotes x; with LSB set to 1. We put yo = 1, and compute the
algebraic degree of each of the 16 bits in the outputs y; ~ y16, each regarded as
a polynomial function with 16 variables being the bits in x¢. The result is listed
in Table 8. The lower six bits of the table clearly show the pattern 0,1, 1, 2,4, 8,
which suggests that the lower bound 2°~2 for s > 2 given in Proposition 10.12
would be tight, when the iterations are many enough. On the other hand, eighth
bit and higher are “saturated” to the upper bound 16, after 12 generations.

We expect that the algebraic degrees for CryptMT3 would behave even bet-
ter, since its filter is modified. So, if we consider each bit of the internal state
of CryptMT3 as a variable, then the algebraic degree of the bits in the outputs
will be near to 19937, after some steps of generations.

Also, we computed the non-linearity of the MSB of each y; (i = 1,2,...,8)
of this toy model. The result is listed in Table 9, and each value is near to 261,
This suggests that there would be no good linear approximation of CryptMT3.

11 A Fast Initialization of a Large State Space

Consider LFSR in (5) as a mother generator. Its state space is an array of w-bit
integers with size n. We need to give initial values to such a large array in the
initialization. If one wants to encrypt a much shorter message than n, then this
is not efficient. A possible solution is to use a PRNG with relatively small state
space (called the booter) which can be quickly initialized, and use it to generate
the initial array xg,x1,...,Z,—1, and at the same time, its outputs are passed
to the filter for key-stream generation. If the message length is smaller than n,

28



<«— 128 bit —»

- —_- - s - - - =

perm-
shift1

shift
register

|

|
\

|
|

|
\

|
|

|
\

|
| |
", perm- = |
: " shift2 D—« ‘
| |
\

|
|

|
\

\

T

A

accumulator

automaton

Figure 6: Booter of CryptMTS3.

perm-shiftl: x — (x[2][1][0][3]) ® (x >>32 13).
perm-shift2: x — (x[1][0][2][3]) & (x >>32 11).

x: multiplication of (a quadruple of) 33-bit odd inte-
gers.

4+, —: addition, subtraction of four 32-bit integers mod-
ulo 232,

then the mother generator is never used: the outputs of the booter are used as
the output of the mother generator. If the message length exceeds n, then the
first n outputs of the booter are used as the outputs of the mother generator,
and at the same time for filling up the state space of the mother generator.
After the state space is filled up, the mother generator starts to work.

11.1 The key, IV, and the Booter

The design of the booter (see §11) goes independently of the key-stream gen-
erator. However, as the referees pointed out, we need to specify one to have
a complete description of the generator. Thus, we here include the booter of
CryptMT3 for self-containedness. The booter is described in Figure 6.
We choose an integer H later in §11.2. The state space of the booter is

a shift register consisting of H 128-bit integers. We choose an initial state
X0, X1, - .-, Xg—1 and the initial value aj of the accumulator (a 128-bit memory)
as described in the next section. Then, the state transition is given by the
recursion _

a; = (aj_l X392 perm—shift2(xH+j_1))

XH4j = perm—shifti(xj “+392 XH+j—2) —32 aj,
where

perm-shift1(x) := (x[2][1][0][3]) & (x >>32 13)

perm-shift2(x) := (x[1][0][2][3]) & (x >>32 11).

29



<128 bit—»

T \Y, - output
H Key ™ auto-
\V; 4|—> maton
i Key + const feedback
-

Figure 7: Beginning of Key and IV set-up.

The IV-array and Key-array are concatenated and copied to
an array twice. Then, a constant is added to the bottom of
the second copy of the key to break a possible symmetry. The
automaton is described in Figure 6.

The notation +32 (—32) denotes the addition (subtraction, respectively) modulo
232 for each of the four 32-bit integers in the 128-bit integers. The output of
the j—th Step is X +32 XH+j5-2-

As described in Figure 6, the booter consists of an automaton with three
inputs and two outputs of 128-bit integers, together with a shift register. In the
implementation, the shift register is taken in an array of 128-bit integers with
the length 2H + 2 4+ n, where n = 156 is the size of the state array of SFMT.
This redundancy of the length is for the idling, as explained below.

11.2 Key and IV Set-up

We assume that both the IV and the Key are given as arrays of 128-bit integers.
The size of each array is chosen by user, from 1 to 16. Thus, the Key-size is
chosen from 128 bits to 2048 bits, as well as the IV-size. We claim the security
level that is the same with the minimum of the Key-size and the IV-size.

We concatenate the IV and the Key to a single array, and then it is copied
twice to an array, as described in Figure 7.

To break the symmetry, we add a constant 128-bit integer (846264, 979323,
265358, 314159) (denoting four 32-bit integers in a decimal notation, com-
ing from 7) to the bottom row of the second copy of the key (add means
+32). Now, the size H of the shift register in the booter is set to be 2 x
(IV-size + Key-size (in bits))/128, namely, the twice of the number of 128-bit
integers contained in the IV and the Key. For example, if the IV-size and the
Key-size are both 128 bits, then H = 2 x (1 + 1) = 4. The automaton in the
booter described in Figure 6 is equipped on this array, as shown in Figure 7.
The accumulator of the booter-automaton is set to

(the top row of the key array) | (1,1,1,1),

that is, the top row is copied to the accumulator and then the LSB of each of
the 32-bit integers in the accumulator is set to 1.

At the first generation, the automaton reads three 128-bit integers from the
array, and write the output 128-bit integer at the top of the array. The feedback

30



discarded
H+2 foriding | T

first output of the booter |«

auto-

4‘—F: maton

copied to the memory
of the filter

Figure 8: After the Key and IV set-up.

to the shift register is written into the (H + 1)-st entry of the array. For the
next generation, we shift the automaton downwards by one, and proceed in the
same way.

For idling, we iterate this for H + 2 times. Then, the latest modified row
in the array is the (2H 4 2)-nd row, and it is copied to the 128-bit memory in
the filter of CryptMT3. We discard the top H + 2 entries of the array. This
completes the Key and IV set-up. Figure 8 shows the state after the set-up.

After the set-up, the booter produces 128-bit integer outputs, at most n
times. Let L be the number of bits in the message. If L < n x 64, then we
do not need the mother generator. We generate the necessary number of 128-
bit integers by the booter, and pass them to the filter to obtain the required
outputs. If L > n x 64, then, we generate n 128-bit integers by the booter, and
pass them to the filter to obtain n 64-bit integers, which are used as the first
outputs. At the same time, these n 128-bit integers are recorded in the array,
and they are passed to SFMT as the initial state.

To eliminate the possibility of shorter period than 1, we set the
32 MSBs of the first row of the state array of SFMT to the magic number
0x4d734e48 in the hexadecimal representation, as explained in §2. That is, we
start the recursion (7) of SEFMT with xg, X1, ...,X,—1 being the array of length
n generated by the booter (with 32 bits replaced with a magic constant), and
then SEFMT produces x,,,Xn+1,-... Since X, might be easier to guess because
of the constant part in the initial state, we skip x,, and pass the 128-bit integers
Xp+41,Xn+2, - - - to the filter.

The first outputs come from the booter. One may argue why not using the
booter forever, without using the mother generator. The answer is that we do
not need to care about the attacks to the booter based on a long output stream.

919937 _

31



12 A Concrete Example Using 128-bit Instruc-
tions

Recent CPUs often have Single Instruction Multiple Data (SIMD) instructions.
These instructions treat a quadruple of 32-bit integers at one time. We propose
an LFSR and a uniform quasigroup filter, based on 128-bit instructions, named
CryptMT Version 3 (CryptMT3) in the rest of this paper. CryptMT3 is one of
the phase 3 candidates in eSTREAM stream cipher competition [25]. We shall
describe the generation algorithm below.

12.1 SIMD-oriented Fast MT

In the LFSR (5), we assume that each x; is a 128-bit integer or equivalently a
vector in F328. We choose the following recursion: n = 156 and

Tisor; = (15011 & £1dTafdf f5dabfEf fdDEEEf efTBLEE)S )
(10845 >>64 3) © 10844 [2][0][3][1] @ (25 [0][3][2][1])-

Here, & denotes the bit-wise-and operation, and the hexadecimal integer is a
constant 128-bit integer for the bit-mask. The notation @ is bitwise exor. The
notation

(10845 >>64 3)

means that z1034; is considered as two 64-bit integers, and each of them is
shifted to the right by 3 bits. The notation z10s+,[2][0][3][1] is a permutation of
four 32-bit integers. The 128-bit integer x10s+; is considered as a quadruple of
(Oth, 1st, 2nd, 3rd) 32-bit integers, and then they are permuted by 2 — 0,1 —
0,2 — 3,3 — 1. The next notation «;[0][3][2][1] is a similar permutation. These
instructions are available both in SSE2 SIMD instructions for Intel processors
and in AltiVec SIMD instructions in PowerPC. We call this generator SIMD-
oriented Fast MT (SFMT) (This is a variant of Chapter 1). A description is in
Figure 9.

We proved its 155-dimensional equidistribution property. We proved that, if
the third component x[3] of 2 is 0x4d734e48, then the period of the generated
sequence of the SEMT is a multiple of the Mersenne prime 219937 — 1. Note that
since 19937 is a prime, there is no intermediate field of Fy199s7. This is in contrast
to SNOW1.0, where the existence of the intermediate field Fy32 introduces some
weakness (see [9]).

12.2 A Modified Multiplicative Filter

Our filter Ap has Ir = Sg being the set of 128-bit integers, and O being the
set of 64-bit integers, as described below.
For given 128-bit integers y € Ir and x € Sp, we define

fry, @) = (y @ (YOIB][2][] >>52 1)) X322 (3)

Here, the notation “>>35 1”7 means to consider a 128-bit integer as a quadruple
of 32-bit integers, and then shift each of them to the right by 1 bit. The binary
operator o x 32y means that 32-bit wise binary operation x (see Example 10.3)
is applied for each 32-bit components, namely, i-th 32-bit integer of xX35y is
xli|xyli] (i =0,1,2,3).

32



«— 128 bit —»

h J

shift register >
o | perm-
- ) -+

\ .

A

Figure 9: The mother generator of CryptMT3

Y

SIMD-oriented Fast Mersenne Twister.

permute: y — y[0][3][2][1].

perm-shift: y — y[2][0][3][1] ® (y >>64 3).
bit-mask: ffdfafdf f5dabfff ffdbffff ef7bffff

The operation applied to y is an invertible linear transformation, hence
is bijective. Since X is bi-bijective, so is fr. The purpose to introduce the
permutation-shift is to mix the information among four 32-bit memories in the
filter, and to send the information of the upper bits to the lower bits. This
supplements the multiplication, which lacks this direction of transfer of the in-
formation.

The output function is

or(y) := LSBa(y @ (y >>32 16)). (9)

This means that y is considered as a quadruple of 32-bit integers, and for each
of them, we take the exor of the MSB 16 bits and LSB 16 bits. Thus we obtain
four 16-bit integers, which is the output 64-bit integer (see Figure 10). To obtain
8-bit integers, we dissect it into 8 pieces.

CryptMT3 is the combination of the SIMD-oriented Fast MT (§12.1) and
this filter. Initialization by the booter is explained in § 11.1.

For the period of CryptMT3, we have Q = 297 — 1 and ¢ < 23! — 1
and k = 155 o : Sp — Op = F§' is extracting 64 bits from the 128 bits,
then r = 2128-64/2128 — 9-64  Agsioning these numbers to the condition of
Theorem 10.9:

r=M Y > g (#(Sk))%,

we can say the output sequence of CryptMT3 has a period of non-zero multiple
of 219937 _ 1,

12.3 Speed Comparison

Comparison of the speed of generation for stream ciphers is a delicate problem:
it depends on the platform, compilers, and so on. Here we compare the number
of cycles consumed per byte, by CryptMT3, HC256, SOSEMANUK, Salsa20,

33



outputof  32pitx 4

32bit x 4
meorfzztor LSB 16 bitx 4
g output
MSB 16 bit x 4

32 bit x 4
accumulator

discarded

Figure 10: Filter of CryptMT3.

perm-shift3: y — y & (y[0][3][2][1] >>32 1).
perm-shiftd: y —y @ (y >>32 16).
x: multiplication of 33-bit odd integers.

Dragon (these are the five candidates in eSTREAM software cipher phase 3
permitting 256-bit Key), SNOW2.0 and AES (counter-mode), in three different
CPUs: Intel Core 2 Duo, AMD-Athlon X2, and Motorola PowerPC G4, using
eSTREAM timing-tool [11]. The data are listed in Table 10. Actually, they are
copied from Bernstein’s page [2].

CryptMT3 is the fastest in generation in Intel Core 2 Duo CPU, reflecting
the efficiency of SIMD operations in this newer CPU. CryptMT3 is slower in
Motorola PowerPC. This is because AltiVec (SIMD of PowerPC) lacks 32-bit
integer multiplication (so we used non-SIMD multiplication instead).

Table 10: Summary from eSTREAM benchmark [2]

Core 2 Duo | Athlon 64 X2 | PowerPC G4

Primitive Stream Stream Stream
CryptMT3 2.95 4.73 9.23
HC-256 3.42 4.26 6.17
SOSEMANUK 3.67 4.41 6.17
SNOW-2.0 4.03 4.86 7.06
Salsa20 7.12 7.64 4.24
Dragon 7.61 8.11 8.39
AES-CTR 19.08 20.42 34.81

The number of cycles in Key set-up and IV set-up are listed in Table 11.
The key set-up and IV set-up speed are less important than stream generation
speed. Still, it is important for short message. HC-256 and SOSEMANUK are
faster than CryptMT3 for Athlon and PowerPC, however, HC-256 is slower at
IV set-up and SOSEMANUK is slower at key set-up.

13 Conclusions of Chapter 2
We proposed combination of an LFSR and a uniform quasigroup filter as a
stream cipher in software. As a concrete example, we implemented CryptMT3

generator. CryptMT3 is as fast as SNOW2.0 and faster than AES counter-mode
for recent CPUs. CryptMT3 satisfies the conditions of Theorem 10.9 and Propo-

34



Table 11: Summary from eSTREAM benchmark (setup cycle) [2]

Core 2 Duo Athlon 64 X2 PowerPC G4

Primitive Key setup IV setup Key v Key v
CryptMT3 61.41 514.42 107  505.64| 90.71 732.8
HC-256 61.31 83805.33| 105.11 88726.2 87.71 71392
SOSEMANUK 848.51 624.99 | 1183.69 474.13 | 1797.03  590.47
SNOW-2.0 90.42 469.02 110.7 567 | 107.81 719.38
Salsa20 19.71 14.62 61.22 51.09 69.81 42.12
Dragon 121.42  1241.67| 120.21 1469.43 134.6 1567.54
AES-CTR 625.44 18.9| 905.65 50| 305.81 34.11

sition 10.7, and it can be proved to have the astronomical period > 29937 —1 and
the 156-dimensional equidistribution property as a 64-bit integer generator (and
hence 1241-dimensional equidistribution property as a 8-bit integer generator).

CryptMT3 uses integer multiplication instead of an S-box. This is an advan-
tage over generators with large look-up tables for fast software implementation
of the S-box, such as SNOW or AES, where cache-timing attacks might be
applied [1].

A toy model of CryptMT3 shows high algebraic degrees and nonlinearity for
the multiplicative filter, which supports its effectiveness. See §10.3 and §10.4.

Acknowledgements

The author would like to express his sincere gratitude to Professor Makoto
Matsumoto for his enthusiastic advice and encouragement.

35



References

[1]

2]

D. J. Bernstein. Cache-timing attack on aes. http://cr.yp.to/
antiforgery/cachetiming-20050414.pdf.

D. J. Bernstein. Software timings. http://cr.yp.to/streamciphers/
timings.html.

R.P. Brent and P. Zimmermann. Random number generators with period
divisible by a Mersenne prime. In Computational Science and its Applica-
tions - ICCSA 2003, volume 2667, pages 1-10, 2003.

R.P. Brent and P. Zimmermann. Algorithms for finding almost irreducible
and almost primitive trinomials. Fields Inst. Commun., 41:91-102, 2004.

N. Courtois. http://eprint.iacr.org/2005/243.

N. Courtois. Fast algebraic attacks on stream ciphers with linear feedback.
In D. Boneh, editor, Advances in Cryptology - CRYPTO 2003, pages 176—
194, 2003.

R. Couture, P. L’Ecuyer, and S. Tezuka. On the distribution of k-
dimensional vectors for simple and combined Tausworthe sequences. Math.
Comp., 60(202):749-761, 1993.

P. Ekdahl and T. Johansson. Snow-a new stream cipher. In Proceedings of
First Open NESSIE Workshop. KU-Leuven, 2000.

P. Ekdahl and T. Johansson. A new version of the stream cipher snow.
In Selected Areas in Cryptography, SAC 2002, LNCS 2595, pages 47—61.
Springer Verlag, 2002.

Endianness from Wikipedia, the free encyclopedia. http://en.wikipedia.
org/wiki/Endianness.

estream — the ecrypt stream cipher project — phase 3. http://www.ecrypt.
eu.org/stream/index.html.

Sam Fuller. Motorola’s AltiVec Technology. http://www.freescale.com/
files/32bit/doc/fact_sheet/ALTIVECWP.pdf.

M. Fushimi. Random number generation with the recursion x; = x;_3, ©
Ti—3q. Journal of Computational and Applied Mathematics, 31:105-118,
1990.

Intel 64 and IA-82 Architectures Optimization Reference Manual. http:
//www.intel.com/design/processor/manuals/248966.pdf.

D. E. Knuth. The Art of Computer Programming. Vol.2. Seminumerical
Algorithms. Addison-Wesley, Reading, Mass., 3rd edition, 1997.

P. L’Ecuyer. A search for good multiple recursive random number genara-
tors. ACM Transactions on Modeling and Computer Simulation, 3(2):87—
98, April 1993.

36



[17]

[18]

[19]

[28]

[29]

[30]

P. L’Ecuyer. Maximally equidistributed combined tausworthe generators.
Math. Comp., 65(213):203-213, 1996.

P. L’Ecuyer. Tables of maximally equidistributed combined lfsr generators.
Math. Comp., 68(225):261-269, 1999.

P. L’Ecuyer and R. Simard. TestUO1: A C library for empirical testing of
random number generators. ACM Transactions on Mathematical Software,
15(4):346-361, 2006.

G. Marsaglia. Xorshift RNGs. Journal of Statistical Software, 8(14):1-6,
2003.

M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally
equidistributed uniform pseudorandom number generator. ACM Trans.
on Modeling and Computer Simulation, 8(1):3-30, January 1998. http:
//www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt .html.

M. Matsumoto and T. Nishimura. A nonempirical test on the weight of
pseudorandom number generators. In Monte Carlo and Quasi-Monte Carlo
methods 2000, pages 381-395. Springer-Verlag, 2002.

M. Matsumoto and T. Nishimura. Sum-discrepancy test on pseudoran-
dom number generators. Mathematics and Computers in Simulation, 62(3-
6):431-442, 2003.

M. Matsumoto, M. Saito, T. Nishimura, and M. Hagita. Cryptanalysis
of CryptMT: Effect of huge prime period and multiplicative filter. http:
//wuw.ecrypt.eu.org/stream/cryptmtfubuki.html.

M. Matsumoto, M. Saito, T. Nishimura, and M Hagita. CryptMT stream
cipher version 3. Submitted to eSTREAM stream cipher proposals,
http://www.ecrypt.eu.org/stream/cryptmtp3.html.

M. Matsumoto, M. Saito, T. Nishimura, and M Hagita. A fast stream
cipher with huge state space and quasigroup filter for software. In Selected
Areas in Cryptography 2007, pages 246—263. Springer Verlag, 2008.

F. Panneton and P. L’Ecuyer. On the Xorshift random number generators.
ACM Transactions on Modeling and Computer Simulation, 15(4):346-361,
2005.

F. Panneton, P. I’Ecuyer, and M. Matsumoto. Improved long-period gen-
erators based on linear reccurences modulo 2. ACM Transactions on Math-
ematical Software, 32(1):1-16, 2006.

M. Saito and M. Matsumoto. SIMD-oriented fast mersenne twister:a 128-
bit pseudorandom number generator. In Monte Carlo and Quasi-Monte
Carlo Methods 2006, LNCS, pages 607—622. Springer, 2008.

SIMD From Wikipedia, the free encyclopedia. http://en.wikipedia.
org/wiki/SIMD.

37



90867 8168€ 95087 LSV91 88T¥ ¥92¢ 198 91V 86z 9% | v
(0)zGL9 (0)ozT¥ (0)569¢ (0)o6eT (1)z29 (0)ose (0)zeT (0)12L (0)6e  (0)8T | 2¢
(¥12)9529 (1€1)8CT1¥ (98)9692 (ev)z6eT (61)¥29 (6)zse (1)9¢1 (1)L (Hov (06t | 1€
(L¥¥)9529 (€22)821¥%  (8L1)969¢ (16)z6€T (0%)¥29 (12)zse (¢)ogt (¥)zL (@ov  (0)oz | o
(269)9¢29 (cep)8eTy  (L22)969%  (G¥1)T6eT (€9)¥29 (ve)eee  (o1)9gT (9)zL wov  (0)oz | 62
(196)95L9 (88¢)8cTY  (¥8€)969¢  (L6T)T6ET (88)129 (sp)eee  (S1)9¢T (6)zL (¢)or  (1)oz | s¢
(L¥2T1)9G629 (zoL)SeIv  (86%)969%  (9¢2)z6eT  (FIT)¥29 (e9)zee  (12)9e1  (21)aL (Lov  (2)oz | Lz
(66GT)96L9 (096)821F  (129)969¢  (61€)26€T  (2¥1)¥29 (6L)zse  (Lg)9e1  (€T)TL (6)ov  (£)oz | 92
(1881)9¢L9  (e6T1T)8¢1F  (€92)969z  (18€)z6eT  (£L1)¥29 (96)zee  (Fe)oer  (6T)zz  (tm)ov  (P)oz | G2
(L¥22)9cL9  (FLe1)8e1y  (L68)969¢  (2op)e6el  (902)¥e9  (S1T)zse  (19)9e1  (¢g)el  (en)ovr  (9)0z | ¥@
(6£92)96L9  (¢191)8¢1¥  (£901)969¢  (c¥g)e6el  (abe)ve9  (ser)ese  (8F)9e1  (Lg)el  (Sn)ov  (9)1e | €&
(990€)96L9  (P281)8¢1¥ (¥ mmﬁvommm (0g9)zeer  (282)¥T9  (9s1)ece  (L9)oger  (1€)er  (81)ov  (9)1gT | @@
(7£8€)96L9  (0912)8e1F  (0TP1)969z  (9zL)z6e1  (gze)veg  (081)ese  (99)9e1  (9¢)z.  (02)or  (L)1T | 1T
(8F07)96L9  (PL¥2)Se1¥  (9191)969¢  (ze8)e6e1  (2Le)ve9  (Log)ese  (aL)ovl  (ah)al  (€2)or  (6)1E | 0T
(219m)1929  (L182)2e1y  (€¥81)969¢  (6¥6)c6e1  (Seh)¥e9  (Leg)ese  (€8)oF1  (eF)LL  (Le)ov  (01)1z | 61
(F922)1929  (c0ze)eery  (2602)969¢  (0801)z6€T  (8L7)629  (992)Lse  (96)oFT  (6%)LL  (92)s¥ (1)1 | ST
(0966)1929  (Fe9g)eety  (L2£2)969Z (G Nmﬁvmmmﬁ (eve)ezo  (2rmere  (6omn)T1PT  (8¢)96  (0€)sh  (01)ST | LT
(0)G0geT (1)zees  (7692)969z  (S8€T)€6ET (2)vreT (0)00L (0)g9z  (2)ov1 (e)9L  (0)Lg | 91
(868)80G€T (196)zees  (£50£)969z  (grc1)¢68T  (98)FHTT (op)10L  (S1)89z  (T1)OWT (6)9.  (0)o¥ | ¢1
(Lz61)808¢T  (08T1)TST8 Awwmvmmmm (G8L1)€6€T  (9LT)S¥CT (98)¥1L  (ge)89z  (zz)ovt  (11)o8  (£)ov | ¥1
(686)2€09T  (£681)7928  (2Fe1)z6es  (619)€08C  (G8T)STTT (6L)esL  (69)89z  (8)L9T  (01)88  (9)1F | €1
(612)88LL1  (0FLT)P928  (L8L1)66€S  (G06)€08C  (LIT)FPCT (0)¥¢6 (opse  (g9)sst (P)zor (99 | a1
(09)78¢61  (6L9¢)sce8  (1¥92)66£S Awmoﬁvbﬁmm (0)T18T (o)etor  (Fr)zze  (1)90z ()T (0)SS | 1T
(1ve1)8920%  (918)68¢TT  (9€9)8808  (£L2)9LTF (0)ge6T  (g9)8c0T  (L1)80v  (g)egz  (0)2zT  (0)09 | OT
(2¥L£)8920T  (glzz)oovel  (812)¥986  (992)8L1F (1v1ge  (z81)8¢0T  (ze)ovy  (T)zge  (DIFT (9)29 | 6
(0)TT0LT (1)G0%9T (0)08L0T (1)195¢ (1)16¥¢ (0)10¥7T (o)1es  (1)pse  (0)6sT  (0)SL | 8
(0)0.80¢  (15€2)ETSIT (0)ozeer  (9S1)0029 (1)L¥8¢ (0)T09T (1)909  (0)sze  (0)z81  (0)98 | 2
(1)¥109€ (1)2L002¢ (0)eLeFT (1)GT¥L (0)zzee (0)8981 (0)g0oL  (1)eLe  (1)ztez  (1)00T | 9
(2892)9€S0¥ (0)6079¢ (1)L¥2LT (1)8688 (z)es6e (0)z¥ee (0)oss  (1)sey  (0)gez  (0)12T | ¢
(1)150¥¢ (1)110EE (0)09S1% (1)€eT1T (2)zs6¥ (1)zosz  (1)z901  (0)oLs  (0)61e  (0)1ST | ¥
(0)0€0zL (1)GTOTF (0)L7.8¢ (1)1E8¥T (1)¥799 (z)gere  (1)o1p1  (0)09L  (1)sek  (1)10T | €
(2)ev0801 (0)¥2099 (0)121€V (1)L¥22T (2)9966 (@)yo9s  (1)sete  (1)6e1T  (1)8€9 (0)€0g | €
(2)68091¢ (1)870zET (7)6£298 (L)oerry  (0)2e661  (9)20z11  (0)esey  (g£)sizz  (9)vLel  (1)909 | T
16091% 670ZET £7298 L6VIT LE661 €IgI1 £6gY 18%% 6LC1 209 | @

"109ReIOUSS 10899UT 11q-g¢ © S LINAS Jo (sesorjyuared ur) (a)p pue (a)y :gT o[qRL

38



(vree)8Lee  (2902)¥90C  (LPET)STET (769)969  (11€)z1e  (FLT)9LT (¥9)89  (ge)9e  (61)0z  (8)0T | €
(z69e)8Lee  (G612)190C  (FPEPT)STET (6£2)969  (1e€)ere  (GST)9LT (69)89  (L8)9¢  (12)oz  (6)oT | 1€
(gz8e)8Lee  (Le€T)P90z  (92GT)SFET (282)969  (zge)ere  (L6T)9LT (e2)89  (ov)9g  (zz)oz (01)OT | 0€
(eL07)8L8¢  (68F2)790C  (STIT)SFET (8€8)969  (cLe)ere  (012)9LT (82)89  (gv)og  (¥g)oz (01)0T | 6C
(6eer)sLee  (2892)¥90  (TELT)SFET (€68)969  (00%)ere  (¥Eg)9LT (e8)89  (sp)og  (¢g)oz (T1)0T | 8C
(cgov)sLee  (9282)¥90z  (9FST)STET (256)969  (92¥)z1e  (6€3)9LT (68)89  (8v)og  (22)oz  (21)OT | L€
Amm@ﬂvamm (F10€)¥7902  (6961)8¥€T  (STOT)969 Aﬂ v)zre  (66z)9LT (¢6)g9  (19)9¢  (62)0z (€1)0T | 9¢
(coze)sLee  (L12e)¥90z  (T0TZ)SPET  (£801)969  (G8¥)TIE Ammmvwnﬁ (zo1)89  (cg)oe  (1£)oz  (FT)OT | T
(L¥22)96L9  (8e¥e)¥90e  (Shea)svel  (19%)e6eT  (819)z1e  (Prr)ese  (601)89  (69)9¢  (en)ov  (P)1C | ¥¢
(6£92)96L9  (L29€)¥90z  (T0¥2)SPeT  (1¥S)e6eT  (PeS)ere  (Per)ese  (911)89  (£9)9e  (¢m)ov  (9)1C | €C
(990€)96L9  (8¢6€)¥90z  (TlSz)SPET  (929)L6€T  (P6S)eTe  (9¢T)ege  (Se1)89  (29)9¢  (8T)o¥  (9)1C | @@
(7£6€)96L9  (Vaey)¥o0z  (8cLz)sSver  (1gL)l6eT  (L£9)zre  (081)¢ge  (PE1)89  (zr)oe  (oz)ov  (L)1E | 1@
(8F07)9GL9  (8€SV)¥90z  (F962)SVET  (LT8)L6ET Aﬂ 9)z1e  (L0z)ece  (8L)ver  (82)9¢  (go)ov  (6)1¢ | 02
Auﬁ@wv@mmm (¢z8e)oc1y  (16T2)8PET  (PF6)L6€T  (LeL)T1e  (Lez)ece  (69)¥er  (09)0L  (Lg)ov  (01)1C | 61
(6¥22)96L9  (012€)9zTy  (ePFe)sver  (GL0T)268T  (S8%)2g9  (69z)ese  (zorm)¥er  (9g)oL  (1€)oF  (¥)6a | ST
(92.62)G€T0T Aﬂww )9z1¥  (GzLe)syer  (0cer)L6e1  (069)ec9  (0g1)6es  (9TT)PET  (F9)0L  (ge)ov  (P)1g | L1
(oLee)cetor  (L2Tv)9zTv  (2how)Svel  (269)6802  (729)zc9  (1L1)6z¢  (1€1)¥ver  (TL)OL (@)LL  (9)1€ | 91
(122%)Ce10T  (LL9¥)9CTH AH P)SveT  (L28)680¢  (L0L)zz9  (8Tg)6ce  (6%1)¥eT  (2R)0L (0)eg8  (6)1€ | o1
(081€)8622T  (90€9)9z1F  (892)z6€¢  (6801)680C  (067)¥e6  (122)62s  (691)¥ET  (26)0L (1)o6 (zr)1ge | ¥1
(£)6199T  (£061)¥528 (chel)zees  (gge1)680C (6 mvvmm (ege)ezs  (go61)PeT  (CT Vowﬂ (0)86 (cr)1€ | €1
(0211)L889T  (0SLT)¥ses (¥ @hﬁvmmmm (6191)680z  (SOT)9GCT Am ¥)62¢ (ovse  (0)o6r  (9)10T  (0)0S | 2T
(2623)2L889T  (G19)6SeTIT  (8¥F5)268S  (996T)6808 (0)z181  (06¥%)62¢ (0)9ge  (0)20z (cT)TOT  (P)IG | 11
(zTly)L889T (¢ mﬁvﬁwomﬂ (zeze)zoee  (09£2)680¢ (0)ee61  (0)1211 (18)%0%  (1)2gz  (0)22T  (0)09 | OT
(¢g ﬁ L).889T (1)129%1 (06T wvmmmm (1)e76¥ (1)¥1ce  (0)svel (0zLy  (0)gse  (D1F1 (0)2L9 | 6
(0)T10L2 (1)50S9T1 (0)08L0T (1)195¢ (Dt6vz  (0)T0FT (r)ogec  (0)esz  (0)6sT  (0)sL | 8
(1)6980¢ (0)7988T (1)61€2T (0)95€9 (1)2782  (0)109T (0209 (0)sze  (0)zsT  (0)98 | 2
(0)6109¢ (0)8002¢ (0)eLevT (1)GT¥L (1)1zee  (0)8981 (0)soL  (r)eLe  (nerez (T)oot | 9
(0)812EF (0)60792 (0)STTLT (1)8688 (0)286¢  (0)zvee (0)oss  (r)esy  (Dwse  (0)ter | ¢
(0)2T0oTs (0)zT0EE (0)09S1% (0)VeTTT (1)es6v  (1)zosz  (1)z9o1  (0)oLs  (0)61¢  (0)1ST | ¥
(1)6202. (0)9T0TF (1)97L8% (0)ze871 (0799 (0)2e2e  (0)L1¥1  (1)6sL  (0)9zF (£)661 | €
(0)G7080T (0)72099 (2)611ET (1)L¥22z (0)8966  (0)909¢  (1)gz1z  (0)ov1T  (0)6€9 (0)€0€ | ©
(7),80912  (0)6¥02E£T (1)ere9s (1)96vFy  (0)2e661  (2)11211  (0)egey  (1)osee  (1)8L21  (¥)€09 | T
16091¢ 6702ET £7298 L6VIT LE66T €11l £GTy 1823 6L31 209 | o

(79 09 €€ ST a 10]) "10jRISUAS I19804Ul 41q-F9 ® se NS Jo (sesoyjuared ur) (a)p pue (a)y :¢] o[qR],

39



40

YGGRTT 94Z¥6 2967 65CTE 6807 T 0TTL  €16T  LTCI 629
(0)9Lg€ (0)£902 (0)L¥€T (0)969 (0)T1E (gt (0099 (0)ee  (0)61
(zg)sLee (2€)¥902 (0z)srer  (01)969 (v)z1e (Dort  (0)29  (0)9g¢  (1)61
(Lot)8Lee (€9)¥902 (ep)srer  (12)969 (6)z1€ (F)oLr1  (0)89  (0)9¢  (0)oz
(F91)828¢  (00T)¥90% (o)srer  (££)969  (F1)T1E (L)or1  (1)89  (19g  (0)oz
(ezg)gLee  (9€1)¥90¢ (68)sver  (¢7)969  (0z)ere  (01)9LT  (2)89  (g)og  (1)oz
(FRz)8Lee  (WLT)¥P90%  (e1T)8¥ET  (89)969  (sg)ere  (P1)9LT  (7)89  ()oe  (T)og
(Lye)sLee  (218)¥790%  (seT)sver  (12)969  (1€)e1e (L1)9LT  (9)89  (£)o¢  (2)0g
(erp)sLee  (zge)¥90z  (S9T)s¥er  (¥8)969  (L8)z1e  (02)9LT  (9)89  (1)9g  (2)oz
(osv)sLee  (¥62)F90T  (T6T)S¥ET  (86)969  (P)zie  (P2)oLT  (L)89  (1)9g  (2)oT
(0eg)sLee  (9ge)¥90z  (0zT)sper  (£11)969  (0¢)z1e  (L2)9LT  (6)89  (9)9g¢  (€)oz
(ez9)gLee  (189)¥90z  (6¥z)sver  (821)969  (L8)zre  (1€)9L1  (01)89  (9)9¢  (£)0z
(669)8L8¢  (Lg#)¥90%  (6L2)8¥eT  (£¥1)969  (¥P9)e1e  (g)orT  (21)89  (L)9g  (¥)0g
(LLL)8L88 (g wvwwom (org)sver  (691)969  (12)z1e  (6£)9L1  (€1)89  (L)9g  (¥)oz
(6e8)8Lee  (G29)F90z  (epe)SPer  (921)969  (82)z1e  (ep)9LT  (¢1)89  (8)9¢  (9)oz
(ep6)8L8€  (929)F90T  (9,£)8¥eT  (£61)969  (98)z1e¢  (SP)9LT  (L1)89  (6)9¢  (9)oT
(zeor)sLee  (0£9)¥90z  (21R)sker  (212)969  (¥6)e1e  (29)9LT  (81)89  (01)9¢  (9)0T
(egr1)8L8¢  (L89)790z  (S¥R)sFel  (1€2)969 (€01)o1e  (L9)9LT  (02)89 (11)9¢  (9)0g
(6121)8L88  (9PL)¥90z  (987)sveT  (092)969  (21T)zre  (29)9L1  (2e)89  (g1)9e (L)
(61€1)8L8¢  (908)790z  (9z9)spel  (122)969 (Te1)eie  (L9)9L1  (¥2)89  (e1)9¢  (L)0T
(ver1)sLee  (028)790z  (899)sveT  (262)969  (TeT)zre  (£2)921  (92)89  (F1)9¢  (8)0¢
(eger)8Lee  (Le6)v90z  (zro)sver  (S1£)969  (TPT)zre  (82)9L1  (82)89  (¢T)9e  (6)0¢
(LP91)82€¢  (900T)790z  (L89)SPeT  (8€€)969  (TCT)zTe  (P8)9L1  (0€)89  (L1)9¢  (6)0C
(L9L1)8L8¢  (080T)P90z  (G0L)8FeT  (£9€)969 (291)a1e  (06)9LT  (££)89 (81)9¢  (01)0T
(z68T)8L8e  (9¢TT)F907  (g6L)8pel  (68€)969  (PLT)z1e  (L6)9LT  (¢e)89  (61)9¢  (T1)0z
(vzoz)sLee  (LegT)P90z  (808)8FeT  (9T7)969  (981)21¢  (FPOT)9LT  (8€)89  (12)9e  (11)0T
(zotz)sLee  (12e1)¥90z  (£98)SveT  (FPF)969  (661)zTe  (TTT)9LT  (19)89  (2g)9e  (21)0e
(g0gz)sLee  (0TFT)P90Z  (126)SPeT  (PLP)969  (z1g)zre  (611)9L1  (€1)89  (¥2)9¢  (£1)0c
(zovz)sLee  (POST)PO0Z  (286)SPeT  (909)969  (9zg)zre  (L2T)9L1  (91)89  (¢2)9e  (¥T1)0c
(vz9z)8Les  (FO9T)T90T Apﬁoﬁvwwmﬁ (079)969 (1¥g)ere  (ce1)9LT  (09)89  (22)9¢  (G1)0T
(96L2)8L8e  (S0LT)F90Z  (9TTT)SPET  (626)969 (L¢g)e1e  (PPT)9LT  (£9)89  (62)9¢  (91)0%
(L26T)8L8e  (618T)F90%  (8STT)8¥ET  (219)969  (¥L2)zie  (egT)9LT  (29)89 (1€)9e  (L1)0g
(oL1€)8L8e  (L£61)F90T  (G921)8FET  (229)969 Amamvmﬁm (€91)9LT  (09)89 (g£)9¢  (81)02
16091¢ 670CE1 £rc98 L6VTV LE66T ¢ICII cqCy 18¢¢C 6,01

(F9 09 €€ ST a 10]) "10}RISUSS I19804Ul 41q-F9 ® se TINS Jo (sesoyjuared ur) (a)p pue (a)y JT o[qrR],



U2 i X

(1) SIMD-oriented Fast Mersenne Twister: a 128-bit
Pseudorandom Number Generator,
Mutsuo Saito and Makoto Matsumoto,
Monte Carlo and Quasi-Monte Carlo Methods 2006,
Springer, (2008) 607-622.

(2) A Fast Stream Cipher with Huge State Space and
Quasigroup Filter for Software,
Matsumoto, M., Saito, M., Nishimura, T. and Hagita,
M.
Selected Areas in Cryptography 2007, Lecture Notes
in Computer Science (LNCS), vol. 4876, (2007)
246-263.



