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Abstract

Ignoring distortions, the social benefit from an urban transportation improvement is typically

measured as the reduction in transportation costs at a particular location, holding travel fixed at

the pre-improvement level, summed over all locations. The result has been seen in specific urban

transportation models, however, not formally derived as a general result. Through a transformation

of variables first employed in Arnott and Stiglitz (1981), this paper adopts a di↵erent perspective

to generalize the result. From this perspective, the benefits of a transportation improvement derive

from the increase in the residential land area of better accessibility that the improvement brings

about. The generalized result tells that a transportation improvement changes the land area at

varying levels of accessibility, as well as land rents throughout the city, however, the social benefit

of the transportation improvement is then measured as the increase in aggregate di↵erential land

rents due to a change in land area at each level of accessibility, rather than that due to a change in

land rent, by holding the function relating land rent to accessibility at its pre-improvement levels.

This paper presents this result by using a basic monocentric model as a vehicle of demonstration

and then shows that the result generalizes beyond the geographic features of the city, to a broad

class of first-best urban economies with multiple transportation modes and employment centers

and multiple household groups.
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1 Introduction

Ignoring distortions, the social benefit from an urban transportation improvement is typically mea-

sured as the reduction in transportation costs at a particular location, holding travel fixed at the

pre-improvement level, summed over all locations. The result has been seen in a range of urban trans-

portation models, each of which assumes its specific geographic features. However, the result is not

formally derived as a general result. Through a transformation of variables first employed in Arnott

and Stiglitz (1981), this paper adopts a di↵erent perspective to generalize the result. It measures the

accessibility of each location, and then regards a transportation improvement as raising that location’s

accessibility. The social benefit of the transportation improvement derive from an increase in the resi-

dential land area of better accessibility that the improvement brings about. The generalized result tells

that a transportation improvement changes the quantities of land at di↵erent accessibility levels as

well as land rents throughout the city, however, the social benefit of the transportation improvement is

then measured as the increase in aggregate di↵erential land rents due to a change in land area –rather

than that due to a change in land rent– summed over all levels of accessibility, holding the function

relating land rent to accessibility at its pre-improvement levels. This paper start out by presenting

this result in the context of a basic monocentric city model precisely for expositional simplicity, and

then shows that this result is robust to the generalization not only to the geographic features of the

city and its transportation network, but also to a broad class of first-best urban economies such as

those with endogenous time allocation, multiple household groups, and multiple transportation modes

and employment subcenters, as well as the use of land in transportation and tra�c congestion.

More formally: In the basic monocentric model, where ⌘ denotes transportation capacity, de-

fine the transportation cost shape of the city ⌅ (C; ⌘) to be the residential land area for which

transportation costs to the city center are less than or equal to C with ⇠ (C; ⌘) = d⌅ (C; ⌘) /dC,

R (C; ⌘) be the equilibrium land rent at C, and R
A

be the agricultural rent. Letting subscript 0

denote the pre-improvement equilibrium, the marginal social benefit from a transportation improve-

ment equals
R

C̄

0 (R (C; ⌘0)�R
A

) @⇠ (C; ⌘0) /@⌘dC where C̄ is transportation costs to the city center

at the city boundary. Also, where K (⌘) denotes the construction cost of capacity ⌘, with opti-

mal transportation capacity, ⌘⇤, K 0 (⌘⇤) =
R

C̄

0 (R (C; ⌘⇤)�R
A

) @⇠ (C; ⌘⇤) /@⌘dC. It can be show

that the change in the aggregate di↵erential land rent has two parts:
R

C̄

0 (R (C)�R
A

) @⇠ (C) /@⌘dC

and
R

C̄

0 ⇠ (C) @ (R (C)�R
A

) /@⌘dC. However, optimality calls for only the former to be equal to the

marginal cost. In words, the marginal social benefit of a transportation improvement equals the in-

crease in aggregate di↵erential land rents it induces due to a change in land area, not in the land rent,

evaluated at pre-improvement rents, and the optimal level of capacity is such that the marginal social

benefit of a transportation improvement equals the marginal construction cost.

Section 2 derives the result for the basic monocentric model. Section 3 examines how the result

generalizes when the model is extended in a variety of ways in the direction of realism. Section 4

relates the result to previous results obtained in the urban land use literature.
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2 Basic Model and Main Result

2.1 Standard monocentric land use models

We first set up and review a standard land use model in which a fixed number of identical households

reside, commute and work. Production occurs within the central business district (CBD). We assume

full employment; one member per household commutes to the CBD and works for fixed hours. This

labor is the sole production factor, with which generic good is produced under constant returns to

scale. Each household receives an equal share of the generic good as a daily wage, say W . The size of

and, therefore, the transportation cost within the CBD are assumed to be negligible.

Let us denote by ↵ the fraction of land ownership by city dwellers, with ↵ 2 [0, 1] . Thus, ↵ = 0

means that all land is owned by absentee landlords, and ↵ = 1 means that all land is owned by

residents. There is an alternative use of the land for agriculture with a uniform opportunity cost R
A

.

The land allocated to the transport network is not considered.

Households’ problem

Let (x1, x2) represent a location in the city, say in polar coordinate where x1 is a radial distance from

the CBD and x2 is an angler displacement, and C (x1, x2) be the cost of a round-trip commute from

(x1, x2) to the CBD. Given the transportation capacity ⌘ and resulting commuting cost C (x1, x2) for

all (x1, x2), each household chooses a location (x1, x2) and the amount of consumption of residential

land Q and all other non-residential goods Z as a numeraire composite good so as to maximize utility

subject to its budget constraint. In addition to the wage income it earns in the CBD, each household

receives, according to its ownership of land, an equal share of the aggregated di↵erential land rent

denoted by �. Households also pay a lump-sum tax T to finance transport infrastructure.

We here describe the dual of the above. When we denote the land rent at location (x1, x2) by
eR (x1, x2), each household’s expenditure minimization problem becomes

E
⇣

eR (x1, x2) , U ; ⌘
⌘

= min
Z,Q

Z + eR (x1, x2)Q

s.t. U = U (Z,Q)

where E is the expenditure function. Solving this minimization problem yields the compensated

demand functions

Qc = Qc

⇣

eR (x1, x2) , U
⌘

Zc = Zc

⇣

eR (x1, x2) , U
⌘

.

The bid rent function eR (x) is the maximum amount that a household is willing to pay for a land lot

of unit area provided that it achieves a given utility level:

eR (x1, x2) =
1

Qc



W � T + ↵
�

N
� C (x1, x2)� Zc

�

.
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Spatial equilibrium

The homogeneity of households implies that they achieve the same level of utility regardless of their

location. We denote the spatial equilibrium level of utility by U . The land rent adjusts across locations

to yield the same utility level.

Let N be the number of households and R be the set of all locations in the city such that R ⌘
n

r, ✓
�

�

�

eR (x1, x2) � R
A

o

, where R
A

is an agricultural rent that is the opportunity cost of land. The

fact that population N resides within the city area R yields that

N =

ZZ

x1,x22R

x1dx1dx2

Qc

⇣

eR (x1, x2) , U
⌘ . (1)

At the city boundary, the residential bid rent must be equal to the agricultural land rent. This gives

eR (x̄1, x̄2) = R
A

(2)

where (x̄1, x̄2) represent the location at the city boundary. The aggregate di↵erential land rent � is

then finally obtained as

� =

ZZ

x1,x22R

⇣

eR (x1, x2)�R
A

⌘

x1dx1dx2 (3)

which is redistributed to the city dwellers and thus constitutes a part of their budget, according to

the share of land ownership ↵. Solving Equations (1), (2) and (3) together yields U , (x̄1, x̄2) and � in

terms of all of the exogenous variables and the lump-sum tax T .

2.2 A New Way of Evaluating the Benefits of a Transportation Improve-

ment

Calibrating the above set of spatial equilibrium conditions for the optimal transport network requires

specifying the geographic features of the city. This is the point of departure among studies in the

literature, where each model goes a separate way according to their model specifications, to find the

above mentioned property that optimum is such that social benefit is equal to transport time or cost

reduction multiplied by travel volume at pre-improvement level at each location, summed over all

locations. This result in the literature is robust in the sense that it has always been holding in these

specific models so far, but not in the sense that it is established to hold in general. We attain this by

using isomorphism; isomorphism abstracts away the geographic features of the city such as that of a

monocentric city, which we used so far just to describe the spatial equilibrium. We will see how it is

generalized in this section.

Rewriting the above spatial equilibrium

Using isomorphism, we can express the above set of spatial equilibrium equations in terms of the

commuting cost at each location.1 Let us redefine the land rent as a function of the transportation

1The idea of isomorphism was first introduced by Arnott and Stiglitz (1981), who described the spatial equilibrium
of a monocentric city in terms of transport cost as a measure of distance.
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cost C and denote it by R. That is,

R (C (x1, x2)) = eR (x1, x2) .

Using this, we rewrite the optimal consumption of lots and composite goods in terms of C:

Q⇤ (C) = Qc

�

R (C) , U
�

(4)

Z⇤ (C) = Zc

�

R (C) , U
�

(5)

where U is the spatial equilibrium level of utility as obtained above. With these items, land rent R (C)

satisfies the following:

R (C) =
1

Q⇤ (C)



W � T + ↵
�

N
� C � Z⇤ (C)

�

. (6)

We define ⇠ (C; ⌘) dC as the land area where the transportation cost is equal to C given transport

capacity ⌘. That is, by letting ⌅ (C; ⌘) be the area of the city where the transportation cost is less

than or equal to C, we have ⇠ (C; ⌘) = d⌅ (C; ⌘) /dC for C � 0. The spatial equilibrium can now be

rewritten in terms of C:

N =

Z

C̄

0

⇠ (C; ⌘)

Q⇤ (C)
dC (7)

R
�

C̄
�

=
W � T + ↵�/N � C̄ � Z⇤ �C̄

�

Q⇤
�

C̄
� = R

A

(8)

� =

Z

C̄

0
(R (C)�R

A

) ⇠ (C; ⌘) dC (9)

where C̄ is the transportation cost at the city boundary, i.e., C̄ = C (x̄). The equilibrium utility U ,

the transportation cost at the city boundary C̄, and the aggregated di↵erential land rent � satisfy the

above three equations.2

The generalized optimality condition

The construction cost of the transport network depends on the characteristics of the network improve-

ment, such as the width and/or length of highways and the frequency and capacity of a railway. We

denote the construction cost and the characteristics of the transport network by K and a vector ⌘,

respectively, that is,

K = K (⌘) . (10)

Transport authority is assumed to maintain a balanced budget:

K = TN. (11)

2It can be shown that the ratio of the aggregate transport cost to the aggregate di↵erential land rent becomes

R C̄
0

C⇠(C)
Q⇤(C)dC

R C̄
0

⌅(C)
Q⇤(C)dC

as implied by Arnott and Stiglitz (1981). See Appendix A.3.
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With a slight abuse of notation, let K
⌘

be @K/@⌘
i

where ⌘
i

is an arbitral element of the transport

network characteristics vector ⌘. For notational simplicity, we abbreviate its subscript i in what

follows. The transport authority’s problem is then to maximize the equilibrium utility U by optimizing

characteristics of the transport network ⌘. Total di↵erentiation of spatial equilibrium conditions (7)

through (9) as well as the construction technology and budget constraints faced by the transport

authority given in (10) and (11), together with dU/d⌘ = 0 yields the necessary conditions for the

optimal transport network.3

Optimality then implies that

K
⌘

+ (1� ↵)
d�

d⌘
=

Z

C̄

0
(R (C)�R

A

)
@⇠ (C)

@⌘
dC (12)

and that

d�

d⌘
�N

dC̄

d⌘
=

Z

C̄

0
(R (C)�R

A

)
@⇠ (C)

@⌘
dC (13)

where in the second line we use the fact that from (9), the change in the aggregate di↵erential land rent

� from a marginal improvement in transport network characteristics ⌘ consists of two parts, namely,

one due to a change in land area and another due to a change in land rent at each level of commuting

cost:
d�

d⌘
=

Z

C̄

0
(R (C)�R

A

)
@⇠ (C)

@⌘
dC +

Z

C̄

0
⇠ (C)

@ (R (C)�R
A

)

@⌘
dC. (14)

The right-hand side of the optimality condition (12) is the same as the first term of the marginal

aggregate di↵erential land rent given in (14), i.e., the change in the aggregate di↵erential land rent

� due to a change in land area at each level of commuting cost. We summarize this result in the

following proposition.

Proposition 1. In the optimal transport network, the marginal cost of transport network improvement

plus the payment of land rent to the absentee landlord, if any, is equal to the change in the aggregate

di↵erential land rent due to a change in the land area at each level of commuting cost while holding

the land rent constant at the pre-improvement level.

Su�ciency in the case of resident land ownership

The optimality condition for the case of resident land ownership immediately obtains by letting ↵ = 1

in (12):

K
⌘

=

Z

C̄

0
(R (C)�R

A

)
@⇠ (C; ⌘⇤)

@⌘
dC, (15)

for which the su�ciency condition is straightforwardly obtained as

K
⌘⌘

>
d

d⌘

(

Z

C̄

0
(R (C)�R

A

)
@⇠ (C; ⌘⇤)

@⌘
dC

)

, (16)

3Appendix A.1 provides the derivation.
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i.e., the gradient of the marginal construction cost should be strictly greater than the gradient of the

marginal benefit that is the aggregate di↵erential land rent due to the change in land area with respect

to the transportation capacity ⌘.4

The optimality condition (15) and su�ciency condition (16) contain neither the change in the ag-

gregate di↵erential land rent d�/d⌘ nor the change in the land rent @R/@⌘ at any location. This result

carries policy relevance since in determining the optimal transport improvement, the transport author-

ity only needs to know the resulting change in commuting costs in the city and not the anticipated

change in the land rent, which is considerably more di�cult to estimate.

An example

Our optimality condition can be indeed considered as a generalization of the results of more specific

models in the literature. One clear example is that by Kanemoto (1984). Kanemoto (1984) investi-

gated the optimal railway network in a monocentric city with resident land ownership.5 In this city,

commuters walk circumferentially to the nearest radial railway that is accessible anywhere along it

and then take the railway to travel radially to the CBD. By letting x1 be the radial distance from

the CBD and x2 be the circumferential distance from the nearest railway, he found that the optimal

railway length is such that

2

Z

x̄2(x̄1)

0

h

eR (x̄1, x2)�R
A

i

dx2 = K
⌘

(17)

where bar (�) indicates the city boundary, and K
⌘

is the marginal cost of extending the railway a unit

distance.

This is indeed a special case of our general optimality condition. Extending the railway does not

change the commuting cost anywhere in the city except at the margin. That is, @⇠ (C (x̄1, x2)) /@⌘ =

2 (@C (x̄1, x2) /@x2)
�1 for any C 2

⇥

C (x̄1, 0) , C̄
⇤

and zero otherwise.6 Hence, our optimality condition

in (15) transforms into the following:

K
⌘

= 2

Z

C̄

C(x̄1,0)
(R (C)�R

A

)

✓

@C (x̄1, x2)

@x2

◆�1

dC.

Substituting dC = [@C (x̄1, x2) /@x2] dx2 in the above integration together with the fact that C̄ =

C (x̄1, x̄2 (x̄1)) yields Kanemoto’s result in (17).

3 Extensions

Here in this section we show that the optimality condition is indeed extends to a wide class of urban

land use models, namely those with endogenous time allocation, multiple transportation modes and

employment centers, and multiple household groups.

4See Appendix A.2 for its derivation.
5Another example is the result by Anas and Moses (1979). Anas and Moses (1979) discussed the optimization of the

width of radial highways in a two-dimensional monocentric city with absentee landlords. Their optimization condition
can also be derived as a special case of our results shown in equations (12) and (13).

6It is multiplied by two for both sides of the railway.
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Time costs of travel

The results are unchanged when we alternatively consider households optimizing their time allocation

among work, commuting and leisure. Let L be the leisure time consumption, and replace W with wH,

where w is the hourly wage and H is the household’s time endowment. By defining the land rent at

location (r, ✓) as eR (x1, x2), the household’s budget constraint becomes

Z + eR (x1, x2)Q+ wL = wH � T + ↵
�

N
� C

h

(x1, x2)

where C
h

(x1, x2) is now treated as the generalized transportation cost that includes both the monetary

and time costs of commuting. That is,

C
h

= Cm

h

(x1, x2) + wCt

h

(x1, x2)

where Cm

h

and Ct

h

are the monetary and time costs, respectively, for a round-trip commute from

(x1, x2) to the CBD via route h.

Multiple routes and multiple CBDs

A city can contain multiple travel modes, and their combinations create di↵erent travel routes from

a given location to the CBD. For example, modes of travel can include automobile, rail, biking, and

walking. Commuters can choose a route say on highways, city streets, or both to travel to the CBD,

denoted by h. Solving the household’s problem yields the indirect utility function conditional on the

location and the travel mode h.

In other words, each household chooses a travel route h to maximize this conditional indirect

utility. This problem is identical to the route-choice problem of minimizing the transportation cost.

Let C
h

(x1, x2) be the cost of a round-trip commute from (x1, x2) to the CBD via route h. The bid

rent function eR
h

(x1, x2) of a household commuting via route h is

eR
h

(x1, x2) =
1

Qc



W � T + ↵
�

N
� C

h

(x1, x2)� Zc

�

.

Because the land is given to the highest bidder, the land rent is the maximum of the bid rents:

eR (x1, x2) = max
h

eR
h

(x1, x2) .

The argument of the maximum here coincides with that of the minimum of the transportation cost

over routes h. That is, residents in each location chooses a route to the CBD that incurs the lowest

commuting cost. Then we define C (x1, x2) as the resulting minimum commuting cost at location

(x1, x2) such that

C (x1, x2) = min
h

C
h

(x1, x2) (18)

to obtain the above results.

A case with multiple CBDs with di↵erent productivities can be interpreted within the above setting.

Let C
h,i

(x1, x2) be the transportation cost from (x1, x2) to the ith CBD via route h. Define i⇤ such

that i⇤ = argmax
i

W
i

�C
i

(x1, x2), where C
i

(x1, x2) = min
h

C
h,i

(x1, x2), and W
i

is the daily wage in

the ith CBD. Then, results are unchanged by defining the transportation cost C (x1, x2) alternatively

8



as

C (x1, x2) = C
i

⇤ (x1, x2) +
⇣

max
i

W
i

�W
i

⇤

⌘

i.e., adding the wage di↵erence (max
i

W
i

�W
i

⇤) to the commuting cost C
i

⇤ (x1, x2), while viewing

max
i

W
i

as W . By defining the commuting cost in this way, everything then follows as in the previous

section above.7

Heterogeneous residents

Let us consider two groups of households that di↵er in income.8 We denote byW
r

andW
p

the income of

rich and poor households, respectively.9 We denote the equilibrium level of utility by U
j

for household

class j = r, p. Using this, we rewrite the optimal consumption of lots and composite goods in terms of

C:

Q⇤
j

(C) = Qc

j

�

R
j

(C) , U
j

�

(19)

Z⇤
j

(C) = Zc

j

�

R
j

(C) , U
j

�

. (20)

With these items, bid rent R
j

(C) satisfies the following:

R
j

(C) =
1

Q⇤
j

(C)



W
j

� T + ↵
�

N
� C � Z⇤

j

(C)

�

. (21)

Di↵erentiating the above with respect to the commuting cost C and noting that dU
j

/dC = 0 in a

spatial equilibrium yields
dR

j

dC
= � 1

Q⇤
j

(C)
.

Assuming that land is normal, this means that for any given land rent R and commuting cost C, the

bid rent curve of the poor is steeper than that of the rich. This further implies that their bid rents

intersect only once, say at Ĉ, and that poor households live “inside” of Ĉ and the rich live “outside”

of Ĉ.10

The spatial equilibrium conditions are then expressed as

N
p

=

Z b
C

0

⇠ (C)

Q⇤
p

(C)
dC

N
r

=

Z

C̄

b
C

⇠ (C)

Q⇤
r

(C)
dC

R
p

⇣

bC
⌘

= R
r

⇣

bC
⌘

R
r

�

C̄
�

=
W

r

� T + ↵�/N � C̄ � Z⇤ �C̄
�

Q⇤
r

�

C̄
� = R

A

7Viewing this wage di↵erence (maxi Wi �Wi⇤ ) as a cost of “teleportation” simply tells that residents can now choose
to take either the “teleportation” or “transportation” route from any CBDs to the CBD with the highest wage, whichever
the cost is lower. Interpreting multiple CBDs in this way widens the scope of our “city” to a much greater geographical
area, such as an entire country, where internal migration is free but immigration is not.

8The result readily extends to the case of more than two household classes.
9Here and in what follows, subscripts r and p denote rich and poor, respectively.

10That is, the poor live in the area where the commuting cost is in
h
0, Ĉ

i
and rich live where it is in

h
Ĉ, C̄

i
.
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� =

Z b
C

0
(R

p

(C)�R
A

) ⇠ (C) dC +

Z

C̄

b
C

(R
r

(C)�R
A

) ⇠ (C; ⌘) dC.

The first two lines show that the population of rich and poor, namely N
r

and N
p

, must fit in the area

with commuting costs above and below Ĉ, respectively, where N
r

+N
p

= N . The third line indicates

equality of bid rents of rich and poor at Ĉ. The fourth line indicates that at the city boundary, the

bid rent of the rich is equal to the agricultural rent. The last line gives the aggregate di↵erential land

rent �.

The transport authority again faces the budget constraint that the construction cost of the transport

network K is financed by the lump-sum tax T :

K = TN.

Subject to the spatial equilibrium conditions and the budget constraint above, the transport authority

maximizes social welfare ⌦, which is a function of equilibrium utility for rich and poor:

max
⌘

⌦ = ⌦
�

U
r

, U
p

�

.

At the optimum, we thus have

d⌦

d⌘
=

@⌦

@U
r

dU
r

d⌘
+

@⌦

@U
p

dU
p

d⌘
= 0. (22)

Note here that the opportunity cost of marginally increasing the spatial-equilibrium level of utility

for rich and poor is
Z

C̄

b
C

�
r

(C)
⇠ (C; ⌘)

Q⇤
r

(C)
dC

Z b
C

0
�
p

(C)
⇠ (C; ⌘)

Q⇤
p

(C)
dC

respectively, where �
j

= @E
j

/@U
j

is the marginal expenditure necessary to increase the utility of type

j, and ⇠ (C) /Q⇤
j

(C) is the population at a location where the commuting cost is C for j = r, p. We

therefore define the social welfare function such that at the optimum, the marginal rate of substitution

is equal to the relative price given as above, or equivalently that

@⌦/@U
r

@⌦/@U
p

=

R

C̄

b
C

�
r

(C) ⇠(C;⌘⇤)
Q

⇤
r(C) dC

R b
C

0 �
p

(C) ⇠(C;⌘⇤)
Q

⇤
p(C) dC

. (23)

Total di↵erentiation of the spatial equilibrium conditions implies

K
⌘

+ (1� ↵)
d�

d⌘
=

Z b
C

0
(R

p

(C)�R
A

)
@⇠ (C; ⌘⇤)

@⌘
dC +

Z

C̄

b
C

(R
r

(C)�R
A

)
@⇠ (C; ⌘⇤)

@⌘
dC

�
"

Z b
C

0
�
p

(C)
⇠ (C; ⌘⇤)

Q⇤
p

(C)
dC

#

dU
p

d⌘
�
"

Z

C̄

b
C

�
r

(C)
⇠ (C; ⌘⇤)

Q⇤
r

(C)
dC

#

dU
r

d⌘
(24)
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where the second line goes to zero by using equations (22) and (23).11 By noting that R (C) =

max {R
r

(C) , R
p

(C)} and hence that

R (C) =

8

<

:

R
p

(C) , 8C 2
h

0, Ĉ
i

R
r

(C) , 8C 2
h

Ĉ, C̄
i

,

this finally yields the same optimality condition as described in Proposition 1.

4 Relationships to corollaries in the land-use models

In this section, we contrast our result with other well-known corollaries in land-use models.

Samuelson condition in land-use models

The Samuelson condition in land-use models states that the marginal project benefit is equal to the

marginal project cost. In our case, there is no direct project benefit; benefits arise indirectly through

the reduction in commuting costs and savings in the payment to absentee landlords, if any. This is

expressed in our notation as

K
⌘

= � d

d⌘

⇥�

NC̄ � �
�

+ (1� ↵)�
⇤

(25)

which is confirmed by equating the left hand sides of our optimality conditions in (12) and (13).12

For the case of resident land ownership, this becomes

K
⌘

= � d

d⌘

⇥

NC̄ � �
⇤

.

Noting that NC̄ � � is the aggregate transportation cost, it simply confirms that the marginal cost

of a transport network improvement is equal to the resulting savings in the aggregate transportation

cost. For the case of absentee landlords, it becomes

K
⌘

= � d

d⌘

⇥

�+
�

NC̄ � �
�⇤

,

which then verifies that optimality implies that the the marginal cost of a transport network improve-

ment is equal to the resulting savings in the land rent payment and aggregate transportation cost in

the case of absentee landlords.

Henry George theorem

The Henry George Theorem states that at the optimal population, the shadow profit from decreasing-

returns-to-scale production and the shadow loss from increasing-returns-to-scale production are equal.13

The production of residential land area exhibits decreasing returns to scale in terms of aggregate com-

muting costs, and transport infrastructure and the land rent payment to the absentee landlord exhibit

11See Appendix A.4 for the derivation.
12Recall that our primary result as summarized in Proposition 1 is given by (12), which is therefore clearly di↵erent

from the Samuelson condition.
13See Arnott (2004).
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increasing returns to scale, while the production of the other good exhibits constant returns to scale.

In our context, the aggregate transportation cost is NC̄�� and the payment to the absentee landlord

is (1� ↵)�. Therefore, for the Henry George Theorem to hold, it must be the case that

N
d
�

NC̄ � �
�

dN
�
�

NC̄ � �
�

= N
d [K + (1� ↵)�]

dN
� [K + (1� ↵)�] , (26)

which is indeed implied by dU/dN = 0.

Heuristically, this may be easiest to see by focusing on the utility of the households living at the city

boundary. Since at the city boundary the relative price between Z and Q is fixed at 1/R
A

, maximizing

utility there reduces to maximizing Z. Note that when Z is maximized with respect to N , we have

Z = d (NZ) /dN . From the local constant returns at the optimal population, the resource constraint

gives Z as follows:

Z = W � 1

N

⇥

K +
�

NC̄ � �
�

+ (1� ↵)�
⇤

.

Solving Z = d (NZ) /dN and rearranging terms gives (26).14

Capitalization hypothesis

According to the capitalization hypothesis, the total marginal project benefit must be equal to the

marginal aggregate di↵erential land rent. Therefore, for the capitalization hypothesis to hold, we need

� d

d⌘

⇥

(1� ↵)�+
�

NC̄ � �
�⇤

=
d�

d⌘
.

This will hold, for example, when (i) ↵ = 1 and dC̄/d⌘ = 0, i.e., all land is owned by residents

and the transport network improvement changes the commuting cost everywhere except at the city

boundary; alternatively, (ii) ↵ = 0, and �NdC̄/d⌘ = d�/d⌘, i.e., the change in the commuting cost at

the city boundary is equal to the change in the di↵erential land rent per household. However, in our

model settings, the capitalization hypothesis in general does not hold, even given the optimal transport

network.

5 Conclusion

This paper presented a new way of evaluating the benefits of a transportation improvement for the

basic monocentric model, and extended it to a broad class of first-best urban economies, i.e., multiple

household groups, multiple transportation modes, and multiple employment subcenters. Ignoring

distortions, the social benefit from an urban transportation improvement is typically measured as the

reduction in transportation costs at a particular location, holding travel fixed at the pre-improvement

level, summed over all locations. Through a transformation of variables first employed in Arnott and

14Alternatively, comparative statics analysis yields the same result, as we have

dU = �UZdC̄ � UZdT + ↵
UZ

N
d�� ↵

UZ�

N2
dN

where letting dU/dN = 0 and noting K = TN yield (26).
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Stiglitz (1981), we derived that the optimal transportation network requires the marginal cost of the

network improvement – plus the payment to absentee landlord, if any – to be equal to the resulting

change in the aggregate di↵erential land rent due to a change in land area at each level of commuting

cost, evaluated at the current levels of land rent. This optimality condition for the transportation

network improvement has been found in more specific city models in the literature that address the

shape and size of a city and its transportation network. The condition for an optimal railway network

by Kanemoto (1984) and that for an optimal highway width by Anas and Moses (1979) are relevant

examples.

The result carries policy implications in the case of resident land ownership. Information on the

change in the land rent resulting from the transport improvement is not required, which is usually

much more di�cult to predict than the resulting change in commuting costs. We also examined the

relationship of the results to the corollaries in land use models. While we confirmed the Samuelson

condition to hold and interpreted the Henry George theorem within our model setup, the capitalization

hypothesis does not hold in general. Future studies could include a congestion externality, housing

rent rather than land rent, transportation capacity using up space, and endogenous trip frequency.

Population growth can also be introduced, as Miyao (1977) did for a monocentric city, in general

settings.
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A Derivations of Relevant Conditions

A.1 Derivation of optimality conditions

Total di↵erentiation of equations (7) through (11) as well as the network characteristics ⌘ yields
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0 =

Z

C̄

0

1

Q⇤ (C)



� ⇠ (C)

Q⇤ (C)
dQ⇤ +

@⇠ (C)

@⌘
d⌘

�

dG+
⇠
�

C̄
�

Q⇤
�

C̄
�dC̄

0 = �dT + ↵
d�

N
� dC̄ � dZ⇤|

C̄

�R
A

dQ⇤|
C̄

d� =

Z

C̄

0

" 

�dT + ↵d�
N

� � (C) dU

Q⇤ (C)

!

⇠ (C) + (R (C)�R
A

)
@⇠ (C)

@⌘
d⌘

#

dC

dK = K
⌘

d⌘

dT =
dK

N

where � (C) ⌘ @E/@U = Zc

U

+ R (C)Qc

U

.15 From the compensated demand functions (4) and (5) we

get

dQ⇤ = Qc

R

dR+Qc

U

dU

dZ⇤ = Zc

R

dR+ Zc

U

dU

and di↵erentiation of the bid rent function (6) yields

Q⇤dR+RdQ⇤ = �dT + ↵
d�

N
� dZ⇤.

By noting the Zc

R

+RQc

R

= 0 as implied by Shephard’s lemma, we have

dR =
1

Q⇤ (C)



�dT + ↵
d�

N
� � (C) dU

�

and

dQ⇤ =
Qc

R

Q⇤ (C)

✓

�dT + ↵
d�

N

◆

+



Qc

U

� � (C)Qc

R

Q⇤ (C)

�

dU

dZ⇤ =
Zc

R

Q⇤ (C)

✓

�dT + ↵
d�

N

◆

+



Zc

U

� � (C)Zc

R

Q⇤ (C)

�

dU.

Using these, we can rewrite the total di↵erentiation equations above as follows:

0 = �
"

Z

C̄

0

⇠ (C)

(Q⇤ (C))3
Qc

R

dC

#

✓

�dT + ↵
d�

N

◆

�
"

Z

C̄

0

⇠ (C)

(Q⇤ (C))2

✓

Qc

U

� � (C)Qc

R

Q⇤ (C)

◆

dC

#

dU

+

"

Z

C̄

0

1

Q⇤ (C)

@⇠ (C)

@⌘
dC

#

d⌘ +
⇠
�

C̄
�

Q⇤
�

C̄
�dC̄ (27)

dC̄ = �dT + ↵
d�

N
� �

�

C̄
�

dU (28)

d� = N

✓

�dT + ↵
d�

N

◆

�
"

Z

C̄

0
� (C)

⇠ (C)

Q⇤ (C)
dC

#

dU

+

"

Z

C̄

0
(R (C)�R

A

)
@⇠ (C)

@⌘
dC

#

d⌘ (29)

dT =
1

N
K

⌘

d⌘, (30)

15Subscripts indicate partial derivatives.
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where the third equation uses
R

C̄

0 ⇠ (C) /Q⇤ (C) dC = N.

Now, by letting dU/d⌘ = 0, we finally obtain the following optimality conditions:

K
⌘

+ (1� ↵)
d�

d⌘
=

Z

C̄

0
(R (C)�R

A

)
@⇠ (C)

@⌘
dC (31)

dC̄

d⌘
=

1

N

"

Z

C̄

0
⇠ (C)

@ (R (C)�R
A

)

@⌘
dC

#

(32)

where deriving dC̄/d⌘ in the second line uses (14).

A.2 Su�ciency condition under resident land ownership

Solving (27) through (30) gives

dU

d⌘
=

�K
⌘

+
R

C̄

0 (R (C)�R
A

) @⇠(C)
@⌘

dC
R

C̄

0 � (C) ⇠(C)
Q

⇤(C)dC
.

Using the first-order optimality condition dU/d⌘ = 0, the second-order derivative at the optimum is

expressed as

d2U

d⌘2
=

�K
⌘⌘

+ d

d⌘

n

R

C̄

0 (R (C)�R
A

) @⇠(C)
@⌘

dC
o

R

C̄

0 � (C) ⇠(C)
Q

⇤(C)dG
.

Because � (C) and ⇠ (C) are positive, su�ciency condition d2U/d⌘2 < 0 eventually implies (16).

A.3 Deriving the result of Arnott and Stiglitz (1981) in our model

The aggregate transport cost (ATC) is the sum of the total transport cost within the city’s boundaries,

which is

ATC =

Z

C̄

0

C⇠(C)dC

Q⇤(C)
.

Integrating by parts rewrites our aggregate di↵erential land rent (ADRL) as

ADLR =
R

C̄

0 (R (C)�R
A

) ⇠(C)dC

=
R

C̄

0 R (C) d⌅(C)
dC

dC �R
A

⌅
�

C̄
�

= �
R

C̄

0
dR(C)
dC

⌅ (C) dC.

Di↵erentiating R (C) with respect to C and noting that dU/dC = 0 in a spatial equilibrium yields

dR (C)

dC
= � 1

Q⇤ (C)
.

Substituting this into the above gives
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ATC

ADLR
=

R

C̄

0
1

Q

⇤(C)C⇠(C)dC
R

C̄

0
1

Q

⇤(C)⌅(C)dC

which is the same as Equation (11) of Arnott and Stiglitz (1981).

A.4 Total di↵erentiation of spatial equilibrium conditions in heterogeneous

resident case

Total di↵erentiation of the spatial equilibrium equation for the aggregate di↵erential land rent �, as

well as the construction cost function and transport authority’s budget constraint, gives

d� =

Z b
C

0

" 

�dT + ↵d�
N

� �
p

(C) dU
p

Q⇤
p

(C)

!

⇠ (C) + (R
p

(C)�R
A

)
@⇠ (C)

@⌘
d⌘

#

dC

+

Z

C̄

b
C

" 

�dT + ↵d�
N

� �
r

(C) dU
r

Q⇤
r

(C)

!

⇠ (C) + (R
r

(C)�R
A

)
@⇠ (C)

@⌘
d⌘

#

dC

dK = K
⌘

d⌘

dT =
dK

N

where the first equation exploits that

dR
j

=
1

Q⇤
j

(C)



�dT + ↵
d�

N
� dC � �

j

(C) dU
p

�

.

By noting that
R b
C

0 ⇠ (C) /Q⇤
p

(C) dC +
R

C̄

b
C

⇠ (C) /Q⇤
r

(C) dC = N the above reduces to (24).
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