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Abstract. MIF (Motion Implies a Force) misconception is commonly observed 

in elementary mechanics learning where students think some force is applied to 

moving objects. This paper reports a practical use of Error-based Simulation 

(EBS) for correcting students’ MIF misconceptions in a junior high school and 

a technical college. EBS is a method to generate a phenomenon by using stu-

dents’ erroneous idea (e.g., if a student thinks forward force applied to a skater 

traveling straight on ice at a constant velocity, EBS shows the skater acceler-

ates). Such a phenomenon is supposed to work as a counterexample to students’ 

misconception. In the practice, students first worked on pre-test of five prob-

lems (called ‘learning task’), in each of which they drew all the forces applied 

to objects in a mechanical situation. They then worked on the same problems on 

system where EBSs were shown based on their answer. They last worked on 

post-test of the previous plus four new problems (called ‘transfer task’). As a 

result, in both schools, the numbers of MIF-answers (the erroneous answers 

supposed due to MIF misconception) in learning task decreased significantly 

between pre-test and post-test. Effect sizes of the decrease of MIF-answers 

were larger than that of other erroneous answers. Additionally, the percentages 

of MIF-answers to the whole erroneous answers in transfer task were much 

lower than those in learning task. These results suggest learning with EBS not 

only has the effect on the resolution of MIF misconception, but also promoted 

the correction of errors in conceptual level. 

 

Keywords. Mechanics, MIF misconception, Error-based Simulation, Counter-

example, Practical use 

1 Introduction 

One of the most important purposes of elementary science education is to enable stu-

dents to explain and predict natural phenomena with scientific concepts. However, 

students often comprehend natural phenomena with scientifically inappropriate con-

cepts that are called misconceptions. Especially in physics, misconceptions often 



occur and remain even after students are taught scientific concepts [Driver, 1985; 

Osborne, 1985; Clement, 1982; McCloskey, 1983]. Such misconceptions are usually 

very hard to overcome because they are deeply rooted in students' daily experiences 

[Bransford, 2000; Clement, 1982; Mestre 1994]. This paper describes a method to 

generate counterexamples to students’ misconceptions that help students overcome 

the misconceptions, and presents experimental results. 

Scientific experiment is a popular teaching method to make students comprehend 

phenomena with scientific concepts. In the teaching, first, a phenomenon is shown to 

students, and then, it is explained with scientific concepts that are the targets of teach-

ing. Simulation-based learning environments (SLE) have been investigated to assist 

such learning from experiments and have been confirmed that they are useful for in-

troduction or acquisition of scientific concepts [Towne 1993, Wenger 1987]. Howev-

er, showing the correct phenomenon and explaining it with scientific concepts isn't 

always useful. Especially when students have wrong concepts for explaining correct 

phenomena, the misconceptions often recur [Bransford, 2000; Clement, 1982; Mestre 

1994]. For example, in elementary mechanics, students often answer that gravity is 

the only force acting on the block on a table even after a teacher explained the con-

cept of normal force. Most students are satisfied with the explanation that the ta-

ble ’supports’ the block’s weight. That is, if misconceptions somehow ‘explain’ expe-

riences and no shortcoming is revealed, students don’t need scientific concepts that is 

less familiar to them. Therefore, in order to overcome misconceptions, it is important 

to show students a concrete fact that reveals the shortcoming of their misconceptions 

and has more impact than their daily experiences. Such a fact is usually called ‘coun-

terexample.’ 

Error-based simulation (EBS), which is a method to generate a phenomenon by us-

ing students’ erroneous idea, is a promising method to make such counterexample. 

EBS helps students be aware of errors especially when they know the correct phe-

nomenon but comprehend it with wrong concepts [Hirashima, 1998]. For the above 

example, EBS generates an unnatural phenomenon where the block sinks into the 

table because the gravity is the only force applied to the block. The important role of 

EBS is to show counterexamples to students' misconceptions or erroneous answers. 

To show counterexamples makes students think why their idea is inappropriate and 

integrate the idea rooted in daily life to scientific concepts. In our previous work, we 

practically used EBS in junior high schools for teaching 'normal reaction' in static 

situations like the above example [Hirashima, 2009; Horiguchi, 2014]. The results 

strongly suggested that students who learned with EBS acquired deeper conceptual 

understanding compared to students who learned in the usual way. 

In this paper, we describe a practical use and evaluation of EBS for correcting stu-

dents' 'MIF (Motion Implies a Force) misconception' in dynamic situations. The prac-

tice was made in a junior high school and a technical college. MIF misconception is 

very commonly observed in elementary mechanics learning where students think 

some force is applied to moving objects. In the practice, students learned what forces 

were/weren't applying to moving objects in dynamical situations with EBS. For ex-

ample, if students thought some force was applying to a skater traveling straight on 

ice at a constant velocity, the EBS was shown where the skater was accelerated. We 



investigated the effect of EBS by comparing the scores of pre-test (before the learning 

with EBS) with post-test (after the learning with EBS). In both schools, the average 

number of erroneous answers in post-test significantly decreased compared to that in 

pre-test, and the decrease of erroneous answers caused by MIF misconception was 

more dominant than that of other erroneous answers. This effect was observed not 

only in the problems students learned with EBS but also in the problems they saw for 

the first time in post-test. These results suggest that EBS contributed to correct stu-

dents’ MIF misconception at conceptual level. 

In this paper, in Section 1, the framework of EBS is introduced and its feature is 

discussed compered with related work. The purpose of this practical use and the pro-

cedure of the experiments are described in Section 2. In Section 3, we show the re-

sults of the practice and discuss them. 

2 Error-Based Simulation: A Method to Make Counterexample 

to Students' Misconceptions 

In this section, we first introduce the framework of EBS, and then point out its feature 

compared to other teaching methods to correct students' misconception. 

2.1 Framework of EBS 

Figure 1 shows the framework of EBS. EBS is generated by mapping errors in sym-

bolic expression to erroneous behavior. The difference in behavior expression is bet-

ter to make students be aware of the errors and motivate them to correct the errors. If 

students have some misconception expressed in their wrong answer, the erroneous 

behavior they didn't predict works as a counterexample to their misconception. We 

have developed the simulators that generate EBS in elementary mechanics and other 

domains, and also developed the learning environments in which EBSs are managed 

from several educational viewpoints [Hirashima 1998; Horiguchi, 2006, 2012; 

Matsuda, 2003; Kunichika, 2006]. 

We introduce an example of EBS by using mechanics problems shown in Figure 2 

used in this practice. A student is shown a mechanical situation and is required to 

draw all the forces acting on the objects in the situation. The students may make an 

erroneous drawing because of some misconceptions, which are regarded as the exter-

nalization of their erroneous idea. Based on the drawing, the acceleration of each 

object is calculated and the motion of them is simulated. In the problem of Figure 2 (a 

skater traveling straight on (frictionless) ice at a constant velocity), for example, stu-

dents often draw the force in the direction of travel. In EBS, the skater accelerates in 

the direction. It is expected that such unnatural phenomenon is useful as a counterex-

ample to students’ erroneous ideas and it contributes to correction of the errors with 

high and intrinsic motivation. 



 

Fig. 1. Framework of Error-based Simulation 

 

Fig. 2. An example of EBS 

2.2 Related Work 

For changing students' strong misconceptions, several teaching methods have been 

proposed. For example, Clement proposed using 'bridging analogies' [Clement, 1993] 

in which the gap between students’ correct belief and their misconception is bridged 

by some intermediate analogous situations. That is, suppose students misunderstand 

the situation of a book on a table, which is called the 'target.' First, a situation is intro-

duced in which a hand is pushing down a spring on a table. Most students understand 

the spring pushes back up against the hand. This is called the 'anchor.' Then, another 

situation is introduced in which a book is on a flexible board on a table. Students can 

understand the board pushes up the book because this situation is similar to that of the 

anchor. Additionally, this situation is similar to that of the target. Therefore, students 

can connect the anchor to the target, to understand that a 'normal force' is applied to 

the book from the table. It was reported that using bridging analogies in class effec-

tively activated students’ discussion and scientific thinking, through which they un-

derstand the concept normal force [Clement, 1993].  

For another example, Elby designed 'epistemology-focused instruction' [Elby, 

2001] in which students' conceptual development is integrated with their epistemolog-

ical development. That is, suppose students misunderstand the situation of a running 
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car at a constant velocity. Most students first think the force applied to the car in the 

direction of motion is greater than that by air resistance in the reverse direction. Then 

the teacher assists students to think about the acceleration of the car, and to connect 

their idea to Newton's second law. If students' first idea was correct, the car would 

have positive net-force, therefore it couldn't run at a constant velocity because its 

acceleration must be positive according to the formula 'F = ma.' In this case, students' 

intuition contradicts scientific concepts. After that, the teacher introduces another 

situation of a shoved dolly on a floor that starts to move. In this case, most students 

think the dolly gets accelerated because the shoving force is greater than the friction 

from the floor, and their intuition doesn't contradicts Newton's second law. Through 

such instruction, students reflected when their intuition was correct/wrong and con-

sistent/inconsistent with scientific concepts, and could integrate the intuition with 

scientific concepts [Elby, 2001]. 

The common point between these teaching methods is to integrate students' intui-

tion based on their daily life with scientific concepts, not to merely deny the miscon-

ception. Especially, making counterexample to the misconceptions plays an important 

role. 

Making counterexample, which is to show students the fact that can't be explained 

based on their idea, is known as a useful method to correct misconceptions. It can be a 

trigger of 'cognitive conflict' which often cause students' conceptual change [Osborne, 

1985; Glynn, 1991; Gagne, 1985; Nakajima, 1997; Fujii, 1997]. Additionally, less 

students who learned with counterexamples recur misconceptions than those who 

learned with the explanation of correct concepts [Bransford, 2000]. 

However, counterexamples should be carefully made and shown because students 

often ignore them or need help to comprehend them to reach correct understanding 

[Chinn, 1993; Fukuoka, 94; Nakajima, 97]. That is, counterexamples should be ac-

cepted by students as something important, and some help should be given to lead 

them to correct understanding [Fukuoka, 94; Nakajima, 97]. Though the teaching 

methods described above appropriately utilize counterexamples in view of these 

points, they have a common problem. That is, in these methods, a set of situations 

must be prepared beforehand in each of which students' idea goes well or doesn't go 

well. For example, in using bridging analogies, an appropriate situation should be 

found that is similar to both the target and the anchor. In epistemology-focused in-

struction, such situations should be carefully designed and sequenced based on the 

scenario of instruction. This is a very difficult task even for human teachers. 

The advantage of EBS compared with these methods is that no other situation is 

necessary to make counterexamples. If students have a wrong idea, EBS is directly 

generated based on their answer. (Note that students' answer should be the expression 

of the wrong idea and include sufficient information to generate simulation.) Addi-

tionally, even when students predict the correct phenomenon but explain it with 

wrong concepts, EBS can be a useful counterexample. (When students think no force 

except gravity, a book sinks into a table. When they think a car's net-force is positive, 

it accelerates instead of keeping a constant velocity) Furthermore, since the simulator 

for EBS (called 'robust simulator') explicitly handles the constraints of the model for 

generating simulation, it understands what constraint is violated [Horiguchi, 2006; 



Horiguchi, 2012]. (The constraints 'two solid objects never overlap' and 'the car keeps 

a constant velocity' are violated in the above examples, respectively.) Therefore, it 

becomes possible to define the criteria for estimating the 'surprisingness' of EBSs as 

counterexamples. 

3 Experiment 

3.1 Purpose 

In this research, we investigated the usefulness of EBS to correct students' MIF mis-

conception. MIF (Motion Implies a Force) misconception is very commonly observed 

in elementary mechanics class where students think some force is applying to moving 

objects. According to [Clement, 1982], we classified MIF misconception as follows. 

MIF-(1): Force in the direction of motion is necessary to cause and keep objects' mo-

tion even when they move at a constant velocity, MIF-(2): Especially when there is 

explicit resistance against motion, force that is greater than the resistance is necessary 

to keep the motion, and MIF-(3): The force in the direction of motion increas-

es/decreases according to the velocity of the motion. When students' wrong answer 

can be explained based on these misconceptions, we call it 'MIF-answer.' If the num-

ber of students' MIF-answers decreases after the learning, it is supposed that their 

MIF-misconception was resolved through the learning. 

3.2 Instruments 

Learning Environment In this research, an EBS-based learning environment (here-

after, called ‘the system’) was implemented as an Android tablet-PC application, in 

which students worked on a set of problems in mechanics. Figure 3 is a snapshot of 

the system. In each problem, students were given a figure of mechanical situation and 

required to draw all the forces acting on the objects in the situation as arrows (After 

choosing the magnitude and direction of force from a menu, students tapped ‘create’ 

button to make such an arrow appear on the screen. They then dragged it onto an ob-

ject to apply.). As for each object, the net-force was calculated based on the drawing, 

then the motion was simulated by using Newton’s second law. When the drawing 

included errors, the motion of objects often became unnatural against students' predic-

tion. Such simulation was expected to work as a counterexample to students' solution, 

therefore students would get aware of the errors and correct them. 

 



 

Fig. 3. A snapshot of the system 

Tests In the experiment, the MIF misconceptions (1), (2) and (3) described in the 

previous section were targeted. If students' idea reflected these misconceptions before 

using EBS and didn’t after using EBS, their MIF misconceptions were supposed to be 

resolved. We implemented the following five problems on the system: 

Problem-(a): A skater traveling straight on (frictionless) ice at a constant velocity (in 

which MIF-(1) is predicted. Students are likely to draw the force in the direction of 

travel. In EBS, the skater accelerates in the direction.) 

Problem-(b): A man who is descending in the air with a parachute at a constant veloc-

ity (in which MIF-(2) is predicted. Students are likely to draw the downward and 

upward forces the former of which is greater than the latter. In EBS, the man acceler-

ates downward (in the direction of motion).) 

Problem-(c): A thrown ball rising vertically upward. (in which, MIF-(3) is predicted. 

Students are likely to draw the upward force which decreases as the ball ascends. In 

EBS, the ball accelerates upward (in the direction of motion).) 

Problem-(d): An object on a floor shoved horizontally with friction at a constant ve-

locity (in which MIF-(2) is predicted) 

Problem-(e): A thrown ball rising in an oblique direction against the horizon (in 

which MIF-(3) is predicted) 

These five problems were called the ‘learning task.’ Problem-(a), (b) and (c) were 

used as the ‘basic problems.’ Problem-(d) and (e) were used as the advanced prob-

lems of problem-(b) and (c) respectively. Additionally, we predicted MIF-(1) could 

appear in all the problems. For example, in problem-(b), students could draw only the 

downward force. In such a case, it was counted as MIF-(1). 



In the pre-test, students solved the five problems of learning task (which they would 

learn on the system) as a written test. In the post-test, in addition to the five problems, 

they solved the following four problems of ‘transfer task’ as a written test. 

Problem-(f): A dolly first descends a slope and then comes to a horizontal floor. There 

is no friction throughout the motion. 

Problem-(g): A sled is accelerating on (frictionless) ice with continuous horizontally 

force. 

Problem-(h): A box is decelerating on a horizontal floor with friction. 

Problem-(i): An elevator is being lifted up at a constant velocity. 

Subjects and Procedure We practically used our system for teaching mechanics in a 

junior high school and a technical college. In a junior high school, thirty-five third 

grade students participated in the class. In a technical college, thirty-two third grade 

students participated in the class. In both schools, subjects first worked on the pre-

test, then worked on the learning task with the system. After that, they worked on the 

post-test. 

4 Results and Discussion 

We scored the answers of the subjects in pre-test and post-test as follows. If there 

was an erroneous arrow that was supposed due to MIF misconception in a drawing, 

the answer was classified as ‘MIF-answer.’ If there was erroneous arrows but none of 

them was supposed due to MIF misconception, the answer was classified as ‘other 

erroneous answer.’ 

4.1 Result in a junior high school 

Figure 4 shows the result of learning task in pre-test and post-test. As for the learn-

ing task (five problems), the average number of erroneously answered problems was 

4.6 in the pre-test, while it significantly decreased to 1.3 in the post-test (Wilcoxon 

signed-rank test, p=0.418×10E-6; effect size, r=0.673). The average number of MIF-

answered problems was 2.9 in the pre-test, while it significantly decreased to 0.4 in 

the post-test (Wilcoxon signed-rank test, p=0.116×10E-5; effect size, r=0.640). The 

average number of other erroneously answered problems was 1.7 in the pre-test, while 

it significantly decreased to 0.9 in the post-test (Wilcoxon signed-rank test, 

p=p=0.783×10E-3; effect size, r=0.499). This result reveals MIF-answered problems 

decreased more dominantly than other erroneously answered problems. Additionally, 



the rate of MIF-answered problems to the whole erroneously answered problems was 

63% in the pre-test, while it was 33% in the post-test. 

Figure 6 shows the result of transfer task in post-test. As for the transfer task (four 

problems), the average number of MIF-answered problems was 1.2, while the average 

number of other erroneously answered problems was 1.6. The rate of MIF-answered 

problems to the whole erroneously answered problems was 42%. 

 

 

Fig. 4. Learning task in junior high school 

 

Fig. 5. Learning task in technical college 

 

Fig. 6. Transfer task 

4.2 Result in a technical college 

Figure 5 shows the result of learning task in pre-test and post-test. As for the learn-

ing task (five problems), the average number of erroneously answered problems was 
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4.3 in the pre-test, while it significantly decreased to 2.4 in the post-test (Wilcoxon 

signed-rank test, p=0.343×10E-4; effect size, r=0.597). The average number of MIF-

answered problems was 3.5 in the pre-test, while it significantly decreased to 1.6 in 

the post-test (Wilcoxon signed-rank test, p=0.880×10E-5; effect size, r=0.624). The 

average number of other erroneously answered problems was 0.7 in the pre-test, while 

it was 0.8 in the post-test (there was no significant difference between them). Addi-

tionally, the rate of MIF-answered problems to the whole erroneously answered prob-

lems was 83% in the pre-test, while it was 65% in the post-test. 

Figure 6 shows the result of transfer task in post-test. As for the transfer task (four 

problems), the average number of MIF-answered problems was 1.3, while the average 

number of other erroneously answered problems was 1.6. The rate of MIF-answered 

problems to the whole erroneously answered problems was 43%. 

4.3 Implication 

As for the learning task, in both schools, the average numbers of MIF-answered 

problems decreased significantly between pre-test and post-test. Therefore, this result 

suggests learning with EBS has the effect on the resolution of MIF misconceptions, 

while our previous research only showed using EBS decreased the number of stu-

dents’ erroneous answers. 

Additionally, in both schools, the effect size of decrease of MIF-answers was large 

(r=0.640 in junior high school; r=0.624 in technical college). Though the numbers of 

other erroneous answers in junior high school also decreased significantly, the effect 

size of decrease of them was medium (r=0.499). In technical college, the decrease of 

the numbers of other erroneous answers wasn’t significant. 

Though the problems of learning task were the same as those subjects learned with 

the system, this result indicates certain effect of EBS. That is, if subjects had an-

swered in the post-test merely based on the memorized correct answers they met dur-

ing learning with the system, both types of erroneous answers would decrease to the 

same degree, but actually there was the difference between them. This fact suggests 

learning with EBS triggered the correction of errors in conceptual level. 

As for transfer task, on the other hand, the rate of MIF-answers to the whole erro-

neous answers was 42% in junior high school and 43% in technical college respec-

tively. These percentages are much lower than those in pre-test (63% in junior high 

school; 83% in technical college; note that these data are of learning task). This fact 

suggests students who learned with EBS make less MIF-answers even in problems 

they first met, which means the possibility of the correction of errors in conceptual 

level. 

The effect on the decrease of MIF-answers was observed in both junior high school 

and technical college students. We then consider the difference between them. Junior 

high school students had learned the relation between force and motion with qualita-

tive explanation but hadn't with mathematical formalism (i.e., equations) yet. On the 

other hand, technical college students had already learned mechanics with mathemati-

cal formalism. The fact that technical college student made a lot of MIF-answers con-

firms the finding of preceding literature that learning mechanics with mathematical 



formalism is inefficient for resolving MIF misconception. On the other hand, the fact 

that technical college students made less other erroneous answers than junior high 

school students suggests that technical college students better understands mechanics 

except MIF misconception. Additionally, the decrease of MIF-answers was observed 

more clearly in junior high school students than technical college students. This fact 

suggests the possibility that learning with equations promotes the correction of non-

MIF misconceptions but doesn’t (or rather obstructs) the resolution of MIF miscon-

ceptions. Though the number of subjects in this experiment was not enough to derive 

general conclusion, we think our method is promising for clarify the relation between 

learning with mathematical formalism and MIF and other misconception, and the 

effect of EBS on them. 

5 Conclusion 

In this paper, we reported a practical use of Error-based Simulation (EBS) for cor-

recting students’ MIF misconceptions in a junior high school and a technical college. 

As a result, in both schools, it was suggested that EBS not only had the effect on the 

resolution of MIF misconception, but also promoted the correction of errors in con-

ceptual level. The number of problems used in the experiment wasn’t so large, but 

they covered most typical situations of MIF misconceptions, the resolution of which 

is a central issue in learning elementary mechanics. Therefore, we think this result has 

a certain amount of generality and usefulness. 

Our future work is, first, to confirm the result with larger number of subjects. Ad-

ditionally, as described above, we should investigate the effect of EBS before and 

after learning mechanics with mathematical formalism. It is also important to clarify 

how to combine EBS with other teaching methods and embed EBS in lessons in ped-

agogically effective way.  
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