広島大学学術情報リポジトリ
 Hiroshima University Institutional Repository

Title	Controllable Direction of Porphyrin Derivatives in Two Cyclodextrin Cavities
Author（s）	Horiguchi，Banri；Nakaya，Toshimi；Ueda，Masafumi； Sugikawa，Kouta；Mizuta，Tsutomu；Haino，Takeharu；Kawata， Naomi；Ikeda，Atsushi
Citation	European Journal of Organic Chemistry， 2018 （18）： 2138 － 2143
Issue Date	2018－05－15
DOI	10．1002／e joc． 201800433
Self DOI	
URL	https：／／ir．lib．hiroshima－u．ac．jp／00046212
Right	Copyright（c） 2018 Wiley－VCH Verlag GmbH \＆Co．KGaA， Weinheim This is the accepted version of the following article： B．Horiguchi，T．Nakaya，M．Ueda，K．Sugikawa，T．Mizuta， T．Haino，N．Kawata，A．Ikeda，Controllable Direction of Porphyrin Derivatives in Two Cyclodextrin Cavities，Eur． J．Org．Chem．，2018，2138－2143，which has been published in final form at http：／／doi．org／10．1002／ejoc． 201800433. This article may be used for non－commercial purposes in accordance with Wiley Self－Archiving Policy． This is not the published version．Please cite only the published version．この論文は出版社版でありません。引用の際 には出版社版をご確認ご利用ください。
Relation	

Controllable Direction of Porphyrin Derivatives in Two Cyclodextrin Cavities

Banri Horiguchi, ${ }^{[a]}$ Toshimi Nakaya, ${ }^{[a]}$ Masafumi Ueda, ${ }^{[a, ~ b] ~ K o u t a ~ S u g i k a w a, ~}{ }^{[a]}$ Tsutomu Mizuta, ${ }^{[c]}$
Takeharu Haino, ${ }^{[c]}$ Naomi Kawata, ${ }^{[d]}$ and Atsushi Ikeda*[a]

Abstract

Porphyrin•trimethyl- β-cyclodextrin (TMe- β-CDx) complexes have pseudorotaxane structures in which two mesophenyl and/or pyridyl moieties penetrate the upper rim of two TMe- β CDx molecules. Porphyrin derivatives with one to three pyridy moieties at meso-positions formed complexes with TMe- $\beta-\mathrm{CDx}$ in which penetration of the upper rim of the two TMe- β-CDxs by the pyridyl moieties was minimized. In contrast, in TMe- $\beta-C D x$ complexes formed with porphyrin derivatives with two 2-methoxyphenyl moieties and two pyridyl moieties, the pyridyl moieties penetrated the upper rim of the two molecules because steric hindrance prevented penetration by the 2-methoxyphenyl moieties.

Introduction

Much research has focused on the preparation of water-soluble porphyrins for applications in various materials and medicines, including photosensitizers for DNA cleavage, ${ }^{[1-4]}$ photodynamic cancer therapy, ${ }^{[5-8]}$ photosynthetic systems, ${ }^{[9-11]}$ and photocurrent generation. ${ }^{[12-16]}$ The two most common water-soluble preparation methods are a chemical method, through introducing water-soluble substituents, ${ }^{[5-8,17]}$ and a physical method, through mixing with water-soluble solubilizing agents. ${ }^{[18-21]}$ The physical method using solubilizing agents has three advantages over the chemical method: (i) Various hydrophobic porphyrin derivatives can be used as guest molecules; (ii) many aqueous solutions of

[^0]porphyrin derivative•solubilizing agent complexes are stable for several months; and (iii) complex functionalization can be

Figure 1. Compound structures.
achieved by selecting appropriate solubilizing agents. Cyclodextrins, which comprise a chain of six to eight D-glucose monomers connected through the C1 and C4-positions, provide hydrophobic cavities for guest molecules as water-soluble solubilizing agents. In particular, porphyrin•trimethyl- β cyclodextrin (TMe- $\beta-\mathrm{CDx}$, comprising seven d-glucose monomers, Figure 1) complexes with pseudorotaxane structures, in which two meso-phenyl moieties penetrate the upper rim of two TMe- β CDx molecules, have been formed using porphyrin derivatives with four phenyl substituents in the meso-positions. ${ }^{[20,22,23]}$ When porphyrin derivatives with four phenyl moieties are incorporated into two TMe- β-CDx molecules, two types of phenyl moiety are present, namely, two penetrating the upper rim of the two TMe- β CDx molecules and two sandwiched between the two TMe- $\beta-C D x$ molecules. The functional groups in these phenyl moieties influence intracellular uptake. ${ }^{[8,24]}$ These two types of phenyl
moieties are predicted to have different interactions with cellular surfaces. Therefore, for medicinal applications, it is important to control the direction of functional porphyrin derivatives containing several types of phenyl groups within the two CDx cavities. In this study, we have investigated the preparation of TMe- β-CDx complexes with porphyrin derivatives containing phenyl and/or pyridyl moieties at the meso-positions. Furthermore, we determined the direction of these porphyrin derivatives in TMe- β CDx complexes using ${ }^{1} \mathrm{H}$ NMR and X-ray crystallographic analysis.

Results and Discussion

Porphyrin derivative (1-6)•TMe- β-CDx complexes (Figure 1) were prepared according to a previously described procedure, ${ }^{[21-}$ ${ }^{23]}$ and their formation was confirmed using UV-Vis absorption and ${ }^{1} \mathrm{H}$ NMR spectroscopy (Figures 2, 3, and S1). The UV-Vis spectra of complexes 1-6•TMe- β-CDx showed similar absorption maxima ($\lambda_{\max }$). For example, $4 \cdot$ TMe- $\beta-C D x$ had an absorption maximum ($\lambda_{\max }$) at 415 nm in water, corresponding to the Soret band of the porphyrin, and four bands at $510,543,588$, and 642 nm , which were attributed to the porphyrin Q bands (Figure 2). No broadening of the absorption spectra of complexes 1-6•TMe- β CDx was observed (Figure 2). These results suggested that 2-6 existed in an isolated state in the two cyclodextrin cavities, in a similar manner to 1 in complex $1 \cdot T M e-\beta-C D x$ (Figure 4). From the ${ }^{1} \mathrm{H}$ NMR spectra, the relative stoichiometry of 2-6 and TMe- β-CDx in complexes $2-6 \cdot$ TMe- β-CDx was determined to be 1:2 based on the peak intensities of $\mathbf{2 - 6}$ and TMe- β-CDx (Figure S1).

Figure 2. UV-Vis absorption spectra of (a) 1•TMe- $\beta-C D x$ (black line), 2•TMe- β CDx (red line), $3 \cdot T \mathrm{Me}-\beta-\mathrm{CDx}$ (green line), $4 \cdot \mathrm{TMe}-\beta-C D x$ (blue line), $5 \cdot \mathrm{TMe}-\beta-$ $C D x$ (orange line), $6 \cdot T M e-\beta-C D x$ (purple line), $8 \cdot T M e-\beta-C D x$ (yellow line), and $9 \cdot T \mathrm{Me}-\beta-\mathrm{CDx}$ (grey line) complexes in $\mathrm{D}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$ ([Complex] $=0.02 \mathrm{mM}, 1-$ mm cell).

Complexes 1•TMe- $\beta-\mathrm{CDx}$ and 6•TMe- $\beta-\mathrm{CDx}$ had only one conformation (Figure 4), with the same groups penetrating the
upper rim of the two TMe- β-CDx molecules. One $\mathrm{H}-1$ proton peak appeared in the ${ }^{1} \mathrm{H}$ NMR spectra of these complexes (Figures 1 , 3 b (red circle), and 3 g (blue circle)). In contrast, complex 3•TMe-β-CDx had only one conformation (Figure 4), but with different groups (pyridyl and phenyl) penetrating each upper rim. Therefore, two $\mathrm{H}-1$ proton peaks appeared for complex 3.TMe- β-CDx (Figure 3d, red and blue circles), suggesting that the $\mathrm{H}-1$ proton peaks were separated due to both pyridyl and phenyl groups penetrating the upper rim of the two TMe- $\beta-C D x$ molecules. Downfield (blue circle) and upfield (red circle) peaks were assigned to the $\mathrm{H}-1$ proton peak of TMe- β-CDx penetrated by pyridyl and phenyl groups, respectively, by comparing the chemical shifts with those of complexes $1 \cdot T \mathrm{Me}-\beta-C D x$ and 6•TMe- β-CDx. Complexes $2 \cdot$ TMe- $\beta-C D x$, 4•TMe- $\beta-C D x$, and $5 \cdot T M e-\beta-C D x$ had two possible conformations. However, the ${ }^{1} \mathrm{H}$ NMR spectra of complexes $2 \cdot T M e-\beta-C D x$ and $4 \cdot T M e-\beta-C D x$ contained only one peak assigned to the $\mathrm{H}-1$ proton of TMe- β CDx penetrated by a phenyl group (Figures 3 c and 4 e , red circles). These results suggested that only phenyl groups penetrated the upper rim of the two TMe- β-CDx molecules in complexes $2 \cdot$ TMe-$\beta-C D x$ and $4 \cdot T M e-\beta-C D x$. In the ${ }^{1} \mathrm{H}$ NMR spectrum of $5 \cdot T M e-\beta-$ CDx, two peaks were assigned to $\mathrm{H}-1$ proton peaks of TMe- β CDx penetrated by pyridyl and phenyl groups (Figure 3f, red and blue circles). This result suggested that one phenyl and one pyridyl group penetrated the upper rims of the two respective TMe- β-CDx molecules in the $5 \cdot$ TMe- $\beta-C D x$ complex. This indicated that complexes $2 \cdot$ TMe- $\beta-C D x, 4 \cdot$ TMe- $\beta-C D x$, and

Figure 3. Partial ${ }^{1} \mathrm{H}$ NMR spectra of (a) TMe- $\beta-\mathrm{CDx}$, (b) $1 \cdot \mathrm{TMe}-\beta-\mathrm{CDx}$, (c) $2 \cdot T M e-\beta-C D x$, (d) $3 \cdot T M e-\beta-C D x$, (e) $4 \cdot T M e-\beta-C D x$, (f) $5 \cdot T M e-\beta-C D x$, (g) 6.TMe- $\beta-C D x$, and (h) 8.TMe- β-CDx complexes in $\mathrm{D}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}(\bullet$: free TMe-$\beta-C D x, \bullet$: TMe- β-CDx penetrated by benzene moieties in the complex, \bullet : TMe-$\beta-C D x$ penetrated by pyridine moieties in the complex).

5•TMe- β-CDx each formed only one major conformer (b', d', and e^{\prime} in Figure 4, respectively). Therefore, the phenyl group penetrated the upper rim of TMe- β-CDx more readily than the pyridyl group.

To further confirm that the conformation of complex $4 \cdot \mathrm{TMe}-$ $\beta-C D x$ was structure d' (Figure 4), its $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and NOESY spectra were measured (Figures 5, S2, and S3). Peaks of 4 in complex $4 \cdot T M e-\beta$-CDx were assigned using the $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum (Figures $5 a$ and S2), and the $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectrum was used to determine the correlation between protons of 4 and TMe- β-CDx in complex $4 \cdot$ TMe- β-CDx (Figures 5 b and S3). Figure 5 b shows cross peaks between phenyl protons $\mathrm{H}^{3}, \mathrm{H}^{4}$, and H^{5} of 4 and $\mathrm{H}-3, \mathrm{H}-4, \mathrm{OMe}^{3}$, and OMe^{4} protons in the lower rim of TMe- β-CDx. In contrast, cross peaks were observed between pyridyl protons H^{6} and H^{7} of 4 and $\mathrm{H}-6$ and OMe^{6} protons in the upper rim of TMe- $\beta-C D x$, indicating that pyridyl moieties penetrated the upper rim of TMe- $\beta-C D x$. Therefore, the NOESY spectrum clearly showed that complex $4 \cdot T \mathrm{TMe}-\beta-\mathrm{CDx}$ complex comprised conformation d', as shown in Figure 4 in aqueous solution. This conclusion was consistent with the prediction based on the $\mathrm{H}-1$ proton peak of TMe- β-CDx.

Figure 4. Schematic illustrations of all possible conformations of porphyrin derivative (1-6)•TMe- β-CDx complexes.

We next investigated why the phenyl group penetrated the upper rim of TMe- β-CDx more readily than the pyridyl group. Kano et al. reported that cationic porphyrin derivatives, such as 5,10,15,20-tetrakis-(1-methyl-4-pyridyl)-21H,23H-porphine tetrachloride salt or 5,10,15,20-tetrakis(4-N-trimethylaminobenzyl)-21H,23H-porphine tetrachloride salt, hardly interacted with TMe- $\beta-C D x$, in contrast to anionic porphyrins. ${ }^{[24]}$ They concluded that, in general, the microscopically positive environment of the CDx cavity seemed to promote penetration by anionic guest molecules, but prohibited
incorporation of cationic guest molecules into the CDx cavity. ${ }^{[24]}$ Phenyl groups in the meso-position of 4 were very close to $\mathrm{H}-6$ protons of TMe- β-CDx in the X -ray crystal structure of the $4 \cdot$ TMe-$\beta-C D x$ complex. Although 4 is a neutral compound, pyridyl protons at the meso-position of 4 have a $\delta+$ charge due to resonance structures, as shown in Figure S4. Therefore, if a pyridyl moiety penetrates the upper rim of TMe- $\beta-C D x$, electrostatic repulsion may arise between pyridyl and $\mathrm{H}-6$ protons, which both have $\delta+$ charges.

Figure 5. (a) $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and (b) $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectra of $4 \cdot \mathrm{TMe}-\beta-$ CDx in $\mathrm{D}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$.

To control the direction of the porphyrin derivatives, we synthesized 7 and 8 (Figures S5 and S6) containing 2methoxyphenyl moieties in the meso-position. We expected the 2-methoxyphenyl moiety to be prevented from penetrating the upper rim of TMe- β-CDx by steric hindrance. However, as confirmed by UV-Vis absorption and ${ }^{1} \mathrm{H}$ NMR spectra, TMe- β CDx complexation with 7 containing four 2-methoxyphenyl moieties was scarce in water (Figures S7 (black line) and S8). In contrast, porphyrin 9, containing four 3,5-dimethoxyphenyl moieties, was able to form a complex with TMe- β-CDx (Figures 2 (grey line), $\mathrm{S7}$ (blue line), and S9), indicating that methoxy groups

Figure 6. (a) $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \operatorname{COSY}$ and (b) $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectra of $8 \cdot \mathrm{TMe}-\beta-$ CDx in $\mathrm{D}_{2} \mathrm{O}$ at $35^{\circ} \mathrm{C}$.
in the 3 and 5 -positions did not inhibit complexation. However, porphyrin 8, containing two 2-methoxyphenyl moieties in a trans configuration, formed a complex with TMe- β-CDx (Figures 2 (yellow line) and S7 (red line)). The conformation of complex 8•TMe- β-CDx was confirmed by $1 \mathrm{D}{ }^{1} \mathrm{H}$ NMR and $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and NOESY spectra (Figures 3h, 6, S10, S11, and S12). The ${ }^{1} \mathrm{H}$ NMR spectra of complex 8•TMe- β-CDx were complicated (Figure S10) because two atropisomers were present, but peaks were assigned using $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and NOESY spectra (Figures 6, S11, and S12). As shown in Figure 3h, the presence of only one $\mathrm{H}-1$ proton peak in complex $8 \cdot T \mathrm{TMe}-\beta-\mathrm{CDx}$ clearly indicated that the conformation was either d or d' in Figure 4. The broadening of the H-1 peak was probably due to the presence of two atropisomers. The chemical shift of the peak was close to that of complex 6•TMe- β-CDx. These results suggested that two $2-$ methoxyphenyl moieties of $\mathbf{8}$ did not penetrate the upper rim of TMe- β-CDxs, but interposed the two TMe- β-CDxs, as shown in conformation d in Figure 4.

To confirm these conformations, single crystals of complexes 4•TMe- $\beta-C D x$ and $8 \cdot T M e-\beta-C D x$ were submitted to X-ray crystallographic analysis (Table S2). These single crystals were grown by incubation in water at $50^{\circ} \mathrm{C}$ according to a previously described procedure (Figures 7, S13, and S14). ${ }^{[22,23]}$ The crystals of complexes $4 \cdot \mathrm{TMe}-\beta-\mathrm{CDx}$ and $8 \cdot \mathrm{TMe}-\beta-\mathrm{CDx}$ showed $1: 2$ stoichiometry. Phenyl and pyridyl moieties in complex 4•TMe- β CDx were determined by comparison with the bond lengths and angles of benzene and pyridine reported previously (Tables 1 and S3). ${ }^{[25,26]}$ Complex 4•TMe- β-CDx had a conformation in which the two phenyl moieties penetrated the TMe- $\beta-C D x$ molecules (structure d' in Figure 4). In contrast, complex 8•TMe- $\beta-C D x$ had a conformation in which the two pyridyl moieties penetrated the TMe- β-CDx molecules (structure d in Figure 4). These results were consistent with the conformations determined by ${ }^{1} \mathrm{H}$ NMR spectra in water.

Figure 7. X-ray structures of (a) $4 \cdot T \mathrm{TMe}-\beta-C D x$ and (b) $8 \cdot T \mathrm{Me}-\beta-C D x$ complexes.

Table 1. Bond lengths and bond angles in $4 \cdot T \mathrm{Me}-\beta-\mathrm{CDx}$ complexes.

Bond	Bond length (\AA)	Angle	Bond angle $\left({ }^{\circ}\right)$
Average	$1.362(12)$	Averaged	$118.8(7)$
dC(para)-	$(1.361)^{[i]}$	C(meta)-C(para)	$(120 \pm 0.63)^{[a]}$
C(meta)	$1.340(11)$	-C(meta)	$116.7(7)$
Averaged	Averaged C-N-	$(117.67)^{[b]}$	
C-N	$(1.335)^{[b]}$	C	(1)

[^1]
Conclusions

When four porphyrin derivatives (2-5) with phenyl and pyridyl moieties at the meso-positions formed complexes with two TMe-$\beta-C D x$ molecules, the phenyl moieties preferentially penetrated the upper rim of TMe- β-CDx because penetration by pyridyl moieties was less stable owing to electrostatic repulsion. Therefore, complexes $2 \cdot \mathrm{TMe}-\beta-\mathrm{CDx}$ and $4 \cdot \mathrm{TMe}-\beta-\mathrm{CDx}$ adopted only one conformation in which the pyridyl moieties did not penetrate the upper rim of TMe- β-CDx. Furthermore, complexes $3 \cdot T M e-\beta-C D x$ and $5 \cdot T M e-\beta-C D x$ adopted only one conformation to minimize the number of pyridyl moieties penetrating the upper rim of TMe- $\beta-C D x$. In contrast, compound 8, containing two 2 dimethoxyphenyl and two pyridyl moieties in a trans configuration, formed a complex in which the two pyridyl moieties preferentially penetrated the upper rim owing to steric hindrance preventing penetration by the two 2-methoxyphenyl moieties. These results showed that the molecular direction of porphyrin derivatives in the two cyclodextrins was controllable.

Experimental Section

Materials

Compounds 1 and $\mathbf{6}$ were purchased from Tokyo Chemical Industries Co. Ltd. (Tokyo, Japan) and Sigma-Aldrich Chemical Co., Inc. (St. Louis, MO, USA), respectively. TMe- $\beta-C D x$ was purchased from Wako Pure Chemical Industries Ltd. (Tokyo, Japan). Compounds 2-5, ${ }^{[27]} 7,{ }^{[28]}$ and ${ }^{[29]}$ were synthesised using methods previously described in the literature.

5,15-Bis(2-methoxyphenyl)-10,20-di(pyridin-4-yl)porphyrin (8)
4-[Di(1H-pyrrol-2-yl)methyl]pyridine (223.3 mg, 1.00 mmol$)$, 2methoxybenzaldehyde ($136.1 \mathrm{mg}, 1.00 \mathrm{mmol}$), and trifluoroacetic acid $(620 \mu \mathrm{~L}, 8.0 \mathrm{mmol})$ were dissolved in dichloromethane $(130 \mathrm{~mL})$ and stirred while purging with nitrogen for at least 30 min . The reaction mixture was stirred for 1 h at room temperature followed by the addition of triethylamine ($115 \mu \mathrm{~L}, 8.0 \mathrm{mmol}$). The reaction mixture was evaporated and dioxane (150 mL) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ, $680 \mathrm{mg}, 3.0 \mathrm{mmol}$) were added. After heating at reflux for 2 h , more DDQ ($225 \mathrm{mg}, 1.0 \mathrm{mmol}$) was added and reflux continued for 1 h . The solution was then cooled to room temperature and evaporated to dryness. The residue was purified three times by column chromatography on silica gel using chloroform/methanol (19:1, v/v) and chloroform/hexane (19:1 and $9: 1, \mathrm{v} / \mathrm{v}$), respectively, as eluents. After solvent evaporation, the resultant purple solid was washed with acetone. Yield, 3% (mixture of two atropisomers); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$, in ppm): $\delta 9.02$ (d, $\mathrm{J}=$ $5.6 \mathrm{~Hz}, 4 \mathrm{H} ; 3,5-\mathrm{Py}$), 8.84 ($\mathrm{d}, \mathrm{J}=4.7 \mathrm{~Hz}, 4 \mathrm{H} ; \beta-\mathrm{H}$ (methoxy side)), 8.76 (d , $J=4.7 \mathrm{~Hz}, 4 \mathrm{H} ; \beta-\mathrm{H}$ (methoxy side)), 8.16 ($\mathrm{d}, J=4.3 \mathrm{~Hz}, 4 \mathrm{H} ; 2,6-\mathrm{Py}$), 8.00 (m, 2H; 2-methoxy-Ph), 7.80 (m, 2H; 4-methoxy-Ph), 7.39-7.34 (m, 4H; 3,5-methoxy-Ph), 3.61 and 3.60 (s, 6H; -OMe), 2.76 (br s, 2H; NH); UV/Vis $\left(\mathrm{CHCl}_{3}\right): \lambda_{\max }=419,515,548,588$, and 646 nm ; HR-ESI-MS: m / z calcd. for $\left[\mathrm{C}_{44} \mathrm{H}_{33} \mathrm{~N}_{6} \mathrm{O}_{2}\right]^{+}: 677.26595$; found: $677.26630[\mathrm{M}]^{+}$.

Compound 1 ($1.8 \mathrm{mg}, 3.0 \times 10^{-6} \mathrm{~mol}$) and TMe- β-CDx ($8.6 \mathrm{mg}, 6.0 \times 10^{-6}$ mol) were placed in an agate capsule with two agate-mixing balls, and the resulting mixture was vigorously agitated at 30 Hz for 20 min using a highspeed vibration mill (MM 200; Retsch Co., Ltd., Haan, Germany). The solid mixture was suspended in pure water (1.5 mL) to produce a dark purple emulsion. Subsequent centrifugation ($18,000 \times \mathrm{g}, 25^{\circ} \mathrm{C}, 20 \mathrm{~min}$) removed nondispersed 1 from the solution. The concentration of 1 in the $1 \cdot \mathrm{TMe}-\beta-$ CDx complex was determined to be 2.36 mM by measuring the absorbance of the solution at 415 nm in water (molar absorption coefficient of water-soluble complex $1 \cdot$ TMe- $\beta-\mathrm{CDx}, \varepsilon_{415}=3.30 \times 10^{4} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$). TMe- $\beta-C D x$ complexes of porphyrins 2-9 were also prepared using the above procedure.

Crystallization of TMe- β-CDx complexes of 4 and 8
Aqueous solutions of $4 \cdot$ TMe- $\beta-C D x$ and $8 \cdot T M e-\beta-C D x$ complexes $(1.5 \mathrm{~mL})$ were prepared using the above procedure. Dark red crystals formed after leaving the final solutions to stand for $1-2$ days at $50-60^{\circ} \mathrm{C}$.

Crystallographic study

X-ray diffraction data for $4 \cdot T \mathrm{TMe}-\beta-\mathrm{CDx}$ and $8 \cdot \mathrm{TMe}-\beta$-CDx complexes were collected with a Bruker APEX II ULTRA system using MoKa radiation at 223 K and 173 K , respectively. A total of 19,315 and 46,518 reflections were collected, of which 19,315 and 30,011 were unique, for $4 \cdot \mathrm{TMe}-\beta-C D x$ and $8 \cdot$ TMe- $\beta-C D x$ complexes, respectively. All calculations were performed using the Bruker SAINT crystallographic software package except for refinement, which was performed using SHELXL. Crystallographic data for these structures have been deposited in the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 1822743 and 1822742.

UV-Vis Absorption Spectra
UV-Vis spectra were recorded using a UV-3600PC spectrophotometer (Shimadzu Corp., Kyoto, Japan). All experiments were performed at $25^{\circ} \mathrm{C}$ in a $1-\mathrm{mm}$ cell.

Acknowledgements

This work was supported by a JSPS KAKENHI Grant-in-Aid for Scientific Research (B) (Grant No. JP16H04133), a Grant-in-Aid for Challenging Exploratory Research (Grant No. JP16K13982), and the Electric Technology Research Foundation of Chugoku. We thank the Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University, for X-ray diffraction measurements. We also thank Simon Partridge, PhD, from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Conflict of interest

The authors declare no conflicts of interest.

Keywords: porphyrins • cyclodextrins • host-guest systems • molecular recognition
[1] A. Jasat, D. Dolphin, Chem. Rev. 1997, 97, 2267-2340.
[2] H. Suenaga, K. Nakashima, T. Mizuno, M. Takeuchi, I. Hamachi, S. Shinkai, J. Chem. Soc. Perkin Trans. 1 1998, 1263-1267.
[3] P. Sweigert, Z. Xu, Y. Hong, S. Swavey, Dalton Trans. 2012, 41, 52015208.
[4] Y. Chen, D. Zhao, Y. Liu, Chem. Commun. 2015, 51,12266-12269.
[5] R. Bonnett, Chem. Soc. Rev. 1995, 24, 19-33.
[6] S. Yano, S. Hirohara, M. Obata,Y. Haguya,S.-I. Ogura, A. Ikeda, H. Kataoka, M. Tanaka, T. Joh, J. Photochem. Photobiol. C 2011, 12, 4667.
[7] J. M. Dabrowski, B. Pucelik, A. Regiel-Futyra, M. Brindell, O. Mazuryk, A. Kyzioł, G. G. Stochel, W. Macyk, L. G. Arnaut, J. M. Da، browski, B. Pucelik, A. Regiel-Futyra, M. Brindell, O. Mazuryk, A. Kyzioł, G. G. Stochel, W. Macyk, L. G. Arnaut, Coord. Chem. Rev. 2016, 325, 67-101.
[8] A. Ikeda, S. Satake, T. Mae, M. Ueda, K. Sugikawa, H. Shigeto, H. Funabashi, A. Kuroda ACS Med. Chem. Lett. 2017, 8, 555-559.
[9] M.R.Wasielewski, Chem. Rev. 1992, 92, 435-461.
[10] N. Martín, L. Sánchez, B. Illescas, I. Pérez, Chem. Rev. 1998, 98, 25272547.
[11] J.-Y. Zheng, K. Tashiro, Y. Hirabayashi, K. Kinbara, K. Saigo, T. Aida, S. Sakamoto, K. Yamaguchi, Angew. Chem., Int. Ed. 2001, 40, 1858-1861.
[12] K. Uosaki, T. Kondo, X. Q. Zhang, M. Yanagida, J. Am. Chem. Soc. 1997, 119, 8367-8368.
[13] H. Imahori, H. Norieda, H. Yamada, Y. Nishimura, I. Yamazaki, Y. Sakata, S. Fukuzumi, J. Am. Chem. Soc. 2001, 123, 100-110.
[14] A. Ikeda, T. Hatano, S. Shinkai, T. Akiyama, S. Yamada, J. Am. Chem. Soc. 2001, 123, 4855-4856.
[15] A. Ikeda, M. Nakasu, S. Ogasawara, H. Nakanishi, M. Nakamura, J. Kikuchi, Org. Lett. 2009, 11, 1163-1166.
[16] T. Higashino, K. Kawamoto, K. Sugiura, Y. Fujimori, Y. Tsuji, K. Kurotobi, S. Ito, H. Imahori, ACS Appl. Mater. Interfaces 2016, 8, 15379-15390.
[17] O. Ohno, Y. Kaizu, H. Kobayashi, J. Chem. Phys. 1993, 99, 4128-4139.
[18] K. Kano, R. Nishiyabu, T. Asada, Y. Kuroda, J. Am. Chem. Soc. 2002, 124, 9937-9944.
[19] T. Hasegawa, T. Fujisawa, M. Numata, C. Li, A.-H. Bae, S. Haraguchi, K. Sakurai, S. Shinkai, Chem. Lett. 2005, 34, 1118-1119.
[20] K. Watanabe, H. Kitagishi, K. Kano, Angew. Chem., Int. Ed. 2013, 52, 6894-6897.
[21] A. Ikeda, S. Hino, T. Mae, Y. Tsuchiya, K. Sugikawa, M. Tsukamoto, K. Yasuhara, H. Shigeto, H. Funabashi, A. Kuroda, M. Akiyama, RSC Adv. 2015, 5, 105279-105287.
[22] Y. Tsuchiya, A. Yamano, T. Shiraki, K. Sada, S. Shinkai, Chem. Lett. 2011, 40, 99-101.
[23] Y. Tsuchiya, T. Shiraki, T. Matsumoto, K. Sugikawa, K. Sada, A. Yamano, S. Shinkai, Chem.-Eur. J. 2012, 18, 456-465.
[24] K. Kano, N. Tanaka, H. Minamizono, Y. Kawakita, Chem. Lett. 1996, 25, 925-926.
[25] T. M. Krygowski, H. Szatyłowicz, J. E. Zachara, J. Org. Chem. 2005, 70, 8859-8865.
[26] Y. L. Slovokhotov, Cryst. Growth Des. 2014, 14, 6205-6216.
[27] A. M. Slomp, S. M. W. Barreira, L. Z. B. Carrenho, C. C. Vandresen, I. F. Zattoni, S. M. S. Ló, J. C. C. Dallagnol, D. R. B. Ducatti, A. Orsato, M. E. R. Duarte, M. D. Noseda, M. F. Otuki, A. G. Gonçalves, Bioorg. Med. Chem. Lett. 2017, 27, 156-161.
[28] Z. Dou, L. Xu, Y. Zhi, Y. Zhang, H. Xia, Y. Mu, X. Liu. Chem.-Eur. J. 2016, 22, 9919-9922.
[29] A. Ellis, L. J. Twyman, Macromolecules 2013, 46, 7055-7074.

Entry for the Table of Contents (Please choose one layout)

Key Topics: Host-guest chemistry
FULL PAPER

When porphyrin derivatives with one to three pyridyl moieties in the meso-position are incorporated into two trimethyl- β-cyclodextrins, their direction is controlled by steric hindrance of the phenyl moieties in the meso-position.

Banri Horiguchi, Toshimi Nakaya, Masafumi Ueda, Kouta Sugikawa, Naomi Kawata, Tsutomu Mizuta,
Takeharu Haino, and Atsushi Ikeda*
Page No. - Page No.
Controllable Direction of Porphyrin Derivatives in Two Cyclodextrin Cavities

[^0]: [a] B. Horiguchi, T. Nakaya, Dr. M. Ueda, Dr. K. Sugikawa, Prof. A. Ikeda
 Department of Applied Chemistry, Graduate School of Engineering Hiroshima University
 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527 (Japan)
 E-mail: aikeda@hiroshima-u.ac.jp
 http://ikeda-lab.p2.weblife.me/
 [b] Dr. M. Ueda
 Department of Chemistry, Graduate School of Science Kitasato University
 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373 (Japan)
 [c] Prof. T. Mizuta, Prof. T. Haino
 Department of Chemistry, Graduate School of Science Hiroshima University
 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526 (Japan)
 [d] N. Kawata
 Natural Science Center for Basic Research and Development Hiroshima University
 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526 (Japan)
 Supporting information for this article is given via a link at the end of the document

[^1]: [a] Values in parentheses indicate the bond lengths or angles of benzene from Refs. 25 and 26. [b] Values in parentheses indicate bond lengths or angles of pyridine from Refs. 25 and 26.

