Doctoral Thesis

Effect of Maltodextrin on the Glass Transition Properties of Freeze-Dried Mango Powder

(SUMMARY)

SUWALEE FONGIN

Graduate School of Biosphere Science Hiroshima University

March, 2018

SUMMARY

Dried fruits are commonly in an amorphous state. Amorphous solids undergo evident rheological changes at a glass transition temperature (T_g), and glass transition also occurs at certain levels of water content or water activity (a_w), even at a constant temperature, because the T_g of amorphous solids decreases with an increase in water content. Thus, T_g -curves (T_g versus water content) and water sorption isotherms (water content versus a_w) are practically important criteria for the physical stability of dried fruits.

Mango (*Mangifera indica L*.) is one of the most important agricultural products in oriental regions. Because mango contains a large amount of low-molecular carbohydrates (sucrose, fructose, and glucose), glass transition occurs readily with water sorption, followed by physical deterioration such as caking of powder.

Maltodextrin (MD) has a much higher T_g than low-molecular carbohydrates and so has been used as a physical modifier of dried fruits. There have been many studies on the effect of MD on the T_g of dried fruits, but no systematic data as yet for freeze-dried mango powder. The purpose of this study was to understand systematically the effect of MD addition on water sorption, glass transition, and the caking properties of freeze-dried mango pulp and solute.

Chapter 1 presented brief background information and the purpose of this thesis.

Chapter 2 presented the fundamentals of mangoes, freeze drying, water activity, glass transition, caking, and physical modification by an addition of MD, with a literature review.

Chapters 3 described the effect of MD addition on the water sorption, glass transition, and caking properties of mango pulp. The water sorption isotherms for the

freeze-dried mango pulp–MD mixtures at 25 °C showed a sigmoidal shape (type II), and the behavior was analyzed by the Guggenheim, Anderson, and de Boer (GAB) equation. The anhydrous T_g ($T_{g(as)}$) increased with an increased MD content, because MD has a much higher $T_{g(as)}$ than mango pulp. The $T_{g(as)}$ -change for the mango pulp–MD system showed discontinuous behavior, with an abrupt change in $T_{g(as)}$ observed between 60% and 70% MD content. The change suggests that the amorphous mixtures have heterogeneous molecular dynamics. The T_g decreased with increased water content because of water plasticizing, and the behavior was analyzed by the Gordon–Taylor (GT) equation. The critical water content (W_c) and critical aw (a_{wc}) were evaluated from the T_g -curve and water sorption isotherm. As the MD content increased, W_c and a_{wc} increased. The degree of caking for samples with 40%–100% MD increased drastically above a certain a_w condition. This a_w condition could correspond to a_{wc} . It was found that caking property could be improved by the addition of MD.

Chapters 4 described the effect of MD addition on the water sorption, glass transition, and caking properties of mango solute. The water sorption isotherm for the 80% MD sample showed a type II, similar to that for the mango pulp–MD system. Conversely, the other samples (mango solute with 20%–60% MD) exhibited J-shaped (type III) isotherms. The $T_{g(as)}$ for mango solute was slightly lower than that for mango pulp. This suggests that pulp has an elevating effect on T_g of mango. The T_g decreased with increased water content because of the water plasticizing effect. In addition, T_g increased with increased MD content. These results were consistent with those for the mango pulp–MD mixtures. As with the mango pulp, W_c and a_{wc} increased with increased MD content. The mango pulp, M_c and a_{wc} increased with increased mange the mango pulp, M_c and a_{wc} increased with increased mange for the mango pulp, M_c and a_{wc} increased with increased mange pulp. MD samples, suggesting that pulp can improve the physical stability of freeze-dried mango powder.

Chapter 5 summarized these results and discusses them in the context of previous results in literature, and proposes an empirical model to predict the plasticizing effect of water on dried fruits (T_g -depression and caking). This will be useful for understanding the physical stability of dried fruits based on a minimum experiment.

Key words: freeze-dried mango, maltodextrin, water sorption, glass transition temperature, caking property