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Abstract

The internet has currently become a ubiquitous channel for data hub and dissemination since
the networking infrastructure has grown to connect computers all over the world through
cloud applications and online services. In such services, user authentications are required to
permit only access from a valid user. On the other hand, through the authentication, service
providers collect a large amount of information about the users and their online activities.
This information can be beneficial for the service providers, but the way of handling them
might also present challenges to user’s privacy.

One of cryptographic solutions to protect the users’ privacy in the authentication is an
anonymous credential scheme. This scheme allows an issuer to issue each user a certificate
as a proof of the qualification that contains the user’s attributes. The user can anonymously
convince any verifier for the possession of the certificate, where the selected attributes can
be disclosed without revealing any other information about the user’s privacy.

In general, complex relations on attributes can be proved. Previously, an anonymous
credential system with constant size proofs was proposed, where a user can prove any Con-
junctive Normal Form (CNF) formulas, i.e., an ANDs of ORs, on attributes. However, this
system still suffers from inefficiency in the case of numerous OR literals, due to the less ex-
pression capability of CNF formulas. To achieve the constant-size proof, this system utilizes
an accumulator that compresses multiple attributes of a formula into a single value. In the
compression, the accumulator requires that all public parameters assigned to the attribute
values of OR literals in the formula are multiplied which cause a large delay in the proof
generation.

In the first part of this thesis, we propose an extended accumulator to prove monotone
formulas on attributes and apply it to the anonymous credential system in order to obtain
more efficiency in the proof generation. The monotone formula is a logic formula that
contains any combination of AND and OR relations without negations. That is, CNF formula
is a limited type of the monotone formulas. Thus, in the cases that proved formulas require
longer sizes in the representation of CNF formula than monotone formula, the proposed
system has more efficient computation costs. We ensure this in the implementation, where
the experimental result shows that the proposed scheme reduced the proving time from
969.11ms to 63.04ms and the verifying time is reduced from 376.97ms to 132.57ms in a
practical example.

Another cryptographic solution to protect the users’ privacy in the authentication is a
group signature scheme, which is the digital signature version of the anonymous credential.
In the scheme, a group member is allowed to sign a message anonymously on behalf of
the group. There are two types of authorities engage: A group manager, (GM) who adds
users into the group, and an opener who can identify the signer from the signature when
necessary. One important function in the group signature scheme is revocation, where the
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user’s privilege to sign a message is removed. The revocation is a critical issue, which has
been broadly studied.

Previously, Libert et al. proposed a revocable group signature scheme, where for number
of users N , the scheme has achieved O(1) signature size, O(1) signing/verification costs, O(1)
membership certificate size, and O(logN) public key size. However, the scheme still needs
an improvement on the O(R) revocation list (RL) size, where R is the number of revocations.
This is because the signer needs to fetch the RL for every revocation epoch, thus, the large
size will cause delay in mobile environment. Later, Nakanishi et al. proposed a scheme with
compact RL using an accumulator. In this scheme, GM accumulates T subsets in the SD
method and signs the accumulated value for any integer T . Thus, the number of signatures
is reduced by 1/T and the RL size is O(R/T ). However, the signing time, the public key
size and membership certificate size are increased, when T is increased.

On the second part of this paper, we extend the scheme proposed by Libert et al.. In the
proposed scheme, similarly to the scheme by Nakanishi et al., we partition the subsets into
a number of blocks and compress it using a vector commitment. Since the compression is
simpler than the accumulator, we can reduce the RL size to O(R/T ) while maintaining the
membership certificate size as O(1). However, the signing cost still depends on T , and the
verification has constant overhead costs, since there are more proofs of the zero-knowledge
fashion. This scheme seems to be practical on the RL size, but the practicality of the signing
time for concrete values of T , and the overheads in the verification time are unknown. To
clarify that, we implemented the scheme with some efficiency improvements to show the
time efficiency. From the experimental results, the signing time is less than 500 ms for
T = 400, but the verification time is about 1.5 s. We consider that the implemented scheme
is practical in a mobile environment due to lower user computation time and storage.
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Chapter 1

Introduction

1.1 Backgrounds

In current digital era, the internet has now become an ubiquitous channel for data hub and
dissemination. The networking infrastructure has grown to connect computers all over the
world through cloud applications and online services. In such services, user authentications
are required to permit only access from a valid user. However, through the authentication,
service providers collect a large amount of informations about the users and their online
activities. These informations can be beneficial for the improvements of the services, but
the way of handling them might also present challenges to user’s privacy.

One of cryptographic solutions to protect the users’ privacy in the authentication is an
anonymous credential scheme. There exist three entities in the anonymous credential scheme:
an issuer, users, and the verifier (i.e., service provider). This scheme allows an issuer to issue
a certificate to a user. Each certificate is a proof of the membership, the qualification, or the
privilege, and contains user’s attributes. The user can anonymously convince any verifier
for the possession of the certificate, where the selected attributes can be disclosed without
revealing any other information about the user’s privacy.

In general, complex relations on attributes can be expressed by logic formulas. The AND
relation is used when proving the possession of all the multiple attributes. The OR relation
represents the possession of one of the multiple attributes. For example, when accessing
an alcohol-related company’s website, most companies would ask for both nationality and
birthday attributes (to prove the age) during the authentication, since different countries
have a different legal drinking age. Thus, the user needs to prove the AND relation of
his/her nationality and age. In the authentication, a zero-knowledge type of proof allows
the user to hide any other information beside the satisfaction of the relations.

In [23], an anonymous credential system with constant size proofs was proposed, where
a user can prove any Conjunctive Normal Form (CNF) formulas, i.e., an ANDs of ORs, on
attributes. However, this system still suffers from inefficiency in the case of numerous OR
literals, due to the less expression capability of CNF formulas. To achieve the constant-size
proof, this system utilizes an accumulator that compresses multiple attributes of monotone
formula into a single value. In the compression, the accumulator requires that all public
parameters assigned to the attribute values of OR literals in the formula are multiplied
which cause a large delay in the proof generation.

Another cryptographic solution to protect the users’ privacy in the authentication is a
group signature scheme, which is a signature scheme version of the anonymous credential
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scheme. The authentication is an online procedure between a user and a verifier, while the
signature can be verified off-line by one or probably more verifiers. In the group signature
scheme, the signer (i.e., user) signs a message on behalf of the group, and the verifier (i.e.,
service provider) verifies the signature anonymously. There are two types of authorities:
A group manager (GM) who adds users into the group, and an opener who can identify
the signer from the signature when necessary. In the user registration phase, GM issues a
membership certificate to the user. Then, the user creates the group signature using the
certificate. Any verifier can check the validity of the signature by using the group public
key without knowing who is the actual user. As an additional functionality in the group
signature scheme, revocation has been introduced, where the user’s privilege to sign a message
is removed. It is a critical issue due to the anonymity of the signature and has been broadly
studied.

Previously, a scalable group signature scheme with revocation based on the broadcast
encryption framework was proposed by Libert et al. [4]. Despite achieving efficient complex-
ity costs of O(1) signature size, O(1) signing/verification costs, O(1) membership certificate
size, and O(logN) public key size, where N is the total number of group members, the
scheme still needs an improvement on the revocation list (RL) size. In the scheme, the RL
contains signatures for all subsets of authorized users, which are formed by a subset differ-
ence (SD) method. In the worst case, the number of signatures amounts to 2R− 1, where R
is the number of revocations. The used signature scheme is an AHO signature with 7 group
elements. Thus, in case of 128-bit security, the RL size is 900R bytes or more. The large size
will cause delay in a mobile environment, since the signer needs to fetch the RL for every
revocation epoch.

Both of the above schemes are legitimate solutions to the user’s privacy problem. How-
ever, as mentioned before, the efficiency of both for practical use are still questionable. In this
thesis, we address problems from two areas: (i) computational efficiency of the attribute-
based anonymous credential scheme, and (ii) data size of the revocable group signature
scheme.

1.2 Our Contributions

On the first part, we deal with the time efficiency in the proof generation of previous work
[23]. We propose an extended accumulator to prove monotone formulas on attributes and
apply it to the anonymous credential system in order to obtain more efficiency in the proof
generation. The monotone formula is a logic formula that contains any combination of AND
and OR relations without negations. That is, the CNF formula is a limited type of the
monotone formulas.

The previous work suffers from inefficiency in the case of numerous OR literals, due
to the less expression capability of CNF formulas. A typical example is to prove the age
using birthday attributes. Consider the example in accessing an alcohol related website for
countries that have a legal drinking age of 18 years old or above. An example of CNF formula
is (Australia ∨ . . .) ∧ (1915, Jan.1st ∨ · · · ∨ 1997, Sept.5th), where each birthday is encoded
to one attribute value such as “1915, Jan.1st”. The accumulator requires that all public
parameters assigned to the attribute values of OR literals in the formula are multiplied. For
the above example, there are 101 attributes for nationality, and the number of attributes for
the birthdays from 1915, Jan.1st ∼ 1997, Sept.5th is 30, 198, which makes 30, 299 attributes
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in total. The multiplications cause a large delay in the authentication.
The expression flexibility of monotone formula can reduce the number of attributes in

the proved formula as follows. In the monotone formula, the birthday attribute is composed
of the birth-year, the birth-month, and the birth-day, and one birthday is expressed as
(birth-year ∧ birth-month ∧ birth-day). For the above example, the monotone formula is
(Australia∨. . .)∧(1915∨. . .∨(1997∧(Jan.∨. . .∨(Sept.∧(1st∨. . .∨5th))))). Using this type
of formula, the number of public parameters multiplied in the accumulator is decreased to
198 attributes in total of 101 nationalities, 83 birth-years, 9 birth-months, and 5 birth-days,
which greatly impacts the reduction of authentication time.

On the second part, we deal with the data size of revocation list (RL) of previous scheme
[4]. In the scheme, the RL contains signatures for all subsets of authorized users, which are
formed by a subset difference (SD) method. In the worst case, the number of signatures
amounts to 2R − 1, where R is the number of revocations. As the signature, an AHO
signature with 7 group elements is used. Thus, in case of 128-bit security, the RL size is
900R bytes or more. Since the signer needs to fetch the RL for every revocation epoch, the
large size will cause delay in mobile environment.

Thus, we propose a revocable group signature scheme with a compact RL to overcome
the problem. by partitioning the subsets into a number of blocks and compress it using
a vector commitment [2]. We can reduce the RL size to O(R/T ), where T is the number
of compressions, and the public key size is O(T + logN), where N is the total number of
group members, while maintaining the membership certificate size as O(1). In the proposed
scheme, for R = 100, 000, the size of RL is reduced from 63KB in [4] to 1,400KB.

However, as the trade-off, the signing cost becomes O(T ). In this thesis, we also show
the experimental result of the proposed scheme based on the implementation to clarify the
practicality.

1.3 Contents of This Thesis

The remaining of this thesis is organized as follows.
Chapter 2 reviews the mathematics fundamentals for this thesis. This chapter covers the

introduction of the bilinear maps, and the basic concept of pairings. Then, the complexity
assumptions and signature scheme are reviewed, and zero-knowledge proof technique used
in this thesis are illustrated in two types, the symmetric and the asymmetric types.

Chapter 3 proposes the construction of a anonymous credential scheme for monotone
formula on attributes. Before the construction, as the key component, extended accumulator
to verify the monotone formula in the anonymous authentication is proposed. This chapter
also illustrates the comparisons of the signing time and the verification time between the
proposed scheme and the the previous work.

Chapter 4 proposes the construction of a revocable group signature scheme with compact
revocation list using a vector commitment. This chapter also shows the theoretical efficiency
comparisons with the previous works.

Chapter 5 describes the implementation of the proposed group signature scheme to show
the efficiency, which includes efficiency improvements for the implementation based on pair-
ing. This chapter also discusses the experimental results for the consideration of practicality.

Finally, Chapter 6 concludes this thesis together with some future works.
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Chapter 2

Preliminaries

In this chapter, we review the bilinear map, the complexity assumptions, and the cryp-
tograhic tools used as building blocks of our proposed systems.

2.1 Bilinear maps

The concepts related to bilinear maps in our system, which are implemented by the pairing,
are as follow:

1. G1 and G2 are two multiplicative cyclic groups of prime order p;

2. g1 and g2 are randomly chosen generator of G1, G1, respectively;

3. e is a computable bilinear map, e : G1 ×G2 → GT with the following properties:

• Bilinearity: for all u, v ∈ G1, and a, b ∈ Z, e(ua, vb) = e(u, v)ab.

• Non-degeneracy: e(g1, g2) ̸= 1GT where 1GT is an identity element of GT .

The above map is implemented by the asymmetric pairing. However, in Chapter 4, for
simplicity, we propose the revocable group signature scheme using the symmetric pairing as
the bilinear map, where e is defined as G×G→ GT .

2.2 Complexity assumptions

On the first part of the thesis, the security of our proposed anonymous credential scheme
is based on SXDH assumption, the n-DHE (DH Exponent) assumption [14] and the q-SFP
(Simultaneous Flexible Pairing) assumption [19]. The assumptions are define in asymmetric
type pairing.

Definition 1. (SXDH assumption) The decisional Diffie-Hellman assumption holds in
both G1 and G2.

Definition 2. (n-DHE assumption) For all PPT algorithm A, the probability

Pr
[
A
(
g, ga, . . . , ga

n
, ga

n+2
, . . . , ga

2n
, g̃, g̃a, . . . , g̃a

n
, g̃a

n+2
, . . . , g̃a

2n )
= g̃a

n+1
]

is negligible, where g ∈R G1, g̃ ∈R G2 and a ∈R Zp.
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Definition 3. (q-SFP assumption) For all PPT algorithm A, the probability

Pr

 A ( gz, hz, gr, hr, a, ã, b, b̃, {(zj, rj, sj, tj, uj, vj, wj)}qj=1

)
= (z∗, r∗, s∗, t∗, u∗, v∗, w∗) ∧ e(a, ã) = e(gz, z

∗)e(gr, r
∗)e(s∗, t∗) ∧

e(b, b̃) = e(hz, z
∗)e(hr, u

∗)e(v∗, w∗) ∧ z∗ ̸= 1 ∧ z∗ ̸= zj for all 1 ≤ j ≤ q


is negligible, where (gz, hz, gr, hr) ∈ G4

1, (a, ã) and (b, b̃) be pairs in G1 × G2, and all tuples
{sj, vj}qj=1 ∈ G2

1 and {zj, rj, uj, tj, wj}qj=1 ∈ G5
2 satisfy the above relations.

On the second part of the thesis, the security of our proposed revocable group signa-
ture scheme is based on DLIN (Decision LINear) assumption [6], the q-SDH (Strong DH)
assumption [7], the n-FlexDHE assumption [21], the n-DHE assumption, and the q-SFP
(Simultaneous Flexible Pairing) assumption [19]. The assumptions are define in symmetric
type pairing.

Definition 1 (DLIN assumption) For all PPT algorithm A, the probability

Pr
[
A(g, ga, gb, gac, gbd, gc+d) = 1

]
− Pr

[
A(g, ga, gb, gac, gbd, gz) = 1

]
is negligible, where g ∈R G and a, b, c, d, z,∈R Zp.

Definition 2 (q-SDH assumption) For all PPT algorithm A, the probability

Pr
[
A(g, ga, . . . , gaq) = (b, g1/(a+b) ∧ b ∈ Zp)

]
is negligible, where g ∈R G and a ∈R Zp.

Definition 3 (n-DHE assumption) For all PPT algorithm A, the probability

Pr
[
A(g, ga, . . . , gan , gan+2

, . . . , ga
2n

) = ga
n+1
]

is negligible, where g ∈R G and a ∈R Zp.

Definition 4 (n-FlexDHE assumption) For all
PPT algorithm A, the probability

Pr
[
A(g, ga1 , . . . , gan , gan+2

, . . . , ga
2n
) = (gµ, gµa

n+1
, gµa

2n
) ∧ µ ∈ Zp

]
is negligible, where g ∈R G and a ∈R Zp. The n-FlexDHE assumption is stronger than
the n-DHE assumption, i.e., the former implies the latter.

Definition 5 (q-SFP assumption) For all PPT algorithm A, the probability

Pr

 A ( gz, hz, gr, hr, a, ã, b, b̃, {(zj, rj, sj, tj, uj, vj, wj)}qj=1

)
= (z∗, r∗, s∗, t∗, u∗, v∗, w∗) ∈ G7 ∧ e(a, ã) = e(gz, z

∗)e(gr, r
∗)e(s∗, t∗) ∧

e(b, b̃) = e(hz, z
∗)e(hr, u

∗)e(v∗, w∗) ∧ z∗ ̸= 1 ∧ z∗ ̸= zj for all 1 ≤ j ≤ q


is negligible, where (gz, hz, gr, hr, a, ã, b, b̃) ∈ G8 and all tuples {(zj, rj, sj, tj, uj, vj, wj)}qj=1

satisfy the above relations.
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2.3 AHO Structure-Preserving Signatures

AHO signature [19] is used as the structure-preserving signature, where the knowledge of
the signature can be proved by the following Groth-Sahai (GS) proofs. The AHO signature
allows us to sign multiple elements to obtain a signature with the constant size.

AHOKeyGen: Select bilinear groups G,GT with a prime order p and a bilinear map e.
Select g,Gr, Hr ∈ G and µz, νz, µ1, . . . , µk, ν1, . . . , νk, αa, αb ∈R Zp. Compute Gz =
Gµz
r , Hz = Hνz

r , G1 = Gµ1
r , . . . , Gk = Gµk

r , H1 = Hν1
r , . . . , Hk = Hνk

r , A = e(Gr, g
αa),

B = e(Hr, g
αb). Output the public key as pk = (G,GT ,p, e, g,Gr, Hr, Gz, Hz, G1, . . . , Gk,

H1, . . . , Hk, A,B), and the secret key as sk = (αa, αb, µz, νz, µ1, . . . , µk, ν1, . . ., νk).

AHOSign: Given a vector of messages (M1, . . . ,Mk) ∈ Gk together with sk, choose β, ϵ,
η, ι, κ ∈R Zp, and compute θ1 = gβ, and

θ2 = gϵ−µzβ
∏k

i=1M
−µi
i , θ3 = Gη

r , θ4 = g(αa−ϵ)/η,

θ5 = gι−νzβ
∏k

i=1M
−νi
i , θ6 = Hκ

r , θ7 = g(αb−ι)/κ.

Output the signature σ = (θ1, . . . , θ7).

AHOVerify: Given a vector of messages (M1, . . . ,Mk) ∈Gk and the signature σ = (θ1, . . . , θ7),
accept these if following equations are hold:

A = e(Gz, θ1) · e(Gr, θ2) · e(θ3, θ4) ·
∏k

i=1 e(Gi,Mi),

B = e(Hz, θ1) · e(Hr, θ5) · e(θ6, θ7) ·
∏k

i=1 e(Hi,Mi).

This signature is existentially unforgeable against chosen-message attacks under the q-SFP
assumption [19].

The re-randomization algorithm in [19] allows us to publicly randomize an AHO signature
to obtain another signature (θ′1, . . . , θ

′
7) on the vector of the same messages. In the GS proof

of the randomized signature, (θ′i)i=3,4,6,7 can be revealed, but (θ′i)i=1,2,5 is committed.

2.4 Groth-Sahai (GS) Proof

To prove the secret knowledge in relations of the bilinear maps, we utilize Groth-Sahai
(GS) proofs [16]. We adopt the instantiation based on SXDH assumption. For the bilinear
groups, the proof system needs a common reference string (u1,u2,v1,v2) for u1 = (u11, u12),
u2 = (u21, u22), v1 = (v11, v12), v2 = (v21, v22) for some u11, u12, u21, u22 ∈ G1 and some
v11, v12, v21, v22 ∈ G2. The commitment to an element X ∈ G1 (resp., Y ∈ G2) is computed
as C = (1, X) · ur1 · us2 (resp, C = (1, Y ) · vr1 · vs2) for r, s ∈R Z∗

p. In the case of the CRS

setting for perfectly sound proofs, u2 = uξ11 , v2 = vξ21 for ξ1, ξ2 ∈R Z∗
p. Then, the commitment

C = (ur+ξ1s11 , X ·ur+ξ1s12 ) (resp., C = (vr+ξ2s11 , Y ·vr+ξ2s12 )) is the ElGamal encryption forX (resp.,
Y ). On the other hand, in the setting of the witness indistinguishability, u2 = uξ11 /(1, g),
v2 = vξ21 /(1, g̃) for ξ1, ξ2 ∈R Z∗

p, and thus C is perfectly hidden. The SXDH assumption
implies the indistinguishability of the CRS. To prove that the committed variables in the
pairing relations, the prover prepares the commitments, and replaces the variables in the
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pairing relations by the commitments. The GS proof allows us to prove the set of pairing
product equations:

n∏
j=1

e(Aj, Yj) ·
m∏
i=1

e(Xi, Bi) ·
m∏
i=1

n∏
j=1

e(Xi, Yj)
aij = t

for variablesX1, . . . , Xm ∈ G1, Y1, . . . , Yn ∈ G2 and constants A1, . . . , An ∈ G1, B1, . . . , Bm ∈
G2, aij ∈ Zp, t ∈ GT .

The GS proof system consists of the following algorithms: SoundSetup outputs a CRS
crs for perfectly sound proofs together with the extraction trapdoor et. ProofGen, on
input of crs, a statement of pairing relations S, and a witness W that is a set of committed
variables satisfying the pairing relations, outputs the proof π including the commitments of
W . Verify, on input of crs, and π, outputs the acceptance if the proof is valid, or rejection
otherwise.

Furthermore, there are special algorithms: Extract, on inputs of crs, et, and π, out-
puts the witness W . WISetup outputs a CRS for the witness indistinguishability, crs′.
WIProofGen on input of crs′, a statement of pairing relations S, and a witness W for S,
outputs the witness indistinguishable proof π′.

The GS proof system satisfies the following security properties.

CRS indistinguishability: crs output by SoundSetup and crs′ output by WISetup are
computationally indistinguishable.

Extractability (Perfect soundness): For crs and et output by SoundSetup and a proof
π, if Verify outputs the acceptance on π, Extract can output the witness W from π.

Perfect witness indistinguishability (WI): Consider the following game:

GameWI:

1. The challenger runs WISetup to generate crs′. It gives crs′ to the adversary.

2. The adversary outputs a statement S and the witnesses W1,W2. The chal-
lenger randomly selects b ∈R {0, 1}, and responds the proof using Wb on crs

′,
S using WIProofGen to the adversary.

3. The adversary outputs the guess b′.

Then, for any PPT adversary in GameWI, Pr[b
′ = b] = 1/2.

2.5 Tag-based Encryption

As in [4], we adopt the public key tag-based encryption [11]. The public key consists of
random non-trivial elements pk = (f1, f2, U, V ) ∈ G4 and the secret key is sk = (ω, η) where
f1 = gω, f2 = gη . We encrypt message M ∈ G using tag t ∈ Zp and randomness r, s ∈ Zp
as (Υ1, . . . ,Υ5):= (f r1 , f

s
2 , g

r+sM, (gtU)r, (gtV )s). The validity of the ciphertext is publicly
verifiable, since valid ciphertexts have e(f1,Υ4) = e(Υ1, g

tU) and e(f2,Υ5) = e(Υ2, g
tV ).

Decryption can be done by computing M = Υ3Υ
−1/ω
1 Υ

−1/η
2 . In the group signature scheme,

we will set up the cryptosystem with the same f1, f2 as in the common reference string of
the non-interactive proofs.

Under the DLIN assumption this cryptosystem is selective-tag weakly CCA-secure.
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2.6 Vector Commitment

We adopt a primitive called vector commitment [2], where a vector of multiple values are
committed, and the commitment can be opened at specific coordinate. Generally, the com-
mitment is randomized for hiding. However, as in [4], we utilize the non-randomized ver-
sion, since we need only the binding property. The public key for the commitments is
pkvc = (g1, . . . , gn, gn+2, . . . , g2n), where gi = gγ

i
for each γ ∈R Zp. To commit to a vector

−→m = (m1, . . . ,mn) ∈ Znp , the committer computes

C =
∏n

κ=1 g
mκ
n+1−κ.

A single group element Wi =
∏n

κ=1,κ̸=i g
mκ
n+1−κ+i provides the evidence that mi is the i-th

component of −→m. It satisfies the verification relation e(gi, C) = e(g1, gn)
mi · e(g,Wi). The

infeasibility of opening a commitment to two distinct messages for some coordinate i relies
on the n-FlexDHE assumption or n-DHE assumption (see the proof of Theorem 6).

2.7 The NNL Framework for Broadcast Encryption

The Subset-Cover framework for broadcast encryption with N = 2ℓ registered receiver (user)
was proposed in [9]. In a complete binary tree T of height ℓ, each node is assigned a secret key,
where the receivers are associated with the leaves. The framework’s idea is to partition the
set of non-revoked users into m disjoint subsets S1, . . . , Sm such that N \R = S1 ∪ . . .∪Sm,
where N is the universe set of users and R ⊂ N is the set of revoked receivers.

The Subset Difference (SD) method has O(|R|) transmission cost and O(log2N) storage
complexity. For each node x in T, the subtree rooted at x is called Tx. For each i ∈ 1, . . . ,m,
the disjoint subset Sx of S1, . . . , Sm is defined by a node primary node, e.g., the root node
of the subtree and a secondary node, e.g., a descendant of the primary node which its
descendants are all revoked. Each user belongs to many generic subsets, so that the number
of subsets bounded by m = 2 · |R| − 1, as proved in [9].
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Chapter 3

Accumulator for Monotone Formulas
and its Application to Anonymous
Credential System

3.1 Introduction

In Web services, user authentications are required to protect malicious access. In conven-
tional ID-based authentications, the privacy problem may occur, since Service Provider (SP)
can trace the user’s ID, grasp user’s service history, and might use it to attempt malicious
activities. On the other hand, from SP’s point of view, the authentication using the user’s
attributes such as a gender, an occupation, and an age is more advantageous for commer-
cial values. Thus, an attribute-based authentication with a strong privacy protection is in
demand, where users can selectively disclose the minimal amount of attributes necessary for
the service while hiding the others completely.

For the demand, in [12, 15, 1, 21], anonymous credential systems were proposed, where a
user can anonymously convince SP about the possession of specified attributes. There exist
three entities in the anonymous credential system: an issuer, users, and SP. The user ob-
tains a certificate from the issuer in advance, where the certificate ensures his/her attributes.
Then, the user makes a proof of the certified attributes and prove it to SP. In the authen-
tication, SP requests the user to prove his/her certified attributes and their relation. For
example, when accessing an alcohol-related company’s website, most companies would ask
for both nationality and birthday attributes (to prove the age) during the authentication,
since different countries have different legal drinking age. Thus, the user needs to prove the
AND relation of his/her nationality and age. In general, complex relations on attributes can
be expressed by logic formulas. The AND relation is used when proving the possession of
all the multiple attributes. The OR relation represents the possession of one of the multiple
attributes. In the authentication, a zero-knowledge type of proof allows the user to hide any
other information beside the satisfaction of the relations.

In [15, 1], anonymous credential systems were proposed, where the proof of the formula
has the constant size for the number of all attributes of a user and the size of the proved
formula. However, simple AND or OR relations on attributes are only available. In [21],
a system with the constant size proofs is proposed, where the inner-product on attributes
can be proved (Thus, CNF and DNF formulas are also available). However, in this system,
the proof generation needs exponentiation depending on the number of literals in the OR
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relations, which causes a large delay in case of formulas with lots of OR literals.
In [23], an anonymous credential system with the constant size proofs was proposed,

where a user can prove any CNF formulas on attributes. In this system, the proof genera-
tion is more efficient than [21], since it needs only multiplications depending the number of
OR literals. However, this system still suffers from the inefficiency in case of numerous OR
literals, due to the less expression capability of CNF formulas. The typical example is to
prove the age using birthday attributes. To achieve the constant-size proof, this system uti-
lizes an accumulator that compresses multiple attributes of monotone formula into a single
value. In the compression, multiplications are needed. Consider the above example in ac-
cessing an alcohol related website for countries that have legal drinking age of 18 years old or
above. An example of CNF formula is (Australia∨. . .)∧(1915, Jan.1st∨· · ·∨1997, Sept.5th),
where each birthday is encoded to one attribute value such as “1915, Jan.1st”. The accu-
mulator requires that all public parameters assigned to the attribute values of OR literals
in the formula are multiplied. For the above example, there are 101 attributes for nation-
ality, and the number of attributes for the birthdays from 1915, Jan.1st ∼ 1997, Sept.5th is
30, 198, which makes 30, 299 attributes in total. The multiplications cause a large delay in
the authentication.

In this chapter, we propose an extended accumulator to prove monotone formulas on
attributes and apply it to the anonymous credential system in order to obtain more effi-
ciency in the proof generation than the previous system [23] for proving CNF formulas.
The monotone formula is a logic formula that contains any combination of AND and OR
relations without negations. That is, the CNF formula is a limited type of the monotone
formulas. In the monotone formula, the birthday attribute is composed of the birth-year, the
birth-month, and the birth-day, and one birthday is expressed as (birth-year ∧ birth-month
∧ birth-day). For the above example, the monotone formula is (Australia ∨ . . .) ∧ (1915 ∨
. . .∨ (1997∧ (Jan.∨ . . .∨ (Sept.∧ (1st∨ . . .∨5th))))). Using this type of formula, the number
of public parameters multiplied in the accumulator is decreased to 198 attributes in total
of 101 nationalities, 83 birth-years, 9 birth-months, and 5 birth-days, which greatly impacts
the reduction of authentication time.

However, the proposed scheme has a drawback against [23]: The size of the user’s certifi-
cate becomes exponential in the number of the user’s attributes, compared to the constant
size in [23] (the exponential size can be shortened as shown later). Since the scheme of [23]
supports the CNF formula, by converting a monotone formula to a CNF formula, we can
employ the scheme of [23] to prove the monotone formula without the drawback of the long
certificate. However, in general, the size (the number of literals) of the converted CNF for-
mula becomes super-polynomial in the size of the original monotone formula, which causes
a huge authentication time (because the literals in the proved formula are multiplied). On
the other hand, by the trade-off of the long certificate, our proposed scheme enables the di-
rect proof of monotone formula. As shown in the above example, it leads the efficient proof
generation in the original size of the expressive monotone formula, which is our contribution.

Our approach to prove the monotone formula is that the tag assignment in the accumu-
lator is extended to be adapted to the tree expressing the monotone formula. In the tree,
leaves indicate the attributes and internal nodes are the AND or OR relations. For instance,
consider the following proved monotone formula:

((a1 ∧ a2) ∨ a3) ∧ (a4 ∨ a5) ∧ a6.

As the preparation of the accumulator, a tag assignment is executed as follows. At the root,
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a series of tags c1, . . . , c4 are generated. Then, these tags are divided and assigned to the
leaves. The same tags are distributed to the children on an OR relation, while different tags
are distributed to the children on an AND relation. The tag assignment result for the above
formula is

((ac11 ∧ ac22 ) ∨ a
c1,c2
3 ) ∧ (ac34 ∨ ac35 ) ∧ ac46 ,

where the superscript in each attribute means the assigned tags. In this assignment, the
attributes of the user satisfy the formula if and only if the tags for the attributes are exactly
the same as the initial tags. For example, when a user with satisfying attributes a3, a5, a6,
the assigned tags are {{c1, c2}, c3, c4}, which compose the initial tags. In the verification of
the accumulator, it is checked using a pairing relation, which is extended from that of [23].

3.2 Extended Accumulator

In this section, we show an accumulator to verify monotone formulas as the key primitive. It
is an accumulator extended from the previous accumulator [23]. The extended accumulator
compresses the more general formula, the monotone formula, than CNF of the previous [23].
The construction of the accumulator is based on [23], and it employs our new tag assignment
algorithm, where tags are assigned in leaf attributes in the binary tree of the given monotone
formula.

The difference of constructions between the proposed scheme and [23] is described in
intuition behind construction in Section 3.2.5.

3.2.1 Notations and Assumptions

In the accumulator, each attribute is indexed by an integer in {1, . . . , n}. The set of all
attributes has to be fixed in advance, i.e., the small universe (The comparison of this restric-
tion to the previous scheme [23] is shown in Section 3.5.2). Each user owns attributes, and
user’s attribute set U denotes the set of the indices of the attributes that the user owns.

A monotone formulaM is represented by a binary tree, where any internal node is either
AND or OR, and the leaf nodes are attributes. For monotone formula M, let MA be the
set of attribute indices inM. In a monotone formula, the same attribute may be included
twice or more, such as (Japanese ∧ student) ∨ (Japanese ∧ professor). In this paper, for
simplicity, the same attributes in the formula are indexed by different indices (e.g., the first
Japanese is indexed by 1 and the second one is indexed by 2), while the user’s attribute
set includes all indices for the attribute. This means that the number of the indices used
as the same attribute is fixed in advance (The comparison of this restriction to the previous
scheme [23] is also shown in Section 3.5.2). Therefore, we can assume that the attribute
indices inM are all different.

From the tree of a given monotone formula M, consider a minimal satisfaction tree,
as follows. In any intermediate OR node, one child node remains (because it is needed in
minimal for satisfying the OR node), but another redundant child node (and the descendant
subtree) is removed. Note that, in any internal AND node, both child nodes remain because
the child nodes are needed for the satisfaction of M. Consider user’s attribute set U , and
Ũ that is a subset of U ∩MA. We define a predicateMS(Ũ ,M), whereMS(Ũ ,M) = 1 if
Ũ consists of attributes in a minimal satisfaction tree ofM, and otherwiseMS(Ũ ,M) = 0.
We call set Ũ s.t. MS(Ũ ,M) = 1 a minimal attribute set of M and we denote such Ũ
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as Û . In the example of Fig. 3.1, the sub-tree connected by the double lines is a minimal
satisfaction tree with the minimal attribute set Û = {a3, a5, a6}. Here, note that minimal
satisfaction tree is not unique. In the example of Fig.1, we can consider another minimal
satisfaction tree for another minimum attribute set Û = {a3, a4, a6}.

We assume that |U | for every user is bounded by the upper bound η. The value η is fixed
by depending on |U | of all users, but does not depend on proved formulas. The value of η
must be fixed before the setup. Thus, in the application such as the proposed anonymous
credential system, some authority needs to estimate the value of η from the number of
attributes that every user can use. This is a restriction, which we compare to the previous
system [23] in Section 3.5.2.

3.2.2 Syntax and Security of Extended Accumulator

We show the definition of algorithms in the extended accumulator as follows:

AccSetup: This is the algorithm to output the public parameters pkacc and only be executed
once.

AccGen: This is the algorithm to compute an accumulator, i.e., the compressed value of
a given formula. Given pkacc and a monotone formulaM, this algorithm outputs the
accumulator, accM, together with the auxiliary values auxM.

AccWitGen: This is the algorithm to compute the witness W of the minimal satisfaction
ofM by Û (i.e.,MS(Û ,M) = 1). Given pkacc, Û ,M, auxM, this algorithm outputs
W .

AccVerify: This is the algorithm to verify the minimal satisfaction of M by Û . Given
pkacc, accM, Û ,W , auxM, this algorithm accepts them if MS(Û ,M) = 1 and reject
them if otherwise.

We define the correctness and the security of the extended accumulator by the folowing
requirements.

Correctness : The extended accumulator is correct if AccSetup algorithm correctly com-
putes pkacc and AccGen and AccWitGen correctly output accM, auxM, and W for
Û andM, then AccVerify accepts accM, Û ,W that are output by the algorithms, if
MS(Û ,M) = 1.

Security : Consider the following game between a challenger and the adversary:

GameAcc:

1. The challenger runs the AccSetup algorithm to generate the public param-
eters pkacc. It gives pkacc to the adversary.

2. The adversary outputs Ũ ,M and W .

Then, the adversary wins if

• For accM, auxM which are the outputs of AccGen given pkacc and M, AccVerify
accepts pkacc, accM, Ũ , W , auxM, but
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• MS(Ũ ,M) = 0.

Then, the extended accumulator is secure if any PPT adversary can win GameAcc only with
negligible probability.

3.2.3 Tag Assignment Algorithm

In this tag assignment algorithm, the input is a monotone formula M on attributes. The
output of the algorithm is a non-negative integer T showing the number of tag indices, and
the sequence of tag indices, Si = [a..b] to each attribute i inM, where [a..b] denotes the set
of consecutive integers between a and b, i.e., {a, a+ 1, . . . , b}.

The goal of this algorithm is to output a partition {Si}i∈Û of the initial set Sϵ=[1..T ],

for the minimal attribute set Û ofM, which is used for verifying the monotone formula in
the accumulator.

Intuition behind construction: In the algorithm, each node is traversed from the root node
as follows. At an AND node, the sequences of tag’s indices is separated and given to each
child node. This is because the combination of the sequences from both subtrees rooted by
the two child nodes can be equal to the AND node’s sequence. At an OR node, the sequence
of tag’s indices is exactly given to both child nodes. This is why the sequence of the subtree
rooted by either of the child nodes can become the sequence of the OR node. To ensure
the separation at descendant’s AND nodes, an auxiliary sequence A is introduced. A is a
sequence of separable positions in the sequence of tag’s indices. When traversing the tree,
A is separated and assigned to each child node such that the number of separable positions
is equal to the number of AND nodes in the subtree rooted at the child node. Note that, at
an AND node, one separable position is consumed for the separation of tag’s indices.

Preparation: For every node N, traverse the tree to find TN that is the number of AND
nodes in the subtree rooted by N. At the root node N=ϵ, the number of AND nodes
is set as Tϵ. Then, set T = Tϵ + 1, the root’s sequence Sϵ=[1..T ], and the auxiliary
sequence Aϵ=[1..Tϵ] that includes the separable positions of Sϵ.

Assignment: Using the following function ASSIGN(N, S,A) where N is a node, S=[a..b],
and A=[c..d], assign S and A to each node recursively starting with ASSIGN(ϵ,Sϵ,Aϵ).
Then, output the sequence Si of every leaf node for attributes i ∈ MA. The function
ASSIGN(N,S,A) is defined as follows. Here, LeftChild(N) (resp., RightChild(N)) de-
notes as the left (resp., right) child node of N.

ASSIGN(N,S,A)
if N is an OR node:

1. Split A into A′=[c..c+TLeftChild(N)-1] and A′′=[c+ TLeftChild(N)..d], where A′ (resp., A′′)
is set as empty, if TLeftChild(N)=0 (resp., TRightChild(N)=0).

2. Run ASSIGN(LeftChild(N),S,A′).

3. Run ASSIGN(RightChild(N),S,A′′).

4. Return.
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Figure 3.1: Tag assignment in the tree of a monotone formula.

if N is an AND node:

1. Split A into A′=[c..c+TLeftChild(N)-1] and A′′=[c+ TLeftChild(N)+1..d], where A′ (resp.,
A′′) is set as empty, if TLeftChild(N)=0 (resp., TRightChild(N)=0). In this case, one separable
position a+ TLeftChild(N) is consumed in A.

2. Using the separate position a+TLeftChild(N), split S ′ into S ′=[a..c+TLeftChild(N)] and S ′′

= [c+TLeftChild(N)+1..b].

3. Run ASSIGN(LeftChild(N),S ′,A′).

4. Run ASSIGN(RightChild(N),S ′′,A′′).

5. Return.

if N is a leaf node for attribute i:

1. Output Si = S as the sequence of the attribute i.

2. Return.

We explain the algorithm using an example of a monotone formula.
Example. Suppose we are given a monotone formula ((a1 ∧ a2) ∨ a3) ∧ (a4 ∨ a5) ∧ a6 whose
tree is shown in Fig. 3.1.

In Fig. 3.1, Sϵ = {1, 2, 3, 4} and Aϵ={1, 2, 3}. The separable position t in A means that
S= {a, . . . , t, . . . , b} is separable to S ′ = [a..t] and S ′′= [t+1..b]. When traversing the AND
node, one separable position in A is consumed, and S is divided into the left and right child
nodes. The remaining separable positions are also distributed to the child nodes such that
the descendant AND nodes can consume the separable positions. In Fig. 3.1, the root node
is an AND node and it consumes separable positions 2⃝, thus S ′ = {1, 2} and S ′′ = {3, 4} are
assigned to left child and right child, respectively. The separable positions A = { 1⃝, 2⃝, 3⃝}
are distributed to A′ = { 1⃝} and A′′ = { 3⃝}, where 2⃝ is consumed in the root.

When the current node is an OR node, none of the separable position is consumed and
thus both child nodes receive the same S. The separable positions are distributed to the
child nodes such that the descendant AND nodes can consume the separable position. In
the OR node of level 1 (Fig. 3.1), the separable position 1⃝ is distributed to the left child
with the AND descendant.
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In Fig. 3.1, the subtree connected with double lines branch is the minimal satisfaction
tree where Û = {a3, a5, a6}. The set of Si for all i ∈ Û , i.e., {{1, 2}, {3}, {4}} is a partition
of Sϵ = {1, 2, 3, 4}.

3.2.4 Correctness of Tag Assignment Algorithm

We have the following theorem of the correctness of the tag assignment algorithm.

Theorem 1. For Si and Sϵ output in the tag assignment algorithm on input M, for any
set of attributes Ũ , if and only if MS(Ũ ,M) = 1, {Si|i ∈ Ũ} is a partition of Sϵ, i.e.,∪
i∈Ũ Si = Sϵ and Si’s are mutually disjoint.

Proof. First, let us consider the proof that, ifMS(Ũ ,M) = 1, {Si|i ∈ Ũ} is a partition of Sϵ.
In the algorithm, since each TN is correctly computed, each AND node can always consume
a separable position in A. Note that, at each level in the minimal satisfaction tree, the set
of all S of nodes at the level remains a partition of Sϵ. This is because S in an AND node is
partitioned to two child nodes and S in an OR node is inherited to the child in the minimal
satisfaction. As in Fig. 3.1, a leaf node at a level is replaced by a virtual intermediate node
connected to the virtual leaf node at the bottom level via the virtual intermediate nodes.
Then, at the bottom level, the set of all Si remains a partition of Sϵ.

Next, consider the reverse proof that, if MS(Ũ ,M) ̸= 1, {Si|i ∈ Ũ} is not a partition
of Sϵ. Consider the subtree ofM with only the paths from the root to all leaves in Ũ . We
assume that Ũ is not empty, because it also means that {Si|i ∈ Ũ} is also empty. In this case,
since the subtree is not the satisfaction tree, there is an AND node N∗ with LeftChild(N∗)

connected to a leaf in Ũ and RightChild(N∗) that is not connected to the leaves in Ũ (or
RightChild(N∗) is connected to the leaves and LeftChild(N∗) is not connected, but this
case is omitted since it is similarly discussed.). In this AND node N∗, tag indices are divided
to S ′=[a..t] and S ′′=[t+1..b] at a separable position t⃝. Then, tag indices [t+1..b] are not
assigned to leaf attributes in Ũ that are descendants of node N∗. On the other hand, from
ancestors of node N∗, using other paths that do not include node N∗, the tag indices [t+1..b]
may be distributed to leaf attributes in Ũ . However, this is not true. This is because tag
indices are not divided at t⃝ in other AND nodes, which means that any leaf except the
descendants of N∗ cannot obtain [t+1..b′] for any b′. Therefore, {Si|i ∈ Ũ} is not a partition
of Sϵ.

3.2.5 Accumulator to Verify Monotone Formulas

The following accumulator is used to verify a monotone formula where the formula is com-
pressed into one single value to obtain a constant-size proof for the number of all attributes
of a user and the size of the proved formula.

AccSetup: This is the algorithm to output the public parameters. Select bilinear group G1

and G2 with a prime order p and a bilinear map e. Select γ ∈R Zp, and compute and pub-
lish p,G1,G2, e, g, g1 = gγ

1
, . . . , gn = gγ

n
, gn+2 = gγ

n+2
, . . . , g2n = gγ

2n
, g̃, g̃1=g̃

γ1 , . . . , g̃n =
g̃γ

n
, g̃n+2 = g̃γ

n+2
, . . . , g̃2n = g̃γ

2n
and z = e(g, g̃)γ

n+1
as the public parameters.

AccGen: This is the algorithm to compute the accumulator given the public parameters
and a monotone formula M. For input M, run the tag assignment algorithm. The tag
assignment algorithm outputs T and Si for i ∈ MA, where T is the total number of tag
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indices and Si is the set of tag indices assigned to each attribute i. Set a tag value as
ct = (η + 1)t−1 for all 1 ≤ t ≤ T . We assume that (η + 1)cT < p. The accumulator of M
outputs accM =

∏
i∈MA

g
∑
t∈Si

ct

n+1−i , together with S1, . . . ,S|MA|, c1, . . . , cT .

AccWitGen: This is the algorithm to compute the witness of the minimal satisfaction of
M by Û (i.e.,Û s.t. MS(Û ,M) = 1), given the public parameters and Û ,M, S1, . . . ,S|MA|,

c1, . . . , cT . The witness is computed as W =
∏

j∈Û
∏

i∈MA,i ̸=j g̃
∑
t∈Si

ct

n+1−i+j.

AccVerify: This is the algorithm to verify the minimal satisfaction ofM by Û , given the
public parameters and accM, Û ,W , c1, . . . , cT . Set u = c1 + . . .+ cT , accept if,

e(accM,
∏

i∈Û g̃i)

e(g,W )
= zu.

Intuition behind construction: Each algorithm in the extended accumulator is basically the
same as the underlying scheme [23] for CNF formulas. The only difference is how to utilize
tags. In [23], each attribute is assigned to index i, and a tag ck is assigned to the k-th OR
clause in the CNF formula. The calculation of acc is the multiplications of gckn+1−i for all
attributes i in the CNF formula. In this case, in this accumulator’s verification equation,
the left-hand side produces zck for a matched attribute from the user’s attribute set U .
Therefore, if U includes an attribute in every clause of CNF formula, zc1+···+cT is produced
in the left-hand and the verification equation holds.

In the extended scheme, a tree expression of the monotone formula is constructed, and
a sequence of tags is assigned to each attribute. Then, as an output of the tag assignment
algorithm, if Û is a minimal attribute set, the tags of attributes in Û are exactly c1, . . . , cT .
The computation of acc in the extended scheme is similar to [23], which is the multiplications

of g
∑
t∈Si

ct

n+1−i for every attribute i in M, where Si is the set of tags assigned to attribute i.
The verification equation is the same as in [23]. Thus, due to the same principle, the left-

hand side produces z
∑
t∈Si

ct for a matched attribute i from Û . Therefore, if Û is a minimal
attribute set, z

∑
i∈Û

∑
t∈Si

ct = zc1+···+cT is produced in the left-hand, and the verification
equation holds.

3.2.6 Correctness and Security of Accumulator

Based on Section 3.2.2, we prove that the proposed accumulator is correct and secure, as
follows.

Theorem 2. The proposed accumulator is correct.

Proof. By substituting accM and W to the verification equation, the left hand is equal to

e(
∏

i∈MA
g
∑
t∈Si ct

n+1−i ,
∏

j∈Û g̃j)

e(g,
∏

j∈Û
∏

i∈MA,i̸=j
g̃
∑
t∈Si ct

n+1−i+j)

=
e(g,

∏
j∈Û
∏

i∈MA
g̃
∑
t∈Si ct

n+1−i+j)

e(g,
∏

j∈Û
∏

i∈MA,i̸=j
g̃
∑
t∈Si ct

n+1−i+j)

= e(g,
∏
i∈Û

g̃
∑
t∈Si ct

n+1 ) = e(g, g̃
∑
i∈Û

∑
t∈Si ct

n+1 ).
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This is equal to zu = e(g, g̃n+1)
c1+···+cT , since {Si|i ∈ Û} is a partition of Sϵ due to Theorem 1.

For proving the security of the accumulator, we prepare the following lemma.

Lemma 1. For any t̄ (2 ≤ t̄ ≤ T ), ct̄ >
∑

1≤t≤t̄−1 η · ct.

Proof. In the case of t̄ = 2, c2 = (η + 1) · c1 > η · c1. For t̄ ≥ 3, we assume the case of t̄− 1,
that is ct̄−1 >

∑
1≤t≤t̄−2 η · ct, and we will prove the case of t̄. Using the assumption and

ct̄ = (η + 1) · ct̄−1, we have ∑
1≤t≤t̄−1

η · ct

= η · ct̄−1 +
∑

1≤t≤t̄−2

η · ct

< η · ct̄−1 + ct̄−1

= (η + 1) · ct̄−1

= ct̄

Thus, for any t̄ (2 ≤ t̄ ≤ L), we obtain ct̄ >
∑

1≤t≤t̄−1 η · ct.

Theorem 3. Under the n-DHE assumption, the proposed accumulator is secure.

Proof. Assume the existence of such an adversary that outputs the described elements with
non negligible probability. Let g̃n+1 = g̃γ

n+1
. By substituting accM to the calculation in the

verification equation, we can obtain

e(
∏

i∈MA
g
∑
t∈Si ct

n+1−i ,
∏

j∈Û g̃j)

e(g,W )
= zu = e(g, g̃n+1)

u,

e(g,
∏
j∈Ũ

∏
i∈MA

g̃
∑
t∈Si

ct

n+1−i+j) = e(g,W · g̃un+1),

where S1,. . .,SMA are the output of AccGen forM. Thus, we have∏
j∈Ũ

∏
i∈MA

g̃
∑
t∈Si

ct

n+1−i+j = W · g̃un+1.

Here, for all 1 ≤ t ≤ T , let λt be the number of Si s.t. t ∈ Si for i ∈ Ũ . In this case,
note that λt ≤ η, since λt ≤ |Ũ | and η is the upper bound of |Ũ |. Then, we have∏

j∈Ũ

∏
i∈MA,i ̸=j

g̃
∑
t∈Si

ct

n+1−i+j ·
∏

1≤t≤T

g̃λtctn+1 = W · g̃un+1

∏
j∈Ũ

∏
i∈MA,i̸=j

g̃
∑
t∈Si

ct

n+1−i+j =W · g̃u−
∑

1≤t≤T λtct
n+1 (3.1)

Set ∆ = u−
∑

1≤t≤T λtct =
∑

1≤t≤T (1− λt)ct, due to u = c1 + . . .+ cT .
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Equation (3.1) means that, if ∆ ̸= 0 (mod p), we can compute g̃n+1 from the other
g̃1, . . . , g̃n, g̃n+2, . . . , g̃2n. In the following, we prove ∆ ̸= 0 (mod p).

Separate Sroot = {1, . . . , T} to T >, T < and T =, where T > consists of t s.t. (1− λt) > 0,
T < consists of t s.t. (1− λt) < 0, and T = consists of t s.t. (1− λt) = 0. We can obtain

∆ =
∑
t∈T >

(1− λt)ct +
∑
t∈T <

(1− λt)ct +
∑
t∈T =

(1− λt)ct

=
∑
t∈T >

(1− λt)ct +
∑
t∈T <

(1− λt)ct,

due to 1− λt = 0 for all t ∈ T =.
Let t̃ be the maximum of t s.t. t /∈ T = (i.e., t̃ ∈ T > or t̃ ∈ T <). From the assumption

of MS(Ũ ,M) = 0, {Si|i ∈ Ũ} is not a partition of Sϵ and thus λt ̸= 1 for some t, which
ensures the existence of such t̃. Consider two cases.

(i) The first case is that t̃ ∈ T < (i.e., 1 < λt̃). Then, (1− λt̃)ct̃ ≤ −ct̃. This is why

∆ ≤ −ct̃ +
∑
t∈T >

(1− λt)ct +
∑

t∈T <,t̸=t̃

(1− λt)ct.

For t ∈ T >, 1− λt > 0. However, due to λt ≥ 0, we have λt = 0, i.e., 1− λt = 1. For
t ∈ T <, we have 1− λt < 0. Thus,

∆ < −ct̃ +
∑
t∈T >

ct.

From Lemma 1, we have ct̃ >
∑

t∈T > ct, due to t̃ > t for any t ∈ T >. Thus, −ct̃ +∑
t∈T > ct < 0. Therefore, we can obtain ∆ < 0. On the other hand, we obtain

∆ =
∑

1≤t≤T

(1− λt)ct > −
∑

1≤t≤T

ηct,

due to 1−λt > −η which is derived from λt ≤ η. From Lemma 1, we have
∑

1≤t≤T−1, ηct <
cT , and thus ∑

1≤t≤T

ηct < cT + ηcT = (η + 1)cT < p.

Thus, ∆ > −p. Therefore, we have ∆ ̸= 0 (mod p).

(ii) The other case is that t̃ ∈ T > (i.e., 1 > λt̃). Then, due to (1− λt̃)ct̃ ≥ ct̃, we obtain

∆ ≥ ct̃ +
∑

t∈T >,t̸=t̃

(1− λt)ct +
∑
t∈T <

(1− λt)ct.

For any t ∈ T >, (i.e., 1− λt > 0), (1− λt)ct > 0 and thus

∆ > ct̃ +
∑
t∈T <

(1− λt)ct.
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Due to t̃ > t for any t ∈ T <, from Lemma 1 and λt − 1 < η,

ct̃ >
∑
t∈T <

ηct >
∑
t∈T <

(λt − 1)ct,

and thus
ct̃ +

∑
t∈T <

(1− λt)ct > 0.

This is why we obtain ∆ > 0. On the other hand, from 1− λt < 1 and Lemma 1,

∆ ≤
∑

1≤t≤T

ct =
∑

1≤t≤T−1

ct + cT ≤ cT + cT .

Thus, ∆ ≤ 2cT < p. Therefore, in this case, also ∆ ̸= 0 (mod p).

From equation (1),

g̃n+1 = (W−1
∏
j∈Ũ

∏
i∈MA,i ̸=j

g̃
∑
t∈Si

ct

n+1−i+j)
1/(u−

∑
1≤t≤T λtct)

For any j ∈ Ũ and any i ∈ MA satisfying i ̸= j, we have g̃n+1−i+j ̸= g̃n+1, and ∆ =
u −

∑
1≤t≤T λtct ̸= 0. Thus, we can compute g̃n+1 with non-negligible probability given

g̃1, . . . , g̃n, g̃n+2, . . . , g̃2n, which contradicts n-DHE assumption.

3.3 Syntax and Security Model of Anonymous Creden-

tial System

The syntax and security model of an anonymous credential system for monotone formulas
can be defined similarly to the previous work [23]. Here, we show the syntax and the security
model.

3.3.1 Syntax

The attribute value is indexed by an integer from {1, . . . , n}, where n is the total number of
attribute values. All attribute values in all attribute types are indexed by using the universal
set {1, . . . , n}.

The anonymous credential system consists of the following algorithms:

IssuerKeyGen: The inputs of this algorithm are n, η, where η is the maximum number of
users’ attributes. The outputs are issuer’s public key ipk and issuer’s secret key isk.

CertObtain: This is an interactive protocol between a probabilistic algorithmCertObtain-
U for the user and a probabilistic algorithm CertObtain-I for an issuer, where the issuer
issues the certificate including the attributes to the user. CertObtain-U , on input ipk and
U ⊂ {1, . . . , n} that is indices corresponding to the attributes of the user, outputs the cer-
tificate cert ensuring the attributes of the user. On the other hand, CertObtain-I is given
ipk, isk as inputs.
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ProofGen: This probabilistic algorithm, on inputs ipk, U , cert, M that is the monotone
formula on attributes to be proved, outputs the proof σ.

Verify: This is a deterministic algorithm for verification. The input is ipk, a proof σ, and
the formula M. Then the output is ‘valid’ if the attributes in U satisfy M, or ‘invalid’
otherwise.

3.3.2 Security Model

The security model consists of misauthentication resistance and anonymity. The misauthen-
tication resistance requirement captures the soundness of the attribute proof. This means
that an adversary A cannot try to forge a proof for a monotone formula, where the attributes
of any user corrupted by A do not satisfy the formula. The anonymity requirement captures
the anonymity and unlinkability of proofs, as in the group signatures.

3.3.2.1 Misauthentication Resistance

Consider the following misauthentication resistance game.

Misauthentication Resistance Game: The challenger runs IssuerKeyGen, and obtains ipk
and isk. He provides A with ipk, and run A. He sets CU with empty, where CU denotes
the set of IDs of users corrupted by A. In the run, A can query the challenger about the
following issuing query:

C-Issuing: A can request the certificates on attribute set U (i) of user i. Then, A as the
user executes CertObtain protocol with the challenger as the issuer.

Finally, A outputs a monotone formulaM∗, and a proof σ∗.

Then, A wins if

1. Verify(ipk, σ∗,M∗) = valid, and
2. for all i ∈ CU , U (i) does not satisfyM∗.

Misauthentication resistance requires that for all PPT A, the probability that A wins
the misauthentication resistance game is negligible.

3.3.2.2 Anonymity

Consider the following anonymity game.

Anonymity Game: The challenger runs IssuerKeyGen, and obtains ipk, isk. He provides
A with ipk, isk, and run A. He sets HU with empty. In the run, A can query the challenger,
as follows.

H-Issuing: A can request the certificates on attribute set U (i) of user i. Then, A as the
issuer executes CertObtain protocol with the challenger as the user. The challenger
adds this user to HU .

Proving: A can request the user i’s proof on formula M. Then, the challenger responds
the proof onM of the user i, if the user is in HU .
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During the run, as the challenge, A outputs a formulaM, and two users i0 and i1, such that
both Ui0 and Ui1 satisfyM∗. If i0 ∈ HU and i1 ∈ HU , the challenger chooses ϕ ∈R {0, 1},
and responds the proof onM∗ of user iϕ. After that, similarly, A can make the queries.

Finally, A outputs a bit ϕ′ indicating its guess of ϕ.

If ϕ′ = ϕ, A wins. We define the advantage of A as |Pr[ϕ′ = ϕ]− 1/2|. Anonymity requires
that for all PPT A, the advantage of A on the anonymity game is negligible.

3.4 Proposed Anonymous Credential System

3.4.1 Construction Overview

Basically, the construction of the proposed system is similar to the previous system [23], as
follows. The certificate of attributes is an AHO signature, where the user’s attributes in set
U are unified to PU =

∏
i∈U g̃i and embedded for the accumulator verification. Together with

the accumulated value accM, PU are applied in the verification equation of the accumulator
to authenticate the user. In the authentication, the user proves that the attributes in U
satisfy the given monotone formulaM, using the verification equation of the accumulator in
Section 3.2.5. To conceal any information beyond the satisfaction, we utilize the GS proofs
for the pairing equations in the verification of the AHO signature and the accumulator
verification.

However, U might not be a minimal attribute set which causes a failure in the verification.
Thus, the user must derive Û from U such that Û is a minimal attribute set and use Û in
the verification equation. However, it is not easy for the user to generate a certificate of
PÛ from the issued certificate of PU . Hence, we have the following approach: Consider all
possible candidates Uk(1 ≤ k ≤ K) of subsets of U such that a Uk satisfyingMS(Uk,M) = 1
exists for any monotone formulaM. Then, the user is issued certificates for all Uk. In the
authentication, for a given monotone formulaM, the user selects a certificate for a Uk = Û
such that Û is the minimal attribute set, and can prove the correctness of the certified
attributes of the user using the verification of AHO signatures.

Compared to [23], there are two differences in construction: The first one is that the
accumulator for CNF formulas in [23] is replaced by our extended accumulator for monotone
formulas in Section 3.2.5. The second one is that the certificate on PU for user’s attribute
set U is replaced by the certificates on PUk for all subsets Uk ⊂ U , as shown above.

3.4.2 Construction

IssuerKeyGen. It is given n that is the total number of attributes and η that is the
maximum number of user’s attributes. Here, η is fixed by the authority in advance.

1. Select bilinear groups G1,G2,GT with the same order p and the bilinear map e, and
generators g ∈R G1, g̃ ∈R G2.

2. Generate public parameters of the accumulator: Select γ ∈R Zp, and compute pkacc =
(g1=g

γ1 , . . . , gn = gγ
n
, gn+2 = gγ

n+2
, . . . , g2n = gγ

2n
, g̃1 = g̃γ

1
, . . . , g̃n = g̃γ

n
, g̃n+2 =

g̃γ
n+2
, . . . , g̃2n = g̃γ

2n
, z = e(g, g̃)γ

n+1
).
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3. Generate a key pair for the AHO signatures:

pkAHO = (Gr, Hr, Gz, Hz, G,H,A,B)

skAHO = (αa, αb, µz, νz, µ, ν)

4. Generate a CRS for the perfect sound setting of the GS proof: Select (u1,u2,v1,v2) for
u1 = (u11, u12), u2 = (u21, u22), v1 = (v11, v12), v2 = (v21, v22), where u11, u12 ∈R G1,
v11, v12 ∈R G2 and u2 = uξ11 , v2 = vξ21 for ξ1, ξ2 ∈R Z∗

p.
5. Output the issuer public key ipk=(p,G1,G2,GT ,e,g,g̃,pkacc, pkAHO, (u1,u2,v1,v2)),

and the issuer secret key isk=skAHO.

CertObtain. In this protocol, the common inputs are ipk and the user’s attribute set U ,
and the issuer’s input is isk. Note that user’s attribute set is fixed to a subset of {1, . . . , n},
i.e., the small universe.

1. As all possible subsets of set U , the issuer prepares Uk for all 1 ≤ k ≤ K where K is
the total number of the subsets.

2. Using skAHO, the issuer generates each AHO signatures on Pk =
∏

i∈Uk g̃i as σk for all
1 ≤ k ≤ K and then send them to the user.

3. The user outputs the obtained signatures cert = {(σk)1≤k≤K}, as the certificates.

ProofGen. The inputs are ipk, U , cert and the monotone formula M. Define Û ⊆ U is
the minimal attribute set selected by the user to satisfy the formulaM.

1. Using AccGen, run the tag assignment algorithm. For each attribute i inM, a series
of tags Si is assigned, where the tags are c1, . . . , cT . Then, compute the accumulator:

accM =
∏
i∈MA

g
∑
t∈Si

ct

n+1−i .

2. User calculates PÛ =
∏

i∈Û g̃i.

3. User selects certificate σk w.r.t. PÛ s.t. Û = Uk for some Uk from cert.

4. Compute the witness that Û satisfiesM for accM:

W =
∏
j∈Û

∏
i∈MA,i̸=j

g̃
∑
t∈S(i) ct

n+1−i+j

and sets a public data u = c1 + . . .+ cT .
5. Compute GS commitments comPÛ

, comW to PÛ ,W . Then re-randomize the AHO sig-
nature σk to obtain σ′

k = {θ′1, . . . , θ′7}, and compute GS commitments {comθ′i
}i∈{1,2,5}.

6. Generate the GS proofs {πi}3i=1 s.t.

zu = e(accM, PÛ) · e(g,W )−1, (3.2)

A · e(θ′3, θ′4)−1 = e(Gz, θ
′
1) · e(Gr, θ

′
2) · e(G,PÛ), (3.3)

B · e(θ′6, θ′7)−1 = e(Hz, θ
′
1) · e(Hr, θ

′
5) · e(H,PÛ), (3.4)

where zu,accM,g,A,B,θ′3,θ
′
4,θ

′
6,θ

′
7,Gz,Gr,G,Hz,Hr,H are public data, while PÛ ,W ,θ′1,θ

′
2,θ

′
5

are secret data, which are committed.
7. Output σ = ({θ′i}i=3,4,6,7, comPÛ

, comW , {comθ′i
}i=1,2,5, {πi}3i=1).
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The equation (3.2) shows the verification relation of accumulator:

e(accM, PÛ)

e(g,W )
= zu, (3.5)

where PÛ =
∏

i∈Û g̃i. The equations (3.3),(3.4) show the knowledge of the AHO signature
of PÛ .

Verify. The inputs are ipk, the proof σ, and the proved formulaM.

1. Using AccGen, run the tag assignment algorithm. For each attribute i inM, a series
of tags Si is assigned, where the tags are c1, . . . , cT . Then, compute the accumulator:

accM =
∏
i∈MA

g
∑
t∈Si

ct

n+1−i .

2. Accept σ, if the verification of all GS proofs are successful.

3.4.3 Security

We can prove the following security of our construction.

Theorem 4. The proposed system satisfies the misauthentication resistance under the secu-
rity of the AHO signatures and the extended accumulators.

Proof. To win the misauthentication resistance game, the adversary A must output a valid
proof, when the attributes of corrupted users do not satisfy the predicate M∗. Let σ =
({θ′∗i }i=3,4,6,7, com

∗
P ∗
Ũ∗
, com∗

W ∗ , {com∗
θ′∗i
}i=1,2,5, {π∗

i }3i=1) be the forged proof. In this proof of

theorem, we use notation Ũ∗ instead of Û because MS(Ũ∗,M∗) = 0. Since the CRS for
the perfect soundness setting is prepared, due to the extractability, the GS commitments
are extractable. Thus, we can extract P ∗

Ũ∗ ,W
∗ satisfying the equation (3.2) for accumulator

verification with acc∗M∗ that is correctly computed from M∗ by the verifier, and the re-
randomized AHO signature σ′∗

Ũ∗ = {θ′∗1, . . . , θ′
∗
7} for P ∗

Ũ∗ satisfying the equations (3.3),(3.4).
We distinguish the following cases.

• Type 1 forgery. This is the case that the AHO signature on P ∗
Ũ∗ was never issued to

any corrupted user i (i.e., i ∈ CU).

• Type 2 forgery. This is the case that the AHO signature on P ∗
Ũ∗ was issued to a

corrupted user i.

Using Type 1 forgery, we can obtain a forger against the AHO signatures, as follows.

Type 1 forgery. The public key pkAHO of AHO signatures is given. Then, choose and
compute other parameters in ipk, as the real algorithm, and run A on ipk. For the C-
Issuing query, to the signing oracle, request the AHO signatures on Pk =

∏
i∈Uk

g̃i, for all

subsets Uk of U
(i) requested by A. Respond the AHO signatures as certi. Finally, A outputs

a predicateM∗, and a proof σ∗. In this case, since the AHO signature σ′∗
Ũ∗ was never issued

for P ∗
Ũ∗ , this implies the forgery against the AHO signature.
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Table 3.1: Asymptotic Efficiency Comparisons.
ProofGen Cost Verify Cost Proof Certificate

EXP MUL PAIRING EXP MUL PAIRING size size
Previous System [23] O(T ) O(A · |U |) O(1) O(T ) O(A) O(1) O(1) O(1)

Proposed System O(T ′) O(A′ · |Û |) O(1) O(T ′) O(A′) O(1) O(1) O(2|U|)

T : number of ANDs in CNF formula, T ′: number of ANDs in monotone formula, A:
number of attributes in CNF formula, A′: number of attributes in monotone formula,
|U |: number of user’s attributes, |Û |: number of attributes in minimum attribute set.

Using Type 2 forgery, we can obtain an adversary against the extended accumulator, as
follows.

Type 2 forgery. The public parameters of the extended accumulator are given. Then,
choose and compute other parameters in ipk, as the real algorithm, and run A on ipk. In
the run, each C-Issuing query is responded as in the real algorithm. Finally, A outputs
a predicate M∗, and a proof σ∗. In this case, the AHO signature on Ũ∗ was correctly
issued to some corrupted user i. Thus P ∗

Ũ∗ =
∏

i∈Ũ∗ g̃i for a subset Ũ∗ of U (i), and Ũ∗ does

not satisfy M∗. Note that acc∗M∗ =
∏

i∈M∗
A
g
∑
t∈Si

ct

n+1−i is correctly computed by the verifier.

Therefore, we can forge Ũ∗,M∗, and W ∗, where P ∗
Ũ∗ and acc∗M∗ are correct, AccVerify

accepts Ũ∗,W ∗, acc∗M, butMS(Ũ∗,M∗) = 0.

Theorem 5. The proposed system satisfies the anonymity under the SXDH assumption.

Proof. Consider the sequence of games, as follows.

Game 1. This is the anonymity game for the proposed system. The challenger generates
ipk, isk using IssuerKeyGen algorithm, where the CRS is prepared for the perfect sound-
ness setting. The challenger runs the adversary A with ipk, isk. For the Proving query
and the challenge query, the challenger responds using ipk and certi in the response of the
H-Issuing query.

Game 2. In IssuerKeyGen algorithm, the challenger generates the CRS for the perfect WI
setting. Namely, choose (u1,u2,v1,v2) for u1 = (u11, u12), u2 = (u21, u22), v1 = (v11, v12),
v2 = (v21, v22), where u11, u12 ∈R G1, v11, v12 ∈R G2 and u2 = uξ11 /(1, g̃), v2 = vξ21 /(1, g̃) for
ξ1, ξ2 ∈R Z∗

p. The others are the same as Game 1.

Let S1, S2 denote the events that ϕ′ = ϕ in Game 1, 2, respectively. In Game 2, the
proof of responded in the challenge consists of the GS commitments that are perfectly
hiding in the WI setting, the GS proofs that reveal no information about the underlying
witness due to the perfect WI, and the randomized AHO signatures {θ′i}i=3,4,6,7 that are
information-theoretically independent of the signed messages and the remaining AHO signa-
tures. Thus, we have Pr[S2] = 1/2. On the other hand, |Pr[S1]−Pr[S2]| is negligible due to
the CRS indistinguishability under the SXDH assumption. Therefore, the advantage of A,
i.e., |Pr[S1]− 1/2|, is negligible, which means that the proposed system is anonymous.
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3.5 Comparisons and Efficiency Improvement

As mentioned in Introduction, since there are the previous systems of [15, 1, 21, 23] with
constant-size attribute proofs, we briefly discuss about the comparisons. The previous sys-
tems [15, 1] support only simple AND or OR relations on attributes, and thus the proved
formulas are less expressive. The previous system [21] supports the AND/OR relation as
an inner product on two vectors. The proof generation requires O(1) pairing but O(n2)
exponentiations, where n is the size of vectors (The verifying costs are O(1) pairing and
O(n) exponentiations). As shown in [17], using the inner product, CNF and DNF formu-
las on attributes are verified via polynomial evaluations. In the attribute proof, the vector
size depends on the number of OR relations in the proved formula. This is why the proof
generation suffers from the heavy exponentiation costs in cases of formulas with lots of OR
relations, which is our targets, such as the example of the alcohol related website. Therefore,
in the folowing detailed comparisons, we concentrate on the remaining system [23].

3.5.1 Efficiency Comparisons

We compare the efficiency of our proposed system to the previous system [23].
Firstly, we compare the asymptotic efficiency of the proof (ProofGen’s output σ) size,

certificate size, and the computation costs of the more frequently executed authentication
protocol that consists of ProofGen and Verify algorithms. In both systems, ProofGen
mainly consists of computations of accM and W and GS proof generation. Verify consists
of the computation of accM and GS proof verification.

Here, we review the computations of W from the previous system and the proposed
system. In the previous system,

W =
∏
j∈U

∏
1≤t≤T

(
i ̸=j∏
j∈Vt

g̃n+1−i+j

)ct

,

where ct are similar tags, and Vt includes the attribute literals of the t-th clause in the
CNF formula. In this computation, by arranging the calculation order, the cost of the
exponentiations of ct can be reduced to T , which is the number of ANDs. On the other
hand, the number of multiplications is A · |U |, where A is the number of attribute literals in
CNF formula, i.e., A =

∑
1≤t≤T |Vt|. Similarly, we can observe that the exponentiation and

multiplication costs to compute the accumulator are about T and A, respectively.
In the proposed system,

W =
∏
j∈Û

∏
i∈MA,i ̸=j

g̃
∑
t∈Si

ct

n+1−i+j.

Also, we can arrange the calculation order to

W =
∏

1≤t≤T ′

(
∏
j∈Û

(
∏

i∈SMA
−1(t),i ̸=j

g̃n+1−i+j))
ct ,

where T ′ is the number of AND in the monotone formula, and SMA
−1(t) is the set of i such

that attribute i is assigned to tag ct. The number of exponentiations of ct is approximately
T ′. The number of multiplications is A′ · |Û |, where A′ denotes the number of attribute
literals in M, i.e., A′ = |MA|, and it is at most A′ · |U |, due to |Û | ≤ |U |. Similarly, we
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can observe that the exponentiation and multiplication costs to compute the accumulator
are about T ′ and A′, respectively.

Table 3.1 summarizes the asymptotic efficiency comparisons, where EXP, MUL, and
PAIRING mean the costs of exponentiations, multiplications, and pairings, respectively.
Note that the computation and size of GS proofs used in ProofGen and Verify does not
depend on the parameters T, T ′, A,A′, |U |, |Û |. This is similar to [23] where the number of
GS proofs is reduced and thus the computational cost is reduced from the previous system
to the proposed system. Thus, the pairing cost is O(1) in both systems, and the size of proof
σ outputted in ProofGen is also O(1) in the both systems. On the other hand, although
the certificate size is O(1) in [23], that of the proposed system is O(2|U |), since 2|U | AHO
signatures are issued.

As shown in Table 3.1, the computation costs in both systems are comparable, if the
parameters A and T for the CNF formula in the previous system are the same as A′ and T ′

for the monotone formula in the proposed system. However, note that, since the monotone
formula is more expressive, the representaion of the monotone formula for a proved formula
may be shorter than the CNF formula, i.e., A′ and T ′ may be smaller than A and T . Any
monotone formula can be converted to a CNF formula. However, the conversion may cause
A and T for the converted CNF formula to grow larger than A′ and T ′ for the original
monotone formula. For example, a monotone formula (a11∧a12)∨ (a21∧a22)∨ · · · (ak1∧ak2)
with O(k) literals can be converted to a CNF formula (a11 ∨ a21 ∨ · · · ∨ ak1) ∧ (a11 ∨ a22 ∨
· · · ∨ ak1) ∧ · · · (a12 ∨ a22 ∨ · · · ∨ ak2) with O(2k) literals by using the distribution property.
Thus, in the cases that proved formulas require longer sizes in the representation of the CNF
formula than the monotone formula, such as this example, the proposed system has more
efficient computation costs, since O(T ) exponentiations (resp., O(A · |U |) multiplications)
need more computations than O(T ′) exponentiations (resp., O(A′ · |Û |) multiplications) due
to A′ < A and T ′ < T . This is the main advantage of our system.

Next, we show the concrete efficiency using an example of authentication for accessing
alcohol related websites using nationality and birth date, which is the situation of lots of OR
relations in the proved formula, as targeted in Section 3.1. In the formula, four categories of
attributes are used; the nationality, the birth-year, the birth-month and the birth-day. The
example of the monotone formula is as follows:
F1 = (Australia ∨ . . .) ∧ (1915 ∨ . . . ∨ (1997 ∧ (Jan ∨ . . . ∨ (Sept ∧ (1st ∨ . . . ∨ 5th))))).
The CNF type of formula is as follows:
F2 = (Australia ∨ . . .) ∧ (1915, Jan.1st ∨ · · · ∨ 1997, Sept.5th),
where each birthday is encoded to one attribute value such as “1915, Jan.1st”.

In the previous system [23] for CNF formulas, as described in Section ??, F2 has A =
30, 299 attribute literals, and thus the multiplication costs withO(A·|U |) complexity becomes
very large. On the other hand, in the proposed system, F1 needs A = 198 attribute literals,
and the multiplication cost with O(A′ · |Û |) complexity is greatly reduced. In F1, the number
of ANDs is small (concretely, 3), and thus the exponentiation cost is small. The concrete
experiment of implementation is shown in Section 3.6.3.

As indicated by the above example, the proposed system for monotone formulas is more
advantageous over [23] in cases of numerical range proofs. Another application example of
range proofs is to verify the expiry date in a privacy-enhancing way. For example, in an
online video streaming service, a user can show his access privilege to the service by showing
his subscription and the expiry-date. To conceal the expiry-date for anonymity, the formula
of expiration check can be expressed as the range from today to the maximum of subscription
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Table 3.2: Comparison of computation times.
Proposed System Previous System[23]

(monotone formula) (CNF formula)
Prover Time [ms] 63.04 969.11
Verifier Time [ms] 132.57 376.97

Table 3.3: Comparison of accM and W times.
Proposed system Previous system

accM Time [ms] 3.24 159.19
W Time [ms] 13.89 748.18

time, where the user proves that his expiry-date is in the range. The monotone formula is
expressed efficiently as well as the above F1, and thus the range proof is efficiently executed,
compared to [23].

3.5.2 Comparison of Restrictions

A formula that can be used in the proposed system is in monotone formulas, while that in the
previous system [23] is in CNF which is more restricted class. However, due to the underlying
accumulators, restrictions on the usable formulas and user’s attributes exist in both systems,
as follows. Firstly, the accumulator works well, only when T < log2 p/ log2(η + 1). This is
because we assume (η + 1)cT < p in AccGen, which implies p > (η + 1)cT = (η + 1)T ,
and thus log2 p > log2(η + 1)T . Since log2 p > log2(η + 1)T = T log2(η + 1), we have the
restriction T < log2 p/ log2(η + 1), i.e., the number T of ANDs in the formula must be less
than log2 p/ log2(η + 1), where η is th upper bound of |U |. For example, in the 128 bit
security with 254-bit group order and η = 50, we can set T ≈ 40 in maximum. Since one
person in general owns at most 40 attributes for user’s attribute authentications, we consider
that this restriction is not too strong. This restriction also exists in the previous scheme [23],
due to the similar construction of the accumulator and similar assumption for cT .

Secondly, the proposed system is of the small universe, i.e., the set of all attributes is
fixed in advance by some authority and users have to select their attributes from the fixed
set, since the proposed system needs that the attribute set is correspondent to {1, . . . , n}.
The large universe, i.e., the attribute set is not fixed, is general, and thus the small universe
is a restriction. This restriction also exists in the previous scheme [23], since the construction
of the accumulator is similar.

Thirdly, the proposed system has a restriction that the upper bound of |U | of every user,
η, is fixed in advance by some authority. On the other hand, the previous system has other
restrictions: For the t-th OR clause in every proved CNF formula and every user’s attribute
set U , the maximum number of |Vt ∩ U | has to be fixed in advance. Also, the maximum
number of OR clauses in a CNF formula has to be fixed.

Fourthly, in the proposed system, we assume that the attribute indices in M are all
different, due to the underlying accumulator, even when M inlcudes the same attributes
twice or more. The previous system [23] does not need the assumption. As mentioned
in Section 3.2.5, we can cope with this by assigning the same attributes in M to different
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attribute indices, but the number of indices for the same attribute has to be fixed in advance.

3.5.3 Reducing Certificate Size

As mentioned in Section 3.4.1, we consider that the user is issued signatures cert = (σk)1≤k≤K
for all subsets Uk(1 ≤ k ≤ K) for the set of user’s attributes, U . Thus, the certificate size
becomes large, since K is increased exponentially to the number of user’s attributes |U |. To
reduce the number of the certificates, we can show a simple improvement idea. The idea is
to separate set U into two subsets of U1 and U2. We consider |U1| ≃ |U2| ≃ |U |/2. The issuer
generates signatures of all subsets of U1 and signatures of all subsets of U2 independently.
The user obtains cert1 = (σk)1≤k≤K1 and cert2 = (σk)1≤k≤K2 , where K1 and K2 are the
numbers of subsets in set U1 and U2, respectively. In the attribute proof protocol, the user
proves the knowledge of the signatures of both Û1 and Û2 using GS Proof for PÛ1

=
∏

i∈Û1
g̃i

and PÛ2
=
∏

i∈Û2
g̃i respectively, where Û1 ⊆ U1 and Û2 ⊆ U2. Hence, the accumulator

verification equation is modified as follows:

e(accM, PÛ1
)e(accM, PÛ2

)

e(g,W )
= zu.

By this equation, the user proves that his/her attributes from subset Û1 and Û2 satisfy the
monotone formula M. Compared to the proposed system in section 5.2, this modification
idea reduces the certificate size from K = 2|U | into approximately

√
K.

3.6 Implementation and Experiment

To show the practicality of our system, we implemented the system and measured the pro-
cessing time. In this section, we show the experimental results.

3.6.1 Utilized Pairing Library

At the coming of 128-bit security, the asymmetric pairing e s.t. G1×G2 → GT is faster than
the symmetric one [24]. Thus, in the implementation, we adopt the asymmetric type, and
we utilize the fast pairing library called “Cross-twisted χ-based Ate (Xt-Xate) pairing” [20]
with 254-bit group order and the embedding degree is 12. The security level is equivalent to
the 128-bit AES. The library is based on the GMP library and implemented by C language
due to the pursuit of the fastness.

3.6.2 Instantiation of GS Proof

For the implementation, we need to instantiate the GS proof [16] concretely. Based on the
utilized pairing and cryptographic assumption, there are three types of instantiations. Since
we utilize asymmetric pairing from the viewpoint of efficiency, we adopt the GS proof based
on the SXDH assumption for the asymmetric pairing.
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Table 3.4: Environments of implementation and experiments.
CPU Intel Core i5-4460(3.20GHz)

Main memory 7.8 GB
OS Ubuntu 14.04 LTS

Multiple Precision GMP-6.0.0
Arithmetic Library
Pairing Library ELiPS [20]
C compiler GCC-4.8.4

3.6.3 Experiment and Evaluation

To confirm the efficiency consideration of the comparison between the proposed system
for monotone formulas and the previous system [23] for CNF formulas in Section 3.5, we
measured the processing times of the authentication protocol for the prover (ProofGen)
and verifier (Verify). The environments of the implementation and experiments are shown
in Table 5.1.

Table 3.2 shows the processing times. The used formulas are F1 and F2 in Section 3.5,
where the monotone formula F1 includes 198 literals, and the CNF formula F2 includes 30,299
literals. From this table, we can confirm that both prover and verifier times are reduced, but
the prover time is greatly reduced. To explore the reason, we measured the computations
of accM and W that depend on the formula size, as in Table 3.3. From this table, we can
confirm that the reduction of these computation times (especially W time) influences the
reduction of prover and verifier times.

3.7 Conclusions

In this chapter, we proposed an extended accumulator to prove monotone formulas on at-
tributes, and apply it to the anonymous credential system in order to obtain more efficiency
in the proofs generation. The monotone formula is more expressive and compact than the
CNF formulas, and thus the proposed system can reduce the proof generation time, compared
to the previous system for CNF formulas.

Then, we also implemented the scheme on an example of age authentication to show
the practicality. The result shows that the proposed scheme reduced both sign and verify
times of the previous scheme. Although the size of user’s certificates is O(2|U |) due to the
restriction of the newly proposed accumulator for monotone formulas, a simple modification
idea enables the scheme to reduce the size from O(2|U |) to O(

√
2|U |).
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Chapter 4

Revocable Group Signatures with
Compact Revocation List Using
Vector Commitments

4.1 Introduction

In a group signature scheme [8], a group member is allowed to sign a message anonymously
on behalf of the group. There are two types of authorities: A group manager (GM) who adds
users into the group, and an opener who can identify the signer from the signature when
necessary. One important function in the group signature scheme is revocation, where the
user’s privilege to sign a message is removed. It is a critical issue, which has been broadly
studied.

Hereafter, let N be the total number of group members, and R be the number of revoked
members. On the early study [10], the signature size, and also the singing and verification
costs are O(R). Then, the accumulator-based scheme has been proposed to achieve the
constant-size signature with the constant verification costs [13]. However, each member has
to update a secret key (a witness for the accumulator) using the revocation data, which
implies that singing costs is O(R) in the worst case. On the other hand, verifier-local
revocation (VLR) has been proposed [5], [29]. In this approach, the revocation data are sent
to only verifiers, and thus the signer’s load is minimum. However, the verification includes
the revocation check with O(R) complexity. Then, a revocable scheme with constant singing
and verification costs have been proposed [27]. The demerit of this scheme is the long public
key size. The basic scheme needs O(N) size, and the extended one needs O(

√
N) in exchange

for the extra signing cost.
Recently, Libert et al. proposed a scalable scheme [4] based on the broadcast encryption

framework by Naor et al. [9], where O(1) signature size, O(1) signing/verification costs, O(1)
membership certificate size, and O(logN) public key size are achieved. However, the scheme
still needs an improvement on the revocation list (RL) size. In the scheme, the RL contains
signatures for all subsets of authorized users, which are formed by a subset difference (SD)
method. In the worst case, the number of signatures amounts to 2R − 1. As the signature,
an AHO signature with 7 group elements is used. Thus, in case of 128-bit security, the RL
size is 900R bytes or more. Since the signer needs to fetch the RL for every revocation epoch,
the large size will cause delay in mobile environment.

There are studies on reducing the RL size. Nakanishi et al. proposed a scheme [28] with
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compact RL using an accumulator. In this scheme, since GM accumulates T SD subsets and
signs the accumulated value, the number of signatures is reduced by 1/T and the RL size is
O(R/T ). However, the public key size and membership certificate size are increased, when
T is increased. The other scheme is proposed by Attrapadung et al. [22], where the RL size
is constant by adopting identity based revocation (IBR) method. However, as the trade-off,
the membership certificate size and signing cost are O(R) in the worst case.

In this chapter, we propose a revocable group signature scheme with a compact RL.
Similarly to [28], we partition the subsets into a number of blocks and compress it using a
vector commitment [2], where each commitment can be opened w.r.t. individual coordinates
in a space-efficient manner. Since the compression is simpler than the accumulator in [28],
we can reduce the RL size to O(R/T ), while maintaining the membership certificate size as
O(1). The public key size is O(T + logN) due to the compressions for RL and the user’s
membership certificate. In section 4.5, we compare the RL size between the proposed scheme
and [28] as shown in Table 4.2. Then, we also show the comparison of RL size between the
proposed scheme and [4] when we set T = logN . In the discussion, we also clarify that the
O(T ) signing time is a trade-off to the reduction of RL size.

4.2 Syntax and Security of Revocable Group Signa-

tures

As in [4], we define the revocable group signatures.

4.2.1 Syntax

The algorithms and protocol of the revocable group signature scheme are as follows.

Setup: Given a security parameter λ ∈ N, a maximal number of a group members N ∈ N
and a partitioning parameter T ∈ N, this algorithm generates a group public key Y , the
group manager’s (GM) private key SGM and the opener’s private key SOA. This algorithm
initializes a public state St comprising a set data structure Stusers = ϕ and a string data
structure Sttrans = ϵ.

Join: This interactive protocol is between GM and prospective group’s member u. The
interactive Turing machines are denoted as JGM and Juser, respectively. The common input is
Y . GM’s additional inputs are St and SGM. As a result, the member obtains a membership
secret secu and a membership certificate certu. GM updates St in the database by Stuser =
Stuser ∪ {u} and Sttrans = Sttrans|| < u, transcriptu > .

Revoke: This algorithm is run by GM. The inputs are Y , SGM, epoch t, and the set of the
revoked users, Rt. This algorithm allows GM to generate an update revocation list RLt for
the new revocation epoch t.

Sign: This algorithm is run by u. Given Y , t,RLt, certu, secu, and a message M , this
algorithm outputs ⊥ if u ∈ Rt, or a signature σ otherwise.

Verify: This algorithm is run by a verifier. Given Y , t, RLt, σ,M , this deterministic algo-
rithm outputs 1 if the signature is valid and not revoked in RLt, or 0 otherwise.
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Open: This algorithm is run by an opener. Given Y , t,RLt, σ,M, St,SOA, it outputs u ∈
Stusers ∪ {⊥}, which is the identity u as a group member or an opening failure.

4.2.2 Security

There are three security requirements in the revocable group signature scheme. The first
one is security against misidentification attacks. This requirement means that an adversary
cannot compute a group signature where Open identifies outside of the corrupted non-
revoked members. The second one is security against framing attacks, which means that an
honest member is not traced for signatures that the member did not issue, even if everyone
(including GM) except the member colludes. The third one is anonymity, which implies the
anonymity and unlinkability of signatures.

The formal definitions are as follows. The definition of the correctness is omitted due to
the page limitation. The security model is formalized by experiments between the adversary
and a stateful interface I. Let stateI be a data structure which is employed by I, and stateI
is initialized as (St, Y , SGM, SOA) ← Setup(λ, N , T ).

The adversary can access to the following oracles.

QY , QSGM
, QSO

: The interface looks up stateI and responds Y , SGM and SOA, respectively.

Qa−join: This is the join of a corrupted user. The interface simulates JGM, and interacts with
the adversary executing Juser. In addition to Stuser, u is added to the set Ua, which
includes the identities of corrupted users.

Qb−join: This is the join of an honest user. The interface simulates Juser, while the adversary
plays the role of JGM. In addition to Stuser, u is added to the set U b, which includes the
identities of honest users. The outputted certu, secu are appended to a private area
of stateI .

Qsig: To the query on message M and index u , the interface checks if (certu, secu) exists
in the private area of stateI such that u /∈ Rt for the current epoch t. If no entry in
the area or u /∈ U b, the interface returns ⊥. Otherwise, it returns the signature σ of u
at the current epoch t, and stores (u, t, M , σ) in the database history Sigs.

Qopen: To the query on a signature-message pair (σ, M) at epoch t, the interface executes
Open on the current state St.

Qread, Qwrite: By these queries, the adversary can read or write the contents of stateI . Qread

returns the whole stateI excluding the public key and secret keys and the private area
used in Qb−join. Qwrite allows the adversary to modify stateI as long as it does not
remove or corrupt elements of Stusers, Sttrans (the adversary can add a dummy user).

Qrevoke: To the query on u ∈ Stusers, the interface checks if u is included in Ua or U b

depending on the considered security notion and if Sttrans contains ⟨u, transcriptu⟩
such that u /∈ Rt for the current epoch t. If not, it returns ⊥. Otherwise, it increments
t, add u to Rt, generate the revocation list RLt which is available to the adversary.

Here, we formally define only the security against misidentification attacks, since our
modification to the underlying scheme [4] does not influence the other requirements.
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Definition 6: A revocable group signature scheme is secure against misidentification at-
tacks if, for any PPT adversary A involved in experiments Expmis−id

A (λ), the probabil-
ity Advmis−id

A (λ) = Pr[Expmis−id
A (λ) = 1] is negligible for λ.

Experiment Expmis−id
A (λ)

stateI = (St, Y , SGM, SOA) ← Setup(λ, N , T );
(M⋆, σ⋆)← A(QY , Qa−join, Qrevoke, Qread, QSO

);
If Verify(Y , t⋆,RLt⋆ , σ⋆,M⋆)=0 return 0;
u← Open(Y , t⋆,RLt⋆ , σ⋆,M⋆, St,SOA);
If (u /∈ Ua \ Rt⋆) return 1;

Return 0;
In this experiment, t⋆ denotes the current revocation epoch when A outputs (M⋆, σ⋆).

4.3 Previous Scheme

In this section, we explain about the revocable group signature proposed by Libert et al. [4],
and discuss about the remaining problem. In [4], the approach of the Subset Difference (SD)
method is used as in Fig. 1. In a binary tree, group members are assigned to the leaves.
Each node v is indexed by an identifier ID(v) of an integer. When a user becomes a member
of the group, the group manager (GM) certifies him with a signature that contains the node
IDs of the path from the root to the user’s leaf, (I1, . . . , Iℓ), where ℓ shows the level of the
tree.

In the SD method, non-revoked users are divided into disjoint subsets (subtrees), where
a subset Si is defined by primary node Pi, which is the root node of the subtree, and the
secondary node Si that is a descendant of Pi. The subset Si consists of the leaves of the
subtree rooted by Pi except leaves of the subtree rooted by Si. The levels of Pi and Si are
denoted as ϕi and ψi, respectively.

In the example of Fig.1, the user of the leaf node with ID(v)=8 is distinguished by the
path (I1, I2, I3, I4) = (1, 2, 4, 8). It is included in subset S1 rooted by P1 but not by S1.

For every revocation, GM renews a revocation list RL that contains signed dataset Ri =
(ϕi, ψi, ID(Pi), ID(Si)) of all subset entries i ∈ {1, . . . ,m}. For signing a group signature,
the user retrieves the revocation data for subset Si that contains his leaf, and proves that
ID(Pi) = Iϕi and ID(Si) ̸= Iψi to prove the non-revocation. This relation means that his leaf
v is connected with Pi on level ϕi and not connected to Si on level ψi, which means that v is
in the sub-tree rooted by Pi but not in that by Si. The proof is done in the Zero-Knowledge
Proof fashion for the anonymity.

The problem in this scheme is the size of RL. We have m ≤ 2R − 1 [4]. Each entry is
signed by GM using an AHO signature. Furthermore, an AHO signature contains 7 bilinear
group elements. For R = 10, 000, the size of signatures could be about 8MB in 128 bit
security. The signer needs to fetch the large RL for every revocation epoch, which will cause
delay in mobile environment.
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Figure 4.1: An example of SD method.

4.4 Proposed Scheme

4.4.1 Construction Idea

The proposed scheme is extended from the previous scheme [4]. In the previous scheme,
GM signs each RL entry of (ϕi, ψi, ID(Pi), ID(Si)). Meanwhile, in the proposed scheme,
multiple elements of each type in the entry are compressed using a vector commitment [2]
and are signed. For example, ID(P1), . . . , ID(Pm) are divided to blocks with T elements as
(ID(P1), . . . , ID(PT )), (ID(PT+1), . . . , ID(P2T )), . . ., and each block of elements is accumulated
to the vector commitment. By this accumulation, the number of signed entries in the RL is
reduced to m/T .

In [4], the signer only retrieves (ϕi, ψi, ID(Pi), ID(Si)) of the subtree that contains his leaf
v. In the proposed scheme, since we adopt the vector commitment, the signer must show
the correct opening of vector commitments. The verification needs the correctness of gj
indicating the opened j-th component. Thus all gj are signed by GM, and the signer proves
the correctness of gj by the GS proof of the signature of gj. In addition, we need to prove

that gϕ and gψ are compatible to gϕ1 and gψ1 in the vector commitment respectively, because

we need to map gϕ1 and gψ1 to their public parameter as gϕ and gψ. Thus, GM prepares

signatures of (gϕ1 , gϕ) and (gψ1 , gψ), and the signer proves the mapping, using the GS proofs
of the signatures.

4.4.2 Construction

Setup(λ,N, T ): Given a security parameter λ ∈ N and the allowed number of users N=2ℓ−1

for integer ℓ, and the number of elements for partitioning T , do the following, where step 5
and 6 are added to the previous scheme [4].

1. Select bilinear group (G,GT ) of prime order p>2λ, with a generator g
R←− G.

2. Define δ0=1, δ1=2, δ2=2, δ3=5. Generate four key pairs (sk
(d)
AHO,pk

(d)
AHO), d ∈ {0, 1, 2, 3}

for the AHO signature in order to sign messages of {δd}3d=0 group elements, respectively.

3. Generate a public parameter pkvc=(g1,. . .,gn,gn+2, . . .,g2n)∈G2n−1 for n-dimension vec-
tor commitment, where n=max(ℓ, T ).

4. Generate a CRS for the GS NIWI proof: Select f=(f 1,f 2,f 3)∈G3, and f̃ ∈ G, where

f 1=(f1, 1, g), f 2=(1, f2, g), f 3=f ε11 · f ε22 with f1=g
β1 , f2=g

β2 R←− G and β1, β2, ε1, ε2
R←−

Z∗
p. Set f̃=f 3 · (1, 1, g).
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5. Using sk
(0)
AHO, generate an AHO signature on message gj as σgj = (θj,1, . . . , θj,7) for all

1 ≤ j ≤ T .

6. Using sk
(1)
AHO, generate an AHO signature on the pair of (gτ , g

τ
1) as σ̃τ = (θ̃τ,1, . . .,θ̃τ,7)

for all 1 ≤ τ ≤ ℓ.

7. Choose (U, V )
R←− G2 that, together with generators f1, f2, g ∈ G, will form a public

encryption key.

8. Select a strongly unforgeable one-time signature Σ = (G,S,V).

9. Set SGM := ({sk(d)AHO}d∈{0,1,2,3}), SOA := (β1, β2) as GM’s and opener’s private keys,
respectively, and the group public key as

Y :=
(
g,N, ℓ, T, {pk(d)AHO}3d=0, pkvc,f , f̃ , (U, V ),Σ, {σgi}Ti=1, {σk}ℓk=1

)
.

Join: GM and a joining user u run the following interactive protocol Juser(λ,Y), JGM(λ, St,Y ,
SGM), which is the same as [4].

1. Juser chooses x
R←− Zp, computes X = gx and send X to JGM. If X ∈ G already appears

in the database Sttrans, JGM halts and returns ⊥ to Juser.

2. JGM assigns to u an available leaf v of identifier ID(v) in the tree. The corresponding
identifiers in the path from the root to v are I1 = 1, . . . , Iℓ = ID(v) ∈ {N, . . . , 2N − 1}.
Then JGM does the following.

a. Commit the vector (I1, . . . , Iℓ) as Cv =
∏ℓ

κ=1 g
Iκ
n+1−κ.

b. Using sk
(2)
AHO, generate an AHO signature σCv = (θ̂1, . . . , θ̂7) on the pair (X,Cv) ∈ G2

to bind Cv to the value X that identifies u.

3. JGM sends ID(v) and Cv to Juser that halts if either of then is found incorrect. Otherwise,
Juser sends a normal signature sigu on X||(I1, . . . , Iℓ).

4. JGM checks if the signature is valid. If not, JGM aborts. Otherwise, JGM returns σCv to
Juser and stores transcriptu = (X,Cv, σCv , sigu) in Sttrans.

5. Juser defines the membership certificate as certu = (ID(v), X,Cv, σCv) ∈ {N, . . . , 2N−
1} ×G9. The membership secret secu is defined as secu = x ∈ Zp.

Revoke(Y ,SGM, t,Rt): Parse SGM := {sk(d)AHO}d∈{0,1,2,3} and do the following.

1. Using the SD method for Rt, find a cover of unrevoked users’ subsets S1, . . . , Sm and
let ϕi and ψi be the level of the primary (Pi) and secondary (Si) nodes of subset Si. The
ID for these nodes are ID(Pi) and ID(Si) respectively. Define the elements of vector of
−→
Φ ,
−→
Ψ ,
−→
P , and

−→
S are as follows.

−→
Φ = (ϕ1, . . . , ϕi, . . . , ϕm)

−→
P = (ID(P1), . . . , ID(Pi), . . . , ID(Pm))

−→
Ψ = (ψ1, . . . , ψi, . . . , ψm)

−→
S = (ID(S1), . . . , ID(Si), . . . , ID(Sm))
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2. For Ω=⌈m/T ⌉, partition S1, . . . , Sm into Ω sequences with T elements:
−→
S 1 = (S1, . . . , ST ),

−→
S 2 = (ST+1, . . . , S2T ), . . . ,

−→
S Ω = (S(Ω−1)T+1, . . . , Sm).

The elements of
−→
Φ is partitioned as,

−→
Φ 1 = (ϕ1, . . . , ϕT ),

−→
Φ 2 = (ϕT+1, . . . , ϕ2T ), . . .,−→

ΦΩ = (ϕ(Ω−1)T+1, . . . , ϕm). Similarly, the partitions (
−→
Ψ 1, . . .),(

−→
P 1, . . .), and (

−→
S 1, . . .)

are obtained.

3. Using the vector commitment, compress the partitions of each type into:

C−→
Φk

=
∏T

j=1 g
ϕ(k−1)T+j

n+1−j , C−→
P k

=
∏T

j=1 g
ID(P(k−1)T+j)

n+1−j ,

C−→
Ψk

=
∏T

j=1 g
ψ(k−1)T+j

n+1−j , C−→
S k

=
∏T

j=1 g
ID(S(k−1)T+j)

n+1−j ,

for all 1 ≤ k ≤ Ω.

4. Using sk
(3)
AHO, generate AHO signatures σRLk

=(Θk,1, . . . ,Θk,7) on (t, C−→
Φk
, C−→

Ψk
, C−→

P k
, C−→

S k
)

for 1 ≤ k ≤ Ω, where t∈Zp is the given epoch.

Return the revocation list

RLt =
(
t,Rt,

−→
Φ ,
−→
Ψ ,
−→
P ,
−→
S , {C−→

Φk
, C−→

Ψk
, C−→

P k
, C−→

S k
, σRLk = (Θk,1, . . . ,Θk,7)}Ωk=1

)
.

Sign(Y , t,RLt, certu, secu,M): Return ⊥ if u ∈ Rt. Otherwise, to sign M ∈ {0, 1}∗,
generate a one-time signature key pair (SK,VK)← Gλ. Parse certu as (ID(vu), X,Cv, σCv) ∈
{N, . . . , 2N − 1} ×G9 and secu as x ∈ Zp. Do the following based on the previous scheme
[4], to which step 1, 2 and 3 are added.

1. Using RLt, find vector commitments (C−→
Φk
, C−→

Ψk
, C−→

P k
, C−→

S k
) that contains subset Si,

where the user’s leaf vu lies. In commitment C−→
Φk
, assume that the ȷ̃-th compo-

nent includes ϕi, i.e., i=(k − 1)T+ȷ̃. This is similar for C−→
Ψk
, C−→

P k
, and C−→

S k
. De-

fine ϕk,ȷ̃=ϕi, ψk,ȷ̃=ψi, Pk,ȷ̃=Pi, Sk,ȷ̃=Si. Set (R1, R2, R3, R4, R̃1, R̃2)=(g
ϕk,ȷ̃
1 , g

ψk,ȷ̃
1 , g

ID(Pk,ȷ̃)
1 ,

g
ID(Sk,ȷ̃)
1 , gϕk,ȷ̃ , gψk,ȷ̃), and set (ζ0, ζ2n, ζ̃0, ζ̃2n) = (gID(Pk,ȷ̃), g

ID(Pk,ȷ̃)
2n , gID(Sk,ȷ̃), g

ID(Sk,ȷ̃)
2n ). Com-

pute GS commitment of all these elements. Then, calculate witnesses for the vector
commitments:

W−→
Φk

=
∏T

j=1,j ̸=ȷ̃ g
ϕk,j
n+1−j+ȷ̃, W−→

P k
=
∏T

j=1,j ̸=ȷ̃ g
ID(Pk,j)
n+1−j+ȷ̃,

W−→
Ψk

=
∏T

j=1,j ̸=ȷ̃ g
ψk,j
n+1−j+ȷ̃, W−→

S k
=
∏T

j=1,j ̸=ȷ̃ g
ID(Sk,j)
n+1−j+ȷ̃,

which satisfies the following equalities.

e(C−→
Φk
, gȷ̃) = e(R1, gn) · e(W−→

Φk
, g), (4.1)

e(C−→
Ψk
, gȷ̃) = e(R2, gn) · e(W−→

Ψk
, g), (4.2)

e(C−→
P k
, gȷ̃) = e(R3, gn) · e(W−→

P k
, g), (4.3)

e(C−→
S k
, gȷ̃) = e(R4, gn) · e(W−→

S k,g). (4.4)

e(R3, g) = e(ζ0, g1), (4.5)

e(ζ2n, g) = e(ζ0, g2n). (4.6)

e(R4, g) = e(ζ̃0, g1), (4.7)

e(ζ̃2n, g) = e(ζ̃0, g2n). (4.8)

To prove the above opening relations, commit gȷ̃, C−→
Φk
, C−→

Ψk
, C−→

P k
, C−→

S k
,W−→

Φk
,W−→

Ψk
,W−→

P k
,

W−→
S k
, and compute GS proofs of (4.1)–(4.8) as πSi .
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2. To show that gȷ̃ is correct, re-randomize the AHO signature σgȷ̃ on gȷ̃ to (θ′ȷ̃,1, . . . , θ
′
ȷ̃,7),

commit {θȷ̃,i}i={1,2,5} and compute the GS proofs as follows:

A(0) =e(G(0)
z , θ′ȷ̃,1) · e(G(0)

r , θ′ȷ̃,2) · e(θ′ȷ̃,3, θ′ȷ̃,4) · e(G(0), gȷ̃),

B(0) =e(H(0)
z , θ′ȷ̃,1) · e(H(0)

r , θ′ȷ̃,5) · e(θ′ȷ̃,6, θ′ȷ̃,7) · e(H(0), gȷ̃).

We denote the above proof by πgȷ̃ .

3. To prove that g
ϕk,ȷ̃
1 (resp. g

ψk,ȷ̃
1 ) is mapped to gϕk,ȷ̃ (resp. gψk,ȷ̃) for τ ∈ {ϕk,ȷ̃, ψk,ȷ̃},

re-randomize the AHO signature σ̃τ on (gτ1 , gτ ) to (θ̃′τ,1,. . .,θ̃
′
τ,7), commit {θ̃τ,ι}ι={1,2,5},

and compute the GS proofs of the following:

A(1) =e(G(1)
z , θ̃′τ,1) · e(G(1)

r , θ̃′τ,2) · e(θ̃′τ,3, θ̃′τ,4) · e(G
(1)
1 , gτ1) · e(G

(1)
2 , gτ ),

B(1) =e(H(1)
z , θ̃′kτ ,1) · e(H

(1)
r , θ̃′τ,5) · e(θ̃′τ,6, θ̃′τ,7) · e(H

(1)
1 , gτ1 ) · e(H

(1)
2 , gτ ),

for τ∈{ϕk,ȷ̃, ψk,ȷ̃}, where R1=g
τ and R̃1=gτ (resp. R2=g

τ , R̃2=gτ ) for τ=ϕk,ȷ̃ (resp.
τ=ψk,ȷ̃). We denote the above proof by πlvl.

4. To prove that the signer is an unrevoked user of subset Si with i=(k− 1)T+ȷ̃, commit
Cv, and do the following, which is the same as [4].

a. To show that Iϕk,ȷ̃=ID(Pk,ȷ̃), computeWϕk,ȷ̃=
∏ℓ

l=1,l ̸=ϕk,ȷ̃ g
Il
n+1−l+ϕk,ȷ̃ that satisfies the

equality e(Cv, gϕk,ȷ̃)=e(g1, gn)
Iϕk,ȷ̃ ·e(Wϕk,ȷ̃ , g). Then, commit Wϕk,ȷ̃ , and prove it

by the GS proof of this:

e(Cv, R̃1) = e(R3, gn) · e(Wϕk,ȷ̃ , g).

We denote the above proof by by πeq.

b. To show that Iψk,ȷ̃ ̸=ID(Sk,ȷ̃), computeWψk,ȷ̃=
∏ℓ

l=1,l ̸=ψk,ȷ̃ g
Il
n+1−l+ψk,ȷ̃ that satisfies the

equality e(Cv, gψk,ȷ̃)=e(g1, gn)
Iψk,ȷ̃ ·e(Wψk,ȷ̃ , g). Then, commit Wψk,ȷ̃ and the group

elements (Γ, ζ̂0, ζ̂1, ζ̂2n) = (g
1/(Iψk,ȷ̃−ID(Sk,ȷ̃))

1 , gIψk,ȷ̃ , g
Iψk,ȷ̃
1 , g

Iψk,ȷ̃
2n ), and compute GS

proofs of the following:

e(Cv, R̃2) = e(ζ̂1, gn) · e(Wψk,ȷ̃ , g),

e(ζ̂1/R4,Γ) = e(g1, g1),

e(ζ̂1, g) = e(ζ̂0, g1),

e(ζ̂2n, g) = e(ζ̂0, g2n).

We denote the above proof by πneq.

5. To prove that (E1, E2, E3, E4, E5) = (t, C−→
ϕk
, C−→

ψk
, CID(−→P k), CID(−→S k)) is derived from RLt,

re-randomize AHO signature σRLk to (Θ′
1, . . . ,Θ

′
7) and compute the commitments to

{Θj}j∈{1,2,5}. Then generate a GS proof πRL proving

A(3) =e(G(3)
z ,Θ′

1) · e(G(3)
r ,Θ′

2) · e(Θ′
3,Θ

′
4) · e(G

(3)
1 , gt) ·

∏5
τ=2 e(G

(3)
τ , Eτ ),

B(3) =e(H(3)
z ,Θ′

1) · e(H(3)
r ,Θ′

5) · e(Θ′
6,Θ

′
7) · e(H

(3)
1 , gt) ·

∏5
τ=2 e(G

(3)
τ , Eτ ).
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6. Re-randomize AHO signature σCv to (θ̂′1, . . . , θ̂
′
7) and compute commitments to X,

{θ̂′j}j∈{1,2,5}. Then, generate GS proof πCv proving:

A(2) =e(G(2)
z , θ̂′1) · e(G(2)

r , θ̂′2) · e(θ̂′3, θ̂′4) · e(G
(2)
1 , X) · e(G(2)

2 , Cv),

B(2) =e(H(2)
z , θ̂′1) · e(H(2)

r , θ̂′5) · e(θ̂′6, θ̂′7) · e(H
(2)
1 , X) · e(H(2)

2 , Cv).

7. The following steps are the same as in [4]. Using VK as a tag (by first hashing it onto

Zp element), compute a tag-based encryption of X by drawing z1, z2
R←− Zp and setting

(Υ1,Υ2,Υ3,Υ4,Υ5) = (f z11 , f z22 , X · gz1+z2 , (gVK · U)z1 , (gVK · V )z2).

8. Generate a GS proof that comX = (1, 1, X) · fwX,11 · fwX,22 · fwX,33 and (Υ1,Υ2,Υ3)
are BBS encryption for the same value X. If we write f 3 = (f3,1, f3,2,f3,3), the GS
commitment comX can be written as (f

wX,1
1 · fwX,33,1 , f

wX,2
2 · fwX,33,2 , X · gwX,1+wX,2 · fwX,33,3 ),

so that we have

comX · (Υ1,Υ2,Υ3)
−1 = (fχ1

1 · f
χ3

3,1, f
χ2

2 · f
χ3

3,2, g
χ1+χ2 · fχ3

3,3) (4.9)

with χ1 = wχ,1 − z1, χ2 = wχ,2 − z2, χ3 = wχ,3 − z3. Compute GS commitments

comχj to exponent χi using f̃ for j ∈ {1, 2, 3} and generate proofs {πeq−com,j}3j=1 that
χ1, χ2, χ3 satisfy the three linear relations (4.9).

9. Compute a weakly Boneh-Boyen signature σVK = g1/(x+VK) on VK and a commitment to
σVK. Then generate a GS proof πσVK of the verification equation e(σVK, X ·gVK) = e(g, g).

10. Compute a one-time signature σots = S(SK, (M , RLt,Υ = (Υ1,Υ2,Υ3,Υ4,Υ5), Ω ,
com, Π)) where Ω consists of ι-th component for re-randomized σgȷ̃ , σϕi , σψi , σRLk

, σCv
for ι = 3, 4, 6, 7. com consists of all commitments, and Π consists of all GS proofs.

Return the signature σ = (VK,Υ,Ω , com,Π, σots).

Verify(Y , t,RLt, σ,M): If the one-time signature in σ is verified as invalid or if the tag-
based encryption Υ is not well-formed, return 0. Then, return 1 if all GS proofs are properly
verified. Otherwise, return 0.

Open(Y , t,RLt, σ,M, St,SOA): Return ⊥ if Verify(Y , t,RLt, σ,M)=0. Otherwise, decrypt
Υ to get X̂, and in the database Strans, find a record ⟨u,transcriptu= (Xu, ID(vu), Cv,

σCv , sigu)⟩ s.t. Xu = X̂. If no such record exist in Strans, return ⊥. Otherwise, return u.

4.4.3 Security

Here, the security of the proposed scheme is shown. We can prove the security against fram-
ing attack and the anonymity under the q-SDH and DLIN assumptions, as in [4], since the
construction is similar. Thus, we only show the proof for the security against misidentifica-
tion attacks.

Theorem 6. The proposed scheme is secure against the misidentification attacks assuming
that q-SFP and the n-FlexDHE problems are both hard.
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Proof. Assume that in the game of Expmis−id
A (λ), the adversary outputs a non-trivial

signature σ⋆ that does not open to unrevoked adversarial-controlled group member. Let
σ⋆ = (VK⋆,Υ⋆,Ω⋆, com⋆,Π⋆, σ⋆ots) denote A’s forgery and parse com⋆ as com⋆ =(com⋆

Cv
,

com⋆
X , com

⋆
gȷ̃
, com⋆

C−→
Φk

, com⋆
C−→

Ψk

, com⋆
C−→

P k
, com⋆

C−→
S k
, com⋆

W−→
Φk

, com⋆
W−→

Ψk

, com⋆
W−→

P k
, com⋆

W−→
S k
,

{com⋆
Rk
}4k=1, com

⋆
R̃1
, com⋆

R̃2
, com⋆

Wϕk,ȷ̃
, com⋆

Wψk,ȷ̃
, com⋆

Γ, {com⋆
ζk
, com⋆

ζ̃k
}k∈{0,2n}, {com⋆

ζ̂k
}k∈{0,1,2n},

{com⋆
θ′ι
, com⋆

Θ′
ι
, com⋆

θ̂′ι
, com⋆

θ̃′τ,ι
}ι∈{1,2,5},τ∈{ϕk,ȷ̃,ψk,ȷ̃}, {com⋆

χj
}3j=1, com

⋆
σVK).

Depending on the context of extractable commitments, we distinguish the following types.

Type I forgery: This is the case that either of the AHO signature σ⋆RLk
for the elements of

RL (t⋆, C⋆
−→
Φk
, C⋆

−→
Ψk
, C⋆

−→
P k
, C⋆

−→
S k
), AHO signature σ⋆Cv for the elements of user’s membership

(X⋆, C⋆
v ), AHO signature σ⋆gȷ̃ for the element g⋆ȷ̃ , or the AHO signatures (σ⋆ϕk,ȷ̃ , σ

⋆
ψk,ȷ̃

)

for the pair (gτ , g
τ
1 ), τ ∈ {ϕ⋆k,ȷ̃, ψ⋆k,ȷ̃} was not issued by Setup and oracles. As in [4], if

any of the signatures is forged, it means a forgery against the AHO signature, which
contradicts the q-SFP assumption. Thus we omit the proof for this forgery.

Type II forgeries: These are the cases that all of the signatures were issued. Since the
signature σ⋆RLk

on (t⋆, C⋆
−→
Φk
, C⋆

−→
Ψk
, C⋆

−→
P k
, C⋆

−→
S k
) is an entry in the latest revocation list

RLt⋆ on epoch t⋆, it is ensured that the vector commitments contain the k-th blocks
compressed elements of SD trees in Rt⋆ . Also, due to the signature σ⋆Cv on (X⋆, C⋆

v ),
it is ensured that C⋆

v contains the correct I⋆1 , . . . , I
⋆
l for user u. Furthermore, due to

the GS proofs, the extracted committed values g⋆ȷ̃ , R
⋆
1, R

⋆
2, R

⋆
3, R

⋆
4, C

⋆
−→
Φk
, C⋆

−→
Ψk
, C⋆

−→
P k
, C⋆

−→
S k
,

W ⋆
−→
Φk
, W ⋆

−→
Ψk
, W ⋆

−→
P k
,W ⋆

−→
S k
, ζ0

⋆, ζ2n
⋆, ζ̃⋆0 , ζ̃

⋆
2n satisfy the relations,

e(C⋆
−→
Φk
, g⋆ȷ̃ ) = e(R⋆

1, gn) · e(W ⋆
−→
Φk
, g), (4.10)

e(C⋆
−→
Ψk
, g⋆ȷ̃ ) = e(R⋆

2, gn) · e(W ⋆
−→
Ψk
, g), (4.11)

e(C⋆
−→
P k
, g⋆ȷ̃ ) = e(R⋆

3, gn) · e(W ⋆
−→
P k
, g), (4.12)

e(C⋆
−→
S k
, g⋆ȷ̃ ) = e(R⋆

4, gn) · e(W ⋆
−→
S k
, g). (4.13)

e(R⋆
3, g) = e(ζ0

⋆, g1), (4.14)

e(ζ2n
⋆, g) = e(ζ0

⋆, g2n). (4.15)

e(R⋆
4, g) = e(ζ̃⋆0 , g1), (4.16)

e(ζ̃⋆2n, g) = e(ζ̃⋆0 , g2n). (4.17)

In addition, the extracted committed values C⋆
v ,W

⋆
ϕk,ȷ̃

,W ⋆
ψk,ȷ̃

, R̃⋆
1, R̃

⋆
2, R

⋆
3, R

⋆
4,Γ

⋆, ζ̂⋆0 , ζ̂
⋆
1 , ζ̂

⋆
2n

satisfy the relations

e(C⋆
v , R̃

⋆
1) = e(R⋆

3, gn) · e(W ⋆
ϕk,ȷ̃

, g), (4.18)

e(C⋆
v , R̃

⋆
2) = e(ζ̂⋆1 , gn) · e(W ⋆

ψk,ȷ̃
, g), (4.19)

e(ζ̂⋆1/R
⋆
4,Γ

⋆) = e(g1, g1), (4.20)

e(ζ̂⋆1 , g) = e(ζ̂⋆0 , g1), (4.21)

e(ζ̂⋆2n, g) = e(ζ̂⋆0 , g2n), (4.22)

where R⋆
3, R

⋆
4 are the same as the above.

In Type II forgeries, the winning condition of the game (i.e., u /∈ Ua\Rt⋆) means
u ∈ Ua ∩ Rt⋆ . This is because none of the AHO signatures is forged in Type II forg-
eries, and thus u has to be an adversarially-controlled user who is issued a membership
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certificate in Qa−join. Then, u ∈ Ua ∩ Rt⋆ means that the user u is revoked at epoch
t⋆. This is why, as in the original proof [4], I⋆ϕk,ȷ̃ ̸=ID(Pk,ȷ̃) or I⋆ψk,ȷ̃=ID(Sk,ȷ̃) must hold

for the correct tuple (ϕk,ȷ̃, ψk,ȷ̃, ID(Pk,ȷ̃), ID(Sk,ȷ̃)) s.t. i=(k − 1)T+ȷ̃ corresponding to any
subset Si in Rt⋆ , and correct I⋆ϕk,ȷ̃ , I

⋆
ψk,ȷ̃

of user u. Let k⋆ be k s.t. σ⋆RLk
ensures the k-

th entry (t⋆, C⋆
−→
Φk
, C⋆

−→
Ψk
, C⋆

−→
P k
, C⋆

−→
S k
) in RLt⋆ . Let ȷ̃⋆ be ȷ̃ s.t. σ⋆gȷ̃ ensures g⋆ȷ̃ . Then, we

can consider two possibilities: The extracted commited values R⋆
1, R

⋆
2, R

⋆
3, R

⋆
4 are inap-

propriate, i.e., (R⋆
1, R

⋆
2, R

⋆
3, R

⋆
4) ̸= (g

ϕk⋆,ȷ̃⋆
1 , g

ψk⋆,ȷ̃⋆
1 , g

ID(Pk⋆,ȷ̃⋆ )
1 , g

ID(Sk⋆,ȷ̃⋆ )
1 ) for the correct tuple

(ϕk⋆,ȷ̃⋆ , ψk⋆,ȷ̃⋆ , ID(Pk⋆,ȷ̃⋆), ID(Sk⋆,ȷ̃⋆)) s.t. i⋆=(k⋆ − 1)T+ȷ̃⋆ corresponding to the subset Si⋆ in

Rt⋆ , or the values are appropriate, i.e., (R
⋆
1, R

⋆
2, R

⋆
3, R

⋆
4) = (g

ϕk⋆,ȷ̃⋆
1 , g

ψk⋆,ȷ̃⋆
1 , g

ID(Pk⋆,ȷ̃⋆ )

1 , g
ID(Sk⋆,ȷ̃⋆ )

1 )
for the correct tuple (ϕk⋆,ȷ̃⋆ , ψk⋆,ȷ̃⋆ , ID(Pk⋆,ȷ̃⋆), ID(Sk⋆,ȷ̃⋆)) of the subset Si⋆ in Rt⋆ . The former
is caused, when our newly adopted commitments C⋆

−→
Φk
, C⋆

−→
Ψk
, C⋆

−→
P k
, C⋆

−→
S k

are improperly opened.
Therefore, we furthermore separate Type II forgeries into two cases: (a) the improper

opening of C⋆
−→
Φk
, C⋆

−→
Ψk
, C⋆

−→
P k
, or C⋆

−→
S k
, or (b) I⋆ϕk⋆,ȷ̃⋆ ̸=ID(Pk⋆,ȷ̃⋆) or I⋆ψk⋆,ȷ̃⋆=ID(Sk⋆,ȷ̃⋆) for the ap-

propriate R⋆
1, R

⋆
2, R

⋆
3, R

⋆
4. (a) is correspondent to the case of the inappropriate R⋆

1, R
⋆
2, R

⋆
3, R

⋆
4

due to the improper opening of the commitments C⋆
−→
Φk
, C⋆

−→
Ψk
, C⋆

−→
P k
, or C⋆

−→
S k
. (b) is the same as

the original proof [4] where R⋆
1, R

⋆
2, R

⋆
3, R

⋆
4 are appropriate but I

⋆
ϕk⋆,ȷ̃⋆

, I⋆ψk⋆,ȷ̃⋆ are not properly
opened from C⋆

v . Note that there are not any other possibility. This is because the case of
not (a) and not (b) means that R⋆

1, R
⋆
2, R

⋆
3, R

⋆
4 are the appropriate, and I⋆ϕk⋆,ȷ̃⋆ = ID(Pk⋆,ȷ̃⋆)

and I⋆ψk⋆,ȷ̃⋆ ̸= ID(Sk⋆,ȷ̃⋆) for the appropriate values, which implies that u is not revoked at

epoch t⋆ (it contradicts u ∈ Ua∩Rt⋆). Then, we can construct an adversary ADHE or AFlexDHE

against n-DHE or n-FlexDHE problem using A, for case (a) and (b):

Case (a): We consider a sub-case for each of C⋆
−→
Φk
, C⋆

−→
Ψk
, C⋆

−→
P k
, C⋆

−→
S k
.

• If the opening of vector commitment C⋆
−→
Φk

is improper (the sub-case for C⋆
−→
Ψk

is similar),
we can construct ADHE as follows. ADHE is given an n-DHE instance (g, g1, . . ., gn, gn+2,
. . ., g2n). It follows Setup to generate the secret keys and the other public keys, and
gives the public keys to A for this sub-case. In the game, A can query the oracles, where
it is honestly responded using the generated secret keys, and finally output σ⋆. In the
game, ADHE knows the value ϕ⋆ ∈{1, . . . , ℓ} s.t. R⋆

1=g
ϕ⋆

1 , since the valid AHO signature
σ⋆ϕk,ȷ̃ on R

⋆
1 is issued. Similarly, the correctness of g⋆ȷ̃ in (4.10)–(4.13) is assured by the

AHO signature σ⋆gȷ̃ on g
⋆
ȷ̃ . In this sub-case, equation (4.10) implies

e(g⋆ȷ̃ , C
⋆
−→
Φk
) = e(g1, gn)

ϕ⋆ · e(g,W ⋆
−→
Φk
). (4.23)

Note that the improper opening means ϕ⋆ ̸= ϕk⋆,ȷ̃⋆ . Since ADHE knows the correct (ϕk⋆,1,

. . ., ϕk⋆,T ) such that C⋆−→
Φk

=
∏T

j=1 g
ϕk⋆,j
n+1−j in the response of the latest Qrevoke query, he

can compute W ′ =
∏T

j=1,j ̸=ȷ̃⋆ g
ϕk⋆,j
n+1−j+ȷ̃⋆ which satisfies

e(g⋆ȷ̃ , C
⋆
−→
Φk
) = e(g1, gn)

ϕk⋆,ȷ̃⋆ · e(g,W ′). (4.24)

By dividing equations (4.23) over (4.24), we obtain the equality

e(g1, gn)
(ϕk⋆,ȷ̃⋆−ϕ⋆) = e(g,W ⋆

−→
Φk
/W ′)

and thus gn+1 = (W ⋆
−→
Φk
/W ′)1/(ϕk⋆,ȷ̃⋆−ϕ̃). This forms a solution to the n-DHE problem.
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• Consider the sub-case that the opening of C⋆
−→
P k

is improper (the sub-case of C⋆
−→
S k

is
similar). As in the above sub-case for C⋆

−→
Φk
, we can construct AFlexDHE, where the simu-

lation of the game is the same. However, in the output σ⋆, ϱ⋆ = logg1 R
⋆
3 is unknown,

since R⋆
3 is not ensured by AHO signatures. This case of improper opening means

ϱ ⋆ ̸= ID(Pk⋆,ȷ̃⋆). For ϱ
⋆ = logg1(R

⋆
3), equation (4.12), (4.14), (4.15) imply that

e(g⋆ȷ̃ , C
⋆
−→
P k
) = e(g1, gn)

ϱ⋆ · e(g,W ⋆
−→
P k
), (4.25)

ζ0
⋆ = gϱ

⋆

, (4.26)

ζ2n
⋆ = gϱ

⋆

2n. (4.27)

Also, as in the above sub-case, AFlexDHE can compute W ′ =
∏T

j=1,j ̸=ȷ̃⋆ g
ID(Pk⋆,j)

n+1−j+ȷ̃⋆ such
that

e(g⋆ȷ̃ , C
⋆
−→
P k
) = e(g1, gn)

ID(Pk⋆,ȷ̃⋆ ) · e(g,W ′). (4.28)

By dividing equation (4.25) over (4.28), we obtain the equality e(g1, gn)
ϱ⋆−ID(Pk⋆,ȷ̃⋆ ) =

e(g,W ′/W ⋆
−→
P k
), and thus W ′/W ⋆

−→
P k

= g
ϱ⋆−ID(Pk⋆,ȷ̃⋆ )
n+1 . Note that gn+1 cannot be computed

as the above sub-case, due to the unknown ϱ⋆. The triple

(ζ0
⋆ · g−ID(Pk⋆,ȷ̃⋆ ),W ′/W ⋆

−→
P k
, ζ2n

⋆ · g−ID(Pk⋆,ȷ̃⋆ )
2n ) = (gϱ

⋆−ID(Pk⋆,ȷ̃⋆ ), g
ϱ⋆−ID(Pk⋆,ȷ̃⋆ )
n+1 , g

ϱ⋆−ID(Pk⋆,ȷ̃⋆ )
2n )

forms a non-trivial solution to the n-FlexDHE problem.

Case(b): This is the case that the opening of C⋆
v is improper, and all the openings of

(C⋆
−→
Φk
, C⋆

−→
Ψk
, C⋆

−→
P k
, C⋆

−→
S k
) are correctly done. Thus, the latter means (R⋆

1, R
⋆
2, R

⋆
3, R

⋆
4) = (g

ϕk⋆,ȷ̃⋆
1 ,

g
ψk⋆,ȷ̃⋆
1 , g

ID(Pk⋆,ȷ̃⋆ )

1 , g
ID(Sk⋆,ȷ̃⋆ )

1 ). Similarly to case (a), we can construct ADHE or AFlexDHE. In
the game, the AHO signatures σ⋆ϕk,ȷ̃ , σ

⋆
ψk,ȷ̃

ensure that R̃⋆
1 = gϕk⋆,ȷ̃⋆ and R̃⋆

2 = gψk⋆,ȷ̃⋆ . Then,

for the output σ⋆ of A we can prove this case in the same way as [4]. Consider these two
sub-cases:

• I⋆ϕk⋆,ȷ̃⋆ ̸= ID(Pk⋆,ȷ̃⋆): In this case, equation (4.18) implies

e(gϕk⋆,ȷ̃⋆ , C
⋆
v ) = e(g1, gn)

ID(Pk⋆,ȷ̃⋆ ) · e(g,W ⋆
ϕk,ȷ̃

). (4.29)

for values ϕk⋆,ȷ̃⋆ and ID(Pk⋆,ȷ̃⋆) that are available to ADHE. Since it knows (I⋆1 , . . . , I
⋆
ℓ ),

it can compute W ′ =
∏ℓ

k=1,k ̸=ϕk⋆,ȷ̃⋆ g
Ik
n+1−k+ϕk⋆,ȷ̃⋆ , which satisfies

e(gϕk⋆,ȷ̃⋆ , C
⋆
v ) = e(g1, gn)

I⋆ϕk⋆,ȷ̃⋆ · e(g,W ′). (4.30)

By combining both equations, we find that gn+1 = (W ⋆
ϕk,ȷ̃

/W ′)
1/(I⋆ϕk⋆,ȷ̃⋆

−ID(Pk⋆,ȷ̃⋆ )) is com-
putable by ADHE and it solves an instance the n-DHE problem.

• I⋆ψk⋆,ȷ̃⋆ = ID(Sk⋆,ȷ̃⋆): In this case, we define ϱ⋆ = logg1(ζ̂1). Equation (4.19)–(4.22) imply

e(gψk⋆,ȷ̃⋆ , C
⋆
v ) = e(g1, gn)

ϱ⋆ · e(g,W ⋆
ψk,ȷ̃

), (4.31)

gϱ
⋆−ID(Sk⋆,ȷ̃⋆ ) ̸= 1G, (4.32)

ζ̂⋆0 = gϱ
⋆

, (4.33)

ζ̂⋆2n = gϱ
⋆

2n (4.34)
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Group Sig Membership Revocation Signing Verifying Revocation
PK size size cert. size List Size Time Time Time

[4] O(logN) O(1) O(1) O(R) O(1) O(1) O(R)
[28] O(T logN) O(1) O(T ) O(R/T ) O(T ) O(1) O(R logN)
[22] O(1) O(1) O(R′) O(1) O(R) O(1) O(R)

This work O(T + logN) O(1) O(1) O(R/T ) O(T ) O(1) O(R)

Table 4.1: Comparisons of revocable group signature schemes.

T=16 T=49 T=100
[28] This work [28] This work [28] This work

R=1,000 63KB 88KB 21KB 29KB 10KB 14KB
R=10,000 630KB 880KB 210KB 290KB 100KB 140KB
R=100,000 6,300KB 8,800KB 2,100KB 2,900KB 1,000KB 1,400KB

Table 4.2: Concrete comparisons of the revocation list size (cryptographic part).

Also, AFlexDHE can compute

W ′ =
∏ℓ

k=1,k ̸=ψk⋆,ȷ̃⋆
g
I⋆k
n+1−k+ψk⋆,ȷ̃⋆

such that

e(gψk⋆,ȷ̃⋆ , C
⋆
v ) = e(g1, gn)

I⋆ψk⋆,ȷ̃⋆ · e(g,W ′). (4.35)

If we divide equation (4.31) by (4.35), we obtain the equality e(g1, gn)
ϱ⋆−I⋆ψk⋆,ȷ̃⋆ =

e(g,W ′/W ⋆
ψk,ȷ̃

), so that W ′/W ⋆
ψ⋆k,ȷ̃

= g
ϱ⋆−I⋆ψk⋆,ȷ̃⋆
n+1 . The triple

(ζ̂⋆0 · g
−I⋆ψk⋆,ȷ̃⋆ ,W ′/W ⋆

ψk,ȷ̃
, ζ̂⋆2n · g

−I⋆ψk⋆,ȷ̃⋆
2n ) = (g

ϱ⋆−I⋆ψk⋆,ȷ̃⋆ , g
ϱ⋆−I⋆ψk⋆,ȷ̃⋆
n+1 , g

ϱ⋆−I⋆ψk⋆,ȷ̃⋆
2n )

thus forms a non-trivial solution to the n-FlexDHE problem.

In any of the cases, we observe that AFlexDHE or ADHE solves either the n-FlexDHE instance
or the n-DHE problem. The n-FlexDHE assumption is the stronger assumption. This
completes the proof since σ⋆ cannot constitute a successful misidentification attack without
being Type I or Type II forgery.

4.5 Efficiency Consideration

This section compares our proposed scheme to [4] and revocable group signature schemes
[22], [28] with compact RL. Comparisons are given as in Table 4.1 in terms of computational
costs and the size (measured by the number of group elements) of public keys, signatures,
membership certificates and revocation lists. Let N be the maximum number of users, R
be the number of revoked users, R′ be the maximum number of revoked users, and T be
the compression parameter. In the following concrete comparisons, we consider the 128-bit
security level and we assume that an element of G has a 512-bit representation as in [4].

From Table 4.1, this work reduces the RL size of [4] to O(R/T ), which is the same as
the scheme of [28]. To explore the differences between this work and [28], we show the
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[4] This work(T=logN)
N=10,000(R=1,000) 880KB 108KB
N=100,000(R=10,000) 8,800KB 880KB
N=1,000,000(R=100,000) 88,000KB 7,040KB

Table 4.3: Concrete comparisons of the revocation list size (cryptographic part) for T = logN
setting.

concerete comparisons of RL size in Table 4.2, using the same setting as in [28]. There
consist two parts in RL, the non-cryptographic part and the cryptographic part. In our

proposed scheme, we define the non-cryptographic part as {Rt,
−→
Φ ,
−→
Ψ ,
−→
P ,
−→
S }. This part is

the same with [4] and [28]. The cryptographic part in the proposed scheme is defined as
{C−→

Φk
, C−→

Ψk
, C−→

P k
, C−→

S k
, σRLk = (Θk,1, . . . ,Θk,7)}Ωk=1 that needs 512 · 11Ω bits, where Ω = m/T ,

which is bounded by 512 · 11⌈(2R − 1)/T ⌉. In [28], the cryptographic part is bounded by
512 · 8⌈(2R− 1)/T ⌉. Hence, we can observe that, although this work and [28] reduce the RL
size to O(R/T ), the RL size of this work is slightly longer.

However, the advantages against [28] are the reduction from O(T logN) to O(T +logN)
of the public key size, and from O(T ) to O(1) of the membership certificate size.

In comparison with [4], if we set T = logN , the public key size of this work is about the
same. Additionally, in the setting, we compare the concrete RL sizes of this work and [4] in
Table 4.3. From the table, we understand that this work is capable of reducing the size of
RL in O(logN) public key size setting.

Compared to [4], our proposed scheme and [28] have a signing time of O(T ), due to the
extra W computations of vector commitment or accumulator. Our scheme also has O(1)
overhead in the signing and verification due to extra GS proofs.

From Table 4.1, the signature size is constant for all schemes. However, to explore
the concrete size differences, we compare those in [4], [28], and [22] to ours. The shortest
signature of all the compared schemes is 6KB with 98 G-elements in [22]. On the other hand,
the signature size in both of the previous schemes [4] and [28] is 9KB with 144 and 143 G-
elements, respectively. Unlikely, our proposed scheme needs 19KB with 299 G-elements,
which is about twice longer than that of [4] and [28], due to the extra GS proofs.

The scheme [22] has a constant size RL size and public key size, but the scheme has a
O(R) signing time and O(R′) membership certificate size. We consider that our proposed
scheme is more efficient in the mobile environment, due to lower user computation time and
storage.

4.6 Conclusion

In this chapter, we have proposed a revocable group signature scheme with a compact revo-
cation list by O(1/T ) compared to the previous scheme [4], where the vector commitments
compress the data in the revocation list. We also show that the proposed scheme is capable
of reducing the size of RL in O(logN) public key size setting, which is the same setting as
[4]. As a trade-off, the signing time is increase to O(T ).

43



Chapter 5

Implementation of Revocable Group
Signatures with Compact Revocation
List Using Vector Commitments

5.1 Introduction

In the previous chapter, a scheme with a compact RL to reduce the RL size in [4] was
proposed. In this scheme, the subsets are partitioned into a number of blocks and compressed
using a vector commitment [2]. Compared to the accumulator in [28], this compression
method is simpler. Thus, the RL size is reduced to O(R/T ), while the public key size is
reduced to O(T + logN), and the membership certificate size is O(1). However, the signing
cost is O(T ), and the verification has constant overhead costs, since there are more proofs
of the zero-knowledge fashion. This scheme seems to be practical on the RL size, but the
practicality of the signing time for concrete values of T , and the overheads in the verification
time are unknown, since the scheme has not been implemented.

In this chapter, we implemented the revocable scheme [26] with a pairing library in [20]
where the pairing can be computed fast using “Cross-twisted χ-based Ate (Xt-Xate) pairing”
on the elliptic curve. We also adopt the asymmetric pairing due to the fastness computation
at 128-bit security. In addition, we make an arrangement to the construction of [26] by
swaping some parameters of G1 and G2 for lower computation costs.

To evaluate the efficiency of the implemented scheme, we measured the RL size and
compare it with [4]. From the result, we can see that the RL size of [4] is greatly reduced in
the implemented scheme. However, as mentioned in [26], the signing time is bound to the
number of compression T as a trade-off for the compact RL size. To evaluate the practicality
of the implemented scheme, we also measured the signing time and a verification time in a
usual PC. From the experimental result, the signing time is less than 500 ms for T = 400,
but the verification time is about 1.5 s. Although the verification time has a relatively large
constant overhead, we consider the implemented scheme is practical in a mobile environment
where a user has lower computation time and storage, but the verifier is a powerful server.
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5.2 Conversion for Efficient Implementation

In the previous chapter, the scheme is described using the symmetric pairing, where any
element in G can be both the first and the second input of e. In this chapter, for efficient
implementation, we convert the construction of the implemented scheme to one using the
asymmetric pairing. Since G1 and G2 are distinct, elements used in the first (resp., second)
input of e are generated from G1 (resp., G2).

In the conversion, as mentioned in Section II, the elements u = ga ∈ G1, v = g̃b ∈
G2 for e(u, v) can be swapped as v = gb ∈ G1, u = g̃a ∈ G2 for e(v, u). We consider
two reasons to swap the input elements in pairing calculations. Firstly, in the utilized
pairing library, elements generated from G1 and G2 have different sizes. The element of
G1 is about 256-bit long, while the element of G2 is about twice longer. Therefore, the
computation on G1 is lighter than G2 on the scalar multiplication calculation needed in
a vector commitment method. Due to that, in the converted scheme, we compute vector
commitment C =

∏T
κ=1 g

mκ
n+1−κ and the witness Wj =

∏T
κ=1,κ̸=j g

mκ
n+1−κ+j in G1, whose costs

depend on the number of compressed elements, T , and then the opening relation is arranged
to be e(C, g̃j) = e(gn, g̃1)

mj · e(Wj, g̃). In the later evaluation based on implementation
(Section 5.3.2), we show the effectiveness of the swap by the experimental result.

Secondly, we need to swap elements of the first and second input of e in some pairing
equations, due to the conversion from GS proofs for quadratic equations to linear equations.
In the verification of GS proofs, the computational cost of linear equation is lighter than the
cost of quadratic one. In Section 5.3.2, we show the experimental results of the computation
times for linear and quadratic ones.

In addition to the above swapping processes, we also utilize the swap version of AHO
signature scheme where the signed messages are in G1. This is due to the swapped vector
commitments signed by AHO signatures to show their correctness. Note that the above
conversion to linear equations does not need the swap in AHO signatures. This is because
the committed values in the converted linear equations are G2 elements, some values of which
are signed by AHO signatures.

5.2.1 Construction of Converted Scheme

Here, we describe the summarized construction of the converted group signature scheme, as
follows.
Setup: Given the number of compression T and the depth of the binary tree ℓ, this algorithm
generates

1. Four key pairs of AHO signatures {sk(d)AHO, pk
(d)
AHO}3d=0,

2. The public parameters of the vector commitment pkVC,

3. The key pair of tag-based encryption,

4. CRS of GS proofs,

5. AHO signature on messages g̃j as σgj for 1≤j≤T ,

6. AHO signature on messages (gτ , g
τ
1 ) as σ̃τ for 1≤τ≤ℓ.
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The public key of the group signature are {pk(d)AHO}3d=0, pkVC, the public key of tag-based

encryption, the CRS, σgj , σ̃τ . The secret key of GM is {sk(d)AHO}3d=0, and the secret key of the
opener is the secret key of tag-based encryption.
Join: In this protocol, GM issues a joining user a membership certificate.

1. The user sends X = gx for x
R←− Zp to GM.

2. GM returns the membership certificate that is an AHO signature σCv on (X,Cv) where
Cv =

∏ℓ
κ=1 g

Iκ
n+1−κ, which is the vector commitment for the user’s ID path, vector

(I1, . . . , Iℓ).

Revoke: GM generates the RL on epoch t for SD subset S1, . . . , Sm where Si contains
elements (ϕi, ψi, ID(Pi), ID(Si)). The RL is compressed as follows.

1. For Ω=⌈m/T ⌉, partition S1, . . . , Sm into Ω sequences with T elements: (S1, . . . , ST ),

(ST+1, . . . , S2T ), . . ., (S(Ω−1)T+1, . . . , Sm). The elements of
−→
Φ=(ϕ1, . . . , ϕm) is parti-

tioned as,
−→
Φ 1=(ϕ1, . . . , ϕT ),

−→
Φ 2=(ϕT+1, . . . , ϕ2T ),. . .,

−→
ΦΩ= (ϕ(Ω−1)T+1, . . . , ϕm). Simi-

larly, the partitions (
−→
Ψ 1, . . .), (

−→
P 1, . . .), and (

−→
S 1, . . .) are obtained.

2. Using vector commitment, compress the partitions of vector
−→
Φ into C−→

Φk
=
∏T

j=1 g
ϕ(k−1)T+j

n+1−j

for 1 ≤ k ≤ Ω, and do the same for
−→
Ψ ,
−→
P ,
−→
S .

3. Generate AHO signatures σRLk
on (t, C−→

Φk
, C−→

Ψk
, C−→

P k
, C−→

S k
) for 1 ≤ k ≤ Ω.

Return the revocation list

RLt =
(
t,
−→
Φ ,
−→
Ψ ,
−→
P ,
−→
S , {C−→

Φk
, C−→

Ψk
, C−→

P k
, C−→

S k
, σRLk}Ωk=1

)
.

Sign: Given a message M to be signed. The signer generates a key pair (SK,VK) of one
time signature and do the following.

1. Retrieve vector commitments (C−→
Φk
, C−→

Ψk
, C−→

P k
, C−→

S k
) for the subset Si including the

signer. Assume that the ȷ̃-th coordinate in the commitments are (ϕi, ψi, ID(Pi), ID(Si))
of the subset Si which are denoted as (ϕk,ȷ̃, ψk,ȷ̃, ID(Pk,ȷ̃), ID(Sk,ȷ̃)).

2. Open C−→
Φk

at coordinate ȷ̃ by setting R=g̃
ϕk,ȷ̃
1 and calculate witness W−→

Φk
which satisfies

the opening relation

e(C−→
Φk
, g̃ȷ̃) = e(R, g̃n) · e(W−→

Φk
, g̃), (5.1)

where gȷ̃ indicates that the ȷ̃-th coordinate in vector committed in C−→
Φk

is ϕk,ȷ̃. The
underlines in the equation show committed values to be proved in GS proof. Equation
(5.1) is quadratic, because it has committed values both in G1 and G2. Note that
vector commitment C−→

Φk
and its witness W−→

Φk
are in G1. The same process is done for

C−→
Ψk
.

3. Open C−→
P k

at coordinate ȷ̃ by setting R=g
ID(Pk,ȷ̃)
1 , ζ0 = gID(Pk,ȷ̃), ζ2n = g

ID(Pk,ȷ̃)
2n and

calculate witness W−→
P k

which satisfies the opening relation

e(C−→
P k
, gȷ̃) = e(gn, R) · e(W−→

P k
, g̃), (5.2)

e(g,R) = e(g1, ζ0), (5.3)

e(g, ζ2n) = e(g2n, ζ0), (5.4)
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where equations (5.3),(5.4) are introduced for the security proof in [26] based on the
n-FlexDHE assumption. Equation (5.2) is a quadratic and equations (5.3)−(5.4) are
linear, where ζ0 and ζ2n in equations (4)−(5) were swapped to G2 to make it linear.
The same process is done for C−→

S k
.

4. To prove that the signer is an unrevoked user, show that Iϕk,ȷ̃=ID(Pk,ȷ̃) and Iψk,ȷ̃ ̸=ID(Sk,ȷ̃)
using the opening relation of the signer’s Cv on coordinate ϕk,ȷ̃ and ψk,ȷ̃. These pro-
cess are the same as in [4], which includes equations that are similar to equations
(5.3)−(5.4), where the elements in e are swapped.

5. Compute the GS proof proving the followings.

• The opening relations in step 2)− 4) .

• The verification for AHO signature σgȷ̃ of the opening coordinate g̃ȷ̃.

• The verification for AHO signature σ̃τ of τ ∈ {ϕk,ȷ̃, ψk,ȷ̃} to ensure the compati-
bility of (gτ ,g

τ
1 ).

• The verification for swapped AHO signature σRLk of RLt.

• The verification for swapped AHO signature σCv for signer’s membership certifi-
cate.

AHO signatures σRLk and σCv are swapped, because the signed messages contain vector
commitments that are computed in G1 for efficiency.

6. The tag-based encryption of X and BB signature, and the one-time signature are
executed in the same way as [4] together with the GS proofs, where none of the elements
is needed to be swapped.

7. Return the group signature σ of the commitments, GS proofs, tag-based encryption,
and one-time signature.

Verify: Check the one-time signature of M and all GS proofs in the group signature σ.
Open: Return ⊥ if Verify=0 for the group signature σ. Otherwise, decrypt tag-based
encryption in σ to get X̂, and find the linked user in the database of Join.

5.3 Implementation

5.3.1 Pairing Library

The pairing and other operations can be implemented on an elliptic curve. The pairing
calculation is critical, since the pairing calculation requires much larger computational time
than other calculations. Thus, we need the fast library computing the asymmetric pairing
together with the underlying elliptic curve operations. We utilize the library based on “Cross-
twisted χ-based Ate (Xt-Xate) pairing” [20] with 254-bit group order and the embedding
degree is 12. The security level is equivalent to the 128-bit AES. The library is based on the
GMP library and implemented by C language due to the pursuit of the fastness.
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Table 5.1: Environments of implementation and experiments.
CPU Intel Core i5-4460(3.20GHz)

Main memory 7.8 GB
OS Ubuntu 14.04 LTS

Multiple Precision GMP-6.0.0
Arithmetic Library
Pairing Library ELiPS [20]
C compiler GCC-4.8.4

5.3.2 Experiments and Evaluations

We measured the processing times and the data sizes in the implemented scheme to explore
the efficiency of [26]. The environments of the implementation and experiments are shown
in Table 5.1. For measuring the time, we utilize gettimeofday sec() method that is a JAVA
API.

As mentioned in [26], the scheme reduces the RL size of [4] by 1/T where T denotes the
number of compression. In Table 5.2, we show the comparison of concrete RL size in [4] and
our implemented scheme of [26] while changing T , where R is 1,000, 10,000, and 100,000.
From the results, the RL size of implemented scheme is getting smaller by increasing T . [4]
suffers from large size of RL when the number of revocation R increases. On the other hand,
the implemented scheme greatly reduces the RL.

Table 5.2: RL size on different T (cryptographic part).

[4]
Implemented Scheme [26]
T=50 T=100 T=400

R=1,000 880KB 27KB 14KB 3KB
R=10,000 8,800KB 270KB 140KB 30KB
R=100,000 88,000KB 2,700KB 1,400KB 300KB

Meanwhile, the signing cost of [26] depends on T as a trade-off to the compact RL size.
Therefore, we measured the computation times of the signing and verification, by changing
the setting of T to be 15, 50, 100, 200, 400. The measurement results are shown in Table 5.3.
From the result, we can observe that the signing time is expanded when T is increased, while
the verification time shows no dependency on T . In summary, we are certain that signing
is sufficiently practical for T , i.e., the signing time keeps under 0.5 seconds. However, the
verification is relatively large where the verification time exceeds 1 second for every case.

Table 5.3: Signing and Verification Time.
T=15 T=50 T=100 T=200 T=400

Signing time [ms] 357 365 378 406 465
Verification time [ms] 1576 1578 1577 1576 1576

Then, we explore the details of the signing and the verification. The signing mainly
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consists of the commitment and proof generations of GS proofs, andW computations for the
opening of vector commitments. The verification mainly consists of verifications of the GS
proofs. In both, the computations concerning the GS proofs have the constant complexity for
T , since the number of GS proofs does not depend on T . Therefore, the verification process
is constant. On the other hand, in the W computation of vector commitments C−→

Φk
, C−→

Ψk
,

C−→
P k
, C−→

S k
in step 1)− 3) of signing, Wj is computed as,

Wj =
T∏

κ=1,κ̸=j

gmκn+1−κ+j,

to open the j-th coordinate in each vector commitment. Thus, the signing time has the
dependency on T .

In Table 5.4, we show the total W computation times of C−→
Φk
, C−→

Ψk
, C−→

P k
, C−→

S k
for T =

15, 50, 100, 200, 400 in the implementation. From the results, we can observe that the
computation time increases as T becomes larger, which influences the increase of the signing
time. But, the increase of the W computation time is not so large, compared to the total
signing time.

Table 5.4: Computation time of W in G1.
T=15 T=50 T=100 T=200 T=400

W time [ms] 2.85 11.4 24.3 52.5 111.7

Next, we examine the effectiveness of the swapping G1 elements and G2 elements in the
W computation, which we mentioned in Section 5.2, by measuring the non-swap version for
W computation. Table 5.5 shows the total W computation of C−→

Φk
, C−→

Ψk
, C−→

P k
, C−→

S k
in G2 for

T = 15, 50, 100, 200, 400. In the comparison with Table 5.4, the W computation time in
G1 from G2 is reduced on the average of 66.5%. Thus, we can confirm that swapping W to
G1 from G2 in the opening relation

e(C, g̃j) = e(g1, g̃n)
mj · e(Wj, g̃)

reduces the computation cost of W in signing.

Table 5.5: Computation time of W in G2.
T=15 T=50 T=100 T=200 T=400

W time [ms] 8.23 34.06 73.04 158.19 335.02

Table 5.6: Comparison of Linear and Quadratic Equations.
Quadratic Equation Linear Equation

Proof generation time [ms] 20.0 4.8
Verification time [ms] 117.2 33.5
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Furthermore, we examine the effectiveness of converting the quadratic equation of GS
proof verification to a linear equation. In Table 5.6, we show the process times of quadratic
equation and linear equation for equation (5.3). The result shows that the conversion from
quadratic equation to linear equation reduces approximately 70% of the proof generation
and the verification process. This is because the GS proof for the linear equation generates 2
elements, while that for the quadratic equation generates 8 elements. Then, these elements
are verified where the verification of linear equation includes only 4 pairing computations,
while that of the quadratic equation includes 20 pairing computations. Throughout the
whole construction of the implemented scheme, we had swapped 6 quadratic equations to
linear equations, which means that the proof generation of this part is totally reduced to
about 30 ms from about 120 ms, and the verification is reduced to about 200 ms from
about 700 ms. Hence, it is clear that the swap of input elements to change the equation
from quadratic to linear is an effective way to reduce the time consumption.

5.4 Conclusion

In this chapter, we implemented the converted version of revocable group signature with
compact revocation list. In the conversion, we introduced two methods of swapping elements
of pairing inputs in asymmetric pairing. Both methods increase the performance of the
converted scheme by reducing the computation time more than 60%.
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Chapter 6

Conclusion

In this thesis, we have proposed two solutions to enhance user’s privacy, which are (i) an ef-
ficient anonymous credential scheme, and (ii) an efficient revocable group signature scheme.
Then, we also proposed a converted version of (ii) and implemented it to show the practi-
cality.

As the first solution, an efficient anonymous credential scheme with verifiable accumulator
for monotone formula on attributes is proposed. The monotone formula is more expressive
and compact than the CNF formulas, and thus the proposed system can reduce the proof
generation time, compared to the previous system for CNF formulas. The size of the user’s
certificates is O(2|U |) due to the restriction of the newly proposed accumulator for monotone
formulas. A simple modification idea enables the reduction of the size from O(2|U |) to

O(
√
2|U |).

As the second solution, we proposed a revocable group signature scheme with a compact
revocation list by O(1/T ) compared to the previous scheme [4], where the vector commit-
ments compress the data in the revocation list. We also maintain the O(1) membership
certificate size in [4], which is an advantage compared to [28] and [22], and the public key
size is O(T + logN), which is an improvement compared to [28].

Finally, we implemented the converted version of the proposed revocable group signature
with compact revocation list. In the conversion, we introduced two methods of swapping
elements of pairing inputs in asymmetric pairing. Both methods increase the performance
of the converted scheme by reducing the computation time more than 60%. From the
experiment result, the signing time depends on the number of compression T , but even for
T = 400, the time is under 0.5 second. Meanwhile, the verification time is exceeding 1 second
and constant for every case. Although the verification time has a relatively large constant
overhead, we consider that the implemented scheme is practical in a mobile environment
where a user has lower computation time and storage, but the verifier is a powerful server.

Concerning the results for both solutions, we can also expect to improve them in the
future. Our future work is including the applications on mobile devices in both schemes.
Particularly, we need to decrease the overhead in the verification process of the proposed
revocable group signature scheme. The idea of the second solution is quite clear and straight-
forward, which could be done in more organized structure by excluding the redundant equa-
tions and some rearrangement in the compression method. In the proposed anonymous
scheme, we could work on the non-monotonic logic that shows the negative literals in the
formula. This work could expand the expressiveness of the scheme and widen the practicality
in many applications.
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