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Abstract

Optimal finite impulse response (FIR) and infinite impulse response (IIR) noise shap-

ing filters for delta-sigma (ΔΣ) modulators are designed based on the system norms.

We incorporate the weighting function, connected to the output of the ΔΣ modulator,

into our design problem. Then, we minimize the weighted norms of the quantization

noise in the output of a ΔΣ modulator, which corresponds to the minimization of

the system norm. Three norms, the H2 system norm, the H∞ system norm, and the

l1 norm of the impulse response of the system, are adopted. The H2 system norm

can be used to calculate the mean squared error of quantization noise. On the other

hand, the H∞ system norm gives us the worst case gain, while the l1 norm of the

impulse response can minimize the maximum error. The optimization problems for

three types of FIR noise shaping filters are evaluated by using linear matrix inequal-

ities (LMIs) and then solved numerically via semi-definite programming. For IIR

noise shaping filters, the design problem becomes non-convex, which is hard to solve

numerically. To solve the non-convex optimization problem, we propose the extended

LMI technique, FIR approximation techniques, the hybrid technique and an iterative

LMI algorithm to obtain good IIR noise shaping filters. Design examples are provided

to demonstrate the effectiveness of our proposed methods over the existing methods.
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Chapter 1

Introduction

1.1 Research Background

Analog-to-digital (A/D) and digital-to-analog (D/A) data converters are some of the

most important parts of electronic systems which act as the interfaces between the

digital signal world and the real analog world. The performance of digital signal pro-

cessing and communication systems is generally limited by the precision of the digital

input signal which is achieved at the interface between analog and digital informa-

tion. In A/D converters, the continuous-valued signals are discretized and quantized

for transmission over wireline or wireless communication systems [1]. Quantization

maps a continuous-valued signal to a discrete-valued signal. This usually introduces

undesirable effects, which are resulted from quantization noise. The important aspect

of these converters is their ability to determine whether and how much the conversion

can correctly keep the important information of signals, while suppressing undesirable

noises.

The conventional methods for analog to digital conversion use sampling and quan-

tization to obtain a digital signal. The resolution of these converters depends upon

the number of quantization levels. As we increase the quantization levels, the quanti-

zation noise decreases but the number of bits per sample also increases, which is not
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suitable for applications with limited bandwidth. To solve this problem, we use the

technique of delta-sigma (ΔΣ) modulation.

Currently, the ΔΣ modulation is a popular technique for making high-resolution

A/D and D/A converters [2, 3]. Modern ΔΣ converters offer several benefits including

high resolution, low power consumption, and low cost, making them a reasonable

choice for the A/D converter for many signal processing applications such as audio

devices [4, 5]. These ΔΣ A/D converters are effective for converting analog signals

over a wide range of frequencies, from DC to several megahertz.

The ΔΣ modulator mainly consists of a static uniform quantizer and an error

feedback filter to shape quantization noise [6], which is called noise shaping filter.

The input to the modulator is an oversampled signal which is to be digitized. In

oversampling, the signal is sampled at a frequency much higher than the Nyquist

frequency (twice the input bandwidth) which reduces the effect of the quantization

noise in the frequency band carrying the information signal, while the total noise

remains the same.

The high rate digital output of the modulator has two components, one is the

signal which is located in the low frequency region and the other is the noise which

has to be reduced.

1.2 Aims and Objectives

In the design of a ΔΣ modulator, the objective is to minimize the in-band quantization

noise which as a result improves the signal to quantization noise ratio (SQNR) of the

ΔΣ modulator. It has been observed that the technique of oversampling alone may

not be enough to improve the SQNR in the band of interest, we need to exploit

the noise shaping properties of the ΔΣ modulator to further reduce the in-band
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quantization noise. This can be achieved by using a feedback filter which employs the

noise shaping to obtain a high SQNR while keeping the oversampling ratio (OSR)

not too high. Although, the overall quantization noise may not be changed by the

noise shaping but SQNR is increased in the information signal frequency band of the

frequency spectrum. Therefore, our objective is to design noise shaping filters in the

feedback of ΔΣ modulators so that we can minimize the noise in the frequency region

which constitutes our signal bandwidth.

Two types of digital filters are available to be designed and utilized as noise shap-

ing filters in the feedback of a ΔΣ modulator: finite impulse response (FIR) and

infinite impulse response (IIR) digital filters. As the terminology suggests, these

classifications refer to the filter’s impulse response. By varying the weights of the

coefficients and the number of filter taps, virtually any frequency response charac-

teristic can be realized with an FIR filter. FIR filters can achieve performance levels

which are not possible with analog filter techniques (such as perfect linear phase re-

sponse). However, high performance FIR filters generally require a large number of

multiply-accumulates and therefore require fast and efficient digital signal processors

(DSPs). On the other hand, IIR filters tend to mimic the performance of traditional

analog filters and make use of feedback. Therefore their impulse response extends

over an infinite period of time. Because of feedback, IIR filters can be implemented

with fewer coefficients than FIR filters.

For FIR digital filters, several designs for feedback filters have been proposed

which also use the noise spectrum shaping technique [7, 8]. The FIR error spectrum

shaping filters have been proposed for recursive digital filters composed of cascaded

second order section in [9]. The method in [10] is a min-max design of the FIR

filter which optimizes the noise transfer function (NTF) via generalized Kalman-

Yakubovich-Popov (GKYP) lemma. This approach minimizes the worst case gain of
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the NTF over the signal frequency band and is shown to be able to improve the overall

SQNR of ΔΣ modulators as well. In [11], the filter connected to the ΔΣ modulator is

incorporated into the design of the NTF. By using a truncated impulse response, the

H2 system norm is minimized to reduce the in-band quantization noise. The NTF

has been designed in [12] by using the weighted noise spectrum under the so called

white noise assumption.

Unlike FIR noise shaping filters, there are very few design examples of IIR noise

shaping filters in ΔΣ modulators. In the method proposed by [13], the noise shaping

filter is assumed to have an IIR which is converted to a minimization problem by

virtue of GKYP lemma and solved by using an iterative algorithm. The method in

[13] can only minimize the worst-case system gain for obtaining the IIR filter, and

also, it does not incorporate the behavior of the non-ideal filter at the output.

We design both FIR and IIR noise shaping filters in the feedback of ΔΣ modu-

lators. The FIR design problem can be formulated as convex optimization problems

with linear matrix inequalities (LMIs) [14], which can be solved efficiently. Howev-

er, the IIR design problems becomes non-convex which consists of bilinear matrix

inequalities (BMIs). To solve the non-convex IIR design problem with BMIs, we pro-

pose an extended LMI technique [15]. The extended LMI technique assumes that the

order of the IIR noise shaping filter is identical to the non-ideal output filter or the

weighting function. We also introduce two approximation techniques [16, 17] which

can be used to obtain an IIR noise shaping filter without directly solving the non-

convex IIR design problem. Also, a hybrid technique [18] is utilized to obtain a stable

IIR filter which utilizes the FIR numerator coefficients. Moreover, we also propose

an iterative LMI algorithm [19] to obtain IIR noise shaping filters which converts the

BMIs into LMIs using the iterative algorithm.

To keep ΔΣ modulators versatile, we utilize the weighting function to design
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ΔΣ modulators. We minimize the weighted quantization noise in the output of the

ΔΣ modulator. Three norms are adopted to measure the quantity of the weighted

quantization noise. One is the variance of the weighted quantization noise when the

quantization errors at different time are assumed to be independent of each other.

The others are the l2 and the l∞ norms of the weighted quantization noise. They

correspond to the minimization of the H2 system norm, the H∞ system norm, and

the l1 norm of the impulse response of a system, respectively. The stability condition

of ΔΣ modulators is also incorporated into our design of FIR and IIR noise shaping

filters.

By providing several design examples and performing software simulations, we

demonstrate the effectiveness of our proposed methods over the existing methods.

All the simulation results are obtained by using MATLAB, while semi-definite pro-

gramming (SDP) problems are solved by using CVX tool [20], which is an effective

solver for convex optimization problems. Throughout this thesis, we also compare

and analyze the performances of our proposed noise shaping filters with the existing

noise shaping filters.

1.3 Thesis Outline

The organization of this thesis is as follows:

Chapter 2 introduces the ΔΣ modulator and its approximated linearized model

with error feedback noise shaping filter. Then, we derive the expression of the weight-

ed quantization noise at the output of the ΔΣ modulator. Three types of different

norms are also introduced here. The stability of the ΔΣ modulator is also discussed.

In Chapter 3, we propose our optimal design of FIR noise shaping filters for a

ΔΣ modulator. Three types of FIR noise shaping filters are designed based on three
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kinds of system norms.

Chapter 4 discusses the non-convex nature of the design problem of IIR noise

shaping filter. We utilize extended LMI technique, FIR approximation techniques,

the hybrid technique and an iterative LMI algorithm to obtain IIR noise shaping

filters by solving the non-convex design problem.

Finally, Chapter 5 provides the conclusions to our thorough study of ΔΣ mod-

ulators.
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Chapter 2

ΔΣ Modulator and Weighted
Quantization Noise

In this Chapter, we introduce the generalized model of a ΔΣ modulator and derive

the expression of the weighted quantization noise present in its’ output. We formulate

our design problem for the minimization of the weighted quantization noise subject

to the stability constraint. We also define induced system norms and consider three

types of system norms.

2.1 ΔΣ Modulation

ΔΣ modulation was developed as an extension to the well established Delta mod-

ulation [21]. Let us review the delta modulation structure for the analog to digital

conversion process. Fig. 2.1 shows a block diagram of the Delta modulator. Delta

modulation is based on quantizing the change in the signal from sample to sample

rather than the absolute value of the signal at each sample. Since the output of the in-

tegrator in the feedback loop of Fig. 2.1 tries to predict the input x(t), the integrator

works as a predictor. The prediction error term, x(t)− x̄(t), in the current prediction

is quantized and used to make the next prediction. The quantized prediction error

(delta modulation output) is integrated in the receiver just as it is in the feedback

10
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Figure 2.1: Delta modulation.
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+

-
� Integrator � Quantizer �

�

Analog Signal Digital Signal

Figure 2.2: Block diagram of ΔΣ modulation.

loop.

The arrangement shown in Fig. 2.2 is called a ΔΣ modulator. The name ΔΣ

modulator comes from putting the integrator (sigma) in front of the Delta modu-

lator. Sometimes, the ΔΣ modulator is referred to as an interpolative coder. The

quantization noise characteristic (noise performance) of such a coder is frequency

dependent in contrast to delta modulation. Like delta modulators, the ΔΣ modula-

tors use a simple coarse quantizer (comparator). However, unlike delta modulators,

ΔΣ modulators encode the integral of the signal itself and thus their performance is

insensitive to the rate of change of the signal.
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Figure 2.3: A quantizer with error feedback filter and a system H[z].

2.2 Generalized Model of a ΔΣ Modulator

Let us consider a general linearized model of a ΔΣ modulator for analyzing the noise

shaping characteristics and designing of the optimal noise shaping filter. We only

consider the discretized single-input/single-output system with discrete-time signals.

Let us denote the z-transform of a sequence f = {fk}∞k=0 as F [z] =
∑∞

k=0 fkz
−k and

express the output (sequence) b of the linear time-invariant (LTI) system F [z] to the

input a = {ak}∞k=0 as b = F [z]a.

Fig. 2.3 shows the error feedback configuration of a ΔΣ modulator. The input

to the modulator is y, while the output is u. The filter P [z] acts as a pre-filter to

shape the frequency response of the input signal and Q(·) is our static quantizer. The
quantization error w is filtered by R[z] − 1 and is fed back to y. We assume that

limz→∞ R[z] = 1, i.e., the zeroth coefficient of the impulse response of R[z] is 1, which

implies R[z]− 1 is strictly causal. We also assume that

P [z], R[z] ∈ S, (2.1)

where S denotes the set of all stable, causal, and rational transfer functions with real

coefficients.

The static uniform quantizer can be described by two parameters, the quantization

interval d ∈ R+ and the maximum quantization level L ∈ Z+. Here, R and Z denote

12



set of real numbers and set of integers respectively. For the continuous-valued input

ξ, let the output of the static uniform quantizer be

Q(ξ) =

⎧⎨
⎩

id, ξ ∈ ((i− 1
2
)d, (i+ 1

2
)d) and |ξ| ≤ L

L, ξ > L
−L, ξ < −L

, (2.2)

where d is the quantization interval, and i is an integer. We assume that the maximum

quantization level is sufficiently large to avoid the saturation.

The difference between the input and the output of the static quantizer Q is known

as a quantization error, which is denoted at time k as

wk = uk − ξk. (2.3)

The quantization error is filtered by the noise shaping filter and added to the input

to the static quantizer. Then, the input to the static quantizer is expressed as

ξ[z] = P [z]Y [z] + (R[z]− 1)W [z]. (2.4)

Then, we have

U [z] = W [z] + ξ[z] = P [z]Y [z] +R[z]W [z]. (2.5)

Here, ξ[z], Y [z], W [z], and U [z] are z-domain representations of the signals ξ,y,w

and u, respectively. The gain from the input y to the output of the modulator u is

known as as signal transfer function (STF), while the gain between the quantization

error w and the modulator output u is commonly known as NTF. In our setting, the

STF and NTF for the ΔΣ modulator are P [z] and R[z], respectively.

The feedback loop acts in such a way that the quantization noise is shifted away

from a certain frequency band. If the input to the modulator lies within this certain

frequency band, then most of the noise due to quantization lies outside the frequency

band of interest.

13



To design the noise shaping filter, we utilize a weighting function H[z]. More

specifically, we consider the weighted quantization noise ε defined as

E [z] = H[z]R[z]W [z], (2.6)

where H[z] ∈ S and E [z] is z-transform of the weighted quantization noise ε. Without

loss of generality, we normalize the maximum magnitude of H[z] to be unity. The

weighting function is selected to reduce the effect of the quantization noise in the

passband of the y. For example, when the passband of y is [−ωp, ωp], we will use the

weighting filter that meets H[ejω] ≈ 1 for ω ∈ [−ωp, ωp] and |H[ejω]| is small enough

outside the passband to let most of the noise be outside the passband.

The output of our ΔΣ modulator u is connected to a system H[z] whose output

is denoted by v. Then, we have

V [z] = H[z]U [z], (2.7)

where V [z] is a z-transform of the signal v. Substituting (2.5) into (2.7), we get

V [z] = H[z]P [z]Y [z] +H[z]R[z]W [z]. (2.8)

2.3 Design Problem Formulation

Our objective is to obtain the optimal filter R[z] in (2.8) for a given H[z] that min-

imizes E [z] = H[z]R[z]W [z] in a sense. Mathematically, we can formulate our design

problem as

min
R[z]∈S

||ε||p (2.9)

for a fixed pair (p, r) and a bounded input ||w||r = c(> 0) subject to R[∞] = 1. The

p norm can be defined as

14



||ε||p =
[ ∞∑
k=0

|εk|p
] 1

p

. (2.10)

Then, using induced norms, we have

||ε||p ≤ ||H[z]R[z]||(p,r)||w||r. (2.11)

Instead of directly minimizing ||ε||p, we minimize the upper bound of ||ε||p. For

||w||r = 1, we have ||ε||p ≤ ||H[z]R[z]||(p,r). All we have to do is to find R[z] that

minimizes the (p, r) induced norm ||H[z]R[z]||(p,r).
The signal w which is the difference between the input and the output of the static

uniform quantizer satisfies

|wk| ≤ d

2
. (2.12)

Since the transfer function from w to ε is linear, we can put d = 2 without loss of

generality so that |wk| ≤ 1 and hence |wk|2 ≤ 1.

For simplification, we assume ||w||r to have a value of unity in our calculations

and simulations.

2.3.1 Induced System Norms

We consider three types of induced norms, the H2 norm, H∞ norm and l1 norm of

the impulse response of the system. The H2 norm relates to the variance of the error,

while the H∞ norm corresponds to the worst-case error. The l1 norm of the impulse

response can minimize the maximum error.

H2 Norm

The quantization error w may be modeled as a uniform random variable with

zero mean and variance σ2
w. For analysis and synthesis, the errors at different time
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are often assumed to be independent of each other, which is called the white noise

assumption.

Under the white noise assumption, the mean squared error can be expressed as

σ2
ε = ||H[z]R[z]||22σ2

w, (2.13)

where σ2
ε denotes the variance of the weighted quantization noise ε, σ2

w is the variance

of w, and ||H[z]R[z]||2 is the H2 norm which can be defined as

||G[z]||2 =
[ ∞∑
k=0

|gk|2
] 1

2

. (2.14)

H∞ Norm

The (2, 2) induced norm of a system G[z] is known as the H∞ norm, which is

defined as

||ε||2 ≤ ||H[z]R[z]||∞||w||2 (2.15)

To minimize the worst-case gain, we minimize the upper bound of ||ε||2. The H∞

norm of the function G[z] can be defined as

||G[z]||∞ = max−π≤w≤π|G[ejw]|. (2.16)

l1 Norm

The l∞ norm of the error can be also a requirement for the system. The (∞,∞)

induced norm of a system G[z] =
∑∞

k=0 gkz
−k is given by

||G[z]||imp =
∞∑
k=0

|gk|, (2.17)

which is the l1 norm of the impulse response of the system. Then, the l∞ norm ||ε||∞
is bounded as

||ε||∞ = ||H[z]R[z]w||∞ ≤ ||H[z]R[z]||imp||w||∞ (2.18)
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= ||H[z]R[z]||imp. (2.19)

We can reduce ||ε||∞ by minimizing ||H[z]R[z]||imp.

2.3.2 Stability of ΔΣ Modulators

Another important factor which is considered in the design of the ΔΣ modulator is its

stability. The stability of the ΔΣ modulator can be ensured by limiting the amount of

the feedback signal η to the quantizer. The input to the quantizer should be limited

to a certain value which can avoid overloading the quantizer. The z- transform of the

feedback signal η can be defined as

η[z] = (R[z]− 1)W [z] (2.20)

By limiting the norm ||R[z] − 1||q in (2.20), where q ≥ 1 be a real number, to

some constant value γ, we can avoid overloading the quantizer which can make the

ΔΣ modulator unstable. The q norm of a system G[z] can be defined as

||G[z]||q =
[ ∞∑
k=0

|gk|q
] 1

q

. (2.21)

The Lee criterion [6, 22] is often utilized for the stability of the ΔΣ modulator.

It limits the maximum magnitude of the frequency response to avoid overloading of

the quantizer such that

‖R[z]− 1‖∞ < γ. (2.22)

The peak value of the magnitude response of R[z] must be bounded to some

constant value γ, where the value of γ depends on the number of quantization levels.

For the case of binary quantizers, the value of γ is usually set as 1.5. However,

higher order modulators are often more unstable causing the value of γ to be reduced

further below 1.5 to avoid the unstable behavior of the modulator. It is observed that
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reducing the value of γ also reduces the effectiveness of the noise shaping behavior of

the modulator.

2.4 Conclusions

We have obtained the mathematical expression for the weighted quantization noise at

the output of the ΔΣ modulator. The design problem is formulated for three types of

most commonly used system norms. The stability of the modulator is also considered

by limiting the magnitude of the input of the quantizer.
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Chapter 3

Design of FIR Noise Shaping
Filters for ΔΣ Modulators

An FIR filter of order N can be denoted as

R[z] =
N∑

n=0

rnz
−n, r0 = 1. (3.1)

Let us denote the matrices of a state-space realization of R[z] by (AR, BR, CR, 1),

where

AR =

⎡
⎢⎢⎢⎣
0 1 0
...

. . . . . .
...

. . . 1
0 · · · · · · 0

⎤
⎥⎥⎥⎦ , BR =

⎡
⎢⎢⎢⎣
0
...
0
1

⎤
⎥⎥⎥⎦ (3.2)

CR =
[
rN , rN−1, · · · r1

]
. (3.3)

It is noted that AR and BR are constants. Our design parameter is

r = [r1, . . . , rN ], (3.4)

which defines CR above.

The weighted quantization noise ε in (2.6) to be minimized is characterized by the

the composite system H[z]R[z], which has to be internally stable.

LetH[z] be a proper rational function, whose (A,B,C,D) matrices of a state-space

realization is (AH , BH , CH , DH). Then, one can express the state-space realization of
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H[z]R[z] as

xk+1 = Axk +Bwk (3.5)

εk = Cxk +Dwk (3.6)

where

A =

[
AR BRCH

0 AH

]
, B =

[
BRDH

BH

]
,

C =
[
CR CH

]
, D = DH . (3.7)

3.1 Design Based on H2 System Norm

First of all, let us consider the minimization of the variance σ2
ε of the weighted quan-

tization error under the white noise assumption. It is sufficient to minimize the H2

norm of H[z]R[z] to minimize σ2
ε given by (2.13).

For FIR R[z], ||H[z]R[z]||22 can be expressed as a quadratic function of r =

[r1, . . . , rN ] by using inverse Fourier transform of |H[ejω]|2 [8], which requires nu-

merical integrations. On the other hand, a truncated impulse response of H[z]R[z]

is utilized in [11], where the order of some parameters is scaled by the length of the

truncated impulse response. Here we adopt LMIs to evaluate the H2 norm.

We will design optimal FIR error feedback filters, using the techniques developed

for the optimal H2 controllers in control theory. The next lemma assures that the H2

norm can be evaluated by LMIs.

Lemma 1. ([23]) Let G[z] be a proper stable rational function, whose state-space

realization is (A,B,C,D). Then, A is Schur and

||G[z]||22 < μ2 (3.8)
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if and only if there exit positive definite matrices P and Z which satisfy

APAT − P +BBT ≺ 0 (3.9)

Z −DDT − CPCT 
 0 (3.10)

trace(Z) < μ2. (3.11)

Using the Schur complement, one can show that (3.9) holds true if and only if⎡
⎣ P PA PB

ATP P 0
BTP 0 1

⎤
⎦ 
 0. (3.12)

Similarly, since our system has a single input and a single output, Eq. (3.10) for

(A,B,C,D) can be expressed as⎡
⎣ μ2 C D

CT P 0
DT 0 1

⎤
⎦ 
 0. (3.13)

3.2 Design Based on H∞ System Norm

The (2, 2) induced norm of a system G[z] is known as the H∞ norm as defined in

(2.15).

To minimize the worst-case gain, we utilize the bounded real lemma that provides

us an LMI to evaluate the gain.

Lemma 2. ([24]) Let G[z] be a proper stable rational function, whose state-space

realization is (A,B,C,D). Then, A is Schur and

||G[z]||2∞ < μ∞ (3.14)

if and only if there exists a positive definite matrix P which satisfies

[
ATPA− P + CTC ATPB + CTD
BTPA+DTC BTPB +DTD − μ∞I

]
≺ 0. (3.15)
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By using the Schur complement, (3.15) can be converted into an LMI given by⎡
⎢⎢⎣

−P PA PB 0
ATP −P 0 CT

BTP 0 −μ∞ DT

0 C D −1

⎤
⎥⎥⎦ ≺ 0. (3.16)

3.3 Design Based on l∞ Norm of Error

Unlike the H2 norm and the H∞ norm, only upper bounds of the Himp norm are

available. In [25, 26], an upper bound based on the invariant set of a discrete-time

system has been utilized to design IIR error feedback filters for dynamic quantizers.

The invariant set of a discrete-time system is defined as follows [27]:

Definition 1. Let xk ∈ R
N be the state vector of the LTI system given by

xk+1 = Axk +Bwk (3.17)

where A ∈ R
N×N , B ∈ R

N×M and wk ∈ R
M . A set X that satisfies xk+1 ∈ X if

xk ∈ X and wT
k wk ≤ 1 is called an invariant set of the system given by (3.17).

The following lemma describes how to obtain an ellipsoid which is an invariant

set of the system (3.17).

Lemma 3. ([27]) Let E(P ) be the ellipsoid defined by an N × N real symmetric

matrix P 
 0 as E(P ) = {x ∈ R
N : xTPx ≤ 1}.

The ellipsoid E(P ) is an invariant set of the system (3.17) if and only if there

exists a scalar α ∈ [0, 1− ρ2(A)] which satisfies

[
ATPA− (1− α)P ATPB

BTPA BTPB − αI

]
� 0 (3.18)

where ρ(A) is the spectrum radius of A.
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If xk ∈ E(P ), then

sup
xk∈E(P )

|Cxk|2 = CP−1CT . (3.19)

It follows from |εk| = |Cxk +Dwk| ≤ |Cxk|+ |Dwk| that

||H[z]R[z]||imp ≤ |CP−1CT | 12 + |D|. (3.20)

Thus, we can conclude that |CP−1CT | 12 + |D| is an upper bound of the norm.

Since D is constant, we minimize CP−1CT with respect to α and CR. It should

be also remarked that we can assume that α �= 0 since our B matrix is not zero.

Similarly, using the Schur complement we can express (3.18) with (A,B,C,D) as⎡
⎣ (1− α)P 0 ATP

0 α BTP
PA PB P

⎤
⎦  0. (3.21)

Moreover, we can express CP−1CT ≤ μ as an LMI given by

[
P CT

C μ

]
 0. (3.22)

For a fixed α, the minimization of μ is a semidefinite program, which can be

numerically solved by existing optimization packages, e.g., CVX [20]. Then, all we

have to do is to find α which gives the minimum. Since A is our design parameter, a

line search for α ∈ (0, 1) is required to obtain the minimum. The optimal (A,B,C,D)

is given by the arguments corresponding to the optimal α.

3.4 LMI for Stability Constraint

Not only the objective function but also the condition (2.22) on the stability can be

described by LMIs. For example, as shown in [10], it follows from Lemma 2 that the

Lee criterion

||R[z]− 1||∞ < γ (3.23)
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is satisfied if and only if there exists a positive definite matrix PR which meets⎡
⎢⎢⎣

−PR PRAR PRBR 0
AT

RPR −PR 0 CT
R

BT
RPR 0 −γ2 1
0 CR 1 −1

⎤
⎥⎥⎦ ≺ 0. (3.24)

Thus, if one would like to design the FIR noise shaping filter that minimizes σ2
ε under

the Lee criterion, it suffices to solve the following convex optimization problem

min
r1,...,rN

μ2 (3.25)

subject to (3.12), (3.13), and (3.24).

In summary, our unified approach enables the design of the FIR noise shaping filter

to minimize the H2, the H∞, or the l1 system norm under the H2, the H∞, or the

l1 norm constraint. Moreover, since norms are described by LMIs, different types of

problems can be solved numerically. For example, some signal processing applications

may require us to design an error feedback filter for a ΔΣ modulator by adding a

constraint that limits the magnitude of the weighted quantization noise to a certain

value. Then, our design objective is to design the noise shaping filter that attains the

optimal value of the stability threshold γ under the maximum weighted quantization

noise constraint. If we adopt the Lee criterion, we can obtain a stable error feedback

filter by minimizing (3.23) subject to ||ε||∞ ≤ c, where c is the maximum bound on

the weighted quantization noise ε, by using LMIs in (3.21), (3.22), and (3.24).

3.5 Design Examples

In this section, simulations for lowpass and bandpass ΔΣ modulators have been shown

by using the proposed design method based on H2, H∞, and l1 system norms. For

the design of a conventional ΔΣ modulator by NTF zero optimization method [6],

the DELSIG toolbox [28] is utilized to obtain the frequency response of an IIR noise
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Figure 3.1: The H2 norm of H[z]R[z] as a function of order of R[z] for the first order
lowpass weighting function, where R[z] is designed based on the H2 norm.

shaping filter with synthesizeNTF MATLAB function. The frequency response and

the noise shaping characteristics of the FIR feedback filter proposed in [10] are also

compared with our designed filters.

3.5.1 Lowpass ΔΣ Modulator with the 1st Order H[z]

Now, let us design a lowpass ΔΣ modulator by using a first order lowpass Butterworth

filter as our weighting function H[z]. The first order Butterworth filter provides us the

maximum flat response in the passband at the expense of a wide transition band as

the filter changes from the passband to stopband. The input signal y to the lowpass

ΔΣ modulator is assumed to be oversampled with the an OSR of 512. Then, the

cut-off frequency of the first order Butterworth filter is set at π/OSR ≈ 0.0061 in the

normalized angular frequency interval [0, π].

For the stability of the ΔΣ modulator, we assume the value of the Lee coefficient

γ to be 1.5 which is equivalent to 3.52 in decibels (dB), however, the value of γ can

be increased further as long as the ΔΣ modulator remains stable.
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Figure 3.2: Frequency responses of filters designed by the proposed method and the
referenced methods. The weighting function is of order unity.

The order of the FIR feedback filter R[z] is chosen based on the convergence

behavior of the objective function. Fig. 3.1 shows that the H2 norm of H[z]R[z]

reaches a value as we keep on increasing the order of FIR filter. Above the FIR order

8, the norm of the weighted quantization noise remains almost constant in terms of

the H2 norm. In this example, the FIR feedback filter R[z] for noise shaping is set to

be 8.

Fig. 3.2 depicts the frequency responses of H2, H∞, and l1 norm based filters

compared with the referenced methods in [6] and [10]. The order of FIR feedback

filter in [10] is also chosen to be 8, while the order of IIR feedback filter for conventional

design [6] is set to be 4. Our designed FIR filters have almost the same frequency

response. It can be observed that the frequency responses of our designed FIR filters

have uniform attenuation in the low frequency region of frequency spectrum, while

the conventional design shows a peak in the magnitude response near the cut-off

frequency.

To precisely see the difference between magnitude responses of our designed filters,
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Figure 3.3: Enlarged frequency response of our proposed filters in Fig. 3.2.

Table 3.1: ||H[z]R[z]||2, ||H[z]R[z]||∞, and l1 norm of the impulse response of H[z]R[z]
for the first order lowpass weighting function.

H2 norm H∞ norm l1 norm
H2 norm design 1.54× 10−2 2.19× 10−2 2.62× 10−2

H∞ norm design 1.54× 10−2 2.16× 10−2 2.59× 10−2

l1 norm design 1.63× 10−2 2.59× 10−2 2.59× 10−2

Nagahara design [10] 1.92× 10−2 3.82× 10−2 4.89× 10−2

Conventional design [6] 2.61× 10−2 6.92× 10−2 11× 10−2

the enlarged view of Fig. 3.2 is shown in Fig. 3.3. The FIR filters based on H2 and

H∞ norms exhibit almost equivalent attenuation and similar behavior, while l1 based

design exhibits slightly lower attenuation as compared to H2 and H∞ based designs.

The method in [10] designs the FIR noise shaping filter based on the weighted

H∞ norm of R[z]. Near the cut-off frequency, the magnitude response of the FIR

filter in [10] increases rapidly showing the high steepness in the transition band,

while all of our proposed filters exhibit good performance, matching the steepness of

the weighting function. Note that, the maximum magnitude value of all filters are

bounded to 3.52 dB approximately due to stability constraint which utilizes the Lee

coefficient γ = 1.5.
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Table 3.1 lists the H2 norm ||H[z]R[z]||2, the H∞ norm ||H[z]R[z]||∞, and the l1

norm of the impulse response of H[z]R[z] for our designed FIR filters compared with

the referenced designs in [6] and [10]. All three designed filters have less H2, H∞,

and l1 norms as compared with optimal feedback filters in [6] and [10]. Although

the referenced designs have lower gains in the passband as observed in Fig. 3.2, our

designed filters have better performance in the weighted norms. This is because the

referenced designs only take into account the passband, while our design does the

whole band. Indeed, if an ideal lowpass filter can be used as our weighting function,

our H∞ norm based filter is equivalent to the weighted H∞ norm based filter in [10].

Since any ideal lowpass filter is not available in practice, it is important to consider the

noise in the stopband. Our method can trade off the properties of the noise shaping

filter in the passband and the stopband using an appropriate weighting function.

TheH∞ and l1 norm designs exhibit an equivalent l1 norm, whileH2 andH∞ norm

designs have an equivalent H2 norm. This may be partially due to the implementation

and the numerical errors in our numerical optimization. It should be noted that

we minimize the upper bounds, which implies that we can not guarantee that the

quantizer designed based on a norm is optimal in the sense of the norm.

3.5.2 Lowpass ΔΣ Modulator with the 4th Order H[z]

Now let us introduce a higher order lowpass Butterworth filter of order 4 as our

weighting function, where OSR is 32. The maximum magnitude of NTF is limited

to 3.52 dB by using the Lee coefficient γ = 1.5. The fourth order Butterworth filter

with a cut-off frequency of π/OSR ≈ 0.0098 has better stopband attenuation than

the first order Butterworth filter by increasing the steepness of passband to stopband

transition at the cost of reduced passband flatness.

For this lowpass ΔΣ modulator, Fig. 3.4 shows the convergence behavior of the
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Figure 3.4: H2 norm of H[z]R[z] as a function of order of R[z] for the fourth order
lowpass weighting function, where R[z] is designed based on the H2 norm.
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Figure 3.5: Frequency responses of filters designed by the proposed method and the
referenced methods. The weighting function is of order 4.

H2 norm of H[z]R[z] for the H2 norm based design. From this, the FIR feedback

filter of order 20 is chosen for proposed designs and referenced design in [10], while

the IIR feedback filter for conventional design [6] is of order 4.

In Fig. 3.5, we give the frequency responses of proposed H2, H∞, and l1 norm
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Table 3.2: ||H[z]R[z]||2, ||H[z]R[z]||∞, and l1 norm of the impulse response of H[z]R[z]
for the fourth order lowpass weighting function.

H2 norm H∞ norm l1 norm
H2 norm design 3.95× 10−2 9.71× 10−2 1.40× 10−1

H∞ norm design 4.07× 10−2 9.09× 10−2 1.24× 10−1

l1 norm design 4.43× 10−2 1.22× 10−1 1.23× 10−1

Nagahara design [10] 9.18× 10−2 3.53× 10−1 4.74× 10−1

Conventional design [6] 1.49× 10−1 6.69× 10−1 9.01× 10−1
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Figure 3.6: Output and frequency spectrum plot of the lowpass ΔΣ modulator ob-
tained by the proposed H2 norm based design.

based filters compared with referenced methods. Our proposed designs show better

performance by providing uniform attenuation in the low frequency region, and ex-

hibiting better magnitude responses near the cut-off frequency as compared to the

referenced methods in [10] and [6].

Table 3.2 shows the H2 norm, the H∞ norm, and the l1 norm of the impulse

response of H[z]R[z] for our designed FIR filters compared with the referenced designs

in [6] and [10]. It can be observed that all three designed filters have less H2, H∞

and, l1 norms than the optimal feedback filters in [6] and [10]. The H2, H∞ and, l1

norm designs have the least H2, H∞ and l1 norms, respectively.
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To assess the performance of the lowpass ΔΣ modulator with an error feed-

back filter obtained by our proposed H2 norm based design, the MATLAB function

simulateDSM in DELSIG toolbox [28] is used to simulate the ΔΣ modulator for ob-

taining the digital output. The input to the ΔΣ modulator is a sinusoidal wave with

frequency 100 Hz and amplitude 0.5. We assume a uniform quantizer with maximum

quantization levels L = 2 and quantization interval d = 2.

The output of this uniform quantizer is a digital signal which is represented by

using +1 and −1 volts for binary 0 and 1 respectively, which is shown in the upper

part of Fig. 3.6. The lower part of Fig. 3.6 is the frequency spectrum of the digital

output, which gives the performance of our lowpass ΔΣ modulator. Our lowpass ΔΣ

modulator attenuates the quantization noise in the frequency region which contains

the information signal. The frequency notch for the input signal appears at 100 Hz,

which is the same with the sinusoidal wave, and the magnitude of quantization noise

is low in the passband. Our proposed H2 filter efficiently shifts the quantization noise

towards the high frequency region which does not carry much information. Similar

results can be found for H∞ and l1 norm based designs, which are omitted.

3.5.3 Bandpass ΔΣ Modulator with the 6th Order H[z]

Finally, we adopt a 6th order bandpass Butterworth filter as our weighting function,

whose frequency response is found in Fig. 3.7.

The input to the modulator is assumed to have the center frequency ω◦ = π/2 and

bandwidth parameter Ω = π/16. For the passband ω ∈ [π/2− π/16, π/2 + π/16], we

use the bandpass Butterworth filter that meets H[ejω] ≈ 1 for ω ∈ [ω◦ − Ω, ω◦ + Ω]

and |H[ejω]| is small enough outside the passband to let most of the noise be outside

the passband. For the conventional design [6], OSR is set to be 16.

As illustrated in Fig. 3.8 the H2 norm of H[z]R[z] for H2 norm based design
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Figure 3.7: Frequency responses of filters designed by the proposed method and the
conventional method. The weighting function is of order 6.
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Figure 3.8: H2 norm of H[z]R[z] as a function of order of R[z] for the sixth order
bandpass weighting function, where R[z] is designed based on the H2 norm.

converges slowly compared to the previous examples. A longer order is required to

adjust to the 6th order bandpass Butterworth filter. Thus, the order of proposed FIR

feedback filters R[z] is chosen to be 40. The order of FIR feedback filter in [10] is

also set to be 40. For the conventional bandpass ΔΣ modulator [6], the order of IIR
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Figure 3.9: Enlarged frequency response of our proposed filters in Fig. 3.7.

feedback filter is 4, whereas, the center frequency is f◦ = 1/4.

We compare the frequency responses of our proposed FIR feedback filters for the

bandpass ΔΣ modulator with the referenced designs in [6] and [10]. Fig. 3.7 shows

that the magnitude responses of proposed H2 and H∞ design FIR filters have higher

attenuation levels as compared to the method proposed in [10]. Again, the magnitude

responses of our proposed design filters are uniformly attenuated over the passband,

while the conventional design shows a peak near the edges of the band which can be

observed in Fig. 3.9.

Table 3.3 gives theH2 norm, theH∞ norm, and the l1 norm of the impulse response

of H[z]R[z] for our designed FIR filters compared with the referenced designs in [6]

and [10]. Again, our proposed H2, H∞ and, l1 norm designs have the least H2, H∞

and l1 norms, respectively.

3.5.4 Stability Under the l∞ Norm Constraint

Here, to obtain the most stable error feedback filter for a lowpass ΔΣ modulator,

we minimize (3.23) under the l∞ norm constraint on the weighted quantization noise
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Table 3.3: ||H[z]R[z]||2, ||H[z]R[z]||∞, and l1 norm of the impulse response of H[z]R[z]
for the sixth order bandpass weighting function.

H2 norm H∞ norm l1 norm
H2 norm design 5.08× 10−2 1.385× 10−1 2.094× 10−1

H∞ norm design 5.38× 10−2 1.277× 10−1 1.916× 10−1

l1 norm design 6.08× 10−2 1.833× 10−1 1.858× 10−1

Nagahara design [10] 5.45× 10−2 1.408× 10−1 2.222× 10−1

Conventional design [6] 10.19× 10−2 4.253× 10−1 5.461× 10−1
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Figure 3.10: Frequency response of the error feedback filter designed by minimizing
the upper bound of the Lee coefficient under the constraint on the l∞ norm of the
weighted quantization noise.

such that ||ε||∞ = 1.96 × 10−2. We use the same first order Butterworth filter in

Section 3.5.1.

The minimum magnitude value of the in-band quantization noise is -34.2 dB. The

obtained upper bound of the Lee criterion is γ = 1.92, which is equivalent to 5.7 dB.

It is larger than 1.5 used the l1 norm design in Table 3.1, since we impose a slight

tighter constraint on the ||ε||∞ = 1.96 × 10−2 than 2.59 × 10−2 in Table 3.1. The

frequency response of the designed feedback filter is illustrated in Fig. 3.10.
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3.6 Conclusions

We have proposed a unified design method of FIR noise shaping filters of ΔΣ modu-

lators based on H2, H∞, and l1 norms. The minimization of the norm of the weighted

quantization error is cast into a convex optimization problem by using LMIs, which

can be efficiently and numerically solved. To ensure the stability of a ΔΣ modulator,

we have also included LMI constraints which subsumes the Lee criterion. Our results

show that the frequency response of our filters exhibits good performance throughout

the low frequency region providing uniform attenuation and matching the weighting

function. Also, our proposed H2, H∞, and l1 norm designed error feedback filters are

shown to provide us with minimum H2, H∞, and l1 norms of weighted quantization

error, respectively, which shows the effectiveness of our proposed design methods.
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Chapter 4

Design of IIR Noise Shaping
Filters for ΔΣ Modulators

The design problem for an IIR filter becomes non-convex, and the solution for this

non-convex problem is not guaranteed to be optimal unlike FIR design problem in

the previous chapter. In the method proposed in [13], the filter is assumed to have

an IIR which is converted to a minimization problem by virtue of generalized GKYP

lemma and solved by using an iterative algorithm. The limitation to this method is

that it only addresses the H∞ norm based merit factor and does not take into account

the non-ideal behavior of the filter at the output of a ΔΣ modulator.

In this chapter, we propose several design methods which can solve the non-convex

design problem for obtaining the IIR noise shaping filter. In Section 4.1, we utilize

the extended LMI technique to obtain IIR noise shaping filters. The order of the

obtained IIR noise shaping filters is constrained to be identical to the order of the

weighting function.

Section 4.2 introduces the two commonly used approximation techniques to obtain

sub-optimal IIR noise shaping filters in the feedback of the ΔΣ modulator. The Yule-

Walker method and the least-squares (LS) approximation are utilized to approximate

the high order FIR filters with the lower order IIR filters.
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In Section 4.3, the hybrid technique is adopted which utilizes the FIR coefficients

in the numerator and the synthesizeNTF denominator coefficients in its denominator

to obtain IIR noise shaping filters.

Finally in Section 4.4, we propose an iterative LMI technique which can outper-

form the existing method to obtain a near optimal IIR noise shaping filter in the

feedback of a ΔΣ modulator.

We will perform simulations and compare the proposed methods with the existing

methods to show the effectiveness of each proposed method.

4.1 Design Based on the Extended LMI Technique

Again, let us consider the the linearized error feedback model of a ΔΣ modulator

as shown in Fig. 2.3. Now, our objective is to design a stable noise shaping IIR

filter that minimizes the effect of quantization, which is expressed by (2.6). To avoid

overloading the quantizer and/or maintain the stability of the quantizer, we also

impose a constraint on the error feedback signal η in (2.20).

The transfer function of an IIR filter R[z] can be written as

R[z] =
B[z]

A[z]
, (4.1)

where the numerator B[z] is given by

B[z] =

NB∑
n=0

bnz
−n, (4.2)

and the denominator A[z] is

A[z] =

NA∑
n=0

anz
−n. (4.3)

The order of the IIR filter is the highest power of either the denominator or the

numerator polynomial, N = max(NB, NA). To ensure at-least one sample delay in
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the feedback filter R[z] − 1 of the ΔΣ modulator for practical realization, we have

to choose the value of the first coefficient of both the numerator and denominator as

b0 = a0 = 1.

Let us denote the state-space matrices of IIR filter R[z] by (AR, BR, CR, 1), where

AR =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−aN −aN−1 −aN−2 . . . −a1

⎤
⎥⎥⎥⎥⎥⎦ , BR =

⎡
⎢⎢⎢⎣
0
...
0
1

⎤
⎥⎥⎥⎦ (4.4)

CR =
[
dN , dN−1, · · · d1

]
, (4.5)

with di = bi − ai.

Since the quantization noise consists of a composite system H[z]R[z], the state-

space matrices (A,B,C,D) of this composite system can be expressed using (3.7).

4.1.1 Numerical Design of IIR Noise Shaping Filters

We consider the minimization of the weighted quantization noise in (2.6) under the

stability constraint (2.22). More specifically, our minimization problem can be defined

as follows:

min
R[z]∈S

γε (4.6)

subject to R[∞] = 1 and

||H[z]R[z]||(p,r) < γε (4.7)

||R[z]− 1||∞ < γη. (4.8)

We consider two important induced norms to design IIR filters, the H2 norm and

H∞ norm, which can be evaluated by using state-space expressions and LMIs. As

defined in Chapter 2, the H2 norm relates to the variance of the error, while the H∞

norm corresponds to the worst-case error.
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H2 Norm

Under this white noise assumption [2], the variance of the error ε (2.13) can be

evaluated by using

||H[z]R[z]||22 =
∞∑
k=0

||CAkB||22 +DDT . (4.9)

If A is Schur [29], i.e., all the eigenvalues of A lie in the unit circle, then there exits

a positive semi-definite solution P of the discrete Lyapunov equation defined as

P = ATPA+BBT (4.10)

and the squared H2 norm is given by

||H[z]R[z]||22 = CPCT +DDT . (4.11)

The squared H2 norm (4.11) is expressed in matrix inequalities (3.12),(3.13) using

Lemma 1 in Chapter 3.

For IIR filters, the constraint (3.12) is a BMI, since it contains the products of the

variables and Lyapunov matrix. On the other hand, the constraint (3.13) is an LMI,

which is convex. In general, BMIs are not convex and NP-hard to solve numerically.

However, by using the change of variables proposed independently in [30] and [31],

we can convert a BMI to a convex LMI that can be evaluated numerically.

The variance of the feedback signal η is given under the white noise assumption

by

E{|η|2} = ||R[z]− 1||22, (4.12)

which can be expressed as
∞∑
k=1

||C̃AkB||22 (4.13)

where

C̃ = [ 0 CR ]. (4.14)
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Then, ||R[z] − 1||2 < γη if and only if there exists a positive definite matrix P that

satisfies (3.9) and [
μη C̃

C̃T P

]

 0 (4.15)

where

μη = γ2
η . (4.16)

Since the objective function and constraint can be evaluated by LMIs, we can state

the following lemma:

Lemma 4. Consider a quantizer with a noise shaping filter as shown in Fig 2.3.

The quantization error w of the static quantizer Q(·) is assumed to be white and

independent of the input y. Then, the optimal filter R[z] that minimizes the variance

of ε given in (2.13) under a constraint on the variance of the error feedback signal

can be found by solving a convex optimization problem.

The proof of this lemma is as follows:

Let us see the change of variables, following the notations in [30].

Let the order of H[z] be N . The set of N × N positive definite matrices is

denoted as PD(N). We define the following matrices {Pf , Pg,Wf ,Wg,Wh, L}, where
Pf ∈ PD(N), Pg ∈ PD(N), Wf ∈ R

1×N , Wg ∈ R
N×1, Wh ∈ R, L ∈ R

N×N , with Pf

and Pg. Let us also define matrices from {Pf , Pg,Wf ,Wg,Wh, L} as

P−1 =

[
Pf Sf

Sf Sf

]
(4.17)

U =

[
Pf IN
Sf 0

]
(4.18)

Pg = (Pf − Sf )
−1 (4.19)
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and the matrices {MA,MB,MC ,MP} as

MA =

[
ApPf +BpWf Ap

L PgAp

]
(4.20)

MB =

[
Bp

Wg

]
(4.21)

MC =
[
CpPf +DpWf Cp

]
(4.22)

MP =

[
Pf In
In Pg

]
(4.23)

We can observe that if the matrices {AR, BR, CR} are given by

AR = [BpPf − P−1
g (L− PgAHPf )]P

−1
f (4.24)

BR = Bp − P−1
g Wg (4.25)

CR = WfP
−1
f (4.26)

then {A,B,C} satisfy

MA = UTPAU (4.27)

MB = UTPB (4.28)

MC = CU (4.29)

MP = UTPU. (4.30)

Multiplying both sides of (4.12) with the transformation matrix Φ = diag(U,U, 1)

from the right hand side and ΦT from the left hand side leads to⎡
⎣ MP MA MB

MT
A MP 0

MT
B 0 1

⎤
⎦ 
 0. (4.31)

Similarly, with diag(1, U, 1), (3.13) can be transformed into⎡
⎣ με MC DT

MT
C MP 0

D 0 1

⎤
⎦ 
 0, (4.32)
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where με = γ2
ε . Moreover, since

C̃U =
[
CRSf 0

]
=

[
Wf 0

]
:= MC̃ , (4.33)

the constraint (4.15) is converted by the transformation matrix diag(1, U) into

[
γ2
η MC̃

MT
C̃

MP

]

 0 (4.34)

Since (4.31), (4.32), and (4.34) are convex LMIs, the minimization of γ2
ε subject

to (4.31), (4.32), and (4.34) is a convex optimization. Thus, there exists one global

minimum. From the optimal solution, we can reconstruct (AR, BR, CR) with (4.24),

(4.25), and (4.26), which concludes the proof.

H∞ Norm

The worst-case norm is often utilized to capture the effect of a deterministic error.

The maximum (worst-case) gain is the H∞ norm of the system when a finite-energy

signal is applied to it. The H∞ norm of the system is characterized into a BMI (3.16)

using the Lemma 2 in Chapter 3.

Now let us consider the H2 and the H∞ norm for (4.7) and (4.8). Each of them

can be characterized by a BMI of the variables and a Lyapunov matrix. In this case,

we cannot apply an identical change of variables to different BMIs since the change

of variables depends on the Lyapunov matrix and the BMIs do not share an identical

Lyapunov matrix in general. If we force all the Lyapunov matrices to be identical,

then BMIs can be converted into LMIs but the global solution cannot be obtained

because of the additional constraint on the Lyapunov matrices. This is known as the

Lyapunov sharing paradigm [31].

To obtain better designs, we utilize the extended H2 and H∞ norm characteriza-

tions with an extra matrix G, which is described as an extended LMI technique in

[32].
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Lemma 5 (Extended H2 characterization[32]). Let F [z] be a proper stable rational

function whose state space expression is (A,B,C,D). Then, the inequality ||F [z]||22 <
μ2 holds if and only if there exists a matrix G and a symmetric matrix P such that⎡

⎣ G+GT − P GA GB
ATG P 0
BTG 0 1

⎤
⎦ 
 0 (4.35)

and ⎡
⎣ μ2 C D

CT P 0
DT 0 1

⎤
⎦ 
 0. (4.36)

Lemma 6 (Extended H∞ characterization([32])). Let F [z] be a proper stable rational

function whose state space expression is (A,B,C,D). Then, the inequality ||F [z]||2∞ <

μ∞ holds if and only if there exists a matrix G and a symmetric matrix P such that⎡
⎢⎢⎣

G+GT − P GA GB 0
ATG P 0 CT

BTG 0 1 DT

0 C D μ∞

⎤
⎥⎥⎦ 
 0. (4.37)

The substitution of the state-space expression in (4.35) and (4.37) will give us

BMIs as the products of system matrices and instrumental variables P and G. Similar

to the BMIs in (3.12) and (3.16), the BMIs in (4.35) and (4.37) can be converted into

LMIs by using a change of variables as developed in [32].

After the change of variables, if we allow the Lyapunov matrices of the two LMIs

to be identical, then the problem becomes convex and can be solved numerically. The

performance of the filter with the augmented variable G is expected to be better than

the filter designed with the original LMIs without G. It should be noted that if one

puts G = P in (4.35) and (4.37), then (4.35) and (4.37) are reduced to (3.12) and

(3.16). This implies that at least in theory, the design based on the extended LMIs

never produces results worse than the design based on the original LMIs. However,

even with the extended LMIs, global optimality cannot be guaranteed. It should
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Figure 4.1: Frequency responses of H2 norm based noise shaping filters subjected to
the variance of the feedback signal (Example 1).

also be noted that the numerical solution to the optimization problem using the

extended LMIs is not necessarily better than or equal to the numerical solution to

the optimization problem using the conventional LMIs due to numerical errors.

4.1.2 Design Examples

In this section, we provide design examples to demonstrate the effectiveness of our

proposed H2 and H∞ norm based IIR noise shaping filters. The order of the IIR noise

shaping filter R[z] is set to be equal to the order of the system H[z].

Example 1: H2 norm based noise shaping filter constrained by the feedback
error variance

To begin with, let us consider the H2 norm based design constrained by the variance

of the feedback signal, which can be cast into a convex optimization problem as stated

in Lemma 4.

The system H[z] is a low pass Butterworth filter of order 4 with a cutoff frequency

of π/32. Since the lowpass Butterworth filter has zeros at−1, we cannot use its inverse

for the noise shaping filter.
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Figure 4.2: MSE of optimal FIR noise shaping filters as a function of their order.

We minimize the variance of the error ε under a constraint on the variance of the

feedback signal given by (4.12). Since the variance σ2
w of the quantization error w

of the static uniform quantizer is just a scalar in our optimization, we put σ2
w = 1.

Then, the constraint on the variance of the feedback signal is ||R[z]− 1||2 < 1.5.

Our aim is to obtain an IIR filter that minimizes με under (3.12), (3.13), and

(4.15) with μη = (1.5)2. As shown in the proof of Lemma 5, the design problem

is equivalent to the minimization of με under the LMIs (4.31), (4.32), and (4.34).

We numerically solve the problem by CVX to find the optimal (Pf , Pg,Wf ,Wg, L) in

(MA,MB,MC ,MP ) given by (4.20), (4.21), (4.22), and (4.23). Then, we reconstruct

the matrices (AR, BR, CR) of the IIR filter from the optimal (Pf , Pg,Wf ,Wg, L) by

using (4.24), (4.25), and (4.26).

On the other hand, the optimal FIR noise shaping filter can be designed directly

from (3.12), (3.13) and (4.15) [14] since A and B are constants, hence the inequality

(3.12) becomes an LMI.

Fig. 4.1 depicts the frequency responses of the designed IIR and FIR filters under

the same constraint, where the order of the FIR filter is chosen to be 4 so that it is
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identical to the order of the IIR filter. The designed IIR filter has a lower response

than the designed FIR filter at the passband of the system. Then, the MSE of our

designed IIR filter is calculated to be −66.12 dB, while the designed FIR filter gives

us −49.29 dB. The designed IIR filter performs better than the designed FIR filter

having the same order. This highlights the importance of the design of the IIR filter.

If the optimal filter is an IIR filter, then it is expected that the MSE of the optimal

FIR noise shaping filter decreases as its order increases and then converges to the MSE

of the optimal IIR filter.

Fig. 4.2 shows the MSE of the designed FIR filters with different orders. The

MSE of the designed FIR filter monotonically decreases as a function of its order and

converges. The MSE of the designed FIR filter of order 15 is at most −58 dB, which

is larger than the MSE of the designed IIR filter.

Example 2 : Extended vs. Non-extended

Next, we compare the extended LMI-based design with the conventional non-extended

LMI-based design that imposes an additional constraint by forcing the different Lya-

punov matrices in the BMIs to be identical. Let us consider two types of error feed-

back filters to minimize the H2 or the H∞ norm of the error of the signal-of-interest

subjected to the Lee criterion for ensuring the stability of the quantizer.

The Lee criterion is the H∞ norm of the noise shaping filter as described in (3.23).

We can evaluate this with (3.24) for the non-extended LMI-based design and (4.37)

for the extended LMI-based design. Using the change of variables, the BMI (3.24) is

converted into an LMI as

⎡
⎢⎢⎣

MP MA MB 0
MT

A MP 0 MC̃

MT
B 0 1 1
0 MT

C̃
1 γ2

η

⎤
⎥⎥⎦ 
 0. (4.38)
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Figure 4.3: Frequency responses of H2 norm based noise shaping filters designed by
the extended and non-extended LMI techniques (Example 2).

Then, we numerically minimize γε with respect to (Pf , Pg,Wf ,Wg, L) subject to

(4.31), (4.32), and (4.38). Finally, we obtain the matrices (AR, BR, CR) from (4.24),

(4.25), and (4.26) with the computed (Pf , Pg,Wf ,Wg, L).

Similarly, we can design the noise shaping filter by using the extended LMIs with

change of variables as described in [32].

The system H[z] is a low pass Butterworth filter of order 2 whose cutoff frequency

is π/64 and the order of the noise shaping filter is 2.

H2 norm based filter subjected to the Lee criterion

Fig. 4.3 presents the frequency responses of theH2 norm based IIR filters obtained

by using the extended and non-extended LMI techniques. The value of the Lee

coefficient is set to be γη = 1.5.

Contrary to the IIR filter based on the non-extended LMI technique, the extended

LMI-based filter matches the steepness of the output low pass filter and gives us

uniform attenuation in the low frequency region. The MSE for the extended LMI

design is −47.16 dB, while the MSE for the non-extended LMI-based design is −41.73

dB.
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Figure 4.4: MSE as a function of the Lee coefficient for the extended LMI design.

Figure 4.5: Empirical SNRs of H2 norm based noise shaping filters designed by the
extended and non-extended LMI techniques as functions of input frequency ω for
yk = sin(ωk) (Example 2).

Fig. 4.4 illustrates the MSE of extended LMI-based filters for different values of

the Lee coefficient. We can observe that the MSE monotonically converges to a set

value as the value of the Lee coefficient increases to much higher values. On the

other hand, this monotonic convergence behavior is not observed for non-extended

LMI-based IIR filter in this example, which may be the result of the instability of
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Figure 4.6: Empirical SNRs of H2 norm based noise shaping filters designed by the
extended and non-extended LMI techniques as functions of input amplitude a(> 0)
for yk = a sin(k/100) (Example 2).

numerical optimization.

We also minimize the MSE without the Lee coefficient, which can be formulated

as a convex optimization since the minimization can be described only by one BMI

given by (3.12) and the LMI (3.13). The resultant MSE is −64.69 dB, which is close

to the theoretical limit 20 log10 |h0| ≈ −64.7 dB.

To assess the performance of the designed quantizers, we evaluate empirical S-

NRs for sinusoidal signals with different frequencies and amplitudes. The input to a

quantizer is converted into a binary signal whose values are either Lo(> 0) or −Lo ,

where the value of Lo is determined by the noise shaping filter. It is noted that the

maximum magnitude that can be quantized without an excessive overloading error is

2Lo.

If the quantization error w of a two-level static uniform quantizer is a uniform

random variable independent of the wide-sense stationary input y, then the variance
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of the input to the static uniform quantizer is given by

σ2
u = σ2

y + ||R[z]− 1||22
L2
o

3
. (4.39)

Let the loading factor [33], which is the ratio between 2Lo and the standard

deviation σu of the input to the static uniform quantizer, be Lf . Then, we have from

Lf = 2Lo/σu and (4.39)

Lo =
Lfσy

2

√
1− L2

f ||R[z]−1||22
12

. (4.40)

For Lf = 2, the output levels Lo of the static uniform quantizer are given by

1.5260 and 1.4504 for the quantizers designed by the extended and non-extended

LMI techniques, respectively.

We generate N = 2 ·103 samples of yk = a sin(ωk) for k = 0, 1, . . . , N−1 as inputs

to the designed quantizers connected to the system H[z]. Without quantization, the

output of the system is zk =
∑

l hlyk−l, where {hl} is the impulse response of H[z].

If we connect the quantizer output v to the system H[z], the output of the system is

ẑk =
∑

l hlvk−l and the quantization error at the output is εk = ẑk − zk. From these

signals, we compute the empirical SNR at the output of the system as

∑N−1
k=0 |zk|2∑N−1
k=0 |εk|2

. (4.41)

Fig. 4.5 depicts the empirical SNRs for the input yk = sin(ωk) with angular

frequencies from 10−3 to 10−1. For every frequency, the extended LMI-based design

has a greater empirical SNR than the non-extended LMI-based design.

For w = 10−2, Fig. 4.6 shows the empirical SNRs for yk = a sin(ωk) having

different amplitudes. The extended LMI-based design outperforms the non-extended

LMI-based design. Although the extended LMI-based design is slightly more robust

to quantizer overloading at higher input values than the non-extended design, both
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Figure 4.7: Output signals of quantizers designed by the extended and non-extended
LMI techniques for yk = sin(k/100) (Example 2).

Figure 4.8: Frequency responses of H∞ norm based noise shaping filters designed by
the extended and non-extended LMI techniques (Example 2).

the designs suffer from excessive overloading errors for inputs whose levels are higher

than 3 dB.

Fig. 4.7 shows the first 100 samples of the outputs of the two quantizers for the

input yk = sin(k/100). It can be seen that there are no significant differences between

them.

H∞ norm based filter subjected to the Lee criterion
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Figure 4.9: Empirical SNRs of H∞ norm based filters designed by the extended and
non-extended LMI techniques as functions of the input frequency ω for yk = sin(ωk)
(Example 2).

Figure 4.10: Empirical SNRs of H∞ norm based filters designed by the extended
and non-extended LMI techniques as functions of the input amplitude a(> 0) for
yk = a sin(k/100) (Example 2).

We design noise shaping filters based on the H∞ norm by using the extended and

non-extended LMI techniques, where the value of the Lee coefficient is γη = 1.5.

Fig. 4.8 compares the frequency responses of the designed IIR filters. It is observed

that our proposed extended LMI-based filter provides better results for the H∞ norm

of H[z]R[z] with the value of −41.50 dB, whereas the H∞ norm for the non-extended
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Figure 4.11: Rotary inverted pendulum.

Figure 4.12: Frequency responses of noise shaping filters designed by the extended
LMI technique with H2 norm and the synthesizeNTF function (Example 3).

LMI design provides −33.50 dB.

For the loading factor Lf = 2, the output level Lo of the quantizer designed by the

extended LMI technique is 1.5260, whereas the output level of the quantizer designed

by the non-extended LMI technique is 1.4092.

As shown in Fig. 4.9, the non-extended LMI-based design has larger SNRs than

the extended LMI-based design at low frequencies. This may be due to the fact that

the noise shaping filter of the non-extended LMI-based design has smaller responses

at low frequencies.

In Fig. 4.10, the empirical SNRs for the input yk = a sin(ωk) with different
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amplitudes are presented. Although the extended LMI design is slightly more robust

to the quantizer overloading, the two designs have almost the same performance on

the input level.

Example 3 : Extended vs. synthesizeNTF

In the last example, we compare our designed H2 norm based IIR filter with the

conventional IIR filter for the ΔΣ modulator. The conventional IIR filter is obtained

by using the synthesizeNTF function in the DELSIG toolbox [28], which does not

utilize the knowledge about the connected system H[z] to minimize the quantization

error unlike our proposed design.

The system is a rotary inverted pendulum, which is controlled based on the ob-

servation signals.

Fig. 4.11 is the rotary inverted pendulum for our design Example 3.

The pendulum connected at the end of the rotary arm is controlled by rotating the

main body in the horizontal plane. The yaw angle of the arm is θ(t). The pendulum

freely swings about a pitch angle φ(t) in the vertical plane to the arm. The torque

u(t) is applied to actuate the pendulum. If φ(t) = 0, then the pendulum is balanced

in the inverted position.

We define the state of the rotary inverted pendulum as

xT (t) = [φ(t), θ(t), φ̇(t), θ̇(t)].

With the sampling period Ts = 0.05, the linearized continuous system is dis-

cretized. The (AH , BH , CH) matrices of the discrete-time linearized system are given
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by

AH =

⎡
⎢⎢⎣

1.1420 0 0.0523 0.0019
−0.0083 1 −0.0001 0.0491
5.8075 0 1.1420 0.0768
−0.3362 0 −0.0083 0.9631

⎤
⎥⎥⎦

BH =

⎡
⎢⎢⎣

−0.0109
0.0054
−0.4451
0.2137

⎤
⎥⎥⎦

CH =
[
0 1 0 0

]
.

Assuming that all of the state variables are available at the controller, we adopt

the state feedback control with gain K = [K1, K2, K3, K4] = [34.1, 2.59, 3.52, 1.67] to

stabilize this system.

We assume that the yaw angle θ(t) is quantized by our designed quantizer. Then

the discrete transfer function from the quantization error to the output of the system

is given by C(zI − A− BK)−1BK2, which leads to (4.42).

The output of the quantizer passes through the fourth order system H[z] given by

H[z] =
−0.01387z3 + 0.01751z2 + 0.01696z− 0.0137

z4 − 2.678z3 + 2.548z2 − 0.9734z + 0.1097
. (4.42)

The Lee coefficient is set at γη = 1.4.

Fig. 4.12 shows the frequency responses of our H2 norm based IIR filter designed

using the extended LMI technique and the conventional IIR filter designed using the

synthesizeNTF function.

The MSE of our extended LMI technique is −23.55 dB, whereas the MSE of the

conventional IIR filter is −20.72 dB. Our filter has a smaller MSE compared with the

conventional IIR filter, which justifies the design with the knowledge of the system

H[z] for minimizing the error. However, the smaller MSE does not guarantee a better

performance at every frequency.
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Figure 4.13: Empirical SNRs of noise shaping filters designed by the H2 norm based
extended LMI technique and the synthesizeNTF function as functions of input fre-
quency ω for yk = sin(ωk) (Example 3).

Figure 4.14: Empirical SNRs of noise shaping filters designed by the H2 norm based
extended LMI technique and the synthesizeNTF function as functions of input am-
plitude a(> 0) for yk = a sin(k/20) (Example 3).

The output levels Lo for the quantizers designed by the extended LMI technique

and the synthesizeNTF function are respectively 1.3720 and 1.4050 for Lf = 2.

Fig. 4.13 compares the empirical SNRs for our designed and conventional quan-

tizers. Up to 10−1, our designed quantizer exhibits better SNR performance than the

conventional quantizer. The SNRs of our designed quantizer are almost the same up

56



Figure 4.15: Empirical SNRs of noise shaping filters designed by the H2 norm based
extended LMI technique and the synthesizeNTF function as functions of input am-
plitude a(> 0) for yk = a sin(0.12k) (Example 3).

to 10−1, whereas the SNRs of the conventional quantizer are different.

For the unit sinusoidal signal at frequency 1/20, our designed quantizer outper-

forms the conventional quantizer for practical values of the input level as illustrated

in Fig. 4.14. For the unit sinusoidal signal at frequency 0.12, as depicted in Fig.

4.15, our designed quantizer is slightly inferior to the conventional quantizer at some

input levels around 0 dB. However, our design is superior to the conventional design

for most of the input values.

Fig. 4.16 and Fig. 4.17 demonstrate the outputs of the system H[z] for the inputs

yk = sin(k/20) and yk = sin(0.12k). For yk = sin(k/20), our designed quantizer has

smaller errors compared with the conventional quantizer, while for yk = sin(0.12k),

there is no significant difference between the designed quantizer and the conventional

quantizers.

Fixed-point hardwares are often utilized in practice. To assess performances of

ΔΣ modulators in the fixed-point arithmetic, we conduct simulations with fixed-point

arithmetic by MATLAB Fixed-Point Designer [34].
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Figure 4.16: Output signals of the system with quantizers designed by the H2 norm
based extended LMI technique and the synthesizeNTF function for yk = sin(k/20)
(Example 3).

Figure 4.17: Output signals of the system with quantizers designed by the H2 norm
based extended LMI technique and the synthesizeNTF function for yk = sin(0.12k)
(Example 3).

In a simulation, all the values in a ΔΣ modulator are represented in a signed fixed-

point binary number format having a specified word length and fraction length. A

numerical value is rounded to the nearest fixed-point binary number and is wrapped

around if an overflow occurs. Addition and multiplication of two numbers are stored

in the fixed-point binary number with the word length and fraction length of the
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Figure 4.18: MSEs of fixed-point ΔΣ modulators designed by the extended LMI
technique with H2 norm and the synthesizeNTF function as functions of the floating
length (Example 3).

Figure 4.19: Frequency responses of fixed-point and floating-point noise shaping filters
designed by the extended LMI technique with H2 norm and the synthesizeNTF

function (Example 3).

operands.

There are a large number of realizations of a digital filter. The performance of

a fixed-point implementation heavily depends on its realization. Here we adopt two

realizations: One is based on the space-state realization which is given directly by

CVX for the extended LMI design or by synthesizeNTF for the conventional IIR
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Figure 4.20: Empirical SNRs of fixed-point and floating point noise shaping filters
designed by the H2 norm based extended LMI technique and the synthesizeNTF

function as functions of frequency ω of quantized sinusoidal input signals with unit
amplitudes (Example 3).

design. The other is the space-state realization in the controllable canonical form.

From the (A,B) matrices of a state-space realization of R[z], we solve the Lya-

punov equation K = ARKAT
R + BRB

T
R and construct a transformation matrix T =

diag(K11, K22, . . . , Knn), where n is the order of R[z] and Kii is the ith diagonal

entry of K. Then, we apply the so-called l2 scaling to obtain the new scaled state-

space realization (T−1ART, T
−1BR, CRT ). The l2 scaling reduces the possibility of

the overflows.

To see which realization is better and how many bits should be assigned to the

integer part and the fractional part, we fix the word length to be 16 and change the

fraction length from 1 to 15. For the two type of realizations, we have found that the

l2 scaled realizations give smaller MSEs. We have also observed that the controllable

canonical form is better for the extended LMI design, whereas the realization given

by synthesizeNTF is for the conventional IIR design. Thus, in the followings, we

will only show the results using the controllable canonical form for the extended LMI
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design and the realization given by synthesizeNTF for the conventional IIR design.

Fig. 4.18 compares MSEs of ΔΣ modulators implemented using fixed-point num-

ber representations, which we call fixed-point ΔΣ modulators, as functions of the

floating length, where only finite values are shown. To attain −20dB, at least four

bits are necessary for the fractional part of the extended LMI design, whereas three

bits are for fractional part of the conventional IIR design. Fig. 4.18 shows that the

integer length of the extended LMI design requires at least three bits, whereas the

integer length of the conventional IIR design requires two bits.

Next, we set the word length to be 8 and the floating length to be 5. Fig. 4.19

presents the frequency responses of fixed-point ΔΣ modulators obtained by the ex-

tended LMI design and by the conventional IIR design.

At low frequencies, the fixed-point extended LMI design suffers from a smal-

l performance loss, whereas the fixed-point conventional IIR design enjoys a small

performance gain. The MSE of the fixed-point extended LMI design is −23.50 dB,

which is slightly worse than the MSE of the floating-point extended LMI design. On

the other hand, the MSE of the fixed-point conventional IIR design is −20.94 dB,

which is slightly better than the MSE of the floating-point conventional IIR design.

For different frequencies, we generate a sinusoidal signal sin(ωt) and convert its

values into 8-bit signed fixed-point binary numbers with floating length being 5.

For the fixed-point sinusoidal signal, we evaluate the empirical SNRs. Fig. 4.20

compares the empirical SNRs of the fixed-point extended LMI design (dashed curve)

and the fixed-point conventional IIR design (dotted curve) are compared with the

floating-point extended LMI design (solid curve) and the floating-point conventional

IIR design (dashed-dotted curve).

We can conclude from Fig. 4.19 and Fig. 4.20 that when the word length is 8 and

the floating length is 5, the fixed-point implementation does not exhibit a significant
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performance loss both for extended LMI design and the conventional IIR design in

this example.

4.2 Design Based on Approximation Techniques

In the previous section, we obtain IIR noise shaping filters for ΔΣ modulators using

the extended LMI technique [26]. The IIR design problem proposed in the previous

section utilizes the non-ideal output filter to minimize the weighted quantization noise

at the output of the ΔΣ modulator. However, the order of the IIR noise shaping filter

obtained is constrained to be identical to the non-ideal output filter. In this section,

we introduce two well-known approximation techniques that can be used to obtain

IIR noise shaping filters for ΔΣ modulators without any constraint on the IIR noise

shaping filter order.

4.2.1 The Yule-Walker Method

In the first approximation technique, we will obtain an IIR noise shaping filter for a

ΔΣ modulator by using the Yule-Walker method. First, we obtain an optimal FIR

filter using the method proposed in Chapter 3, then we use the Yule-Walker method

to obtain the IIR filter by approximating the frequency response of the optimal FIR

filter. The Yule-Walker method for the filter design is based on recursion and the

criterion used for the approximation is based on the least-squares (LS) method. More

specifically, the Yule-Walker method leads to generation of an IIR filter by fitting a

specified frequency response.

Now, we provide a design example to show the effectiveness of our proposed H2

norm based IIR filter based on the Yule-Walker method. For the approximation of

the FIR by an IIR digital filter using the Yule-Walker method, we use the function

yulewalk in MATLAB. Similarly, H∞ norm IIR filter can be designed by using the
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Figure 4.21: MSE as a function of the FIR filter order.

Yule-Walker approximation. Here, we omit the design of H∞ norm based filter.

Let us consider a lowpass ΔΣ modulator with an OSR of 32. A fourth order

lowpass Butterworth filter H[z] is assumed to be connected at the output of our ΔΣ

modulator to recover the digital information. Here, any other type of lowpass filter

can be used as our weighting function, but we confine our attention to Butterworth

filter only in this example.

First, we obtain an optimal FIR fitler using the method proposed in [14]. The

order of FIR is chosen based on the convergence of the MSE as the order of the FIR

filter is increased to higher values. Fig. 4.21 shows us that the optimal order of FIR

filter should be 18 based on the convergence of the variance of the quantization noise.

Fig. 4.22 depicts frequency responses of FIR and IIR noise shaping filters for the

ΔΣ modulator. To achieve a good approximation of the FIR filter based on the MSE

performance, an IIR filter of order 3 results in almost the same MSE value as that of

the FIR filter of order 18. Through our calculations, we note that the MSE of the FIR

filter is −28.04 dB, while the IIR filter gives us −28.90 dB. With the order-reduction
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Figure 4.22: Frequency responses of FIR filter of order 18, and IIR filter of order 3
for the ΔΣ modulator. The output filter is of order 4.

of 83.3%, a low-order IIR filter obtained by using an effective approximation method

can achieve almost the same performance as that of the FIR filter.

4.2.2 The Least-Squares (LS) Approximation

The LS method is another well-known approximation technique which can be used

to design IIR filters. We take a simple approach to design IIR filters for ΔΣ mod-

ulators. First, we design an optimal FIR filter to satisfy the required specifications.

It is expected that the optimal FIR filter having a sufficiently large order can well

approximate the theoretically optimal IIR filter. Then, we approximate the optimal

FIR filter with a lower-order IIR filter. If we achieve a good approximation, then the

obtained IIR filter can be considered as a good approximation of the theoretically

optimal IIR filter. The approximation of FIR by IIR filter has been well studied and

some recent design methods have been summarized in [35] which give satisfactory

results. As an example, we consider the H∞ optimal IIR filter for our design criterion
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and provide a design example to show the effectiveness of IIR error feedback filters

for the ΔΣ modulator designed by our proposed method.

Problem Formulation

We utilize the design of the optimal FIR filter in [10], and then approximate the FIR

filter by an IIR filter. If we consider the weighting function H[z], then the FIR filter

can also be designed using the method proposed in Chapter 3.

Let the transfer function of the FIR filter be denoted as RF [z]. Now, we would

like to approximate the designed RF [z] by using a reduced-order IIR filter R[z] with

a transfer function as expressed in (4.1), (4.2), (4.3).

The approximation error function, defined as

E[z] = RF [z]−R[z], (4.43)

should be minimized.

The LS method proposed in [36] tries to find A[z] in (4.3) and B[z] in (4.2)

that minimizes the squared error given by
∫ π

−π
|E[ejω]|2dω. In the LS method, we

first determine the denominator coefficients an in (4.3) using an iterative procedure

which requires the solution of an over-determined set of linear equations and some

operations. Then, we use the denominator coefficients an to calculate the numerator

coefficients bn in (4.2).

Design Examples

In this section, we provide design examples to show the effectiveness of proposed IIR

error feedback filters for a ΔΣ modulator. We obtain low-order IIR filters by approx-

imation of the optimal FIR noise shaping filter proposed in [10]. The optimization

problem presented in [13] is solved by using LMI toolbox [37], while we utilize CVX

tool [20] to obtain all simulation results.
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Figure 4.23: Frequency responses of FIR and IIR error feedback filters for the lowpass
ΔΣ modulator.

Lowpass ΔΣ Modulator

First, we consider the design of a lowpass ΔΣ modulator with a FIR error feedback

filter. We assume that the FIR error feedback filter of order 28 is chosen to achieve

the desired performance. The input to the ΔΣ modulator is a lowpass signal with an

OSR of 16 and the signal bandwidth defined as Ωx = [− π
OSR

, π
OSR

]. The optimal FIR

noise shaping filter can be obtained by solving the convex optimization problem based

on the H∞ norm as proposed in [10]. Then, we approximate the optimal FIR noise

shaping filter with IIR digital filter which is obtained by using the LS approximation

method [36].

Fig. 4.23 depicts frequency responses of noise shaping filters which are obtained

by minimizing the H∞ norm of H[z]R[z] in (2.15) subject to (2.22). The Lee criterion

is used to limit the maximum magnitude to 3.52 dB.

Here, our objective is to approximate the FIR noise shaping filter of order 28 by a

low-order IIR digital filter. The maximum value of R[z]−1 in signal band occurs near

the cutoff frequency for all the filters, which can be seen in the enlarged frequency
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Figure 4.24: Enlarged frequency responses of lowpass filters near the cutoff frequency.

response in Fig. 4.24.

Table 4.1 gives us the comparison between different methods used to obtain FIR

and IIR digital filters. For the 4th order IIR filter, the LS method results in H∞

norm of −30.79 dB, while the Yule-Walker method results in −28.18 dB. Between

these two approximation methods, LS method gives us better approximation R[z] of

the optimal FIR noise shaping filter RF [z].

The difference between the H∞ norm of the LS method and [13] is not too large.

Therefore, our LS design can achieve almost the same performance as the design

proposed in [13].

Fig. 4.25 shows us the l2 norm of the error RF [z]−R[z] as a function of the order

of the IIR filter obtained by using the LS method. For the 4th order IIR filter, the

LS gives us l2 norm of −30.92 dB, while the Yule-Walker method gives us −6.44 dB.

Fig. 4.26 shows the convergence of the objective function for the first 20 iterations

of the algorithm for OSR=[16 32 64 128 256 512]. The important point to note here is

that, the iterative algorithm method utilizes LMI toolbox with some special settings
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Table 4.1: Comparison between different design methods
Design Methods Filter Type Filter Order H∞ Norm (dB)
Nagahara Design [10] FIR 28 −34.19
LS Method [36] IIR 4 −30.79
Yule-Walker Method IIR 4 −28.18
Li’s Method [13] IIR 4 −33.12
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Figure 4.25: l2 norm error as a function of the order of the lowpass IIR filter obtained
by using the LS method.

to ensure the convergence, while we have utilized CVX toolbox without any special

settings for simulating their iterative algorithm.

Bandpass ΔΣ Modulator

Next, we consider the design of a bandpass modulator. The noise shaping filter is

a bandpass filter which suppresses the noise between two specific frequencies in the

signal band. The input to the modulator is an oversampled signal with OSR of 16.

The signal bandwidth is defined as [π
2
− π

OSR
, π
2
+ π

OSR
], with a center frequency π

2
.

We assume that the desired performance of the bandpass ΔΣ modulator is achieved

by using a FIR noise shaping filter of order 32.

After the optimal design of the bandpass FIR error feedback filter using the
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Figure 4.26: Convergence behavior of the iterative algorithm [13] for OSR=[16 32 64
128 256 512]
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Figure 4.27: Frequency responses of FIR and IIR error feedback filters for the band-
pass ΔΣ modulator.

method in [10], we use an approximation method to obtain a low-order bandpass

IIR filter. In the previous example, we observed that the LS method outperform-

s and gives us better approximation than the Yule-Walker method; hence, we only

consider the LS method to approximate the bandpass FIR filter.
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Figure 4.29: l2 norm error as a function of the order of the bandpass IIR filter obtained
by using the LS method.

Fig. 4.27 shows frequency responses of bandpass FIR and IIR filters. We ap-

proximate the FIR error feedback filter of order 32 with the IIR filter of order 12

which gives us almost the same performance as that of the FIR filter. The enlarged

frequency response in the passband of the ΔΣ modulator is shown in Fig. 4.28. The

H∞ norm of the FIR filter with desired response is -16.96 dB, and the resultant IIR
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filter of order 12 gives us -16.26 dB in the passband.

Fig. 4.29 shows us that the l2 norm of RF [z]−R[z] for bandpass IIR filter converges

to the least approximation error, which can be achieved by using the IIR filter of order

12. The approximation error reduces slowly above the IIR filter of order 12.

4.3 Design Based on the Hybrid Technique

The idea of a hybrid design is proposed for obtaining IIR noise shaping filters in [38].

The hybrid design strategy uses Schreier’s method [6] for selecting poles arrangements,

while fully optimizing zeros using recent optimal design methods for FIR filter. The

zeros of the Schreier’s noise shaping filter are constrained to lie on the unit circle, while

poles take maximally flat arrangement at low frequencies. The constrained on the

zeros can be lifted by using the optimal FIR design method which gives full freedom

to choose positions of zeros anywhere in the unit circle. The hybrid design strategy

gives us an IIR filter which gets best of both Schreier’s and optimal FIR methods

which are limited in flexibly and requiring high orders, respectively. However, the

method in [38] can only design H2 norm based noise shaping IIR filter.

We deal with two noise shaping IIR filters based not only on H2 but also on

H∞ norm by using the hybrid design method. We also show that the hybrid design

is superior to the conventional (Schreier’s) method which restricts the position of

zeros on the unit circle only. Finally, a design example is provided to demonstrate

the effectiveness and comparison of noise shaping IIR filters obtained by using the

methods proposed in [6, 13, 26, 16, 38].

The transfer function of an IIR filter is defined in (4.1), (4.2), (4.3).

Now, we obtain noise shaping IIR digital filters by minimizing (2.6) under the

Lee criterion (2.22) while also considering the non-ideal behavior of the output filter
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H[z]. We consider the hybrid design to obtain indirect solutions for H2 and H∞ norms

based noise shaping filters.

The hybrid design assumes that a1, . . . , aNA
in (4.3) are pre-assigned coefficients

which are obtained by using Schreier’s method [6]. Then, we are left with the NB

numerator coefficients b1, . . . , bNB
in (4.2) which are to be found by using the optimal

FIR technique in [14]. Hence, the problem can be reduced into LMIs that can be

solved by using convex optimization.

4.3.1 Design Example

As a design example, let us consider a filterless audio amplifier [39] which is a widely

used electronic component in many portable electronics and mobile phones.

Fig. 4.30 shows a simplified block diagram of a switching audio amplifier, where

the lowpass filter is provided by the inherent inductance of the speaker coil and

natural filtering of the human ear to recover the information signal. This is known

as a filterless solution. The filterless solution is adopted since it greatly reduces the

external components that are often used for lowpass filtering; hence, simplifying the

circuit design and reducing the system cost. In our method, we utilize the transfer

function of the output analog lowpass filter as our weighting function to reduce the

in-band quantization noise due to A/D conversion.

We assume that the audio amplifier under consideration utilizes a lowpass ΔΣ

modulator with noise shaping IIR filter for A/D conversion. The audio input signal

to the lowpass ΔΣ modulator is discretized with an OSR of 256. The analog lowpass

filter at the output is of first order with a cutoff frequency π
OSR

. By using the proposed

hybrid design and LS approximation methods, we obtain fourth order noise shaping

IIR filters which are used in the feedback of the ΔΣ modulator. For the stability

of the ΔΣ modulator, the Lee coefficient γ is set to be 1.5 (3.52 dB) to limit the
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Figure 4.30: Block diagram of an audio amplifier with a ΔΣ modulator as an A/D
converter.
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Figure 4.31: Frequency responses of noise shaping IIR filters for a ΔΣ modulator.

maximum out-of-band gain that can overload the quantizer.

Fig. 4.31 depicts frequency responses of noise shaping IIR filters obtained by

using proposed and conventional methods. Our proposed noise shaping IIR filters

obtained by using hybrid-design and approximation methods match the steepness of

the output lowpass filter and gives uniform attenuation throughout the signal band.

The synthesizeNTF and the method proposed in [13] give better attenuation in the

signal passband, but fail to remove the noise near the cutoff frequency since they do

not utilize the weighting function to minimize the in-band quantization noise.
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Table 4.2: Comparison of ||H[z]R[z]||22 and ||H[z]R[z]||2∞ norm values of different
design methods

Design Methods IIR order H2 norm (dB) H∞ norm (dB)
Hybrid H2 4 −36.02 −29.63
Hybrid H∞ 4 −36.76 −31.07
synthesizeNTF 4 −34.53 −26.98
LS H2 4 −37.99 −37.99
LS H∞ 4 −37.99 −36.68
Li’s method [13] H∞ 4 −36.66 −36.66
Extended LMI 1 −37.34 −32.72

Table 4.2 compares H2 and H∞ norm values of the in-band quantization noise for

each design method. Clearly, both of our proposed H2 and H∞ norms hybrid design

based noise shaping IIR filters outperform the H2 norm conventional synthesizeNTF

based design. On the other hand, the noise shaping IIR filters obtained by using the

LS approximation method outperforms the hybrid design and the method proposed

in [13]. Since the IIR filter obtained by using the method in [13] does not incorpo-

rate the non-ideal output filter, the value of the band quantization noise is slightly

higher than that of the LS approximation method. For the extended LMI design [26],

the first order H2 norm based IIR filter outperforms other designs and matches the

performance of the fourth order H2 norm based IIR filter obtained by using the LS

method.

Now, let us evaluate the performance of the lowpass ΔΣ modulator with the noise

shaping IIR filter obtained by using the LS approximation based on H2 norm of the

in-band quantization noise. The MATLAB function simulateDSM in DELSIG toolbox

[28] is used to simulate the ΔΣ modulator. The input to the modulator is a sinusoidal

signal with a frequency of 100 Hz and an amplitude of 0.5. The uniform quantizer is

assumed to have quantization levels L = 2 and quantization interval d = 2. Fig. 4.32

shows us plots for input, output and quantization error of the ΔΣ modulator. The
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Figure 4.32: Simulation of the lowpass ΔΣ modulator with a noise shaping IIR filter
obtained by using the LS approximation method.
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Figure 4.33: Frequency spectrum of the digital output of the lowpass ΔΣ modulator
in Fig. 4.32 .

digital output is represented by using +1 and -1 volts for binary 0 and 1 respectively.

The quantization error is a random signal which is bounded by [−d
2
,+d

2
].
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Fig. 4.33 illustrates the frequency spectrum of the digital output of the proposed

ΔΣ modulator by using the LS approximation method. The frequency spectrum

plot makes it possible to visualize the noise shaping performed by the proposed noise

shaping IIR filter. The frequency notch of the input sinusoidal signal appears at 100

Hz.

4.4 Design Based on the Iterative LMI Technique

In this section, we propose an iterative LMI algorithm to solve the non-convex design

problem for obtaining the near optimal noise shaping IIR filter. We minimize the

variance of the quantization noise at the output of a ΔΣ modulator subject to the

stability constraint. Since the non-ideal filter at the output of the ΔΣ modulator

is an imperfect filter which may cause quantization noise leakage in the passband of

the information signal, the non-ideal behavior of the output filter is also taken into

consideration. Moreover, we also design and compare the performances of the noise

shaping IIR filters by using the hybrid design and Schreier’s method [6]. The design

example for the bandpass ΔΣ modulator in a RF transmitter is provided to show the

effectiveness of the proposed technique.

The transfer function of an IIR filter is defined in (4.1), (4.2), (4.3). Our design

problem for the synthesis of noise shaping IIR is to minimize (2.13) subject to (2.22).

A similar design problem is investigated in [14] for obtaining the noise shaping

filter R[z]. But the method in [14] only considers the design of a FIR filter, which can

be solved to obtain an optimal solution using any convex optimization technique. On

the other hand, our objective is to obtain an IIR filter which results in a non-convex

optimization design problem.

In [15], an IIR filter is obtained by solving the non-convex optimization problem.
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However, the design problem can only be solved if the order of R[z] is identical to the

order of H[z]. The iterative algorithm proposed in [13, 40, 41] consider minimization

problem over a finite frequency range by utilizing GKYP lemma, and it does not con-

sider the non-ideal behavior of the output filter in ΔΣ modulator. On the contrary,

we would like to obtain a near optimal solution by overcoming the identical order

constraint, considering the output non-ideal filter H[z] and expressing our minimiza-

tion design problem into matrix inequalities without using the GKYP lemma. The

methods [13, 40, 41] consider the min-max design problem, while our design problem

is based on the minimization of the variance of the quantization noise.

To minimize the variance of the quantization noise, we can evaluate the H2 nor-

m of H[z]R[z] numerically. The H2 norm can be evaluated based on the Lemma

1 in Chapter 3, which gives us a BMI (3.12) and an LMI (3.13) of the function

‖H[z]R[z]‖22 < μ2.

Also, the condition on the stability of ΔΣ modulator can be described by using

the BMI (3.24).

Then, we have to minimize μ2 under the constraints (3.12), (3.13) and (3.24).

The constraints (3.12) and (3.24) are BMIs since they contain products of the system

variables and Lyapunov matrices. The BMI in (3.12) is bilinear due to the product

between the variables P and A matrices. On the other hand, the BMI in (3.24),

which results due the stability constraint, is bilinear due to the product between AR

and PR matrices. The matrices A and AR are unknown due to the presence of the

denominator coefficients a1, . . . , aN in AR. These BMIs are non-convex and NP-hard

to solve numerically [42], hence, complicating the design of our noise shaping IIR

filter.

When we assign a fix value to one of the unknown variables and optimize with

respect to other variable, the resultant design problem becomes a semi-definite pro-
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gramming problem consisting of LMIs only. If a1, . . . , aN in AR are assigned constant

values, then the BMIs turn into LMIs which can then be solved by using convex op-

timization techniques. In the following step, we optimize with respect to AR and CR

by assigning a fix values to P and PR obtained in the previous step.

Here, we summarize the iterative LMI algorithm to solve the noise shaping IIR

design problem as follows:

1. Assign a fix value to the system variable AR in the composite matrix A. This

is done by initializing the denominator coefficients a1, . . . , aN with some prior

values, which convert the BMIs (3.12), (3.24) into LMIs. Then, the design

problem is reduced to convex form, which can then be optimized with respect

to P , PR and CR variables.

2. Using the values of P and PR obtained in step 1, optimize with respect to AR

and CR to obtain NA denominator and NB numerator coefficients.

3. Obtain an IIR filter transfer function R[z] by using the NB numerator and NA

denominator coefficients in step 2. Then, we calculate the H2 norm of H[z]R[z].

4. Go to step 1 and use the values of a1, . . . , aN obtained in step 2. Repeat steps

1-3, until the H2 norm of H[z]R[z] reaches a given target or decreases less than

a given accuracy.

The sequence of ‖H[z]R[z]‖22 generated by this algorithm is expected to be monotonous-

ly non-increasing. The objective function is bounded below by zero which implies that

the proposed algorithm converges to some positive value as the iteration increases.

Initialization of the denominator coefficients

The choice of the initial values for the NA denominator coefficients in the proposed

algorithm is an important factor in the optimal design of the IIR filter. The NA
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Figure 4.34: A simple block diagram of a ΔΣ modulator based RF transmitter.

denominator coefficients can be chosen as long as the poles of the resultant IIR filter

R[z] lie strictly inside the unit circle (|z| < 1) in the complex z-plane. However, the

random selection of the poles inside the unit circle cannot guarantee us a near optimal

solution. To address this issue, we suggest initializing the iterative algorithm with

the denominator coefficients of the IIR filter obtained by using either the LS method

or the Hybrid design.

Therefore, the LS method and the hybrid design can be used to design sub-optimal

IIR filters whose denominator coefficients are used as initial points in the proposed

algorithm. Then, the resultant IIR filter from our iterative LMI algorithm is an

improvement over the sub-optimal IIR filters.

4.4.1 Design Examples

Let us consider a design example of a bandpass ΔΣ modulator based RF transmitter.

Fig. 4.34 shows a block diagram of a basic wireless transmitter which consists of an

A/D converter, a frequency-up converter and a power amplifier (PA) with a bandpass

filter (BPF) at its output. The input to the PA is usually a signal with varying

envelope, and if the PA is driven to more than its maximum input saturating power,

it will cause distortion. The peak power of the input signal with varying envelope

happens during very short periods, and most of the time the signal power remains

around its average power. Since the average power is much smaller than its peak
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power, the PA often works at much lower efficiencies than its maximum efficiency for

a varying envelope signal. On the other hand, the constant envelope signal can make

the PA work at maximum efficiency [43].

One approach to obtain a constant envelope signal at the input of the PA is to

utilize a binary ΔΣ modulator as an A/D in the RF transmitter. By oversampling

the information signal and using a binary quantizer, the information signal is encoded

to a bi-level constant envelope signal. The main drawback of using a ΔΣ modulator

is the quantization noise, which will be amplified alongside the desired signal by the

PA. Although the BPF at the output of the PA is used to filter out the quantization

noise, but there still remains a significant portion of the quantization noise in the

information signal band which affects the overall efficiency of the RF transmitter.

To minimize the quantization noise present in the information signal band, we

design noise shaping IIR filters in a ΔΣ modulator by using the proposed algorithm,

hybrid design and Schreier’s method. We consider a bandpass ΔΣ modulator whose

input is an oversampled information signal with an OSR of 256. The bandwidth of

the information signal is defined as [π
2
− π

OSR
, π
2
+ π

OSR
], with a center frequency π

2
.

The analog BPF at the output is considered to be a first order Butterworth filter

with maximally flat response in the passband of the signal. For the stability of the

bandpass ΔΣ modulator, the Lee coefficient γ is set to be 1.5 (3.52 dB) to limit the

maximum out-of-band gain that can overload the quantizer.

Initialization using the least-squares (LS) method

First, let us utilize the LS method to obtain an IIR filter whose denominator coeffi-

cients are then chosen as the initial values a1, . . . , aNA
for the proposed iterative LMI

algorithm.

Fig. 4.35 shows frequency responses of fourth order bandpass noise shaping IIR
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Figure 4.35: Frequency responses of noise shaping IIR bandpass filters obtained by
using three different design methods. Here, iterative LMI algorithm is initialized
using the LS method.

‖H[z]R[z]‖22 norm values of design methods
Design Methods IIR Filter Order H2 norm (dB)
Iterative LMI 4 −41.79
Hybrid Design 4 −41.35
synthesizeNTF 4 −40.05

Table 4.3: Variance of the quantization noise ε, when iterative LMI is initialized using
the LS method.

filters R[z] obtained by using the iterative LMI algorithm, the hybrid design and

Schreier’s method (referred as synthesizeNTF). Since we take into account the non-

ideal behavior of the bandpass filter H[z], the steepness of the IIR filter R[z] frequency

response obtained by using the iterative LMI algorithm follows the steepness of the

filter H[z]. Also, the iterative algorithm is observed to converge very quickly.

As listed in Table 4.3, the resultant variance of the quantization noise ε for the

iterative LMI algorithm is −41.79 dB, while the values for the hybrid design and

synthesizeNTF are −41.35 dB and −40.05 dB, respectively. Our proposed algorith-

m outperforms the hybrid design and synthesizeNTF. We also notice that the Lee
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Figure 4.36: Zeros “◦” and poles “×” of noise shaping IIR filters obtained by using
the iterative LMI algorithm, synthesizeNTF and hybrid design methods.

criterion limits the magnitude of the frequency response, with maximum out-of-band

gain not exceeding 3.52 dB for each frequency response. For comparison in Table 4.3,

we do not list the ε of IIR filter obtained using the LS method because it does not

satisfy the modulator stability constraint.

Fig. 4.36 shows the zero-pole plots of noise shaping IIR filters obtained by using

the iterative LMI algorithm, synthesizeNTF and hybrid design methods. The poles

“×” for all the designs lie inside the unit circle which verifies the stability of the ΔΣ

modulator. Also, we notice that the zeros “◦” of hybrid design are optimized to lie

anywhere in the unit circle, while the zeros of synthesizeNTF are located on the unit

circle. Thus, the hybrid design strategy gives us an IIR filter which gets best of both

Schreier’s and optimal FIR methods which are limited in flexibility and requiring high

orders [38], respectively.

Fig. 4.37 shows the quantization noise spectrum of the bandpass ΔΣ modulator

with bi-level quantizer. The fourth order noise shaping filter minimizes the quantiza-

tion noise present in the information signal band.

Initialization using the hybrid design

Now, let use design an IIR filter using the hybrid design whose denominator coeffi-

cients are then used as our initial values a1, . . . , aNA
. Note that, the hybrid design
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Figure 4.37: Noise Spectrum of the bandpass ΔΣ modulator.
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Figure 4.38: Frequency responses of noise shaping IIR bandpass filters obtained by
using three different design methods. Here, iterative LMI algorithm is initialized
using the hybrid design.

and the synthesizeNTF have similar denominator coefficients. Therefore, initializa-

tion using the hybrid design is similar to initializing with the synthesizeNTF.

Using the same ΔΣ modulator as in the previous section, we design fourth order

bandpass noise shaping IIR filters R[z]. Fig. 4.38 shows the frequency responses of
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‖H[z]R[z]‖22 norm values of design methods
Design Methods IIR Filter Order H2 norm (dB)
Iterative LMI 4 −41.35
Hybrid Design 4 −41.35
synthesizeNTF 4 −40.05

Table 4.4: Variance of the quantization noise ε, when iterative LMI is initialized using
the hybrid design.

bandpass noise shaping IIR filters obtained by using the iterative LMI algorithm, the

hybrid design and the synthesizeNTF. The frequency responses of the iterative LMI

design and the hybrid design are shown to be very similar to each other.

Table 4.4 lists the resultant variance of the quantization noise ε for the iterative

LMI algorithm, the hybrid design and the synthesizeNTF. Our iterative LMI algo-

rithm outperforms the synthesizeNTF design, but gives the same norm as that of the

hybrid design. This implies that the iterative LMI algorithm cannot attain the opti-

mum and shows that the initialization with the LS method is better for this example.

However, we can say that the proposed algorithm provides the same performance as

the hybrid design when initialized with the hybrid design denominator coefficients.

4.5 Conclusions

We have addressed the design of IIR noise shaping filters in the feedback of ΔΣ mod-

ulators. At first, we proposed a design based on extended LMIs which provide H2

and H∞ norm based filters that outperform the conventional design. We also utilized

output weighting function to minimize the weighted quantization noise. However,

the order of the IIR noise shaping filters is constrained to be identical to the order of

the output weighting function. To overcome this constraint, we introduced approx-

imation techniques like the Yule-Walker method and the LS approximation. Both

approximation techniques require us to obtain a high-order optimal FIR filter which
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is approximated by using the low-order IIR filter. Through simulations, we observe

that the LS approximation technique outperforms the Yule-Walker method and gives

us better approximation than the Yule-Walker method. However, the LS approxima-

tion does not guarantee ΔΣ modulator stability. Another method known as hybrid

design is proposed to obtain sub-optimal IIR noise shaping filters. The hybrid de-

sign utilize the optimal FIR design to obtain numerator coefficients of the IIR noise

shaping filter. The hybrid design IIR filter can outperform the conventional IIR filter.

Then, we propose an iterative algorithm that results in an IIR noise shaping filter and

also guarantees the stability of the ΔΣ modulator. The proposed algorithm obtains

IIR noise shaping filter which is independent of the FIR filter design unlike approx-

imation techniques.The iterative LMI is initialized with the LS approximation and

the hybrid design. Through simulations, we observe that the iterative LMI algorithm

gives us a near-optimal solution, while outperforming other techniques discussed in

this chapter.
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Chapter 5

Conclusions

We have proposed design methods to obtain FIR and IIR noise shaping filters for the

minimization of the weighted quantization at the output of a ΔΣ modulator. Our

noise shaping filters are based on the H2, H∞ and l1 norms of the weighted quanti-

zation noise. We have also considered the imperfect filter, as a weighting function,

attached to the output of a ΔΣ modulator. The stability of the ΔΣ modulator is also

ensured by limiting the maximum out-of-band gain of the NTF.

In Chapter 3, we have proposed a design method of the FIR noise shaping filters

for ΔΣ modulators based on H2, H∞, and l1 norms. The design problem for the

minimization of the weighted quantization noise is cast into a convex optimization

problem by using LMIs. Our results show that the frequency response of our FIR

filters exhibits good performance in the low-frequency region providing uniform at-

tenuation and matching the steepness of the weighting function. Our results show

that the proposed method outperforms the existing methods for FIR filter design.

Since the design problem of IIR noise shaping filter cannot be cast into a convex

optimization problem, we have proposed several design methods to obtain IIR filters

in Chapter 4. The extended LMI technique is used to obtain IIR noise shaping

filters by minimizing the variance and the l2 norm of the quantization noise at the

output of the ΔΣ modulator under the constraint on the feedback signal. Then,
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the minimization of the error variance under the constraint on the variance of the

error feedback signal can be cast into a convex optimization problem. Our proposed

design is based on extended LMIs, which provides better filters than the design with

conventional LMIs. Design examples are provided to demonstrate the effectiveness of

our proposed extended LMIs design.

We have also utilized approximation techniques to obtain IIR noise shaping filters.

The Yule-Walker and the LS methods are used to approximate the high-order FIR

with low-order IIR filter. First, we have obtained optimal FIR noise shaping filter

using the method proposed in Chapter 3, then we use both the Yule-Walker and the LS

methods to obtain IIR noise shaping filters which approximate the frequency response

of the optimal FIR filter. The LS method gives us better approximation of the FIR

filter than the Yule-Walker method. Also, the LS gives us better attenuation of the

weighted quantization noise than the Yule-Walker method. However, simulations

show that the IIR noise shaping filter obtained by using the LS method does not

necessarily satisfy the stability constraint of the ΔΣ modulator.

Moreover, we have proposed hybrid design technique which design IIR noise shap-

ing filter whose numerator coefficients are obtained using the FIR method proposed in

Chapter 3. Unlike the LS method, the hybrid design ensures the stability constraint

on the ΔΣ modulator by limiting the maximum out-of-band gain of the R[z].

An iterative LMI algorithm has been also proposed which converts the non-convex

problem to convex form by converting BMIs into LMIs with alternation of unknown

variables at each iteration. The hybrid design and the LS method are used to ob-

tain the IIR filter whose denominator coefficients are used to initialize the proposed

algorithm. Our design example utilizes the initial denominator values obtained by

using the LS method and the hybrid design. Through simulations and analysis, we

have observed that the noise shaping IIR filter obtained by using our the proposed
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iterative LMI algorithm can outperform the hybrid design and synthesizeNTF if it is

initialized with the LS method. If we use the hybrid design for initialization, the it-

erative LMI design gives same performance as the hybrid design while outperforming

the synthesizeNTF.
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