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Abstract

Recent the demand of a safe medical tomography is increasing dramatically, as the radiation
issue of X-ray CT and the limited working area of NMRI. Optical tomography is known for
its safeness. Therefore, an optical tomography method to estimate the inside of an object
seems to be useful and important.

In this thesis, we present a forward model for optical tomography based on a path
integral. Instead of directly solving the radiative transport equations, which has been widely
used in optical tomography, we use a path integral that has been developed for rendering
participating media based on the volume rendering equation in computer graphics. After
creating a discretized two-dimensional layered grid, we obtained the forward model and the
inverse problem for the optical tomography.

We develop an algorithm to estimate the extinction coefficients of each voxel with an
Log-barrier interior point approach. Numerical simulation results are shown to demonstrate
that the proposed method works well.

In order to improve the performance, we propose the Primal-dual approach to solve the
inverse problem formulated as a constraint optimization problem. We further develop new
efficient formulations for computing Jacobian and Hessian of the cost function of the con-
straint non-linear optimization problem. Numerical experiments show that the combination
of Primal-dual approach and the new efficient formulations can reduce the computation
time than the Log-barrier interior point approach while keeping the quality of the estimation
results.
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Chapter 1

Introduction

Optical tomography[10, 8, 33, 7, 9, 12, 58, 18] is known as a safer alternative to X-ray
tomography. Usually tomography consists of a light source generating penetrative light and a
detector capturing the light, which allows to estimate the inside of an object in which the light
is passing through. The most important application is X-ray Computed Tomography (CT)
where X-rays are used due to their penetrative property. The balance between the radiation
exposure of the human body and the quality of the obtained results has been debated since
the early days when X-ray CT was invented. Therefore, there is an urgent demand for a safer
medical tomography, such as optical tomography.

Modeling the behavior of light plays an important role in optical tomography, and in
the mesoscale, in which the wavelength of light is close to the scale of tissue, the Radiative
Transport Equation (RTE) is used for describing the behavior of light scattering[9, 43]. At
the macroscale[12], the time-independent or dependent RTE is often approximated with a
diffusion equation.

Similarly, the computer graphics community has the used time-independent RTE, and
in contrast to the (surface) rendering equation[39, 41], often call it the volume rendering
equation (VRE)[39, 53]

(w ·—)L(x,w) =�st(x)L(x,w)+ss(x)
Z

S2
fp(x,w,w 0)L(x,w 0)dw 0, (1.1)

where notation will be introduced in the following sections. The use of VRE enables us to
render volumes of participating media such as fog, cloud, and fire through which light is
penetrating, and to obtain realistic volume-rendering images of such scenes[17, 45]. The
path integral, which can be considered as a discrete version of the continuous Feynman
path integral [26, 66], has been recently employed to solve the VRE in an efficient way
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with Monte Carlo integration such as Metropolis light transport[52, 68] or bidirectional path
tracing[47].

1.1 Thesis Overview

In this thesis, we propose an optical tomography method using path integral as a forward
model and solving a non-linear inverse problem that minimizes the discrepancy between
measurements and model predictions in a least-squares sense.

In the forward model, we simplify the path integral with some assumptions. The path
integral, as the name suggests, gathers (or integrates) the contributions of all possible paths
of light[52, 68, 67, 38, 63, 44]. We approximate the integral of infinite number of paths with
a sum of finite number of paths, and discretize a continuous medium into voxels of a regular
grid, and continuous light paths into discrete ones (i.e., polylines). We deal with anisotropic
scattering having a peak in the forward direction, which is different from other discretization
methods using discrete ordinate or spherical harmonics[17, 1, 59]. Then we further focus on
estimating the spatially varying extinction coefficient st(x) at each discretized voxel location
of the medium while fixing scattering properties (e.g., scattering coefficients ss and phase
functions fp). By separating the scattering properties from our problem, we formulate optical
tomography as an optimization problem with inequality constraints.

To solve the optimization problem with inequality constraints, we implemented two
types of approaches, the Log-barrier Interior Point approach and the Primal-dual Interior
Point approach. These two types of approaches were tested by the numerical simulation and
obtained fair results.

Till here, we have described the optical tomography method we proposed. In next section,
we will introduce the our contribution and the thesis structures.

1.2 Thesis Structures

In this thesis, we proposed the forward problem using discretized path integral which has not
been used in optical tomography before. And two types of approaches to solve the inverse
problem obtained from the forward problem. The structures of the thesis is as follows:

In Chapter 1, we have introduced the motivation of our research.
In Chapter 2, we will introduce the previous works both related to optical tomography

and the Statistical Monte Carlo methods.
In Chapter 3, we will show how to use path integral method to present the mathematical

model of the light transport in the optical tomography, and simplify the expression with
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reasonable constraints. The simplified model presented in this chapter is used by "Optical
tomography with discretized path integral" [71] and "Layered optical tomography of multiple
scattering media with combined constraint optimization"[72].

In Chapter 4, we will describe the process of using interior point approach to solve the
optimization problem which is obtained from the simplified model in Chapter 3. The works
described in Chapter 4 were published in the paper "Optical tomography with discretized path
integral" [71] and "Layered optical tomography of multiple scattering media with combined
constraint optimization"[72].

Chapter 5 shows the primal-dual approach which solve the same optimization problem
in Chapter 4. We will also introduce the tricks used in the approach which reduce the
computational cost dramatically. The works described in Chapter 5 were published in
the paper "Primal-dual approach to optical tomography with discretized path integral with
efficient formulations"[73] and "Optical tomography with discretized path integrals: a
comparison with log-barrier and primal-dual methods"[70].

Chapter 6 presents our conclusions.





Chapter 2

Related Work

In this section, we briefly review related work on optical tomography and path integrals in
computer graphics.

Optical tomography[7, 9] (or inverse transport[12, 58], inverse scattering[49], scattering
tomography[27, 28]) is a problem in medical imaging using light sources to reconstruct
the optical properties of tissue from measurements (time-dependent or stationary, angular-
dependent or independent) at the surface boundary. Solving the RTE (1.1) with boundary
conditions analytically is however difficult, and approximations, such as discrete ordinates
and Nth order spherical harmonics (PN approximation), are often used and solved numerically
by, for example, finite element methods (FEM) or finite difference methods (FDM). The
famous diffuse approximation[9, 12] (DA) is a P1 (thus 1st order) approximation with the
assumption on a phase function being isotropic. The DA is an approximation to RTE at
macroscopic scale when scattering is large while absorption is low, and scattering is not
highly peaked. Diffuse Optical Tomography (DOT) is based on DA and nowadays represents
the frontier of optical tomography[62, 15] with many clinical applications[29]. The DA
however does not often hold in realistic participating (scattering) media; absorption may not
be small compared to scattering, and the shapes of the phase functions can be highly peaked
in the forward direction which is often modeled by Henyey-Greenstein[35], Schlick[14] or
Mei and Rayleigh phase functions[20, 50, 53, 39]. Experimental evidence [42] also suggests
a highly peaked shape of the phase functions in biological media. DOT works but is still
limited, therefore, other methods have been also studied for cases when DA does not hold.

Statistical Monte-Carlo methods are used for media in which the assumptions do not hold,
however they are computationally intensive and inefficient for solving the forward problem
[7, 9, 12, 58, 29], i.e., solving the RTE with given parameters. Therefore Monte-Carlo based
approaches have been used for estimating the spatially constant (not varying) parameters in
homogeneous media such as paper[24, 25], clouds[21], liquids[40], plastics[11], or uniform
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material samples[30]. Another difficulty of Monte-Carlo based inverse methods is that an
analytical forward model prediction is hard to obtain when we want to minimize the difference
between the prediction and measurements except for very special structures[5, 48]. A gradient
based least square approach has been proposed but only for spatially constant parameter
estimation[23–25], while model-free approaches have relied on genetic algorithms[21, 11],
numerical perturbation[32, 31], voting[36], or even simple back-projection[13]. One of
the contributions of the current paper is to enable us to use a gradient based optimization
approach for estimating spatially varying parameters, which is extensible by using many
optimization methods.

Similar to optical tomography, modeling light transport plays very important role in
computer graphics. Our own work on optical tomography is inspired by Monte-Carlo based
statistical methods. In the last two decades, methods based on path integrals[57, 52, 68, 47,
56, 46] have provided models of light transport for efficient volume rendering. For solving
RTE, a path integral has been used for a forward problem solver[66, 37, 69], and also applied
to optical tomography but under the diffusion assumption[60, 61]. Our proposed method is
based on a path integral to express the forward model prediction explicitly, which is very
suitable to solve the inverse problem with gradient-based methods. This is an advantage
of our method over existing methods because the paths used in the forward model can
be generated by either a deterministic or statistical (Monte-Carlo) method. To achieve an
efficient forward model, we introduce a simplified layered scattering model that uses a limited
number of deterministic paths instead of Monte-Carlo simulated ones.



Chapter 3

Forward problem in the optical
tomography

As mentioned in the Chapter 1, in the optical tomography method we proposed, we solve
a non-linear inverse problem that minimizes the discrepancy between measurements and
model predictions in a least-squares sense. Therefore, we deal with the following optical
tomography problem1

min
sss t

Â
i, j

��Ii j�Pi j(sss t)
��2 , (3.1)

where sss t is a vector representing the spatial distribution of the extinction coefficients to
be estimated. We divide our discussion into two parts; forward and inverse problems. The
forward problem focuses on building a mathematical model Pi j(sss t) of the light transport
between a light source i and a detector j. We will make some assumptions on the light
transport and the medium to simplify the forward model. An inverse problem minimizes the
difference between the observations Ii j of the detector and the forward model to estimate the
spatial distribution of the extinction coefficients sss t .

3.1 Forward model

In the forward problem, as we mentioned before, we use a path integral to build a mathemati-
cal model for the light transport. Here, we follow the notation developed in the computer
graphics literature [57, 52, 22, 44] to introduce the path integral. The next section will show
the simplified model we propose.

1This is a conceptual formulation and the actual problem is shown in Eq. (4.2).
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Given a space ¬3, there are a light source located at x0 2 ¬3and a detector at xM+1 2
¬3, and in-between participating media n ⇢ ¬3 with boundary ∂n and interior volume
n0 := n \ ∂n . A light path x̃ connecting x0 and xM+1 of length M + 2 consists of M + 2
vertices xm 2¬3 for m = 0,1, . . . ,M +1, denoted by x̃ = x0x1 · · ·xMxM+1. Thus, absorption,
scattering or reflection events happen at x1, . . . ,xM. The set of all paths of length M is denoted
by WM. The path space W is the countable set of all paths WM of finite length,

W =
•[

M=2
WM. (3.2)

A direction is denoted by w 2 S2, where S2 is a unit sphere in ¬3. A unit vector wxm,xm+1 is
the direction from vertex xm to vertex xm+1 in a path x̃.

Veach [67] introduced a framework representing the rendering equation in the form of a
path integral for scenes without participating media (i.e., no scattering), and later Pauly et
al.[52] extended it to the volume rendering equation with scattering. The amount of light I
observed by the detector is given by the path integral

I =
Z

W
f (x̃)dµ(x̃), (3.3)

an integral over the path space. Here µ(x̃) is a measure of path x̃,

dµ(x̃) =
M+1

’
m=0

dµ(xm), dµ(xm) =

8
<

:
dA(xm), xm 2 ∂n ,

dV (xm), xm 2 n0,
(3.4)

where dµ(xm) denotes the differential measure at vertex xm. f (x̃) is a measurement contribu-
tion function defined as follows;

f (x̃) = Le(x0,x1)G(x0,x1)

"
M

’
m=1

f f (xm�1,xm,xm+1)G(xm,xm+1)

#
We(xM,xM+1), (3.5)

where We(xM,xM+1) is the camera response function, and Le(x0,x1) is the intensity of the
light emitted from the light source x0 to vertex x1. f f (xm�1,xm,xm+1) is a scattering kernel
at xm with respect to the locations of vertices xm�1 and xm+1,

f f (xm�1,xm,xm+1) =

8
<

:
fs(xm�1,xm,xm+1), xm 2 ∂n ,

ss(xm) fp(xm�1,xm,xm+1), xm 2 n0.
(3.6)
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Here, the bidirectional scattering distribution function (BSDF) fs(xm�1,xm,xm+1) is used
for locations on the surface of objects, and the scattering coefficient ss(xm) at xm and
phase function fp(xm�1,xm,xm+1) are used for those inside the medium. G(xm,xm+1) is a
generalized geometric term:

G(xm,xm+1) = T (xm,xm+1)g(xm,xm+1), (3.7)

where g(xm,xm+1) is a geometric term

g(xm,xm+1) =

8
<

:

|nnng(xm)·wxm,xm+1 |
kxm�xm+1k2 , xm 2 ∂n ,

1
kxm�xm+1k2 , xm 2 n0,

(3.8)

with unit normal nnng(xm) of the surface at xm 2 ∂n . T (xm,xm+1) is a transmittance which
describes the attenuation when light passes through the medium;

T (xm,xm+1) =

8
<

:
e�t(xm,xm+1), {xm,xm+1}⇢ n0[∂n ,

0, otherwise,
(3.9)

t(xm,xm+1) =
Z 1

0
st((1� s)xm + sxm+1)ds, (3.10)

where st(xm) is the extinction coefficient at vertex xm.
Putting all together, we have a path integral of the following infinite sum of all possible

path contributions;

I =
•

Â
M=2

Â
k2WM

Le(x0,x1)G(x0,x1)

"
M

’
m=1

f f (xm�1,xm,xm+1)G(xm,xm+1)

#
We(xM,xM+1)

M+1

’
m=0

dµ(xm).

(3.11)

Note that all vertices {xm} depend on a path k; different paths have different sets of vertices.
In the equation above however we omit the path index k for simplicity. Later we will use k as
path index again.

3.2 Assumptions on the path integral formulation

As our target is optical tomography, we restrict the model to deal with inside participating
media. To do so, we assume that the light source x0 and detector xM+1 are located on the
surface, and the other vertices x1,x2, . . . ,xM,xM+1 are inside the medium; that is, x0,xM+1 2
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∂n and x1, . . . ,xM 2 n0. Then the transmittance is simplified as

T (xm,xm+1) = e�t(xm,xm+1). (3.12)

Furthermore, we assume that the observations are ideal and the camera response function is
the identity; We(xM,xM+1) = 1.

Apart from the assumptions above, we rewrite the geometric term and the differential
measure. The definitions above use area measures dA(xm) and volume measures dV (xm)

along with the squared distance geometric term[57, 52, 44], however steradian measures
dw(xm) and the identity geometric term are equivalent and also widely used[39, 22, 53],

g(xm,xm+1)dµ(xm) = dw(xm). (3.13)

Therefore, we employ the steradian measures and rewrite as follows:

g(xm,xm+1) = 1 (3.14)

dµk(xm) =

8
<

:
dA(x0), m = 0,

dw(xm), m = 1, . . . ,M +1.
(3.15)

Now Eq.(3.11) is written as

I =
•

Â
M=2

Â
k2WM

Le(x0,x1)T (x0,x1)dA(x0)

"
M

’
m=1

f f (xm�1,xm,xm+1)T (xm,xm+1)dw(xm)

#
dw(xM+1).

(3.16)

3.3 Discretization of the forward model

For numerical computation, we first discretize the medium into voxels of a regular grid,
where each voxel has its own extinction coefficient st [b] (b is the index of the voxel) as
shown in Figure 3.1.

With this voxelization, the paths of light are also divided into segments, as explained
below. First we explain the integral (3.10) along a single segment xmxm+1 of a path x̃. It
describes the attenuation of light along the segment due to the extinction coefficients of the
voxels involved. Because of the discretization of the medium, the integral (3.10) can be
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(a) (b) (c)

Fig 1 Illustration of a discretization example. (a) Voxelization of the medium into a regular grid of size 5 ⇥ 5. Voxels
are indexed in raster scan order in this example; from left to right, and top to bottom. Each voxel b has extinction
coefficient �t[b]. (b) A path segment between vertices x1 and x2. Voxels involved in the segment are shaded. (c)
Lengths d12[b] of the involved voxels b = 2, 3, 8, 9. Here we denote d12[b] instead of dx1,x2 [b] for simplicity.

Now Eq.(12) is written as

I =
��

M=2

�

k��M

Le(x0, x1)T (x0, x1)dA(x0)

"
M�

m=1

ff (xm�1, xm, xm+1)T (xm, xm+1)d�(xm)

#
d�(xM+1).

(17)

3.3 Discretization of the forward model

For numerical computation, we first discretize the medium into voxels of a regular grid, where
each voxel has its own extinction coefficient �t[b] (b is the index of the voxel) as shown in Figure
1.

With this voxelization, the paths of light are also divided into segments, as explained below.
First we explain the integral (11) along a single segment xmxm+1 of a path x̃. It describes the
attenuation of light along the segment due to the extinction coefficients of the voxels involved.
Because of the discretization of the medium, the integral (11) can be written as a sum of voxel-
wise multiplications;

�(xm, xm+1) =

Z 1

0

�t((1 � s)xm + sxm+1)ds =
�

b�Bxm,xm+1

�t[b]dxm,xm+1 [b] = �T
t dxm,xm+1 .

(18)

For the second equality, b is the index of a set Bxm,xm+1 of all voxels involved by segment xmxm+1,
and dxm,xm+1 [b] is the length of the part of the segment xmxm+1 passing through voxel b. This is
illustrated in Fig.1(c). The extinction coefficient �t is now a peace-wise constant function because
of the voxelization, then the integral turns into a sum†.

†The idea that this integral can be turned into a sum, has been discussed before,61 however not in the context of
tomography.

6

Fig. 3.1 Illustration of a discretization example. (a) Voxelization of the medium into a regular
grid of size 5⇥5. Voxels are indexed in raster scan order in this example; from left to right,
and top to bottom. Each voxel b has extinction coefficient st [b]. (b) A path segment between
vertices x1 and x2. Voxels involved in the segment are shaded. (c) Lengths d12[b] of the
involved voxels b = 2,3,8,9. Here we denote d12[b] instead of dx1,x2 [b] for simplicity.

written as a sum of voxel-wise multiplications;

t(xm,xm+1) =
Z 1

0
st((1� s)xm + sxm+1)ds = Â

b2Bxm,xm+1

st [b]dxm,xm+1 [b] = sssT
t dddxm,xm+1 .

(3.17)

For the second equality, b is the index of a set Bxm,xm+1 of all voxels involved by segment
xmxm+1, and dxm,xm+1 [b] is the length of the part of the segment xmxm+1 passing through voxel
b. This is illustrated in Fig.3.1(c). The extinction coefficient st is now a peace-wise constant
function because of the voxelization, then the integral turns into a sum2.

This simplifies the computation, however the sum over a set Bxm,xm+1 is not preferable in
terms of implementation and optimization. We propose here to use a vector representation
of both extinction coefficients and segment lengths, which is the third equality of the above
equation. The first vector sss t stores the values of the extinction coefficients st [b] of all voxels.
This vector can be generated by serializing the voxels on the grid in a certain order. The
second vector dddxm,xm+1 contains the values of the lengths dxm,xm+1 [b] for all voxels. We should
note that this vector is very sparse; most of the voxels have no intersection with the segment
xmxm+1. Hence, only few elements in dddxm,xm+1 have non-zero values, and the other elements
are zero because those voxels b have no intersection and dxm,xm+1 [b] = 0.

2The idea that this integral can be turned into a sum, has been discussed before[6], however not in the
context of tomography.
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This sparsity of the vector facilitates the construction of a whole path x̃ because path
segments can be "added” as follows;

DDDk =
M

Â
m=0

dddxm,xm+1 , (3.18)

where DDDk is the vector of a complete path k of length M + 2; the b-th element can be
interpreted as the length of the segment when the path passes through voxel b. This notation
simplifies a part of Eq.(3.16) as follows;

M

’
m=0

T (xm,xm+1) =
M

’
m=0

e�t(xm,xm+1) = e�ÂM
m=0 t(xm,xm+1) = e�ÂM

m=0 sssT
t dddxm,xm+1 = e�sssT

t DDDk .

(3.19)

Using this notation to rewrite Eq.(3.16), we have

I =
•

Â
M=2

Le(x0,x1) Â
k2WM

Hke�sssT
t DDDk = Le(x0,x1) Â

k2W
Hke�sssT

t DDDk , (3.20)

where the factor Hk defined as

Hk = dA(x0)dw(xM+1)
M

’
m=1

f f (xm�1,xm,xm+1)dw(xm), (3.21)

describes the contributions of the scattering coefficients and phase functions, and the expo-
nential factor represents attenuation due to absorption (and out-scattering) over the path.

3.4 2D layered model of forward scattering

As a first attempt, we design a 2D layered grid, instead of the 3D one. Since we voxelize
the medium into a regular grid, the 2D medium consists of parallel layers. Hereafter, a 3D
direction w between vertices is written as a 2D direction q , and a steradian measure dw as
an angle measure dq .

As shown in Fig.3.2, we assume a particular layer scattering having the following
properties. First, vertices x1 · · ·xM of path x̃ are located at the centers of each voxel. Light
source x0 is located on the boundary of the top surface of the voxels in the top layer.
Similarly, detector xM+1 is located on the boundary of the bottom surface of the voxels in the
bottom layer. Second, directions qx0,x1 and qxM ,xM+1 at the beginning and end of a path are
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layer 2�

layer M�

Fig 2 Proposed 2D layered model of scattering. This example shows path x̃ consisting of vertices x1 · · · xM located
at the centers of voxels in a grid with M parallel layers. x0 is a light source located on the top surface, and xM+1 is a
detector at the bottom. At each vertex, the light scatters to voxels in the next layer, and possible scattering directions
are indicated by arrows.

3.4 2D layered model of forward scattering

As a first attempt, we design a 2D layered grid, instead of the 3D one. Since we voxelize the

medium into a regular grid, the 2D medium consists of parallel layers. Hereafter, a 3D direction

� between vertices is written as a 2D direction �, and a steradian measure d� as an angle measure

d�.

As shown in Fig.2, we assume a particular layer scattering having the following properties.

First, vertices x1 · · · xM of path x̃ are located at the centers of each voxel. Light source x0 is located

on the boundary of the top surface of the voxels in the top layer. Similarly, detector xM+1 is located

on the boundary of the bottom surface of the voxels in the bottom layer. Second, directions �x0,x1

and �xM ,xM+1 at the beginning and end of a path are perpendicular to the boundary. This means

that scattering begins at x1 and ends at xM . Third, forward scattering happens layer by layer. More

specifically, light is scattered at the center of a voxel in a layer, then goes to the center of a voxel in

the next (below) layer. Scattering is assumed to happen every time the light traverses voxel centers.

Even if the next voxel is just below the current voxel and the path segment is straight, it is regarded
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Fig. 3.2 Proposed 2D layered model of scattering. This example shows path x̃ consisting of
vertices x1 · · ·xM located at the centers of voxels in a grid with M parallel layers. x0 is a light
source located on the top surface, and xM+1 is a detector at the bottom. At each vertex, the
light scatters to voxels in the next layer, and possible scattering directions are indicated by
arrows.

perpendicular to the boundary. This means that scattering begins at x1 and ends at xM. Third,
forward scattering happens layer by layer. More specifically, light is scattered at the center of
a voxel in a layer, then goes to the center of a voxel in the next (below) layer. Scattering is
assumed to happen every time the light traverses voxel centers. Even if the next voxel is just
below the current voxel and the path segment is straight, it is regarded as scattering. Fourth,
the scattering coefficient is uniform; ss(x) = ss.

By ignoring paths exiting from the sides of the grid, the number of all possible paths is
NM, where M is the number of layers and N is the number of voxels in one layer.

3.5 Approximating the phase function with a Gaussian

We use a Gaussian model fp(q ,s2) as an approximation of the phase function;

fp(xm�1,xm,xm+1)⌘ fp(qm,s2) =
1p

2ps2
exp
✓
�q 2

m
s2

◆
, �p

2
< qm <

p
2
, (3.22)

where the variance s2 controls the scattering property; larger values of s2 mean strong
forward scattering. This Gaussian approximation is convenient in our case because of the
following two reasons.

First, existing phase function models [35, 14, 20, 50, 53, 39] are those for three dimen-
sional scattering, not for 2D. This means that those functions are normalized for integrals
over the unit sphere S2:

R
S2 fp(w)dw = 1. Most of the phase functions assume isotropy
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Fig 3 Comparison of two-dimensional phase functions. The upward vertical direction is � = 0, and horizontal
directions are � = ±�

2 . (a) Gaussian approximated phase functions with �2 = 0.1, 0.2, . . . , 1.0. The tallest and
narrowest shape corresponds to �2 = 0.1, and the shape become more small and round for larger values of �2. (b)
Heino’s two-dimensional analogs62 of Henyey-Greenstein’s phase function with parameter g = 0.1, 0.2, . . . , 1.0. The
tallest and narrowest shape corresponds to g = 1.0, and the shape become more small close to a hemisphere for smaller
values of g.

the layer-wise forward scattering introduced here needs Heino’s or Henyey-Greenstein’s phase
function.

We should note one further simplification in our layer-wise forward scattering model. The an-
gle �m in the phase function is usually defined between �xm�1,xm and �xm,xm+1 , that is, the difference
of directions changed by the scattering event. Instead of dealing with such an exact difference of
directions, we use the angle between �xm,xm+1 and the vertical (downward) direction for efficiency
of computation. This assumption enables us to discretize the Gaussian phase function much easier.
Since fp(�) integrates to (approximately) one, such a normalization can be discretized with a sum
as follows;

Z �
2

� �
2

fp(�, �
2)d� ⇡

�

b�Bn

fp(�b, �
2)��b ⇡ 1, (24)

where B is a set of voxel indices in the next layer n, �b is an alternative form of the corresponding
�xm,xm+1 , and ��b is the angle measure as shown in Figure 4.

The equation above can be considered as the energy distribution from a voxel in one layer to
the voxels in the next layer. For a voxel b at direction �b, the value of fp(�b, �2)��b describes
what percentage of the energy will be scattered to this voxel. Figure 5 shows plots of the values
corresponding to two phase functions with different parameters. We can see that due to forward

9

Fig. 3.3 Comparison of two-dimensional phase functions. The upward vertical direction is
q = 0, and horizontal directions are q = ±p

2 . (a) Gaussian approximated phase functions
with s2 = 0.1,0.2, . . . ,1.0. The tallest and narrowest shape corresponds to s2 = 0.1, and
the shape becomes shorter and rounder for larger values of s2. (b) Heino’s two-dimensional
analogs[34] of Henyey-Greenstein’s phase function with parameter g = 0.1,0.2, . . . ,1.0. The
tallest and narrowest shape corresponds to g = 1.0, and the shape becomes shorter and close
to a hemisphere for smaller values of g.

(rotational symmetry) and hence the function has a form taking angle q as an argument,
however

R p
�p fp(q)dq 6= 1. These functions therefore are not adequate for our case.

Second, our assumption of layer-wise forward scattering does not allow scattering to
happen backward or sideway, and the Gaussian model is suitable for it. As shown in Figure
3.3, the Gaussian model has the form of forward-only scattering (no backward or sideway)
in a reasonable range of s2, and it is almost normalized;

R p
2
� p

2
fp(q ,s2)dq ⇡ 1. Other two-

dimensional phase functions exist, which are not forward-only. For example, Heino et al.[34]
introduced a two-dimensional analog of Henyey-Greenstein’s phase function[35], shown
in Fig.3.3. Although the parameters are different, the two functions in Fig.3.3 have similar
shapes. The most important difference is that Heino’s function has backward scattering, but
our Gaussian model doesn’t. More realistic scattering rather than the layer-wise forward
scattering introduced here needs Heino’s or Henyey-Greenstein’s phase function.

We should note one further simplification in our layer-wise forward scattering model.
The angle qm in the phase function is usually defined between qxm�1,xm and qxm,xm+1 , that
is, the difference of directions changed by the scattering event. Instead of dealing with
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Fig 4 An illustration of angle measure ��b for voxel b in the next layer. For the center voxel of the upper layer, voxel
b (shaded) in the next layer subtends an angle of ��b, which is used for the angle measure in Eq. (24).

as follows;

Z �
2

� �
2

fp(�, �
2)d� ⇡

�

b�Bn

fp(�b, �
2)��b ⇡ 1, (24)

where B is a set of voxel indices in the next layer n, �b is an alternative form of the corresponding

�xm,xm+1 , and ��b is the angle measure as shown in Figure 4.

The equation above can be considered as the energy distribution from a voxel in one layer to

the voxels in the next layer. For a voxel b at direction �b, the value of fp(�b, �2)��b describes

what percentage of the energy will be scattered to this voxel. Figure 5 shows plots of the values

corresponding to two phase functions with different parameters. We can see that due to forward

scattering most of the energy is concentrated in the voxel just below, and a small part goes to the

adjacent voxels.

The contribution Hk in Eq. (22) now needs to be rewritten so that it deals with the Gaus-

sian phase function and the discretized energy distribution discussed above. First we reorder the
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Fig. 3.4 An illustration of angle measure Dqb for voxel b in the next layer. For the center
voxel of the upper layer, voxel b (shaded) in the next layer subtends an angle of Dqb, which
is used for the angle measure in Eq. (3.23).

such an exact difference of directions, we use the angle between qxm,xm+1 and the vertical
(downward) direction for efficiency of computation. This assumption enables us to discretize
the Gaussian phase function much easier. Since fp(q) integrates to (approximately) one,
such a normalization can be discretized with a sum as follows;

Z p
2

� p
2

fp(q ,s2)dq ⇡ Â
b2Bn

fp(qb,s2)Dqb ⇡ 1, (3.23)

where B is a set of voxel indices in the next layer n, qb is an alternative form of the
corresponding qxm,xm+1 , and Dqb is the angle measure as shown in Figure 3.4.

The equation above can be considered as the energy distribution from a voxel in one
layer to the voxels in the next layer. For a voxel b at direction qb, the value of fp(qb,s2)Dqb

describes what percentage of the energy will be scattered to this voxel. Figure 3.5 shows
plots of the values corresponding to two phase functions with different parameters. We can
see that due to forward scattering most of the energy is concentrated in the voxel just below,
and a small part goes to the adjacent voxels.

The contribution Hk in Eq. (3.21) now needs to be rewritten so that it deals with the
Gaussian phase function and the discretized energy distribution discussed above. First we
reorder the measure

Hk = dA(x0)dq(xM+1)
M

’
m=1

f f (xm�1,xm,xm+1)dq(xm) (3.24)

= dA(x0)dq(x1)
M

’
m=1

f f (xm�1,xm,xm+1)dq(xm+1), (3.25)



16 Forward problem in the optical tomography
Fig 4 An illustration of angle measure ��b for voxel b in the next layer. For the center voxel of the upper layer, voxel
b (shaded) in the next layer subtends an angle of ��b, which is used for the angle measure in Eq. (24).
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Fig 5 (a) The phase functions with parameter �2 = 0.2 (dashed line) and �2 = 0.4 (solid line). (b,c) Plot of the value
fp(�b, �2)��b for each voxel b. Note that index b is relative to the voxel in the next layer just below the voxel in
consideration. The voxel just below is b = 0, the voxel on its right side is b = 1, and on the left side is b = �1.

scattering most of the energy is concentrated in the voxel just below, and a small part goes to the
adjacent voxels.

The contribution Hk in Eq. (22) now needs to be rewritten so that it deals with the Gaus-
sian phase function and the discretized energy distribution discussed above. First we reorder the
measure

Hk = dA(x0)d�(xM+1)
M�

m=1

ff (xm�1, xm, xm+1)d�(xm) (25)

= dA(x0)d�(x1)
M�

m=1

ff (xm�1, xm, xm+1)d�(xm+1), (26)

then replace the factors with the Gaussian phase function;

Hk = dA(x0)��x0,x1�
M
s

M�

m=1

fp(�xm,xm+1 , �
2)��xm,xm+1 . (27)

Note that the factor dA(x0)��x0,x1�
M
s is common for all paths because we assumed that the grid

is uniform so that dA(x0) is constant, and the direction �x0,x1 (or �x0,x1) is perpendicular to the top
surface, and �s is constant.

10

Fig. 3.5 (a) The phase functions with parameter s2 = 0.2 (dashed line) and s2 = 0.4 (solid
line). (b,c) Plot of the value fp(qb,s2)Dqb for each voxel b for (b) s2 = 0.2 and (c) s2 = 0.4.
Note that index b is relative to the voxel in the next layer just below the voxel in consideration.
The voxel just below is b = 0, the voxel on its right side is b = 1, and on the left side is
b =�1.

then replace the factors with the Gaussian phase function;

Hk = dA(x0)Dqx0,x1sM
s

M

’
m=1

fp(qxm,xm+1 ,s
2)Dqxm,xm+1 . (3.26)

Note that the factor dA(x0)Dqx0,x1sM
s is common for all paths because we assumed that the

grid is uniform so that dA(x0) is constant, and the direction qx0,x1 (or wx0,x1) is perpendicular
to the top surface, and ss is constant.

3.6 Observation model

Suppose the 2D layered medium is an M⇥N grid; it has M layers each of which is made
of N voxels. We now construct an observation model of the light transport between a light
source and a detector: emitting light to each of the voxels at the top layer, and capturing light
from each voxel from the bottom layer. More specifically, let i 2B1 and j 2BM be voxel
indices of the light source and detector locations, respectively. By restricting the light paths
only to those connecting i and j, the observed light Ii j is written as follows;

Ii j = I0

Ni j

Â
k=1

Hi jke�sssT
t DDDi jk , (3.27)
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Algorithm 1: Computing contribution Hi jk and omitting low contribution path by
thresholding.

Input: Threshold th, path x̃ = x0 · · ·xM+1.
Output: Contribution Hi jk.

1 Hi jk = 1;
2 for m = 1 to M do
3 Hi jk = Hi jk fp(qxm,xm+1 ,s2)Dqxm,xm+1

4 if Hi jk  th then
5 stop;
6 omit this path;

7 accept this path;
8 return Hi jk;

where Hi jk and DDDi jk are the same as in Eqs.(3.26) and (3.20), respectively, but restricted to
paths connecting i and j, and I0 = Le(x0,x1) assuming the light source being constant.

In the above equation, k indexes the light paths which share the same i and j. Due to the
layered scattering model in the N⇥M grid, the number of different paths between i and j is
Ni j = NM�2. This is however too large even for small N and M, e.g. N = M = 10. Therefore
we exclude paths having small contributions from the computation. This is done by a simple
thresholding while computing Hi jk as shown in Algorithm 1. This results in generating fewer
paths; Ni j  NM�2. For example, there are Ni j = 742 paths for N = M = 20 with s2 = 0.4
when th = 0.001, which enable us to reduce the computation cost.

3.7 Summary

In this chapter, we proposed an optical tomography method using path integral as a forward
model. After discretization and adding constraints and assumptions, we obtained a forward
model.

Suppose the 2D layered medium is an M⇥N grid, let i 2B1 and j 2BM be voxel
indices of the light source and detector locations, respectively. By restricting the light paths
only to those connecting i and j, the observed light Ii j is written as follows;

Ii j = I0

Ni j

Â
k=1

Hi jke�sssT
t DDDi jk , (3.28)
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where Hi jk and DDDi jk are the same as in Eqs.(3.26) and (3.20), respectively, but restricted to
paths connecting i and j, and I0 = Le(x0,x1) assuming the light source being constant. k
indexes the shrinkked light paths which share the same i and j.



Chapter 4

Log-barrier Interior Point approach

In chapter 3, we obtained a forward model under constraints. Suppose the 2D layered medium
is an M⇥N grid, let i 2B1 and j 2BM be voxel indices of the light source and detector
locations, respectively. By restricting the light paths only to those connecting i and j, the
observed light Ii j is written as follows;

Ii j = I0

Ni j

Â
k=1

Hi jke�sssT
t DDDi jk , (4.1)

where Hi jk and DDDi jk are the same as in Eqs.(3.26) and (3.20), respectively, but restricted to
paths connecting i and j, and I0 = Le(x0,x1) assuming the light source being constant. k
indexes the shrinkked light paths which share the same i and j.

4.1 Method: Inverse problem

Next, we propose a method for the inverse problem of the forward model (4.1) to estimate
the extinction coefficients of the 2D layered model. As we mentioned before, we fix the
light paths and assume that the scattering coefficients and parameters of the Gaussian phase
function are uniform and known in advance.

4.1.1 Cost function

In the M⇥N 2D layered medium described in the last section, we had assumed a configuration
of a light source and detector as the one show in the left-most figure of Fig.4.1; the light
source is located above the medium and the detector is below, and the observed light is Ii j

where i, j are the voxel indices of the light source and detector locations. By sliding the
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Fig 6 Four configurations of light sources and detectors. From left to right, we call configurations T2B (top-to-bottom),
L2R (left-to-right), B2T (bottom-to-top), R2L (right-to-left) which represent locations of light sources and detectors.

where � denotes the generalized inequality, i.e. all elements in the vector must satisfy the in-

equality. The lower bound 0 comes from the fact that any media must have positive extinction

coefficients, while the upper bound u is used for numerical stability to exclude unrealistic values

to be estimated.

Furthermore, as shown in Fig.6, we have four configurations of light sources and detectors by

changing their positions. This gives us four different sets of observations Iij and paths ijk. These

four different sets lead to four objective functions (fT2B, fL2R, fB2T , fR2L) as shown in Fig.6.

Since the four objective functions share the same variables �t, we can use all of them at the same

time by adding them to form a new single function f0 at the expense of additional (factor of four)

computation cost;

min
�t

f0, f0 = fT2B
0 + fL2R

0 + fB2T
0 + fR2L

0 subject to 0 � �t � u. (31)

4.2 Optimization problem with inequality constraints

Since the inverse problem (31) is non-linear, we employ an interior point method;26 an iterative

optimization algorithm for problems with constraints. Here we first review several key points in
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Fig. 4.1 Four configurations of light sources and detectors. From left to right, we call
configurations T2B (top-to-bottom), L2R (left-to-right), B2T (bottom-to-top), R2L (right-to-
left) which represent locations of light sources and detectors.

light source and the detector, we can obtain N2 observations, resulting in the following least
squares problem

min
sss t

f0, f0 =
N

Â
i=1

N

Â
j=1

�����Ii j� I0

Ni j

Â
k=1

Hi jke�sssT
t DDDi jk

�����

2

, (4.2)

under 2MN constraints

0� sss t � u (4.3)

where � denotes the generalized inequality, i.e. all elements in the vector must satisfy
the inequality. The lower bound 0 comes from the fact that any media must have positive
extinction coefficients, while the upper bound u is used for numerical stability to exclude
unrealistic values to be estimated.

Furthermore, as shown in Fig.4.1, we have four configurations of light sources and
detectors by changing their positions. This gives us four different sets of observations Ii j

and paths i jk. These four different sets lead to four objective functions ( fT 2B, fL2R, fB2T ,
fR2L) as shown in Fig.4.1. Since the four objective functions share the same variables sss t , we
can use all of them at the same time by adding them to form a new single function f0 at the
expense of additional (factor of four) computation cost;

min
sss t

f0 f0 = f T 2B
0 + f L2R

0 + f B2T
0 + f R2L

0 (4.4)

subject to 0� sss t � u. (4.5)
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4.1.2 Optimization problem with inequality constraints

Since the inverse problem (4.5) is non-linear, we employ an interior point method[? ]; an
iterative optimization algorithm for problems with constraints. Here we first review several
key points in optimization, then we will develop an algorithm to solve 4.5 along with required
first and second order derivatives of the cost function (4.5).

Unconstrained problem: Quasi-Newton

First we review optimization without constraints, which is used inside the interior point
method. The general form of unconstrained optimization is

min
sss t

f (sss t) (4.6)

where sss t 2¬N⇥M is a real vector and f : ¬N⇥M!¬ is an objective function which is twice
continuously differentiable.

To solve it, an iterative procedure begins with an initial guess sss t
0 and generates a

sequence {sss t
k}•

k=0. It stops when the change of solutions is small enough. The information
about function f at sss t

k or even previous estimates sss t
0,sss t

1, · · · ,sss t
k�1 are used to calculate

a direction pppk to move with a step size ak. Line search is often used to determine the step
size by searching along the direction starting from sss t

k for finding sss t
k+1 with the least value

of the objective function;

min
ak>0

f (sss t
k +ak pppk) (4.7)

Once we find the step size, the estimate sss t
k+1 is updated as sss t

k+1  sss t
k + ak pppk. The

direction is pppk = �Bk— f (sss t
k) for the Newton’s method, where Bk = —2 f (sss t

k)�1 is the
inverse of the Hessian.

The Newton’s method is well known for its second order convergence and accuracy.
However, when the dimension of the problem is large, calculating the Hessian and its inverse
is computationally expensive. Therefore Quasi-Newton methods are often used, where the
inverse Hessian is updated by incremental approximations in order to reduce the computation
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Algorithm 2: The Quasi-Newton method with BFGS update rule.
Input: A feasible initial solution sss t

0, and B0 � 0.
Result: An estimate sss t

?.
1 repeat
2 Compute the Quasi-Newton direction: pppk =�Bk— f (sss t

k).
3 Find step length ak with line search.
4 Update estimate sss t

k+1 sss t
k +ak pppk.

5 Update Bk with BFGS.
6 until convergence;

cost. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) update rules are well known[51];

sss = sss t
k�sss t

k�1 (4.8)

yyy = — f (sss t
k)�— f (sss t

k�1) (4.9)

Bk =

✓
I� sssyyyT

yyyT sss

◆
Bk�1

✓
I� yyysssT

yyyT sss

◆
+

ssssssT

yyyT sss
. (4.10)

When the conditions yyyT sss > 0 and B0 � 0 (where � 0 means positive definite) are satisfied,
the BFGS update guarantees the positive definiteness of Bk. Algorithm 2 shows the Quasi-
Newton method.

Constrained problem: Interior point

Here we introduce a constrained optimization with inequality constraints of the form;

min
sss t

f0(sss t) subject to fi(x) 0, i = 1, · · · ,m, (4.11)

where sss t 2 ¬N⇥M is a real vector and f0, · · · , fm : ¬N⇥M ! ¬ are twice continuously
differentiable.

The idea is to approximate it as an unconstrained problem. Using Lagrange multipliers,
we can first rewrite problem (4.11) as

min
sss t

f0(sss t)+
m

Â
i=1

I( fi(sss t)), (4.12)
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where I : ¬!¬ is an indicator function which keeps the solution inside the feasible region;

I( f ) =

8
<

:
0, f  0

•, f > 0.
(4.13)

The problem (4.12) now has no inequality constraints, while it is not differentiable due to I.
The barrier method[16] is an interior point method which introduces a logarithmic barrier

function to approximate the indicator function I as follows;

Î( f ) =�(1/t) log(� f ), (4.14)

where t > 0 is a parameter to adjust the accuracy of approximation. The log barrier function
goes to infinity rapidly as f goes close to 0 while it is close to 0 when f are far away from 0.
Since Î( f ) is differentiable, we have

min
sss t

f0(sss t)+
m

Â
i=1
�(1/t) log(� fi(sss t)), (4.15)

or equivalently,

min
sss t

t f0(sss t)�
m

Â
i=1

log(� fi(sss t)). (4.16)

The barrier method solves (4.16) iteratively by increasing the parameter t. At the limit of
t! •, the above problem coincides with the original problem (4.12).

4.1.3 Algorithm for solving the inverse problem

Algorithm 3 shows the our algorithm which uses a barrier method with Quasi-Newton for
solving the inverse problem. We should mention the following parts where we have modified
the original algorithm[16].

Warm start For each inner loop, the Quasi-Newton method needs initial guess of the
inverse Hessian B0. Instead of fixing B0 for every inner loop, we reuse Bk of the last inner
loop to accelerate the convergence (shown in Lines 4 and 19 in Algorithm 3).

Checking feasibility Since the Quasi-Newton method and line search estimate without
constraints, the next estimate sss t

k+1 may go beyond the constraints; in our case, each element
st

k+1[b] in sss t
k+1 must be inside [0,u] after step size has been determined. Therefore in Line
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8 we check the feasibility of the estimate sss t
k+1 for the current step size ak. If it exceeds

the boundary of the feasible region, we pull the estimate back into the feasible region by
halving the step size. If it is still outside of the feasible region, then the step size is halved
again. Why don’t we just set the step size so that sss t

k+1 is exactly on the boundary? The
reason is the log-barrier: if sss t

k+1 is on the boundary, in other words, st
k+1[b] is either 0 or

u, then log(st [b]) or log(u�st [b]) becomes infinite, which results in numerical instability.
Therefore, the procedure described above is needed.

Checking for positive definiteness The BFGS update rules guarantee Bk to be positive
definite if yyyT sss > 0 and B� 0 are satisfied. While the latter is satisfied by giving an appropriate
initial guess, the former however depends on the updates at each iteration. If it is not satisfied,
then the BFGS updates is no longer valid and we reset the inverse Hessian Bk to a scaled
identity [51] at line 16.

Jacobian

Here we represent the Jacobian of the objective function f0 in Eq. (4.2). Note that the
objective function f0 in Eq. (4.5) can be derived in the same manner.

We first rewrite the objective function f0 as follows;

f0 =
N

Â
i=1

N

Â
j=1

�����Ii j� I0

Ni j

Â
k=1

Hi jke�sssT
t DDDi jk

�����

2

(4.18)

=
N

Â
i=1

N

Â
j=1

 
I2
i j�2Ii jI0

Ni j

Â
k=1

Hi jke�sssT
t DDDi jk + I2

0

Ni j

Â
k=1

Ni j

Â
l=1

Hi jke�sssT
t DDDi jkHi jle�sssT

t DDDi jl

!
(4.19)

=
N

Â
i=1

N

Â
j=1

 
I2
i j�2Ii jI0

Ni j

Â
k=1

Hi jke�sssT
t DDDi jk + I2

0

Ni j

Â
k=1

Ni j

Â
l=1

Hi jkHi jle�sssT
t (DDDi jk+DDDi jl)

!
, (4.20)

an the gradient of f0 is given by

∂ f0

∂sss t
=

N

Â
i=1

N

Â
j=1

 
2Ii jI0

Ni j

Â
k=1

Hi jke�sssT
t DDDi jkDDDi jk� I2

0

Ni j

Â
k=1

Ni j

Â
l=1

Hi jkHi jle�sssT
t (DDDi jk+DDDi jl)(DDDi jk +DDDi jl)

!
.

(4.21)
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Algorithm 3: Barrier method of interior point with Quasi-Newton solver.
Data: Parameters µ > 1, e > 0, and t = tinit > 0.
Input: A feasible initial estimate sss t

0, and B� 0.
Result: An estimate sss t

?.
1 while 2MN

t � e do // outer loop: barrier method
2 t µt.
3 Set a log-barriered cost function;

f (t) = t f0�Â
b

�
log(st [b])+ log(u�st [b])

�
(4.17)

4 k 0, Bk B, sss t
k sss t .

5 repeat// inner loop: Quasi-Newton
6 Compute the Quasi-Newton direction: pppk =�Bk— f (sss t

k).
7 Find step length ak with line search.
8 while sss t

k +ak pppk is not feasible do
9 Halve the step size: ak ak/2.

10 Update estimate sss t
k+1 sss t

k +ak pppk.
11 sss = sss t

k+1�sss t
k.

12 yyy = — f (sss t
k+1)�— f (sss t

k).
13 if yyyT sss > 0 then
14 Update Bk+1 with BFGS (4.10).

15 else
16 Reset Bk+1 yyyT sss

yyyT yyy I.

17 k k +1.
18 until 1

2— f (sss t
k+1)T Bk+1— f (sss t

k+1) e;
19 B Bk+1, sss t  sss t

k.

To simplify the equation, we use the following notation;

E =

2

66664

e�sssT
t DDDi j1

e�sssT
t DDDi j2

...

e�sssT
t DDDi jNi j

3

77775
, H =

2

66664

Hi j1

Hi j2
...

Hi jNi j

3

77775
(4.22)

DDDi j =

2

66664

DDDi j1

DDDi j2
...

DDDi jNi j

3

77775
, fDDDi j =

2

66664

DDDi j1 +DDDi j1 DDDi j1 +DDDi j2 · · · DDDi j1 +DDDi jNi j

DDDi j2 +DDDi j1 DDDi j2 +DDDi j2 · · · DDDi j2 +DDDi jNi j
...

... · · · ...
DDDi jNi j +DDDi j1 DDDi jNi j +DDDi j2 · · · DDDi jNi j +DDDi jNi j

3

77775
. (4.23)
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Now f0 and the gradient can be represented as

f0 =
N

Â
i=1

N

Â
j=1

⇣
I2
i j�2Ii jI0ET H + I2

0 (ET H)2
⌘

(4.24)

∂ f0

∂sss t
=

N

Â
i=1

N

Â
j=1

⇣
2Ii jI0 sum[(E⇥H)⌦DDDi j]� I2

0 sum[((E⇥H)(E⇥H)T )⌦ fDDDi j]
⌘
, (4.25)

where sum[ ] stands for the sum over the elements of the container (5.25) of vectors, ⇥ is the
element-wise product, and ⌦ denotes the tensor product defined as

A =

2

66664

a11 a12 · · · a1m

a21 a22 · · · a2m
...

... · · · ...
an1 an2 · · · anm

3

77775
, B =

2

66664

bbb11 bbb12 · · · bbb1m

bbb21 bbb22 · · · bbb2m
...

... · · · ...
bbbn1 bbbn2 · · · bbbnm

3

77775
(4.26)

A⌦B =

2

66664

a11bbb11 a12bbb12 · · · a1mbbb1m

a21bbb21 a22bbb22 · · · a2mbbb2m
...

... · · · ...
an1bbbn1 an2bbbn2 · · · anmbbbnm

3

77775
. (4.27)

4.2 Numerical simulations

In this section, we report the results obtained by numerical simulations using the proposed
model.

The following parameters have been used in Algorithm 3: tinit = 1.0, µ = 1.5, e = 10�2.
For the line search, the range for the step size was ak 2 [0,100]. For the initial guess we
used B = I, sss t

0 = 000. For the 2D layered medium, the grid size was set to N = M = 20 with
square voxels of size 1 [mm], i.e. the medium is 20 [mm]⇥20 [mm], and dA = 1 [mm]. The
values of the extinction coefficients are set between 1.05 and 1.55 [mm�1], and the upper
bound (4.3) is set to u = 2.0 [mm�1]. The parameter of the Gaussian phase function is 0.2 or
0.4, and the scattering coefficient is set to ss = 1 [mm�1]. The threshold for excluding low
contribution paths is th = 0.001.

The ground truth and the estimated extinction coefficients are shown in Figure 4.2. The
matrix plots in the top row of the figure represents five different media (from (a) to (e)) used
for the simulation. Each voxel b is shaded in gray according to the values of the extinction
coefficient st [b], and darker gray represents larger values of st [b]. Also the values of st [b] are
displayed at each voxel. In the same manner, the middle and bottom rows show the estimated
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results when the following values of the parameter of the Gaussian phase function were used:
s2 = 0.2 and 0.4. Figure 4.3 shows the observations Ii j in a matrix form, from which the
extinction coefficients are estimated. Each element in these plots is now an observation Ii j.
We can see observations with higher values (shown in darker shades of gray in the plots) on
the diagonal. The observations obtained for s2 = 0.4 seem to be fainter than those obtained
for s2 = 0.2 due to the larger amount of scattering.

The left-most column of Fig. 4.2(a) shows the simplest case: the medium has almost
homogeneous extinction coefficients of value 1.05 (voxels shaded in light gray) except few
voxels with much higher coefficients of 1.2 (voxels shaded in dark gray), which means
that those voxels absorb much more light than other voxels. The coefficients are estimated
reasonably well as shown in the middle and bottom rows, and the root-mean-squared error
(RMSE) shown in Table 4.1 is small enough with the relative error of 0.0075/1.05 = 0.7%
to the background coefficient value. The other media, shown in columns (b)–(e), have
more complex distributions of the extinction coefficients. We summarize the quality of the
estimated results in terms of RMSE in Table 1. Numbers in the brackets are relative errors of
RMSE to the background extinction coefficient values (i.e., 1.05). Computation time is also
shown in Table 1. Note that our proposed method has been currently implemented in Matlab,
which can be accelerated further by using C++.

The values of the cost function f0 over iterations of the outer loop in Algorithm 3
are shown in Figure 4.4 for each medium. These curves show that the proposed method
effectively minimizes the original objective function (4.5) for five different types of media
shown here and probably for other media. Figure 4.5 demonstrates how the log-barriered
cost function f in Eq. (4.17) evolves over all iterations of the inner loop; the number of
iterations in the horizontal axis accumulates all inner iterations of the Quasi-Newton method.
We can see that each inner loop successively minimizes the log-barriered function and the
warm start (reusing the Hessian from the previous outer loop) may help the gap of values
between inner loops.
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GT

�2 = 0.2

�2 = 0.4
(a) (b) (c) (d) (e)

Fig 7 Numerical simulation results for a grid of size 20 ⇥ 20. Darker shades of gray represent larger values (more
light is absorbed at the voxel). The graybar shows the preojetcion from gray scale to value. The first row shows the
groundtruth of the five different media (a)–(e) used for the simulation. The second row shows the estimated results
when the �2 in the Gaussian phase function equals to 0.2. The last row shows the estimated results when the �2 = 0.4.

in the middle and bottom rows, and the root-mean-squared error (RMSE) shown in Table 5 is small
enough with 0.0075/1.05 = 0.7% of coefficient values. The other media, shown in columns (b)–
(e), have more complex distributions of the extinction coefficients. In the top part of Table 5, we
use the RMSEs to show the quality of the estimated results. The ratio in the brackets shows the
relative magnitude of RMSE compared with the majority extinction value or the background in the
grountruth. Here, according to the groundtruth of material (a)–(e) in Fig. 7, we set this majority
extinction value to be 1.05.

In the bottom part of Table 5, we show the computation time for the numerical simulation with
different media and different Gaussian phase function. As we implement our proposed method on
Matlab, the further reduction of computation time can be expected by implementing on C++.

The values of the cost function f0 over iterations of the outer loop in Algorithm 3 are shown in
Figure 9 for each medium. These curves show that the proposed method effectively minimizes the
original objective function (31) and maintain the decsending tendency for many different kinds of
media. Figure 10 demonstrates how the log-barriered cost function f in Eq. (43) evolves over all
iterations of the inner loop; the number of iterations in the horizontal axis accumulates all inner
iterations of the Quasi-Newton method. We can see that each inner loop successively minimizes
the log-barriered function and the warm start (reusing the Hessian from the previous outer loop)
may help the gap of values between inner loops.
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Fig. 4.2 Numerical simulation results for a grid of size 20⇥ 20. Darker shades of gray
represent larger values (more light is absorbed at the voxel). The bars on the side show
extinction coefficient values in greyscale. The first row shows ground truth for five different
types of media (a)–(e) used for the simulation. The second and third rows show estimated
results for s2 = 0.2 and s2 = 0.4, respectively, of the Gaussian phase function.

Table 4.1 RMSEs and computation time for the numerical simulations for five different
types of media (a)–(e) with grid size of 20⇥20, for two different Gaussian phase function
parameter values. Numbers in the brackets are relative errors of RMSE to the background
extinction coefficient values (i.e., 1.05).

(a) (b) (c) (d) (e)

RMSE
s2 = 0.2 0.0067506 0.014253 0.017771 0.016220 0.057692

(0.643%) (1.36%) (1.69%) (1.54%) (5.49%)

s2 = 0.4 0.0075305 0.014369 0.017704 0.015692 0.058464
(0.717%) (1.37%) (1.69%) (1.49%) (5.57%)

Computation time [s] s2 = 0.2 142 113 297 190 269

s2 = 0.4 127 110 186 156 267
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(a) (b) (c) (d) (e)

RMSE

Algorithm 3 0.0067506 0.014253 0.017771 0.016220 0.057692
�2 = 0.2 (0.643%) (1.36%) (1.69%) (1.54%) (5.49%)
Algorithm 3 0.0075305 0.014369 0.017704 0.015692 0.058464
�2 = 0.4 (0.717%) (1.37%) (1.69%) (1.49%) (5.57%)

Computation
time [s]

Algorithm 3 142 113 297 190 269
�2 = 0.2
Algorithm 3 127 110 186 156 267
�2 = 0.4

Table 1 RMSEs and computation time of the numerical simulations for five different media (a)–(e) with grid size of
20 ⇥ 20 and different Gaussian phase function.The top part of this table shows the RMSEs. The bottom part shows
the computation time with unit [s]

�2 = 0.2
T2B

�2 = 0.2
L2R

�2 = 0.4
T2B

�2 = 0.4
L2R

(a) (b) (c) (d) (e)

Fig 8 Visualization of the observations Iij in a matrix form. X axis stands for the index of the voxel where the light
source was located. Y axis shows the index of the the voxel where the detector was located. Iij is the light intensity
observed by the detector at voxel j where the light source is located at voxel i. Darker shades of gray represent larger
observation values. . (left to right columns) Five different media (a)–(e) used for the simulation in the same order as
in Fig. 7. (top to bottom rows) Iij for T2B and L2R configurations for �2 = 0.2 and �2 = 0.4.
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Fig. 4.3 Visualization of the observations Ii j in a matrix form. Each matrix shows Ii j in its
i-th row and j-th column. The horizontal index i indicates the location of the light source,
and the vertical index j the location of the detector. Hence, Ii j is the light intensity with the
detector at j and the light source at i. Darker shades of grey represent larger observation
values (brighter light is observed). (left to right columns) Five different media (a)–(e) used
for the simulation in the same order as in Fig. 4.2. (top to bottom rows) Ii j for T2B and L2R
configurations for s2 = 0.2 and s2 = 0.4.

Fig 9 Original cost function values f0 over iterations of the outer loop of Algorithm 3 for five different media (a)–(e)
with �2 = 0.2 (left) and 0.4 (right).

Fig 10 Log-barriered cost function values f over iterations of all inner loops of Algorithm 3 for medium (e) with
�2 = 0.2 (top) and 0.4 (bottom). Left plots are in log scale, while right plots are in linear scale.

20

Fig. 4.4 Original cost function values f0 over iterations of the outer loop of Algorithm 3 with
s2 = 0.2 (left) and 0.4 (right). The horizontal axis shows the number of outer iterations,
and the vertical axis represents the log of the original cost function values. Different plots
indicate five different types of media (a)–(e) used for the simulation.
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Fig 9 Original cost function values f0 over iterations of the outer loop of Algorithm 3 for five different media (a)–(e)
with �2 = 0.2 (left) and 0.4 (right).

Fig 10 Log-barriered cost function values f over iterations of all inner loops of Algorithm 3 for medium (e) with
�2 = 0.2 (top) and 0.4 (bottom). Left plots are in log scale, while right plots are in linear scale.
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Fig. 4.5 Log-barriered cost function values f over iterations of all inner loops of Algorithm 3
for medium (e) with s2 = 0.2 (top) and 0.4 (bottom). The horizontal axis shows the number
of total inner iterations accumulated across different outer loops. The vertical axis represents
the original cost function values (left) in log scale and (right) in linear scale.
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4.2.1 Comparison results

We compare our method to a standard DOT with Finite Element Methods (FEM) [54, 55]
using different optimization methods implemented in the Electrical Impedance Tomography
and Diffuse Optical Tomography Reconstruction Software (EIDORS) [54, 55]. The ground
truth used in this comparison is shown in the top row of Figure 11 (a) – (e); N = M = 24
medium of the size 24 [mm] ⇥ 24 [mm] with extinction coefficient distributions almost the
same as those shown in Fig.4.2 (a) – (e).

For solving DOT by EIDORS, we used 24⇥24⇥24 = 1152 triangle meshes (i.e., each
voxel is divided into two triangle meshes), and for the boundary condition we placed 16 light
sources and 16 detectors at the same interval around the medium. We chose two solvers:
Gauss-Newton (GN) method and Primal-Dual (PD) interior point method. We used sss t

0 = 000
as the initial guess for both our method and EIDORS.

The results obtained by our method (s2 = 0.4) and DOT with GN and PD are shown in
Fig.5.1. The results obtained by the proposed method are shown in the second row, which
are similar to those in the third row of Fig.4.2. The third row in Fig.5.1 shows results for
DOT with GN. This kind of blurred results are typical for DOT estimation due to its diffusion
approximation. The last row shows results for DOT with PD, which look better than those
obtained for DOT with GN, but still have a tendency of overestimating the high coefficient
value areas.

We summarize RMSE values and computation time for each method in Table 4.2 in the
same format with Table 4.1. RMSE values of our method are 2 to 5 times smaller than those
of DOT, and this demonstrates that the proposed method can achieve much more accurate
results.

The current disadvantage is its large computation cost, as our method takes up to 1000
times longer than DOT. We plan to reduce the computation cost by optimizing the code using
C++ and adopting other solvers.

4.3 Summary

Combining chapter 3 and chapter 4, we have proposed a path integral based approach to
optical tomography for multiple scattering in discretized participating media. Assuming the
scattering coefficients and phase function are known and uniform, the extinction coefficients
at each voxel in a 2D layered medium are estimated by using an interior point method.
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GT

Ours

DOT (GN)

DOT (PD)
(a) (b) (c) (d) (e)

Fig 11 Numerical simulation results for a grid of size 24 ⇥ 24 with different inverse solver. Darker shades of gray
represent larger values (more light is absorbed at the voxel). The graybar shows the preojetcion from gray scale to
value. First row shows the groundtruth of five different media (a)–(e) used for the simulation. Second row shows the
estimated results of our proposed. Third row shows the estimated results of DOT using an optimization method of
Gauss-Newton method with NOSER prior. The last row presents the simulation results of DOT using an inverse solver
of Primal-Dual Interior Point Method.

5.1 Comparison results

we compare with a standard DOT with FEM64, 65with different optimization methods implemented
in EIDORS.64, 65

The groundtruth used in the our proposed method and DOT are shown in the first row of Fig.11.
They are 24 [mm] ⇥ 24 [mm] mediums.

To fitting the change of the size of the medium, the parameters in Algorithm 3 were slightly
modified. For this special 2D layered medium, the grid size was set to N = M = 24 with square
voxels of size 1 [mm].

For DOT, we chose Gauss-Newton(GN) method coorperated with NOSER prior and the Primal-
Dual Interior Point Method(PDIPM) as the optimization methods.

Following description in section 3.5, we set the parameter of the Gaussian phase function to
be �2 = 0.4, as the shape of Gaussian phase function when �2 = 0.4 is relatively smooth. The
estimated result of Algorithm 3 is shown in the second row of Fig.11. And the estimated result
by Gauss-Newton methed is shown in the third row of Fig.11. The last row of Fig.11 shows the
simulation results of primal-dual interior point method. Comparing the three sets of results, it’s
obvious that Algorithm 3 correctly estimate the high extinction area. DOT obtained the results
which the high extinction area are larger than it in Algorithm 3 and groundtruth.
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Fig. 4.6 Numerical simulation results for a grid of size 24⇥24, comparing our method to
DOT with two solvers. Darker shades of gray represent larger values (more light is absorbed
at the voxel). The bars on the side show extinction coefficient values in greyscale. First
row shows the ground truth for five different types of media (a)–(e) used for the simulation.
Second row shows the estimated results of the proposed method. Third and fourth rows show
estimated results for DOT by using Guass-Newton (GN) and Primal-Dual (PD) interior point
solvers.

A large part of the computational cost of the proposed method comes from the forward
model prediction (3.27), which appears in the gradient computation (4.2). It depends on the
number of paths Ni j; we use currently about 700 paths out of all 2018 possible paths, and for
each path we need to compute path vectors DDDi jk, DDDi jk + DDDi jl , and factors Hi jk. A possible
acceleration is the precomputation of these variables but this would lead to a trade-off with
storage cost. Each DDDi jk has dimension of 20⇥ 20 = 400, each pair of i j has about 700
vectors of DDDi jk, and the number of pairs i j (hence observations) is 20⇥20 = 400. In total,
about 450MB memory would be required even if single precision floating numbers were
used for storing all DDDi jk. Fortunately, these vectors are necessarily sparse, and we have
used sparse matrices to store them. However, the increase will be linear in the number of
paths Ni j and quadratic with the grid size max(N,M). Therefore we make another efficient
implementations while maintain the accuracy of the proposed method in the next chapter.
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Table 4.2 RMSEs and computation time for the numerical simulations for five different types
of media (a)–(e) with grid size of 24⇥ 24, for the proposed method and DOT with two
solvers. Numbers in the brackets are relative errors of RMSE to the background extinction
coefficient values (i.e., 1.05).

(a) (b) (c) (d) (e)

RMSE

Ours 0.007662 0.01244 0.026602 0.021442 0.051152
s2 = 0.4 (0.730%) (1.18%) (2.53%) (2.04%) (4.87%)

DOT (GN) 0.053037 0.060597 0.7605 0.059534 0.0855
(5.05%) (5.77%) (7.53%) (5.67%) (8.14%)

DOT (PD) 0.052466 0.0626 0.081081 0.066042 0.080798
(5.25%) (5.97%) (8.11%) (6.60%) (8.08%)

Computation time [s]
Ours s2 = 0.4 257 217 382 306 504

DOT (GN) 0.397 0.390 0.407 0.404 0.453

DOT (PD) 1.11 1.09 1.14 1.08 1.15





Chapter 5

Primal-dual Interior Point approach

In this Chapter 5, following the same inverse problem in Chapter 4, we will use primal-dual
interior-point approach to solve the following optimization problem:

min
sss t

f s.t. stl  sss t  stu, (5.1)

where f is the cost function

f =
N

Â
i=1

N

Â
j=1

�����Ii j� I0

Ni j

Â
k=1

Hi jke�sssT
t DDDi jk

�����

2

, (5.2)

and stl and stu are lower and upper bounds, respectively. i is the position of the light source
i and j is the position the detector j. {Ii j} is a set of observations we obtained. The box
constraints are due to the nature of the extinction coefficient being positive (i.e., stl > 0), and
the numerical stability of excluding unrealistic large values.

5.1 Primal-dual interior point method of the inverse prob-
lem

Here we develop a primal-dual interior point method to solve the inverse problem (5.1). It
is an inequality constraint optimization with box constraints, which is straightforward to
apply a standard primal-dual method [16]. However, we can use the structure of the box
constraints, hence we derive an efficient algorithm by using the problem structure.
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5.1.1 Primal-dual method

We first rewrite the inequality constraint problem to an equivalent problem with equality
constraints with slack variables sss = (s1, . . . ,s2NM)T as follows;

min
sss t

f s.t. ccc� sss = 000, 0 sss, (5.3)

where ccc is a vector of the box constraints

ccc =

0

B@
c1(sss t)

...
c2NM(sss t)

1

CA=

 
sss t�stl111
stu111�sss t

!
. (5.4)

Here ci is the i-th constraint, and 111 is a vector of ones.
The Lagrangian L of the above problem is

L(sss t ,sss,zzz) = f �
2NM

Â
i=1

zi(ci� si) = f � zzzT (ccc� sss), (5.5)

where zzz is a vector of Lagrangian multipliers, or dual variables.
The KKT conditions of Eq. (5.3) with duality gap µ is written as

— f �AT zzz = 000, Szzz�µ111 = 000, ccc� sss = 000, sss� 000, zzz� 000, (5.6)

where S = diag(sss), and

A = —ccc =

0

B@
—c1

...
—c2NM

1

CA=

 
I
�I

!
. (5.7)

Here I is an identity matrix.
To solve the system of the KKT conditions by using Newton’s method, we have the

following system of equations;

0

B@
—2L 000 �AT

000 Z S
A �I 000

1

CA

0

B@
ppps
ppps

pppz

1

CA=�

0

B@
— f �AT zzz
Szzz�µ111

ccc� sss

1

CA , (5.8)

where Z = diag(zzz), and —2L is the Hessian of the Lagrangian.
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5.1.2 Solving the system efficiently

The matrix in Eq. (5.8) is of the size 5NM⇥5NM, which is sparse but large, and compu-
tationally expensive to solve. We therefore develop an efficient way to solve th system by
using the problem structure.

First the system is explicitly written as follows:
8
>><

>>:

—2Lppps �AT pppz =�— f +AT zzz

Zppps +Spppz =�Szzz+ µ111

Appps � ppps =�ccc+ sss.

(5.9)

Substituting the last equation into the second one yields

AT S�1Z(Appps + ccc� sss)+AT pppz =�AT zzz+ µAT S�1111, (5.10)

and we add the both side to the first equation to obtain

—2Lppps +AT S�1Z(Appps + ccc� sss) =�AT zzz+ µAT S�1111�— f +AT zzz. (5.11)

Here we define www = sss�1� zzz and yyy = µsss�1�www� ccc+ zzz, where � is the Hadamard (element-
wise) product, sss�1 is a vector of element-wise reciprocals of sss. Then we have

ppps = (—2L+AT S�1ZA)�1(�— f +AT yyy) (5.12)

pppz = µsss�1�www� ppps� zzz. (5.13)

By exploiting the structure of matrix A, and defining www = (wwwT
l ,wwwT

u )T to split a vector into
two parts corresponding to lower and upper bound constraints, we have

AT S�1ZA =
⇣

I �I
⌘

diag(www)

 
I
�I

!
= diag(wwwl +wwwu). (5.14)

Similarly, we define yyy = (yyyT
l ,yyyT

u )T to simplify AT yyy as AT yyy = yyyl� yyyu and then

Appps =

 
I
�I

!
ppps =

 
ppps
�ppps

!
. (5.15)
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Now the solution is given by
8
>>>>><

>>>>>:

ppps = (—2L+diag(wwwl +wwwu))
�1(�— f + yyyl� yyyu)

ppps =

 
ppps
�ppps

!
+ ccc� sss

pppz = µsss�1�www� ppps� zzz,

(5.16)

which involves the inversion of the size NM⇥NM.

5.1.3 Update variables

Once ppps , ppps, and pppz are obtained, we then estimate the step length to update the parameters
[16]. The maximum of the step lengths is given by the following rule;

(
amax

s = max{a 2 [0,1] | sss+a ppps � (1� t)sss}
amax

z = max{a 2 [0,1] | zzz+a pppz � (1� t)zzz},
(5.17)

with t 2 (0,1) are used (for example, t = 0.995). This prevents variables sss and zzz from
approaching to the lower boundary.

Next we perform the backtracking line search [51] to estimate acceptable step lengths as

and az. To this end, we use the following exact merit function f with h 2 (0,1);

f(sss t ,sss) = f �µ
2MN

Â
i=1

log(si)+ vkccc(x)� sssk, (5.18)

and make a sufficient decrease requirement

f(sss t +as ppps ,sss+as ppps) f(sss t ,sss)+hasDf (sss t ,sss; ppps , ppps), (5.19)

where Df (sss t ,sss; ppps , ppps) denotes the directional derivative of f in the direction (ppps , ppps). The
step lengths as and az are found in the ranges as 2 (0,amax

s ] and az 2 (0,amax
z ] so that Eq.

(5.19) is satisfied.
Then the parameters sss t , sss and zzz are updated as

8
>><

>>:

sss t  sss t +as ppps

sss sss+as ppps

zzz zzz+az pppz.

(5.20)
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Algorithm 4: Primal-Dual interior point with line search.
Data: µ > 0,s 2 (0,1),eTOL > 0,eµ ,h 2 (0,1),k = 0.
Input: A feasible initial estimates sss t , sss > 0, and zzz > 0.
Input: B0 = I // Only for Quasi-Newton
Result: Estimates of sss t

1 repeat
2 repeat // inner loop
3 Compute the decent direction ppp = (ppps , ppps, pppz)
4 Compute the step lengths as and az
5 Update sss t ,sss,zzz
6 Update the approximation Bk // Only for Quasi-Newton
7 Set k k +1
8 until E(sss tk,sssk,zzzk; µ) eµ ;
9 µ  s µ

10 eµ  µ
11 until E(sss tk,sssk,zzzk;0) eTOL ;

Once following error function is smaller than a given threshold, the primal-dual interior
point method stops;

E(sss t ,sss,zzz; µ) = max{k— f �AT zzzk,kSzzz�µ111k,kccc� sssk}. (5.21)

Algorithm 4 summaries the primal-dual interior point method developed above. Note that
the Hessian —2L can be approximated as Bk at each iteration k by the Quasi-Newton method,
instead of the full Hessian used by the Newton’s method. We will compare the Newton’s
method and the Quasi-Newton method in the section of experiments.

5.2 Efficient formulations

The most computationally intensive part of the primal-dual algorithm shown above is the
computation of Hessians for Newton’s method and Jacobians for Newton’s and Quasi-Newton
methods. We propose here efficient formulations of Hessian and Jacobian of the problem,
whose computational cost is much smaller than naive formulations used in the previous
approaches.

First we show the naive and old formulations of Hessian and Jacobian, then introduce our
new formulations, followed by discussions on computational cost.
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5.2.1 Previous old formulations for inverse problem

Here we show how the previous approaches [65, 72, 71] do. We call these the old formula-
tions.

Jacobian: old formulation

Remind that the objective function f to be minimized is

f =
N

Â
i=1

N

Â
j=1

 
I2
i j�2Ii jI0

Ni j

Â
k=1

Hi jke�sssT
t DDDi jk + I2

0

Ni j

Â
k=1

Ni j

Â
l=1

Hi jkHi jle�sssT
t (DDDi jk+DDDi jl)

!
. (5.22)

The gradient of f is given as follows by taking the derivative of the objective function;

∂ f
∂sss t

=
N

Â
i=1

N

Â
j=1

 
2Ii jI0

Ni j

Â
k=1

Hi jke�sssT
t DDDi jkDDDi jk

� I2
0

Ni j

Â
k=1

Ni j

Â
l=1

Hi jkHi jle�sssT
t (DDDi jk+DDDi jl)(DDDi jk +DDDi jl)

!
. (5.23)

To simplify the equation, the following notations are introduced;

EEEi j =

0

BBBB@

e�sssT
t DDDi j1

e�sssT
t DDDi j2

...

e�sssT
t DDDi jNi j

1

CCCCA
,HHHi j =

0

BBBB@

Hi j1

Hi j2
...

Hi jNi j

1

CCCCA
,Di j =

0

BBBB@

DDDi j1

DDDi j2
...

DDDi jNi j

1

CCCCA
(5.24)

fDi j =

0

BBBB@

DDDi j1 +DDDi j1 · · · DDDi j1 +DDDi jNi j

DDDi j2 +DDDi j1 · · · DDDi j2 +DDDi jNi j
... . . . ...

DDDi jNi j +DDDi j1 · · · DDDi jNi j +DDDi jNi j

1

CCCCA
. (5.25)

Now f and the gradient are rewritten as follows:

f =
N

Â
i=1

N

Â
j=1

⇣
I2
i j�2Ii jI0 EEET

i jHHHi j + I2
0 (EEET

i jHHHi j)
2
⌘

(5.26)

∂ f
∂sss t

=
N

Â
i=1

N

Â
j=1

⇣
2Ii jI0 sum[(EEEi j�HHHi j)⌦Di j]

� I2
0 sum[((EEEi j�HHHi j)(EEEi j�HHHi j)

T )⌦fDi j]
⌘
, (5.27)
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where sum[ ] stands for the sum over the elements of the container (5.25) of vectors, and ⌦
denotes the tensor product.

Hessian: old formulation

We define the following notations;

bbb i jx =

0

BBBB@

Di j1x

Di j2x
...

Di jkx

1

CCCCA
(5.28)

ggg i jx =

0

BBBB@

Di j1x +Di j1x · · · Di j1x +Di jkx

Di j2x +Di j1x · · · Di j2x +Di jkx
... . . . ...

Di jkx +Di j1x · · · Di jkx +Di jkx

1

CCCCA
, (5.29)

where Di jkx stands for the x-th element of DDDi jk.
Now the second order derivate of f can be represented as follows.

∂ 2 f
∂ 2sss t

=

0

BBBB@

h1,1 h1,2 · · · h1,NM

h2,1 h2,2 · · · h2,NM
...

... · · · ...
hNM,1 hNM,2 · · · hNM,NM

1

CCCCA
, (5.30)

where each element is given by

hxy =�
N

Â
i=1

N

Â
j=1

Ii jI0 sum(EEEi j�HHHi j�bbb i jx�bbb i jy)+

N

Â
i=1

N

Â
j=1

I2
0 sum[(EEEi j�HHHi j)(EEEi j�HHHi j)

T � ggg i jx� ggg i jy]. (5.31)

5.2.2 The proposed new efficient formulation

The problem of the previous old formulations of Jacobian and Hessian shown above is the
computation cost increasing as the number Ni j of paths increases. As discussed later, the
computation cost is O(N2

i j) on average.
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The idea of the proposed formulation is to explore the property of the exponential function
and its derivative in the problem. As shown below, the computation cost can be reduced to
O(Ni j) on average.

Jacobian: new formulation

First we rewrite the cost function as follows.

f =
N

Â
i=1

N

Â
j=1

r2
i j, (5.32)

where ri j is a residual,

ri j = Ii j� I0

Ni j

Â
k=1

Hi jke�sssT
t DDDi jk = Ii j� I0 EEET

i jHHHi j. (5.33)

Now we use the chain rule of differentiation, we have

∂ f
∂sss t

=
N

Â
i=1

N

Â
j=1

2ri j
∂ ri j

∂sss t
, (5.34)

where

∂ ri j

∂sss t
= I0

Ni j

Â
k=1

Hi jke�sssT
t DDDi jkDDDi jk = I0Di j(EEEi j�HHHi j). (5.35)

Here we define 1

Di j =
⇣

DDDi j1,DDDi j2, · · · ,DDDi jNi j

⌘
, (5.36)

which has Ni j vectors of dimension NM, and (EEEi j�HHHi j) is a coefficient vector. Therefore,

∂ f
∂sss t

=
N

Â
i=1

N

Â
j=1

2I0(Ii j� I0 EEET
i jHHHi j)Di j (EEEi j�HHHi j). (5.37)

Discussion

Suppose that the expectation of the number of paths is N̄ = E[Ni j]. Then the computations
for the proposed new formulation of Jacobian above are:

1 Note that this is not the same with the one defined in the previous approaches above, which is a structure
used in MATLAB codes to store DDDi jk. Here Di j is an (NM)⇥Ni j matrix.
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• O(N̄) multiplications for EEEi j�HHHi j,

• O(N̄) additions for EEET
i jHHHi j,

• O(N̄NM) multiplications and additions for Di j(EEEi j�HHHi j) because there are O(N̄)

vectors of dimension NM,

for each i and j. Totally, it takes O(N̄N3M) operations to compute NM elements of the
Jacobian, or O(N̄N2) operations per element.

Contrary, for each i and j the previous old formulation Eq.(5.27) needs:

• O(N̄) multiplications for EEEi j�HHHi j,

• O(N̄NM) multiplications for (EEEi j �HHHi j)⌦Di j because there are O(N̄) vectors of
dimension NM,

• O(N̄NM) additions for sum[(EEEi j�HHHi j)⌦Di j],

for the first term, and

• O(N̄2) multiplications for (EEEi j�HHHi j)(EEEi j�HHHi j)T ,

• O(N̄2NM) additions for computing fDi j because there are O(N̄2) vectors of dimension
NM,

• O(N̄2NM) multiplications for ((EEEi j�HHHi j)(EEEi j�HHHi j)T )⌦fDi j,

• O(N̄2NM) additions for sum[((EEEi j�HHHi j)(EEEi j�HHHi j)T )⌦fDi j],

for the second term. Totally, it takes O(N̄2N3M) operations to compute NM elements of the
Jacobian, or O(N̄2N2) operations per element. The difference is mainly caused by the second
term of Eq.(5.27).

In summary, the proposed new formulation has the cost of O(N̄N2) operations per
element, while the previous old formulation has the cost of O(N̄2N2) operations per element.
Table 5.1 summarizes the discussion above.

Hessian: new formulation

In the same manner, we can derive the Hessian as follows. From the Jacobian

∂ f
∂sss t

=
N

Â
i=1

N

Â
j=1

2ri j
∂ ri j

∂sss t
, (5.38)
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Table 5.1 Comparison of the new and old formulations for computing the Jacobian.

terms new old
EEEi j�HHHi j O(N̄) O(N̄)
EEET

i jHHHi j O(N̄)
Di j(EEEi j�HHHi j) O(N̄NM)
(EEEi j�HHHi j)�Di j O(N̄NM)
sum[(EEEi j�HHHi j)�Di j] O(N̄NM)
(EEEi j�HHHi j)(EEEi j�HHHi j)T O(N̄2)
fDi j O(N̄2NM)

((EEEi j�HHHi j)(EEEi j�HHHi j)T )�fDi j O(N̄2NM)

sum[((EEEi j�HHHi j)(EEEi j�HHHi j)T )�fDi j] O(N̄2NM)
per element O(N̄N2) O(N̄2N2)

we obtain the Hessian by using the chain rule of differentiation;

∂ 2 f
∂sss2

t
=

N

Â
i=1

N

Â
j=1

2
∂ ri j

∂sss t

∂ ri j

∂sss t

T
+2ri j

∂ 2ri j

∂sss2
t
, (5.39)

where

∂ 2ri j

∂sss2
t

=�I0

Ni j

Â
k=1

Hi jke�sssT
t DDDi jkDDDi jkDDDT

i jk (5.40)

=�I0 Di j diag(EEEi j�HHHi j)DT
i j. (5.41)

Now the Hessian can be written as follows:

∂ 2 f
∂sss2

t
=

N

Â
i=1

N

Â
j=1

2I2
0 Di j(EEEi j�HHHi j)(Di j(EEEi j�HHHi j))

T

�2I0 (Ii j� I0 EEET
i jHHHi j)Di j diag(EEEi j�HHHi j)DT

i j. (5.42)

Note that Di j(EEEi j�HHHi j)(Di j(EEEi j�HHHi j))T should not be expanded like as Di j(EEEi j�HHHi j)(EEEi j�
HHHi j)T DT

i j because it involves a large matrix (EEEi j�HHHi j)(EEEi j�HHHi j)T which is computationally
intensive to compute.

Discussion

By reusing EEEi j�HHHi j and Di j(EEEi j�HHHi j) computed for the Jacobian, the new formulation of
Hessian needs

• O(N2M2) multiplications for Di j(EEEi j�HHHi j)(Di j(EEEi j�HHHi j))T ,
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Table 5.2 Comparison of the new and old formulations for computing the Hessian.

terms new old
Di j(EEEi j�HHHi j)(Di j(EEEi j�HHHi j))T O(N2M2)
Di jdiag(EEEi j�HHHi j) O(N̄NM)
Di jdiag(EEEi j�HHHi j)DT

i j O(N̄N2M2)
(EEEi j�HHHi j�bbb i jx�bbb i jy) O(N̄)
(EEEi j�HHHi j)(EEEi j�HHHi j)T O(N̄2)
(EEEi j�HHHi j)(EEEi j�HHHi j)T � ggg i jx� ggg i jy O(N̄2)
sums of i, j O(N2N̄2)
per element O(N̄N2) O(N2N̄2)

• O(N̄NM) multiplications for Di jdiag(EEEi j�HHHi j),

• O(N̄N2M2) multiplications for Di jdiag(EEEi j�HHHi j)DT
i j,

for each i and j. Totally, it takes O(N̄N4M2) operations to compute N2M2 elements of the
Hessian, or O(N̄N2) operations per element.

Contrary, for each element the previous formulation (5.31) needs:

• O(N̄2) multiplications for ggg i jx,

• O(N̄) multiplications and the sum for (EEEi j�HHHi j�bbb i jx�bbb i jy),

• O(N̄2) multiplications for (EEEi j�HHHi j)(EEEi j�HHHi j)T ,

• O(N̄2) multiplications and the sum for (EEEi j�HHHi j)(EEEi j�HHHi j)T � ggg i jx� ggg i jy,

• O(N̄2N2) additions for the sums of i and j.

Totally, it takes O(N̄2N2) operations to compute a single element of the Hessian.
In summary, the proposed new formulation has the cost of O(N̄N2) operations per

element, while the previous old formulation has the cost of O(N2N̄2) operations per element.
Table 5.2 summarizes the discussion above.

5.3 Numerical simulation

In this section, we report the results obtained by simulations using the proposed method
by comparing primal-dual and log barrier interior point methods, as well as old and new
formulations of Jacobian and Hessian.
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Since the mathematical model we used to describe the light transport in the forward
problem is exactly the same with the model in the previous work [71], we use the same setup
as follows. For the 2D layered medium, the grid size was set to N = M = 24 with square
voxels of size 1 [mm], i.e. the medium is 24 [mm]⇥24 [mm]. The values of the extinction
coefficients are set between 1.05 and 1.55 [mm�1], and the lower and upper bounds (stl

and stu) are set to be 1.0 and 2.0 [mm�1], respectively. Values of the initial guess are 1.001
for all elements of sss t0, as well as sss0 and zzz0. Parameters used in Alg.4 are set as s = 0.5,
h = 0.01, eµ = 1, and eTOL = 0.02.

5.3.1 Estimation quality

The ground truth and the estimated results are shown in Figure 5.1. The matrix plots in the
top row of the figure represent five different media (from a to e) used for the simulation,
which were also used in the previous work [71]. Note that the medium e is the Shepp-
Logan phantom [64]. Each voxel is shaded in gray according to the values of the extinction
coefficients.

The following rows show the estimated results of different combinations of log-barrier
(LB) or primal-dual (PD) methods, Old or New formulas, and Newton’s or Quasi-Newton
methods. The proposed method is PD-New-Newton/Quasi-Newton; the use of primal-dual
method with Newton’s or Quasi-Newton method by using the proposed new formulation. The
row LB-Old-Quasi-Newton corresponds to the previous work [71] that uses the log-barrier
method with Quasi-Newton method by using the old formulation, and the row LB-Old-
Newton corresponds to another prior work [65] .

As we can see, the results of different combinations almost look the same for each of the
five media. This observation is also validated by the root mean square error (RMSE) shown
in Table 5.3. The RMSE values of all combinations are more or less the same, while some
variations appears due to the different update rules between Newton’s and Quasi-Newton
methods, and different stopping conditions between log-barrier and primal-dual methods.

5.3.2 Estimation time

The main goal of this paper is to develop an efficient way to solve the inverse problem. Table
5.3 shows the computation cost of different combinations. All experiments were performed
on a Linux workstation (two Intel Xeon E5-2630 2.4GHz CPUs, total 16 physical cores,
with 256 GB memory). We implemented the method in MATLAB R2017a, and did not
explicitly use the parallel computation toolbox of MATLB except the Hessian computation of
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Ground truth

LB-New-Newton

LB-New-QuasiNewton

LB-Old-Newton

LB-Old-QuasiNewton

PD-New-Newton

PD-New-QuasiNewton

PD-Old-Newton

PD-Old-QuasiNewton

a b c d e

Fig. 5.1 Numerical simulation results for five media (a–e) in a grid of 24⇥24. Darker shades
of gray represent larger values of extinction coefficients (more light is absorbed at the voxel).
The bars on the side show extinction coefficient values in gray scale. The first row shows
ground truth for five different types of media used for the simulation. The following rows
show the estimated results for different combinations of log-barrier (LB) or primal-dual (PD)
methods, Old or New formulas, and Newton’s or Quasi-Newton methods.
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LB/PD-Old-Newton due to its slow computation. Parallel matrix multiplications are however
automatically performed on MATLAB. Table 5.3 show the computation time for different
computation in seconds. We report the average and standard deviation of 10 trials, except the
cases of LB/PD-Old-Newton which show the processing time of a single trial.

For any combination, our proposed new formulation is much faster than the old formula-
tion. The uses of Newton’s method greatly benefit from the efficient Hessian computation
and the computation time reduces more than factor of 100. However the new formulation do
not help to reduce the computation cost of Quasi-Newton methods and the reduction is factor
of just 2 or 3. This is due to the fact that the Quasi-Newton method needs gradient vectors,
and its computation is order of NM (the number of voxels) and it is not so large in terms of
the total computation cost. In contrast, Hessian computation in the Newton’s method is of
the size NM⇥NM, which is quite large compare to the gradient. Our new formulation is
therefore better when the Newton’ method is used.

With the Quasi-Newton method, the primal-dual approach seems to be comparable to
the log-barrier method. By comparing rows LB/PD-New-QuasiNewton, log-barrier is faster
than primal-dual for denser media (c, d, and e). This might be caused by the different
way of approximations by the Quasi-Newton method. For the log-barrier method, the
gradient is modified by the approximated Hessian. For the primal-dual method, however
the approximated Hessian is used in the matrix to be solved, resulting in an update rule
of ppps regularized by diagonal elements of www in Eq.(5.16). Except the simplest medium
(a), the fast combination is PD-New-Newton, which is proposed in this paper. This is due
to the fast convergence of the Newton’s method compared to the Quasi-Newton method,
and also the fact that the primal-dual method needs fewer iterations than the log-barrier
method. The qualities of results are almost the same as discussed above, then PD-New-
Newton is the best when the working memory is enough for storing the Hessian. Otherwise,
LB/PD-New-QuasiNewton are better to be used.

5.3.3 Comparison

We compare our methods to a standard DOT wit FEM implemented in the Electrical
Impedance Tomography and Diffuse Optical Tomography Reconstruction Software (EI-
DORS) [3, 4]. in the same setting with the previous work [71]: N = M = 24 medium of size
24 (mm) ⇥ 24 (mm) with the five media (a to e). For solving DOT by EIDORS, we used
24⇥24⇥24 = 1152 triangle elements. For boundary condition we placed 48 light sources
and detectors at the same intervals around the medium. We used some different solvers and
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Table 5.3 RMSEs and computation time for the numerical simulations for five different
types of media (a–e) with grid size of 24⇥ 24, for different combinations of log-barrier
(LB) or primal-dual (PD) methods, Old or New formulas, and Newton’s or Quasi-Newton
methods. Each computation time shows the mean and standard deviation of 10 trials, except
the combinations of ”Old-Newton”. Note that RMSE values are exactly the same for 10
trials. Results of diffuse optical tomography (DOT) methods are shown for comparison.

a b c d e

RMSE

LB-New-Newton 0.008422 0.012643 0.014594 0.021246 0.052511
LB-New-QuasiNewton 0.008646 0.012478 0.014444 0.020375 0.049811
LB-Old-Newton 0.008422 0.012643 0.014594 0.021246 0.052420
LB-Old-QuasiNewton 0.008646 0.012478 0.014444 0.020375 0.049818
PD-New-Newton 0.009776 0.013190 0.014490 0.021251 0.055912
PD-New-QuasiNewton 0.009754 0.013184 0.014502 0.021201 0.056085
PD-Old-Newton 0.009776 0.013190 0.014490 0.021251 0.055912
PD-Old-QuasiNewton 0.009754 0.013184 0.014502 0.021201 0.056084
DOT (GN, Laplace prior) 0.059339 0.062984 0.078100 0.065001 0.087094
DOT (GN, NOSER prior) 0.052053 0.057515 0.075478 0.059156 0.086397
DOT (GN, Tikhonov prior) 0.054729 0.056196 0.073146 0.059284 0.087659
DOT (primal-dual, TV prior) 0.055047 0.059219 0.081811 0.070263 0.086107

Computation
time [s]

LB-New-Newton 60.00 ± 4.60 57.63 ± 1.41 61.90 ± 2.88 62.32 ± 1.22 93.10 ± 2.46
LB-New-QuasiNewton 18.64 ± 0.90 17.22 ± 1.03 25.32 ± 1.21 20.73 ± 1.10 32.57 ± 0.58
LB-Old-Newton 126100 12848 13383 14037 21577
LB-Old-QuasiNewton 44.86 ± 1.33 42.58 ± 1.19 63.75 ± 1.76 54.05 ± 2.04 91.17 ± 1.48
PD-New-Newton 18.73 ± 2.18 16.52 ± 0.67 17.40 ± 0.93 18.28 ± 1.30 23.14 ± 1.32
PD-New-QuasiNewton 14.44 ± 0.78 13.07 ± 0.61 40.25 ± 1.01 30.77 ± 0.86 48.26 ± 1.59
PD-Old-Newton 5673 5418 5824 5663 7547
PD-Old-QuasiNewton 75.67 ± 1.34 67.18 ± 1.38 203.42 ± 3.42 155.69 ± 2.67 248.05 ± 4.86
DOT (GN, Laplace prior) 0.34 ± 0.04 0.41 ± 0.04 0.40 ± 0.03 0.40 ± 0.04 0.40 ± 0.03
DOT (GN, NOSER prior) 0.52 ± 0.04 0.52 ± 0.05 0.53 ± 0.05 0.50 ± 0.01 0.52 ± 0.03
DOT (GN, Tikhonov prior) 0.29 ± 0.01 0.29 ± 0.02 0.30 ± 0.03 0.29 ± 0.01 0.29 ± 0.02
DOT (primal-dual, TV prior) 2.67 ± 0.07 2.68 ± 0.06 2.67 ± 0.07 2.64 ± 0.05 2.66 ± 0.07
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priors; Gauss-Newton method [2] with Laplace, NOSER [19], and Tikhonov priors, and
primal-dual method with total variation prior.

Due to the diffusion approximation of DOT, the results for DOT wit Gauss-Newton
method are blurred, and those for DOT wit PD have a tendency of overestimating the hight
coefficient value areas. In contrast, the results of PD-New-Newton (and other combinations
in Figure 5.1) are more clear and sharp for all combinations. This observation is also
validated by the root mean square error (RMSE) shown in Table 5.3. The RMSE values of
PD-New-Newton are smaller than the values of DOT for all five media.

The obvious drawback of PD-New-Newton is its high computation cost. It is slower by
factor of 10 compared to DOT with primal-dual method, and factor of 100 to DOT with
Gauss-Newton method. A large part of the computation cost comes from the computation
of Hessian and Jacobian, which depends on the number of paths Ni j. Further reduction of
computation cost is left for our future work.

5.4 Conclusion

In this chapter, we have proposed a primal-dual approach to optical tomography with
discretized path integral, and also efficient formulation for computing Hessian and Jacobian.
Numerical simulation examples with 2D layered media are shown to demonstrate that the
proposed method, called PD-New-Newton in the experiments, performed faster than the
previous work (LB-Old-QuasiNewton) while the estimated extinction coefficients of the
both method were comparable. Compared to DOT, the proposed method worked slower but
produced better estimation results in terms of RMSE.
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Ground truth

PD-New-Newton

DOT
(Gauss-Newton, Laplace prior)

DOT
(Gauss-Newton, NOSER prior)

DOT
(Gauss-Newton, Tikhonov prior)

DOT
(Primal-Dual, TV prior)

a b c d e

Fig. 5.2 Numerical simulation results for five media (a–e) in a grid of 24⇥24. Darker shades
of gray represent larger values of extinction coefficients (more light is absorbed at the voxel).
The bars on the side show extinction coefficient values in gray scale. The first row shows
ground truth for five different types of media used for the simulation. The following rows
show the estimated results for different combinations of log-barrier (LB) or primal-dual (PD)
methods, Old or New formulas, and Newton’s or Quasi-Newton methods. Results of the
previous work [71] and diffuse optical tomography (DOT) are shown as baselines in the last
three rows.





Chapter 6

Conclusion

In this thesis, we have developed an optical tomography method using discretized path
integral as a forward model and solving a non-linear inverse problem with Log-barrier and
Primal-dual interior point approaches. Optical tomography is urgently needed in medical area
due to the fact that other tomography methods have their own disadvantages. For example,
the radiation exposure in the X-ray Computed Tomography (CT) has always been a issue
since the X-ray CT was invented; the Nuclear Magnetic Resonance Imaging (NMRI) has
very limited working area.

In the forward problem , we use path integral to build a mathematical model for the light
transport in the optical tomography. To simplify the model, as the first step, we discretizied
path integral. The second step, we designed a Two-Dimesional layered material with specific
scattering model. The third step, the phase function was approximated by a Gaussian model.
After the above three steps, we obtained the forward model with a simplified expression.

Once we got the forward model, we formulated the inverse problem which is a inequality
optimization problem with boxed constraints.

To solve the inverse problem, we implemented the Log-barrier interior point approach.
The numerical results show our approach works well. The comparison results with DOT also
point out our approach has advantage in accuracy.

In order to improve the performance, we introduced the Primal-dual interior point ap-
proach. We further form new efficient formulations for computing Jacobian and Hessian
which consider as the most computational expensive partin the cost function of the constraint
non-linear optimization problem. Numerical experiments show that Primal-dual approach
works well with the new efficient formulations, and the computation time was reduced four
times than the Log-barrier interior point approach while the quality of the estimation results
maintain the same.
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In our future work, the assumptions we made to the forward model should be released.
And the scattering coefficient should also be estimated during the method. And to further
reduce the computation cost, the platform should also be transfer to C++.



References

[1] Adams, M. L. and Larsen, E. W. (2002). Fast iterative methods for discrete-ordinates
particle transport calculations. Progress in Nuclear Energy, 40(1):3 – 159.

[2] Adler, A. and Guardo, R. (1996). Electrical impedance tomography: regularized imaging
and contrast detection. IEEE Transactions on Medical Imaging, 15(2):170–179.

[3] Adler, A. and Lionheart, W. R. (2005). Eidors: Towards a community-based extensi-
ble software base for eit. In 6th Conference on Biomedical Applications of Electrical
Impedance Tomography, London, UK, pages 1–4.

[4] Adler, A. and Lionheart, W. R. (2006). Uses and abuses of eidors: an extensible software
base for eit. Physiological measurement, 27(5):S25.

[5] Antyufeev, V. S. (2000). Monte Carlo Method for Solving Inverse Problems of Radiation
Transfer. Inverse and Ill-Posed Problems Series. VSP.

[6] Antyufeev, V. S. (2012). On the distribution of a random variable. Sib. Zh. Ind. Mat.,
15(2):3–10.

[7] Arridge, S. R. (1999). Optical tomography in medical imaging. Inverse Problems,
15(R41–93).

[8] Arridge, S. R. and Hebden, J. C. (1997). Optical imaging in medicine: II. modelling and
reconstruction. Physics in Medicine and Biology, 42(5):841.

[9] Arridge, S. R. and Schotland, J. C. (2009). Optical tomography: forward and inverse
problems. Inverse Problems, 25(12):123010.

[10] Arridge, S. R. and Schweiger, M. (1997). Image reconstruction in optical tomography.
Philosophical Transactions of the Royal Society B: Biological Sciences, 352(1354):717–
726.

[11] Baba, M., Ishimaru, K., Hiura, S., Furukawa, R., Miyazaki, D., and Aoyama, M. (2014).
Estimation of scattering properties of participating media using multiple-scattering ren-
derer,. In Proceedings of The Fourth IIEEJ International Workshop on Image Electronics
and Visual Computing.

[12] Bal, G. (2009). Inverse transport theory and applications. Inverse Problems,
25(5):053001.



56 References

[13] Barbour, R. L., Graber, H. L., Aronson, R., and Lubowsky, J. (1990). Model for 3-D
optical imaging of tissue. In Int. Geosci. and Remote Sensing Symp. (IGARSS), volume 2,
pages 1395–1399.

[14] Blasi, P., Saec, B., and Schlick, C. (1993). A rendering algorithm for discrete volume
density objects. In Computer Graphics Forum, volume 12, pages 201–210. Wiley Online
Library.

[15] Boas, D. A., Brooks, D. H., Miller, E. L., DiMarzio, C. A., Kilmer, M., Gaudette,
R. J., and Zhang, Q. (2001). Imaging the body with diffuse optical tomography. Signal
Processing Magazine, IEEE, 18(6):57–75.

[16] Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambrige Univesity
Press.

[17] Cerezo, E., Pérez, F., Pueyo, X., Seron, F. J., and Sillion, F. X. (2005). A survey on
participating media rendering techniques. The Visual Computer, 21(5):303–328.

[18] Charette, A., Boulanger, J., and Kim, H. K. (2008). An overview on recent radiation
transport algorithm development for optical tomography imaging. Journal of Quantitative
Spectroscopy and Radiative Transfer, 109(17–18):2743 – 2766.

[19] Cheney, M., Isaacson, D., Newell, J. C., Simske, S., and Goble, J. (1990). NOSER: An
algorithm for solving the inverse conductivity problem. International Journal of Imaging
Systems and Technology, 2(2):66–75.

[20] Cornette, W. M. and Shanks, J. G. (1992). Physically reasonable analytic expression
for the single-scattering phase function. Appl. Opt., 31(16):3152–3160.

[21] Dobashi, Y., Iwasaki, W., Ono, A., Yamamoto, T., Yue, Y., and Nishita, T. (2012). An
inverse problem approach for automatically adjusting the parameters for rendering clouds
using photographs. ACM Transactions on Graphics, 31(6).

[22] Dutre, P., Bala, K., Bekaert, P., and Shirley, P. (2003). Advanced global illumination.
A. K. Peters, Ltd.

[23] Edström, P. (2005). A fast and stable solution method for the radiative transfer problem.
SIAM Review, 47(3):pp. 447–468.

[24] Edström, P. (2008). A two-phase parameter estimation method for radiative transfer
problems in paper industry applications. Inverse Problems in Science and Engineering,
16(7):927–951.

[25] Edström, P. (2010). Simulation and modeling of light scattering in paper and print
applications. In Kokhanovsky, A. A., editor, Light Scattering Reviews 5, Springer Praxis
Books, pages 451–475. Springer Berlin Heidelberg.

[26] Feynman, R. P. and Hibbs, A. R. (1965). Quantum Mechanics and Path Integrals.
McGraw-Hill.

[27] Florescu, L., Markel, V. A., and Schotland, J. C. (2010). Single-scattering optical
tomography: Simultaneous reconstruction of scattering and absorption. Physical Review
E, 81:016602.



References 57

[28] Florescu, L., Schotland, J. C., and Markel, V. A. (2009). Single-scattering optical
tomography. Physical Review E, 79:036607–1–10.

[29] Gibson, A. P., Hebden, J. C., and Arridge, S. R. (2005). Recent advances in diffuse
optical imaging. PHYSICS IN MEDICINE AND BIOLOGY, 50:R1–R43.

[30] Gkioulekas, I., Zhao, S., Bala, K., Zickler, T., and Levin, A. (2013). Inverse volume
rendering with material dictionaries. ACM Trans. Graph., 32(6):162:1–162:13.

[31] Hayakawa, C. and Spanier, J. (2004). Perturbation monte carlo methods for the solution
of inverse problems. In Niederreiter, H., editor, Monte Carlo and Quasi-Monte Carlo
Methods 2002, pages 227–241. Springer Berlin Heidelberg.

[32] Hayakawa, C. K., Spanier, J., and Venugopalan, V. (2007). Coupled forward-adjoint
monte carlo simulations of radiative transport for the study of optical probe design in
heterogeneous tissues. SIAM Journal on Applied Mathematics, 68(1):pp. 253–270.

[33] Hebden, J. C., Arridge, S. R., and Delpy, D. T. (1997). Optical imaging in medicine: I.
experimental techniques. Physics in Medicine and Biology, 42(5):825.

[34] Heino, J., Arridge, S., Sikora, J., and Somersalo, E. (2003). Anisotropic effects in
highly scattering media. Physical Review E, 68:031908–1–8.

[35] Henyey, L. G. and Greenstein, J. L. (1941). Diffuse radiation in the galaxy. Astrophysical
Journal, 93:70–83.

[36] Ishii, Y., Arai, T., Mukaigawa, Y., Tagawa, J., and Yagi, Y. (2013). Scattering to-
mography by monte carlo voting. In IAPR International Conference on Machine Vision
Applications.

[37] Jacques, S. L. and Wang, X. (1997). Path integral description of light transport in tissues.
In Proc. SPIE, Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation,
Model, and Human Studies II, volume 2979, pages 488–499.

[38] Jarosz, W. (2008). Efficient Monte Carlo Methods for Light Transport in Scattering
Media. PhD thesis, University of California, San Diego.

[39] Jensen, H. W. (2001). Realistic image synthesis using photon mapping. AK Peters, Ltd.

[40] Joshi, N., Donner, C., and Jensen, H. W. (2006). Noninvasive measurement of scattering
anisotropy in turbid materials by nonnormal incident illumination. Opt. Lett., 31(7):936–
938.

[41] Kajiya, J. T. (1986). The rendering equation. SIGGRAPH Comput. Graph., 20(4):143–
150.

[42] Keijzer, M., Jacques, S. L., Prahl, S. A., and Welch, A. J. (1989). Light distributions in
artery tissue: Monte carlo simulations for finite-diameter laser beams. Lasers in surgery
and medicine, 9(2):148–154.

[43] Kokhanovsky, A. A. (2004). Light Scattering Media Optics: Problems and Solutions.
Springer, third edition.



58 References

[44] Kristensen, A. W. (2011). Efficient Unbiased Rendering using Enlightened Local Path
Sampling. PhD thesis, Technical University of Denmark.

[45] Kurachi, N. (2011). The Magic of Computer Graphics. A. K. Peters, Ltd., Natick, MA,
USA.
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