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ABSTRACT

Renewable energy resources (RESs) have attracted significant attention due to
their reduced environmental impacts. In particular, active installation of photovoltaic
(PV) power generation is being strongly promoted in Japan. However, the PV output is
generally uncertain due to the spatially and time-varying changing solar radiation.
Therefore, it is necessary to achieve a stable power supply by using controllable generator
groups, which correspond to existing thermal power and/or diesel generators, based on a
well-suited generation planning, operation and control policies. On the other hand, if one
can predict the amount of solar radiation accurately, it will then be possible to make
efficient operational plans for electric power storages as well as for existing thermal and
hydraulic generators. In addition, the proper reserve margins are kept in oder to maintain
the security of power systems by analyzing the prediction error and its statistical
distribution. Thus, development of an accurate prediction technique and the application
to advanced energy management technology are generally regarded as an important task
in recent power system.

The main objective of this work is to develop a simple and reliable PV forecasting
method that can be applied to energy magement system (EMS). First, a new day-ahead
PV forecasting method is proposed by using only weather report data that are provided
by the Japan meteorological agency (JMA) and are available to the public. Secondly, a
novel approach based on the correlation analysis is developed to realize the high accuracy
prediction for the real-time PV forecasting. In above two approaches for PV forecasting,
the multiple neural networks (NNs) based on a weather clustering technique are used to
obtain the predictions and the confidence intervals (Cls). Finally, these forecasting
methods are applied to the EMS controller, where the prediction and Cls are effectively
provided to maintain the robust power system security. These demonstrations for supply
and demand management are presented to confirm the effectiveness and robustness of the

proposed PV forecasting approaches.
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Chapter 1
Introduction

1.1 Background

Renewable energy generators are expected to grow rapidly in the following
years. Also, renewable energy uses non-fossil consumption power generation, and
therefore placing renewable energy resources as a best option for long-term power
generation. Wind-turbine generations and photovoltaic (PV) generations are the
most favorable renewable energy generations among others. Around 20% until 30%
of the renewable energy resources is estimated to increase in the next 15 until 20
years. In Japan, PV is strongly promoted to support the power generation in power
system grid. [ 1] mentioned the cumulative PV installed is around 42GW, where 153
MW is allocated for off-grid and 41,879 MW for grid-connected. This capacity
value was calculated in the end of 2016. This value reveals that renewable energy
is currently being strongly increased and promoted. However, the weakness of the
PV is the uncertain value for each day production. This uncertainty is due to the
climate and weather changes. The uncertainty on PV output can cause a problem
for power system grid. For example, a non-predictable PV output can cause the
power system to fluctuate and become unstable. This is a high-risk for the current
power system which has been running normally for years. Therefore, a simulator of
power sources including thermal power or existing generator and renewable energy
sources are necessary to simulate and prepare the power sources calculation. A
small power system grid as an example could be built and applied. The power
system grid could include generation planning, control and operation.

It is for this reason that a good estimation of PV output is necessary to
prepare the PV sources in the power system grid. PVs are clean and safety energy
sources. However, they are prone to cause degradation of power quality as well as
grid security due to unforeseen weather conditions. Continuous sunlight
intermittency, especially during cloudy days, incurs sudden intense changes in their
outputs such as unpredictable significant ramp effect. The enhancement of
renewable energy requires additional ramping abilities to maintain the grid stability.

PV output estimation should propose high accuracy in its results. It should also be
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applicable in the power system grid. Development of sophisticated operating
technology is a key subject.

Through this research, we analyze the error and the distribution result where
error value represents the prediction result and the target date. Based on these
calculations, the reserve margin of PV forecast result could be applied on the
supply-demand control or the power system simulator. Therefore, to obtain the best
prediction result, it is necessary to develop the prediction method. It is also
necessary to highlight the development of supply-demand control as it is an
important target. We obtain the value of confidence interval (CI) through this stage.
We also set the CI value as a reliable range for the PV forecast result.

In this research, we express “robust power system security” to mention the
power system security hardiness or generally known as robustness of power system
security. References [2-4] mentioned the ideal boundary of power system security.
The items set to maintain the power system is secure and will prevent worst-case
possibilities such as blackouts, load shading, etc. CI is expected to avoid these
damaging conditions. We also proposed a power system simulator or “supply-
demand manager” to apply the CI setting and analyze the response. References [5-
7] focus on the supply-demand manager (SDM) as a tool for the CI setting
application. In the SDM part, we can provide the operational planning, day-ahead
planning manager, real-time operation manager and real-time control manager.
SDM is also an example of remote island power system grid.

To obtain a good CI setting, we should obtain a good forecast result. Here
we summarize the various of PV forecast. Reference [8] is a literature for day-ahead
forecasting in small-scale PV generator. This paper provides 24-h-ahead
forecasting using a forecasting tool. They use three locations; San Diego,
Braedstrup and Catania and use four methods of RBFNNs (Radial Basis
Feedforward Neural networks), least square Support Vector Machine (L- SVM),
kNNs and weighted ANNs as engines model. On the other hand, reference [9] uses
the spatial-temporal solar to obtain a very-short term solar forecasting. The spatial-
temporal solar forecasting framework is based on the vector auto-regression
framework. Other than the spatial-temporal framework, solar generation
observation that collects using the smart meter and distribution transformer

controllers is also used as a comparison. Not only do researchers use one
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forecasting method, some researchers also use a hybrid method to obtain the short-
term PV forecast. [10,11] both use a hybrid method to obtain the solar power
forecasting. In reference [10] the authors use Florida data set and a combination of
gradient-descent optimization and feedforward artificial neural network (ANN) to
model the data. To determine the ANN parameters, the author uses meta-heuristic
optimization model, known as shuffled frog leaping algorithm (SFLA). [11] use
self-organizing map (SOM) and learning vector quantization (LVQ) to classify the
historical data input for 1-day ahead forecast. For the PV power output forecast, the
authors use support vector regression (SVR) for the data input. A probabilistic
method is used by [12] as short-term PV power forecasting. The probabilistic
method is based on a competitive ensemble of different base predictors. Also,
another method known as the determination method is used by [13] to forecast the
PV output. The NN is trained by the output data based on the fuzzy logic. The report
weather data which is used as input data and fuzzy logic determine the insolation
forecast. Another researcher [14] uses aerosol data to improve the PV power
forecasting model. Aerosol index (Ai) is used because it could indicate the
particular matter in the atmosphere, and the authors of the research also mentioned
that they found a strong linear correlation between Ai and solar radiation attenuation.
[15] creates a model of the solar irradiance using grid point value (GPV) data
analysis. This method is convenient for the efficiency of PV system.

Support vector machine (SVM) was also used by [16,17] to forecast the PV
power output. [16] use the combination of satellite images and SVM to model the
solar power prediction. The authors analyze 4 years of satellite images from the past
and develop the satellite images. Other than that, recurrent neural network (RNN)
was used by [18] to develop the correlation between solar radiation and timescale-
related variations of weather item such as wind speed, humidity and temperature.
RNN was combined with wavelet to obtain the solar radiation prediction in the
wavelet domain. [19], constructive neural networks (CoNNs) were used by the
authors to obtain the solar radiation prediction. CoNNs train the input data, which
include historical data of temperature, humidity, wind speed and weather type, and
then the process starts with one hidden unit in the hidden layer. Another hidden unit
is added again if the NNs need to improve the mapping capability until it reaches

the minimum NN. [20] models the power forecasting based on the nonlinear system
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identification. The authors use data in Kuwait and suitable for a high non-linear
change in the PV system.

An intelligent method was used by [22] to obtain the day-ahead hourly
forecasting. The first step in classifying the historical data, the authors use fuzzy -
means, which then is followed by the second step of training the data trained using
radial basis function neural network (RBFNN). The third step which aims to
optimize the RBFNN parameters, the authors use harmony search algorithm (HSA),
while for the forecasting process, the fuzzy inference is used in the research.

In the researches, not only do authors disclose the power output forecast,
but the application of PV output is also described along with the forecast result. [24]
apply the PV prediction in the distribution of voltage regulation. This paper
discusses about the overvoltage limit violation because of PV sources in the power
system grid. A very short duration of PV power forecast, about 15 seconds, is
utilized to avoid the upper limit of voltage regulation and overvoltage. [5] use the
PV output in a larger scale compared to [24]. They mention a feasible operation
region for the PV output limitation area. In the power system, the application of PV
output is also used by some authors in unit commitment (UC). [26] use the PV
output prediction for the efficiency of uncertainty management in the high
penetration of renewable energy in the power system grid. [27] places its focus in
the time-scale adaptive dispatch. The time-scale is used for renewable energy power
supply system on islands. This system is adjusted online based on the CI setting
from the PV forecast error. [28] use correlation analysis of insolation in two
different locations. The data are measured by the authors using an actinometer. In
[29] the authors identify two parameters of prediction which is, first, based on its
moving direction and second, based on the speed of insolation. Other researchers
process the cloud images to forecast the power fluctuation. The data research is
obtained through records conducted on ground. Different with [30], they use data
from weather satellites to forecast the PV power output. Based on our identification,
the imagery data, the amount of insolation from the recorded device, etc., requires
a complicated process as the data is not easily obtained by the researchers. In this
research, we use a simple and reliable data from Japan Meteorological Agency
(JMA) that could be easily accessed and free at any time required. Other than that,

the accuracy of PV output forecast is also considered as an important parameter.
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Hence, in this research, we provide the CI setting for power system grid application

system.

1.2 Objective and Scope of the Study

The main objective of this research is the development of short-term PV
output forecasting. In this PV output forecasting, we propose a simple and reliable
data to be modeled and forecasted. Furthermore, the result of short-term PV output
forecasting is used as information on EMS controller.

In this case, the short-term of PV output forecasting are divide into two
cases of PV output forecast which are day-ahead PV output forecast and real-time
PV output. The first section of our focus is the day-ahead PV output. This subject
is targeted to be applied on the day-ahead planning manager. The detail of day-
ahead PV output forecast discusses about day-hour order of PV output forecast. Our
simple and reliable data proposed in this research is modeled and forecasted using
NN. JMA provides the simple data that can be accessed easily and at any time. The
day-ahead PV output forecast with 30-minute intervals will be applied on the unit
commitment planning. According to the day-ahead UC planning, this time interval
is necessary to obtain a better start/stop generator schedule.

The second section of our focus in the research of short-term PV output
forecasting is the real-time PV output forecast. In this case, JMA data will be used
once again to obtain the result. In real-time PV output forecast, the step is similar
to the day-ahead PV output forecast. A more detailed step of the forecasting will be
described in the following section. In the early stage of the research, JMA data is
collected from the website, and data for each point or area is processed using neural
network. Then, we calculate the gap time among the area and use each area forecast
result to obtain the next neighborhood area. SRCA method is used to obtain the
neighboring PV output result. The real-time PV output is conducted at 5-minute
intervals. The real-time PV output result will be used as unit commitment
calculation in the same day. The results are not only used in unit commitment, but
they are also used for DELD calculation in the same day. To avoid weather changes,

a standby power source will be prepared.
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The last aim of this research is to apply the PV output result on the power
system. For the initial step, we provide an EMS controller that represent an
electricity grid. In this EMS, renewable resources, battery and generator are
provided as power electricity sources. Not only do we provide electricity sources,
we also provide a controller and electricity demand. All of these are included in the

UC planning manager.

1.3 Outline of the Thesis

This thesis book consists of six chapters which will discuss the following:

Chapter 1

This chapter presents the background of this study, including the characteristics of
the PVs.

Chapter 2

This chapter describes the conventional PV forecasting methods and techniques.
Chapter 3

In this chapter, the author provides a more detailed explanation about a new
approach to predict the day-ahead PV output. To obtain the day-ahead PV output,
the author only uses public data which will then be modeled using multiple NNs.
The data will further be tested using the testing data and be evaluated for the result.
Then, the prediction and CIs are obtained and applied to day-ahead planning
manager of EMS controller.

Chapter 4

This chapter provides a novel method to estimate the real-time PV outputs by the
correlation analysis.

Chapter 5

In chapter 5, the thesis performs the application in the EMS controller by using the
proposed PV forecasting. The day-ahead and real-time PV forecasting are applied
to the unit commitment and the dynamic economic load dispatch, respectively.

Chapter 6

The last chapter of the thesis presents the summary of the major achievements.

Furthermore, future research works are provided to continue this research.

6|Page



Chapter 2
Power Forecasting Methods and Techniques

2.1 Introduction

Previous works and research have reported various methods which can be
used in predicting the PV output solely based on publicly available weather data.
However, the methods used by the authors to obtain and process the raw data prior
to forecasting the PV output tend to be complicated. Such methods do not propose
an effective and simple data processing and forecasting, resulting in inefficient
application of the method on EMS controllers. These power forecasting methods
are substantially inapplicable due to their complicated and inconvenient
implementation. Others have also reported that existing forecasting tend to be
sophisticated [60-63] based on a variety of methods to forecast PV output power,
adding up to the complexity nature of these methods. Several of the power
forecasting methods used by researchers include numerical weather prediction

[64,25], sky imagery [65,66], and neural network [67,68].

Through the research, we utilize simple data and reliable method that can be
applied to the energy management operation to achieve an applicable research result.
The data used in this research is the public historical insolation and weather
(temperature, wind speed, and precipitation) data which can be easily obtained from
the meteorological agency website of Japan. Since PV output forecast has become
an important issue in energy management planning, a reliable method particularly
1 until 5 minutes forecast is substantial for real-time PV output forecasting.
Recently, real-time PV output forecast requires a sophisticated data processing
[69,70]. Neural network (NN), one of the most common modeling forecast method,
is commonly used by researchers to model and forecast the PV output. However,
NN process need more computation time for modeling and forecasting. This is one
of the laxity in NN method [71]. In real-time PV forecast, computation time is one
of the important matter in yielding results. Real-time PV forecast is presented for
up to 1 hour in advance with 5-minutes intervals. This forecast requires a fast
calculation and high accurate prediction to be applied on a real-time operation and

planning of generators or batteries.
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2.2 Photovoltaic (PV) Power System

PV output forecast is a complicated issue faced by many researchers. One
reason behind this is the high number of weather uncertainty which is one of the
most difficult process to undertake in the forecasting approach. Some researchers
have reported using several forecasting methods to obtain a reliable and precise
result. This is achieved through the estimation of error value between the forecast
output and the weather data where the smaller the error values are, the more reliable
and precise the results are.

One of the biggest challenges in the field of renewable energy sources (RES)
is their vulnerability and their volatile nature as it depends on changing matters such
as weather conditions. While conventional power plants offer concrete resources,
which can be accessed on demand, resources of non-conventional power plants for
renewable energy, on the other hand, cannot be accessed on demand such as wind
and solar production. The changing nature of these resources play a vital role on the
production of renewable energy, and it is on these issues that the power output of
PV system heavily relies on. Power production from PV energy sources depends
on weather conditions of cloud coverage and incidence angle of the sun’s radiation
which are always changing. With the power output highly dependent on these
weathers changing conditions, it is crucial to develop accurate and precise forecasts

in order to run a smoother integration of renewable energy into the electricity grid.

2.3 Forecasting Methods

Various work on PV output prediction have co-existed with the
development of renewable energy sources (RES). Research on this specific field,
and renewable resources output in general, is vital to the development of RES as
they heavily rely on naturally replenished resources. Being a natural entity
replenished on a human timescale, these resources are not equipped with certainty
and predictability in terms of the number of output as they are inextricably linked

to the continuous change of uncontrollable weather and other natural conditions.
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Inevitably, this creates an immense impact on renewable energy and its
development, including renewable energy from PV.

An attempt to map and predict the output from PV have been conducted in
various research over the past several years, resulting in several forecasting models.
There exists various PV prediction methods in the literature such as the day-ahead
forecasting for small-scale PV [8], the spatial-temporal solar very short-term
forecasting [9], the hybrid algorithms for short-term PV prediction [10,11], the
probabilistic ensemble methods [2], the determination methods [3], research using
aerosol data [14], grid point value (GPV) [15], support vector machine (SVM)
[16,17], recurrent neural network (RNN) [8], constructive neural networks (NNs)
[19], nonlinear system identification models [20], the Markov switching models
[21], the intelligent methods for day-ahead hourly forecasting [22], and the
statistical methods [23]. Applications of the PV predictions are presented for the
distribution voltage regulation [24], for the large-scale grid [25], for the unit
commitment (UC) [26], and for the time-scale adaptive dispatch [7]. The reference
[8] proposes a PV prediction method for local distribution control system based on
the correlation analysis of the observed data. Recent methods use cloud images that
are observed from the ground [29] or that are obtained from weather satellites [30].

However, these complicated methods require access and availability of
special data such as meteorological image data, solar data from the radiation meters
at power grid substations, etc., which are not easily obtainable in practice.
Furthermore, these methods focus their attention on the accuracy of obtained
predictions and there are practically no examinations on the CI metric, among
others. There are a number of methods available in present day used to forecast PV
output which will further be discussed in the following section to serve as reference

and review for this research.

2.3.1. Statistical Models (AR, ARIMA, NN, etc.)

One common method in making predictions based on a variety of data input
is the statistical model. With a mathematical approach, statistical modelling will
generate an approximate reality to the data input and process the approximation into

a prediction. It is often known as the data-generating process as it predicts
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information based on collected or sampling data and population understanding.
Statistical modelling has been applied in various forms of programs which among
others include autoregressive (AR), autoregressive-moving average model
(ARIMA), and neural network (NN). [29] use AR and ARIMA to model and

forecast the solar radiation in Bogota. The author uses basic AR formula here,

X,:a0+ia,Xf_,+8t (1)

1=l
Where a,set in constant value and &;1s a zero-mean white noise with
constant variance g . Then, the authors also use ARIMA model to forecast the

solar radiation. Here the ARIMA model formula,
h-1 e 2
W... =_Z ly;'a:m—j —Z‘P},a{m_;, ( )
=l i=h
Another author also uses statistical time series model of solar radiation and
outdoor temperature as data input and Kalman filter as forecast method. [30] use
the temperature room because their calculation method requires a time series model
of external climate. [30] another researcher uses ARX method to obtain the online

short-term solar power forecasting.

2.3.2. Cloudy Imagery and Satellite based Models

Cloudy imagery and satellite-based models focus in cloudy imagery data.
Some researchers use several devices to observe the sky movement from one point
to another. The data is based on the observation result. Generally, the researchers
use the clearness indices to convert the cloud situation into number value. The
clearness indices (some researchers reported using clearness index or CI) is on the
ration scale of 0 to 1. This value is obtained from the cloudy imagery pixel. There
are several categories of the cloudy imagery pixel result. A clear sky, a high density
cloudy sky and a low density cloudy sky are the classes that are generally used by
the researchers in this area.
Several recent studies for cloudy imagery and satellite-based model are
mentioned below. [36] use 80 PV systems that are installed in the rooftop in Tuscon,
AZ region. The PV systems are used as ground-based irradiance sensors, the PV

distributed on 50 km x 50 km area. Figure 1 is the example of the imagery satellite.

10| Page



10 40

20

_204

MNorth-South Distance (km)
L=}
1

_40

T T T T
-40 -20 [¢] 20 40
East-West Distance (km)

Figure 1. Top: Spatial correlation between station pairs for one day as a function
of separation in the east—west as well as north—south directions
The authors record the data at 15-minute interval and not only focus on the
sky imager. [37] use statistical smoothing techniques to find the clear sky model.
[38] use cloudiness indices as input data and radial basis function (RBF) neural

network to predict the solar radiation.

2.3.3. Numerical Weather Prediction (NWP) Models

Numerical weather prediction (NWP) or often known as numerical
forecasting offers a mathematical model as an attempt to understand the pattern in
weather prediction. Numerical forecasting is conducted through complex
supercomputers which generate predictions based on data of the atmosphere and
ocean according to the current weather condition. Though the model has been tested
and designed in the 1920s, realistic and promising results were produced only until
the advent of computer simulation in the 1950s. Many weather variables such as
temperature, wind and possibility of precipitation are forecasted through this model.
These predictions are generated through high-speed computers which integrates
fundamental equations of hydrodynamics and a modeled atmosphere in a
mathematical approach.

While numerical forecasting offers many promising results, inaccuracy in
its equations often leads to some errors in the predictions. Another flaw of this
method is the number of gaps between the initial data, ultimately resulting in
imprecise output. The number of people with access to the computer data is also
very limited. [64] use three individual validation of global horizontal irradiance

multi-day forecast models. They use this model for three areas; US, Canada and
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Europe. All of the forecast models are based on directly or indirectly to NWP. [40]
use NN to localize the precipitation forecast that is obtained from the NWP
prediction. They use the middle Atlantic region of US data for their research.

2.3.4. Hybrid Models

Another forecasting method presented in earlier works is the hybrid model.
Hybrid forecasting proposes a program by combining regression, data smoothing,
and other stages of techniques to attain forecasting results which compensate flaws
of individual forecasting methods. The methods used in hybrid forecasting include
Vanguard Dampened Trend, Log Theta, Theta, NN, NWP and clear sky model.
[11] use hybrid method for one-day ahead forecasting. Their research focuses on
hourly PV power output. They integrate the self-organizing map (SOM) to classify
the data input. Also, learning vector quantization (LVQ) is used to classify the
historical data PV while Support vector regression (SVR) is used to comprehend
the historical data. [39] use hybrid k-means and nonlinear autoregressive neural
network (NAR) model to obtain a better PV output forecast. The k&~-means method
is used to extract the data. Not only to extract, the method was also used to model
the data and find the data patterns. Once the data has been modeled, NAR is used

as a forecasting method.

2.4 Summary

As reflected above through the various types of power forecasting methods
for renewable energy, it is apparent that the need of a forecasting model for RES is
crucial. Many have proposed various kinds of prediction models, applying a
different approach for every type while adjusting to the needs, different type of
available data, the efficiency and effectiveness of the techniques used, and other
significant features. However, undoubtedly many challenges are faced when
dealing with weather uncertainty which can impact on the data used in present
models. Flaws and weaknesses are present on the forecasting methods, demanding
a constant development and research in the field of weather forecasting for

renewable energy, which in this case focuses on PV output. One of the challenges
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faced by the models is the limited amount of available data and its complexity.
Many required data and made available publicly are inconvenient and offer a certain
degree of uncertainty. With this particular challenge as a highlight, this research
aims to provide a method of forecasting PV output by using only simple and reliable
data to improve its accuracy and effectivity. It will also give a bigger possibility of
usage and application as the necessary data are made publicly available and easily

obtained.
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Chapter 3
Day-ahead 24-hours Power Forecasting

3.1. Introduction

This chapter focuses on the discussion of day-ahead 24 hours PV output
forecasting. In the previous chapter, it is explained how other researchers use
different kinds of methods to obtain day-ahead PV output forecast, and many of
them were challenged with complicated circumstances concerning the data. They
require a complicated data processing before being able to be used as input for their
method. Not only did it require complicated data processing, but many of the data
used in the previous researches were inaccessible data, making it an even more
difficult situation to improve the PV output forecast. In this chapter, a more detailed
explanation about the day-ahead PV output forecast which uses a simple and
reliable data is described. [39] use a simple and efficient algorithm to forecast the
solar radiation. A decomposition process from geostationary satellite data is
necessary to obtain the data input, meaning the input data require a non-simple
process.

In this research, the primary focus of day-ahead PV output forecasting is
placed on the following 24 hours of the day. Calculation of the day-ahead forecast
will be conducted based on several steps as shown in Figure 2. This detailed process
will be taken step by step to ensure that the calculated forecast is performed in a
methodized manner from the beginning until the CI results are obtained. Results
from the day-ahead power forecasting will be utilized. The solar power prediction
shall function as a tool to balance the total power production and is placed in the
electricity grid. The research result shall be conducted on a start-stop UC plan
implemented among existing generators along with the batteries.

To obtain day-ahead forecasting results, PV output predictions are set the
same with the day-ahead UC planning time interval. The forecasting unit would be
handling at 30-minutes interval time on collecting PV output data to further process
on day-ahead forecasting. The results from these forecasting will then be included

in the UC planning. In the next section, the research proposes a new method which
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uses a group of neural networks assigned for every weather cluster for the target

time.
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Figure 2. The proposed scheme of PV output prediction.

The proposed scheme for the PV output forecast is detailed through six
calculation steps.

1. The first step of the PV output forecast involves a thorough analysis on
previous weather data in each time duration. The data being analyzed includes
an intensive feature such as the temperature, windspeed, rainfall, and insolation
which altogether have an impact on the weather condition. The data are
downloaded through the JMA website. Currently, we use temperature,
windspeed, insolation and rainfall data only since these kinds of weather
conditions have a direct impact to the insolation value. The data downloaded
for the research is from 2009 until 2012. More explanation about data
processing will be described below.

2. Once the past data have been analyzed, they are put into clusters according to
the weather clustering (WC). Analyzed data are categorized based on the
weather conditions. There are three types of weather clusters; sunny, cloudy,

and rainy condition. These clusters are based on the Japan Meteorological
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Agency which presents the weather clusters according to the local area time
series data.

3. Upon completion of weather clustering, the forecasting process shall proceed
with the third step of the PV output forecasting which involves the construction
of Neural Network (NN) for each of the weather cluster formed in the figure 2.

4. After the Neural Network has been set for every weather condition cluster, an
evaluation on its performance can be conducted using testing data. This
evaluation shall be performed in the following phase of the forecasting model.
The NN on each cluster will be evaluated by testing data and computation of
standard deviations for prediction errors.

5. Then, the next step is CI setting. The standard deviation that is calculated
before, will be used as appropriate setting for confidence intervals (CI) based
on historical data analysis.

6. The last step is applying the CI evaluation to the EMS controller. The
forecasting process is applied using the proper NN based on the weather

condition on the target day. This will result in the PV output prediction.

3.2. Data Clustering by Weather Condition

This section of the research presents a detailed explanation on the data
clustering process. Figure 3 shows the JMA data which are made available through

their website.

Figure 3. Weather data from JMA website
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In the JMA website, there are many historical data that could be easily
accessed for free. The weather data starts from 1872 until the current day.
According to the website, the data is not fully complete in terms of 10 seconds
interval time. Data with this interval time only applies to data from 2000 until
current day data.

After accessing the JIMA website, user should choose the necessary date and
time interval. In this step, the user should check properly to download the necessary

data through the website. Figure 4 shows the time interval before year 2000.
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Figure 4. The JMA data website in year 1961

Based on Figure 4, there are 13 kinds of weather data that are recorded by
JMA. The data is available for 24 hours. Figure 4 also shows that there is no data
available in 1% January 1951. It means not all the data is available in the JMA
website for every time. In year 1951, the data time interval is also available for

every hour. However, data is not yet available for 10-second interval.
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Figure 5. IMA data for January 1951

Based on Figure 5, in January 1951, only daily data for each month is

available. Also, not every weather data appears in the website. Only precipitation

data and temperature data are available. Figure 5 describes the lowest, maximum

and average daily temperature data. The temperature data uses °C as its units. In

another column, the precipitation data is available, but it is not the same as

temperature data. The precipitation data is only available for the 1%, 6%, 7, 9t 10,

12t ~ 140 18™ 19t 215t~ 23" and 26" of January 1951.
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Compared to Figure 6, weather data for January 2009 appears to be more
complete than January 1951. In contrast to the data of January 1951, in 2009 the
website provides 13 kinds of weather data. The user could use all of this data easily.
Also, the data time interval is available in more detail. There are 10 seconds time
interval for each data that could be accessed in the JMA website. Figure 7 below

shows the 10 second time interval data.
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Figure 7. JMA data for January 2009 in 10 seconds time interval

In this figure, the data time starts from 00.10 until 24.00. There are 144 data
and nine kinds of weather items data in a day. From this data, we could select the
temperature, wind speed average, and the precipitation of rain. The data is
combined with the PV system at Hiroshima University. Our detailed preprocessing
data is described in the following two steps:

1. Step1

In the first step, we use data that could be accessed easily from the JMA
website. [33] the data is made available and accessible for the public. The website
offers 3-hour weather data. The data used for this research is described as follows:

(1) Temperature, in this book symbolized as (T) in °C,

(2) Maximum wind speed (v) in m/s,

(3) Probability of the precipitation (p), (with the precipitation value of 1, if

observed, and 0, if not observed).

19| Page



(4) Weather class (sunny, cloudy, rainy, and snowy).

To maximize the data research, wind speed is divided into 4 levels of speed.
First is wind speed of 0-2 m/s, and the second class of speed starts from 3 until 5
m/s, while the third class is for wind speed of 6 m/s until 9 m/s, and the last class is

over than 10 m/s of wind speed.

2. Step 2
Weather condition plays the biggest influence in determining the amount of

solar radiation. Based on the JMA website, there are no classifications for weather
conditions. Therefore, in this research, we classify the historical weather data into
three categories of weather condition. The first category is sunny, and the second
category is cloudy while the last category is rainy. The weather classification is
based on the radiation thresholds. Once the weather conditions have been clustered,

then NNs are constructed for every weather class.

A thorough description of the proposed data classification is stated in the
following two points:

1. The JMA data that could be accessed from the website, is combined with our
local data which is obtained from the PV that is installed in the Hiroshima
University rooftop. The PV capacities are 40 kW. Both data are a historical
weather data and is used for the local prediction.

2. For the second point, data from the Ministry of Economy, Trade and Industry
[31] is used for the global PV generation forecasting.

The following is an example of data usage. We consider the past, present
and the following months as target data. Three months before, the present month
and three months after the present month are used to model and forecast the amount
of insolation. For example, if we are going to forecast a day in a month in 2012 such
as August 2012, we shall use data from 2009 until 2011 as the training phase of
neural network. As previously explained, we shall also use data from July, August,
and September 2009 until 2011. For the timing base data, we shall also use data
from 3 hours before the target data, during the target data and 3 hours after the target
data. To calculate and verify the network, data in July 2012 is used as the testing
data. We also have 100 different NNs with random value for the weight. We
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construct these NNs for each weather classification. Back propagation (BP) is
chosen to model the historical data. After we construct NNs, and train and test them,
the mean absolute error (MAE) is calculated to be used as comparison to the
prediction result. One important thing to do before using weather data is to convert
all the input value into the same value. This process is described as the

normalization process.

3.3 Construction of Neural Networks

In this section, the construction of NNs is described in detail. This section
also includes the third step of day-ahead PV forecasting. As mentioned above, we
use 3-hour basic data. We construct the NNs using the classification input data. The
construction of NNs is equal to the training phase of NNs. For example, for cases

of rainy condition, we shall use the rainy weather data. Figure 8 describes the NNs.
The network consists of three layers, in which the output J, describes the amount

of solar radiation at the specific time of ¢’.

3 hours before
input data
(Temperature; 7, —
Wind speed; v,
Precipitation; p)

Target time
input data

3 hours later

input data
(Temperature; 7, <
Wind speed; v,
Precipitation; p)

Input Hidden Output

Figure 8. 3-layer neural network

The 3 layers of NN are constructed to model the weather data. The 3 layers
of NN consist of input layer, hidden layer and output layer. For each layer, the
neuron represents the calculation process inside. In this case, there are nine numbers
of neuron in input layer, with j as number of neuron in the hidden layer and one

neuron for the output layer. All neurons in the input layer represent the value of the
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weather data. Input data is symbolized as (7, v, p). As mentioned before, the data
used for 3 hours before the target time is represented as ¢’ — 1, while for the target
time the data is represented as ¢' and for 3 hours after the present data we describe

itas ¢'+ 1 in figure 8.

Between the input layer and the hidden layer, each neuron in these two
layers are fully connected to each other. For every connection of neurons from input
layer and hidden layer, x;; represents the input weight value and w; represents the
output weight. In this stage, the number of weight value is determined randomly.
The neuron in the hidden layer serve as a multiplication calculation between the
input value and weight input. The result of this multiplication is transformed by the
activation function. In this research, “logsig” activation function is selected to
calculate the multiplication result between the input value and input weight. Also,
O describes the output result for the calculation process in the hidden neurons. For
the training phase, the result is determined by using the backpropagation (BP)

training method.

In the NN construction, there are two main phases to construct NN. First is
the training phase and the second is the testing phase. Training phase is an important
key to obtain the best value of input and output weight. This phase should be
constructed well, so that the error from the testing phase is small. Input data for

training and testing phase are represented as follows:

(1) Weather classification data,
(2) Temperature represented as 7,
(3) 4 classes of Wind speed which is represented as v,

(4) The amount of solar radiation described as Precipitation p,

In the training phase of the backpropagation method, all data input will be
multiplied by the input weight one by one. Formula 1 shows the multiplication
process between data input and input weight.

Ve = YhowinQ; (X4 x;; input) (2)

After y; is obtained from the first forward phase, the difference in value

between y;value and the target value will be evaluated. After the delta value is
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obtained, the next step is the backward process. Backward process is necessary to
update the output and input weight. Forward and backward process is known as the
iteration process. This process will be iterated more than 100 times. In this research,
we will use 20.000 times of iteration. The iteration will stop until the delta between

the training output and the target output is small or the differences are adequate.

3.4 Performance Evaluation and CI Setting

The following is the fourth step in the day-ahead PV output forecasting. In
the performance evaluation step, we use the test data to verify and evaluate the NNs.
This will result in the value of the PV output and the calculation of the error value.

In this step, we also set the CI setting and value. CI value is analyzed by
considering the prediction errors. CI setting divides the CI results into two range
which are the permissibility of maximum and minimum limit of the PV output
reliable case. The result is considered as a reliable data for the PV output prediction
result. To obtain the prediction error, standard deviation (o) is used as the testing
result. The CI value is the range of +o, +20. Figures 9 describes the CI setting in
detail. This CI value will be an effective feasible operation limit for PV output
forecasting in power system grid. The CI setting is used for the operation planning

and the real-time case as robust security for the power system grid.

—&—— Prediction

---O--- Measurement

B o
e 2o

Define ¢ and 20 from
prediction values as
confidence intervals (CIs)

Figure 9. Setting method of Cls
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Figure 9 shows that the blue area is the first standard deviation area of day-
ahead PV output. The blue area represents the first range of CI or +¢ while the red

area describes the second range of CI setting or +2¢.

After the ClIs range is obtained, the result of CIs for each month in a year is
provided in figure 10. The CI calculation for each month have been completed and
reported. Weather classification and non-classification are provided as a

comparison result.
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Figure 10. CIs in 2012

From figure 10, the result shows that weather with classification has a small
interval variance in a year. The Cls value also changes between each month. This
is due to the weather season and weather condition. Compared to others, the Cls
result between April until September is higher due to the sunny season or summer
season. Figure 10 also shows that December 2012 has the lowest width of Cls. This
value appears in the result because Japan is in snowy or winter season. We also
noted a difference between results with cluster and without cluster. Cls result of
data without cluster is higher than CI result with cluster data. Based on the
probability calculation, the result shows that the difference value between recorded
data and the prediction result could still be more than 80% of the probability. Also,
for the two types of classification result, it could be confirmed that the result with

weather classification is better than non-weather classification.

In the two graphs below, Figure 11 and 12 confirm that the result of two Cls,

namely +o or 20 become better by the weather classification. Based on Figure 11
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and 12, it is also proven that the CI reliability is increased and improved because of

the weather classification.
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Figure 11. Staying probabilities with weather clustering
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Figure 12. Staying probabilities without weather clustering
Based on figure 11 and figure 12, the staying probability of CIs in figure 13
is smaller than in figure 12. The black bar in figure 12 is smaller than the black bar
in figure 13, meaning the Cls width using the first range reliable shall be applied on
the EMS controller. In figure 13, the 2" until 6™ months of year 2012, the outside
interval probability is higher than figure 12, but the second interval or the gray bar
of CIs is higher than the first interval. This result confirms that weather

classification as our proposed method is a good way to improve the PV output

forecast.

3.5 Estimation of PV Qutputs

The PV output forecast result is achieved by applying the measurement data
and the JMA data from the website. As previously mentioned, the 30-minute

interval according to the UC planning shall use the linear interpolation process.
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7, 1s the output of NNs or amount of solar radiation forecasting. This value

A

should be converted to the PV output generation or .. [76] is the reference

formula for converting the solar radiation forecasting result to the PV output

generation. The following is the formula,

]A)t':(K/GS)'PAS'j}t' 3)

K is the constant value that represents the monthly comprehensive design
factor, while G, represents the amount of solar radiation intensity in the standard
test condition with the units in kW/m?, and the last one is the standard solar cell
array output or Pys.

To obtain the value of K, in this research we use formula (4). The following

is the monthly comprehensive design factor formula,
K=K, Kpp Kpy Koy - ip - Kpr 4)

The solar radiation yearly variation of correction coefficient is represented
as Kup, while the aging correction coefficient is represented as Kpp. The value of
array circuit correction coefficient is represented as Kps. We also use Kpys for the
array load matching correction coefficient. #vp represents the power conditioner
effective efficiency, and the last coefficient for temperature correction factor is
symbolized as Kpr. To convert the solar radiation value to the PV output, all these
coefficients should be used and prepared in the calculation formula. Also, all of
these coefficients will be determined based on the PV system condition in which

we use the PV system in the Hiroshima University rooftop.

3.6 Case Studies

In this part, the case studies of day-ahead PV output forecasting are
described. From the beginning, we pre-process the input data for day-ahead PV
forecast as mention in Figure 2 as the first step. In this section, if some data are
missing, we calculate the missing data using the interpolation linear. However, the
missing data should be in the acceptable range. Otherwise, the data in that day will

not be used. In another case, if the data in that day is not available in the JIMA
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website, we consider using the same condition as three hours before. We also
assume that the next three hours have the same value or condition. For example, if
the JMA website mentions that at 12:00 o’clock it is a sunny day, we assume the
data from 10:31 until 13:30 is sunny as well. This case applies on the entire

simulation data.
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Figure 13. PV forecasting with weather clustering
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Figure 14. PV forecasting without weather clustering.

Figures 13 and 14 show the amount of PV output forecast result. As shown
in the figures, the amount of PV output fluctuates by the time. As we mentioned
before, we use 30-minute time interval and apply it in the vertical axis, starting from
02:00 until 20:00. We establish the figure every two hours because of the figure
space. The purple area that extends vertically in the black line is the first value of
+0, meaning that this color is the first CI range. Then, the red area is the value of +
2c which is the second CI range. For the weather marks, which are shown in the

bottom of the figure, it represents the time weather, starting from 2, 3, 6, 8, 10, 14,
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16, and 20. If the weather is changing slowly, we have also prepared for this
condition. The result also shows that our method can predict accurately. For the CI
setting, we set the CI value the same as the generation output forecast. For example,
there is a case in which the PV could produce power in small number. This situation
generally happens in the early morning or late evening. Because of that, the CI
variance is also small and applies in both range. Also, for the sunny day or non-
cloudy or rainy day, the amount of PV output is big, so that the CI setting also has

a big range.

As shown in figure 13 and 14, we could find a big CI range at 14:00. This
area is bigger than early morning time or late evening because the PV power output
is also big. In this condition, we can set the maximum of the CI range same as the
PV output forecast result. If we compare the weather with classification and without
classification, it can be concluded that the CI variance is smaller in the weather

classification method.
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Figure 15. RMSE and maximum errors in 2012

Figure 15 shows the monthly result in a year. The root mean square error
(RMSE) is used to obtain the error prediction. Equation (5) is the RMSE formula.

N represents the data number, while P (t) represents the PV power generation
predicted value in ¢ certain time. Py (t) is the measurement value in certain ¢ time,
with units in [W/m?].

We also provide the average prediction error and the maximum prediction
error monthly in a year. In this case, we chose the year 2012 as an example.
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RMSE = %,ZZ;(PYU) —fi(t))2 )

When we use the weather classification for the PV forecast, we realize that
the average errors are smaller than those in the data without weather classification.
The maximum errors in several specific months in a year also increased. However,
our classification weather has a weakness as well. The weakness is the data weather
assumption will be considered the same as the previous or the following three hours.

The method also could not keep up with the weather changes during 3 hours.
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Figure 16. Day-ahead PV forecast on August 3, 2012

3.7 Summary

This chapter can be summarized as follows:

1. This chapter focuses on the explanation of day-ahead 24-hours PV output
forecasting. The researchers face several complex circumstances about the data
input.

2. We proposed a simple data that can be easily obtained from the website. In our
research we use the JMA website.

3. There are six steps to use our simple data in obtaining the PV output forecast.
The first step of the PV output forecast involves a thorough analysis on previous
weather data in each time duration. Once the past data have been analyzed, the

data are put into clusters according to the weather clustering (WC). There are
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three types of weather clusters; sunny, cloudy, and rainy condition. Upon
completion of weather clustering, the forecasting process shall proceed with the
third step of the PV output forecasting which involves the construction of
Neural Network (NN) for each of the weather cluster. After the Neural Network
has been set for every weather condition cluster, an evaluation on its
performance can be conducted using testing data. Then, the next step is CI
setting. The standard deviation that was previously calculated, will help to set
the appropriate confidence intervals (CI) based on historical data analysis.

4. After obtaining the CI setting, the result is applied to the EMS controller.
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Chapter 4
Real-time 5-minutes Power Forecasting

4.1. Introduction

In this section, the authors focus on real-time forecasting of PV. The real-
time PV forecasting provides a PV output forecast at less than 10 minutes intervals
using ELM and SRCA. In general, real-time PV output forecast requires high
accuracy and high-speed forecasting process to operate a target system.

We also develop the SRCA method to obtain the real-time PV output. The
time interval of real-time demand and real-time PV output forecast is up to 1 hour
and 5-minute intervals in advanced. This time interval is used in the forecasting
target day. However, the process runs in 5-minutes interval and will be used as UC
simulation in the same day. We also provide the DELD of the generators and
batteries as calculation parameters. In order to deal with the weather changes and
unpredictable PV output, we prepare a stand-by operating reserve and a spinning
reserve at the same time as the real-time PV output simulation. The following is the

real-time forecast procedure.

Weather database
for Real-time

Pre-Processing
> Linear Interpolation
in Section IV.A

Correlation Analysis
> Definition of locations
>r;ineq.(3) between
the target locationi
and the otherjinIV.B

Forecast for the
Individual locations
> Data clustering
> 3-layer BP NN in IV.C

Forecast SRCA
> Prediction of the
locationiin eq.(4)
using the location;

Estimation of
Real-time (5-min)
PV outputs
Step(v)-(vi) in Fig.3

Figure 17. Real-time PV forecast
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Figure 17 shows the real-time PV output forecast process. Weather
database analysis is the starting point in obtaining the real-time PV output forecast.
The same data is used for the day-ahead forecast, and it is also used as real-time PV
forecast database. The following is the data type repetition. We use 3-hour weather
data, T, v, p. In real-time case, we use weather cluster as well, so in the
preprocessing data, we pre-process the data that is going to be used in our research.
We cluster it into three categories (sunny, cloudy, rainy, and snowy).

The same method for constructing NNs is used as described in Section I1I
for the day-ahead PV forecasts. This method is also applied into real-time PV
forecast for individual areas. The difference is only in the time interval data that is
used for the real-time case. All the data that is provided for every 3 hours by JMA
is transformed into 5-minute basis data in the pre-processing section of figure 17
by using the interpolation scheme in the pre-processing part. The data for individual
locations are used to construct the NNs, which are then used for real-time
predictions of the target areas and other locations. The same procedures as given in
steps (i1) to (vi) of figure 17 are performed using 5-minute basis data. Consequently,

the estimation of real-time PV outputs is obtained.

4.2. Correlation Analysis between the Target and the
Other Areas

In this section, we shall explain in detail about the SRCA method. We use
the SRCA method as real-time forecast in 5 minutes interval. Fundamentally,
SRCA is considered the gap correlation between several areas. The amount of
insolation is calculated between two or more neighboring areas.

Furthermore, due to the delay of fluctuation of solar radiation actual value
characteristics, we may obtain stable prediction accuracy of all times. However, if
the solar radiation suddenly changes, it is possible to obtain high prediction error at
some extent. To solve these problems, we applied the real-time PV output
prediction method according to the SRCA model that has considered the amount of

solar radiation in other region.
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Figure 18. Proposed SRCA method

SRCA stands for Solar Radiation Correlation Analysis, which is a method
that is expected to be applied in remote islands. As figure 18 shows, there are more
than one area for the SRCA method. These areas are going to evaluate the
correlation between the target location and the other location. This method analyzes
the distance between two or more areas. In figure 8, there are two different areas
that are separated by t- ¢ . In figure 18, the blue line represents location B while the
red line represents location A. The concept of this research is based on the idea of
the cloud movement which will also be used for the solar radiation pattern. In this
concept, we split the areas into upstream and downstream areas or points. Our
prediction object and target compile the real-time forecast. Based on the upstream
and downstream areas, the gap time is obtained. The solar radiation data which has
similar value will then be used for real-time forecasting. It is calculated using the

SRCA method, and the location is chosen based on the result.

4.3. Forecasting for the Individual Areas

Based on the description of figure 18, an individual area is initially
forecasted before forecasting other points or areas. In this section, the individual
area is forecasted using NN and ELM. This part is necessary to obtain the PV output
forecast for individual areas. The results and timing process are then compared

between the NN and ELM method.
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4.3.1. Neural Network Models using Data Clustering

Same as the day-ahead PV output forecast, we construct NN for each season
to obtain the real-time PV output forecast. The data clustering used to model and
forecast the data is the same one used for day-ahead PV output forecast. There are
three classes of weather clusters; sunny, cloudy, and rainy condition. The same data
is also used for input data. The NN architecture is also the same as figure 8.

Its performance and effectiveness are also calculated in the process. A
conventional method namely the auto regressive (AR) method is chosen as a
comparison method. The error results are then compared based on the average and

maximum error.

4.3.2. Extreme Learning Machine Model

In this research, apart from NN, the ELM method is also used to model and
forecast the individual areas. The ELM method is used since its algorithm could
perform the training phase time faster than NN. The training phase time is necessary
to construct a robust network. Therefore, the results of real-time PV output forecast
could be informed to the power system operator immediately. Additionally, ELM
also does not require an iterative process.

Empirical calculation proves that ELM can process generalization better and
faster than neural network [73]. The basic idea of ELM lies in the single hidden
layer feed forward network. The architecture of ELM is shown in figurel9.

The mode and forecasting process is conducted through 7 steps as shown in figure

1. Set the input and output data, labeled as X, ¥, respectively.

2. Set the number of nodes in the hidden layer. This step is symbolized as L.

3. Set the activation function for the nodes in the hidden layer. Generally, the
“logsig” activation function is used for the training phase. Formula 6 shows
this calculation.

4. Set the weight input and bias input randomly. The input weight can be
mentioned as W and the bias input as b.

5. Calculate the hidden layer and maintain it as one matrix. This step is similar to

the part Q in chapter 3, while in figure 18, it is labeled as M. Through this step,
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not only do we obtain the multiplication result but also the results of the

activation function calculation.

M = logsig (Z} x;j input) (6)

6. Calculate and analyze the output weight of single layer neural network. This
step is labeled as f.
gM)-p=Y (7)
BH' ¥ (8)

In step 6, S is directly connected with ¥, which is the output of ELM. To obtain
the value of #, ELM uses the method of Moore-Penrose generalized inverse. In this
case, £ is the calculation result of g(M).

H* is the Moore-Penrose generalized inverse of H [72]. The calculation of H* is

mentioned in (4).

H =(H'H)'H" 9)

In this part, the f value must be calculated correctly to obtain a small error
between the forecast result and the data output.

7. Calculate the error between the forecast result and the data output. ¥ represents
the output result. To calculate the error, the RMSE formulation is used.
Ultimately, ELM provides a faster learning speed than general neural network

algorithm. For the implementation of ELM, it provides a simpler process based on

the matrix Moore-Penrose generalized inverse.

Figure 19. ELM Architecture.

x;: input data, i=1...n, wi: weight between input and middle layer, i=1...n.
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4.4. Forecasting the Target Area using Correlation

Factors

In this section, the correlation factor is used to determine the PV output of
the neighborhood area. We derive solar radiation correlation coefficient or
represented as (r7j) of the prediction target point (i) and other points (j) for every 5
mins. Then, we extract the solar radiation amount through the past data in a certain
period of point (i). After that, the solar radiation amount is extracted through the
past data in the same time window period of point j, and  minutes before point i

period as stated in the following:

Z(xi(t)—fl.)(xj(t—f)—)_cj)
\/Z[:(xi(’)—fi)z \/Zt:(x.f(t_r)_’_‘j )2

¢ : time (min), 7 : time interval (min), x; : other point solar radiation amount (kW/m?),

(10)

T (T) =

x; : predicted point solar radiation amount (kW/m?), = : x period average (kW/m?).

In the next step, the gap time 7 is changed by 5 minutes, and the correlation
coefficient is calculated. This is performed by selecting the gap time Tmax with the
highest correlation and using the max before solar radiation amount of point j to
point i solar radiation prediction.

To obtain prediction with high accuracy, we performed real-time correlation
analysis with multiple spots. Areas with high correlation are selected, and each
correlation coefficient are set as main object. The prediction results of each spot are
then integrated. As a specific method, correlation analysis is performed towards
multiple spots. The correlation coefficient of every area rij is emphasized, and then
calculated for its weighted average value of the solar radiation prediction as shown

in the following formula (11).

DI OB AGSS)
Y(t)=— "Z S 0 (11)

;(¢) denotes the predicted solar radiation value at location i by using

location j at time ¢ [kW/m?], and f’l (t) denotes the predicted solar radiation value at
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location i by all screened locations at time ¢ [kW/m?].

Figure 17 shows the prediction concept in real-time. Conventional authors
have considered the prediction method [19,74,75]. As a simple real-time prediction
method, we propose AR (autoregressive) model according to the least squares
method of the predicted area’s past data. This is a useful technique to avoid
excessive error and can ensure accuracy to certain level. Although it enables high
accuracy prediction for the latest time, error tends to increase as the predicted time

elapses.

4.5. Estimation of PV Outputs

This section shall provide the estimation of PV output. Similar to chapter 3,
an individual area is modeled and forecasted which is proceeded with the
forecasting of PV output using the SRCA calculation. A more detailed explanation

on the process shall be provided in the following chapter.

4.6. Case Studies

This section of chapter 4 shall provide case studies of real-time PV output
forecast. As previously mentioned, multiple areas are calculated in obtaining the
real-time PV output forecasting and also the analysis for each PV output forecast
area. For the individual area forecasting, the NN and ELM methods are used as

forecasting method.

ELM is applied as a regression analysis which can obtain the PV output
forecast. Real-time PV forecast with 10-second intervals is presented in this section.

Table 1 shows that the increasing number of hidden nodes can affect the CPU time.
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No. of | Forecast | Forecast CpPU CpPU
Hidden | Error Error Time Time
Nodes | (ELM) (NN) [s] [s]
(ELM) (NN)
50 2.00 12.4 0.16 4.17
100 1.50 10.7 0.26 4.23
150 3.76 10.9 0.43 431
200 1.79 14.0 0.63 5.18

Table 1. Comparison of Forecast Error and CPU Time between ELM and NN

Table 1 indicates that the forecast accuracy is strongly influenced by the
meteorological data. It is proof that the type of meteorological data has a strong
correlation with the amount of insolation. Several number of hidden nodes are
selected. This treatment is necessary to compare the error and CPU time between
the NN and ELM methods. Based on table 1, the error value has a declining
tendency after the number of hidden nodes is changed from 50 to 100 number of
nodes. On the other hand, the error has an increasing trend when 150 number of
nodes is used. This situation occurs due to the different variable setting of ELM and
NN. After that, 200 number of hidden nodes is used to model the data input using
the ELM and NN method. After the PV output in the individual areas are forecasted,
the SRCA method is used to calculate the real-time PV output forecast.

The following is an explanation on the error calculation for real-time PV
forecast. The prediction error rate (&) and maximum prediction error rate (7) are
used to obtain the error value. The formula is as stated in the equations (12) and
(13) below. These two methods can be used as a comparison for the prediction
accuracy. Many researchers use this formula to obtain the prediction accuracy.
While in this research, this method is used because the value of solar radiation is a

value that shows the maximum number of solar radiation in a day.

&€= " [70] (12)

38| Page



n=100xX,, - X,

/O (%] (13)

The predicted solar radiation value is symbolized as %, while X,,, is the
value of the predicted solar radiation that causes the maximum prediction error, and
the actual value of solar radiation is symbolized as X. The amount of the actual
value solar radiation used to calculate the maximum prediction error is represented
as Xmax, while the extraterrestrial solar radiation is described as O, and the last Opax
represents the maximum value of the extraterrestrial solar radiation.

Table 2 provides the accuracy result of this method. The table shows the
real-time PV output forecast in June 2012. Real-time PV forecast for 60-minutes
and 10-minutes ahead are also provided in figure 20 and 21. The results of the AR
model are also provided and compared in the graphs. Based on figure 20, the # value
which uses the AR model increases from 5 minutes to 10 minutes. This shows that

the SRCA method has similar results with the AR model.
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Figure 20. 60-min ahead predictions
Figure 20 shows that the proposed method could follow the measurement
data pattern. At 06.00 until 08.00, the blue line does not match with the
measurement and AR result. The same pattern also appears for the SRCA result
from 08.00 until 10.00 where the blue line does not match with the measurement
line. The same situation is also proven through table 2. In the 60-minute ahead
forecast result, the value of average and maximum error is the biggest among others.

After 08.00, the forecast result is in the same flow as the measurement and AR

method.
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Figure 21. 10-min ahead predictions
Figure 21 shows that the 10-minute ahead forecast is better than the 60-
minute ahead forecast. In this case, 10-minute ahead forecast line flow is closer to
the measurement and AR result. The biggest error occurs in 12.00 until 14.00. This
error can be seen through the blue line which, representing the SRCA method, has

a different pattern with the measurement data.
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Figure 22. Prediction errors
Figure 22 shows the monthly forecast error rate of the 30-minute ahead
forecast. This figure describes the proposed error which increases during the 7%
until 9" month. The lowest error value occurs in the 4™ until 5% month. We also
compared the result of the proposed method with the AR method to compare our
result with the conventional method. The result shows that the proposed method has

the same pattern in increasing or decreasing trend in a year.
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Table 2. Prediction errors in June 2012

Smin 10min |[20min | 40min | 60min
ahead ahead |ahead | ahead ahead
Av. Error ¢ [%] 16.09 19.00 | 20.75 | 23.76 25.07

SRCA
Max Error 771 [%] 16.50 18.47 [19.84 | 21.20 22.26
Av. Error ¢ [%] 32.87 36.74 |36.56 | 39.10 40.65

AR

Max Error 771 [%] 3143 3248 |33.91 34.89 35.12

The following is the forecasting results for all seasons in different weather
and season conditions. The data used is from October until December 2011, also
January until September 2012. The available data is preprocessed using the
proposed preprocessing method. By using this method, writers of this research are
interested in forecast using an advanced calculation such as lamp fluctuation. Based
on the result, the proposed method has similar results with the conventional method.
This is proven by the average error result and maximum error result. Additionally,
this research also provides the MAE result for each season and the comparison with
the AR method as well. In conclusion, non-sophisticated data could obtain a reliable
result for PV power system simulator. The proposed method also shows that it is
applicable and useful enough to be used in real cases. The forecast accuracy also

shows that public data could be useful.
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Figure 23. Real-time PV forecast on 3rd Aug. 2012
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4.7. Summary

This chapter could be summarized as follows:

1. This chapter discusses in detail about the real-time PV output forecast.

2. The data used in this section is the same as day-ahead PV output forecast. The
difference with day-ahead PV output forecast is the interval data time in which
a 5-minute interval time is used in this section.

3. We could perform an individual area forecast before using the SRCA method.

4. For the individual area forecast, the NN and ELM method are used as the
forecasting method. These two methods are compared to obtain a faster CPU
time and a better error calculation.

5. The prediction error rate € and the maximum prediction error rate #, are used as
indices for comparing the prediction accuracy.

6. Results of the proposed method are compared with the results from the AR

method to see how it compares with the conventional method.
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Chapter 5
Application to the Energy Management System (EMS)

5.1. Introduction

This chapter focuses on the application of the PV output forecast. As
mentioned in the previous chapter, the EMS controller is provided to represent a
small-scale power system grid. The EMS controller architecture is shown in figure
24. This controller is an attempt in facing the uncertainties of renewable energy
resources. This chapter establishes a novel methodology for stochastic dynamic
economic load dispatch (SDED). This methodology becomes necessary to
guarantee secure operation in real-time scenarios [41]. This concern is common to
various widely adopted power systems, where smart gird projects make use of all
available controls including demand response [42]. In order to fully utilize
controllable generators, the development of a stable and reliable load dispatching
method is extremely important in dealing with uncertainties [43] [3].

Various approaches have been proposed concerning SDED problem, which
are classified into two approaches. The first approach continuously performs static
economic load dispatch (ELD) at each interval by considering the ramp rate
constraints [44], [45]. The second approach establishes the generation schedule
(GS) by solving a single optimization problem. The approach includes various
analytical technique in programming [49], improved simulated annealing [46], [47],
hybrid approach of Hopfield neural network and quadratic programming (QP) [48],
variable scaling hybrid differential algorithm [50], re-dispatch algorithms by using
QP, linear programming (LP) and the Danzig Wolfe’s decomposition technique
[51], a multi-stage algorithm [52], and the interior point method [53] However,
these conventional approaches cannot fully handle the large amount of uncertainties
which arise from the power system operations. Hafiz et al. [5] and Yorino et al. [6]
have proposed time-sequence dynamic feasible region (TDF) approach to fully
utilize ramp rate capabilities of controllable generators against uncertainties. The
concept of Robust Power System Security [54] has been proposed by Okumoto et
al. where safe-side treatment of uncertainty is suggested for important constraints

related to system collapse.
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Figure 24. The proposed micro-EMS controller

A detailed explanation about the EMS controller will be described in the

following section.

5.2. Outline of the proposed EMS Controller

The research target is to develop a robust micro-EMS controller against

uncertainties [55]. Figure 1 shows the configuration of the proposed management
system: there are mainly three functions responsible for day-ahead operation
planning, minute-order real-time operation, and second-order real-time control.
Based on the prediction of RES outputs, the system manages the existing generators,
storage battery (BT) and controllable demands in optimal manner.

This section shall provide a more detailed view about new energy
management method based on the Robust Power System Security. The proposed
method is applied to micro energy management system (micro-EMS) controller
(Fig. 1), where load and RES predictions are available online. Confidence intervals
(ClIs) of the RES prediction errors are based on the required reliability of system

operation against system collapse. This outline consists of four parts of EMS
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controller which will be described in the following, starting from the beginning until
the end.

The first step is day-ahead and real-time forecasting parts which describes
on how to obtain the forecast result. The forecast result has been described in detail
in the preceding chapter. Then, the next step is UC calculation with battery. In this
section, UC calculation and formulation are described in detail. The third
component is dynamic economic load dispatch (DELD) part and the last is
frequency control part. We first carry out PV output forecast and its error analysis.
A weather clustering method has been proposed for this purpose in [55]. A
covariance matrix of PV output errors is calculated, while CIs of the PV forecast
errors are based on the required reliability against system collapse. The covariance
matrices will be used in real-time GS in (44) for line flow control, while Cls are
used in day-ahead unit commitment (UC) in (28) and real-time RTDF computation
in (31) which is further used in real-time SDED in (45) to guarantee the supply and
demand balance and reserve management.

In general, the proposed EMS controller consists of three parts; the first part
is the planning manager, the second part is the operation manager, and the last part
i1s optimization. As mentioned in figure 24, operation manager includes the
description on day-hour order PV output forecast. The day-hour PV output forecast
is the first step in the day-ahead planning. In this research, the day-hour PV output
forecast is included in the section of day-ahead and real-time forecasting. Day-hour
PV output planning is involved on the day-ahead planning manager calculation with
a more detailed explanation below. The second part of EMS controller is hour-
minutes PV output order. This part is necessary in obtaining the real-time operation
manager. It requires a historical database to obtain the real-time PV output forecast.

The last part is minute-second order for real-time control manager.

5.2.1. Day-ahead and Real-time Forecasting Parts

Figure 24 shows the day-ahead and real-time forecasting parts. The
forecasting section is part of planning manager and operation manager. Day-ahead
forecasting consist of day-hour PV output order. In day-hour PV output order,

offline and online database is necessary for the forecasting process. Weather
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information or weather database is necessary for the forecasting part. In this
research, wind speed, temperature, and probability of the precipitation data are
necessary as weather offline database. After the day-ahead PV output forecast is
obtained, the next step is the calculation of a simulated day-ahead planning manager.
For day-ahead planning manager calculation, past electricity demand, specification
of existing generator, storage battery capacity and grid information are all necessary.
If the wind-turbine data is possible to have, this data also can be included for the
day-ahead planning manager. The EMS controller is prepared to calculate the day-
ahead planning manager.

These data are required for day-ahead planning manager. This calculation
generates a generator scheduling for day-ahead planning manager. The generator
scheduling will be re arranged if the calculation result obtain a better combination
than before. In GS, the renewable resources begin to be considered if these
resources plan are to be merged in the existing power system grid. Then, the next

step is UC part with storage battery.

5.2.2. Unit Commitment (UC) Part with Storage Battery

UC part with storage battery is involved in the planning manager section.
This manager provides an updated schedule of the output pattern for the limited
resources. The output is represented as a 24-hour GS which also comprises the BT
operation schedule, where the unit time is 30 minutes. Existing techniques for the
UC can be fully utilized in the optimization process. The optimization process is
described in detail below. Uncertainties related to the prediction and fluctuation of
PV are handled particularly [55]. The storage battery data is included in UC

calculation.

5.2.3. Dynamic Economic Load Dispatch (DELD) Part

In power system, there are a lot of number of unit commitment problems.
This research proposes a new algorithm for UC and stochastic dynamic economic
load dispatch. This method should be efficient for the real-time and the day-ahead
generator scheduling (GS). Not only efficient, the proposed method also offers a

simple weather data usage that could be accessed easily. Then, this simple weather
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data could obtain a reliable PV output forecast that can be applied for GS. Besides
that, the method also offers a security treatment for power system. This treatment
could guarantee that the PV resources will not interrupt the existing power system.
The proposed method can effectively treat the PV forecasting error by setting the
Cl range.

In this research, we propose a new energy management method based on
robust power system security. The proposed method updates the day-ahead GS a
few times a day and provides 1-hour GS every 5 minutes in real-time operation.
There are two treatments for this main research:

1. CIs and covariance matrix of prediction errors are used respectively in
deterministic feasibility detection and probabilistic line flow management. The
former realizes effective safe-side reserve management, while the latter handles
soft constraints of line overloading. The approach is considered a new approach
in handling uncertainties.

2. This research also proposes a new algorithm to realize the proposed uncertainty
treatment, which include (1) an improved TDF, Robust TDF (RTDF) that
effectively treats Cls, (2) an improved SDED method which combines RTDF,
QP and liner stochastic load flow (SLF), and (3) an improved UC algorithm for
day ahead 24-hour GS.

The advantages of this proposed method are that the supply and demand
balance is kept to the maximum (high feasibility of dispatch) under uncertainties in
real-time power system operations. In case of a critical situation when the
forecasted load cannot match with the existing generator’s capability, the method
will detect the minimum amount of supply and demand mismatch in advance (1-

hour before) and handle it reliably for the considered time horizon.

5.2.4. Frequency Control Part

This section of the chapter shall discuss in detail regarding the frequency
control. In our EMS controller, the frequency control is also maintained in the
permitted ranges of frequency. Therefore, this research provides three main
controller parts, namely day-ahead operation planning, minute-order real-time

operation and second-order real-time control. Based on the PV output forecast, the
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system could manage the existing generators to maintain their frequency in the
stable range. It is a challenge to maintain the power system frequency in the stable

range due to the RES that have a high of uncertainties value.

5.3. Problem Formulation
5.3.1. Optimization stage I for UC using Day-ahead PV

Forecasting

1.. Formulation for Stage I Optimization

The optimization problem is formulated with Ng controllable generators in

a time horizon of 7 intervals ahead from the current moment as follows.

Minimize:
NP NG
C’(P,,u)= ZZukt S +ZZ(”kTp ukrw)-suck (14)
t=1 k=1 m=1 k=1
>
Jw =a o, +b Py, + ¢ (15)

SUC. : start-up cost [$] of k-th generator

Subject to:

i. Supply and demand balance constraints.

Z ow + By — B = B[Py, 1= E[ Py, 1~ E[ By, ] (16)
ii. Upper and lower output of generator constraints.
min max
Foo -y < By < By, (17)
1ii. Ramp-rate constraints.

_5k ‘At S PGk(t—l) Gkt S 5 At (18)

1v. Start/stop variables constraints.

0<u, <1 (19)

48 |[Page



v. Minimum continuity down time constraints.

i (-u,): Upy = 1
t+mdt

then  » (1—u,)=mdt,
t
vi. Minimum continuity up time constraints.

if uy, - (=uy, ) =1
t+mut

then Z (1-wu,,)=mut,

t

vii. BT charge/discharge output limits constraints.
max
0<B,<B,
max
0<B,<B

With switching constraint:

B, -B,=0

C

viii. BT upper and lower bounds of the state of charge.
BM < B, < B™

ix. Dynamic transition of BT state of charge.

B

st

B

At
s(1-1) + {Bct _Bdt /77}'@

x. Line flow limits between node 7 and ;.

_F;@ax S F

< max

xi. DC power flow equation (36) in the next section

xii. Operating reserve power constraints.

Ng

max
ZPGk Uy +Bdt _Bct ant +Rt
k=1

(20)

21

(22)

(23)

24)

(25)

(26)

27

(28)
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ct —

Ng .
ZPGnl]c1 Uyt Bdt —-B, < Bm (29)
k=1

where, P, =P

nt Dt

- P

PVt

- P

Wit

P-p_pP _P

nt Dt~ PVt Wt

Pm :PDt_P

PVt I WIt .
With the following description: CP?: generation cost [$] for day-ahead GS,
uks: start/stop variables of k-th generator at time ¢, Pgi: power output [MW] of k-th

generator at time 7, p_ < R : vector of P (k=1,..,Ng, t=1,..,T), ueR"": vector

of uy, ax, bi, cx: quadratic cost coefficients of k-th generator, 7p,: time [min] at local
maximum electricity demand (m=1,...,Np), Np: number of peak time, 7: time [min]
at minimum electricity demand, B, Ba:: charge and discharge output power [MW]
of BT at time ¢, respectively, Pp:: electricity demand [MW] at time ¢, Ppyi: PV
outputs [MW] at time ¢, Pwr: WT outputs [MW] at time ¢, E[*]: expected value

[MW] at time #, Pi™, Pg™": maximum and minimum outputs [MW] of k-th
generator, respectively, oy ramp-rate limit [MW/min] of k-th generator, Dt:
computational interval [min], muti, mdti;: Minimum operating time [min] and
minimum waiting time [min] of A-th generator, respectively, B."*, B/"*: charge
and discharge maximum power [MW] of BT, respectively, By: state of charge
(SOC) [MWh] of BT at time ¢, B/"*, B;/"": maximum and minimum SOC bounds
[MWh] of BT, respectively, A: charge/discharge efficiency of BT, Fj: line flow

[MW] from node i to j governed by DC power flow equation, F};"**: maximum

allowable line flow [MW] between node i and j, R;: operating reserve power [MW]

at time ¢, Py net electricity demand at time ¢, P : upper and lower bounds

nt2v..nt

[MW] of P, including CIs of RES prediction at time ¢, respectively.
Solution procedure will be given in the following section. After obtaining
the solution, this research proposes to fix the start/stop time schedules and the BT

charge/discharge operation, and then perform the next steps as below.
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A. RTDF and Supply-Demand Mismatch using Cls

TDF is defined as the region of generator output Pci reachable from a
specified operating point and satisfying all constraints (16)-(18) with load forecasts
g, for =1,..,T. TDF evaluation algorithm was proposed in [5] and [6], where the
present operating point /=0 is used as a starting point to achieve reachable points

successively in forward direction to =7. TDF result from this calculation is
represented as TDF (t,]A’Dt), which implies the region defined by the upper and

lower limits of each generator output at each time =1...7.

In this research, Robust TDF (RTDF) is defined by considering CIs around

A

the latest load predictions £, :
RTDF (1, B,)) = {TDF (1, B, + My )(\TDF (t, B, — M)} (30)

“M ” implies the intersection. My; and M, are the assumed upper and lower limits

of prediction errors, respectively. RTDF is obtained as the upper and lower bounds

pair &, and &, (k=1,..,.Ng, t=1,..,T) as follows.
a, sy, <q, (€29)

Calculation of RTDF is performed in each control cycle before stage II
optimization in section III-D.
Once the upper and lower limits are obtained, any output values Pgy, inside the

limits (31) will be guaranteed as reachable if the latest load forecast errors appear

inside Cls, [[:’D[ -M Lt,PDt +M,,]. In this algorithm, when &, <&, is detected,

RTDF is nonexistence and the supply-demand mismatch (SDM) is computed by
(32).

SDM = ay, _&kt (when C_Ikt < th)

~ (32)
0 (whend,>a,)

When SDM is detected, it must be compensated by additional power
provision or load reduction. After the management of SDM, the RTDF is

recalculated to confirm that the SDM disappears. Then, the optimization process is
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continued.

B. Stochastic Load Flow [20]-[22]

The prediction errors of loads and RESs result are in the line flow of
uncertainty. Line flow constraints are treated in a probabilistic manner. Assuming
the normal distribution for the prediction error characteristic, linear DC power flow
calculation method is used to provide the most efficient computation. The SLF
method is applied in such a way that the probability of constraint violation is less
than a specified value for each line. The stochastic network constraint is represented

as in the following form.
NVI
LBF, < F,=Y»S,P, <UBF, (33)
Jj=1

UBF;and LBF; are the upper and lower bounds [MW] with respect to the
transmission line /, F;: amount of line flow [MW], N,: number of nodes, Sj:
conversion matrix, P;: injection power [MW] into node ;.

Probabilistic
Density (Pr)

Line Flow Control :
Pr (Line Flow Violation) < X

Pr (X > Xlimit) =36 = 0.26[%]

Line Flow at
node i [MW]

T T

Expected Line Flow Line Flow Limit

Figure 25. Stochastic control of line flow

The formulation of (33) is provided in the following equation. Based on the

DC power flow method, the following relationships hold.
S,0=P (34)
F=5.0 (35)

Nnx1
Where, fcsR™" . voltage angle matrices [rad], P € R : real power

NIx1 nx Nn
injection matrices [p.u.], F eR™ :real power line flow [p.u.], Sy € R M

52 |Page



R NIxNn

node susceptance matrices [p.u./rad], S, € : line susceptance matrices.

From (34) and (35), the following is obtained:
F=S.S,'P=S-P (36)
Node injection P is represented as
P=P;-P, (37)

Where Pp is a probabilistic variable consisting of loads and RES outputs
(negative demands), while Pg corresponds to a variable of conventional generator
outputs to be determined in the optimization process. Therefore, the expected value

E[P] of node injection power P is represented by the following expression:

E[P]:PG_E[PD] (38)

Then, the mean value vector and covariance matrix of line flow are represented
as follows:

E[F]=S[P,~E[P,]]=S P, ~S-E[P,]=[u] (39)

Cov|F|=E[(F - E[F])(F —E[F))"]
=S-E[(P-E[P))(P-E[P])]-S" (40)
=S-Co{P]-S" =[o,]

Where, : : h b(nfl)n
b

n(n—-1) nn

The diagonal element by, is variance of Pp, the non-diagonal element is the

covariance (Cov) of PV generation outputs.

The probability density function for line flow / may be described using the elements

from (39) and (40):

_ 1 _l(F;_:ul)z 41
gF,(F})_MG” exp{ B O'; } ( )

To constrain the violation probability to a value less than X, threshold b is defined
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by the following equations.
X>1- jFF £, (x)dx (42)

F-p-0,2|E[F]| 43)

Further substitution of (43) into (41) yields stochastic load flow constraint below,

where (44) is identical with (33).

—_— N” i
~F+p-0,+D,<Y.S,P <F-p-0,+D, (44)
=
Where , N,
D= YSE [P[’,]

5.3.2. Optimization stage II for DELD using Real-time PV

Forecasting

The optimization problem (Stage II) is formulated with Ng controllable
generators in a time horizon of 7T intervals ahead from the current moment as
follows.

Minimize:
T Ny
RT 2
C(Pyu) =YY (a, Py, +b.Py, +c,) (45)
t=1 k=1
Subject to:

(16), (18), (31), (44).

Constraints (31) and (44), which are explained in sections III-B and C, are
the novel treatment of uncertainties by the proposed method. That is, the important
constraint of the supply and demand balance is treated in deterministic manner by
RTDF with ClIs to avoid system collapse. On the other hand, soft constraints of line
overloading are dealt with by DC probabilistic power flow. Covariance matrix and
Cls will be updated frequently in real-time operation, as is presented in the next

section.
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» Computational Procedures

This section describes the computation procedure of the proposed method
presented in the previous sections. The following procedures are performed in every

control cycle.

< Day-ahead 24-hour GS: Stage I > (A few times a day)

Instead of standard approach using Mixed-Integer Linear Programming
(MILP), we have developed a special technique by improving the method in [56] to
solve the UC problem by using standard QP software. The effectiveness of the
proposed technique has been studied in [57].

The day-ahead GS is obtained by using the following algorithm to determine
the generator’s output Pg, its start/stop variable # and BT charge/discharge
operation for 24 hours, where unit time is 30 minutes.

Step I-1 Read day-ahead forecast data for loads and RES.
Step I-2 Set iteration number d = 0.
Step I-3 Solve (16) by QP to determine P and u, treated as continuous variables.

Step I-4 Compute unit fuel cost in (46) using present Pg.

Hy = a Py, +b +c, | By, (46)
Step I-5  Solve the following problem with penalty function (48) using QP
algorithm.
Minimize:
d DH d
g(Fy,u,d,p")=C™ (Py,u)+h(d, u°) (47)
') = 323 (107°2(d + 2)(a, )" (48)

P
Subject to: (16)-(28), and (36).

Stepl-6 d=d+ 1.

Step I-7 Repeat Steps 1-4 to I-6 until the convergence is obtained.

Step I-8  Determine start/stop variables u: if ux>0.5 (threshold) then set ui=1
else ux=0.

Step I-9 By fixing u, solve the first formula to obtain Pg using QP algorithm.

55| Page



The obtained start/stop time for generators and BT operation for 24-hour
GS will be used in stage II as predetermined schedule. The generator’s outputs Pci

are used as only reference for operators.
< Real-time 1-hour GS: Stage Il > (Every 5 minutes)

The real-time GS is carried out to minimize the generator’s output and BT
charge/discharge operation (if necessary) every 5 minutes.

Step II-1 Read data of day-ahead generator’s start/stop variables and BT
charge/discharge operations.

Step II-2 Update forecasts (load and RES), covariance matrices, and Cls using
most recent data. Perform state estimation to obtain the present
operating condition.

Step II-3 Calculate RTDF and Supply-Demand Mismatch (SDM). If SDM is non-
zero, arrange relevant reserve by modifying BT operation schedule, or
using other resources corresponding to detected value of SDM, and
perform RTDF update to confirm zero SDM.

Step 1I-4 Compute UBF; and LBF).

Step II-5 Solve problem (45) by QP software to obtain GS: Pon (k=1,..,Ng,

=5,10,.., 60[min]).
The obtained GS is monitored by system operator, where GS in 5 minutes

ahead are sent to the individual generators as real-time control signal.

5.4. Case Studies

1. Simulation Conditions

The proposed method is demonstrated using an example system in figure 26.
The generation mix data is from a Japanese smart grid project where the installed
PV an WT generation are about 15% of peak load. It is composed of three diesel
generators, two load areas with RESs and a BT station. Detail data are given in
tables 3. PV prediction data is shown, which has been given by our forecasting
method based on the weather clustering type neural network. Typical load patterns

are used in the proposed optimization process.
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Figure 26. Test Power System

Table 3. specification of generators
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k Limit Rate (sucy) b
[KW] [kW/min] [$]k @ k Ck
G1 | 1,000~2,000 66.7 40.00 | 0.0011 | 16.416| 4,320.00
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(a) Results of Day-ahead Forecast

0.8 prrrr LR LRARARAN LARARARA | RRARRES T LRRRARS RRRAARARS EAALRARS Rk

— Measurements
— Predictions

g
(o)}
T

PV output [kW/m?]
(=)
»

0 L 1 1 1 1 1 1 1 |
02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00

Time [hh:mm]

(b)  Results of Real-time Forecast.

Figure 27. Forecast results on 4th August, 2012

e Stage I optimization

Figure 28 shows the result of stage I optimization, describing 24-hours GS
for generators (Pg1, P2, Pg3), BT operation (Per=B4-B.), electricity demand (Pp),
net electricity demand (P,), PV output (Ppv) predictions, WT outputs (Pwr), and
SOC of BT (Bs). Note that G2 starts up at 11:00 and shuts down at 18:15 shown in
Table II, which will be fixed in the stage II optimization.
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Figure 28. Day-ahead 24-hour GS

Tabel. 4 Start-up and shut-down times data from day-ahead UC

a

Shut-down time

Demand Unit k£ | Start-up time
Gl - -
Weekday G2 11:00 18:15
G3 - -

o Stage Il optimization

I-hour GS is computed and updated every 5 minutes based on real-time PV

prediction data. The upper and lower tolerances of prediction errors in net demands

(load — RES) are set as a linear function of time as follows:

~ t
M, =M, :PDzX?XJ/

(49)

Where, P, (t=0,1,...,T) are the most recent forecasted net power demands.

7=60 [min], #: prediction time (/=0 for present operating point), g is a parameter

representing 1 hour ahead maximum prediction error, and g = [0%, 10%, 20%] will

be examined. Allowable constraint violation for line flow is set to X=3s =0.26[%]

in this examination.
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Figure 29. Real-time 1-hour GS with RTDF and SDM

Figure 29 shows the result of stage Il optimization obtained at 17:30
(weekday, y=10%). The upper and lower limits of RTDF and 1-hour GS for each
generator are provided. The GS at 5 minutes ahead (17:35) is sent to each generating
unit as a control signal. RTDF implies reachable area from the operating point at
17:30. The larger RTDF, the larger system capability that copes with uncertainty is
expected. RTDF computation also successfully provides SDM 1-hour before the
operation, which is given as Py that appears at 18:25. This advantageous
characteristic come from the RTDF computation which identifies the feasible
region with high accuracy. Note that the detected SDM is managed by the
rescheduling of the BT operation 1-hour before by the proposed method. If BT
cannot cope with the situation, we can prepare additional action such as demand

response or load shedding at 18:25.
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Figure 30. Line Flow with 3¢ allowable intervals at line F3.

Figure 30 shows the scheduled F3 line flow, which may vary inside 3o
allowable intervals. The result shows that SLF works successfully to avoid

overloads in stage I optimization. Figure 8 describes the simulated results after 24-
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hour operations by the proposed real-time optimized control method. Descriptions
of wave forms are given below the figure caption. We see that the PV prediction 1-
hour ahead in the 2nd graph is erroneous. Nevertheless, the proposed method
successfully treats the uncertainties to control generators as seen in 4-6th graphs,
Rescheduled BT operation in the 7th graph has completely absorbed the SDM
detected in figure 31. As aresult, the frequency deviations are suppressed less than
0.2 Hz as observed in 8th graph. The frequency fluctuation has been analyzed by
the simulator in the proposed micro-EMS controller. The frequency deviations
increase mainly due to PV output fluctuations as well as the prediction errors in the
day time. Thus, the proposed method reliably manages the uncertainties in the real-

time power system operation.
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Figure 31. The results of the 24-hour operations.

(From top: 1: Pp and net demand (=Pp-Ppy-Pwr+Psr) [2~5.5MW], 2: Ppy
(prediction 1-hour ahead and measurement) [0~1MW], 3: Pwr [0~1MW], 4: Pg1,
5: Paa, 6: Pg3 [0~3MW], 7: Ppr[-0.5 ~0.5MW], and 8: f'system frequency
[59.8~60.2Hz], where [*~**] describes full scale of each graph)
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Table 5. CPU Time

Number of | Stage I for day-ahead Stage II for real-
Generators 24-hour GS [sec] time 1-hour GS[sec]
3 3.0 0.37 (0.011)

5 4.4 0.44 (0.012)
10 9.4 1.87 (0.054)

Table 4 shows the computational burden (CPU Time), which is evaluated
for test power systems with 3, 5, and 10 generators using Intel Core 17, 2.20GHz,
8GB memory. The CPU time on Stage I implies a total computation time from Steps
[-2 to 19 in Section III-E for obtaining a day-ahead 24-hour GS. Stage II
computation time is for the calculation of Steps II-3 to II-5 in Section III-E for
obtaining a real-time 1-hour GS that is to be repeated every 5 minutes. Note that
the numbers in the blanket imply the computation time for RTDF and SDM.

Integrating large amounts of intermittent RESs into electric power systems
causes various difficulties such as the supply and demand balance and frequency
problems. In such situations, treatment of uncertainty by means of limited
controllable resources is a critical issue for secure power system operations.
Frequent evaluation of generation schedule is effective for minimizing prediction
errors to establish a reliable operation against sudden changes in RES generations.
We propose a new real-time optimization method guaranteeing feasibility of
operations. Uncertainties affecting the important constraint of the supply and
demand balance are treated in deterministic manner using Cls to avoid system
collapse, while those relating to soft constraints of line overloading are dealt with
by DC probabilistic power flow. Although the computation time is a critical issue,
the proposed method provides a solution for introducing a large amount of RES into
a smart grid operation.

The present version of the proposed method utilizes the DC power
calculation method which may degenerate the accuracy when applied to low voltage
distribution systems with large values of R/X. The use of extended equations based

on a distribution power flow [58], [59] seems an interesting trial in the future.

5.5 Summary

This section could be summarized as follows:
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The research provides an EMS controller represented as a small power system
grid. This controller consists of day-ahead operation manager, real-time
operation manager and real-time control manager.

Integrating large amounts of intermittent RESs into electric power systems
causes various difficulties such as the supply and demand balance and
frequency problems.

The treatment of uncertainty by limited controllable resources is a critical issue
for secure power system operations.

Frequent evaluation of generation schedule is effective for minimizing
prediction errors to establish a reliable operation against sudden changes in
RES generations.

A new real-time optimization method guaranteeing feasibility of operations is
described in this chapter.

Although the computation time is a critical issue, the proposed method
provides a solution for introducing a large amount of RES into a smart grid

operation.
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Chapter 6
Conclusions and Future Research

6.1. Conclusions

This research has proposed a day-ahead and a real-time PV generation
forecasting method for the supply-demand manager. The performance, capabilities,
and effectiveness of our methodology have been verified through extensive
simulation results. We have also validated the degree of influence of the prediction
error and the CI on the system performance. For the real-time PV forecasting, the
SRCA method could be approved as neighborhood-area forecast. This method can
be used to predict in an isolated area.

Frequent evaluation of generation schedule is effective for minimizing
prediction errors in order to establish a reliable operation against sudden changes in

RES generations.

6.2. Future Work

There are still a number of future works that have to be developed for the
day-ahead forecast. The aim of this work to improve the prediction accuracy and
implement the method on a simulator. This is necessary in studying how significant
the impacts on the prediction errors and/or the CI settings.

For a real-time forecast, it is necessary to consider the relationship between
the additional weather conditions beside the solar radiation characteristics.
Additionally, effective settings for the Cls based on the prediction error analysis,
and construction of a detection system for performing short-time lamp fluctuations
in advance also remain as topics for our future work.

For the EMS application, the present version of the proposed method
utilizes the DC power calculation method which may degenerate the accuracy when
applied to low voltage distribution systems with large values of R/X. The use of
extended equations based on a distribution power flow [25], [26] seems an

interesting trial in the future.
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Day-ahead 24-hour GS and Real-time 1-hour GS with RTDF for West Japan
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Robust Stochastic Dynamic Load Dispatch
against Uncertainties

Y. Sasala, Member, JEEE. N. Yorino, Member, IEEE. Y. Zoka, Member, [EEE, F 1. Wahyudi, Student |

Member, IEEE

i Abstracr—At present, electric PoWer systems face difficulties ni
syitem operations doe to rapid increase in u.ucl:lui:m]lahl&
ﬂ.nerrahle energy sources (RESs), such as photovoltaic pl:-'ner
gmmtmn.a {(FVs). Reduction of controllable resources also 'F.IIﬂd.ﬁ
;:oncerns about system reliability izsmes, Thiz paper focuses on =
new dvnamic load dispatch method for mitigating the u'regnlanh-
associated with RES, The developed load dispatch method is to
f;:hedule the committed peperating nmits oputpufs 50 as to meei
mqmred irregular load demand estimation which is freqn&nth—
npdared in real-time operation circumstance. A new algorithm is
;Jmpmud for unit commitment and stochastic dynamic economid
ioad dispatch as an efficient solution for a day-ahead and a real-
:iime generation schedule (GS), respectively, that fully utilizes the
i]m:.tad resources of a power system under uncertainties. Day-
ahead and real-time PV forecasts with the co-relations of PV
forecasting errors are effectively treated in the proposed method
Epeu:l feature of the proposed method different from the existing
works lies in a frequent real-time update of G5 by using a fasé
alporithm to maximize robusiness azainst nncertainties,

Index  Terms—Uncertainties, Confidence Intervals, FP%
forecasting, Day-ahead and realtime generation scheduls
Stochastic dynamic economic load dispateh,

I. INTRODUCTION

Movel methodologies for stochastic dymamic economic load
';:lispatn:h ES[}ED] become mecessary o guarantee secure

;:nmmm to wvarious widely adnpted pw:ér--é;"::féra:i“:u;ﬂre
%mart gird projects make uze of all available mntmls mcluding
generalﬂrs dew Elcupment of robust and reliable  load
dispatching method 15 extremely of importance to effectively
ireat uncertamnties [3] [3].
i Vanous approaches have been proposed so far concemed
with SDED problem, classified mto two approaches. The first
hppma-:h repeal‘edh perf-:-rms statl-: economic load dispatcl

_;:Dnsl:ramts [6]. [7]. The gsecond zpproach  determines
:geueralinn schedule (G5) by solving a single optmization
problem. The approach mcludes heunstic technique i
dynamic programming [8], improved simulated annealing [9]
:{l'l}], hvbrid approach of Hopfield neursl network and
quadratic programming (QP) [11], variable scalmg hybrid
differential algorithm [12], re-dizpatch alzorithms usmg QF
imear programming (LP) and the Danzig Wolfe's
decomposzition techmique [13], a multi-stage alporithm [14]
and the interior point method [15].

ii EN'E\‘.—'EBLE energy sources (FESs) such as photovoltald

wer generations (PWs) and  wind-turbine power
menerations (W L) are expected to grow substantially m the
near future. A ressonable estimation is that 20-30%% of the
amount of total energy will be deliversd through such sources
m the upcoming 15 vears. PVs are clean and safety energy
sources, while they are prome to cause degradation of powes
quality az well as grid security due to unforeseen weather
condiions. Contimous  sunlight  mtenmittency, espemalhf
during cloudy days, inowrs sudden imtense c:hauges m T]:I.E]I:
putputs such as unpredictable significant ramp effect. The
mcreasing renewable energy requires  additional ramp:iné
ghilities to mantan the gnd stabiity. Development D:E
sophisticated operation technology 1= a kev subject. .

Y. Sazald is an Assiztant professor with Graduate School of Enginesring;
Hirgshima TUlniversity, 1-4-1 Eagamivara, Higashi-Hiroshims 738-5317
Tay e-mail: vusasakiZhiroshima-u ac_jo).

. Yorino iz 2 Professor with Gradoste School of Engineering, Hiroshins
 Imiversity, {e-rmail- vori irpahima-u_ac jp).

Y. Zoka iz an Associate pmmsar with Graduste Schaol of Engineering:
Hirgshima University (e-mail: zo chima-u ac_jg)

FLMBaMWMuHMMEmGLDfEHmmg

i However, these conventional approaches camnot fully
manage large uncertainty and infeasibility of power system
pperations. Hafiz et al. [16] and Yormo et al. [17] have
proposed time-sequence dynamic feazble region (TDF}
spproach to fully utilize ramp rate capabilities of controllable
zenerators against uncertainties. The concept of Fobust Powet
Svstem Security [18] has been proposed by Olumeoto et al
where safe-side trestment of uncertainty is suggested fod
mportant constraints related to system collepse.
In thuz paper, we propose a new energy management method
hazed on Fobust Powsr System Security. The proposed
method 13 applied to micro energy management system (micro
EMS) controller (Fig. 1), where load and BES predictions ard
gveilable online. Confidence intervals (Cls) of the BREE
:;:-Iedir,ﬁnu errors  are  specified  depending on  required
reliability of system operation against system collapse. The
proposed method updates the day-ahead GS a few times a day
'and provides l-howr GS every 5 minutes m real-timeé
ﬂp-arahnn Contributions of this paper are as follows:
i 1. Cls and covanance matrix of prediction errors are used
: respectrvely m determomistic feasibility detection and
probabilistic line flow management The formes
realizes effective safe-side reserve management, while
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Fig. 1. The proposed micro-ENS comtroller.

the latter menazes soft constramts of line overloading:

The approach iz new m the treatment of incertzinties.

1. The paper also proposes new algonthms to reahize the
proposed uncertainty treatment, which include (1) ax
mproved TDF, Robust TDF (RTDF) that effectively
treatz Cls, (2} an improved SDED method whick
combines RETDF, QF and liner stochastic load flow
(SLF), and (3) an mproved UC algorithm for day
ahead 24-hour G3.
Advantage of the proposed method is that the supply and
Jemand balance 1z kept to the maximum (high feasibility of
dispatch) under uncertainties in real time power systen
operations. In case of a critical situation when the forecasted
load cannot match the existing generator’s capability, the
method will detect the minimom amount of supply and demand
mizmatch m advance (1-hour before) and handle it relizbly for

the considersd time horizon.

II. OuTLeE OF THE Micro-EMS CorTROLLER

A, Proposed Approach to Treat Uncertainties
We first camry out PV output forecast and its eror analy=s
4 weather clustering method has been proposad for this
purpese i [19]. A covariance matrix of PV output emors id
ralculated, while Cls of the PV forecast emors are specified
Jepending on required reliability agamst system collapse.
The covanance matrices wall be used in real-time G5 1
31} for line flow control, while Clz are used in day-ahesd wni
commitment (7C) in (13) and real-time ETDF computation ir
18} which iz firther uzed i real-time SDED in (32) to
oparantee the supply and demand balance and reserve
IMENAZEmEnt.

R Outline of the Contraller
Our research target 1z to develop a mcro-EMS controller
that enforces robustness against uncertainties [19]. Figure 1
shows the configuration of the proposed management system
there are mainly three fimctions responsible for day-ahead
fa}p-eralion planning, mimgte-order real-time operation, and
Second-order real-time control. Based on the prediction of
BES outputs, the system manages the existing zenerators

storage battery (BT) and controllable demands in optmnal
manmer.

Q Plarnming Marneager
Thiz manager provides an updated schedule of the output
:;:natte:m for the limited resources. The cutput is represented as 2
24-hour GS which also comprise the BT operation schedule
iwhere & unit time is 30 minutes. Existing techniques for the
{C can be fully utillized in the optimization process
Uncertainties related to the prediction and fluctuation of PV
&re handled particularly [19].

D). Operaiion Manager

The propoesed method is related mainly to this part. which 1=
the main subject of this paper. The operation manager
provides real-time confrol signal to each generator using most
recent real-time PV forecast,

E. Optimization
The optimization 1z performed in two stages. In stape I
pptimization, the 24-hour G5, which was plammed mn the
previous day, iz refined to determune the startstop time
schedule for generators. A robust G5 against prediction error
iz determined. Stage II optimization utilizes only the start/stop
fime schedules and the BT operation. The rest of the
pptimization results of stage I 15 used only for reference and
will be totally updated by stage IT optimization, which will be
roposed in the next section.

III. ForwuULATION

A, Formulation for Stage T OpiimEaiion

The optmization problem 13 formulated with MG
rontrollable generaters in a time horizon of T intervals ghead
from the current moment as follows.

Minimize:
B =T T, 32—, )
(1)
Ju =a;=B::;=+EJ;=P5;=.-+C;= (2)

suc, - start-up cost [$] of k-th generator

Subject io:

1 Supply and demand balance constraints.

%PSJ:-FE.:'.-_E.-_-=£[P5.-]_E[E:;'_-]_EIPI"_-] (3)

1. Upper and lower output of generator constramts.

==y <P, <P -u, 4)

iil. Ramp-rate constraints.

-8, - MEF,,  —F,. 50, - A )]
Iv. Start'stop vanables constramts.
b=n, =1 (]

v. Diininmmm continuity doom time constraints.
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if (I=uy )y =1

t+mdt (7)
then Y (1-u,)=mdt,
t
i.  Minimum continuity up time constraints.
i (=) =1
tmt ®)
then Z (—u,,)=mut,
t
ii. BT charge/discharge output limits constraints.
0<B,<B™ )
0<B,<B™ (10)
With switching constraint:
Bcr'Bdr:O (11)
iii. BT upper and lower bounds of the state of charge.
B™ <B,<B™ (12)
iv. Dynamic transition of BT state of charge.
At
B.st :Bs(tfl)_'_{Bct _de /77}7 (13)
60
v. Line flow limits between node i and ;.
—Fp <F, <F (14)
vi. DC power flow equation (23) in the next section
vii. Operating reserve power constraints.
Ng
ZP(;{EX~M,{I+B(J[—BC,ZP”[+R/ (15)
k=1
Ng .
2R u, + B, ~B, <P, (16)
k=1
where, e =5 =By =By
P, =P, -Lu,—BPyp,

Bm :PD1 _I)PVI _})Vm .
Where, CP¥: generation cost [$] for day-ahead GS, wu:
start/stop variables of k-th generator at time ¢, Pgw: power
output [MW] of k-th generator at time 7, P ¢ R"**" : vector of

Poi (k=1,..,Ng, t=1,..,T), ue R " : vector of uw, ar, bk, ci
quadratic cost coefficients of k-th generator, 7p,: time [min] at
local maximum electricity demand (m=1,...,Np), Np: number of
peak time, Ty: time [min] at minimum electricity demand, B,
By charge and discharge output power [MW] of BT at time ¢,
respectively, Pp;: electricity demand [MW] at time ¢, Ppyi: PV
outputs [MW] at time 7, Pyr: WT outputs [MW] at time ¢, E[*]:

expected value [MW] at time ¢, Pg™, Pg™": maximum and
minimum outputs [MW] of 4-th generator, respectively, ok

ramp-rate limit [MW/min] of k-th generator, Az: computational
interval [min], muty, mdt;: Minimum operating time [min] and
minimum waiting time [min] of k-th generator, respectively,
B B/": charge and discharge maximum power [MW] of
BT, respectively, By: state of charge (SOC) [MWh] of BT at
time £, By"™, By"": maximum and minimum SOC bounds
[MWh] of BT, respectively, 7: charge/discharge efficiency of
BT, Fij: line flow [MW] from node 7 to j governed by DC power
flow equation, F;"*: maximum allowable line flow [MW]
between node 7 and j, R;: operating reserve power [MW] at time

t, P net electricity demand at time 7, P : upper and

nt3<..nt
lower bounds [MW] of P, including CIs of RES prediction at
time ¢, respectively.

Solution procedure will be given in section II-E. After
obtaining the solution, we fix the start/stop time schedules and
the BT charge/discharge operation, and then perform the next
steps as below.

A. RTDF and Supply-Demand Mismatch using Cls

TDF is defined as the region of generator output Pgx
reachable from a specified operating point and satisfying all
constraints (3)-(5) with load forecasts PD[ for ~=1,..,T. TDF

evaluation algorithm was proposed in [16] and [17], where the
present operating point /=0 is used as a starting point in order to
obtain reachable points successively in forward direction to =7
TDF obtained by this calculation is represented as TDF (¢, }3Dt) )
which implies the region defined by the upper and lower bounds
of each generator output at each time =1...7.

In this paper, Robust TDF (RTDF) is defined taking into
account ClIs around the latest load predictions }3[”:

RTDF(t,B,) ={TDF (t, B, + M, (\TDF(t, B, —M,,)|
an
Where “ [ ” implies the intersection. My, and My, are the
assumed upper and lower limits of prediction errors,
respectively. RTDF is obtained as the upper and lower bounds
pair a,, and ¢, (k=1,...Ng, t=1,..,T) as follows.

o, < Fy, <,

(18)

Calculation of RTDF is performed in each control cycle
before stage 11 optimization in section I11-D.

Once the upper and lower limits are obtained, any output
values Pgy, inside the limits (18) will be guaranteed as reachable
if the latest load forecast errors appear inside ClIs,

[ﬁD’ -M,, }3[), +M,,]- In this algorithm, when &, <a,, is

detected, RTDF 1is nonexistence and the supply-demand
mismatch (SDM) is computed by (19).

& = &kt (when &kt < gkt)

SDM:{ (19)

0 (When a,, > ;)
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Fig. 2. Stochastic conmal of line flow.

SDM disappears. Then the optomization process 1= contimmad
. Stochastic Load Flow [207-[227

The pradiction emors of loads and EESs result m lna flow
imeertzmty. Line flow constramts are trezted m a probabilishe
manmer as pressated m Fig 2. Assoming the normak
distribution for the prediction emror charactenstic, linear DT

power flow caleulation method 1= used to provide the mosg
afficient computation. The SLF method iz applied m smzha‘
azy that the probability of cnnsl:%liut violation is less than z
specified value for sach line. The stochastic network constraimg
1z reprezantad az m the followmns form,

M
IBF,< F,=%'S,P, <UBF,

(20

LUEF;and LEF; are the uppar and lower bounds [JIW] watk
respact to the franmmizsion line [, Fr: amount of line flow
{MW], M: number of nodes, 5y comversion matrim, B
inj ection power [WOW] into node 7.

Tha formulation of (210 15 grven as below. Bazed on the DG
ower flow method, the following relationships hold.

§,8=P
F=508

(2
21
Whers, # =R : voltaze angle matrices [rad], P = R™ -
rezl power imjaction matrices [pu ], F =R : real power lins
dow [pr], §, =R™": node mzceptance matrices [p.u/rad];
§. =R line susceptance matrices. From (21} and (22);
pre ohtam:

How are represanted as follows:
E[F|=S[P.—E[P,]]=S-P.-§-E[P,] =[u] (26)
Cov[F| = E[(F — ELFINF — ETF]¥]

=S§.E[(P- EP)(P-E[P])']-§°
=5-Co[P] § =[g ]

27

-'-.!’:: By B, )

b, B :
Whers, Cov[F]= = T b

1 - : (=i

5, — & ]

o mm-1) =

The dizgonal element b, 15 vanance of Pp, the non
dizponal element iz the covarance (Cov) of PV genaratior
otputs.
Tha probabiity dansity fimetion for line flow | mav be
deseribad wzing the alements from (26) and (27):

_ 1 [ 1(F-u)]
-':1-? EF}_EE_ 2RP _E = 'y (28)

Shan ¥ threshold i dafined by the following equations
X21-[" ¢, (0 @29)

75, SJEE| Go)

Furthar substitution of (30) mto (23) vields stochashe loag
flow constraint below, whera (11) 15 identical wath (20).

F+B.0,+D2Y §P<F-5.0,+D @D

RS =

D Formulation for Stags IT Optimization
The optmuzation problam (Stage II) 15 formulated with N
romtrollable zenerators in a time horizon of T mtervals zheac

RES oufputs (negative demands), while Pe comesponds to 2
wariable of conventional generator cutputs to be determined m
the optinmization process. Therefore, the expected value E[FPT
of node mjaction power P 15 reprezented by the following
axpreszion:

E[P|=F; - E[F;] (25)
Then, the mean value vector and covaniance matnx of lns

F=§.8"P=5.P (23} Hom the current moment as follows.
Node imection P 1= represented as Minimize: .
P-P.-F, @9 TR =Y S (@R hBce) G
ere Pl i 3 probabilisi vanable consisting of oads 54 e B

(3}, (3), (18}, (310
Constramts (18) and {31), which are explamed m sechons
II-5 and C, are the nowvel trestment of uncertaintiss by the
proposed method. That iz, the pnportant constramt of the
supply and demand balanee is treated in deterrumistic mannes
by ETDF with Cls to avoid system collapse. On the other hang
soft constraintz of line overloadmgz are dealt wath by DG
;trobabﬂ:shc power flow. Covariance matre and Cls wall be
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updated frequently in real-time operation, as is presented in
the next section.

A. Computational Procedures

This section describes the computation procedure of the
proposed method presented in the previous sections. The
following procedures are performed in every control cycle.

< Day-ahead 24-hour GS: Stage I > (A few times a day)

Instead of standard approach using Mixed-Integer Linear
Programming (MILP), we have developed a special technique
by improving the method in [23] to solve the UC problem by
using standard QP software. The effectiveness of the proposed
technique has been studied in [24].

The day-ahead GS is obtained by using the following
algorithm to determine the generator’s output Pg, its start/stop
variable # and BT charge/discharge operation for 24 hours,
where unit time is 30 minutes.

Step I-1  Read day-ahead forecast data for loads and RES.

Step I-2  Set iteration number d = 0.

Step I-3  Solve (1) by QP to determine Pg and u, treated as
continuous variables.

Step I-4  Compute unit fuel cost in (33) using present Pg.
My =a Py, +b +c, | By, (33)

Step I-5  Solve the following problem with penalty function
(35) using QP algorithm.
Minimize:
g(Pu,d u")=C"" (P, u)+h(d, y") (34)

Ng T
hd.p') =3 > 1072 (d +2) ()"} 39
k=1 t=1

Subject to: (3)-(16), and (23).

StepIl-6 d=d+1.

Step I-7  Repeat Steps I-4 to I-6 until the convergence is
obtained.

Step I-8  Determine start/stop variables u: if ux>0.5
(threshold) then set ux=1 else ux=0.

Step I-9 By fixing u, solve (1) to obtain Pg using QP

algorithm.

The obtained start/stop time for generators and BT operation
for 24-hour GS will be used in stage II as predetermined
schedule. The generator’s outputs Pgi are used as only
reference for operators.

< Real-time 1-hour GS: Stage II > (Every 5 minutes)

The real-time GS is carried out to minimize the generator’s

output and BT charge/discharge operation (if necessary) every
5 minutes.
Step II-1 Read data of day-ahead generator’s start/stop
variables and BT charge/discharge operations.
Update forecasts (load and RES), covariance
matrices, and CIs using most recent data. Perform
state estimation to obtain the present operating
condition.
Calculate RTDF and Supply-Demand Mismatch
(SDM). If SDM is non-zero, arrange relevant
reserve by modifying BT operation schedule, or
using other resources corresponding to detected
value of SDM, and perform RTDF update to
confirm zero SDM.

Step I1-2

Step II-3

Step II-4  Compute UBF; and LBF.
Step II-5  Solve problem (32) by QP software to obtain GS:
P (k=1,..,Ng, t=5,10,.., 60[min]).
The obtained GS is monitored by system operator, where GS
in 5 minutes ahead are sent to the individual generators as real-
time control signal.

II. CASE STUDIES

A. Simulation Conditions

The proposed method is demonstrated using an example
system in Fig. 3. The generation mix data are from a Japanese
smart grid project where the installed PV an WT generation are
about 15% of peak load. It is composed of three diesel
generators, two load areas with RESs and a BT station. Detail
data are given in Tables I. PV prediction data is shown in Fig.
4, which has been given by our forecasting method based on the
weather clustering type neural network. Typical load patterns
are used in the proposed optimization process.

B. Stage I optimization

Figure 5 shows the result of stage I optimization, describing
24-hours GS for generators (Pgi, Pa2, Pgs), BT operation
(Pgr=B4 -B.), electricity demand (Pp), net electricity demand
(P,), PV output (Ppy) predictions, WT outputs (Pwr), and SOC
of BT (Bs). Note that G2 starts up at 11:00 and shuts down at
18:15 shown in Table II, which will be fixed in the stage II
optimization.

C. Stage Il optimization

61 62 20% @
@ F, @ F, @
E— —

® RG]

A p— d—
Fy ®
@ 60% BT 63

Fig. 3. Test Power System.

TABLE I
Specification of three diesel generators.

Output Ramp Stén-up Cost Coefficients[100$]
.« ost
k Limit Rate (sucy) b X
kW] |[kW/min] S[‘;]* a « i
G1 | 1,000~2,000 66.7 40.00 [ 0.0011] 16.416 | 4,320.00
G2 | 625~1,250 41.7 25.00 | 0.0021] 17.410 | 3,667.50
G3 [ 1,125~2,250 75.0 45.00 | 0.0002 | 20.178 | 3,993.70
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on real-tme PV oprediction datz. The upper and lowes
tolerances of prediction errors n net demands (Joad — BEES
are sat as a lmear fonction of time as follows:

k36)

Where, P (r=0Ll._.T) aretbemn-tre-::autforecashednet

power demnands, T=60 [rr:lm]_ £ prediction tome (=0 for presem&
pparating pomt), ¥ iz 2 parameter reprazanting 1 hour ahead
maximrn prediction emmor, and y= [0%, 10%, 20%0] wall be
gxamined, Allowable constraint violation for line flow 1= et to
A=3 =0_26[%] in this exarmmation.

Figure & shows the result of staze II optimnzation obtzmed
at 17:30 (weskday, »=10%). The upper and lower lomts of
RTDF and 1-howr GE for each genssator are provided. The G
at > minutes abead (17:33) is sant to each genarating wut as z
comtrol  signal. RTDF imgpliss reachable area from the
oparating point at 17:30. The larger ETDF, the larzer n'stexﬁ
rapability that copes wath uncertamty 15 expectad. R.TDF
rommputation also swecessfully provades SDI 1-hour bef-:-reﬁ:s
pparation, which 1= ziven as P, that appears at 18:25. T]'J.IE:
advantageous characteristic come from the RTDF computatior
shich identifies the fazsible ragion with high accuracy. Nots
that the detectad SDM 15 managed by the rescheduling of the
BT operation l-howr before by the proposed method. If BT
cannot cope with the siuation, we can prepare addiional
action such as demand response or load = at 18:25

Fizura 7 shows the scheduled F; lme flow, whech may vary
inzide 37 allowzble mfervalz. The rezult shows that SLE
wrorks successfully to avord overloads i stage 11 optinuzation.

M =M = P,_xix:f
e = I T

Pgg o Py =Py, =y =8 =P, =Py Py — 4,
[ + 24
;'
3
- ';
F: o
£ 1 =
-
1
0
il X 00 A0 00 0 IR0 480 (S0 RO Nl 20
Firse [hubi 1w
Fiz 5. Day-zhesd 24-hoo G5
TAELET
Start-up and shuf-doan times data from day-ghead THZ.
Demand | Uit & | Star-up fme | Shot-doan time
&l - -
Weakday [ 11:00 18:15
[E5] - -
AoE 1k T o o o o o o =
a s L
1730 1740 1750 1500 15:10 1320 1832
L
1730 1740 1730 1500 15:10 1530 1532
BT ; E———r -
1730 1740 1750 1500 15:10 1320 1832
MES o =1
£ g2 -,
Y . H" —— ]
1730 1740 1730 1500 15:10 1530 1532
| = ]
[
Y . ) : . )
1730 1740 1750 1500 15:10 1320 1832
Time [Fhmm]
Fig. 4. Peal-time 1-hour &5 with BTDF and S0A

_ Fimme 8 desenbaz the imulatedrm:]‘tsaﬂ:ﬂﬂﬁlhnui
::iperat:ms by the propossd real-tms optimized controf
;n&ﬂmd_ Drazeriptions of wave forme ara grven bdmxtheﬁgurq
?_aphon‘ﬁ.eseeﬁatthePVpredmhnul h.uu.raheadmﬂle?m:
Eraph iz emonsous. Meverthelsss, the propossd method
m sfully freate the wmeertamfies to control generators a&
seeum-“iﬁﬁlgﬁph.-. Ezachaduled BT operstion in the T"ﬂ:
Eﬁphhas completely abzorbed the SDM detected in Fig. 6. .‘1'|_
f rasult, the frequancy deviations are suppreszed less than {I..;_
Hr az ohserved in 8th sraph. The fraquency fluctuation had
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Fiz 7. Line Flow with 3= allowable itervals 2t line £y

1i40 1550 Llido

- el
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Fig. 8. The results of the 24-houwr
(From: tog: 1 P and net deand (=Pe-Pry-Prr=Bap ) [2-5.30W]), It
Pov: (prediction 1-hour abead and measurement) [0-10W], 3: Por
[Ow MWW, 4 Pay, 5 Poz, 6 Pog [0w3NOW], 7 For [-05 -0 50MW), and &
oystem frequency [39.B--40 2Hz], where [*~**] desoibes fill scale of
each grapi)

heen analyzed by the smmiztor In the proposed mucro-ENIS
romtroller m Fig 1. The frequancy deviations mersase mamlby
e to PV output flurtuations as well as the predichon errors
in the day tima. Thus, the proposed methed relizbly manages
the uncartainhies i tha raal-fime power syztem operation.

Tzbla [ shows the computzhonal burden (CPU Tome)
phuch 1=z evaluzsted for test power systams with 3, 5, and 1

Eenerators nsmz Intel Cora 17, 3. 20GH:, 3G memony.
i The CFU tome on Stage [ mphes 2 total computation tms
from Steps [-2 to [-9 in Section [11-E for obtaining a day-ahezd
?.4-}11::1:1' 8. Stage [I computation time 1= for the caleulzhon of
Eteps II-3 to II-F in Saction II-E for obtaining 2 real-hme 14
hour GY that iz to ba repeated every 3 minutes. MNote that the
}Jumbms in the blanket imply the computation time for ETDE;

and SDML

TAELE

LB Fia
Mumberof | Staza for dayv-ahead I for real-time
Cenembors 23-hoar GE [zec] -hour G3[sec]
3 30 0370001
3 14 0.44 {0.00)
10 a4 LET 0054
V. CONCLUSION

Integrating large amounts of mtermattant EES: mto elactne
power systems causes various difficulties such as the supphi
and demand balance and fequency problems. In suck
situations, treatment of uncertamty by means of lomitec
ronfrollable rescurces iz a crtical isswe for secure powss
system upmaﬁnns Frequeut E\aluatixm of EEﬂ.ElEﬁI:IIl scheduls
zatablizh a ralizbls u]:-mtmu against sudden changes i EEZ
zenerations. The paper proposes a new real-time optimizatior
method puarantesing feasibality of operations. Uncerfamties
affecting the important constramt of the supply and demanc
balance are treated m determmiztic manner waing Cls to avoid
system collapse, whils those relating to soft constraints of lne
overloading are dealt with by DC probabilistic power flow.
Although the computation time 1= 2 entical 1msue, the
proposed method provides a solution for introducing a largs
amonmt of RES mto 2 spart erid operation.
The present verzion of the proposed method utilizes the DC
power calculation method which may degenerate the accuracy
phen applisd to low voltage diztmbution systems with large
alues of B3 The use of extended equations based on
distribution power flow [23], [26] seeme an interesting frial o
the fiture.
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“arious forecasting methods for photovoltsic (FV) generations have been proposed so f2r. Howenver, the comventional methods
cammot be widely usad in various situstions because they require sophisticated data that carmot easily be obtained. Furthermore,
the prediction scouracy of snch methods fend to deteriorate especially due to lack of data

This paper proposes a simple and reliable PV forecasting method for local ensrgy manzsement. The proposed method uses
only public weather forecasting data that is easily obtamed The method mamtaing high scomacy by usims the pesl firme
correlation dats between the target and neishboring areas. hultiple newral petworks are afectively used based on & weather
chystering techmique. It has been confinmad that the proposed methad shows the robusmess in the prediction accuracy when used

for loczl area PV pradiction.
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Absrace—At present, electric power systems face difficulties
in system operafions due to rapid incresse in uncontrollable
renewable energy sources (RESs), such as photovoltaic power
generations (FVs). Reduction of controllable resources also yields
roncerns about system reliability issues. This paper focuses on &
new dymamic load dispatch method for mitigating the
irregularity awodated with RES. The developed load dispatcl
method is to schedule the committed generating pmits outpots s
a5 to meet required irregular load demand estimation which is
frequently updated in real-time operation circumstance A new
algorithm is proposed for umit commitment and stochastic
dynamic economic load dispafch as an efficient solution for =
day-ahead and a real-time generation schedule (G5), respectively,
that fully utilizes the limited resources of a power syvtem under;
uncertainties. Day-ahead and real-time PV forecasts with the co-
relations of PV forecasting errors are effectively treated in the
proposed method. Special feature of the proposed method
different from the existing works lies in a frequent real-time
update of G5 by using a fast algorithm to macimize robustness
Azainst uncertainties.

Kapwords—LUncevtanutes, Confidence Intervals, PV forecasing,
Day-ahead and real-stivte generation schedule, Stochavds dymamic
aconomic lnad divparch.

I INTRODUCTION

Fenewable energy sowces (RESs) such as photovoltaid
power gensrations (P‘. =) and wind-hrbine power zenerations
{WTs) are expectad to grow substantially m the near fifhre. A
reasonable sstimation iz that 20-30% of the amownt of total
znergy will be daliverad through such sources in the upcoming
13 years. PWs are clean and safety energy sources, while they
are prome to cause degradation of powsr quality 25 well 2 zrid
security due to unforeseen weather conditons. Confrmous
sumlight imtermittency, sspecially during clowdy days, nows
mdduintmechangainihei:oulpﬂhsmhummedirbble
significant ramp effect. The increazsing renewable anarzy
requites addiional rampmg akiliftes to mamtam the gru:]
stability. Development of soplusticated cperation technolosy 15
a oy subject,

HNovel methedologies for stochastic dynamic econcmue load
dispatch (SDEDY) becoms necessary to guarantes securs
bperation in real-time seemarios [1]. Thi= particular concer 15
common to various widely adoptad power systems whers
=mart gird projects make use of all available controls meluding
demnand response [2]. In order to fully utlize controllable
cenerators, development of robust and reliable load
Hispatchine method is extremsly of importance to affactively

feat uncertamties [31.15].
Warious zpproaches have bean proposed so far concemed
aith SDED problem, clazsified into two approaches. The first
approzch repeatedly perfonms static ecomomic load dispatel
{ELD) at each mierval by taknz min areomy the ramp rats
nometraints  [6], [7]. The zecond approach determmes
zeneration schedule (G8) by zolving a smgle op‘hmutm:.
problemy. The appreach inclodes heuristic technigue i
vnamic programming [8], omproved simulated ammaaling [9]
10], hybrid approach of Hopfield newral network anc
mmuadratic programmming (QF) [11], variable scaling hyhbrié
differantial algorithm [12], re-dispatch algorthms using QF;
linear  programmung  (LF) and the Danzig Welfe'
Aecomposiion tachmaua [13], a mulb-staga alporithm [14]
and the interior point method [13].
Howavar, these comventional approaches camnot fully
manzee largs uncertzinty and mfeazibility of power systew
operations. Hafiz et al [16] and Yorme et al [17] had
proposed  time-sequence dynamic fezsible region (TDF:
approach to fully utilize ramp rate capabilities of contrellabls
senerators agamst uncertamties. The concapt of Eobust Powes
Systemn Secority [18] has bean propozed by Olommoto at al
where safe-side freatment of wncertamty iz suzpested for
umportant constraints related to system collzpza.
In thiz paper, we propose 2 new SnSrEy Managsment
method baszad on Fobust Power System Security. The proposed
method iz zpplied to micro sanergy t systen (miero-

managanan
E\-IS) ccntro]]er lfFuz 13, whers load and RES predictions ars

Fig. 1. The proposed mecro-EMS confroller.
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pradiction arrors are specified dependmz on raquired relizbality
of =ystem operstion against system collapze. The proposzed
method updates the day-ahsad G5 2 few tmmes a dav and
provides 1-howr GF every 3 momutes in real-time operation
Contmibutions of this paper are as follows:

In thiz paper, we propose 3 new enerFy Management
method bazed on Robust Power System Security. The proposed

method 1= applisd to micro energy managemant system (micTo-
EMES) comtroller (Fig. 1), where load and BES pradichions ars
available online. Confidence mtervals (Cls) of the EES
pradiction srrors are specified depending on required relizhilit
of system operation agamst system collapze. The ]:mpnse&_
method updates the day-ahead G5 2 few tmmes a dav and
provides 1-howr GE every 5 momtes i real-time apem:lnm
Contmbutions of this paper are as follows:

there are mamly three funchons responzible for day-zhead
oparation plannng, mmote-order real-tims operation, anc
second-order real-time comtrol. Based on the predichion of
RES outpots, the szystems manages the emizting penarators
storage batterv (BT) and comirollable demands m optimal
rrzmnar.

i Planning Manager

Thiz mznager providas an updated scheduls of the outpus
pattern for the lomited resources. The cutput 1= represemted as 2
Jd-howur G5 which alzo cormprize the BT oparation schadule:
vhere 2 umit time 15 30 minutes, Existing techmaues for the
UC can be fully whlized m the ophmuzaton procass
Incertainties related to the prediction and floctuation of FY
are handled particnlarh [19].

1. Iz and covarnance matrx of predichon emors :u'eused
respectively in determimistic feasihility detection and
probabibizhe Ime flowr manazement. The former rea].i.z;eé
effective safe-zids reserve manzsement, while the latter
managas soft comstraints of line overloading. The
approach 1= new m the treatment of wncertambies. i

D Opsration Manager

The proposed methed 13 related mamly to this part. wheck
iz the main subject of thiz paper. The operstion managet
provides rezl-time control signal to sach zenerator using most
recent real-time PV foracast.

1. The paper also proposes new algomthms to realiza lha
proposed umcertainty treatment which mclude (1) ax
myproved TDF, Eobust TDF (BTDF) that effectivaly
treats Cls, I:Z:I mproved SDED meathed wh.‘u:h
combines RTDF QP and liner stochastic load flow (SLF)
and (3} an mmproved UC algonthm for day ahead 24-hou

Advantage of the proposed method 1z that the supply and
demand balance 1= kept to the maxiommm (ngh feamibty of
Hispatcl) under wicertamties in real time powsr syshem
pperatioms. In case of 2 cntical simation when the forecasted
load cammot match the emstng zenasrator’s capability, the
method will datect the mmimwn amowt of supply and dernand
mizmateh m advance (1-hour before) and handls it reliakly fo£
the considered time horizon

£ Optimization

{ The optomzahon 13 performed i two stages. In stage }
f;:lpﬁmizatiun.. the 24-hour G5, which was planned in the
pravicus day, iz refined to determine the start/stop time
kchedule for ganerators. A robust G35 agamst prediction arrod
1z deternuned. Stage I optimization utilizes only the start/stor
time zchedules and the BT operaton. The rest of the
ophmization results of stage [ 15 used only for reference anc
w11l be totzlly updated by stage IT optimization, which wall be

ozed 1n the next saction.

I, FORMULATICN

A, Formulation for Stage I Cptinization

II. OUTLIME OF THE MICRO-ENS CONTROLLER.

A. Propozed Approach to Treat Uncertainties

W first carry out PV output forecast and s error analyziz
4 weather clustering method has bzan proposed for thug
purpose i [19]. A covarance matrix of PV output errors i€
ralenlated, while Cls of the PV forecast emrors are f.pemﬁe&
Hepending on required reliability azainest systom collapea.
The covariance matrices will be uzed i real-time G5
131) for line flow control, whils Cls are used in dav-ahead wnif
rommmitment (UC) m (13) and real-tome RTDF computation
1B} which 1z further nsed in real-tme SDED m (32) to
zuarantes the supply and demand balance and reserve
managemant.

E. Outline of the Controller

Chur research tarzet 15 to develop 2 mucte-EMS controller
that enforces robusiness against wncerfamties [19]. Figure 1
showrs the confizuration of the proposed manarernent system:

The optmuzation problem 1=z formmlated with Mg
somfrollable zenerators in a time honzon of T mtervalz ahszs
from the current moment a= follows.

Minimize:
TN A _
CD'L'-(E::H}=EE “;:'-"';:_EZ*“.'c:q,_“;c:..l"""“"’;cl:lj
fo=a o +b I, 4o, 2

rue, : Start-up cost [$] of k-th generator
Subjeet to:
1. Supply and demand balance constraints.

EP <B,-B. =E[R]-E[R,]-E[F.] &

1. UFIPEI.' and lower output of generator constraints.
B -u =F, =P5 -u, ()
11, Bamp-rate constramts.
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of peak time, Ty: tome [nun] at mmimm electnicity demand:
Fw Ha charge and discharze output power [MW] of BT a
rime r, razpectivaly, Pro electricity demand [WW] at time r
Pom; PV outputz [WW] at time ¢, Peme WT outputs [WOV] a
time ¢, E[*]: epected value [MW] at time ¢ Po™ gﬁ::
macemurn znd momimum cutpats [MW] of Bl genarator
respactively, 4y ramp-rate limit [WW/ mm] of E-fh, genarator
Ar computationzl mterval [mm)], syt mgn Mo
oparating fime [min] and minrom waiting fime [min] of k-
zenerator, respectively, Hone. Diw. charge and discharge
macmumn power [WMW] of BT, respectively, B state of
sharge (S0C) [WMWh] of BT at time ¢, Bare, Bar: mzntimun
and minmmmm 30C bounds [WWE] of BT, respectively, #
rharga/discharge efficiency of BT, Fyy: line flow [MW] fron:
node { to j governed by DC power flow equation, [0
masenmumn allowable hine flow [MWW] between node | and j, F
pparating reserve powar [AW] at tima ¢, P, net alectricity
Hernand at time 1, 15 . P _ - upper and lower bounds [BW] of

I Cle of RES pradiction at fima ¢ respechvely,
Solution procedurs wall be grven m sechon III-E. Aftes
obtaming the solution, we fix the start'stop time schadules and
the BT charge'discharge operation, and then perform the ned
Steps as below.

B, RTDF awnd Supply-Demand Mismatch wing Clz

TDF 1z defined as the region of generator output Pl
reachabla from 2 specifiad operating p:li_ut and satisfying al:
ronstraints (3)-(3) with load forecasts B, for =1 T TDE
zvaluation alzorithm was propesed m [16] and [17], where the
prasent operating point =0 iz used 2= a starting point m ordes
to obtamn reachabls pomfs succezzively m forward duection to
=I. TDF obtamed by this caleulation iz represemted af
TOF (r B ), which implies the region defined by the upper anc
dower bounds of each atezchfimar=]l T

In thu= papp_fr Eobust TDF {RTDF} '|_-. d.eﬁ.nad {akmz mte

RIDF(:,B, )= {mmj:-:__ + M, ) \IDFe. 1':-;, —.u.__)} (17

Whera “[ |7 mmplies the itersaction. My and My, ars the
azzumed upper and lower lmits of predichion erors!
respactively. RTDF is obtained as the upper and lower bounds
pair &, and &, (=1 Ne, =1, T as follows.

-g, -A=F,, , —F, =4 -4 )]

iv. Start'stop varables constrants.

0<u, <1 (6

v. Mmnmimnrm continurty dewn fime constramits.

';.IIP (1—!{&}-5!!*,__,_, =1
. it )
then % (1-u )=md,

151 Mlmmmu:mhmuh up tme constramts.

';.IIF b, - El_ukr.-—'.l} =1
e @®
then % (l-uw )=mm,

Vi BT thiarme/discharee ouipat hmifs bonstams.

0<E, =B &
0<B, <E™ (10)
With swatching constramt:

E_.-B,=0 (113

viil. BT upper and lower bounds of the state of charge.

E™==B =B™ ]
vt Dhynamic transition of BT state of charge.
Ar o
B, =B,y +B.~B./m- 5k (13)
% Lma flowr lomits batween noda jand j.
-F,==F,=F~ (14
w1 DC power flow equation (23) 1m the next sechion

xn. Oiperating resarve power constramts.

YR w+B.-B. 2P <R (13)
k-1
X
Y P w B B2l (16)
=
whera P-l:P:r_F.Lle PP‘_‘

P;-=P:r_‘p.w _Em :

Er =P:.-_F.me_Pm-

Where, T zenerahion cost [3)] for dav-zhead G5, pe
start'stop variables of kth generator at time f, Bap: powesn
output [MW] of kth generator at time 1, P, = R : vector of
Pog (L. Ne, =17, usR : vactor of g, agp By o

quadratic cost coefficients of k-fh, generator, Jp,: time [mun] at
local masmmwm electricity demand (pe=1.. . NZ), Nz mumber

@ <E, <a, (1%)

Calenlzhon of BETDF 1= performed m each comtrol eyels
before stass IT optipization in section TI-T0
Omee the uppar and lower lomste are obtamed, any ouwtpus
values Proo inside the lomuts (13) will be zuzrantsed ac
reachable J.f the latest load foracast emrors appear meids C]'si

[P '.JP_ M.]- In this algoriftm when &, <@ &
detected, ETDF 1z nonexistence and the supply-demand

mismatch (SDM) is computad by (19,
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=‘.’£l’;.- —-&. (when@, <) (18)

DM
0 (whenad 2a)

When SDM 1= detected, 1t mmst be compensated by
addiional powsr provision or lead reduchion. After the
management of S0 we recalculate ETDF to confirm that
S0 disappezrs. Then the optimization process 1= comfinued,
. Stochastic Load Flow [20]-[22

The pradiction emrors of loads and EES: razult m Imae flow
ymeertamty. Lna flow constraints ars treated in a probabilishe
mammar as presented m Fig. 2. Assuming the nomnmal
Histrittion for the prediction emror characteristic, linear DC
power flow caleulztion mathod iz uzed to provide the most
Sfficient computation. The SLF methed i= applied in such =
way that the probability of constraint viclation 15 less than 2
zpecified value for each lne The stochastic network
~ometraint is reprazented as m the following form.

L
LBF,< F,=¥'S,P, <UBF, 20)

LiBF and LEE; are the upper and lower bounds [MW] waith
respect to the transmizsion lme [, F amownt of lma flow
{0IW], Ny mumber of nodss, § comversion mafrix, F
imjechon power [MI] into node /-

wanabla of conventional generator outputs o be determined 1
the optimization process. Therefore, the expected value E[Fi
?,::uf node imjection power P i= represented by the following
oypreczion:

E[P|=F;—E[P, ] (25)
Then, the maan value vector and covanance matnx of lms
flowr are represented as follows:

E[F|=S[P.—E[P,|]=S-P.-S-E[P,]=[u] (26)
Cov[F]=El(F - HFI{F - E[F]Y']
=§-E[(P- HPP-E[P])]-§ (27

=§.Co[P]- 8" =[g,]
-"b:: 'b:: 'b:u A
b, & :
Where, CoF]= = T . 2
Ib{ : bﬂ-:-" "IP“ I

The diagonal element &, 13 vanance of Pp, the non
Aizpomal element iz the covaniance ((gy) of PV genaratior
oafparts.

The formulation of (20 15 grven as below. Basad on the DC
ower flow method, the following relationships hold.

The probability demsity fimechion for lime flow | may be
deseribed using the elements from (26) and (37):

§.6=P (21
F=§8 27

1l 1E-uF] a8

;;Illﬁa:exp'_ 2 g |

-"fr(*?:}=

Whara, § = R : voltaze angls matrices [rad], P = R™ :
real power mjection matnices [p.], F = R™ : real power lns=
flow [pul, §, =R™": node meceptance matrices [pn./rad)

In_order fo constrain the +wiclation probability to a value less
than X thrachold £ 1z defined by the following squations.

P Tbal tic
DeawityiPri

Loms Flow Contel :
Priliw FbowVelaten< X

Pri = 3mat) Sie =024 4]

b

Frxpckd Ine Fow Lo FlowLawt
Fig 1. Stochastic confre of line fow.

51" 2

5, =R line suzeaptames matrices. From (21) and (22); =1 .I-.TT'E"- (e @)

wra obiain: ? -8-a, 2|E[F] | (30

F=5.5"P=S§P (23) Purther substitohon of (307 mto [213) vields stochashc load

) flow constramt below, where (11) 1s identical with (200
Hode mection P 15 represented 2z
Fx 2 . F- 2 il
P=P.-P, 24 F+ 5.0, D_.EZ_:S;E <F-B0.+D (21
Where Pr 1= a probabilishic vanable consistimg of loads and Thera _k.

FES outputs (negative demands). while Pe cormesponds to 3 D= 23_5[ D_|
- -

L) Formulation for Stage IT Optimization

The optomization problem (Staga II) 1= formmlated with NV
momfrollable generators in a time horizon of T mtervals zheac
From the current moment as follows.

Minintizs:

TR =YY @PL bBce) (D
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Subjset to:

(3, (), (18), (31).
Comstramts (13) and (31), winch are explamed m sechons
{II-B and C, are the novel treatment of wncertanties by the
proposed method. That 15, the mmportant constramt of tha
supply and demand balance iz treated in deterministic mannet
iy BTDF with Clz to avoid system collapse. On the other
hand, soft constramiz of lne overloading are dsalt with b DC
probabiliztic power flow. Covarlance matros and Cls will be
updated frequently in real-time operation, as iz presented in
the next ssction.

E. Computational Procedurss

Thiz zechion dasenbaz the computation procsdurs of the
proposad mathod pressnted m the previons sections. The
followins procedures are performed in every control cycle

= Day-ahead X4-hour G5: Stage [ = (A few times a day)
Instaad of stamdard approach weing Mpoed-Inteser Linear
Programmumg (MILF), we have developed a special techmgns
by moproving the method m [23] to sobre the TUC problem b
uzing standard QF softwars. The effectiveness of the proposed
techmqua has been studiad m [24].

The day-zhead G5 1= obtamed by usmgz the following
alzorithny to detammume the zemerator’s output P, itz start/stop
varizhle u and BT charge/discharge operation for 24 hours
where unit fime 1= 30 mimites.

i The obtamed start/stop time for generators and BT operatior
for 24-hour G5 wall be nsed in =tage II a= predetemmmed
sehedule. The zemerator’s oulpute Do are wsed as omby
refarance for operators.

= Real-time 1-hour 5 Stage I1 = (Every & minutes)

The real-time &8 iz camied out to mmimize the generator’s
optput and BT charge/discharze operation (if necessary) aven
* mimtes.
Step II-1

Eead datz of dav-zhead generator's start'stop
varizbles and BT charge'dischargs operations.
Updata foracasts (load and EES), covanance
matrices, and Cls using most recant data. Parfonr
state estimation to obtam the present operating
condifion.
Caleulate ETDF and Supply-Demand hlizmatek
(SDM). If SDM 1z nom-zero, amange relevan:
Teserva by modifrmz BT upmtl.cn schiedule, of

mg other resources comrespondmgz to datected
nlue of SDM, and performn ETDF updats tc
confinm zaro SDAL

Compute LEE and [EE:
Sobve problam (32) by QP software to obfam G5
B (FL_Nz, 1=5,10,.., 60[mam]).

The obtamed G5 15 monitorad by system operator, whers
35 1n 5 munutes ahead are sent to the mdividual zenerators ag
real-fima control siznal

Step 1.3

Stap 1.3

Step 1.4
Step 1.5

Step I-1  Fead dav-ahead foracast data for loads and BES.
Step -1 Saf rteration mumber 4= IV. CASE STUDMES
Step I-3  Solve (1) by QP to determma Pe and u, treated as 4 Simmdarion Conditions
continuous variables. ; ;
. The propozed method 1= demonstrated =g an exampls
StepI-4  Compute umt fuel cost m {33) uemg present Pe. syetemn i Fig. 3. The generation mix data are from a Japaness
PR N - (331 =mart grid project where the installed PV an WT generatior
are about 13% of peak lead. It 1= composed of three dissa
Step 15 Solve the followang problem with penalty fmetiorf  Eeporators, two load areas with BESs and 3 BT station. Detail
(33) using QF alzorithm. Qata are given in Tables I PV prediction dsta is shown m Fig
Minimizs: A, which has bean ziven by owr forecasting method based or
oo the weather clusterng type neural network Tvpical lozc
(P, wd p ) = CF (B Wd ) (34) atterns ars nzad in the proposed optinuzation procesz.
W ) =SS A0 (d+2Xm ¥} (35 B Stage ] optimization
e Figura 3 shows the result of stage [ optmuzation, deseribing
Subiect to- (=Ll 8), and (23], 24-hours G2 for genarators (P, Par, Pag), BT operation
- i Per=R. -B.), elactricity demand (Pp), net slectricity demand
Step L6 d=d+1 P,), PV output (Pyy) predictions, WT cutputs (Par), and SOC
Step I-7  FKepeat Steps [ to [-6 untl the comvergence 12 of BT (B Mote that G2 starts up at 11:00 and shuts dowm at
obtamed. 18:15 shown in Table II, ﬁh.n:hm].lbeﬁxedmtheslaee]}
Step I-8  Detemume start'ztop vamablez w of =03 spfimization,
(threshold) then zat =1 elsa =0
Step I-9 By E_.}:i.ng u, sobve (1) to obtam Po usmz QF
Hzprizus,
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Fig. 3. Test Power System. Tiemse b
Fig. 5. Day-ghead 26-hows G5,
TABLEI £ ey
Epecification of tres diesel senerators.

Start-ap | Cost Coefmresnal 1003] | TABLED

i ':"'P"I.. Fi;;f'? Cost Start-izp and sht-down tires data from dayv-sheed TC.
I (!;Jﬁ-) & & Ga Demand T-‘Ei{k Sartim tme | Sho-down time |

G1| 10005000 67 | 40.00 | 000il| 16416 452000 Weekday [ G2 JRE] ERH
G2 6051050 | 417 | 25.00 | 0.0l 17410 3,667.50 ] : :
G3| 1135-1250] 750 | 45.00 | 0.0002 | 20.175 ] 5.095.70
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i M,=M, =B =x_xy (36)
(B} Rershs of Realtims Forcesat T
Fiz 4 Forecast results on 4* Augue, 2012, Where, £ (#=0.1.....7) are the most recent foracasted nat
" Stage Il optimization i powWer d.em.a.nds T=.'|5|} [IE!.III.],_ r. prediction ﬁme_ (r=]ﬂ for
lhszSmmmputedandupdatederer}}mmmhase& f : E point), ¥ isaj SR 2

-n real-time PV prediction datz| The upper and lowes  Abead mawmmum prediction error, and p= [0%, 10%, 209
mlmgdmm]ﬂmmgﬂﬁ EES} will be exammad. Allowable constramt violztion for line flow;
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Fizure 6 shows the remlt of stage I ophmmzation obtamed  Sheddme at 18:23.
at 17:30 (weskday, ¥ =10%). The upper and lower limits of Fizure 7 zhows the schaduled F; line flow, wiich may varg
FTDF and 1-howr GS for each generator are providad. The GS meids 35 allowable mfervals. The resolt chows that SLE
at 3 mumites shead (17:35) 1= zant to each generatng wut as 3 arorics succaszfilly fo avowd overloads m staze 1T optinuzahion.
confrol =gnal. ETDF mphes reachzbls area from the Figure 3 dezenbes the somuolated results affer 24-hous
pparating point at 17:30. Tha largar RTDF, tha largar 33.'51:9:1? oparations by the proposad real-tima optimized comfro
napability that copes with uncertamty iz expected. ETDFE  methed. Descriptions of wawve forms are given below the
romputation alse succsssfully provides SDM 1-hour heﬁcmeé fizure caphion. We z2e that the PV predichion 1-hour ahead nf
the operaticn, which iz ziven as Py, that appears at 18:25  the Ind zraph is emroneous. Nevertheless, the proposed mathod
This advantageous charactenstic come from the R.T'DF successfully treats the uncertainties to confrol generators ag
computation which identifies the feasible region with higi  &een i 4-6th zraphs, Fescheduled BT operation in the T
accuracy. Mote that the detected SDM is mamaged by the  Eraph has completely absorbed the SO0 detected in Fig. 6. A<
rescheduling of the BT operation l-hour before by the & result, the frequency deviations are suppressed less than (.2
proposed method. IF BT cannot cope with the situation, we caf  Hz 2z observed in Sth graph. The frequency fluctuation has
prepare additional action such as demand response or Joad  been analyzed by the simulator in the proposed micro-EME

rontroller m Fig 1. The fraquency deviations increase mainly

1 dna to PV outpot fluctuations as wall az the pradichon errors
15 in the day time. Thus, the proposed method rehably manages
g the uncerfamtios in the real-time power system operation.
H _ I D, Application to West Japar Power System
é‘ 1 T The proposad comtroller 1= apphed to West Japan power
11 s syetem, which comsists of =ix regions (Kyushun, Chngolmn!
35 L P Y et Shikokuy, Kaneai, Holurikn, and Chubu) shown o Fiz. 9. We
1 -
1500 1510 152 1730 1740 1950 1adn

Fig. 7. Line Flow with 3= allowable intervals at line F,

Fiz 2. West Japan area consizts of =iz regions.

Q=rvac [r—mru G ) _‘_d_:--_ﬁ—i—‘—.

P T P

Fuep s s e

Fiz 8 The results of the 24-hour
(memp 1: F- and net demand (=P--P- ,P,..—g,,g[m MW I P
1-hour abead and measrement) [0~ 1800, 3: P, [0~IMOT,
U4 Py, 5 P, 6 P, [0n3MW], 72 Pep [H0.5 -0 SMW], and B: foystem
freqmency [0 B50 THz], whars [%*¥] describes full scale of each srapki Fig. 10, Weast Japen 30-Gen system model with RES, BT
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uze the power system model [27] depictad m Fig. 10, where the
total generation capacity 15 1002 [GW]. The svstam consists
of 30-generators, 51-load areas with RESs and a BT station
Taldpe mfo accoupt the scenanos of PV peneration of Japan
{2E], v set thrae cases-
Caza 1: 15 W of PV mstallation (All Japan 1s 32GW)
Caza 2- 33 GW (64 G0

Caza 3- 87 W (112 G

Here, we demonstrate (1) FV forscasts, (2) Stags I day-
ahead 24-hour (38, and (3) Stagae [I: real-ime 1-hour &8 m the
following sections.

1} Day-ahead and real-time PV forecasts

Fizura 11 shows the results of PV cutput forecast usmgs the
paather data on ¥ Aunz. 2012 (smoyicloudy day with
relatively high PV ganaration outputs) m Case 1. Tha blue ln=
mdicates the prediction by the proposed methed, the blus barg
around tha prediction lina shows the confidanca mterval (CTE
of the prediction where the emors are lass than the standard
deviation +7, and the red bars, = 5. We zee that ths
pradictions for different areas have different Cls depanding on
learning data of the areas. This implies that relizhility of the
predictions 15 different from area to area even though the sams
pradiction method 15 used. These predictions wath Cls will be
pzed n the computations of Stages I and IT iy _order to obtaix
reliahle 53

3 Stagel: Day-ahead 24-howr G5

Fizuraz 13-14 (3) show the results of stags I ophrmzatics
for cases 1-3, respectively. The Figures describe 24-howurs 55}
which include the schedules of the followmgs:
(Generators (Paj, Pﬁm PDE(::'. ET aperaﬁcm (PB::%
Electricity demand (Ppl Pradictad net demand (F,),
PV ottt (Ppo) predichiems W outpits [ Parl,

i
Mumber of S%Ifxrdm anzad I for real-
(Cemarators -l G [28c] time T-kour G5[zec]

3 3.0 Q37001

3 44 044 {001

10 24 17 (0054

EfT] 200 3 B6 (010

V. CONCLUSION

Integratmz large amounts of mtsmmrttent RES: mbo elactnd
power systems canzes vanous difficulties such asz the supply
and demand balanca and frequency problems. Inm suck
situztions, treatment of wncertamty by means of lmited
copfrollable resources iz a critical issue for secure powef
syatem operations. Frequen‘t evaluation of generation scheduls
1z effectiva for mmimizing prediction emmors jg_ m‘dﬂ; 1
zetablish a relizble operation agamst sudden changes i RES
zenerations. The paper proposas a new real-time optmizatior
method puarantesing feasnibility of operatons. Uncertamtia
affacting the important constraint of the supply and demanc
balance are treated m deterministic manmer using Cls to avold
svatem collapse, while those relating to soft constraimts of lné
ovarlozdme are dealt with by DC probabilistic power flow.
Although the computzhion time 1= 2 crnitical issue, the
proposed mathod provides: a solution for mirodueng a largé
amount of RES info 3 smart =id operation.
The present version of the proposed method utilizes the DC
power caleulztion method which may degenerate the accuracy
when applied to low voltage distribution systems with largg
values of B30 The use of extended equations based on 2
distribution power flow [25], [26] seams an mtsrssting mal i
the fitture.
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[R.eal-time PV Forecasting Method for Enersy Management Operation

DAM WAHYUDI FARID, MITSTAASA ASADA,

YUTAKA SASAKT, NAOTO YORING, YOSHIFUMT 70K A

Graduata School of Enmineerine. Hirgshima Universiby

Abstract:

BEenewable energy sources (RESs) have been
attracted great attention to reduce environmentat
mmpact. Ip particylar, the installation of photovoltaic
power generations (FVs) are stromgly promoted in
Japan. However, the PV oufput is uncertain due tc
spatially different and time-varying solar radiation:
Therefore, controllable generators are mecessary fc
achieve stable power supply based om well-suited
meneration planning, operation, and control Variouns
forecasting methods for output of PVs have beex
proposed. The conventionsl methods cannot be
wvidely wsed in various simafions because they
require sophisticated data that caomot easily be
obtained. Furthermore, the prediction accuracy of
juch methods tend to deferiorate especially due te

ck of data.

H In this paper, we focused om the real-time PV
forecast for emergy management operation. We use
_;‘.le public historical imsolation and weather
{tempersture, wind speed, and precipitation) dats
that can be easily obtained from the meteorological
agency website of Japen. We propose the novet
method using these data to predict the real-time PV
putput. By considering the correlation between the
farget and the meighboring sreas, s Sminute ahend
high-accurate prediction for emersy management
pperation can be achieved. By using the correlation
roefficients between several areas, we can analysis
and compare the antoregressive (AR), proposed solae
radiation correlation amalysis (SRCA), and wsing
',a_':rrum learning maching

On the target day, mspartperﬁmmsﬂ}i
real-rnne prediction of load demand and RES
sutputs for up to 1 hour in advance with 5-minnte
intervals, and improves the accuracy comparing tc
he day-shead prediction. These processes are
ryecuted every 5§ minntes and the results are uwsed ix
he UC on the day and the real-time ecomomic load
Hdispatch (ELD) of the penerators.

In thiy study, as 8 remarkable point, a SRCA
echmique is proposed and applied to the real-fime
prediction, in which the correlations of solag
radiation are evaluated between locations
and used to estimate timing and magnitude of rapid
rhanges of solar radiation in advance. Baved on this
prediction, a real-time operational plan of the
aristing equipment, such as generstors and storage
batteries for up to 1 hour ahead in every & mimntes;
in _order. tp cope with rapid weather changes and
anavoidable prediction errors, a stand-by planming
of operating and spinning reserve should be made &
the same fime.

Keviwords:
Uncertainties, Real-time PV forecast, Energy
Aan t Crperation

1. Iniroduction

The Japanese government has recently puf
eraat deal of attention on the renewable energy
sources (FESz). The operation of EES: arg
plammed to be intesrated with the existing elactnc
power systern However, PV power output 1=
mmherently uncertain due to diffsrent locations)
time-varving seasonal and dalv solar radiation
irtensity.

Previous works are reported that vanous
methods can be used to predict the PV output from
publicly available weather data. However, the
methods in obtaining and processing the raw datz
pricr to the forecasting tend to be complicated, on
top of that the forecasting methods also tend to be
sophushicatad [1-4]. Others one reported using
other methods to forecast PV oulpot power
fumerical weather prediction [3,8], cky mmagan
16,%], and neural network [7,10] have been usad by
several pRamch:
Hare we uhlze sonple data and relizble
method that can be applied to the energ
management operation, we can achieve an
applicable ressarch result We use the public
historical msolation and weather (temperatura
aind speed, and precipitation) data. The data can
be easily obtained from the metecrological agency
wabsite of Japan.

Zimce PV output forecast become pnportant 11
snergy managament planmmg a rehable method
particularly 1 untl 5 mimites forecast is substantiak
for real-time PV output forscasting Fecenthy
real-time FV output forecast iz required 2
sophishicatad data process [11-13]. Neural network
(W) az the one of common modelmz forecast
method 15 commonly used by rasaarchars to modak
and forecast the PV output. However, NI process
need more computation tme for modeling and
forecasting. Thiz part 15 one of the laty m NI
method [14]. In  rezltime PV forecast]
~omputation time 15 one of the important thing to
yield the result=. Faealtime PV forecast 1
presantad for up to 1 howr m advance watk
S-punntes intervals. This forecast requires a fast
raleulztion and lngh accwrate predichon to be
applied on a real-tme operation and plannmg of
zenerators or batteries,

ICEEM]T

Paper Moo

Bamallg :

102 |Page



i Inthupaperweprﬂentm'ugmupauf
;:eall:lme foracastmz. First 1= n&lahbnrmg arag
freal-time forecast and second 1s pin pomt real-time
Ezrrecast For pin point real-time forscast, we usé
gxtreme leaming machms (ELM) using zimplé
brozther data ELM provide a fast compuotatiod
izme for modeling and forecasting PV output!
FLM facilitate a faster computation time fog
émdﬂmg than zeneral nsoral networks [15]. By
psmg this adﬁ.ntagg ELM 1= used for real-time
forecasting in this research. More detail of ELM
,h_}rplanahl:lu 1= dezcribed 1n section 2.

Tz method also does not need rterative process to
teach the mmwmmn eror. Empirical calenlation
proof that ELM can process generalization better
m}d faster than newral network [16]. Tha
fundamental thing about ELM is start from single
hidden layer fead forward network. The schama of
smgzls Laver neural network ts shown in figure 1.
The forecasting process 1s conducted n 7 sep as
Showm in tha fizure.

1. Set the mput and output data, labelsd 2= X
¥, respectrvaly.

i This paper also provides SECA methed tc
;.aquJatE the meolation zhead wvalue SRCA 1
zzlectedfarrealhmel:"n- output forecastimg. Ths
,*:n&thu-:l 1= considering the correlation of two of
,’-:nme neighboring areas. The coralation of severa
greas caleulation 1= presemted m  saction 3
;ﬂ:urrelaﬁnn factor 1= comsidared as PV »::11.11]:11.&
ralenlation. AR iz selectsd to amalysis and
ﬁmeﬁm raal-time PV output forecast :
i  We also present an energy management
Syotern that reprasants an existing power systen
fmauagemeut_ Feal-time forecast result is applied
!:l]‘.'l. real-tima sconomic load dispatch (ELDY) of
Zenerators. The advantages of real-time ELD 1s o
:ii:.eep the power system szecure and  robust
Feferance [21] mention that the real-time P%
5}:&1:.131 output 15 nesded by the operator of
Eenerator dispatch. This clearly mentioned that
?.'eal—l:lme PV forecast is become a very important
Hus to the applieation. High accurate of real-time
2V output forecast 15 very mmportant and neadad.
The rest of paper 1z orgamzed zs follows
Section 2 we describe the theory ELN and zolas
radiation correlaton analy=iz (SECA). Saction 2
showrs data sourcez and the forecast methodolosy
Section 4 presemts the experimentzl result and
- omparizon. Finally, in section 5 the experimentat
romelizion and Siture step are showm.

2 PV Forecasting using ELM and SRCA

In s paper, the authors focus on real-tome
forecasting of PV, The real- time PV forecasting i
proids 2 PV output forecast at lesz than 10
metes  interval: wsmg ELM and SECA I
general, real-time PV oufput forecast iz required
high accuracy and hizh speed forecasting process
fa operate a target system,

2.1 ELM

2. Bet the mumber of nodes m the hidden layer:
Thiz step iz labalad as L.

1. Bet the actration fimetion for the nodes 1
hidden layer. The lzbel for this process 1= 2],

4. Set the weight mput and bias mpat randomly:
The mput weight can be mention az B a.n.d
tha bizs mput az b

3. Caltulateﬂlehlddmlmerandgmmrtunne
mafrix. This step generally mention asz M. IIE
thiz step. we also obtain the rasult of
activation fimetion caleulation

M=XW (1

. Caleulate and analyze the output weizht of
single layer neural network. Thiz step 1s

lzheled az 4.
gM)-p=¥ )
F=H F )

In step &, § 1z directly commact with ¥ ELLE
nroposed a solotion for thiz lmear problem. To
pbtamead the valus of §, ELM use Moore-Penrose

generalized imverze. In this caze § 13 the
,.a]u:ulatl:ln result of =M.
L T "-fimI&Peumae zeneralizad mverze of B
17]. The calculafion of H 1= mentioned m (4).

T=(H'H)"H’ ()

In thus part, the § valos must be calculated
correctly to obtain a =mall error betareen fc-rer_'aEt

resultanddalanumﬁ!

Calculate the error betoeen forecast ru‘ul'ti
and data output Forecast razult is labeled 2
(¥i. To calculate the ELM emror, we use
FMEE formulation.

3

Befarence [13] mentioned a new traming
Alzorithmn for machme lsarmmg Thiz alzonthes
Hdoss not spend rmch time to tram the nehwork

;’zl:ir'ha'e, i: first value of forecast result and dats

output. Data 1= valnad 2s V.
Fmally, ELM provide a faster Ieam.ine z:peadl
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pmplementation of ELM 15 simpler based om the
matrix Moore-Penrozs seneralized nyyarse.

Fiz 1 ELM Architectura

>(r3,0)
_'[- 1:;'} =4 {7
px A
arere j, (£) denctes the pradicted solar radiation
alue at location | by using location j at tome &
kWim'), and I’{E} denotes  tha predicted
solar radiation value at location | by all screened
jocations at time ¢ [KWim).

Where, x: input data, j=1._.m pi weighi
hetween mpot and muddle laver =1 n

2.2 5RCA

In this section, we explam about SRCSH
method. We use SRCA as real-hme foracast m 5
mimutes  mterval. Fundamentally, SECA 1=
romeidar the gap comalation between sevaral arsas
The amount of msolation is calculated betweer
two or more neighboring areas. We demve zolas
radiation correlation coafficient, mentioned as (g
of the prediction farget point j and other pomt j
avery 5 mins. Then we axtract solar radiatorn
amount past data m a certain period of pomt §
Than we axtract solar radiation amount past data ix
the same tome window penod of pomnt j, © mumite:
before point 1 period. Here,

le(r}

(x,t-0)-%,)

t - tome (mun), 7 : tome interval (mun), % o othes
point’s solar radistion amomt FWim'). =

nradicted point’s solar radiztion amowmt (KWm™).
¥ : x period average (KWim®). Next, wa change the

noefficient. Select the gap hme fo.. with highest

hehon

Ip_gudar te obtam pradiction m lugh zccuracy;
wa performed real time of correlation amalyszis
aith mltiple spots, choosing the points uzed ir
avery 3 minutes pradichon. We selected arazd
ahich have high comelaton, and by setting eack
rorrelation coefficiant as mam chject, intagratec
the prediction result of each spot As a2 spemfic
method, comelation analysis 1= perfommed towards
mmltipla spots. Every area’s comelation coefficient
i 1= emphasizad, then we calculate weighted
average ?lu.e afthe solar radiation prediction a3

gap time T by 3 mine. and look for the comelation;

correlation, use the [on. before solar radiatior
amount of point j to pomt j solar radiabor

Fig. ! shows the predichon concept
real-tima. Conventional authors hawve comnsidared
the prediction meathod [18-20]. As a szimple
real-time  pradiction method, we propose AR
autoregressrve) model accordnz to the least
squares mathod of the predicted area’s past data’
Thiz 13 a nsefil teckmique to avoid excessive arror;
and can ensure accuracy to certain level. Although
t enablas high accurzey pradiction for the latest
time, srror tends to ncreases as the predicted tome

Furthermore, due to delay fluctuation of =olar
fadiation actual value characteristics, we may
pbtain stable prediction accuracy of all times)
however if the solar radiation suddenly changed:
there mmst be high prediction smor occurred to
sc-m.e extent. To zolve these problems, we apphed
;'\eal time PV output pradiction method according
ic- SRCA model that's bean considered in other
tegion’s solar radiation amount Sclar radiation
amoumt varies on cloud movemant. Solar radiation
fluctuation pattemn, which is the upstream point of
;J.a'udﬂmv,marlmm:ltuappea:mthe
Hdovmstream point with a delay tima. We analyze &
points according to comrelation analy=is, applyving
solar radiation with high comelation upstream to
:iuwnsh‘ea.mmlarmdutonﬂm:lu:hon_

Freolation =

1 Tiw dsley . | 5711 1
{H =il
WVt etk
<1 flaap Ay
]
W
| ;
Locatian & Taus el ¢
4 / | |
L8 b present) et Tiue [lemm]

Fie 3 Proposed SEC  method
3. Data sources and Methodology

'I'}Jedatasetusedﬁormq:- step of ELME
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tramng phazs and the second step 1= dataset usec
meclation, homadity and temperatore valua, Al

Jammary 200% will be used as fraiming phasza. For
the testing phaze, we also used 10 days data o
zarly January 2009 Wheole data set  has
2641 samples with 10 second interval We used the
past weather data offered by Japan Meteorological
Azeney (JMA) to conduct study om proposed
method, and it 1= confirmed as hughly performed

target m this paper were mstalled a= PV by
Hiroshima TUmnrversity, Using omly the datz
published by Japan Mleteorclogical Agency, we
performed the real-tima pradiction of PV output

ELLL we zet it with 50 nodes at the first fraiming!
We alse compare the different nodez value tc
Imowing the emor value and cbiam the most
zffactive number of nodez. Table 1 shows the

nodez. For the prediction target spot of SECA
method, we wuse past msolabon data of 1G
representative areas in Chugokn region. Then, e
selact the top 4 spot with high level of comelation:
and apphv forecast. We compare to AR modsl and
cenfy BRCA model’s affectiveness,

A Case Study

ELM 15 apphed as 2 resresmion analyzis
awhich can allow to obtain the PV output forecast!
Feal-time PV forecast with 10 second intervals iz
prazantad in thiz section. Table 1 shows that the
mereasimg munber of hidden nodes can affect CPT
time.

Takle 1. Comparison of Forecast Emor and CPUT Time
betoreen ELM and MM in 2 input data.

Mo of | Forecast | Forecast | CEUT | CEUT
Hidden Emar Emmor Time | Time

Wodes | (ELML | () [2] 2]

(ELAD | {
1] 1.3 11.1 022 | 333
100 D46 10.6 0.2 [ 348
130 0.18 10.4 D42 | 343
m [RE] 109 03 | ZE0

Fignre ! chows the ELM result wath tweg

availabls meteorolozical data,

Tzkle 2. Comparison of Forecast Emor and CPUT Time
between ELM and M in 3 dnput data,

o.pf | Forecast | Forecast | CPU | CPU
Eidden (  Ermor Emor | Time | Time
Node: | (ELMD | (M) le] il
(ELM) | M)

for testing phase The dataset iz amount of

detailed described as 10 days data on early of

pradiction. The areas that have been pradichon

For the mumber of nodes in the hidden layer of

framing and testmg emvor with severzl numbar of

Table 2 mdicates that the forecast aceuracy 1=
strongly mfluenced by the metecrological data, It
1z proof that the meteorclogical data type hasz =
strong  comelation with amount of nsolation|
SRCA razult 12 shown in fizure 4.

: il
| !
h i
il
i T
| 1
/ | |
f Il
v,
| A
L
H
5 .I_ ul-.ﬁ ll--;J I.H.CI. I |_'..| DD 00 J\-h.\- ...I ]
Thrran] hows|

Fig. 3. Comnparizan of SRCA and AR
As an indicator for comparing the pradichon
accuracy, we usza the predichion emor ratio =)
maumum pradiction emor ratio s, as shown i
formula (8) and (%) below:

(8

n=100x|¥__ -¥_|/0_ [%] ®)

Chit atmesphere solar radizhion 15 theoretical
wvalue represenfing 1deal mawimum zolar radiation
of the dav. Table 1 shows the average wvalue of
mzamurn prediction error ratio and average value
of prediction emor ratio of every predichon
tarzeted tirge parigd o fuma 2012, Fiz. 11 and 12
thows measured vales and 10 mins, or 60 mums;
away prediction value of solar radiztion amount!
The maximum prediction error # which oceurs i
model AR increased sharply over 5 to 10 mms. As
the rezult we managed to obtain the equrvalent
degrea of prediction accuracy. Tha responsiveness
towards ramp chanze is also improvine.

Table 3. Prediction Emrors [%4]

Smiin | 1imgn | 20win | $0win | S0en
ghead | zhead | ahead | ahead | ahead
1606 | 1900 | 2075 | 2376 | 2207

(ARAY]

30 2.00 124 014 417
1::;0 150 07 0.26 KL Pl | 1630 | 1247 | 1084 [ 20120 | 2124
150 6 109 [EE] KT ARG | 32BT [ 3674 | 36356 [ 3000 | 4043
eIv] 1.79 140 08 518 wiCAEe] | 3043 ] 3248 [ 3391 | 3480 ) 3310
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H. Conclusion

Im thiz paper. we propossd rezl-time PY
output forecast usmz SECA and ELR The
anterval time 1z sat to 10 seconds. By usmz ELME
nroof that computational time can be decreaszed
than comventional method such as neural network!
Dazed on the ELD result, also mentioned the
affact of meteorclosical data The forecast
researcher should choose data that have a strong
rorrelation with the mownt of insolation. A=
deseribad zbove, zccording to forecast acouracy
rnprovament, further performance of developroent

of snarey manamemant 12 erpacted,
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