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Chapter 1 

Introduction 

1.1 Background 
Renewable energy generators are expected to grow rapidly in the following 

years. Also, renewable energy uses non-fossil consumption power generation, and 

therefore placing renewable energy resources as a best option for long-term power 

generation. Wind-turbine generations and photovoltaic (PV) generations are the 

most favorable renewable energy generations among others. Around 20% until 30% 

of the renewable energy resources is estimated to increase in the next 15 until 20 

years. In Japan, PV is strongly promoted to support the power generation in power 

system grid. [1] mentioned the cumulative PV installed is around 42GW, where 153 

MW is allocated for off-grid and 41,879 MW for grid-connected. This capacity 

value was calculated in the end of 2016. This value reveals that renewable energy 

is currently being strongly increased and promoted. However, the weakness of the 

PV is the uncertain value for each day production. This uncertainty is due to the 

climate and weather changes. The uncertainty on PV output can cause a problem 

for power system grid. For example, a non-predictable PV output can cause the 

power system to fluctuate and become unstable.  This is a high-risk for the current 

power system which has been running normally for years. Therefore, a simulator of 

power sources including thermal power or existing generator and renewable energy 

sources are necessary to simulate and prepare the power sources calculation. A 

small power system grid as an example could be built and applied. The power 

system grid could include generation planning, control and operation. 

It is for this reason that a good estimation of PV output is necessary to 

prepare the PV sources in the power system grid. PVs are clean and safety energy 

sources. However, they are prone to cause degradation of power quality as well as 

grid security due to unforeseen weather conditions. Continuous sunlight 

intermittency, especially during cloudy days, incurs sudden intense changes in their 

outputs such as unpredictable significant ramp effect. The enhancement of 

renewable energy requires additional ramping abilities to maintain the grid stability. 

PV output estimation should propose high accuracy in its results. It should also be 
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applicable in the power system grid. Development of sophisticated operating 

technology is a key subject. 

Through this research, we analyze the error and the distribution result where 

error value represents the prediction result and the target date. Based on these 

calculations, the reserve margin of PV forecast result could be applied on the 

supply-demand control or the power system simulator. Therefore, to obtain the best 

prediction result, it is necessary to develop the prediction method. It is also 

necessary to highlight the development of supply-demand control as it is an 

important target. We obtain the value of confidence interval (CI) through this stage. 

We also set the CI value as a reliable range for the PV forecast result.  

In this research, we express “robust power system security” to mention the 

power system security hardiness or generally known as robustness of power system 

security.  References [2-4] mentioned the ideal boundary of power system security. 

The items set to maintain the power system is secure and will prevent worst-case 

possibilities such as blackouts, load shading, etc. CI is expected to avoid these 

damaging conditions. We also proposed a power system simulator or “supply-

demand manager” to apply the CI setting and analyze the response. References [5-

7] focus on the supply-demand manager (SDM) as a tool for the CI setting 

application. In the SDM part, we can provide the operational planning, day-ahead 

planning manager, real-time operation manager and real-time control manager. 

SDM is also an example of remote island power system grid.  

To obtain a good CI setting, we should obtain a good forecast result. Here 

we summarize the various of PV forecast. Reference [8] is a literature for day-ahead 

forecasting in small-scale PV generator. This paper provides 24-h-ahead 

forecasting using a forecasting tool. They use three locations; San Diego, 

Braedstrup and Catania and use four methods of RBFNNs (Radial Basis 

Feedforward Neural networks), least square Support Vector Machine (L- SVM), 

kNNs and weighted kNNs as engines model.  On the other hand, reference [9] uses 

the spatial-temporal solar to obtain a very-short term solar forecasting. The spatial-

temporal solar forecasting framework is based on the vector auto-regression 

framework. Other than the spatial-temporal framework, solar generation 

observation that collects using the smart meter and distribution transformer 

controllers is also used as a comparison.  Not only do researchers use one 



       

3 | P a g e  
 

forecasting method, some researchers also use a hybrid method to obtain the short-

term PV forecast. [10,11] both use a hybrid method to obtain the solar power 

forecasting. In reference [10] the authors use Florida data set and a combination of 

gradient-descent optimization and feedforward artificial neural network (ANN) to 

model the data. To determine the ANN parameters, the author uses meta-heuristic 

optimization model, known as shuffled frog leaping algorithm (SFLA). [11] use 

self-organizing map (SOM) and learning vector quantization (LVQ) to classify the 

historical data input for 1-day ahead forecast. For the PV power output forecast, the 

authors use support vector regression (SVR) for the data input. A probabilistic 

method is used by [12] as short-term PV power forecasting. The probabilistic 

method is based on a competitive ensemble of different base predictors. Also, 

another method known as the determination method is used by [13] to forecast the 

PV output. The NN is trained by the output data based on the fuzzy logic. The report 

weather data which is used as input data and fuzzy logic determine the insolation 

forecast. Another researcher [14] uses aerosol data to improve the PV power 

forecasting model. Aerosol index (Ai) is used because it could indicate the 

particular matter in the atmosphere, and the authors of the research also mentioned 

that they found a strong linear correlation between Ai and solar radiation attenuation. 

[15] creates a model of the solar irradiance using grid point value (GPV) data 

analysis. This method is convenient for the efficiency of PV system.  

Support vector machine (SVM) was also used by [16,17] to forecast the PV 

power output. [16] use the combination of satellite images and SVM to model the 

solar power prediction. The authors analyze 4 years of satellite images from the past 

and develop the satellite images. Other than that, recurrent neural network (RNN) 

was used by [18] to develop the correlation between solar radiation and timescale-

related variations of weather item such as wind speed, humidity and temperature. 

RNN was combined with wavelet to obtain the solar radiation prediction in the 

wavelet domain. [19], constructive neural networks (CoNNs) were used by the 

authors to obtain the solar radiation prediction. CoNNs train the input data, which 

include historical data of temperature, humidity, wind speed and weather type, and 

then the process starts with one hidden unit in the hidden layer. Another hidden unit 

is added again if the NNs need to improve the mapping capability until it reaches 

the minimum NN. [20] models the power forecasting based on the nonlinear system 
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identification. The authors use data in Kuwait and suitable for a high non-linear 

change in the PV system. 

An intelligent method was used by [22] to obtain the day-ahead hourly 

forecasting.  The first step in classifying the historical data, the authors use fuzzy k-

means, which then is followed by the second step of training the data trained using 

radial basis function neural network (RBFNN). The third step which aims to 

optimize the RBFNN parameters, the authors use harmony search algorithm (HSA), 

while for the forecasting process, the fuzzy inference is used in the research.  

 In the researches, not only do authors disclose the power output forecast, 

but the application of PV output is also described along with the forecast result. [24] 

apply the PV prediction in the distribution of voltage regulation. This paper 

discusses about the overvoltage limit violation because of PV sources in the power 

system grid. A very short duration of PV power forecast, about 15 seconds, is 

utilized to avoid the upper limit of voltage regulation and overvoltage. [5] use the 

PV output in a larger scale compared to [24]. They mention a feasible operation 

region for the PV output limitation area. In the power system, the application of PV 

output is also used by some authors in unit commitment (UC). [26] use the PV 

output prediction for the efficiency of uncertainty management in the high 

penetration of renewable energy in the power system grid. [27] places its focus in 

the time-scale adaptive dispatch. The time-scale is used for renewable energy power 

supply system on islands. This system is adjusted online based on the CI setting 

from the PV forecast error. [28] use correlation analysis of insolation in two 

different locations. The data are measured by the authors using an actinometer. In 

[29] the authors identify two parameters of prediction which is, first, based on its 

moving direction and second, based on the speed of insolation. Other researchers 

process the cloud images to forecast the power fluctuation. The data research is 

obtained through records conducted on ground. Different with [30], they use data 

from weather satellites to forecast the PV power output. Based on our identification, 

the imagery data, the amount of insolation from the recorded device, etc., requires 

a complicated process as the data is not easily obtained by the researchers. In this 

research, we use a simple and reliable data from Japan Meteorological Agency 

(JMA) that could be easily accessed and free at any time required. Other than that, 

the accuracy of PV output forecast is also considered as an important parameter. 
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Hence, in this research, we provide the CI setting for power system grid application 

system.  

  

1.2 Objective and Scope of the Study 
The main objective of this research is the development of short-term PV 

output forecasting. In this PV output forecasting, we propose a simple and reliable 

data to be modeled and forecasted. Furthermore, the result of short-term PV output 

forecasting is used as information on EMS controller.  

In this case, the short-term of PV output forecasting are divide into two 

cases of PV output forecast which are day-ahead PV output forecast and real-time 

PV output. The first section of our focus is the day-ahead PV output. This subject 

is targeted to be applied on the day-ahead planning manager. The detail of day-

ahead PV output forecast discusses about day-hour order of PV output forecast. Our 

simple and reliable data proposed in this research is modeled and forecasted using 

NN. JMA provides the simple data that can be accessed easily and at any time. The 

day-ahead PV output forecast with 30-minute intervals will be applied on the unit 

commitment planning. According to the day-ahead UC planning, this time interval 

is necessary to obtain a better start/stop generator schedule.  

The second section of our focus in the research of short-term PV output 

forecasting is the real-time PV output forecast. In this case, JMA data will be used 

once again to obtain the result. In real-time PV output forecast, the step is similar 

to the day-ahead PV output forecast. A more detailed step of the forecasting will be 

described in the following section. In the early stage of the research, JMA data is 

collected from the website, and data for each point or area is processed using neural 

network. Then, we calculate the gap time among the area and use each area forecast 

result to obtain the next neighborhood area. SRCA method is used to obtain the 

neighboring PV output result. The real-time PV output is conducted at 5-minute 

intervals. The real-time PV output result will be used as unit commitment 

calculation in the same day. The results are not only used in unit commitment, but 

they are also used for DELD calculation in the same day. To avoid weather changes, 

a standby power source will be prepared. 
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The last aim of this research is to apply the PV output result on the power 

system. For the initial step, we provide an EMS controller that represent an 

electricity grid. In this EMS, renewable resources, battery and generator are 

provided as power electricity sources. Not only do we provide electricity sources, 

we also provide a controller and electricity demand. All of these are included in the 

UC planning manager.  

 

1.3 Outline of the Thesis 
This thesis book consists of six chapters which will discuss the following:  

Chapter 1  

This chapter presents the background of this study, including the characteristics of 

the PVs.  

Chapter 2  

This chapter describes the conventional PV forecasting methods and techniques. 

Chapter 3  

In this chapter, the author provides a more detailed explanation about a new 

approach to predict the day-ahead PV output. To obtain the day-ahead PV output, 

the author only uses public data which will then be modeled using multiple NNs. 

The data will further be tested using the testing data and be evaluated for the result. 

Then, the prediction and CIs are obtained and applied to day-ahead planning 

manager of EMS controller. 

Chapter 4  

This chapter provides a novel method to estimate the real-time PV outputs by the 

correlation analysis. 

Chapter 5  

In chapter 5, the thesis performs the application in the EMS controller by using the 

proposed PV forecasting. The day-ahead and real-time PV forecasting are applied 

to the unit commitment and the dynamic economic load dispatch, respectively. 

Chapter 6  

The last chapter of the thesis presents the summary of the major achievements. 

Furthermore, future research works are provided to continue this research.  
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Chapter 2 

Power Forecasting Methods and Techniques 

2.1 Introduction 
Previous works and research have reported various methods which can be 

used in predicting the PV output solely based on publicly available weather data. 

However, the methods used by the authors to obtain and process the raw data prior 

to forecasting the PV output tend to be complicated. Such methods do not propose 

an effective and simple data processing and forecasting, resulting in inefficient 

application of the method on EMS controllers. These power forecasting methods 

are substantially inapplicable due to their complicated and inconvenient 

implementation. Others have also reported that existing forecasting tend to be 

sophisticated [60-63] based on a variety of methods to forecast PV output power, 

adding up to the complexity nature of these methods. Several of the power 

forecasting methods used by researchers include numerical weather prediction 

[64,25], sky imagery [65,66], and neural network [67,68].  

Through the research, we utilize simple data and reliable method that can be 

applied to the energy management operation to achieve an applicable research result. 

The data used in this research is the public historical insolation and weather 

(temperature, wind speed, and precipitation) data which can be easily obtained from 

the meteorological agency website of Japan. Since PV output forecast has become 

an important issue in energy management planning, a reliable method particularly 

1 until 5 minutes forecast is substantial for real-time PV output forecasting. 

Recently, real-time PV output forecast requires a sophisticated data processing 

[69,70]. Neural network (NN), one of the most common modeling forecast method, 

is commonly used by researchers to model and forecast the PV output. However, 

NN process need more computation time for modeling and forecasting. This is one 

of the laxity in NN method [71]. In real-time PV forecast, computation time is one 

of the important matter in yielding results. Real-time PV forecast is presented for 

up to 1 hour in advance with 5-minutes intervals. This forecast requires a fast 

calculation and high accurate prediction to be applied on a real-time operation and 

planning of generators or batteries. 
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2.2 Photovoltaic (PV) Power System 
PV output forecast is a complicated issue faced by many researchers.  One 

reason behind this is the high number of weather uncertainty which is one of the 

most difficult process to undertake in the forecasting approach.  Some researchers 

have reported using several forecasting methods to obtain a reliable and precise 

result. This is achieved through the estimation of error value between the forecast 

output and the weather data where the smaller the error values are, the more reliable 

and precise the results are.  

One of the biggest challenges in the field of renewable energy sources (RES) 

is their vulnerability and their volatile nature as it depends on changing matters such 

as weather conditions. While conventional power plants offer concrete resources, 

which can be accessed on demand, resources of non-conventional power plants for 

renewable energy, on the other hand, cannot be accessed on demand such as wind 

and solar production. The changing nature of these resources play a vital role on the 

production of renewable energy, and it is on these issues that the power output of 

PV system heavily relies on.  Power production from PV energy sources depends 

on weather conditions of cloud coverage and incidence angle of the sun’s radiation 

which are always changing. With the power output highly dependent on these 

weathers changing conditions, it is crucial to develop accurate and precise forecasts 

in order to run a smoother integration of renewable energy into the electricity grid. 

 

2.3 Forecasting Methods 
Various work on PV output prediction have co-existed with the 

development of renewable energy sources (RES). Research on this specific field, 

and renewable resources output in general, is vital to the development of RES as 

they heavily rely on naturally replenished resources. Being a natural entity 

replenished on a human timescale, these resources are not equipped with certainty 

and predictability in terms of the number of output as they are inextricably linked 

to the continuous change of uncontrollable weather and other natural conditions.  
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Inevitably, this creates an immense impact on renewable energy and its 

development, including renewable energy from PV.  

An attempt to map and predict the output from PV have been conducted in 

various research over the past several years, resulting in several forecasting models. 

There exists various PV prediction methods in the literature such as the day-ahead 

forecasting for small-scale PV [8], the spatial-temporal solar very short-term 

forecasting [9], the hybrid algorithms for short-term PV prediction [10,11], the 

probabilistic ensemble methods [2], the determination methods [3], research using 

aerosol data [14], grid point value (GPV) [15], support vector machine (SVM) 

[16,17],  recurrent neural network (RNN) [8], constructive neural networks (NNs) 

[19], nonlinear system identification models [20], the Markov switching models 

[21], the intelligent methods for day-ahead hourly forecasting [22], and the 

statistical methods [23]. Applications of the PV predictions are presented for the 

distribution voltage regulation [24], for the large-scale grid [25], for the unit 

commitment (UC) [26], and for the time-scale adaptive dispatch [7]. The reference 

[8] proposes a PV prediction method for local distribution control system based on 

the correlation analysis of the observed data. Recent methods use cloud images that 

are observed from the ground [29] or that are obtained from weather satellites [30].  

However, these complicated methods require access and availability of 

special data such as meteorological image data, solar data from the radiation meters 

at power grid substations, etc., which are not easily obtainable in practice. 

Furthermore, these methods focus their attention on the accuracy of obtained 

predictions and there are practically no examinations on the CI metric, among 

others. There are a number of methods available in present day used to forecast PV 

output which will further be discussed in the following section to serve as reference 

and review for this research. 

 

2.3.1. Statistical Models (AR, ARIMA, NN, etc.) 
One common method in making predictions based on a variety of data input 

is the statistical model. With a mathematical approach, statistical modelling will 

generate an approximate reality to the data input and process the approximation into 

a prediction. It is often known as the data-generating process as it predicts 
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information based on collected or sampling data and population understanding. 

Statistical modelling has been applied in various forms of programs which among 

others include autoregressive (AR), autoregressive-moving average model 

(ARIMA), and neural network (NN). [29] use AR and ARIMA to model and 

forecast the solar radiation in Bogota. The author uses basic AR formula here, 

 

          (1) 
 Where set in constant value and is a zero-mean white noise with 

constant variance . Then, the authors also use ARIMA model to forecast the 

solar radiation. Here the ARIMA model formula, 

  (2) 
 

Another author also uses statistical time series model of solar radiation and 

outdoor temperature as data input and Kalman filter as forecast method. [30] use 

the temperature room because their calculation method requires a time series model 

of external climate. [30] another researcher uses ARX method to obtain the online 

short-term solar power forecasting.  

 

2.3.2. Cloudy Imagery and Satellite based Models 
Cloudy imagery and satellite-based models focus in cloudy imagery data. 

Some researchers use several devices to observe the sky movement from one point 

to another. The data is based on the observation result. Generally, the researchers 

use the clearness indices to convert the cloud situation into number value. The 

clearness indices (some researchers reported using clearness index or CI) is on the 

ration scale of 0 to 1. This value is obtained from the cloudy imagery pixel. There 

are several categories of the cloudy imagery pixel result. A clear sky, a high density 

cloudy sky and a low density cloudy sky are the classes that are generally used by 

the researchers in this area.  

  Several recent studies for cloudy imagery and satellite-based model are 

mentioned below. [36] use 80 PV systems that are installed in the rooftop in Tuscon, 

AZ region. The PV systems are used as ground-based irradiance sensors, the PV 

distributed on 50 km x 50 km area. Figure 1 is the example of the imagery satellite.  
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Figure 1. Top: Spatial correlation between station pairs for one day as a function 

of separation in the east–west as well as north–south directions 

The authors record the data at 15-minute interval and not only focus on the 

sky imager. [37] use statistical smoothing techniques to find the clear sky model. 

[38] use cloudiness indices as input data and radial basis function (RBF) neural 

network to predict the solar radiation.  

 

2.3.3. Numerical Weather Prediction (NWP) Models  
Numerical weather prediction (NWP) or often known as numerical 

forecasting offers a mathematical model as an attempt to understand the pattern in 

weather prediction. Numerical forecasting is conducted through complex 

supercomputers which generate predictions based on data of the atmosphere and 

ocean according to the current weather condition. Though the model has been tested 

and designed in the 1920s, realistic and promising results were produced only until 

the advent of computer simulation in the 1950s. Many weather variables such as 

temperature, wind and possibility of precipitation are forecasted through this model. 

These predictions are generated through high-speed computers which integrates 

fundamental equations of hydrodynamics and a modeled atmosphere in a 

mathematical approach.  

While numerical forecasting offers many promising results, inaccuracy in 

its equations often leads to some errors in the predictions. Another flaw of this 

method is the number of gaps between the initial data, ultimately resulting in 

imprecise output. The number of people with access to the computer data is also 

very limited. [64] use three individual validation of global horizontal irradiance 

multi-day forecast models. They use this model for three areas; US, Canada and 
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Europe. All of the forecast models are based on directly or indirectly to NWP. [40] 

use NN to localize the precipitation forecast that is obtained from the NWP 

prediction. They use the middle Atlantic region of US data for their research. 

 

2.3.4. Hybrid Models 
Another forecasting method presented in earlier works is the hybrid model. 

Hybrid forecasting proposes a program by combining regression, data smoothing, 

and other stages of techniques to attain forecasting results which compensate flaws 

of individual forecasting methods. The methods used in hybrid forecasting include 

Vanguard Dampened Trend, Log Theta, Theta, NN, NWP and clear sky model.  

[11] use hybrid method for one-day ahead forecasting. Their research focuses on 

hourly PV power output. They integrate the self-organizing map (SOM) to classify 

the data input. Also, learning vector quantization (LVQ) is used to classify the 

historical data PV while Support vector regression (SVR) is used to comprehend 

the historical data. [39] use hybrid k-means and nonlinear autoregressive neural 

network (NAR) model to obtain a better PV output forecast. The k-means method 

is used to extract the data. Not only to extract, the method was also used to model 

the data and find the data patterns. Once the data has been modeled, NAR is used 

as a forecasting method.  

 

2.4 Summary 
 As reflected above through the various types of power forecasting methods 

for renewable energy, it is apparent that the need of a forecasting model for RES is 

crucial. Many have proposed various kinds of prediction models, applying a 

different approach for every type while adjusting to the needs, different type of 

available data, the efficiency and effectiveness of the techniques used, and other 

significant features. However, undoubtedly many challenges are faced when 

dealing with weather uncertainty which can impact on the data used in present 

models. Flaws and weaknesses are present on the forecasting methods, demanding 

a constant development and research in the field of weather forecasting for 

renewable energy, which in this case focuses on PV output. One of the challenges 
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faced by the models is the limited amount of available data and its complexity. 

Many required data and made available publicly are inconvenient and offer a certain 

degree of uncertainty. With this particular challenge as a highlight, this research 

aims to provide a method of forecasting PV output by using only simple and reliable 

data to improve its accuracy and effectivity. It will also give a bigger possibility of 

usage and application as the necessary data are made publicly available and easily 

obtained.  
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Chapter 3 

Day-ahead 24-hours Power Forecasting 

3.1. Introduction 
This chapter focuses on the discussion of day-ahead 24 hours PV output 

forecasting. In the previous chapter, it is explained how other researchers use 

different kinds of methods to obtain day-ahead PV output forecast, and many of 

them were challenged with complicated circumstances concerning the data. They 

require a complicated data processing before being able to be used as input for their 

method. Not only did it require complicated data processing, but many of the data 

used in the previous researches were inaccessible data, making it an even more 

difficult situation to improve the PV output forecast. In this chapter, a more detailed 

explanation about the day-ahead PV output forecast which uses a simple and 

reliable data is described. [39] use a simple and efficient algorithm to forecast the 

solar radiation. A decomposition process from geostationary satellite data is 

necessary to obtain the data input, meaning the input data require a non-simple 

process.    

In this research, the primary focus of day-ahead PV output forecasting is 

placed on the following 24 hours of the day. Calculation of the day-ahead forecast 

will be conducted based on several steps as shown in Figure 2. This detailed process 

will be taken step by step to ensure that the calculated forecast is performed in a 

methodized manner from the beginning until the CI results are obtained. Results 

from the day-ahead power forecasting will be utilized. The solar power prediction 

shall function as a tool to balance the total power production and is placed in the 

electricity grid. The research result shall be conducted on a start-stop UC plan 

implemented among existing generators along with the batteries.  

To obtain day-ahead forecasting results, PV output predictions are set the 

same with the day-ahead UC planning time interval. The forecasting unit would be 

handling at 30-minutes interval time on collecting PV output data to further process 

on day-ahead forecasting. The results from these forecasting will then be included 

in the UC planning. In the next section, the research proposes a new method which 
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uses a group of neural networks assigned for every weather cluster for the target 

time.  

 
 
 

 

 

 

 

 

 

 

 

 

 Figure 2.  The proposed scheme of PV output prediction. 

The proposed scheme for the PV output forecast is detailed through six 

calculation steps.  

1. The first step of the PV output forecast involves a thorough analysis on 

previous weather data in each time duration. The data being analyzed includes 

an intensive feature such as the temperature, windspeed, rainfall, and insolation 

which altogether have an impact on the weather condition. The data are 

downloaded through the JMA website. Currently, we use temperature, 

windspeed, insolation and rainfall data only since these kinds of weather 

conditions have a direct impact to the insolation value. The data downloaded 

for the research is from 2009 until 2012. More explanation about data 

processing will be described below. 

2. Once the past data have been analyzed, they are put into clusters according to 

the weather clustering (WC). Analyzed data are categorized based on the 

weather conditions. There are three types of weather clusters; sunny, cloudy, 

and rainy condition. These clusters are based on the Japan Meteorological 
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Agency which presents the weather clusters according to the local area time 

series data.  

3. Upon completion of weather clustering, the forecasting process shall proceed 

with the third step of the PV output forecasting which involves the construction 

of Neural Network (NN) for each of the weather cluster formed in the figure 2.  

4. After the Neural Network has been set for every weather condition cluster, an 

evaluation on its performance can be conducted using testing data. This 

evaluation shall be performed in the following phase of the forecasting model. 

The NN on each cluster will be evaluated by testing data and computation of 

standard deviations for prediction errors.  

5. Then, the next step is CI setting. The standard deviation that is calculated 

before, will be used as appropriate setting for confidence intervals (CI) based 

on historical data analysis.  

6. The last step is applying the CI evaluation to the EMS controller. The 

forecasting process is applied using the proper NN based on the weather 

condition on the target day. This will result in the PV output prediction. 

 

3.2. Data Clustering by Weather Condition 
This section of the research presents a detailed explanation on the data 

clustering process. Figure 3 shows the JMA data which are made available through 

their website.  

 

 

 

 

 

 

 

 

 

Figure 3. Weather data from JMA website 

 



       

17 | P a g e  
 

In the JMA website, there are many historical data that could be easily 

accessed for free. The weather data starts from 1872 until the current day. 

According to the website, the data is not fully complete in terms of 10 seconds 

interval time. Data with this interval time only applies to data from 2000 until 

current day data.  

After accessing the JMA website, user should choose the necessary date and 

time interval. In this step, the user should check properly to download the necessary 

data through the website. Figure 4 shows the time interval before year 2000. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The JMA data website in year 1961 

 

Based on Figure 4, there are 13 kinds of weather data that are recorded by 

JMA. The data is available for 24 hours. Figure 4 also shows that there is no data 

available in 1st January 1951. It means not all the data is available in the JMA 

website for every time. In year 1951, the data time interval is also available for 

every hour. However, data is not yet available for 10-second interval.  
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Figure 5. JMA data for January 1951 

. 

Based on Figure 5, in January 1951, only daily data for each month is 

available. Also, not every weather data appears in the website. Only precipitation 

data and temperature data are available. Figure 5 describes the lowest, maximum 

and average daily temperature data. The temperature data uses oC as its units. In 

another column, the precipitation data is available, but it is not the same as 

temperature data. The precipitation data is only available for the 1st, 6th, 7th, 9th, 10th, 

12th ~ 14th, 18th, 19th, 21st ~ 23rd, and 26th of January 1951. 

 

 

 

 

 

 

 

 

 

 

Figure 6. JMA data for January 2009 
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Compared to Figure 6, weather data for January 2009 appears to be more 

complete than January 1951. In contrast to the data of January 1951, in 2009 the 

website provides 13 kinds of weather data. The user could use all of this data easily. 

Also, the data time interval is available in more detail. There are 10 seconds time 

interval for each data that could be accessed in the JMA website. Figure 7 below 

shows the 10 second time interval data.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. JMA data for January 2009 in 10 seconds time interval 

 

In this figure, the data time starts from 00.10 until 24.00. There are 144 data 

and nine kinds of weather items data in a day. From this data, we could select the 

temperature, wind speed average, and the precipitation of rain. The data is 

combined with the PV system at Hiroshima University. Our detailed preprocessing 

data is described in the following two steps: 

1. Step 1 

In the first step, we use data that could be accessed easily from the JMA 

website. [33] the data is made available and accessible for the public. The website 

offers 3-hour weather data. The data used for this research is described as follows:  

(1) Temperature, in this book symbolized as (T) in oC,  

(2) Maximum wind speed (v) in m/s,  

(3) Probability of the precipitation (p), (with the precipitation value of 1, if 

observed, and 0, if not observed). 
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(4) Weather class (sunny, cloudy, rainy, and snowy).  

 To maximize the data research, wind speed is divided into 4 levels of speed. 

First is wind speed of 0-2 m/s, and the second class of speed starts from 3 until 5 

m/s, while the third class is for wind speed of 6 m/s until 9 m/s, and the last class is 

over than 10 m/s of wind speed.  

2. Step 2 
Weather condition plays the biggest influence in determining the amount of 

solar radiation. Based on the JMA website, there are no classifications for weather 

conditions. Therefore, in this research, we classify the historical weather data into 

three categories of weather condition. The first category is sunny, and the second 

category is cloudy while the last category is rainy. The weather classification is 

based on the radiation thresholds. Once the weather conditions have been clustered, 

then NNs are constructed for every weather class. 

A thorough description of the proposed data classification is stated in the 

following two points:   

1. The JMA data that could be accessed from the website, is combined with our 

local data which is obtained from the PV that is installed in the Hiroshima 

University rooftop. The PV capacities are 40 kW. Both data are a historical 

weather data and is used for the local prediction.  

2. For the second point, data from the Ministry of Economy, Trade and Industry 

[31] is used for the global PV generation forecasting.  

 

The following is an example of data usage. We consider the past, present 

and the following months as target data. Three months before, the present month 

and three months after the present month are used to model and forecast the amount 

of insolation. For example, if we are going to forecast a day in a month in 2012 such 

as August 2012, we shall use data from 2009 until 2011 as the training phase of 

neural network. As previously explained, we shall also use data from July, August, 

and September 2009 until 2011. For the timing base data, we shall also use data 

from 3 hours before the target data, during the target data and 3 hours after the target 

data. To calculate and verify the network, data in July 2012 is used as the testing 

data. We also have 100 different NNs with random value for the weight. We 
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construct these NNs for each weather classification. Back propagation (BP) is 

chosen to model the historical data. After we construct NNs, and train and test them, 

the mean absolute error (MAE) is calculated to be used as comparison to the 

prediction result. One important thing to do before using weather data is to convert 

all the input value into the same value. This process is described as the 

normalization process. 

 

3.3 Construction of Neural Networks 
In this section, the construction of NNs is described in detail. This section 

also includes the third step of day-ahead PV forecasting. As mentioned above, we 

use 3-hour basic data. We construct the NNs using the classification input data. The 

construction of NNs is equal to the training phase of NNs. For example, for cases 

of rainy condition, we shall use the rainy weather data.  Figure 8 describes the NNs. 

The network consists of three layers, in which the output 'ˆty  describes the amount 

of solar radiation at the specific time of t’. 

 

 

 

 

 

 

 

Figure 8. 3-layer neural network 

The 3 layers of NN are constructed to model the weather data. The 3 layers 

of NN consist of input layer, hidden layer and output layer. For each layer, the 

neuron represents the calculation process inside. In this case, there are nine numbers 

of neuron in input layer, with j as number of neuron in the hidden layer and one 

neuron for the output layer. All neurons in the input layer represent the value of the 
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weather data. Input data is symbolized as (T, v, p). As mentioned before, the data 

used for 3 hours before the target time is represented as t' – 1, while for the target 

time the data is represented as t' and for 3 hours after the present data we describe 

it as t' + 1 in figure 8. 

Between the input layer and the hidden layer, each neuron in these two 

layers are fully connected to each other. For every connection of neurons from input 

layer and hidden layer, xij represents the input weight value and wij represents the 

output weight. In this stage, the number of weight value is determined randomly. 

The neuron in the hidden layer serve as a multiplication calculation between the 

input value and weight input. The result of this multiplication is transformed by the 

activation function. In this research, “logsig” activation function is selected to 

calculate the multiplication result between the input value and input weight. Also, 

Q describes the output result for the calculation process in the hidden neurons. For 

the training phase, the result is determined by using the backpropagation (BP) 

training method. 

In the NN construction, there are two main phases to construct NN. First is 

the training phase and the second is the testing phase. Training phase is an important 

key to obtain the best value of input and output weight. This phase should be 

constructed well, so that the error from the testing phase is small. Input data for 

training and testing phase are represented as follows:  

(1) Weather classification data,  

(2) Temperature represented as T, 

(3) 4 classes of Wind speed which is represented as v,  

(4) The amount of solar radiation described as Precipitation p,  

In the training phase of the backpropagation method, all data input will be 

multiplied by the input weight one by one. Formula 1 shows the multiplication 

process between data input and input weight. 

     (2) 

After  is obtained from the first forward phase, the difference in value 

between value and the target value will be evaluated. After the delta value is 
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obtained, the next step is the backward process. Backward process is necessary to 

update the output and input weight. Forward and backward process is known as the 

iteration process. This process will be iterated more than 100 times. In this research, 

we will use 20.000 times of iteration. The iteration will stop until the delta between 

the training output and the target output is small or the differences are adequate.  

 

3.4 Performance Evaluation and CI Setting 
The following is the fourth step in the day-ahead PV output forecasting. In 

the performance evaluation step, we use the test data to verify and evaluate the NNs. 

This will result in the value of the PV output and the calculation of the error value.  

In this step, we also set the CI setting and value. CI value is analyzed by 

considering the prediction errors. CI setting divides the CI results into two range 

which are the permissibility of maximum and minimum limit of the PV output 

reliable case. The result is considered as a reliable data for the PV output prediction 

result. To obtain the prediction error, standard deviation (σ) is used as the testing 

result. The CI value is the range of ±σ, ±2σ. Figures 9 describes the CI setting in 

detail. This CI value will be an effective feasible operation limit for PV output 

forecasting in power system grid. The CI setting is used for the operation planning 

and the real-time case as robust security for the power system grid.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.  Setting method of CIs 
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Figure 9 shows that the blue area is the first standard deviation area of day-

ahead PV output. The blue area represents the first range of CI or ±σ while the red 

area describes the second range of CI setting or ±2σ.  

After the CIs range is obtained, the result of CIs for each month in a year is 

provided in figure 10. The CI calculation for each month have been completed and 

reported. Weather classification and non-classification are provided as a 

comparison result.  

 

 

 

 

 

Figure 10. CIs in 2012 

From figure 10, the result shows that weather with classification has a small 

interval variance in a year. The CIs value also changes between each month. This 

is due to the weather season and weather condition. Compared to others, the CIs 

result between April until September is higher due to the sunny season or summer 

season. Figure 10 also shows that December 2012 has the lowest width of CIs. This 

value appears in the result because Japan is in snowy or winter season. We also 

noted a difference between results with cluster and without cluster. CIs result of 

data without cluster is higher than CI result with cluster data. Based on the 

probability calculation, the result shows that the difference value between recorded 

data and the prediction result could still be more than 80% of the probability. Also, 

for the two types of classification result, it could be confirmed that the result with 

weather classification is better than non-weather classification.  

In the two graphs below, Figure 11 and 12 confirm that the result of two CIs, 

namely ±σ or ±2σ become better by the weather classification. Based on Figure 11 
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and 12, it is also proven that the CI reliability is increased and improved because of 

the weather classification.  

 

 

 

 

 

 

Figure 11. Staying probabilities with weather clustering 

 

 

 

 

 

 

 

Figure 12. Staying probabilities without weather clustering 

 Based on figure 11 and figure 12, the staying probability of CIs in figure 13 

is smaller than in figure 12. The black bar in figure 12 is smaller than the black bar 

in figure 13, meaning the CIs width using the first range reliable shall be applied on 

the EMS controller. In figure 13, the 2nd until 6th months of year 2012, the outside 

interval probability is higher than figure 12, but the second interval or the gray bar 

of CIs is higher than the first interval. This result confirms that weather 

classification as our proposed method is a good way to improve the PV output 

forecast.   

 

3.5 Estimation of PV Outputs 
The PV output forecast result is achieved by applying the measurement data 

and the JMA data from the website. As previously mentioned, the 30-minute 

interval according to the UC planning shall use the linear interpolation process.  
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'ˆty  is the output of NNs or amount of solar radiation forecasting. This value 

should be converted to the PV output generation or 't̂P . [76] is the reference 

formula for converting the solar radiation forecasting result to the PV output 

generation. The following is the formula, 

' '
ˆ ˆ/t S AS tP K G P y       (3) 

K is the constant value that represents the monthly comprehensive design 

factor, while Gs, represents the amount of solar radiation intensity in the standard 

test condition with the units in kW/m2, and the last one is the standard solar cell 

array output or PAS.  

To obtain the value of K, in this research we use formula (4). The following 

is the monthly comprehensive design factor formula,  

HD PD PA PM IND PTK K K K K K      (4) 

The solar radiation yearly variation of correction coefficient is represented 

as KHD, while the aging correction coefficient is represented as KPD. The value of 

array circuit correction coefficient is represented as KPA. We also use KPM for the 

array load matching correction coefficient. ηIND represents the power conditioner 

effective efficiency, and the last coefficient for temperature correction factor is 

symbolized as KPT. To convert the solar radiation value to the PV output, all these 

coefficients should be used and prepared in the calculation formula. Also, all of 

these coefficients will be determined based on the PV system condition in which 

we use the PV system in the Hiroshima University rooftop.  

 

3.6 Case Studies 
In this part, the case studies of day-ahead PV output forecasting are 

described. From the beginning, we pre-process the input data for day-ahead PV 

forecast as mention in Figure 2 as the first step. In this section, if some data are 

missing, we calculate the missing data using the interpolation linear. However, the 

missing data should be in the acceptable range. Otherwise, the data in that day will 

not be used. In another case, if the data in that day is not available in the JMA 
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website, we consider using the same condition as three hours before. We also 

assume that the next three hours have the same value or condition. For example, if 

the JMA website mentions that at 12:00 o’clock it is a sunny day, we assume the 

data from 10:31 until 13:30 is sunny as well. This case applies on the entire 

simulation data.  

 

 

 

 

 

 

Figure 13.  PV forecasting with weather clustering 

 

 

 

 

 

Figure 14.  PV forecasting without weather clustering. 

Figures 13 and 14 show the amount of PV output forecast result. As shown 

in the figures, the amount of PV output fluctuates by the time. As we mentioned 

before, we use 30-minute time interval and apply it in the vertical axis, starting from 

02:00 until 20:00. We establish the figure every two hours because of the figure 

space. The purple area that extends vertically in the black line is the first value of 

±σ, meaning that this color is the first CI range. Then, the red area is the value of ± 

2σ which is the second CI range. For the weather marks, which are shown in the 

bottom of the figure, it represents the time weather, starting from 2, 3, 6, 8, 10, 14, 
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16, and 20. If the weather is changing slowly, we have also prepared for this 

condition. The result also shows that our method can predict accurately. For the CI 

setting, we set the CI value the same as the generation output forecast. For example, 

there is a case in which the PV could produce power in small number. This situation 

generally happens in the early morning or late evening. Because of that, the CI 

variance is also small and applies in both range. Also, for the sunny day or non-

cloudy or rainy day, the amount of PV output is big, so that the CI setting also has 

a big range. 

As shown in figure 13 and 14, we could find a big CI range at 14:00. This 

area is bigger than early morning time or late evening because the PV power output 

is also big. In this condition, we can set the maximum of the CI range same as the 

PV output forecast result. If we compare the weather with classification and without 

classification, it can be concluded that the CI variance is smaller in the weather 

classification method. 

 

 

 

 

 

 

Figure 15.  RMSE and maximum errors in 2012 

Figure 15 shows the monthly result in a year. The root mean square error 

(RMSE) is used to obtain the error prediction. Equation (5) is the RMSE formula. 

N represents the data number, while ŝP (t) represents the PV power generation 

predicted value in t certain time. Ps (t) is the measurement value in certain t time, 

with units in [W/m2]. 

We also provide the average prediction error and the maximum prediction 

error monthly in a year. In this case, we chose the year 2012 as an example.  
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 When we use the weather classification for the PV forecast, we realize that 

the average errors are smaller than those in the data without weather classification. 

The maximum errors in several specific months in a year also increased. However, 

our classification weather has a weakness as well. The weakness is the data weather 

assumption will be considered the same as the previous or the following three hours. 

The method also could not keep up with the weather changes during 3 hours.  

 

 

 

 

 

 

 

Figure 16. Day-ahead PV forecast on August 3, 2012 

3.7 Summary 
This chapter can be summarized as follows: 

1. This chapter focuses on the explanation of day-ahead 24-hours PV output 

forecasting. The researchers face several complex circumstances about the data 

input. 

2. We proposed a simple data that can be easily obtained from the website. In our 

research we use the JMA website. 

3. There are six steps to use our simple data in obtaining the PV output forecast. 

The first step of the PV output forecast involves a thorough analysis on previous 

weather data in each time duration. Once the past data have been analyzed, the 

data are put into clusters according to the weather clustering (WC). There are 
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three types of weather clusters; sunny, cloudy, and rainy condition. Upon 

completion of weather clustering, the forecasting process shall proceed with the 

third step of the PV output forecasting which involves the construction of 

Neural Network (NN) for each of the weather cluster. After the Neural Network 

has been set for every weather condition cluster, an evaluation on its 

performance can be conducted using testing data. Then, the next step is CI 

setting. The standard deviation that was previously calculated, will help to set 

the appropriate confidence intervals (CI) based on historical data analysis. 

4. After obtaining the CI setting, the result is applied to the EMS controller.  
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Chapter 4 

Real-time 5-minutes Power Forecasting 

4.1. Introduction 
In this section, the authors focus on real-time forecasting of PV. The real- 

time PV forecasting provides a PV output forecast at less than 10 minutes intervals 

using ELM and SRCA. In general, real-time PV output forecast requires high 

accuracy and high-speed forecasting process to operate a target system. 

We also develop the SRCA method to obtain the real-time PV output. The 

time interval of real-time demand and real-time PV output forecast is up to 1 hour 

and 5-minute intervals in advanced. This time interval is used in the forecasting 

target day. However, the process runs in 5-minutes interval and will be used as UC 

simulation in the same day. We also provide the DELD of the generators and 

batteries as calculation parameters. In order to deal with the weather changes and 

unpredictable PV output, we prepare a stand-by operating reserve and a spinning 

reserve at the same time as the real-time PV output simulation. The following is the 

real-time forecast procedure.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17. Real-time PV forecast 
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Figure 17 shows the real-time PV output forecast process. Weather 

database analysis is the starting point in obtaining the real-time PV output forecast. 

The same data is used for the day-ahead forecast, and it is also used as real-time PV 

forecast database. The following is the data type repetition. We use 3-hour weather 

data, T, v, p. In real-time case, we use weather cluster as well, so in the 

preprocessing data, we pre-process the data that is going to be used in our research. 

We cluster it into three categories (sunny, cloudy, rainy, and snowy).  

The same method for constructing NNs is used as described in Section III 

for the day-ahead PV forecasts. This method is also applied into real-time PV 

forecast for individual areas. The difference is only in the time interval data that is 

used for the real-time case. All the data that is provided for every 3 hours by JMA 

is transformed into 5-minute basis data in the pre-processing section of figure 17 

by using the interpolation scheme in the pre-processing part. The data for individual 

locations are used to construct the NNs, which are then used for real-time 

predictions of the target areas and other locations. The same procedures as given in 

steps (ii) to (vi) of figure 17 are performed using 5-minute basis data. Consequently, 

the estimation of real-time PV outputs is obtained. 

 
4.2. Correlation Analysis between the Target and the 

Other Areas 
In this section, we shall explain in detail about the SRCA method. We use 

the SRCA method as real-time forecast in 5 minutes interval. Fundamentally, 

SRCA is considered the gap correlation between several areas. The amount of 

insolation is calculated between two or more neighboring areas. 

Furthermore, due to the delay of fluctuation of solar radiation actual value 

characteristics, we may obtain stable prediction accuracy of all times. However, if 

the solar radiation suddenly changes, it is possible to obtain high prediction error at 

some extent. To solve these problems, we applied the real-time PV output 

prediction method according to the SRCA model that has considered the amount of 

solar radiation in other region.  
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Figure 18. Proposed SRCA method 

SRCA stands for Solar Radiation Correlation Analysis, which is a method 

that is expected to be applied in remote islands. As figure 18 shows, there are more 

than one area for the SRCA method. These areas are going to evaluate the 

correlation between the target location and the other location. This method analyzes 

the distance between two or more areas. In figure 8, there are two different areas 

that are separated by t- . In figure 18, the blue line represents location B while the 

red line represents location A. The concept of this research is based on the idea of 

the cloud movement which will also be used for the solar radiation pattern. In this 

concept, we split the areas into upstream and downstream areas or points. Our 

prediction object and target compile the real-time forecast. Based on the upstream 

and downstream areas, the gap time is obtained. The solar radiation data which has 

similar value will then be used for real-time forecasting. It is calculated using the 

SRCA method, and the location is chosen based on the result.  

 

4.3. Forecasting for the Individual Areas 
Based on the description of figure 18, an individual area is initially 

forecasted before forecasting other points or areas. In this section, the individual 

area is forecasted using NN and ELM. This part is necessary to obtain the PV output 

forecast for individual areas. The results and timing process are then compared 

between the NN and ELM method. 
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4.3.1. Neural Network Models using Data Clustering 
Same as the day-ahead PV output forecast, we construct NN for each season 

to obtain the real-time PV output forecast. The data clustering used to model and 

forecast the data is the same one used for day-ahead PV output forecast. There are 

three classes of weather clusters; sunny, cloudy, and rainy condition. The same data 

is also used for input data. The NN architecture is also the same as figure 8. 

Its performance and effectiveness are also calculated in the process. A 

conventional method namely the auto regressive (AR) method is chosen as a 

comparison method. The error results are then compared based on the average and 

maximum error. 

 

4.3.2. Extreme Learning Machine Model 
In this research, apart from NN, the ELM method is also used to model and 

forecast the individual areas. The ELM method is used since its algorithm could 

perform the training phase time faster than NN. The training phase time is necessary 

to construct a robust network. Therefore, the results of real-time PV output forecast 

could be informed to the power system operator immediately. Additionally, ELM 

also does not require an iterative process.  

Empirical calculation proves that ELM can process generalization better and 

faster than neural network [73]. The basic idea of ELM lies in the single hidden 

layer feed forward network. The architecture of ELM is shown in figure19. 

The mode and forecasting process is conducted through 7 steps as shown in figure  

1. Set the input and output data, labeled as X, Y, respectively. 

2. Set the number of nodes in the hidden layer. This step is symbolized as L. 

3. Set the activation function for the nodes in the hidden layer. Generally, the 

“logsig” activation function is used for the training phase. Formula 6 shows 

this calculation. 

4. Set the weight input and bias input randomly. The input weight can be 

mentioned as W and the bias input as b. 

5. Calculate the hidden layer and maintain it as one matrix. This step is similar to 

the part Q in chapter 3, while in figure 18, it is labeled as M. Through this step, 
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not only do we obtain the multiplication result but also the results of the 

activation function calculation.  

M           (6)   

6. Calculate and analyze the output weight of single layer neural network. This 

step is labeled as β. 

( )g M Y       (7) 

H Y         (8) 

In step 6, β is directly connected with Y, which is the output of ELM. To obtain 

the value of β, ELM uses the method of Moore-Penrose generalized inverse. In this 

case, β is the calculation result of g(M).  

H+ is the Moore-Penrose generalized inverse of H [72]. The calculation of H+ is 

mentioned in (4). 
1( )T TH H H H       (9) 

In this part, the β value must be calculated correctly to obtain a small error 

between the forecast result and the data output. 

7. Calculate the error between the forecast result and the data output. Ŷ represents 

the output result. To calculate the error, the RMSE formulation is used. 

Ultimately, ELM provides a faster learning speed than general neural network 

algorithm. For the implementation of ELM, it provides a simpler process based on 

the matrix Moore-Penrose generalized inverse. 

 

 

 

 

   

 

 

 

Figure 19. ELM Architecture. 
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4.4. Forecasting the Target Area using Correlation 

Factors 
In this section, the correlation factor is used to determine the PV output of 

the neighborhood area. We derive solar radiation correlation coefficient or 

represented as (rij) of the prediction target point (i) and other points (j) for every 5 

mins. Then, we extract the solar radiation amount through the past data in a certain 

period of point (i). After that, the solar radiation amount is extracted through the 

past data in the same time window period of point j, and τ minutes before point i 

period as stated in the following: 

22

( ) ( )
( )

( ) ( )

i i j j
t

ij

i i j j
t t

x t x x t x
r

x t x x t x
     (10) 

t : time (min), τ : time interval (min), xj : other point solar radiation amount (kW/m2)

xi : predicted point solar radiation amount (kW/m2) x : x period average (kW/m2).  

In the next step, the gap time τ is changed by 5 minutes, and the correlation 

coefficient is calculated. This is performed by selecting the gap time τmax with the 

highest correlation and using the τmax before solar radiation amount of point j to 

point i solar radiation prediction. 

To obtain prediction with high accuracy, we performed real-time correlation 

analysis with multiple spots. Areas with high correlation are selected, and each 

correlation coefficient are set as main object. The prediction results of each spot are 

then integrated. As a specific method, correlation analysis is performed towards 

multiple spots. The correlation coefficient of every area rij is emphasized, and then 

calculated for its weighted average value of the solar radiation prediction as shown 

in the following formula (11).  

 

ˆ( ) ( )
ˆ ( )

( )

ij ij
j

i
ij

j

r y t
Y t

r       (11)  

ˆ ( )ijy t denotes the predicted solar radiation value at location i by using 

location j at time t [kW/m2], and ˆ ( )iY t  denotes the predicted solar radiation value at 
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location i by all screened locations at time t [kW/m2]. 

Figure 17 shows the prediction concept in real-time. Conventional authors 

have considered the prediction method [19,74,75]. As a simple real-time prediction 

method, we propose AR (autoregressive) model according to the least squares 

method of the predicted area’s past data. This is a useful technique to avoid 

excessive error and can ensure accuracy to certain level. Although it enables high 

accuracy prediction for the latest time, error tends to increase as the predicted time 

elapses.  

 

4.5. Estimation of PV Outputs 
This section shall provide the estimation of PV output. Similar to chapter 3, 

an individual area is modeled and forecasted which is proceeded with the 

forecasting of PV output using the SRCA calculation. A more detailed explanation 

on the process shall be provided in the following chapter.  

 

4.6. Case Studies 
This section of chapter 4 shall provide case studies of real-time PV output 

forecast. As previously mentioned, multiple areas are calculated in obtaining the 

real-time PV output forecasting and also the analysis for each PV output forecast 

area. For the individual area forecasting, the NN and ELM methods are used as 

forecasting method.   

ELM is applied as a regression analysis which can obtain the PV output 

forecast. Real-time PV forecast with 10-second intervals is presented in this section. 

Table 1 shows that the increasing number of hidden nodes can affect the CPU time. 
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No. of 

Hidden 

Nodes 

Forecast 

Error 

(ELM) 

Forecast 

Error 

(NN) 

CPU 

Time 

[s] 

(ELM) 

CPU 

Time 

[s] 

(NN) 

50 2.00 12.4 0.16 4.17 

100 1.50 10.7 0.26 4.23 

150 3.76 10.9 0.43 4.31 

200 1.79 14.0 0.63 5.18 

Table 1. Comparison of Forecast Error and CPU Time between ELM and NN 

 

Table 1 indicates that the forecast accuracy is strongly influenced by the 

meteorological data. It is proof that the type of meteorological data has a strong 

correlation with the amount of insolation. Several number of hidden nodes are 

selected. This treatment is necessary to compare the error and CPU time between 

the NN and ELM methods. Based on table 1, the error value has a declining 

tendency after the number of hidden nodes is changed from 50 to 100 number of 

nodes. On the other hand, the error has an increasing trend when 150 number of 

nodes is used. This situation occurs due to the different variable setting of ELM and 

NN. After that, 200 number of hidden nodes is used to model the data input using 

the ELM and NN method. After the PV output in the individual areas are forecasted, 

the SRCA method is used to calculate the real-time PV output forecast.  

The following is an explanation on the error calculation for real-time PV 

forecast. The prediction error rate ( ) and maximum prediction error rate (η) are 

used to obtain the error value. The formula is as stated in the equations (12) and 

(13) below. These two methods can be used as a comparison for the prediction 

accuracy. Many researchers use this formula to obtain the prediction accuracy. 

While in this research, this method is used because the value of solar radiation is a 

value that shows the maximum number of solar radiation in a day.  

2

1

1

1 ˆ100
[%]

1

m

l l
l

m

l

X X
m

Q
m

     (12) 
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max max max
ˆ100 [%]X X Q      (13) 

The predicted solar radiation value is symbolized as X̂ , while maxX̂  is the 

value of the predicted solar radiation that causes the maximum prediction error, and 

the actual value of solar radiation is symbolized as X. The amount of the actual 

value solar radiation used to calculate the maximum prediction error is represented 

as Xmax, while the extraterrestrial solar radiation is described as Q, and the last Qmax 

represents the maximum value of the extraterrestrial solar radiation. 

Table 2 provides the accuracy result of this method. The table shows the 

real-time PV output forecast in June 2012. Real-time PV forecast for 60-minutes 

and 10-minutes ahead are also provided in figure 20 and 21. The results of the AR 

model are also provided and compared in the graphs. Based on figure 20, the η value 

which uses the AR model increases from 5 minutes to 10 minutes. This shows that 

the SRCA method has similar results with the AR model. 

 

 

 

 

 

 

 

 

 

Figure 20. 60-min ahead predictions 

Figure 20 shows that the proposed method could follow the measurement 

data pattern. At 06.00 until 08.00, the blue line does not match with the 

measurement and AR result. The same pattern also appears for the SRCA result 

from 08.00 until 10.00 where the blue line does not match with the measurement 

line.  The same situation is also proven through table 2. In the 60-minute ahead 

forecast result, the value of average and maximum error is the biggest among others. 

After 08.00, the forecast result is in the same flow as the measurement and AR 

method.  

 

Measurement
Proposed    
AR             
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Figure 21. 10-min ahead predictions 

 Figure 21 shows that the 10-minute ahead forecast is better than the 60-

minute ahead forecast. In this case, 10-minute ahead forecast line flow is closer to 

the measurement and AR result. The biggest error occurs in 12.00 until 14.00. This 

error can be seen through the blue line which, representing the SRCA method, has 

a different pattern with the measurement data.  

 

 

 

 

 

 

 

 

 

 

 

Figure 22. Prediction errors 

Figure 22 shows the monthly forecast error rate of the 30-minute ahead 

forecast. This figure describes the proposed error which increases during the 7th 

until 9th month. The lowest error value occurs in the 4th until 5th month. We also 

compared the result of the proposed method with the AR method to compare our 

result with the conventional method. The result shows that the proposed method has 

the same pattern in increasing or decreasing trend in a year.  
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Table 2. Prediction errors in June 2012 

 

 

 

 

 

 

The following is the forecasting results for all seasons in different weather 

and season conditions. The data used is from October until December 2011, also 

January until September 2012. The available data is preprocessed using the 

proposed preprocessing method. By using this method, writers of this research are 

interested in forecast using an advanced calculation such as lamp fluctuation. Based 

on the result, the proposed method has similar results with the conventional method. 

This is proven by the average error result and maximum error result. Additionally, 

this research also provides the MAE result for each season and the comparison with 

the AR method as well. In conclusion, non-sophisticated data could obtain a reliable 

result for PV power system simulator. The proposed method also shows that it is 

applicable and useful enough to be used in real cases. The forecast accuracy also 

shows that public data could be useful. 

 

 

 

 

 

 

 

 

 

 

 

Figure 23. Real-time PV forecast on 3rd Aug. 2012 

 

 5min 
ahead 

10min 
ahead 

20min 
ahead 

40min 
ahead 

60min 
ahead 

SRCA 
Av. Error ε  [%] 16.09 19.00 20.75 23.76 25.07 

Max Error  η   [%] 16.50 18.47 19.84 21.20 22.26 

AR 
Av. Error  ε  [%] 32.87 36.74 36.56 39.10 40.65 

Max Error  η   [%] 31.43 32.48 33.91 34.89 35.12 
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4.7. Summary 
This chapter could be summarized as follows: 

1. This chapter discusses in detail about the real-time PV output forecast.  

2. The data used in this section is the same as day-ahead PV output forecast. The 

difference with day-ahead PV output forecast is the interval data time in which 

a 5-minute interval time is used in this section. 

3. We could perform an individual area forecast before using the SRCA method. 

4. For the individual area forecast, the NN and ELM method are used as the 

forecasting method. These two methods are compared to obtain a faster CPU 

time and a better error calculation. 

5. The prediction error rate  and the maximum prediction error rate η, are used as 

indices for comparing the prediction accuracy. 

6. Results of the proposed method are compared with the results from the AR 

method to see how it compares with the conventional method. 
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    Chapter 5 

Application to the Energy Management System (EMS) 

5.1. Introduction 
This chapter focuses on the application of the PV output forecast. As 

mentioned in the previous chapter, the EMS controller is provided to represent a 

small-scale power system grid. The EMS controller architecture is shown in figure 

24. This controller is an attempt in facing the uncertainties of renewable energy 

resources. This chapter establishes a novel methodology for stochastic dynamic 

economic load dispatch (SDED). This methodology becomes necessary to 

guarantee secure operation in real-time scenarios [41]. This concern is common to 

various widely adopted power systems, where smart gird projects make use of all 

available controls including demand response [42]. In order to fully utilize 

controllable generators, the development of a stable and reliable load dispatching 

method is extremely important in dealing with uncertainties [43]  [3]. 

Various approaches have been proposed concerning SDED problem, which 

are classified into two approaches. The first approach continuously performs static 

economic load dispatch (ELD) at each interval by considering the ramp rate 

constraints [44], [45]. The second approach establishes the generation schedule 

(GS) by solving a single optimization problem. The approach includes various 

analytical technique in programming [49], improved simulated annealing [46], [47], 

hybrid approach of Hopfield neural network and quadratic programming (QP) [48], 

variable scaling hybrid differential algorithm [50], re-dispatch algorithms by using 

QP, linear programming (LP) and the Danzig Wolfe’s decomposition technique 

[51], a multi-stage algorithm [52], and the interior point method [53] However, 

these conventional approaches cannot fully handle the large amount of uncertainties 

which arise from the power system operations. Hafiz et al. [5] and Yorino et al. [6] 

have proposed time-sequence dynamic feasible region (TDF) approach to fully 

utilize ramp rate capabilities of controllable generators against uncertainties. The 

concept of Robust Power System Security [54] has been proposed by Okumoto et 

al.  where safe-side treatment of uncertainty is suggested for important constraints 

related to system collapse. 
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.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 24. The proposed micro-EMS controller 
 

A detailed explanation about the EMS controller will be described in the 

following section. 

 
5.2. Outline of the proposed EMS Controller 

The research target is to develop a robust micro-EMS controller against 

uncertainties [55]. Figure 1 shows the configuration of the proposed management 

system: there are mainly three functions responsible for day-ahead operation 

planning, minute-order real-time operation, and second-order real-time control. 

Based on the prediction of RES outputs, the system manages the existing generators, 

storage battery (BT) and controllable demands in optimal manner. 

This section shall provide a more detailed view about new energy 

management method based on the Robust Power System Security. The proposed 

method is applied to micro energy management system (micro-EMS) controller 

(Fig. 1), where load and RES predictions are available online. Confidence intervals 

(CIs) of the RES prediction errors are based on the required reliability of system 

operation against system collapse. This outline consists of four parts of EMS 
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controller which will be described in the following, starting from the beginning until 

the end.  

The first step is day-ahead and real-time forecasting parts which describes 

on how to obtain the forecast result. The forecast result has been described in detail 

in the preceding chapter. Then, the next step is UC calculation with battery. In this 

section, UC calculation and formulation are described in detail. The third 

component is dynamic economic load dispatch (DELD) part and the last is 

frequency control part. We first carry out PV output forecast and its error analysis. 

A weather clustering method has been proposed for this purpose in [55]. A 

covariance matrix of PV output errors is calculated, while CIs of the PV forecast 

errors are based on the required reliability against system collapse. The covariance 

matrices will be used in real-time GS in (44) for line flow control, while CIs are 

used in day-ahead unit commitment (UC) in (28) and real-time RTDF computation 

in (31) which is further used in real-time SDED in (45) to guarantee the supply and 

demand balance and reserve management. 

In general, the proposed EMS controller consists of three parts; the first part 

is the planning manager, the second part is the operation manager, and the last part 

is optimization. As mentioned in figure 24, operation manager includes the 

description on day-hour order PV output forecast. The day-hour PV output forecast 

is the first step in the day-ahead planning. In this research, the day-hour PV output 

forecast is included in the section of day-ahead and real-time forecasting. Day-hour 

PV output planning is involved on the day-ahead planning manager calculation with 

a more detailed explanation below. The second part of EMS controller is hour-

minutes PV output order. This part is necessary in obtaining the real-time operation 

manager. It requires a historical database to obtain the real-time PV output forecast. 

The last part is minute-second order for real-time control manager.  

 

5.2.1. Day-ahead and Real-time Forecasting Parts 
Figure 24 shows the day-ahead and real-time forecasting parts. The 

forecasting section is part of planning manager and operation manager. Day-ahead 

forecasting consist of day-hour PV output order. In day-hour PV output order, 

offline and online database is necessary for the forecasting process. Weather 



       

46 | P a g e  
 

information or weather database is necessary for the forecasting part. In this 

research, wind speed, temperature, and probability of the precipitation data are 

necessary as weather offline database. After the day-ahead PV output forecast is 

obtained, the next step is the calculation of a simulated day-ahead planning manager. 

For day-ahead planning manager calculation, past electricity demand, specification 

of existing generator, storage battery capacity and grid information are all necessary. 

If the wind-turbine data is possible to have, this data also can be included for the 

day-ahead planning manager. The EMS controller is prepared to calculate the day-

ahead planning manager.  

These data are required for day-ahead planning manager. This calculation 

generates a generator scheduling for day-ahead planning manager. The generator 

scheduling will be re arranged if the calculation result obtain a better combination 

than before. In GS, the renewable resources begin to be considered if these 

resources plan are to be merged in the existing power system grid.  Then, the next 

step is UC part with storage battery.   

 

5.2.2. Unit Commitment (UC) Part with Storage Battery 
UC part with storage battery is involved in the planning manager section. 

This manager provides an updated schedule of the output pattern for the limited 

resources. The output is represented as a 24-hour GS which also comprises the BT 

operation schedule, where the unit time is 30 minutes. Existing techniques for the 

UC can be fully utilized in the optimization process. The optimization process is 

described in detail below. Uncertainties related to the prediction and fluctuation of 

PV are handled particularly [55]. The storage battery data is included in UC 

calculation. 

 

5.2.3. Dynamic Economic Load Dispatch (DELD) Part 
In power system, there are a lot of number of unit commitment problems. 

This research proposes a new algorithm for UC and stochastic dynamic economic 

load dispatch. This method should be efficient for the real-time and the day-ahead 

generator scheduling (GS). Not only efficient, the proposed method also offers a 

simple weather data usage that could be accessed easily. Then, this simple weather 
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data could obtain a reliable PV output forecast that can be applied for GS. Besides 

that, the method also offers a security treatment for power system. This treatment 

could guarantee that the PV resources will not interrupt the existing power system. 

The proposed method can effectively treat the PV forecasting error by setting the 

CI range.  

In this research, we propose a new energy management method based on 

robust power system security. The proposed method updates the day-ahead GS a 

few times a day and provides 1-hour GS every 5 minutes in real-time operation. 

There are two treatments for this main research: 

1. CIs and covariance matrix of prediction errors are used respectively in 

deterministic feasibility detection and probabilistic line flow management. The 

former realizes effective safe-side reserve management, while the latter handles 

soft constraints of line overloading. The approach is considered a new approach 

in handling uncertainties. 

2. This research also proposes a new algorithm to realize the proposed uncertainty 

treatment, which include (1) an improved TDF, Robust TDF (RTDF) that 

effectively treats CIs, (2) an improved SDED method which combines RTDF, 

QP and liner stochastic load flow (SLF), and (3) an improved UC algorithm for 

day ahead 24-hour GS.  

The advantages of this proposed method are that the supply and demand 

balance is kept to the maximum (high feasibility of dispatch) under uncertainties in 

real-time power system operations. In case of a critical situation when the 

forecasted load cannot match with the existing generator’s capability, the method 

will detect the minimum amount of supply and demand mismatch in advance (1-

hour before) and handle it reliably for the considered time horizon. 

 

5.2.4. Frequency Control Part 
This section of the chapter shall discuss in detail regarding the frequency 

control. In our EMS controller, the frequency control is also maintained in the 

permitted ranges of frequency. Therefore, this research provides three main 

controller parts, namely day-ahead operation planning, minute-order real-time 

operation and second-order real-time control. Based on the PV output forecast, the 
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system could manage the existing generators to maintain their frequency in the 

stable range. It is a challenge to maintain the power system frequency in the stable 

range due to the RES that have a high of uncertainties value.  

 

5.3. Problem Formulation 

5.3.1. Optimization stage I for UC using Day-ahead PV 

Forecasting 

1.. Formulation for Stage I Optimization 

The optimization problem is formulated with NG controllable generators in 

a time horizon of T intervals ahead from the current moment as follows. 

 

Minimize: 

1 1 1 1
( , )

G GP

Pm N

N NNT
DH

kt kt kT kT k
t k m k

C u f u u sucGP u    (14) 

2
kt k Gkt k Gkt kf a P b P c      (15) 

ksuc : start-up cost [$] of k-th generator 

Subject to: 

i. Supply and demand balance constraints. 

1
[ ] [ ] [ ]

GN

Gkt dt ct Dt PVt WTt
k

P B B E P E P E P   (16) 

ii. Upper and lower output of generator constraints. 

min max
Gk kt Gkt Gk ktP u P P u      (17) 

iii. Ramp-rate constraints. 

( 1)k Gk t Gkt kt P P t      (18) 

iv. Start/stop variables constraints. 

0 1ktu      (19) 
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v. Minimum continuity down time constraints.  

( 1)     (1 ) 1

     (1 )

kt k t

t mdt

kt k
t

if u u

then u mdt      (20) 

vi. Minimum continuity up time constraints.  

( 1)     (1 ) 1

     (1 )

kt k t

t mut

kt k
t

if u u

then u mut      (21)  

vii.  BT charge/discharge output limits constraints. 

max0 dt dB B      (22)  

max0 ct cB B      (23) 

With switching constraint: 

0ct dtB B      (24)  

viii. BT upper and lower bounds of the state of charge. 

min max
s st sB B B       (25)  

ix.  Dynamic transition of BT state of charge. 

( 1) { / }
60st s t ct dt

tB B B B      (26)  

x. Line flow limits between node i and j. 

max max
ij ijt ijF F F      (27)  

xi.  DC power flow equation (36) in the next section 

xii. Operating reserve power constraints. 

max

1

GN

Gk kt dt ct nt t
k

P u B B RP tRtPt      (28) 
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min

1

GN

Gk kt dt ct t
k

nP u B B P t      (29) 

where, nt Dt PVt WTtP P P P , 

nt Dt PVt WTtPP P PPt DtPDP PVt WTtPVtPV , 

t Dt PVt WTtn PP P PWTtP PPVt WPt DtnP t Dtn D . 

With the following description: CDH: generation cost [$] for day-ahead GS, 

ukt: start/stop variables of k-th generator at time t, PGkt: power output [MW] of k-th 

generator at time t, GN T
GP : vector of PGkt (k=1,..,NG, t=1,..,T), GN Tu : vector 

of ukt, ak, bk, ck: quadratic cost coefficients of k-th generator, TPm: time [min] at local 

maximum electricity demand (m=1,…,NP), NP: number of peak time, TN: time [min] 

at minimum electricity demand, Bct, Bdt: charge and discharge output power [MW] 

of BT at time t, respectively, PDt: electricity demand [MW] at time t, PPVt: PV 

outputs [MW] at time t, PWTt: WT outputs [MW] at time t, E[ ]: expected value 

[MW] at time t, PGk
max, PGk

min: maximum and minimum outputs [MW] of k-th 

generator, respectively, δk: ramp-rate limit [MW/min] of k-th generator, Dt: 

computational interval [min], mutk, mdtk: Minimum operating time [min] and 

minimum waiting time [min] of k-th generator, respectively, Bc
max, Bd

max: charge 

and discharge maximum power [MW] of BT, respectively, Bst: state of charge 

(SOC) [MWh] of BT at time t, Bs
max, Bs

min: maximum and minimum SOC bounds 

[MWh] of BT, respectively, h: charge/discharge efficiency of BT, Fijt: line flow 

[MW] from node i to j governed by DC power flow equation, Fij
max: maximum 

allowable line flow [MW] between node i and j, Rt: operating reserve power [MW] 

at time t, Pnt: net electricity demand at time t, ,nt ntP P tP P,t , nt : upper and lower bounds 

[MW] of Pnt including CIs of RES prediction at time t, respectively. 

Solution procedure will be given in the following section. After obtaining 

the solution, this research proposes to fix the start/stop time schedules and the BT 

charge/discharge operation, and then perform the next steps as below. 
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A.  RTDF and Supply-Demand Mismatch using CIs 

TDF is defined as the region of generator output PGkt reachable from a 

specified operating point and satisfying all constraints (16)-(18) with load forecasts 

D̂tP  for t=1,..,T. TDF evaluation algorithm was proposed in [5] and [6], where the 

present operating point t=0 is used as a starting point to achieve reachable points 

successively in forward direction to t=T. TDF result from this calculation is 

represented as ˆ( , )DtTDF t P , which implies the region defined by the upper and 

lower limits of each generator output at each time t=1…T. 

In this research, Robust TDF (RTDF) is defined by considering CIs around 

the latest load predictions D̂tP :  

ˆ ˆ ˆ( , ) ( , ) ( , )( , ˆ(( ,Dt Dt Ut Dt LtRTDF t P TDF t P M TDF t P M    (30) 

 “ ” implies the intersection. MUt and MLt are the assumed upper and lower limits 

of prediction errors, respectively. RTDF is obtained as the upper and lower bounds 

pair kt  and kt (k=1,..,NG, t=1,..,T) as follows. 

kt Gkt ktP                 (31) 

Calculation of RTDF is performed in each control cycle before stage II 

optimization in section III-D. 

Once the upper and lower limits are obtained, any output values PGkt inside the 

limits (31) will be guaranteed as reachable if the latest load forecast errors appear 

inside CIs, ˆ ˆ[ , ]Dt Lt Dt UtP M P M . In this algorithm, when kt kt  is detected, 

RTDF is nonexistence and the supply-demand mismatch (SDM) is computed by 

(32). 

( )
0 ( )

kt kt kt kt

kt kt

when
SDM

when      (32) 

When SDM is detected, it must be compensated by additional power 

provision or load reduction. After the management of SDM, the RTDF is 

recalculated to confirm that the SDM disappears. Then, the optimization process is 
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continued.  

B.  Stochastic Load Flow [20]-[22] 

The prediction errors of loads and RESs result are in the line flow of 

uncertainty. Line flow constraints are treated in a probabilistic manner. Assuming 

the normal distribution for the prediction error characteristic, linear DC power flow 

calculation method is used to provide the most efficient computation. The SLF 

method is applied in such a way that the probability of constraint violation is less 

than a specified value for each line. The stochastic network constraint is represented 

as in the following form. 

1

nN

l l lj j l
j

LBF F S P UBF      (33) 

UBFl and LBFl are the upper and lower bounds [MW] with respect to the 

transmission line l, Fl: amount of line flow [MW], Nn: number of nodes, Slj: 

conversion matrix, Pj: injection power [MW] into node j.  

 

 

 

 

 

 

 

Figure 25. Stochastic control of line flow 

 

The formulation of (33) is provided in the following equation. Based on the 

DC power flow method, the following relationships hold. 

PθSN      (34) 

θSF C      (35) 

Where, 
1Nnθ : voltage angle matrices [rad], 1NnP : real power 

injection matrices [p.u.], 
1NlF : real power line flow [p.u.], Nn Nn

NS : 

Line Flow Limit

Line Flow at 
node i [MW]

Pr (X > Xlimit)

Probabilistic 
Density (Pr) 

Expected Line Flow

3 = 0.26[ ]

Line Flow Control :
Pr (Line Flow Violation) < X
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node susceptance matrices [p.u./rad], Nl Nn
CS : line susceptance matrices.  

From (34) and (35), the following is obtained: 

1
C NF S S P S P      (36) 

Node injection P is represented as 

      G DP P P      (37) 

Where PD is a probabilistic variable consisting of loads and RES outputs 

(negative demands), while PG corresponds to a variable of conventional generator 

outputs to be determined in the optimization process. Therefore, the expected value 

E[P] of node injection power P is represented by the following expression: 

DG PPP EE      (38) 

 Then, the mean value vector and covariance matrix of line flow are represented 

as follows: 

[ ]iE E EG D G DF S P P S P S P      (39) 

[( [ ])( [ ]) ]

[( [ ])( [ ]) ]
[ ] [ ]

T

T T

T
ij

Cov E E E

E E E
Cov

F F F F F

S P P P P S
S P S

     (40)  

Where, 

11 12 1

21 22

( 1)

1 ( 1)

[ ]

n

n n

n n n nn

b b b
b b

Cov
b

b b b

1nb11n1n

(b(( 11b(( 1b(

bb ( 1)(b ( 1)( 1)(b

P
. 

The diagonal element bnn is variance of PD, the non-diagonal element is the 

covariance (Cov) of PV generation outputs. 

The probability density function for line flow l may be described using the elements 

from (39) and (40): 

2

2

( )1 1( ) exp
22l

l l
F l

lll l

FF      (41) 

To constrain the violation probability to a value less than X, threshold b is defined 
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by the following equations. 

dxxX l

l
l

F

F F )(1      (42) 

l ll lF E F      (43) 

Further substitution of (43) into (41) yields stochastic load flow constraint below, 

where (44) is identical with (33). 

1

nN

l ll l lj j l ll l
j

F D S P F D      (44) 

Where ,

1

  
nN

l
l lj D

j
D S E P . 

 

5.3.2. Optimization stage II for DELD using Real-time PV 

Forecasting 
The optimization problem (Stage II) is formulated with NG controllable 

generators in a time horizon of T intervals ahead from the current moment as 
follows. 

Minimize: 
2

1 1
( , ) ( )GP u

GNT
RT

k Gkt k Gkt k
t k

C a P b P c      (45) 

Subject to: 
            (16), (18), (31), (44). 

Constraints (31) and (44), which are explained in sections III-B and C, are 

the novel treatment of uncertainties by the proposed method. That is, the important 

constraint of the supply and demand balance is treated in deterministic manner by 

RTDF with CIs to avoid system collapse. On the other hand, soft constraints of line 

overloading are dealt with by DC probabilistic power flow. Covariance matrix and 

CIs will be updated frequently in real-time operation, as is presented in the next 

section. 
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 Computational Procedures 

This section describes the computation procedure of the proposed method 

presented in the previous sections. The following procedures are performed in every 

control cycle. 

< Day-ahead 24-hour GS: Stage I > (A few times a day) 

Instead of standard approach using Mixed-Integer Linear Programming 

(MILP), we have developed a special technique by improving the method in [56] to 

solve the UC problem by using standard QP software. The effectiveness of the 

proposed technique has been studied in [57]. 

The day-ahead GS is obtained by using the following algorithm to determine 

the generator’s output PG, its start/stop variable u and BT charge/discharge 

operation for 24 hours, where unit time is 30 minutes. 

Step I-1 Read day-ahead forecast data for loads and RES.  

Step I-2 Set iteration number d = 0.  

Step I-3 Solve (16) by QP to determine PG and u, treated as continuous variables. 

Step I-4  Compute unit fuel cost in (46) using present PG. 

/d
kt k Gkt k k Gkta P b c P      (46) 

Step I-5 Solve the following problem with penalty function (48) using QP 

algorithm. 

Minimize: 

( , ) ( , ) ( , )G GP u, P ud DH dg d, C h d    (47) 

 2

1 1
( , ) 10 ( 2)( )

GN T
d d d

kt
k t

h d d      (48) 

 Subject to: (16)-(28), and (36). 

Step I-6 d = d + 1. 

Step I-7 Repeat Steps I-4 to I-6 until the convergence is obtained. 

Step I-8 Determine start/stop variables u: if ukt>0.5 (threshold) then set ukt=1 

else ukt=0. 

Step I-9 By fixing u, solve the first formula to obtain PG using QP algorithm. 
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 The obtained start/stop time for generators and BT operation for 24-hour 

GS will be used in stage II as predetermined schedule. The generator’s outputs PGkt 

are used as only reference for operators. 

< Real-time 1-hour GS: Stage II > (Every 5 minutes) 

The real-time GS is carried out to minimize the generator’s output and BT 

charge/discharge operation (if necessary) every 5 minutes. 

Step II-1 Read data of day-ahead generator’s start/stop variables and BT 

charge/discharge operations. 

Step II-2 Update forecasts (load and RES), covariance matrices, and CIs using 

most recent data. Perform state estimation to obtain the present 

operating condition. 

Step II-3 Calculate RTDF and Supply-Demand Mismatch (SDM). If SDM is non-

zero, arrange relevant reserve by modifying BT operation schedule, or 

using other resources corresponding to detected value of SDM, and 

perform RTDF update to confirm zero SDM. 

Step II-4 Compute UBFl and LBFl. 

Step II-5 Solve problem (45) by QP software to obtain GS: PGkt (k=1,..,NG, 

t=5,10,.., 60[min]). 

The obtained GS is monitored by system operator, where GS in 5 minutes 

ahead are sent to the individual generators as real-time control signal. 

 

5.4. Case Studies 

1. Simulation Conditions 

The proposed method is demonstrated using an example system in figure 26. 

The generation mix data is from a Japanese smart grid project where the installed 

PV an WT generation are about 15% of peak load. It is composed of three diesel 

generators, two load areas with RESs and a BT station. Detail data are given in 

tables 3. PV prediction data is shown, which has been given by our forecasting 

method based on the weather clustering type neural network. Typical load patterns 

are used in the proposed optimization process.  
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Figure 26. Test Power System 

Table 3. specification of generators 

 

 

 

 

 

 

 

 

 

 

 

40%

60%

G1 G2

G3BT

1F

2F

3F

4F 5F

6F7F

RES

RES

p g

k 
Output 
Limit 
[kW] 

Ramp 
Rate 

[kW/min] 

Start-up 
Cost 
(suck) 

[$] 

Cost Coefficients[100$] 

ak bk ck 

G1 1,000~2,000 66.7 40.00 0.0011 16.416 4,320.00 
G2 625~1,250 41.7 25.00 0.0021 17.410 3,667.50 
G3 1,125~2,250 75.0 45.00 0.0002 20.178 3,993.70 

2

PV
 O

ut
pu

t [
kW

/m
2 ]

0.8

0.6

0.4

0.2



       

58 | P a g e  
 

 

(a) Results of Day-ahead Forecast 

 

 

 

 

 

 

 

 

 

 

 (b) Results of Real-time Forecast. 

Figure 27. Forecast results on 4th August, 2012 

 Stage I optimization 

Figure 28 shows the result of stage I optimization, describing 24-hours GS 

for generators (PG1, PG2, PG3), BT operation (PBT=Bd -Bc), electricity demand (PD), 

net electricity demand (Pn), PV output (PPV) predictions, WT outputs (PWT), and 

SOC of BT (Bs). Note that G2 starts up at 11:00 and shuts down at 18:15 shown in 

Table II, which will be fixed in the stage II optimization. 

 

 

 

 

 

 

 

 

 

555555555555885555555555555555555555555555555555555555555 ||||||||||||||||||||||||| P a gg



       

59 | P a g e  
 

 

 

 

Figure 28. Day-ahead 24-hour GS 

 

Tabel. 4 Start-up and shut-down times data from day-ahead UC 

 

 

 

 

 Stage II optimization 

1-hour GS is computed and updated every 5 minutes based on real-time PV 

prediction data. The upper and lower tolerances of prediction errors in net demands 

(load – RES) are set as a linear function of time as follows: 

ˆ
Ut Lt Dt

tM M P
T       (49) 

Where, D̂tP  (t=0,1,…,T)  are the most recent forecasted net power demands. 

T=60 [min], t: prediction time (t=0 for present operating point), g  is a parameter 

representing 1 hour ahead maximum prediction error, and g = [0%, 10%, 20%] will 

be examined. Allowable constraint violation for line flow is set to X=3s =0.26[%] 

in this examination. 
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Figure 29.  Real-time 1-hour GS with RTDF and SDM 

Figure 29 shows the result of stage II optimization obtained at 17:30 

(weekday,  =10%). The upper and lower limits of RTDF and 1-hour GS for each 

generator are provided. The GS at 5 minutes ahead (17:35) is sent to each generating 

unit as a control signal. RTDF implies reachable area from the operating point at 

17:30. The larger RTDF, the larger system capability that copes with uncertainty is 

expected. RTDF computation also successfully provides SDM 1-hour before the 

operation, which is given as Pmis that appears at 18:25. This advantageous 

characteristic come from the RTDF computation which identifies the feasible 

region with high accuracy. Note that the detected SDM is managed by the 

rescheduling of the BT operation 1-hour before by the proposed method. If BT 

cannot cope with the situation, we can prepare additional action such as demand 

response or load shedding at 18:25.  

 

 

 

 

 

 

 

 

 

 

Figure 30. Line Flow with 3 allowable intervals at line F3. 

 

Figure 30 shows the scheduled F3 line flow, which may vary inside 3  

allowable intervals. The result shows that SLF works successfully to avoid 

overloads in stage II optimization. Figure 8 describes the simulated results after 24-
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hour operations by the proposed real-time optimized control method. Descriptions 

of wave forms are given below the figure caption. We see that the PV prediction 1-

hour ahead in the 2nd graph is erroneous. Nevertheless, the proposed method 

successfully treats the uncertainties to control generators as seen in 4-6th graphs, 

Rescheduled BT operation in the 7th graph has completely absorbed the SDM 

detected in figure 31.  As a result, the frequency deviations are suppressed less than 

0.2 Hz as observed in 8th graph. The frequency fluctuation has been analyzed by 

the simulator in the proposed micro-EMS controller. The frequency deviations 

increase mainly due to PV output fluctuations as well as the prediction errors in the 

day time. Thus, the proposed method reliably manages the uncertainties in the real-

time power system operation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31. The results of the 24-hour operations. 

 (From top: 1: PD and net demand (=PD-PPV-PWT+PBT ) [2~5.5MW], 2: PPV 

(prediction 1-hour ahead and measurement) [0~1MW], 3: PWT [0~1MW], 4: PG1, 

5: PG2, 6: PG3 [0~3MW], 7: PBT [-0.5 ~0.5MW], and 8: f system frequency 

[59.8~60.2Hz], where [*~**] describes full scale of each graph) 
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Table 5. CPU Time  

 

 

 

 

Table 4 shows the computational burden (CPU Time), which is evaluated 

for test power systems with 3, 5, and 10 generators using Intel Core i7, 2.20GHz, 

8GB memory. The CPU time on Stage I implies a total computation time from Steps 

I-2 to I-9 in Section III-E for obtaining a day-ahead 24-hour GS. Stage II 

computation time is for the calculation of Steps II-3 to II-5 in Section III-E for 

obtaining a real-time 1-hour GS that is to be repeated every 5 minutes. Note that 

the numbers in the blanket imply the computation time for RTDF and SDM.  

Integrating large amounts of intermittent RESs into electric power systems 

causes various difficulties such as the supply and demand balance and frequency 

problems. In such situations, treatment of uncertainty by means of limited 

controllable resources is a critical issue for secure power system operations. 

Frequent evaluation of generation schedule is effective for minimizing prediction 

errors to establish a reliable operation against sudden changes in RES generations. 

We propose a new real-time optimization method guaranteeing feasibility of 

operations. Uncertainties affecting the important constraint of the supply and 

demand balance are treated in deterministic manner using CIs to avoid system 

collapse, while those relating to soft constraints of line overloading are dealt with 

by DC probabilistic power flow. Although the computation time is a critical issue, 

the proposed method provides a solution for introducing a large amount of RES into 

a smart grid operation. 

The present version of the proposed method utilizes the DC power 

calculation method which may degenerate the accuracy when applied to low voltage 

distribution systems with large values of R/X. The use of extended equations based 

on a distribution power flow [58], [59] seems an interesting trial in the future. 

 

5.5 Summary 
This section could be summarized as follows: 

Number of 
Generators 

Stage I for day-ahead 
24-hour GS [sec] 

Stage II for real-
time 1-hour GS[sec] 

3 3.0 0.37 (0.011) 
5 4.4 0.44 (0.012) 

10 9.4 1.87 (0.054)  
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1. The research provides an EMS controller represented as a small power system 

grid. This controller consists of day-ahead operation manager, real-time 

operation manager and real-time control manager.  

2. Integrating large amounts of intermittent RESs into electric power systems 

causes various difficulties such as the supply and demand balance and 

frequency problems. 

3. The treatment of uncertainty by limited controllable resources is a critical issue 

for secure power system operations. 

4. Frequent evaluation of generation schedule is effective for minimizing 

prediction errors to establish a reliable operation against sudden changes in 

RES generations. 

5. A new real-time optimization method guaranteeing feasibility of operations is 

described in this chapter. 

6. Although the computation time is a critical issue, the proposed method 

provides a solution for introducing a large amount of RES into a smart grid 

operation. 
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Chapter 6 

Conclusions and Future Research 

6.1. Conclusions 
This research has proposed a day-ahead and a real-time PV generation 

forecasting method for the supply-demand manager. The performance, capabilities, 

and effectiveness of our methodology have been verified through extensive 

simulation results. We have also validated the degree of influence of the prediction 

error and the CI on the system performance.  For the real-time PV forecasting, the 

SRCA method could be approved as neighborhood-area forecast. This method can 

be used to predict in an isolated area.  

Frequent evaluation of generation schedule is effective for minimizing 

prediction errors in order to establish a reliable operation against sudden changes in 

RES generations. 

 

6.2. Future Work 
There are still a number of future works that have to be developed for the 

day-ahead forecast. The aim of this work to improve the prediction accuracy and 

implement the method on a simulator. This is necessary in studying how significant 

the impacts on the prediction errors and/or the CI settings.  

For a real-time forecast, it is necessary to consider the relationship between 

the additional weather conditions beside the solar radiation characteristics. 

Additionally, effective settings for the CIs based on the prediction error analysis, 

and construction of a detection system for performing short-time lamp fluctuations 

in advance also remain as topics for our future work. 

For the EMS application, the present version of the proposed method 

utilizes the DC power calculation method which may degenerate the accuracy when 

applied to low voltage distribution systems with large values of R/X. The use of 

extended equations based on a distribution power flow [25], [26] seems an 

interesting trial in the future. 
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Appendix 

 

 
(a) Day-ahead 24-hour GS in Case 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Real-time 1-hour GS with RTDF in Case 1 
 

Day-ahead 24-hour GS and Real-time 1-hour GS with RTDF for West Japan 
Power System Model in Case 1. 
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(a) Day-ahead 24-hour GS in Case 2. 

 

 

 

 

 

 

 

 

 

 

 

 
(b) Real-time 1-hour GS with RTDF in Case 2 

(c)  
Day-ahead 24-hour GS and Real-time 1-hour GS with RTDF for West Japan 

Power System Model in Case 2. 
 

 

0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30

0

20

40

60

80

100

120

0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

SO
C

 [
G

W
h]

Po
w

er
 D

em
an

d 
[G

W
]

Time[hour]

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12
G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 G24
G25 G26 G27 G28 G29 G30 Bd Pd Pt Ppv Pwt Bs



       

76 | P a g e  
 

 
 

 
(a) Day-ahead 24-hour GS in Case 3. 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Real-time 1-hour GS with RTDF in Case 3 
 

Day-ahead 24-hour GS and Real-time 1-hour GS with RTDF for West Japan 
Power System Model in Case 3. 
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( 1)     (1 ) 1

     (1 )

kt k t

t mdt

kt k
t

if u u

then u mdt
 (7) 

i. Minimum continuity up time constraints.  

( 1)     (1 ) 1

     (1 )

kt k t

t mut

kt k
t

if u u

then u mut
 (8) 

ii. BT charge/discharge output limits constraints. 
max0 dt dB B  (9) 
max0 ct cB B  (10) 

With switching constraint: 

0ct dtB B  (11) 

iii.  BT upper and lower bounds of the state of charge. 
min max
s st sB B B   (12) 

iv.  Dynamic transition of BT state of charge. 

( 1) { / }
60st s t ct dt

tB B B B   (13) 

v. Line flow limits between node i and j. 
max max

ij ijt ijF F F   (14) 

vi. DC power flow equation (23) in the next section 

vii. Operating reserve power constraints. 

max

1

GN

Gk kt dt ct nt t
k

P u B B RP tRtPt  (15) 

min

1

GN

Gk kt dt ct t
k

nP u B B P t  (16) 

where, nt Dt PVt WTtP P P P , 

nt Dt PVt WTtPP P PPt DtPDP PVt WTtPVtPVt , 

     
 t Dt PVt WTtn PP P PWTtP PPVt WPt DtnP t Dtn D . 

Where, CDH: generation cost [$] for day-ahead GS, ukt: 
start/stop variables of k-th generator at time t, PGkt: power 
output [MW] of k-th generator at time t, GN T

GP : vector of 

PGkt (k=1,..,NG, t=1,..,T), GN Tu : vector of ukt, ak, bk, ck: 
quadratic cost coefficients of k-th generator, TPm: time [min] at 
local maximum electricity demand (m=1,…,NP), NP: number of 
peak time, TN: time [min] at minimum electricity demand, Bct, 
Bdt: charge and discharge output power [MW] of BT at time t, 
respectively, PDt: electricity demand [MW] at time t, PPVt: PV 
outputs [MW] at time t, PWTt: WT outputs [MW] at time t, E[ ]: 
expected value [MW] at time t, PGk

max, PGk
min: maximum and 

minimum outputs [MW] of k-th generator, respectively, δk: 

ramp-rate limit [MW/min] of k-th generator, t: computational 
interval [min], mutk, mdtk: Minimum operating time [min] and 
minimum waiting time [min] of k-th generator, respectively, 
Bc

max, Bd
max: charge and discharge maximum power [MW] of 

BT, respectively, Bst: state of charge (SOC) [MWh] of BT at 
time t, Bs

max, Bs
min: maximum and minimum SOC bounds 

[MWh] of BT, respectively, : charge/discharge efficiency of 
BT, Fijt: line flow [MW] from node i to j governed by DC power 
flow equation, Fij

max: maximum allowable line flow [MW] 
between node i and j, Rt: operating reserve power [MW] at time 
t, Pnt: net electricity demand at time t, ,nt ntP P tP P,t , nt : upper and 

lower bounds [MW] of Pnt including CIs of RES prediction at 
time t, respectively. 

Solution procedure will be given in section III-E. After 
obtaining the solution, we fix the start/stop time schedules and 
the BT charge/discharge operation, and then perform the next 
steps as below. 

A.  RTDF and Supply-Demand Mismatch using CIs 
TDF is defined as the region of generator output PGkt 

reachable from a specified operating point and satisfying all 
constraints (3)-(5) with load forecasts D̂tP  for t=1,..,T. TDF 
evaluation algorithm was proposed in [16] and [17], where the 
present operating point t=0 is used as a starting point in order to 
obtain reachable points successively in forward direction to t=T. 
TDF obtained by this calculation is represented as ˆ( , )DtTDF t P , 
which implies the region defined by the upper and lower bounds 
of each generator output at each time t=1…T. 

In this paper, Robust TDF (RTDF) is defined taking into 
account CIs around the latest load predictions D̂tP :  

ˆ ˆ ˆ( , ) ( , ) ( , )( , ˆ(( ,Dt Dt Ut Dt LtRTDF t P TDF t P M TDF t P M

 (17) 

Where “ ” implies the intersection. MUt and MLt are the 
assumed upper and lower limits of prediction errors, 
respectively. RTDF is obtained as the upper and lower bounds 
pair kt  and kt (k=1,..,NG, t=1,..,T) as follows. 

kt Gkt ktP      
       
          (18) 

Calculation of RTDF is performed in each control cycle 
before stage II optimization in section III-D. 

Once the upper and lower limits are obtained, any output 
values PGkt inside the limits (18) will be guaranteed as reachable 
if the latest load forecast errors appear inside CIs, 

ˆ ˆ[ , ]Dt Lt Dt UtP M P M . In this algorithm, when kt kt  is 
detected, RTDF is nonexistence and the supply-demand 
mismatch (SDM) is computed by (19). 

( )
0 ( )

kt kt kt kt

kt kt

when
SDM

when
 (19) 
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updated frequently in real-time operation, as is presented in 
the next section. 

A.  Computational Procedures 
This section describes the computation procedure of the 

proposed method presented in the previous sections. The 
following procedures are performed in every control cycle. 

< Day-ahead 24-hour GS: Stage I > (A few times a day) 
Instead of standard approach using Mixed-Integer Linear 

Programming (MILP), we have developed a special technique 
by improving the method in [23] to solve the UC problem by 
using standard QP software. The effectiveness of the proposed 
technique has been studied in [24]. 

The day-ahead GS is obtained by using the following 
algorithm to determine the generator’s output PG, its start/stop 
variable u and BT charge/discharge operation for 24 hours, 
where unit time is 30 minutes. 
Step I-1 Read day-ahead forecast data for loads and RES.  
Step I-2 Set iteration number d = 0.  
Step I-3 Solve (1) by QP to determine PG and u, treated as 

continuous variables. 
Step I-4  Compute unit fuel cost in (33) using present PG. 

/d
kt k Gkt k k Gkta P b c P  (33) 

Step I-5 Solve the following problem with penalty function 
(35) using QP algorithm. 
Minimize: 

( , ) ( , ) ( , )G GP u, P ud DH dg d, C h d  (34) 

 2

1 1
( , ) 10 ( 2)( )

GN T
d d d

kt
k t

h d d  (35) 

 Subject to: (3)-(16), and (23). 
Step I-6 d = d + 1. 
Step I-7 Repeat Steps I-4 to I-6 until the convergence is 

obtained. 
Step I-8 Determine start/stop variables u: if ukt>0.5 

(threshold) then set ukt=1 else ukt=0. 
Step I-9 By fixing u, solve (1) to obtain PG using QP 

algorithm. 
The obtained start/stop time for generators and BT operation 

for 24-hour GS will be used in stage II as predetermined 
schedule. The generator’s outputs PGkt are used as only 
reference for operators. 

< Real-time 1-hour GS: Stage II > (Every 5 minutes) 

The real-time GS is carried out to minimize the generator’s 
output and BT charge/discharge operation (if necessary) every 
5 minutes. 
Step II-1 Read data of day-ahead generator’s start/stop 

variables and BT charge/discharge operations. 
Step II-2 Update forecasts (load and RES), covariance 

matrices, and CIs using most recent data. Perform 
state estimation to obtain the present operating 
condition. 

Step II-3 Calculate RTDF and Supply-Demand Mismatch 
(SDM). If SDM is non-zero, arrange relevant 
reserve by modifying BT operation schedule, or 
using other resources corresponding to detected 
value of SDM, and perform RTDF update to 
confirm zero SDM. 

Step II-4 Compute UBFl and LBFl. 
Step II-5 Solve problem (32) by QP software to obtain GS: 

PGkt (k=1,..,NG, t=5,10,.., 60[min]). 
The obtained GS is monitored by system operator, where GS 

in 5 minutes ahead are sent to the individual generators as real-
time control signal. 

II.  CASE STUDIES 

A.  Simulation Conditions 
The proposed method is demonstrated using an example 

system in Fig. 3. The generation mix data are from a Japanese 
smart grid project where the installed PV an WT generation are 
about 15% of peak load. It is composed of three diesel 
generators, two load areas with RESs and a BT station. Detail 
data are given in Tables I. PV prediction data is shown in Fig. 
4, which has been given by our forecasting method based on the 
weather clustering type neural network. Typical load patterns 
are used in the proposed optimization process.  

B.  Stage I optimization 
Figure 5 shows the result of stage I optimization, describing 

24-hours GS for generators (PG1, PG2, PG3), BT operation 
(PBT=Bd -Bc), electricity demand (PD), net electricity demand 
(Pn), PV output (PPV) predictions, WT outputs (PWT), and SOC 
of BT (Bs). Note that G2 starts up at 11:00 and shuts down at 
18:15 shown in Table II, which will be fixed in the stage II 
optimization. 

C.  Stage II optimization 

40%

60%

G1 G2

G3BT

1F

2F

3F

4F 5F

6F7F

RES

RES
 

Fig. 3.  Test Power System. 
 

 TABLE I 
Specification of three diesel generators. 

k 
Output 
Limit 
[kW] 

Ramp 
Rate 

[kW/min] 

Start-up 
Cost 
(suck) 

[$] 

Cost Coefficients[100$] 

ak bk ck 

G1 1,000~2,000 66.7 40.00 0.0011 16.416 4,320.00 
G2 625~1,250 41.7 25.00 0.0021 17.410 3,667.50 
G3 1,125~2,250 75.0 45.00 0.0002 20.178 3,993.70 
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