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A B S T R A C T

Non-steroidal anti-inflammatory drugs often cause ulcers in the human small intestine, but few effective agents
exist to treat such injury. Ganoderma lucidum Karst, also known as “Reishi” or “Lingzhi”, is a mushroom. We
previously reported that a water-soluble extract from G. lucidum fungus mycelia (MAK) has anti-inflammatory
effects in murine colitis induced by trinitrobenzene sulfonic acid, and induction of granulocyte macrophage
colony-stimulating factor (GM-CSF) by MAK may provide anti-inflammatory effects. However, its effects on
indomethacin-induced small intestinal injuries are unknown. The present study investigated the preventative
effects of MAK via immunological function and the polysaccharides from MAK on indomethacin-induced ileitis
in mice. Peritoneal macrophages (PMs) were stimulated in vitro with MAK and adoptively transferred to C57BL/
6 mice intraperitoneally, which were then given indomethacin. Intestinal inflammation was evaluated after 24 h.
We performed in vivo antibody blockade to investigate the preventive role of GM-CSF, which derived from PMs
stimulated with MAK. We then used PMs stimulated with MAK pre-treated by pectinase in an adoptive transfer
assay to determine the preventive role of polysaccharides. Indomethacin-induced small intestinal injury was
inhibited by adoptive transfer of PMs stimulated in vitro with MAK. In this transfer model, pre-treatment with
anti-GM-CSF antibody but not with control antibody reversed the improvement of small intestinal inflammation
by indomethacin. Pectinase pretreatment impaired the anti-inflammatory effect of MAK. PMs stimulated by MAK
appear to contribute to the anti-inflammatory response through GM-CSF in small intestinal injury induced by
indomethacin. The polysaccharides may be the components that elicit the anti-inflammatory effect.

1. Introduction

Non-steroidal anti-inflammatory drugs (NSAIDs), including in-
domethacin and aspirin, are commonly used worldwide for the treat-
ment of musculoskeletal pain and inflammation. However, NSAIDs can
cause serious adverse reactions in the form of gastrointestinal lesions
[1,2]. Recent advancements in capsule and double-balloon endoscopy
have contributed to the increased diagnosis of NSAID-induced small
intestinal lesions such as ulcers, bleeding, perforation, and strictures
[3–6]. It has become clear that NSAID-induced small intestinal lesions
are not as rare as previously thought [7]. For example, Graham et al.
reported that 71% of chronic users of NSAIDs have lesions of the small
intestine [8]. However, in contrast with upper gastrointestinal injury,

few effective agents can prevent and treat small intestinal injury.
Therefore, the exploration of preventive and therapeutic agents for
NSAID-induced small intestinal injury remains an urgent priority.

Recently obtained data have shown that GM-CSF plays an important
role in maintaining intestinal homeostasis. The effect of GM-CSF has
been studied in murine models of dextran sodium sulfate-induced co-
litis, which can be ameliorated by administration of GM-CSF [9,10].
Recent studies have suggested that autoantibodies to GM-CSF are as-
sociated with progressive ileal disease in Crohn’s disease patients [11].
Furthermore, a recent phase II, randomized, double-blind, placebo-
controlled trial of sargramostim (yeast-derived recombinant human
GM-CSF) found that it was effective in the treatment of patients with
moderate to severely active Crohn’s disease [12].
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Ganoderma lucidum Karst, belonging to the Basidiomycetes class of
fungi, is well known as “Reishi”, a traditional food in China and Japan
[13]. It contains various bioactive substances, including poly-
saccharides, proteins, nucleotides, fatty acids, terpenoids, sterols, and
cerebrosides [14]. Reishi has multiple immunologic functions, such as
activation of natural killer cells in BALB/c mice [15], induction of
CD40/CD86 on human peripheral blood monocytes [16], and cytokine-
induced killer cells in C57BL/6 mice [17]. Recently, it was reported that
Reishi contains a fraction named “F3”, which stimulates mouse spleen
cell proliferation and cytokine production, especially that of GM-CSF
[18]. Although a water-soluble extract from a cultured medium of Re-
ishi mycelia (MAK) and F3 are purified by different methods, there
appears to be a strong likelihood that components of Reishi may con-
tribute to GM-CSF-mediated immune responses.

We previously reported that murine trinitrobenzene sulfonic acid
(TNBS)-induced colitis was prevented via GM-CSF production by
feeding with MAK [19]. So far, however, there have been no reports
showing the effect of MAK on small intestinal inflammation. In this
work, we investigated the role of MAK in indomethacin-induced small
intestinal injury. This study shows that peritoneal macrophages (PMs)
stimulated by MAK are effective in the prevention of intestinal in-
flammation. In vitro, MAK stimulated PMs to produce GM-CSF in a
dose-dependent manner. Finally, the protective effect of PMs on in-
testinal inflammation is dependent on GM-CSF. Therefore, GM-CSF may
be a candidate for the treatment of small intestinal inflammation.

2. Materials and methods

2.1. Mice

Specific pathogen-free C57BL/6(B6) mice were purchased from
CLEA Japan (Tokyo, Japan). All mice were housed under specific pa-
thogen-free conditions in micro-isolator cages in the animal facility at
Hiroshima University, and only male mice (9–14 weeks old) were used.
The animals were maintained in accordance with the “Guidelines for
the Care and Use of Laboratory Animals” established by Hiroshima
University. Normal tap water was also provided ad libitum. The MAK
was provided by Noda Shokkin-Kogyo Co., Ltd. (Chiba, Japan). The
preparation of MAK (overall yield ≈ 10%) was as follows: a pure cul-
ture of G. lucidum mycelia was inoculated into a solid culture medium
that was composed of bagasse and defatted rice bran and cultured until
just before the formation of the fruit body (for 3–4 months); subse-
quently, the entire medium overgrown with G. lucidum mycelia was
extracted with hot water, and then the extract was sterilized by filtra-
tion and lyophilized for powderization.

2.2. Preparation of peritoneal macrophages

Peritoneal cells were collected by washing the peritoneal cavity
with ice-cold PBS. The cells were seeded at 1 × 106 cells/well in 96-
well plates to allow them to adhere to the surface and incubated in
humidified 5% CO2 at 37 °C for 1–2 h in RPMI 1640 medium
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Fig. 1. Small intestinal damage after indomethacin administration. (A) The whole small intestine after indomethacin administration. (B) The length of the small intestine was shorter.
Date are expressed as means ± SD, n = 5. *P < 0.05 versus untreated controls. (C) Injured mucosa stained dark blue with ulcer formations by injection of 1% Evans blue (arrows). (D)
Histological findings in the small intestine. Destruction and necrosis of intestinal epithelium extending to the base of the crypts was observed. (E) The number of macroscopic ulcers and
(F) the permeability of blood vessels in the small intestine. Data are presented as mean ± SD (n = 4–5 for each group). *P < 0.05 versus untreated controls. Data are presented as
mean ± SEM of three independent experiments.
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supplemented with 10% FCS. Non-adherent cells were washed with
PBS, and the attached cells were designated as PMs.

2.3. Cytokine ELISA assay

PMs of C57BL/6 mice were stimulated in vitro with 500 ng/ml PMA
(Sigma, St. Louis, MO) and 50 ng/ml ionomycin (Sigma) or LPS and
MAK powder at different concentrations for 24 h. The culture super-
natant was collected, and the concentration of cytokine was determined
by ELISA. GM-CSF and IL-10 were measured with OptEIA Kits (BD, San
Jose, CA). All samples were analyzed in duplicate.

2.4. Induction and assessment of small intestinal injury

To induce small intestinal injury, 10 mg/kg indomethacin (EC
number 200-186-5, Sigma) was administered by gavage to fasted ani-
mals that were sacrificed 24 h later. In each case, to delineate the da-
mage, 1% Evans blue was injected i.v. into the tail vein of each mouse
30 min before sacrifice, and the small intestine was opened along the
anti-mesenteric attachment and examined for injury under a dissecting
microscope with square grids. The number of ulcers of macroscopically
visible lesions was measured, summed per small intestine, and used as
the lesion score. The length of the small intestine was measured after

sacrifice. Intestinal permeability was assessed by a modified protocol
[20]. Briefly, whole small intestine containing Evans blue was in-
cubated at 37 °C for 16 h. A mixture of 0.6 N H3PO4 and acetone (5:13
ratio) was added to this solution, which was centrifuged at 3000 rpm
for 15 min followed by measurement of the OD at 620 nm. Permeability
Index (PI) was defined as each concentration of Evans blue divided by
mean of control group.

2.5. In vivo adoptive transfer model

To test the therapeutic efficacy of GM-CSF, PMs were used for the
adoptive transfer study. PMs stimulated with 100 μg/ml MAK or
medium only for 0, 3, 6, 12, and 24 h were collected and washed twice
with Hanks’ solution. The PMs (1-2x106) were adoptively transferred
intraperitoneally to each mice, which were then given indomethacin.
The mice were sacrificed 24 h later and evaluated for small intestinal
inflammation.

2.6. Assessing accumulation of transferred PMs in vivo

To determine whether transferred PMs have the ability to migrate to
the organs of mice, PMs were labeled with red fluorescent linker dye
(PKH26 Red Fluorescent Cell Linker Kit; Sigma). PMs (2 × 106)
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Fig. 2. Adoptive transfer of PMs stimulated with MAK prevented indomethacin-induced small intestinal injuries. (A) PMs were stimulated in vitro with MAK at the indicated times. PMs
stimulated with MAK for 12 h, but not 6 or 24 h, decreased the number of ulcers. Data are expressed as mean ± SD. n = 3. *P < 0.05, **P < 0.01. (B) The relative small intestinal
length was measured. The length of the small intestine was significantly shorter in the group treated with indomethacin and transferred non-treated PMs than the group fed chow only. As
compared with the group treated with indomethacin and transferred non-treated PMs, a reduction in shortness of the small intestine length was prevented in the group with transferred
PMs stimulated with MAK for 12 h. Data are presented as mean ± SD (n = 3–5 for each group) of two independent experiments. *P < 0.05, **P < 0.01. (C) PMs stimulated with MAK
for 12 h significantly decreased the number of small intestinal ulcers induced by indomethacin. Data are presented as mean ± SD of two independent experiments (n = 5 for each
group). *P < 0.05. (D) The permeability of the blood vessel was improved after transfer of PMs stimulated with MAK. Data are presented as mean ± SD (n = 5 for each group).
*P < 0.05. Data are presented as mean ± SEM of three independent experiments.
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stimulated with MAK or medium for 12 h were incubated with PKH26
for 3 min at 25 °C. The PKH26-labeled PMs were then purified and
adoptively transferred intraperitoneally to each mouse, which were
then given indomethacin orally. After 24 h, the mice were sacrificed.
Liver, spleen, mesenteric lymph nodes (MLNs), and small and large
intestines were removed and then snap-frozen in liquid nitrogen and
stored at 80 °C until tissue processing. Sections of PKH26-labeled tissues
were analyzed by means of fluorescence confocal microscopy. For
quantification of the transferred PMs, 10 random fields were captured
for each tissue, and areas of red fluorescence were measured. The areas
were then calculated with the use of NIH ImageJ software.

2.7. Immunofluorescence staining

Frozen specimens cut into 8-μm sections on glass slides were fixed
for 15 min in 4% paraformaldehyde in PBS. The slides were blocked
briefly in protein blocking solution and incubated overnight at 4 °C
with anti-macrophage antibody (Serotec Ltd., Kidlington, England). The
slides were washed with PBS and then incubated for 1 h at room tem-
perature with Alexa Fluor® 488-labeled secondary antibody (Ab).
Nuclear counterstain with DAPI was applied for 10 min, and mounting
medium was placed on each specimen with a glass coverslip.
Macrophages were identified by green fluorescence, whereas PKH26 on
transferred PMs was identified by red fluorescence. Co-localization of
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Fig. 3. PKH-labeled PMs stimulated with MAK were adoptively transferred intraperitoneally to mice, which were then given indomethacin. (A) Immunostaining showed that the
transferred labeled PMs (red) were detected in the small intestinal (SI) tissues and mesenteric lymph nodes (MLNs). Labeled PMs were not found in the spleen, liver, or large intestine (LI),
which showed no inflammation. (B) Immunostaining of small intestinal tissues showed that the transferred labeled PMs were detected in the submucosa and lamina propria (red).
Immunofluorescence staining for macrophages (green) was performed in indomethacin-induced small intestinal injuries that transferred PKH26-labeled PMs (red) stimulated with MAK
intraperitoneally. DAPI staining for cell nuclei (blue). Scale bars: 100 μm. (C) The area of the labeled PMs was assessed in MLNs. There was no difference in the frequency of transferred
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PKH26 and macrophages was detected as yellow staining.

2.8. Confocal microscopy

Confocal fluorescence images were captured with a 20× or
40× objective lens on an LSM 510 laser scanning microscopy system
(Carl Zeiss, Thornwood, NY) equipped with a motorized Axioplan mi-
croscope, argon laser (458/477/488/514 nm, 30 mW), HeNe laser
(543 nm, 1 mW), HeNe laser (633 nm, 5 mW), LSM 510 control and
image acquisition software, and appropriate filters (Chroma
Technology Corp., Brattleboro, VT). Confocal images were exported to
Adobe Photoshop software, and image montages were prepared.

2.9. Administration of monoclonal antibodies (mAb)

Mice were administered anti-GM-CSF Ab, 50 μg intraperitoneally
(clone number MP1-22E9; Endogen, Rockford, IL) or isotype control
antibody (clone R35-95; BD Pharmingen, San Diego, CA) [11]. Two
weeks later, PMs stimulated with MAK for 12 h were purified and
adoptively transferred intraperitoneally to each mice, which were then
given indomethacin orally. After 24 h, the mice were sacrificed and
evaluated for small intestinal inflammation.

2.10. Enzymatic digestion of polysaccharides

Pectinase (polygalacturonase, EC 3.2.1.15; Sigma) was used for
enzymatic digestion of the polysaccharides from G. lucidum [21]. To
investigate the role of the polysaccharides from MAK in the induction of
GM-CSF, MAK (including polysaccharides, 25 μg/ml, 1 ml) were mixed
with pectinase at final concentrations of 1, 2.5, 10, and 50 U/ml in 1.5-
ml Eppendorf tubes and digested overnight (12 h) under optimum
conditions (buffer solution: 50 mM sodium acetate, pH 5.5, 40 °C).
Then the mixture was boiled at 85 °C for 30 min to stop the enzyme
activity. The PMs were stimulated in vitro with LPS and the MAK pre-
treated by pectinase for 24 h. The culture supernatant was collected,
and the amount of GM-CSF and IL-10 was measured by ELISA. To de-
termine the preventive effect of polysaccharides, PMs stimulated with
MAK pre-treated or not treated with pectinase for 12 h were purified
and adoptively transferred intraperitoneally to each mice, which were
then given indomethacin orally. After 24 h, the mice were sacrificed
and evaluated for small intestinal inflammation.

2.11. Statistical analysis

Assessment of statistical differences was determined by a parametric
Student t-test and nonparametric Mann-Whitney test as appropriate.
Data were analyzed with Stat-View software (Hulinks, Tokyo, Japan).
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The data are expressed as the mean ± SD. Differences were considered
to be statistically significant at P < 0.05.

3. Results

3.1. Indomethacin-induced small intestinal injury

To induce and evaluate macroscopic small intestinal damage, we
orally administered 10 mg/kg of indomethacin to each mouse followed
by i.v. injection of 1% Evans blue dye into the tail vein of each mouse
24 h after indomethacin administration. The length of the small intes-
tine was significantly shorter in mice administered indomethacin than
in those not administered indomethacin (Fig. 1A). As shown in Fig. 1B,
the shortened small intestinal length was observed from 12 h (control,
35.3 ± 2.1 cm versus at 12 h, 30.2 ± 1.3 cm; P < 0.05) after in-
domethacin administration and reached a peak by 48 h (control versus
48 h, 23.0 ± 4.6 cm; P < 0.05). Macroscopic small intestinal ulcers
were detected (Fig. 1C), and the ulcers were confirmed histologically
(Fig. 1D). Furthermore, an increase in both the number of ulcers and in
blood vessel permeability were observed after indomethacin adminis-
tration (Fig. 1E, F).

3.2. Adoptive transfer of PMs stimulated with MAK prevented
indomethacin-induced small intestinal injury

We hypothesized that PMs stimulated with MAK would have an
anti-inflammatory effect on small intestinal injuries caused by in-
domethacin. Preliminarily, to determine the optimal stimulation time,
we stimulated PMs with MAK in vitro at different times. Then, the PMs
were adoptively transferred intraperitoneally to other mice, which were
then given indomethacin. PMs stimulated with MAK for 12 h, but not 6
or 24 h, decreased the number of ulcers (Fig. 2A). The length of the
small intestine was shorter in the mice treated with indomethacin and
transferred non-treated PMs than that in the mice fed chow only.
However, shortening of the small intestine was prevented in the mice
with transferred PMs stimulated with MAK for 12 h (Fig. 2B). These
PMs significantly prevented the small intestinal ulcers induced by in-
domethacin (indomethacin, 13.6 ± 4.0 versus PMs stimulated with
MAK + indomethacin, 7.4 ± 3.2; P < 0.05 and non-treated PMs
+ indomethacin, 14.0 ± 3.2 versus PMs stimulated with MAK+ in-
domethacin; P < 0.05) (Fig. 2C). Blood vessel permeability was also
improved by the transfer of PMs stimulated with MAK for 12 h but not
by non-treated PMs (Fig. 2D). These results suggest that PMs stimulated
with MAK contribute to the prevention of intestinal inflammation
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induced by indomethacin.

3.3. Transferred PMs accumulated in the inflammatory tissues

Next, we examined whether the transferred PMs accumulated in the
small intestine. PKH-labeled PMs stimulated with MAK were adoptively
transferred intraperitoneally to mice, which were then given in-
domethacin. As shown in Fig. 3A, labeled PMs were detected in MLNs
and the small intestine. Immunostaining of small intestinal tissues
showed that the transferred labeled PMs were detected in the sub-
mucosa and lamina propria (Fig. 3B). PMs were not found in the spleen,
liver, or large intestine, none of which showed inflammation (Fig. 3A).
There was no difference in the number of transferred PMs in MLNs
regardless of MAK stimulation. In contrast, in the small intestine, the
number of PMs stimulated with MAK was significantly higher than that
not PMs stimulated with MAK (Fig. 3C and D). These results suggest
that the transferred PMs stimulated with MAK preferably accumulated
in the inflammatory tissues.

3.4. PMs stimulated with MAK produced GM-CSF but not TNFa or IL-
12p40

We previously reported that PMs stimulated in vitro with MAK
produce GM-CSF in a dose-dependent manner [19]. To confirm whether
GM-CSF is selectively induced, we measured GM-CSF and other in-
flammatory cytokines such as TNF-α and IL12p40 in the same super-
natant. MAK selectively induced a large amount of GM-CSF in a dose-
dependent manner (Fig. 4). However, neither TNFα nor IL-12p40 was
induced by MAK. These data suggest that MAK selectively induced GM-
CSF from PMs.

3.5. Blocking of GM-CSF negates the improvement in indomethacin-induced
small intestinal injury

To investigate the preventive role of GM-CSF on indomethacin-in-
duced small intestinal injury, Ab blockade was performed. Shortening
of the small intestinal length by indomethacin was improved by transfer
of PMs stimulated with MAK. However, pre-treatment anti-GM-CSF Ab
but not control Ab diminished the improvement in small intestinal
length (Fig. 5A, B). PMs stimulated with MAK significantly prevented
the number of small intestinal ulcers induced by indomethacin (in-
domethacin, 14.4 ± 3.4 versus MAK + indomethacin, 7.5 ± 6.7;
P < 0.05). Control Ab pre-treatment did not alter this effect (MAK
+ indomethacin versus MAK+ control Ab + indomethacin,
7.8 ± 5.8; n.s.). However, pre-treatment with anti-GM−CSF Ab re-
versed the therapeutic effect of MAK (MAK+ indomethacin versus
MAK + anti-GM-CSF Ab + indomethacin, 19.5 ± 8.5; P < 0.01)
(Fig. 5C). Pretreatment with anti-GM-CSF Ab but not with control Ab
also reversed the improvement of blood vessel permeability (Fig. 5D).
These results support the possibility that GM-CSF derived from PMs
might have an anti-inflammatory role in indomethacin-induced small
intestinal injury.

3.6. Preventive effect of MAK was negated by pretreatment with pectinase

We used pectinase to examine which component of MAK induces
GM-CSF. Pectinase is known to digest the polysaccharides that are the
major component of MAK [21]. PMs were stimulated with MAK treated
by pectinase. GM-CSF and IL-10 in the supernatants were measured by
ELISA. Pectinase treatment reduced the concentration of GM-CSF.
However, the concentration of IL-10 was not affected by the pectinase
treatment (Fig. 6A, B). Adaptive transfer assay of PMs stimulated with
pectinase-treated-MAK diminished the improvement in small intestinal
length (Fig. 6C). PMs stimulated with non-treated MAK significantly
reduced the number of small intestinal ulcers induced by indomethacin
(indomethacin, 16.3 ± 1.5 versus MAK + indomethacin, 7.5 ± 3.3;

P < 0.01). However, pectinase pre-treatment reversed the therapeutic
effect of MAK (MAK+ indomethacin versus pectinase-treated MAK
+ indomethacin, 15.3 ± 5.4; P < 0.05) (Fig. 6D). There was no sig-
nificant difference in blood vessel permeability between non-treated
MAK and MAK pre-treated with pectinase (Fig. 6E). These results sup-
ported the notion that the polysaccharides from G. lucidum induce GM-
CSF from PMs, which may partially prevent the development of in-
domethacin-induced small intestinal injury.

4. Discussion

Here, we have shown that MAK induced GM-CSF from PMs, and
transferred PMs stimulated with MAK significantly attenuated small
intestinal damage in mice following indomethacin administration. This
preventive effect was blocked by the administration of Ab against GM-
CSF. In addition, the effect of PMs on the prevention of small intestinal
damage was negated by stimulation with polysaccharide-digested MAK.
These results suggest that local GM-CSF supplementation ameliorates
indomethacin-induced small intestinal injury.

G. lucidum (Reishi or Lingzhi) has been used as a health-promotion
supplement owing to its anti-tumor and immunomodulating effects
[22]. We recently reported that MAK suppressed the development of
colorectal adenomas [23]. The anti-tumor effects of G. lucidum may be
attributed to the activity of β-glucans [24]. The immunomodulating
activity of the β-glucans is mainly related to their effects on immune
effector cells, such as macrophages, mononuclear cells, and neutrophils,
resulting in the production of cytokines [25,26]. Therefore, stimulation
of immune effector cells leads to the subsequent production of cyto-
kines and contributes to the anticancer activity of G. lucidum. We re-
cently reported that MAK prevented the development of TNBS-induced
colitis [19]. However, the anti-inflammatory role of MAK in in-
domethacin-induced small intestinal injury has never been examined,
to our knowledge. This is the first study to reveal that MAK, and
especially the pectinase-sensitive component of polysaccharides from
MAK, may have a potential immunological role in indomethacin-in-
duced small intestinal injury. Furthermore, macrophages play an im-
portant role in both the host-defense mechanism and inflammation
[27,28], and the overproduction of inflammatory mediators by mac-
rophages has been implicated in several inflammatory diseases and
cancer [29]. Moreover, macrophages may be a key player in the pa-
thogenesis of indomethacin-induced enteropathy [30].

First, we confirmed examined the effect of MAK on cytokine pro-
duction in PMs. Previous studies have suggested that in vitro Reishi-
treatment induces GM-CSF from murine splenocytes [18], and we
previously reported that MAK induces GM-CSF from PMs in a dose-
dependent manner, whereby we administered MAK in vivo and ob-
served GM-CSF production in PMs. In vivo administration of MAK
dramatically increased GM-CSF protein in a dose-dependent manner
[19]. In addition, we investigated cytokines such as IFN-γ, IL12p40,
TNF-α, GM-CSF, and IL-10. No production of IFN-γ, IL12p40, or TNF-α
was seen, and production of IL-10 was not affected by MAK (data not
shown).

Several mechanisms by which NSAIDs induce small intestinal injury
have been reported. The decrease in prostaglandin production is con-
sidered to be the main cause of such injury [2,31–34]. The involvement
of the following has also been reported important in small bowel injury:
the reduction of intestinal mucus due to NSAIDs, microcirculatory
disturbances accompanying abnormally increased intestinal motility,
nitric oxide derived from inducible nitric oxide synthase, inflammatory
cytokines, neutrophil infiltration, and reactive oxygen species [35–40].
M2 macrophages were recently reported to prevent indomethacin-in-
duced intestinal injury in mice [41]. PMs stimulated with MAK produce
GM-CSF. Therefore, we focused on the role of macrophages in NSAID-
induced small intestinal injury. Several time points after the adminis-
tration of indomethacin have been chosen to evaluate the pathogenesis
of indomethacin-induced small intestinal injury [42–44]. We chose the
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24-h time point after indomethacin administration because body weight
loss was most evident at this time.

To examine the anti-inflammatory role of PMs stimulated by MAK in
vitro, we used mAb to block the biological activity of GM-CSF. The mAb
against GM-CSF, clone MP1-22E9, is known to block the biological
activity of GM-CSF [11]. The mAb treatment assay with GM-CSF re-
vealed that the protective effect of PMs stimulated by MAK on in-
domethacin-induced intestinal injuries was inhibited by treatment with
the anti-GM-CSF Ab. In terms of indomethacin-induced injuries, the
shortening of small intestinal length was completely similar to that in
the mice not treated with MAK, suggesting that the preventive effect of
MAK on indomethacin-induced ileitis is mainly contributed by GM-CSF.
Therefore, GM-CSF induced by MAK appears to be involved in the
prevention of indomethacin-induced injuries.

We have shown that transferred PMs accumulated in the in-
flammatory tissues. Although the mechanisms by which the transferred
PMs accumulated only in the inflamed tissues are unclear, these PMs
might produce GM-CSF in the local inflamed mucosa and ameliorate
inflammation.

To investigate the mechanism by which MAK induces GM-CSF, an
enzymatic digestion assay was performed. We showed that pectinase-
treated MAK significantly reduced the production of GM-CSF from PMs.
Furthermore, adaptive transfer of PMs stimulated with pectinase-
treated-MAK partially diminished the improvement in small intestinal
injuries. MAK contains various types of high-molecular-weight con-
stituents, such as polysaccharides with protein or water-soluble lignin,
and low-molecular-weight constituents, such as triterpenes. In addition,
the immunological properties of polysaccharides and im-
munomodulatory protein derived from Lingzhi (G. lucidum) have been
studied [45–48]. Triterpenes and polysaccharides are usually con-
sidered to be the main active components in G. lucidum. Recent phar-
macologic studies have revealed that polysaccharides have multiple
pharmacologic activities [18,48–50]. Polysaccharides are digested by
several enzymes, such as dextranase, pectinase, cellulase, β-manannase,
xylanase, lichenase, and β-glucanase. Previous studies found that
polysaccharides from G. lucidum showed positive responses to pectinase
and digestion but not to β-manannase, xylanase, lichenase, and β-glu-
canase [51]. Polysaccharides from G. lucidum usually consist of arabi-
nose, galactose, glucose, xylose, and mannose. These data suggest that
polysaccharides of MAK play a critical role in preventing small in-
testinal injury induced by indomethacin. Masuda et al. reported that β-
glucans derived from Grifola frondosa (an oriental edible mushroom)
can directly stimulate GM-CSF production in resident macrophages
through activation of dectin-1-independent ERK and p38 MAPK [52].
Although we did not investigate whether β-glucans from MAK produce
GM-CSF, pectinase-sensitive polysaccharides may at least induce GM-
CSF from PMs to prevent intestinal damage from indomethacin. Further
analysis will be performed to obtain direct evidence that poly-
saccharides themselves can directly induce GM-CSF from macrophages.

In conclusion, MAK treatment was shown to prevent indomethacin-
induced intestinal injury. Endogenous GM-CSF may contribute to the
protective effect of MAK. This activity contributes to the prevention of
indomethacin-induced intestinal injury, suggesting that GM-CSF could
be a promising therapeutic target for the prevention of NSAID-induced
intestinal damage.
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