Title

SUMO modification system facilitates the exchange of histone variant H2A.Z-2 at DNA
damage sites

Author details

6	Atsuhiko Fukuto ^{a,b} , Masae Ikura ^c , Tsuyoshi Ikura ^c , Jiying Sun ^a , Yasunori Horikoshi ^a , Hiroki
7	Shima ^d , Kazuhiko Igarashi ^d , Masayuki Kusakabe ^e , Masahiko Harata ^e , Naoki Horikoshi ^{f,g} ,
8	Hitoshi Kurumizaka ^f , Yoshiaki Kiuchi ^b , and Satoshi Tashiro ^a
9	^a Department of Cellular Biology, Research Institute for Radiation Biology and Medicine,
10	Hiroshima University, Hiroshima, Japan; ^b Department of Ophthalmology and Visual Science,
11	Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan;
12	^c Laboratory of Chromatin Regulatory Network, Department of Mutagenesis, Radiation
13	Biology Center, Kyoto University, Kyoto, Japan; ^d Department of Biochemistry, Tohoku
14	University Graduate School of Medicine, Sendai, Japan; ^e Laboratory of Molecular Biology,
15	Graduate School of Agricultural Science, Tohoku University, Sendai, Japan; ^f Laboratory of
16	Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University,
17	Tokyo, Japan; ^g Present address: Department of Structural Biology, School of Medicine,
18	Stanford University, Stanford, CA, USA

Abstract

22	Histone exchange and histone post-translational modifications play important roles in the
23	regulation of DNA metabolism, by re-organizing the chromatin configuration. We previously
24	demonstrated that the histone variant H2A.Z-2 is rapidly exchanged at damaged sites after
25	DNA double strand break induction in human cells. In yeast, the small ubiquitin-like modifier
26	(SUMO) modification of H2A.Z is involved in the DNA damage response. However, whether
27	the SUMO modification regulates the exchange of human H2A.Z-2 at DNA damage sites
28	remains unclear. Here, we show that H2A.Z-2 is SUMOylated in a damage-dependent manner,
29	and the SUMOylation of H2A.Z-2 is suppressed by the depletion of the SUMO E3 ligase,
30	PIAS4. Moreover, PIAS4 depletion represses the incorporation and eviction of H2A.Z-2 at
31	damaged sites. These findings demonstrate that the PIAS4-mediated SUMOylation regulates
32	the exchange of H2A.Z-2 at DNA damage sites.
33	
34	Keywords
35	H2A.Z-2, PIAS4, SUMO, histone variant, DNA damage

Introduction

38

39	DNA double strand breaks (DSBs) are one of the most serious forms of DNA damage. DSBs
40	can be lethal to a cell, and errors in the repair process lead to genomic instability and
41	tumorigenesis. There are two major repair pathways for DSB repair, homologous
42	recombination (HR) and non-homologous end joining (NHEJ). ¹ HR ensures accurate repair
43	by using the undamaged sister chromatid or homologous chromosome as the template. Several
44	lines of evidence suggested that higher-order chromatin structures are reorganized by post-
45	translational protein modifications and/or histone protein exchange at damaged sites to
46	facilitate DNA damage repair. The best-known example is the phosphorylation of the histone
47	H2A variant H2AX, called γ H2AX and a marker of DSBs, which triggers almost all DNA
48	damage responses, including various chromatin dynamics for DSB repair. ² In budding yeast,
49	the SWR1 chromatin-remodeling complex catalyzes the replacement of H2A with the H2A
50	variant H2A.Z. ³ The SWR1 complex-dependent incorporation of H2A.Z is required for DSB
51	relocation to the nuclear periphery. ⁴ In mammalian cells, the NuA4 complex promotes the
52	rapid exchange of H2A for H2A.Z at DSBs, suggesting a role of H2A.Z in the regulation of
53	DNA repair in human cells. ⁵ However, the function of H2A.Z in the reorganization of damaged
54	chromatin in human cells is still unclear.

55 H2A.Z is an evolutionarily well-conserved histone variant from yeast to humans. ⁶ The

56	H2A.Z protein levels are ~10% of the total H2A complement. In mice, deletion of the H2A.Z
57	gene leads to early embryonic lethality. ⁷ The absence of H2A.Z in yeast increases the
58	sensitivity to genotoxic agents. ⁸ H2A.Z is highly expressed in progressive breast cancer,
59	bladder cancer and malignant melanoma. ⁹⁻¹¹ While H2A.Z is associated preferentially with the
60	promoters of repressed genes, its K14 acetylated form is enriched at the promoters of active
61	genes. ¹² A single gene (HTZ1) encodes H2A.Z in budding yeast, and two genes have been
62	identified in vertebrates. These were named H2A.Z-1 (previously H2A.Z) and H2A.Z-2
63	(previously H2A.F/Z or H2A.V). ¹³ H2A.Z-2-deficient cells proliferate more slowly than
64	H2A.Z-1-deficient cells. ¹⁴ We previously reported that RAD51 focus formation, a hallmark of
65	recombinational repair, was disturbed in H2A.Z-2-deficient cells but not in H2A.Z-1-deficient
66	cells. ¹⁵ We also found that H2A.Z-2 is exchanged at DSB sites immediately after the induction
67	of DSBs after ionizing radiation. ¹⁵ However, the means by which the exchange of H2A.Z-2 is
68	facilitated at damaged sites still remain unclear.

Histones and their variants can be modified post-translationally, by acetylation, methylation, and phosphorylation. ¹⁶⁻¹⁸ They also can be conjugated to small proteins, such as ubiquitin and small ubiquitin-like modifier (SUMO). ^{19, 20} SUMOylation is a post-translational modification involved in cell cycle progression, subcellular transport, transcription and DNA repair. ²¹ Chromosome-wide RAD51 spreading and SUMOylated H2A.Z are required for the movement of persistent DSBs to the nuclear periphery in yeast. ²² In mammalian cells, SUMO

75	proteins accumulate at DSB sites by mechanisms requiring MDC1, 53BP1 and BRCA1.
76	Furthermore, the SUMO E3-ligases PIAS1 and PIAS4 accumulate at DSB sites to promote
77	DNA repair by homologous recombination. ²³ We reported that the RAD51 accumulation at
78	damaged sites is dependent on its SUMO interacting motif (SIM). ²⁴ However, it remains to be
79	clarified whether SUMOylation is involved in the regulation of the exchange of human H2A.Z-
80	2 at damaged sites.
81	Here we showed that H2A Z-2 is SUMOvlated by PIAS4 in a damage-dependent
82	manner in human cells. The depletion of PIAS4, but not PIAS1, significantly repressed the
82 83	manner in human cells. The depletion of PIAS4, but not PIAS1, significantly repressed the increase of the H2A.Z-2 mobility at sites containing DNA damage after microirradiation. These
82 83 84	manner in human cells. The depletion of PIAS4, but not PIAS1, significantly repressed the increase of the H2A.Z-2 mobility at sites containing DNA damage after microirradiation. These findings suggest that the SUMOylation of H2A.Z-2 is required for its exchange at sites of DNA
82 83 84 85	manner in human cells. The depletion of PIAS4, but not PIAS1, significantly repressed the increase of the H2A.Z-2 mobility at sites containing DNA damage after microirradiation. These findings suggest that the SUMOylation of H2A.Z-2 is required for its exchange at sites of DNA damage.

Results

89	To assess whether human H2A.Z-2 is SUMOylated after the induction of DNA damage, we
90	established HeLa cells stably expressing C-terminally FLAG-HA-tagged H2A.Z-2. The
91	histone H2A.Z-2 proteins were purified from the nuclear extracts of these cells before and
92	after ionizing radiation (IR), as previously described. ²⁵ We subsequently performed the
93	immunoblotting analysis using an anti-H2A.Z antibody, to confirm the presence of H2A.Z-2
94	proteins in the purified complex, and observed slowly migrating bands (arrows, Fig. 1) in
95	addition to those with the expected size around 21.5 kDa, suggesting the posttranslational
96	modification of H2A.Z-2. These slowly migrating bands were also detected by the
97	immunoblotting using an antibody against SUMO1, and considering their molecular weight,
98	these results led to the conclusion that they are SUMOylated H2A.Z-2 forms (Fig. 1, lanes 1-
99	4).
100	Previous studies have reported that PIAS4, a SUMO E3-ligase, is required for the
101	accumulation of SUMO1 at sites with DNA damage, ²³ raising the possibility that PIAS4 is
102	responsible for the SUMOylation of H2A.Z-2. To address this, we next examined the
103	physical interaction between PIAS4 and H2A.Z-2. By immunoblotting using anti-PIAS4
104	antibodies, we found that PIAS4 was also present in the purified H2A.Z-2 complex,
105	indicating its association with H2A.Z-2. Importantly, the association of H2A.Z-2 with PIAS4
106	was increased by irradiation (Fig. 1, lanes 5 and 6).

107	To confirm that the above-mentioned DNA damage-dependent SUMOylation of
108	H2A.Z-2 was actually mediated by PIAS4, we examined the effect of PIAS4 depletion on the
109	SUMOylation of H2A.Z-2. To do so, we established HeLa cells in which PIAS4 is depleted
110	by shRNA-mediated downregulation, and subsequently performed the immunoblotting
111	analysis. As shown in Fig. 2, significant decreases of the SUMOylated H2AZ-2 were detected
112	both before and after DNA damage (indicated by arrows), indicating that PIAS4 is the E3-
113	ligase involved in the SUMOylation of H2A.Z-2. Remarkably, the H2AZ-2 SUMOylation
114	after irradiation was nearly abolished by the PIAS4 depletion (relative intensity of SUMO1
115	reduced from 1.75 to 0.29), suggesting that the DNA damage-induced SUMOylation of
116	H2AZ-2 is predominantly mediated by PIAS4 (Fig. 2).
117	We have previously shown that H2A.Z-2 is exchanged at DSB sites. ¹⁵ To examine
118	whether the SUMOylation of H2A.Z-2 plays a key role in the dynamics of this exchange, we
119	performed fluorescence recovery after photobleaching (FRAP) in combination with UVA-
120	microirradiation, using cells transiently expressing GFP-fused H2A.Z-2 together with the
121	shRNA against either PIAS4 or PIAS1 (Fig. 3A). The cells were first microirradiated (Fig. 3B,
122	red boxes) and then photobleached (Fig. 3B, yellow boxes), to analyze the recovery of the
123	fluorescent signal in the bleached area. Significant fluorescence recovery of the GFP-H2A.Z-
124	2 signal was observed after microirradiation (Fig. 3C, red line), but not within the unirradiated
125	areas, in the mock-shRNA transfected cells as reported previously (Fig. 3C, blue line). ¹⁵ In

126	contrast, the fluorescence recovery of the GFP-H2A.Z-2 signal after microirradiation was
127	significantly repressed in the PIAS4 shRNA-expressing cells (fluorescence recovery in the
128	damaged area at 270 seconds after photobleaching is $13.8\% \pm 6.3\%$, with a <i>P</i> value of <0.001
129	between mock shRNA and shPIAS4, and fluorescence recovery in the non-damaged area is
130	$8.3\% \pm 3.8\%$) (Fig. 3C and D). Another SUMO E3-ligase, PIAS1, also reportedly accumulates
131	at DSB sites and promotes DNA damage responses. ²³ However, the PIAS1 depletion failed to
132	repress the fluorescence recovery of the GFP-H2A.Z-2 signal at the microirradiated area. These
133	findings suggest that PIAS4, but not PIAS1, facilitates the incorporation of H2A.Z-2 at
134	damaged sites.
135	Next, we examined whether PIAS4 regulates the eviction of GFP-H2A.Z-2 from the
136	microirradiated area, by an inverse FRAP analysis. ¹⁵ In the inverse FRAP analysis, the cells
137	
	were first microirradiated (Fig. 3D, red boxes) and then photobleached (Fig. 3D, yellow
138	were first microirradiated (Fig. 3D, red boxes) and then photobleached (Fig. 3D, yellow boxes, excluding small interior boxes). The loss of fluorescence from the unbleached area
138 139	were first microirradiated (Fig. 3D, red boxes) and then photobleached (Fig. 3D, yellow boxes, excluding small interior boxes). The loss of fluorescence from the unbleached area was monitored and quantified. Consistent with our previous report, the intensity of the
138 139 140	were first microirradiated (Fig. 3D, red boxes) and then photobleached (Fig. 3D, yellow boxes, excluding small interior boxes). The loss of fluorescence from the unbleached area was monitored and quantified. Consistent with our previous report, the intensity of the remaining GFP-H2A.Z-2 fluorescent signal was decreased in the irradiated areas, but not in
138 139 140 141	were first microirradiated (Fig. 3D, red boxes) and then photobleached (Fig. 3D, yellow boxes, excluding small interior boxes). The loss of fluorescence from the unbleached area was monitored and quantified. Consistent with our previous report, the intensity of the remaining GFP-H2A.Z-2 fluorescent signal was decreased in the irradiated areas, but not in the unirradiated areas in the mock shRNA-expressing cells (Fig. 3D and E). ¹⁵ The inverse
138 139 140 141 142	were first microirradiated (Fig. 3D, red boxes) and then photobleached (Fig. 3D, yellow boxes, excluding small interior boxes). The loss of fluorescence from the unbleached area was monitored and quantified. Consistent with our previous report, the intensity of the remaining GFP-H2A.Z-2 fluorescent signal was decreased in the irradiated areas, but not in the unirradiated areas in the mock shRNA-expressing cells (Fig. 3D and E). ¹⁵ The inverse FRAP analysis of the PIAS4 shRNA-expressing cells revealed that the intensity of the

144 decreased in the irradiated areas, as compared to that in the mock shRNA-expressing cells

- 145 (Fig. 3D and E). These findings indicate that PIAS4 facilitates the eviction of H2A.Z-2 from
- damaged chromatin. Taken together with the findings obtained by the FRAP analysis, these
- results strongly suggest that the PIAS4 mediated-SUMOylation of H2AZ-2 regulates the
- 148 exchange of H2A.Z-2 at DNA damage sites.

Discussion

152	Reorganization of damaged chromatin plays an important role in the regulation of the DNA
153	damage response. In our previous study, we found that H2A.Z-2 is exchanged at damaged
154	sites. ¹⁵ In this study, we showed that the SUMO modification system positively regulates the
155	DNA damage-dependent exchange of the histone variant H2A.Z-2 at damaged sites. We also
156	found that H2A.Z-2 is SUMOylated by PIAS4 in a DNA damage-dependent manner. These
157	findings suggest that the SUMO modification system facilitates the exchange of H2A.Z-2 at
158	damaged sites.
159	In our previous study, we showed that H2A.Z-2 is required for the DNA damage-
160	dependent RAD51 focus formation. ¹⁵ RAD51, a key recombinase in HR, has a SUMO-
161	interacting motif (SIM) that is necessary for its accumulation at sites of DNA damage, and
162	requires PIAS4 for this localization. ²⁴ In this study, we showed that PIAS4 is also
163	responsible for the SUMOylation of H2A.Z-2. Taken together, these findings suggest that the
164	DNA damage-dependent SUMOylation by PIAS4 facilitates the RAD51 focus formation,
165	through the reorganization of damaged chromatin by the exchange of H2A.Z-2.
166	Recent studies have revealed the role of the post-translational modifications of H2A.Z
167	in the regulation of DNA metabolism. The acetylation of H2A.Z contributes to transcriptional
168	activation. ^{26 27} TIP60 is involved in the acetylation of H2A.Z, as well as H2A and H4. ²⁸ The
169	lysine methyltransferase SETD6 monomethylates lysine 7 of H2A.Z, which is involved in the

170	negative regulation of gene expression. ²⁹ Monoubiquitinated H2A.Z is enriched on the inactive
171	X chromosome, suggesting that ubiquitinated H2A.Z is associated with transcriptional
172	silencing. ³⁰ In contrast to these modifications involved in gene expression, the SUMOylation
173	of H2A.Z is required for DSB recruitment to the nuclear periphery in yeast. ²² In our present
174	study, we demonstrated that the SUMOylation of H2A.Z in human cells is also involved in the
175	positive regulation of DNA repair. Although the means by which the SUMOylation of H2A.Z-
176	2 in human cells facilitates the RAD51 focus formation remain to be clarified, these findings
177	suggest the conserved function of the SUMOylation of H2A.Z to facilitate DNA repair, from
178	yeast to human.

H2A.Z-1 and H2A.Z-2 differ by only three amino acids, but they are encoded by unique 179 nucleotide sequences. ¹³ Chicken DT40 cells with either the H2A.Z-1 or H2A.Z-2 gene knock-180 out exhibit distinct alterations in gene expression and cell proliferation.¹⁴ The H2A.Z-2 181 deficiency sensitizes malignant melanoma cells to chemotherapy and targeted therapy.¹¹ The 182 nucleosomal H2A.Z-1 is more rapidly exchanged than H2A.Z-2 under normal conditions. ³¹ In 183 contrast, H2A.Z-2 exhibits higher mobility than H2A.Z-1 after DSB induction. ¹⁵ In this study, 184 we showed that the SUMO modification system regulates the dynamics of H2A.Z-2 at DNA 185 damage sites. The DNA damage-induced exchange of SUMOylated H2A.Z-2 may play a role 186 to accelerate the accumulation of the SUMO-interacting DNA repair proteins at damaged sites. 187 Although further explorations are required to clarify the interaction between RAD51 with 188

 exchange of SUMOylated H2A.Z-2. Interestingly, H2AX, another histone H2A variant, is also exchanged after the induction of DSBs, to allow PARP-1 accumulation at damaged sites. ³² The exchange of histone variants H2AX and H2A.Z-2 may play an important role in DNA repair to facilitate the intra-nuclear transport of repair proteins to the damaged sites. 	189	H2A.Z-2, the focus formation of RAD51 could be facilitated by this DNA damage-dependent
 exchanged after the induction of DSBs, to allow PARP-1 accumulation at damaged sites. ³² The exchange of histone variants H2AX and H2A.Z-2 may play an important role in DNA repair to facilitate the intra-nuclear transport of repair proteins to the damaged sites. 	190	exchange of SUMOylated H2A.Z-2. Interestingly, H2AX, another histone H2A variant, is also
 exchange of histone variants H2AX and H2A.Z-2 may play an important role in DNA repair to facilitate the intra-nuclear transport of repair proteins to the damaged sites. 	191	exchanged after the induction of DSBs, to allow PARP-1 accumulation at damaged sites. ³² The
to facilitate the intra-nuclear transport of repair proteins to the damaged sites.	192	exchange of histone variants H2AX and H2A.Z-2 may play an important role in DNA repair
194	193	to facilitate the intra-nuclear transport of repair proteins to the damaged sites.
	194	

Materials and Methods

198	Cell culture and ionizing irradiation
199	GM0637 cells were cultured in Dulbecco's modified Eagle's medium (Sigma-Aldrich),
200	supplemented with 10% fetal bovine serum (Equitech-Bio). HeLa cells were cultured in
201	Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum and 0.2
202	mg/ml G418 (Gibco). For ionizing irradiation treatment, cells were irradiated with 137 Cs γ -rays,
203	using a Gammacell 40 system (MDS Nordion, Ottawa, Canada) at 10 Gy.
204	
205	Protein affinity purification
206	To prepare the FLAG-HA-tagged H2A.Z-2 complex, nuclei were collected by centrifugation
207	at 3,900 rpm for 15 minutes after a treatment with hypotonic buffer, as previously described.
208	³³ After resuspension of the pellet in an equal volume of sucrose buffer (0.34 M sucrose, 10
209	mM Tris-HCl, pH 7.3, 3 mM MgCl ₂ , 100 mM MEM), 1× sucrose buffer was added to adjust
210	the volume to a final DNA concentration of 2 mg/ml. Micrococcal nuclease was added at 25
211	U/ mg DNA. The samples were incubated at 37°C for 20 minutes, and the reactions were then
212	stopped by adding 4 mM EDTA. The samples were centrifuged at 14,000 rpm at 4°C for 30
213	minutes. After dialysis, the supernatant was used as the solubilized FLAG-HA-tagged H2A.Z-
214	2-containing chromatin fraction. FLAG-HA-tagged H2A.Z-2 proteins were purified by

immunoaffinity purification with an immobilized anti-FLAG antibody, and were eluted with FLAG peptide as described previously. ²⁵ The knockdown of PIAS4 was performed by the expression of pSuper-retro-PIAS4 by a retroviral vector. Whole-cell lysates were used as the input. All buffers contained 100 mM *N*-ethylmaleimide (Sigma-Aldrich), to prevent deSUMOylation by SUMO proteases.

220

221 Immunoblotting

Protein extracts were resolved by sodium dodecyl sulfate (SDS)-polyacrylamide gel 222 electrophoresis and transferred to nitrocellulose membranes. The membranes were blocked 223 with Blocking One (Nacalai Tesque, Inc.) for 60 minutes at room temperature. The primary 224 antibodies, diluted in Phosphate Buffered Saline (PBS) with Tween[®] 20, were incubated with 225 the membranes for 60 minutes at room temperature. The membranes were subsequently washed 226 and incubated with horseradish peroxidase-conjugated secondary antibodies for 60 minutes at 227 228 room temperature. Band intensities were quantified by densitometry (Image J software) and normalized to those of β -actin, serving as the loading control. The intensities were calculated 229 relative to that of the control (Mock-No IR), which was set to 1.0. 230

231

232 Antibodies

Rabbit anti-H2A.Z (cat# ab4174, Abcam), rabbit anti-SUMO1 (cat# sc-9060, Santa Cruz

Biotechnology), rabbit anti-PIAS1 (cat# ab32219, Abcam), rabbit anti-PIAS4 (cat# ab58416,
Abcam), mouse anti-β-actin (cat# A5441, Sigma-Aldrich) and goat anti-rabbit Alexa Fluor 488
(cat# A11008, Life Technologies) were used in the experiments.

- 237
- 238 UVA-microirradiation, FRAP and iFRAP

Imaging, microirradiation, and fluorescence recovery after photobleaching (FRAP) 239 experiments were performed using an LSM780 confocal microscope (Carl Zeiss), with a 63× 240 1.40 NA plan-apochromat objective. Cells were placed in no. 1S glass-bottom dishes 241 (Matsunami Glass Ind., Ltd.). For microirradiation, sensitization of cells was performed by 242 incubating the cells for 24 hours in medium containing 2.5 µM deoxyribosylthymine and 0.3 243 µM bromodeoxyuridine (Sigma-Aldrich) and then staining with 2 µg/ml Hoechst 33258 244 (Sigma-Aldrich) for 10 minutes before UVA microirradiation, as described previously.³⁴ The 245 Dulbecco's modified Eagle's medium was replaced by Leibovitz's L-15 (Gibco) containing 246 10% fetal bovine serum and 25 mM HEPES (Gibco), just before microirradiation. During 247 imaging, the dishes were kept in a humidified cell culture incubator with a continuous supply 248 of 5% CO₂/air at 37°C (Tokai Hit). The 355-nm line of the UVA laser was used for 249 microirradiation (six pulses at 4.43 W). The maximum power of the 488-nm Ar laser line was 250 used for photobleaching in the FRAP analysis. For imaging, the laser was attenuated to 0.1%. 251 252 All fluorescent regions, except for small regions in the irradiated and unirradiated areas, were

bleached, and the remaining GFP fluorescence was monitored with the LSM780 confocal 253 microscope. For the FRAP and iFRAP analyses, a prebleached image was acquired just after 254 the induction of DSBs by UVA laser microirradiation, after which the bleaching pulse was 255 delivered. To quantify the fluorescence recovery, single optical sections were collected at 3-s 256 intervals for the indicated periods of time. ImageJ was used for fluorescent intensity 257 quantification in the FRAP and iFRAP analyses. The relative intensities in the bleached area 258 were measured and normalized by the average intensity before bleaching. The percent recovery 259 (relative intensity) at each time point was calculated as: P recovery; t=100×(I rel; t-I rel; 1.5s)/(1-I rel; 260 1.5s), where I rel; 1.5s was the relative intensity of the bleached area in the first image obtained 261 after bleaching. 262

263

264 Immunofluorescence microscopy

Cells were fixed with PBS containing 2% paraformaldehyde for 10 minutes at room temperature, and permeabilized with PBS containing 0.5% Triton X-100 for 10 minutes at room temperature. The cells were then incubated with antibodies in PBS containing 1% BSA, at 37°C for 30 minutes. Nuclei were stained with DAPI. The cells were mounted using Vectashield and observed on an Axioplan2 microscope with AxioCam MRm, controlled by the AxioVision software (Carl Zeiss).

- 272 **RNAi**
- 273 The pSIREN-DNR-DsRed-Express vector (Clontech) was used for PIAS1 and PIAS4 RNAi.
- 274 The target sequences were 5'-CGAAUGAACUUGGCAGAAA-3' (PIAS1) and 5'-
- 275 AGGCACUGGUCAAGGAGAA-3' (PIAS4).
- 276

277 Statistical analysis

- 278 Data were compared using the Student *t*-test.
- 279

281	Disclosure of Potential Conflicts of Interest
282	No potential conflicts of interest were disclosed.
283	
284	Acknowledgments
285	We thank A. Kinomura for technical assistance.
286	
287	Funding
288	This research was supported by JSPS KAKENHI Grants, number JP26430114 to J.S.,
289	number JP25116009 to M.H. and numbers JP16H01312 and JP15H02821 to S.T. This work
290	was partially supported by the Program of the network-type joint Usage/Research Center for
291	Radiation Disaster Medical Science of Hiroshima University, Nagasaki University, and
292	Fukushima Medical University.
293	
294	

295		References
296	1.	Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature
297	2009; 4	61:1071-8.
298	2.	Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM. A critical
299	role for	histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol :
300	CB 200	0; 10:886-95.
301	3.	Mizuguchi G, Shen X, Landry J, Wu WH, Sen S, Wu C. ATP-driven exchange of histone
302	H2AZ v	variant catalyzed by SWR1 chromatin remodeling complex. Science (New York, NY) 2004;
303	303:343	3-8.
304	4.	Horigome C, Oma Y, Konishi T, Schmid R, Marcomini I, Hauer MH, et al. SWR1 and INO80
305	chroma	tin remodelers contribute to DNA double-strand break perinuclear anchorage site choice.
306	Mol Cel	1 2014; 55:626-39.
307	5.	Xu Y, Ayrapetov MK, Xu C, Gursoy-Yuzugullu O, Hu Y, Price BD. Histone H2A.Z controls
308	a critica	al chromatin remodeling step required for DNA double-strand break repair. Mol Cell 2012;
309	48:723-	33.
310	6.	Redon C, Pilch D, Rogakou E, Sedelnikova O, Newrock K, Bonner W. Histone H2A variants
311	H2AX a	nd H2AZ. Curr Opin Genet Dev 2002; 12:162-9.
312	7.	Faast R, Thonglairoam V, Schulz TC, Beall J, Wells JR, Taylor H, et al. Histone variant
313	H2A.Z i	s required for early mammalian development. Curr Biol : CB 2001; 11:1183-7.
314	8.	Morillo-Huesca M, Clemente-Ruiz M, Andujar E, Prado F. The SWR1 histone replacement
315	complex	x causes genetic instability and genome-wide transcription misregulation in the absence of
316	H2A.Z.	PLoS One 2010; 5:e12143.
317	9.	Hua S, Kallen CB, Dhar R, Baquero MT, Mason CE, Russell BA, et al. Genomic analysis of
318	estroger	n cascade reveals histone variant H2A.Z associated with breast cancer progression. Mol
319	Syst Bio	bl 2008; 4:188.
320	10.	Kim K, Punj V, Choi J, Heo K, Kim JM, Laird PW, et al. Gene dysregulation by histone
321	variant	H2A.Z in bladder cancer. Epigenetics & chromatin 2013; 6:34.
322	11.	Vardabasso C, Gaspar-Maia A, Hasson D, Punzeler S, Valle-Garcia D, Straub T, et al.
323	Histone	e Variant H2A.Z.2 Mediates Proliferation and Drug Sensitivity of Malignant Melanoma. Mol
324	Cell 201	15; 59:75-88.
325	12.	Millar CB, Xu F, Zhang K, Grunstein M. Acetylation of H2AZ Lys 14 is associated with
326	genome	-wide gene activity in yeast. Genes Dev 2006; 20:711-22.
327	13.	Eirin-Lopez JM, Gonzalez-Romero R, Dryhurst D, Ishibashi T, Ausio J. The evolutionary
328	differen	tiation of two histone H2A.Z variants in chordates (H2A.Z-1 and H2A.Z-2) is mediated by
329	a stepw	ise mutation process that affects three amino acid residues. BMC Evol Biol 2009; 9:31.
330	14.	Matsuda R, Hori T, Kitamura H, Takeuchi K, Fukagawa T, Harata M. Identification and
331	charact	erization of the two isoforms of the vertebrate H2A.Z histone variant. Nucleic Acids Res

- **332** 2010; 38:4263-73.
- Nishibuchi I, Suzuki H, Kinomura A, Sun J, Liu NA, Horikoshi Y, et al. Reorganization of
 damaged chromatin by the exchange of histone variant H2A.Z-2. Int J Radiat Oncol Biol Phys
 2014; 89:736-44.

Kurdistani SK, Grunstein M. Histone acetylation and deacetylation in yeast. Nat Rev Mol
Cell Biol 2003; 4:276-84.

- 338 17. Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance.
 339 Nat Rev Genet 2012; 13:343-57.
- 18. Rossetto D, Avvakumov N, Cote J. Histone phosphorylation: a chromatin modification
 involved in diverse nuclear events. Epigenetics 2012; 7:1098-108.

342 19. Weake VM, Workman JL. Histone ubiquitination: triggering gene activity. Mol Cell 2008;
343 29:653-63.

Shiio Y, Eisenman RN. Histone sumoylation is associated with transcriptional repression.
Proc Natl Acad Sci USA 2003; 100:13225-30.

346 21. Hay RT. SUMO: a history of modification. Mol Cell 2005; 18:1-12.

- Kalocsay M, Hiller NJ, Jentsch S. Chromosome-wide Rad51 spreading and SUMO-H2A.Zdependent chromosome fixation in response to a persistent DNA double-strand break. Mol Cell
 2009; 33:335-43.
- Galanty Y, Belotserkovskaya R, Coates J, Polo S, Miller KM, Jackson SP. Mammalian
 SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks. Nature
 2009; 462:935-9.
- Shima H, Suzuki H, Sun J, Kono K, Shi L, Kinomura A, et al. Activation of the SUMO
 modification system is required for the accumulation of RAD51 at sites of DNA damage. J Cell Sci
 2013; 126:5284-92.
- 356 25. Nakatani Y, Ogryzko V. Immunoaffinity purification of mammalian protein complexes.
 357 Methods Enzymol 2003; 370:430-44.
- Valdes-Mora F, Song JZ, Statham AL, Strbenac D, Robinson MD, Nair SS, et al. Acetylation
 of H2A.Z is a key epigenetic modification associated with gene deregulation and epigenetic
 remodeling in cancer. Genome Res 2012; 22:307-21.
- 27. Kusakabe M, Oku H, Matsuda R, Hori T, Muto A, Igarashi K, et al. Genetic
 362 complementation analysis showed distinct contributions of the N-terminal tail of H2A.Z to
 363 epigenetic regulations. Genes Cells 2016; 21:122-35.
- 28. Dalvai M, Bellucci L, Fleury L, Lavigne AC, Moutahir F, Bystricky K. H2A.Z-dependent
 crosstalk between enhancer and promoter regulates cyclin D1 expression. Oncogene 2013; 32:424351.
- 367 29. Binda O, Sevilla A, LeRoy G, Lemischka IR, Garcia BA, Richard S. SETD6 monomethylates
- H2AZ on lysine 7 and is required for the maintenance of embryonic stem cell self-renewal.
 Epigenetics 2013; 8:177-83.

- 370 30. Sarcinella E, Zuzarte PC, Lau PN, Draker R, Cheung P. Monoubiquitylation of H2A.Z
 371 distinguishes its association with euchromatin or facultative heterochromatin. Mol Cell Biol 2007;
 372 27:6457-68.
- 373 31. Horikoshi N, Sato K, Shimada K, Arimura Y, Osakabe A, Tachiwana H, et al. Structural
 374 polymorphism in the L1 loop regions of human H2A.Z.1 and H2A.Z.2. Acta Crystallogr D Biol
- 375 Crystallogr 2013; 69:2431-9.
- 376 32. Ikura M, Furuya K, Fukuto A, Matsuda R, Adachi J, Matsuda T, et al. Coordinated
 377 Regulation of TIP60 and Poly(ADP-Ribose) Polymerase 1 in Damaged-Chromatin Dynamics. Mol
 378 Cell Biol 2016; 36:1595-607.
- 379 33. Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y. Histone H3.1 and H3.3 complexes
 380 mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 2004;
 381 116:51-61.
- 382 34. Walter J, Cremer T, Miyagawa K, Tashiro S. A new system for laser-UVA-microirradiation
- 383 of living cells. J Microsc 2003; 209:71-5.
- 384

Figure legends

20	7	
SC)/	

388	Figure 1. The H2A.Z-2 complex, purified from the nuclear soluble fraction of HeLa cells, was
389	subjected to immunoblot analyses using anti-H2A.Z (lanes 1 and 2), anti-SUMO1 (lanes 3 and
390	4), anti-PIAS4 (lanes 5 and 6) and anti-PIAS1 (lanes 5 and 6) antibodies. DNA damage was
391	induced by 10 Gy IR, followed by a 10-minute recovery. The arrows indicate SUMOylated
392	H2A.Z-2 and the asterisks indicate unmodified H2A.Z-2. Whole-cell lysates were used as the
393	input.
394	
395	Figure 2. The H2A.Z-2 complex, purified from the nuclear soluble fraction of HeLa cells
396	stably expressing mock shRNA or shPIAS4, was subjected to immunoblot analyses using anti-
397	H2A.Z and anti-SUMO1 antibodies. The amounts of PIAS4 and control β -actin in the input
398	materials were detected by immunoblotting with the respective antibodies. DNA damage was
399	induced by 10 Gy IR, followed by a 10-minute recovery. The arrows indicate SUMOylated
400	H2A.Z-2 and the asterisks indicate unmodified H2A.Z-2. SUMOylated H2A.Z-2 protein levels
401	were calculated as the relative intensity with respect to β -actin. Whole-cell lysates were used
402	as the input.

405	shRNA are DsRed-positive. Endogenous PIAS4 and PIAS1 were detected by
406	immunofluorescence staining with the respective antibodies. DsRed, PIAS4 and DNA (DAPI)
407	are shown in red, green and blue, respectively, in the merged images. Scale bars: 10 μ m. (B)
408	FRAP analysis to monitor the incorporation of H2A.Z-2 at damage sites. GM0637 cells
409	transiently expressing GFP-H2A.Z-2 and pSIREN-mock, PIAS4 or PIAS1 shRNA were first
410	microirradiated (red boxes) and then photobleached (yellow boxes). (C) The fluorescence
411	recovery of the cells in (B) was monitored as previously described. ¹⁵ (D) Inverse FRAP
412	analysis to monitor the eviction of H2A.Z-2 at damage sites. GM0637 cells transiently
413	expressing GFP-H2A.Z-2 and pSIREN-mock or PIAS4 shRNA were first microirradiated (red
414	boxes) and then photobleached (yellow boxes, excluding small interior boxes). (E) The relative
415	intensity of the cells in (D) was monitored as previously described. ¹⁵
416	

Fig. 3