1	Comparison of semi-automated center-dot and fully automated endothelial cell analyses from specular
2	microscopy images
3	Sachiko Maruoka ¹ , Shunsuke Nakakura ¹ , Naoko Matsuo ¹ , Kayo Yoshitomi ¹ , Chikako Katakami ¹ ,
4	Hitoshi Tabuchi ¹ , Taiichiro Chikama ² , Yoshiaki Kiuchi ²
5	
6	1. Department of Ophthalmology, Saneikai Tsukazaki Hospital, 68-1 Aboshi Waku, Himeji 671-1227,
7	JAPAN
8	2. Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Sciences,
9	Hiroshima University, 1-2-3 Minami Kasumi Hioroshima, 734-8553, JAPAN
10	
11	Reprint requests/Corresponding author: Sachiko Maruoka,
12	E-mail: <u>s.maruoka@tsukazaki-eye.net</u> (SM)
13	Tel: +81-79-272-8555; Fax: +81-79-272-8550
14	
15	Clinical trial registration; Japan Clinical Trials Register (http://www.umin.ac.
16	jp/ctr/index/htm9 number UMIN 000015236
17	
18	Author Disclosure Statement

- 19 This article has not been presented at any meetings.
- 20 The authors did not receive any financial support from any public or private sources.
- 21 The authors have no financial or proprietary interest in any product, method, or material described
- 22 herein.
- 23 The authors have no financial disclosures and no conflicts of interest to declare.
- 24

25 Abstract

26 Purpose: To evaluate 2 specular microscopy analysis methods across different endothelial cell densities
27 (ECDs).

- 28 Methods: Endothelial images of 1 eye from each of 45 patients were taken by using 3 different specular
- 29 microscopes (3 replicates each). To determine the consistency of the center-dot method, we compared
- 30 SP-6000 and SP-2000P images. CME-530 and SP-6000 images were compared to assess the consistency
- 31 of the fully automated method. The SP-6000 images from the 2 methods were compared. Intraclass
- 32 correlation coefficients (ICCs) for the 3 measurements were calculated, and parametric multiple
- 33 comparisons tests and Bland–Altman analysis were performed.
- 34 **Results:** The ECD mean value was 2425 ± 883 (range: 516–3707) cells/mm². ICC values were >0.9 for
- all 3 microscopes for ECD, but the coefficients of variation (CVs) were 0.3–0.6. For ECD measurements,
- 36 Bland-Altman analysis revealed that the mean difference was 42 cells/mm² between the SP-2000P and
- 37 SP-6000 for the center-dot method; 57 cells/mm² between the SP-6000 measurements from both
- 38 methods; and -5 cells/mm² between the SP-6000 and CME-530 for the fully automated method (95%
- 39 limits of agreement: -201 to 284 cell/mm², -410 to 522 cells/mm², and -327 to 318 cells/mm²,
- 40 respectively). For CV measurements, the mean differences were -3%, -12%, and 13% (95% limits of
- 41 agreement: -18% to 11%, -26% to 2%, and -5% to 32%, respectively).
- 42 Conclusions: Despite using 3 replicate measurements, the precision of the center-dot method with the

- 43 SP-2000P and SP-6000 software was only $\pm 10\%$ for ECD data and was even worse for the fully
- 44 automated method.

- 46 Key words: specular microscopy, low ECD, fully-automated method without any cell border correction,
- 47 semi-automated center-dot method

48

51 Introduction

52	Corneal endothelial cells maintain corneal transparency by using a pumping mechanism to remove fluid
53	from the cornea [1, 2]. Various factors, such as aging, drugs, surgery, and inflammation, reduce corneal
54	endothelial cell density (ECD) [3-5], which leads to a loss of corneal transparency and ultimately to the
55	need for corneal transplantation. ECD is not easily regenerated, so protecting corneal endothelial cells is
56	critical for maintaining healthy vision over a lifetime. ECD is, therefore, an important parameter for
57	evaluating the condition of the corneal endothelium, especially preoperatively, when accurate knowledge
58	of the ECD is essential. Currently, assessing ECD accurately remains a challenge.
59	Various types of corneal endothelium measuring devices have been developed, but results have been
60	inconsistent [6]. The most popular device is the noncontact specular microscope, which obtains images
61	of the corneal endothelium by using tangential illumination of the corneal surface. From these images,
62	endothelial cells can be assessed and analyzed quantitatively and qualitatively.
63	The first analysis method developed for noncontact specular microscopy was the semi-automated
64	center-dot method. In this method, the examiner identifies the centers of corneal endothelial cells and
65	estimates the boundaries of the cells from these center points, which is then used to count the cells and
66	calculate the ECD. To obtain accurate measurements by using this method, the US Food and Drug
67	Administration has recommended that 6 images should be acquired prior to operations and that 3 images

- 68 should be acquired at postoperative visits (without actually specifying if all 3 images need to be

69	analyzed) [7]. Other reports have recommended that a minimum of 75 cells be counted [8], which means
70	that acquiring accurate measurements with the semi-automated center-dot method is labor intensive and
71	time consuming.
72	To enable easier and less time-consuming measurements with noncontact specular microscopes, several
73	companies have developed a new method that is fully automated and does not use any cell border
74	correction. In this method, the device detects captured endothelial cells and determines the cell area by
75	identifying the boundary of each endothelial cell. The key for precise measurements is accurate
76	determination of the boundary.
77	Some previous studies have reported agreement between the semi-automated center-dot method and the
78	fully automated method without any cell border correction and with any cell border correction. However,
79	all of their subjects had normal ECDs [9-14]. Additionally, one study compared between the fully
80	automated method without any cell border corrections and the automated method with cell border
81	corrections (the ECDs ranged from 417–3263 cells/mm ²) [12]. The aim of our study was to evaluate and
82	compare the consistency between the semi-automated center-dot method and fully automated method
83	without any cell border correction and the consistency of results between devices used within each
84	method with subjects representing wider range of ECDs, especially with low ECDs.
85	

86 Materials and Methods

87 Study Design and Ethics Statement

88	This was a cross-sectional observational study approved by the Institutional Review Board of Saneikai
89	Tsukazaki Hospital and conducted according to the tenets of the Declaration of Helsinki. Written
90	informed consent was obtained from each subject before participation in this study.
91	
92	Specular Microscopes
93	3 non-contact specular microscopes were used in this study: a Topcon SP-2000P (Topcon, Tokyo, Japan),
94	a Konan Noncon ROBO SP-6000 (Konan Medical Inc., Hyogo, Japan), and a Nidek Specular
95	Microscope CME-530 (Nidek Co, Ltd., Aichi, Japan). These 3 devices use different image analysis
96	software to analyze endothelial cell morphology. Before screening the patients' ECDs for recruitment,
97	we retrospectively investigated their medical records in our hospital and checked the results of each of
98	the microscopes.
99	
100	Subjects
101	The subjects were recruited from among patients in our hospital between September and November
102	2014. Medical records were screened retrospectively to recruit 3 groups of patients according to their
103	ECD: >3000 cells/mm ² , between 2000 and 3000 cells/mm ² , and <2000 cells/mm ² . These subjects were
104	then studied prospectively. Ultimately, we recruited 45 eyes of 45 patients (28 females and 17 males;

105	mean age: 43.2 ± 24.8 years; age range: 5–89). Table 1 presents background data for the subjects. The
106	ECD mean value was 2425 ± 883 (mean \pm standard deviation; range: 516–3707 cells/mm ²).
107	Fifteen of the subjects (mean age: 76.3 ± 5.8 years; age range: $67-89$) had an ECD of <2000 as a main
108	result of previous surgery: no surgery (3 patients); cataract surgery (5 patients), Descemet's stripping
109	automated endothelial keratoplasty (DSAEK, 1 patient), cataract surgery and DSAEK (1 patient);
110	cataract surgery and penetrating keratoplasty (2 patients), cataract surgery and glaucoma surgery (2
111	patients), and vitrectomy (1 patient). The mean postoperative period was 32.9 ± 21.8 months (range:
112	8–80 months).
113	
114	Measurement of ECD
115	The subjects were instructed to maintain their head upright on the specular microscope's chin rest with
116	their eyes to the front. Only 1 eye was assessed. Three measurements were taken with each of the
117	microscopes, and the mean of the 3 measurements was used for analysis. The measurements were
118	performed by 3 examiners who were familiar with specular microscopy. For subjects with an ECD of
119	<2000 cells/mm ² , the minimum cell count was set to 30 because counting >100 cells in these cases was
120	difficult.
121	

122 Semi-automated Center-dot Method (SP-2000P and SP-6000)

123	For each subject, we used the SP-2000P and SP-6000 to obtain \geq 3 images of the central cornea with the
124	auto-control and auto-capture modes. From these endothelial images, 3 showing clear edges were
125	selected by the examiner. The examiner plotted the centers of >30 corneal endothelial cells for the center
126	method, and the built-in endothelial cell morphology analysis was performed consecutively in each
127	image. The 3 analyses were all performed by the same examiner.
128	
129	Fully-automated Method Without Any Cell Border Correction (SP-6000 and CME-530)
130	We used the SP-6000 and CME-530 to obtain \geq 3 images of the central cornea, which were captured by
131	using the auto-control and auto-capture modes. From the endothelial images captured, 3 showing clear
132	edges were selected. To determine the endothelial cells automatically, the instruments detected the
133	boundaries of \geq 30 cells. The analysis was performed by the same examiner for each image captured
134	consecutively. We did not adjust the boundaries between the endothelial cells in the images.
135	Figure 1 shows sample images from a 76-year-old male analyzed by using the semi-automated
136	center-dot method and fully-automated method without any cell border correction.
137	
138	Analysis
139	ECD was used to determine the agreement between devices or analysis methods. For the sub-analysis,
140	we also evaluated the average endothelial cell area (AVG) and the coefficient of variation (CV, a

141	measure	of the	variation	in e	endothelial	form).
-----	---------	--------	-----------	------	-------------	--------

142	To determine the consistency of the semi-automated center-dot method, we used the more common
143	SP-6000 as a benchmark to compare with the results obtained from the SP-2000P. For the inter-method
144	comparison, the semi-automated center-dot method and fully-automated method without any cell border
145	correction were compared by using images obtained from the SP-6000. For the analysis of the
146	consistency of the fully-automated method without any cell border correction, images from the
147	CME-530 and SP-6000 were compared.
148	
149	Statistical Analysis
150	Statistical analysis was performed by using JMP version 10.0.0 software (SAS Institute Inc., Cary, NC,
151	USA) and Statcel 3 (OMS Publishing Ltd., Tokyo, Japan). Data are expressed as the mean ± standard
152	deviation (SD). <i>P</i> values <0.05 were considered as indicating statistical significance.
153	The repeatability of 3 consecutive measurements for each specular microscope was evaluated by
154	calculating intraclass correlation coefficients, ICCs (1,1) (i.e., intrarater reliability, one-way random
155	effects model). An ICC value of 0 would indicate the level of agreement produced by chance alone,
156	whereas a value of 1 would indicate perfect, positive agreement.
157	Interdevice differences were initially evaluated by using analysis of variance (ANOVA) to detect any
158	significant divergences in the 3 specular microscopes as a group and then by Tukey-Kramer post-hoc

- analysis to check for significant differences between each device.
- 160 In the Bland–Altman analysis, the distribution of the measurements was expressed as the mean
- 161 difference and SD between 2 devices; in addition, the 95% limits of agreement (LOA), which were
- 162 defined as the mean difference \pm 1.96 SD, were determined to assess agreement between the devices [15,
- 163 16].
- 164

```
165 Results
```

166 The ICC values showing the consistency of results between the devices and between analysis methods,

- 167 each obtained from 3 measurements, are shown in Table 2. The calculated ICC values for the
- 168 measurements of ECD and AVG from repeated assessments ranged from 0.92 to 0.99. The calculated
- 169 ICC values in the measurements of CV, from repeated assessments, ranged from 0.34 to 0.69.
- 170 One-way ANOVA showed no significant differences among the 3 devices combined with the 2 analysis
- 171 methods for the ECD and AVG values (p = 0.95 and 0.96, respectively). However, there was a
- 172 statistically significant difference among the CV values (p < 0.01). Post-hoc analysis using the
- 173 Tukey–Kramer test showed no significant difference between the two devices (SP-2000P and SP-6000)
- 174 for the semi-automated center-dot method; however, there were significant differences for the SP-6000
- between the two analysis methods (p < 0.01), as well as between the SP-6000 and CME-530 for the
- 176 fully-automated method without any cell border correction (p < 0.01, Table 3).

178 Bland–Altman analysis

179	Agreement among	the devices and	d methods in the	values obtained t	for ECD, AV	G, and CV	was analyzed
	L) L)				,	,	

- 180 by using Bland–Altman plots (Table 4).
- 181

182 Endothelial Cell Density

- 183 Figures 2A–C show Bland–Altman plots for the values of ECD obtained from the 3 devices and 2
- analysis methods.
- 185 A: The mean difference was 42 cells/mm², the 95% LOA was narrow (486 cells/mm²), and rs was low
- 186 (0.067).
- 187 B: The semi-automated center-dot method tended to give smaller measurement values than those of the
- 188 fully-automated method without any cell border correction for ECD of <2034 cells/mm². The mean
- 189 difference was 56 cells/mm², but the 95% LOA was wide (932 cells/mm²), and rs was high (0.7).
- 190 C: The mean difference was only -5 cells/mm², the 95% LOA was relatively narrow (646 cells/mm²), and
- 191 rs was low (0.091).
- 192

193 Average Endothelial Cell Area

194 Figures 3A–C show the Bland–Altman plots for the values of AVG obtained from the 2 devices and 2

analysis methods.

196 A: The SP-2000P semi-automated center-dot method gave smaller measurements than those of the

- 197 SP-6000 semi-automated center-dot method when the AVG increased from the approximate line based on
- 198 the scatter plot of the results. The mean difference was only-11 μ m², the 95% LOA was narrow (128
- 199 μm^2), and rs was low (-0.11).
- B: The mean difference was only 4 μ m², the 95% LOA was narrow (302 μ m²), and rs was low (0.39).
- 201 These results indicate good agreement between the 2 methods in measuring the AVG when it was ≤ 400
- μm^2 ; however, for larger AVG values, the variance was greater, which suggested that the agreement was
- 203 poor especially for low ECD.
- 204 C: The mean difference was only 33 μ m², the 95% LOA was narrow (423 μ m²), and rs was low (0.23).
- 205 These results show that agreement was good between the devices when using the fully automated method
- without any cell border correction for AVG $\leq 400 \,\mu m^2$; however, higher AVG values showed greater
- 207 variance, which suggested that the agreement was especially poor for low ECD.
- 208

209 Coefficient of Variation

210 Figures 4A–C shows Bland–Altman plots for the values of CV obtained from the 3 devices and 2 analysis

211 methods.

- A: The mean difference was only-3.4%, the 95% LOA was narrow (29.6%), and rs was low (0.13). The
- 213 results indicate good agreement between the 2 devices when using the center-dot method to measure CV.

214	B: The SP-6000 semi-automated center-dot method gave smaller measurements than those of the SP-6000
215	fully-automated method without any cell border correction when the CV increased from the approximate
216	line based on the scatter plot of the results. The mean difference was only -12.0% , the 95% LOA was
217	narrow (28.7%), and rs was low (-0.28). Overall, the SP-6000 fully-automated method without any cell
218	border correction gave higher measurements for CV than those of the SP-6000 semi-automated center-dot
219	method.
220	C: The SP-6000 gave larger measurements than those of the CME-530 when CV increased from the
221	approximate line based on the scatter plot of the results. The mean difference was only 13.4%, the 95%
222	LOA was wide (36.8%), and rs was low (0.26). Overall, the CME-530 gave smaller measurements for CV
223	than those of the SP-6000 when using the fully-automated method without any cell border correction.
224	
225	Discussion
226	It has also been reported that the semi-automated center-dot method is time-consuming but more
227	appropriate than the fully automated method without any cell border correction that produces inaccurate
228	measurements [10, 17]. However, in daily clinical practice where time is limited, the fully -automated
229	method without any cell border correction has attracted clinicians' attention as a useful method for
230	evaluating the state of endothelial cells more efficiently. It is, therefore, important to know the level of
231	agreement between the 2 methods. Because previous studies only included patients with ECD in the

232 normal range, it was essential to compare the 2 methods in patients with low ECD.

233	Even though the present study included patients with ECD of $<2000 \text{ cell/mm}^2$, the assessment of ECD
234	measurement repeatability showed ICCs of ≥ 0.9 for all pairings of devices and methods. Furthermore,
235	Bland-Altman analysis revealed stronger agreement between the 2 microscopes used in the
236	semi-automated center-dot method (95% LOA of 486 cells/mm ²) than that between the semi-automated
237	center-dot method and the fully automated method without any cell border correction (95% LOA of 932
238	cells/mm ²) and between the 2 microscopes used in the fully automated method without any cell border
239	correction (95% LOA of 646 cells/mm ²). The data in Figure 2A show that the outcome measures for ECD
240	were within 1 grade point for density estimates, but this was not the case for comparisons between the
241	semi-automated center-dot method and the fully automated method without any cell border correction
242	(Fig. 2B), and comparisons between the 2 fully automated methods without any cell border correction
243	(Fig. 2C) were on the borderline of acceptability. The data in Figure 3A show that the outcome measures
244	for AVG were ≤ 1 grade point, but this was not the case for comparisons between the semi-automated
245	center-dot method and the fully automated method without any cell border correction (Fig. 3B) and
246	comparisons between the 2 fully automated methods without any cell border correction (Fig. 3C). The
247	data in Figures 4A-C show that the outcome measures for CV were within 1 grade point.
248	Figure 5 shows the 3 images of an 82-year-old man with extremely low ECD. The images were analyzed
249	by using both software systems and the fully automated method without any cell border correction. The

250	values obtained by the fully automated method without any cell border correction were thought to be
251	influenced by the device's individual software programs. When the SP-6000 fully automated method
252	without any cell border correction is used, the software identifies the cells by attempting to detect as
253	many cell partitions as possible. This system often misidentifies large cells as small cells, especially in
254	subjects with low ECD. This commonly observed cell-detection error caused high CV measurements
255	$(39.7 \pm 8.5\%)$ and overestimation of ECD $(1380 \pm 612 \text{ cells/mm}^2)$ in 15 patients with ECD of <2000
256	cells/mm ² . In contrast, the CME503 fully automated method without any cell border correction only
257	measures cells that can be found easily. This commonly observed cell-detection error caused low CV
258	measurements (33.7 \pm 9.3%) and overestimation of ECD (1383 \pm 453 cells/mm ²) in 15 patients with ECD
259	of <2000 cells/mm ² . The fully automated method without any cell border correction used with both the
260	SP6000 and CME530 showed high variance in image quality, so multiple replicate measurements should
261	be used [7], especially for patients with low ECD.
262	Figure 6 shows the differences among the 3 images of the same patient shown in Figure 5 that were
263	analyzed by both software systems using the semi-automated center-dot method. In the semi-automated
264	center-dot method, the examiners identified and counted cells that were easily recognized; this resulted in
265	a lower CV and ECD for this method (CV: SP-2000P, $29.1 \pm 9.8\%$; SP-6000, $31.6 \pm 5.6\%$; ECD:
266	SP-2000P, 1240 ± 481 cells/mm ² ; SP-6000, 1228 ± 472 cells/mm ²) in 15 patients with ECD of <2000
267	cells/mm ² . These differences in methodology caused variations in the analytical results even for images

268	captured from the same patients. For AVG, the repeatability was good for any pairing of device and
269	analytical method (all ICCs $>$ 0.9). However, the ability to correctly detect the cell areas became weak in
270	both the fully automated method without any cell border correction and semi-automated center-dot
271	method in patients with low ECD for whom cell partitions were not clearly displayed. For CV, in addition
272	to the variation caused by differences in the analytical methods between devices, when even a small
273	number of abnormal cells exist in the cell area, the CV tends to be higher, as reported in previous studies.
274	Therefore, it is still difficult to appropriately evaluate CV [9, 18]. For the patients with low ECD in our
275	study, variations in detecting cell areas tended to occur, which resulted in low ICC values.
276	Our study had 2 limitations. First, it has been suggested that examiners should correct cell-detection
277	errors when using the fully automated method without any cell border correction to minimize variation
278	and increase correlation [11, 12, 19]. In this study, we did not make such adjustments so that we could
279	better understand the actual performance of these devices when using the fully automated method without
280	any cell border correction to analyze images with low ECD. The second limitation was that we included
281	cases with only approximately 30 cells that could be counted in the data. However, even counting 30 cells
282	was often difficult in the subjects with low ECD, so further research is needed to develop a counting
283	method suitable for use with low ECD.
284	

285 Conclusion: Despite using 3 repeated measures, use of the semi-automated center-dot method with the

- 286 SP-2000P and SP-6000 software only yielded ECD results with a precision of \pm 10% and even lower
- 287 precision for the results obtained by using the fully automated method without any cell border correction
- 288 on the SP-6000 and CME-530. Additionally, specular microscopy analysis had greater errors in patients
- with low ECD.
- 290

Table	1.	Subj	ect	demo	grap	hics
					<u> </u>	

	ECD > 3000	2000 < ECD < 3000	ECD < 2000 (11 ./2)
	(cells/mm ²)	(cells/mm ²)	ECD < 2000 (cells/mm ²)
Number	15	15	15
Age (range) (y)	24.8 ± 9.6 (5-41)	28.5 ± 7.2 (22–47)	76.3 ± 5.8 (67–89)
Female (%)	80	60	47
History of surgery	0	0	72
(%)	0	0	15
Target eye: right	16	80	52
(%)	40	80	33

Table 2. Average ICC values (n =3) for each device and analysis method

	ICC (1,1)	95% CI
SP2000P center-dot		
ECD	0.989	0.981-0.993
AVG	0.991	0.985-0.995
CV	0.691	0.553-0.803
SP6000 center-dot		
ECD	0.986	0.977-0.992
AVG	0.989	0.982-0.994
CV	0.341	0.157-0.529
SP6000 automated		
ECD	0.974	0.869–0.985
AVG	0.917	0.869-0.951
CV	0.552	0.384-0.701
CME530 automated		
ECD	0.992	0.987–0.995
AVG	0.986	0.977-0.992
CV	0.672	0.529-0.789

ICC (1, 1): intraclass correlation coefficients, one-way random effects model 95% CI: 95% confidence interval

294

methods.

Table 3. Mean ECD, AVG, and CV values for the 3 devices and 2 analysis

	SP2000P	SP6000	SP6000	CME-530
	center-dot	center-dot	automated	automated
ECD (mean \pm SD)	2483 ± 973	2441 ± 953	2385 ± 824	2390 ± 793
(cells/mm ²)	(520–3679)	(516–3707)	(579-3424)	(589–3303)
AVG (mean \pm SD)	531 ± 376	542 ± 383	537 ± 373	505 ± 297
(μm^2)	(212–1925)	(270–1938)	(292–1743)	(296–1701)
$CV (mean \pm SD)$	27.8 ± 6.8	31.2 ± 5.6	43.3 ± 7.2	29.8 ± 6.4
(%)	(18–54)	(22–50)†	(29–59)†*	(19–51)*

²⁹⁵ †significant different in CV was found between SP-6000 center method and SP-6000 boundary method

by the Tukey–Kramer test.

*significant different in CV was found between SP-6000 boundary method and CME-530 boundary

298 method by the Tukey–Kramer test.

299

Table 4. Bland-Altman Analysis for ECD, AVG, and CV values for 3 devices

and 2 analysis methods

Bland–Altman							
	Analysis						
			Differer	ce Between			
	Correla	Coeffici		2 Measuremen	its	LOA	
	tion	ent				(cells/mm ²	
)	
	rs	Р	Mean	SD	Lower	Upper95%	Width

			(cells/mm ²	(cells/m	95%		of 95%
)	m²)			
ECD (cells/mm ²)							
SP-2000P and SP-6000	0.06	0.65	42	124	-202	284	486
center-dot	7						
SP-6000 center-dot and	0.7	< 0.001	56	238	-410	522	932
SP-6000 automated							
SP-6000 and CME-530	0.09	0.54	-5	165	-328	318	646
automated	1						
AVG (µm ²)							
SP-2000P and SP-6000	-0.1	0.45	-11	33	-76	52	128
center-dot	1						
SP-6000 center-dot and	0.39	0.009	4	77	-146	155	302
SP-6000 automated							
SP-6000 and CME-530	0.23	0.13	33	108	-179	244	423
automated							
CV (%)							
SP-2000P and SP-6000	0.13	0.4	-3	8	-18	11	30
center-dot							
SP-6000 center-dot and	-0.2	0.06	-12	7	-26	2	29
SP-6000 automated	8						
SP-6000 and CME-530	0.26	0.08	13	9	-5	32	37
automated							

rs: Regression on

differences

LOA: 95% limits of

agreement

301 Acknowledgments

302 The authors thank Hajime Yamakage for his advice on the statistical analyses performed in this study.

303

- **304** Authors' Contributions
- 305 S.M., S.N., C.K., H.T., T.C., and Y.K. were involved in designing the study, S.M., N.M., and K.Y.,
- 306 conducted the study, S.M., and S.N., statistically analyzed the results of the study and all authors gave
- 307 their final approval of the article for submission.

308

3	1	0
0	-	0

311 References

- 312 1) Maurice DM, Giardini AA (1951) Swelling of the cornea in vivo after the destruction of its limiting
- 313 layers. Br J Ophthalmol 35:791-797.
- 314 2) Bonanno JA (2003) Identity and regulation of iron transport mechanisms in the corneal endothelium.
- 315 Prog Retin Eye Res 22:69-94.
- 316 3) Kim SY, Park YH, Lee YC (2008) Comparison of the effect of intracameral moxifoxacin,
- 317 levofloxacin and cefazolin on rabbit corneal endothelial cells. Clin Experiment Ophthalmol
 318 36:367-370.
- 4) McCarey BE, Edelhauser HF, Lynn MJ (2008) Review of corneal endothelial specular microscopy
- 320 for FDA clinical trial of refractive procedures, surgical devices, and new intraocular drugs and
- 321 solutions. Cornea 27:1-16.
- 5) Edelhauser HF (2000) The resiliency of the corneal endothelium to refractive and intraocular surgery.
- 323 Cornea 19:263-273.
- 324 6) Eszter S, Gabor N, Andras B, Laszlo M (2011) Evaluation of the corneal endothelium using
- 325 noncontact and contact specular microscopy. Cornea 30:567-570.
- 326 7) The American Academy of Ophthalmology (2017) Task force recommendations for specular
- 327 microscopy for phakic intraocular lenses. Ophthalmology 124:141-142.
- 328 8) Doughty MJ, Muller A, Zaman ML (2000) Assessment of the reliability of human corneal endothelial

- 329 cell-density estimates using a noncontact specular microscope. Cornea 19:148-158.
- 330 9) Goldich Y, Marcovich AL, Barkana Y, Hartstein M, Morad Y, Avnil I, et al (2010) Comparison of
- 331 corneal endothelial cell density estimated with 2 noncontact specular microscopes. Eur J Ophthalmol
- 332 20:825-830.
- 333 10) Cheung SW, Cho P (2000) Endothelial cells analysis with the TOPCON specular microscope
- 334 SP-2000P and IMAGEnet system. Curr Eye Res 21:788-798.
- 11) Doughty MJ (2013) Evaluation of possible error sources in corneal endothelial morphometry with a
- semiautomated noncontact specular microscope. Cornea 32:1196-1203.
- 337 12) Thuret G, Deb-Joardar N, Zhao M, Gain P, Gavet Y, Nguyen F (2007) Agreement between two
- 338 non-contact specular microscopes: Topcon SP-2000P versus Rhine-Tec. Br J Ophthalmol

339 91:979-980.

- 340 13) Nikolaus L, Nino H, Sandra S, Petra D, Oliver F (2015) Comparison of 4 specular microscopes
- in healthy eyes and eyes with cornea guttata or corneal grafts. Cornea 34:381-386.
- 342 14) Marianne OP, Kelly MF, Francis WP (2013) Comparison of manual and automated endothelial
- cell density analysis in normal eyes and DSEK eyes. Cornea 32:567-573.
- 344 15) Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of
- 345 clinical measurement. Lancet 1:307-310.
- 16) Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods

347 Med Res 8:135-160.

348 17)	Vecchi M, Bra	accio L, Orsoni JG (1996) T	The Topc	on SP 100	0 and Ima	ge-NET S	ystem: a coi	nparison
---------	---------------	----------------------	---------	----------	-----------	-----------	----------	--------------	----------

- of four methods for evaluating corneal endothelial cell density. Cornea 15:271-277.
- 350 18) Ugo de Sanctis, Federica M, Luca R, Paola D, Federico M (2006) Corneal endothelium evaluation
- with 2 noncontact specular microscopes and their semiautomated methods of analysis. Cornea
 25:501-506.
- 353 19) Willem S, Bart THD, Paul GHM, Hennie JMV (2005) Validity of endothelial cell analysis methods
- and recommendations for calibration in Topcon SP-2000p specular microscopy. Cornea 24:538-544.
- 355

358 Figure captions

- Fig 1. Images from a 76-year-old male analyzed by using the semi-automated center-dot method and fully
- automated method without any cell border correction obtained by using 3 different devices
- 361 Fig 2A. Bland–Altman plots for the values of endothelial cell density (ECD) obtained from the 3 devices
- and 2 analysis methods
- 363 Comparison between SP2000P semi-automated center-dot method and SP6000 semi-automated
- 364 center-dot method for ECD estimates
- 365 The line shows a regression analysis on the net differences
- 366 Fig 2B. Comparison between SP6000 semi-automated center-dot method and SP6000 fully-automated
- 367 method without any cell border correction for ECD estimates
- 368 The line shows a regression analysis on the net differences
- 369 Fig 2C. Comparison between SP6000 fully-automated method without any cell border correction and
- 370 CME530 fully-automated method without any cell border correction for ECD estimates
- 371 The line shows a regression analysis on the net differences
- Fig 3A. Bland–Altman plots for the values of average endothelial cell area (AVG) obtained from the 3
- devices and 2 analysis methods
- 374 Comparison between SP2000P semi-automated center-dot method and SP6000 semi-automated center-dot
- 375 method for estimates of AVG

- The line shows a regression analysis on the net differences
- 377 Fig 3B. Comparison between SP6000 semi-automated center-dot method and SP6000 fully-automated
- 378 method without any cell border correction for estimates of AVG
- The line shows a regression analysis on the net differences
- 380 Fig 3C. Comparison between SP6000 fully-automated method without any cell border correction and
- 381 CME530 fully-automated method without any cell border correction for estimates of AVG
- 382 The line shows a regression analysis on the net differences
- 383 Fig 4A. Bland–Altman plots for the values of the coefficients of variation (CVs) obtained from the 3
- devices and 2analysis methods.
- 385 Comparison between SP2000P semi-automated center-dot method and SP6000 semi-automated center-dot
- 386 method for estimates of CV in ell area
- 387 The line shows a regression analysis on the net differences
- 388 Fig4B. Comparison between SP6000 semi-automated center-dot method and SP6000 fully-automated
- 389 method without any cell border correction for estimates of the CV in ell area
- 390 The line shows a regression analysis on the net differences
- 391 Fig4C. Comparison between SP6000 fully-automated method without any cell border correction and
- 392 CME530 fully-automated method without any cell border correction for estimates of the CV in ell area
- 393 The line shows a regression analysis on the net differences

- 394 Fig 5. An 82-year-old-man with extremely low ECD analyzed by using both software systems and the
- 395 fully automated method without any cell border correction. Each of the 3 images have many variations
- and there are many differences in the way the cells are identified.
- 397 Fig 6. The same patient with extremely low ECD in Figure 5 analyzed by using both software systems
- and the fully automated method without any cell border correction.
- 399 Each of the 3 images have many variations, but there are fewer differences in the ways the cells are
- 400 identified in Figure 6 than in Figure 5.