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Chapter 1  General Introduction 

1.1 Background 

1.1.1 Significance of thermoelectric materials 

Energy is an indispensable material basis for human survival and development and also 

an essential guarantee for social progress and economic development. However, the rapid 

development of the economy makes the traditional energy (oil, coal and natural gas) 

facing depletion, the resulting energy crisis and the environmental problems brought 

about (toxic emission and greenhouse gas) has become an international key words in the 

world. The grim situation prompted us to search for an effective way to solve these 

problems. How to obtain and effective use of efficient and green clean energy will be a 

difficult but significant project. At present, people try to solve the energy problem from 

two aspects. One is the development of green renewable energy such as solar energy, 

water energy and wind energy. Another way is to improve the efficiency via the recycling 

of the waste heat from the use of mineral energy. According to statistics, the utilization 

efficiency of the conventional energy source is extremely low (20% ~30%), and most of 

them is wasted in the way in the form of heat emissions. Obviously, if we can effectively 

reuse this part of heat, then the energy conversion efficiency will be substantial increase. 

It is not difficult to imagine that an increasingly serious energy crisis will be effectively 

mitigated. [1-3] However, implementing effective waste heat recovery requires the 

relevant energy conversion technologies. 

Thermoelectric (TE) materials, based on thermoelectricity, is known to be able to 

convert thermal power into electrical power. [4-6] By converting waste heat into 

electricity, engine performance, efficiency, reliability, and environmental protection could 

be improved significantly. Moreover, thermoelectric generators are solid-state devices 

that contain no moving parts and thus can operate over a long period of time without 

significant maintenance. Small heat sources and limited temperature differences are 

sufficient to drive thermoelectric generators, which makes these devices interesting for 

applications where traditional dynamic heat engines cannot be employed. Namely, if the 
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TE devices can be popularized, the efficiency of the use of mineral energy will be 

undoubtedly greatly improved. Imagining that if the thermoelectric devices can be 

integrated into the car to recover the waste heat generated during the operation of the car, 

the fuel efficiency must be greatly increased, which will be considerable effect.  

1.1.2 Thermoelectric effect 

The research of thermoelectric materials begins with the discovery of thermoelectric 

phenomena. In 1821, Thomas J. Seebeck discovered that electricity would be generated 

by a closed loop formed by two different conductors joined in two places, with a 

temperature difference between the joints, which is called Seebeck effect. Physical 

principles of the effect can be explained by the change of carrier distribution (holes for p-

type and electrons for n-type) within the conductors via temperature gradient, simply 

schematized by Figure 1-1A. When the temperature gradient reaches the inside of the 

conductor, the carrier at hot end diffuses and accumulates to the cold end due to its large 

kinetic energy, so that the number of carriers at cold end will exceed that at hot end, 

establishing a self-built electric field to prevent the continued diffusion of carriers. The 

two effects will eventually maintain a certain potential difference at both ends of the 

conductor, resulting in a current flow through the circuit. Nowadays, thermoelectric 

power generation gets increasing application in advanced scientific fields, and the thermal 

source could be fuels, waste-heat, geothermal energy, solar energy and radioisotope. [2, 

7] 

A few years later, Jean Peltier found the inverse effect of the Seebeck effect 

accidentally in 1834, named Peltier effect: when the current flow through the junctions 

between two conductors, heat may be generated or removed at the junctions. The Peltier 

effect is originated from the potential energy difference of carriers in the different 

conductors that make up the loop. When the carrier flows into the conductor from the 

other through the junctions, thermal energy must be exchanged to eliminate potential 

energy differences of the two conductors, resulting in endothermic and exothermic 

phenomena, schematized in Figure 1-1B. Accordingly, Peltier effect is commonly used to 
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convert electrical energy to thermal energy, which is of interest for spot cooling or heating 

applications.  

Subsequently, after systematical analysis of Seebeck and Peltier effect, William 

Thomson revealed the relationship between the two and further found a third effect named 

Thomson effect: when current is driven through the conductor with a temperature gradient, 

except the production of irreversible resistance-related Joule heat, a continuous version 

of the endothermic and exothermic phenomena will also occur. It seems that the physical 

principle of Thomson effect is similar to that of Peltier effect, however, in Peltier effect, 

the potential difference of carriers is derived at the junctions of two different conductors, 

while in Thomson effect, the difference comes from the temperature gradient in the 

conductor. 

When the contact temperature at the joints of the circuit consisted by two conductors 

is different, the three thermoelectric effects mentioned above will be generated at the same 

time. With temperature gradient, Seebeek effect will produce thermal potentials and 

thermal currents, when the thermal current flows through the joints, Peltier effect would 

occur, when flow through the conductor, Thomson effect is produced, which is the 

interrelations of the three effects. Based on the three effects, conversion between electric 

and thermal energy can be achieved.  

 

Figure 1-1 Schematic diagrams of working principle of TE devices. (A) Seebeck effect; (B) Peltier 

effect. 
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1.1.3 Thermoelectric conversion efficiency  

Up to now, thermoelectrometry has been studied for hundreds of years, and several 

thermoelectric conversion devices upon thermoelectric effect have been successfully 

developed in power generation. In a thermoelectric device, the charge carriers are 

transported by the formation of p–n junctions by p- and n-type materials, with 

holes/electrons acting as a working ‘‘fluid” (Figure 1-1). The applied temperature 

gradient generates gradients of charge carriers, which diffuse from the hot side to the cold 

side, in turn producing an electrostatic potential. As a TE generator, the evaluation index: 

thermoelectric conversion efficiency η is defined as follows [7]: 

 

where Th (K) is the hot end temperature, Tc (K) is the cold end temperature, and ZT is the 

dimensionless figure of merit which is used to assess the thermoelectric transport 

properties of a material. 

Accordingly, a high ZT value, as well as a large temperature difference (∆T = Th - Tc) 

is conducive to a high conversion efficiency η. Details are described in the plot of different 

effects of ZT on thermoelectric conversion efficiency with varying Th. [8] (Figure 1-2) As 

shown, when ∆T ~ 500 K, η could reach 20% at ZT around 2, while 27% at ZT around 4, 

which is comparable to that of traditional heat engines. [2, 7]  

 

Figure 1-2 Plot shows the thermoelectric conversion efficiency as a function of differential operating 

temperature and ZT. [8] 



5 
 

1.1.4 Comparison of inorganic and organic materials 

Nowadays, ZT values above unity are well established based on inorganic TE materials. 

[9-14] Several typical inorganic TE materials with ZT value higher than 2 are list in Table 

1-1. It seems that we have already successfully obtained the promising TE materials. 

However, the wide application for TE devices are still under anticipation. For inorganic 

TE materials, firstly, the composing elements such as Sn, Te, Sb and Pb are toxic and rare. 

Second, laboratory processing of inorganic materials, including melt-spinning, ball 

milling, hot pressing, etc., is costly in terms of energy and instruments, and hence requires 

a long payback time. Lastly, most inorganic materials are too heavy and brittle to be of 

use in everyday life. [15]  

Table 1-1. Thermoelectric parameters of several typical inorganic TE materials (ZT > 2). 

Material σ / S cm-1 S / μV K-1 κ / W m-1 K-1 ZT 

SnSe single crystals [11] ~60 ~330 0.23 2.62  at 923 K 

Cu1.94Al0.02Se [9] 261 ~250 0.611 2.62  at 1000 K 

Na0.025Eu0.03Pb0.945Te [12] - - ~ 0.4 2.2  at 900 K 

PbTe [10] ~300 ~284 0.96 2.2  at 915K 

 
Figure 1-3 Relationship between ZT value of the inorganic TE material and temperature T. [11] 

Moreover, inorganic materials exhibit excellent TE performance for medium-grade 

(500–750 K) and high-grade (above 750 K) heat sources. A common relationship of 

current inorganic materials between ZT value and T is given in Figure 1-3. As observed, 
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for low-grade (300–500K) heat sources, however, they don’t show outstanding 

performance. Since low-grade (300–500K) heat sources which generated from industry, 

transportation, appliances and housing are more common, it is necessary to further 

develop promising TE materials at low-grade temperature. [1]  

Given the aforementioned obstacles met by current inorganic thermoelectric materials, 

organic candidates are attracting more and more attention. Compared to inorganic 

materials, organic materials have low thermal conductivity and rich electronic band 

structure, as well as the advantages like potentially abundant, light-weight, flexible, 

solution-processable and low-cost. Specifically, the advantage of organic materials are as 

follows: (1) They have lower negative environmental impact due to their chemical 

composition, lower manufacturing and processing costs, potentially abundant resources 

and recycling ability; (2) They possess excellent material processibility and may be 

formed in a variety of shapes, which is important from the application point of view; (3) 

They are easy to make thin film, the additional weight is light, which is suitable in the 

special occasions such as spacecraft and computer chips; (4) Conducting polymers are 

thermoelectrically active even at an ambient temperature which could cover the shortage 

of inorganic materials at low-grade sources. This is still a relatively new group of 

materials not fully investigated. Thus, even a small change in their properties may cause 

a fundamental step forward for their wider application for direct heat recovery and 

conversion.  

1.2 Conductive Mechanism of Conductive Polymers 

1.2.1 Development of Conductive Polymers 

Long time ago, we are used to polymers - that is, plastics - being somehow the opposite 

of metals, which are insulating and do not conduct electricity. However, since Shirakawa 

et al. [16, 17] discovered that oxidation with chlorine, bromine or iodine vapor could 

make polyacetylene films 109 times more conductive than they were originally in 1977, 

the concept that organic polymer was not conductive has been completely changed. Such 

treatment with halogen was called “doping” by analogy with the doping of 
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semiconductors. The “doped” polyacetylene exhibited metal conductance properties of 

103 S cm-1, which was higher than that of any previously known polymer. As a 

comparison, teflon has a conductivity of 10-18 S cm-1 and silver 105 S cm-1. This research 

not only opens up a new field for the application of organic polymer materials, but also 

makes important contributions to the establishment and improvement of low-dimensional 

organic solid electronics which has important scientific significance. 

1.2.2 Structural Characteristics of Conductive Polymers 

According to the conductive mechanism, the conductive polymer can be divided into 

two types: composite type and structural type. The former relies on the combination of 

polymers with certain amount of conductive material (such as black carbon, graphite, 

carbon fiber, metal, metal oxides), while the latter refers to the conductive carriers 

generated by the polymer itself via doping process. Generally, conductive polymer refers 

to the structural conductive polymer, including polyacetylene (PA), polypyrrole (PPY), 

polythiophene (PTH), polyaniline (PAn) and poly(3,4-ethylenedioxythiophene) 

(PEDOT). This is mainly because the raw materials of their monomer is easy to be 

obtained and the synthesis process is simple. There are several typical conductive 

polymers. 

Table 1-2. Molecular structures of typical conductive polymers. 

Polymer Structure Polymer Structure 
 

Polyacetylene  

 

Polyalkyl thiophene 

 
 

PEDOT 

 

 

Polypyrrole 

 
 

Polyaniline 

 

1.2.3 Conductive Mechanism of Conductive Polymers 

A key property of a conductive polymer is the presence of conjugated double bonds 



8 
 

along the backbone of the polymer. In conjugation, the bonds between the carbon atoms 

are alternately single and double. Single and double bonds both contain a chemically 

strong, localized σ-bond, while the double bonds also contain a less strongly localized π-

bond. The p-orbitals in the series of π-bonds overlap with each other, allowing the 

electrons to be more easily delocalized (i.e. they do not belong to a single atom, but to a 

group of atoms). [18, 19] However, due to the energy gap Eg (around 1.4 - 4.0 eV) 

between valence band (formed by π-π bond in the molecular) and conduct band (formed 

by π*-π* bond), such conjugation system is not enough to make the polymer material 

conductive at room temperature. In addition - and this is what the dopant does - charge 

carriers in the form of extra electrons or “holes” have to be injected into the material. A 

hole is a position where an electron is missing. When such a hole is filled by an electron 

jumping in from a neighboring position, a new hole is created and so on, allowing charge 

to migrate a long distance along the conjugated chains and then achieve the conductivity. 

After proper doping, the conductivity of the “insulating” conjugated polymer can be 

dramatically increased by several orders of magnitude, which almost close to the 

conductivity of the semiconductor, or even metal. However, the doping mechanism of 

conjugated polymer and semiconductor is completely different. The doping mechanism 

of conjugated polymer can be summarized as the following: 

(1) Redox Doping [20]: This kind of doping is the charge transfer via redox reaction that 

occurs on the polymer chain of the conjugated structure. The π electrons in the 

conjugated polymer chains could have a high degree of delocalization, exhibiting 

sufficient electron affinity as well as low electron dissociation energy, thus the 

polymer chain itself may be oxidized (loss or partial loss of electrons, p-type doping), 

or be reduced (obtained or partially obtained electrons, n-type doping). The p-type 

doping process is schematically explained using poly(acetylene) as examples in 

Figure 1-4A. First, the abstraction of an electron from the π-system of poly(acetylene) 

chain results in the formation of a radical cation. Removal of a second electron gives 

rise to a second radical cation. Then two radicals recombine to give a spinless dication. 
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Further oxidation occurring in the same manner leads to spinless charge carriers called 

positive solitons. Note that each soliton constitutes a boundary which separates 

domains differing in the phase of their π-bonds. Figure 1-4B shows schematically the 

n-type doping process of poly(acetylene) similarly. 

 

Figure 1-4 (A) p-type doping and (B) n-type doping of polyacetylene. [20] 

(2) Proton acid doping: when a proton is introduced into the conjugated polymer chain, 

the charge distribution on the polymer chain changes, the positive charge of the proton 

would transfer and disperse to the molecular chain, in equivalent to the oxidation of 

the polymer chain via the loss of electron (p-type doping). However, different from 

the oxidation doping, the total number of electrons on the polymer chain via proton 

acid doping did not change and the charge transfer is just accompanied by the 

protonation process. This doping form is most typical of polyaniline doping due to 

the strong basic centers in their backbone. [20]  

(3) Ion implantation doping [21-23]: Ion implantation is a materials engineering process 

by which selective ions are accelerated in an electrical field and then impacted into 

the target. Through the control of ions, ion energy, current density and dosage, 

polymer conductivity can be regulated expectably. The select of implanted ions will 

result in different types of doping. For instance, when K+ was injected into polyaniline, 

n-type doping was observed. [24] Moreover, as known, implantation process would 
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damage the original structure of the materials, however, for polymer, the main result 

of damage-induced structural changes is carbonization, which could lead to highly 

fused graphite-like sheet structures, further facilitating the electrical conductivity. [25]  

Although the concept of "doping" is used in the field of conductive polymers, it is 

completely different from the "doping" concept of inorganic semiconductors. The 

difference is mainly: (1) the doping of inorganic semiconductor means the atomic 

substitution, while in conductive polymer, doping is the charge transfer via redox process; 

(2) the doping level of inorganic semiconductor is very low (ten thousandths), while for 

conductive polymer, it may be up to 50%; (3) In inorganic semiconductor, there is no de-

doping process, while in conductive polymer, it existed, and moreover, the doping and 

de-doping process can be completely reversible; (4) In order to maintain the neutral nature 

of the molecular, in addition of the conductive carriers, the negative or positive ions must 

be present, which may have a certain impact on the properties of conductive polymers. 

According to the theory of energy band, it is known that when the polymer wants to 

have conductivity, it must satisfy the following two requirements: (1) the orbital of 

macromolecule can be strongly delocalized; (2) the orbital of macromolecule chains can 

overlap each other. The polymers that meet the above two conditions are: (1) conjugated 

polymers, electrons on the conjugate bond can be delimited on the whole molecule, 

resulting in the production and transport of carriers (electrons or holes); (2) Non-

conjugated polymer with overlapped π intermolecular orbital; (3) with electron donor and 

acceptor system. Generally, the conductivity of polymers is always lower than 

semiconductor, which may be due to the small carrier concentration (only about 10-1 ~ 

10-2 of the semiconductor) as well as the orders of magnitude different carrier mobility. 

Moreover, aside from the intramolecular charge transport, which mainly determined by 

the chain structure and the degree of delocalization of π electrons, the phonon-assisted 

hopping between the molecular chains would also occur. [26] Explained by the small 

polaron transport model [27], the strong electron- phonon interaction causes lattice 

distortion around the electron which moves along the chain but is also trapped by the 
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polarized field formed itself. (Figure 1-5) Each monomer unit of the conducting polymer 

can be viewed as a site. Electrical transport arises from the polarons hopping from one 

site to another caused by overlap of the electron wave functions on adjacent sites, where 

the intersite coupling is essential for TE properties.  

 
Figure 1-5 Schematic of small-polaron transport model to describe the thermoelectric transport in 

organic materials. The strong electron-phonon interaction in these organic materials causes lattice 

distortions around the electron. The electron is trapped by the polarized field formed itself. [27] 

1.3 Thermoelectric parameters 

As explained above, ZT is the determinant of thermoelectric materials which is 

indispensably defined by the thermoelectric parameters. The definition is described 

below:  

 

where S, σ, κ, and T are Seebeck coefficient, electric conductivity, thermal conductivity, 

and absolute temperature, respectively. Since, in particular, the thermal conductivity κ can 

be challenging to measure, the power factor PF (σ2S) is often used instead of ZT for the 

purpose of comparing the thermoelectric performance of different materials.  

Accordingly, to obtain an expectable ZT value, the following criteria should be 

achieved: (1) a higher electrical conductivity σ which required for larger short-circuit 

current; (2) a higher Seebeck coefficient S is preferred to achieve higher Seebeck voltages 

and (3) the thermal conductivity κ need to be as low as possible to maintain larger 

temperature difference. However, the parameters S, σ, κ are intimately linked and can 

vary with temperature, which complicates optimization and typically requires a 

compromise. 
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1.3.1 Electrical conductivity 

Electrical conductivity σ related to electronic charge e (1.6* 10-19 C), charge carrier 

concentration n (cm-3) and carrier mobility μ (cm2 V-1 s-1) is defined as:  

 

Typically, for organic semiconductors σ is ~10-2 S cm-1, n is ~1016 cm-3, and μ is ~10-4 

cm2 V-1 s-1. Explained by Liang [28], doping (the process of adding charge carriers to the 

semiconducting material either chemical or electrochemical treatments) is directly related 

to the variation of n. Upon doping, n would be increased, which facilitates the σ in a 

certain degree. Note that instead of specified values of carrier concentration, it is doping 

levels (the number of counterions per repeat unit of the polymer) that are mostly cited in 

the description of conjugated polymers because accurate measurement of carrier 

concentration in polymers is nontrivial. On the other hand, tunable molecular structures 

of organic semiconductors which can be acquired through synthetic chemistry, has a great 

impact on intrinsic μ. Moreover, the doping level also has influence on the μ in π-π 

conjugated polymers over a wide range. [29, 30] For a typical conducting polymer PMT 

(Figure 1-6), the carrier mobility strikingly increases by several orders of magnitude at 

high doping level. Accordingly, in highly doped organic semiconductors, σ is able to reach 

the values of 101 to more than 103 S cm-1. [31]  

 
Figure 1-6 Mobilities of positive charge carriers in the PMT film of different doping levels. [29] 
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1.3.2 Seebeck Coefficient  

The temperature-dependent Seebeck coefficient S(T), which can be considered as the 

entropy per charge carrier, describes the potential difference that arises per unit 

temperature difference. For small changes in temperature, S(T) is almost constant and 

thus we obtain: [32] 

 

By convention, the sign of S is given by the potential of the cold side with respect to 

the hot side and thus indicates the type of majority charge carriers, i.e. electrons or holes, 

with S < 0 for n-type and S > 0 for p-type semiconductors.  

In the framework of energy band theory and Boltzmann distribution, Seebeck 

coefficient expressed from the weighted average of the difference between the Fermi level 

(EF) and the carrier energy of the localized states contributing to the conductivity (E) can 

also be defined as: [28] 

 

where kB is the Boltzmann constant (1.38 * 10-23 J K-1), EF is Fermi energy level (eV), E 

is the energy level occupied by the carrier (eV), and A is the heat of transport constant for 

motion.  

Accordingly, the Seebeck coefficient, is related to the energy difference between E and 

EF. Normally, in conducting polymers, highly conductive materials tend to exhibit the 

conductivity from carriers close to the EF. Moreover, high doping levels will push EF into 

the conduction band for n-type semiconductor while into valence band for p-type due to 

the increased carrier concentration. This subsequently causes the number of electronic 

states above and below EF to be more equivalent, negatively reducing S. Typical values 

for a range from 103 μV K-1 for intrinsic semiconductors (e.g., undoped conjugated 

polymers) to 102 to 101 μV K-1 for moderately to heavily doped (extrinsic) semiconductors, 

and S < 101 μV K-1 for good conductors, including metals. [32]  

Thus, it is necessary to take all these factors into consideration to make tradeoff and 
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reach remarkable TE performances. A common relationship between the electrical 

properties of a thermoelectric material as a function of carrier concentration is given by 

Kar. [5] It can be observed that with the increase of carrier concentration, the electrical 

conductivity increases, while Seebeck coefficient decreases, inducing an optimization of 

power factor. (Figure 1-7A) As the carrier concentration n is directly dominated by the 

doping level, Bubnova [31] also gave the specific experimental explanation for the trade-

off relationship of oxidation level between σ and S: with the increase of oxidation level 

of the PEDOT:Tos film, σ increased, while S decreased, inducing an optimized PF with 

the oxidation level of 22%. (Figure 1-7B) 

 

Figure 1-7 (A) Relationship between the electrical properties of a thermoelectric material as a function 

of carrier concentration[5]; (B) Seebeck coefficient (filled triangles), electrical conductivity (open 

triangles) and corresponding power factor (red squares) of PEDOT:Tos film versus oxidation level. 

[31] 

1.3.3 Thermal conductivity 

To estimate the figure of merit, a careful determination of the thermal conductivity κ is 

required. As for organic TE materials, the thermal conductivity value is typically below 

1 W m-1 K-1, approaching the lowest limit of κ of inorganic ones, which is a non-negligible 

advantage for promising TE materials. The thermal conductivity is defined by the 

relationship of κ = ραCp (W m-1 K-1) where Cp is the specific heat capacity (J g-1 K-1), ρ is 

the density (g cm-3) and α is the thermal diffusivity (m2 s-1). The thermal conductivity is 

also described by  
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where  corresponds to lattice or phonon contribution and  relates to electron 

contribution. 

For organic polymers,  is low and often exits in the range of 0.1~ 1.0 W m-1 K-1, 

and more importantly,  is independent of the doping level. Enormous studies have 

shown that rich hetero-interfaces, grain boundaries and nanoinclusions originating from 

doping [33], nanostructuring [5], and heterostructures [6] can cause phonon scattering, 

thus decreasing . Moreover, for typical organic polymers, the electrical conductivity 

reaches ~10-2 S cm-1, making  several orders of magnitude lower than , which can 

be ignored compared to . [28] As a consequence, thermal conductivity in organic TE 

materials is most likely independent of the doping level and is mainly dominated by 

phonons. However, when the electrical conductivity of polymer become a few orders of 

magnitude higher, the electron contribution should be taken into account. 

1.4 Optimization Strategies for Thermoelectric properties of organic materials 

As mentioned above, thermoelectric performance is strongly dependent on the material 

doping level, chemical structures, electronic structures which is intimately related. 

Generally, there is a trade-off relationship between the electrical conductivity σ and the 

Seebeck coefficient S. For this reason, an optimal compromise should be reach to obtain 

the maximum thermoelectric efficiency. In the past years, many works dealing with the 

improved TE properties in organic polymers have been published. Since this topic is of 

special interest for designing devices, several methods will be analyzed in the next 

subsections. 

1.4.1 Optimization of polymerization conditions 

Basically, most conductive polymers are prepared by oxidative coupling of monocyclic 

precursors, which entail dehydrogenation: 

n H–[X]–H → H–[X]n–H + 2(n–1) H+ + 2(n–1) e− 

Common methods for polymerization mainly include chemical and electrochemical 

polymerization. [34] Thermoelectric properties of the conducting polymers are strongly 
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affected by the synthesis and/or processing conditions. 

1.4.1.1 Chemical polymerization 

The oxidative chemical polymerization is the most usual method to synthesize 

conductive polymers. [31, 35, 36] Basically, this method consists of the reaction between 

the monomer and an oxidizing agent. Typically, polymers synthesized by this method are 

p-type semiconductors, exhibiting an electron deficiency along its backbone. The 

polymerization mechanism of the chemical synthesis is normally described as below: as 

the first step, monomer is oxidized to give a radical cation. The radical cation then reacts 

with a neutral monomer, followed by oxidation and deprotonation, giving a dimer (an 

oligomer of two monomers). The dimer is continuously oxidized, yielding the dimeric 

radical cation. After combination with a new neutral monomer, a trimer (an oligomer of 

three monomers) was obtained. This reaction continues and the chain grows monomer by 

monomer to achieve high degree of polymerization. [19]  

As accepted, polymerization process is highly sensitive to the choice and purity of the 

solvent, oxidant, reagent concentration, reaction time, pH, temperature, stirring rate and 

so on. The classical oxidizing agents used for monomer polymerization is always 

described as (1) transition metal halides with oxidizing properties, such as FeCl3 [37]; (2) 

transition metal oxidants, such as manganese dioxide (MnO2) [38]; (3) persulfate 

compounds, such as ammonium persulfate (APS) [35]; (4) strongly or mildly peroxide 

system, such as Benzoyl peroxide (BPO) [39] and so on. Moreover, besides the oxidation 

level [40], the choice of the oxidants is also important for the polymer structure.  

For instance, Farrokhi et al. successfully synthesized the flower-like polypyrrole (PPy) 

using MnO2 as the oxidizing agent. [38] During the polymerization, the flower-like MnO2 

was served as the oxidative polymerization initiator as well as physical template, inducing 

the in situ oxidation of pyrrole monomer on the surface of the MnO2 and finally result in 

a flowerlike structure PPy. (Figure 1-8) 

In the case of PANI, the doping level can be controlled with the molar ratio of the acid 

used in its synthesis, as previously reported. [41] The electrical conductivity could be 
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controlled in the range from 1 to 6 S cm-1, depending on the concentration of HCl in the 

solution. The electrical conductivity increases as the HCl concentration increases. 

However, the Seebeck coefficient shows an opposite trend: at low HCl concentration it 

increases up to 35 μV K-1. 

 

Figure 1-8 SEM images of (a) and (b) the flower-like MnO2, (c) and (d) PPy microspheres consisted 

of interweaved PPy nanostructures. [38] 

Chemical polymerization not only provides the possibilities to synthesize all the 

conducting polymers, but also permits the scale-up production of these materials. 

However, as mentioned above, properties of the created polymer is highly sensitive to 

synthesis condition, making it difficult to be carried out reliably and repeatably. Moreover, 

the conductivity of the polymers via chemical synthesis is known to be lower than their 

electrochemically synthesized counterparts. [42]  

1.4.1.2 Electrochemical polymerization 

Electrochemical polymerization is usually carried out using the electrode configuration 

in a solutions containing the monomer of the polymer, the solvent and the electrolyte. 

During the polymerization, the monomer is being oxidized at the anode and in the same 

time the dopant anions such as such as ClO4
−, BF4

−, PF6
−, originating from the electrolyte, 

are inserted to the polymer matrix, hence forming insoluble polymer chains on the 

electrode surface. [43] The polymerization can be performed using the galvanostatic [44], 
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potentiostatic [45] and potentiodynamic [46] methods. By precise control of the 

polymerization techniques, deposition time, electrolytes, solvent, and the electrode 

system, properties of the synthesized polymers such as the film morphology, mechanics, 

and conductivity could be well defined. [47, 48]  

For example, Culebras et al. reported the different TE performances of PEDOT 

synthesized in the presence of three different counter-ions: ClO4
–, PF6

– and 

bis(trifluoromethylsulfonyl)imide (BTFMSI). [49] Depending on the sizes of different 

counter-ions, a change from a typical coil conformation to a linear or expanded-coil 

conformation takes place in the PEDOT chains. As seen in Figure 1-9A, a more extended 

PEDOT chain is obtained by the BTFMSI anions, leading to an increase of the electrical 

conductivity than that by ClO4
– and PF6

– (Figure 1-9B).  

 
Figure 1-9 (A) PEDOT conformation in the presence of different counterions; (B) ZT values of 

PEDOT:ClO4, PEDOT:PF6 and PEDOT:BTFMSI as a function of chemical reduction time at 25 oC. 

[49] 

Namely, electrochemical polymerization enables the precise control and rapid 

deposition of conductive polymers on the electrode. In addition, the oxidation level is also 

possible to be precisely defined via coulometric measurements of the current passed 

through. Despite of the advantages, it is worth noting that, different from the chemical 

synthesis, electrochemical polymerization only allows the synthesis of the polymer which 

its monomer can undergo oxidation in the presence of an electrical potential which may 

be not suitable for all the polymers. [48] Moreover, with the restriction of the geometry 

A B
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and surface area of the working electrode, it becomes difficult for the large-scale 

production of the polymers via electrochemical polymerization.  

Except the commonly used synthetic methods mentioned above (chemical/ 

electrochemical polymerization), photochemical polymerization is also applied to 

polymer synthesis. [50] In general, the photochemical polymerization reaction occurs in 

three distinct stages: initiation, propagation and termination. In the initiation step, reactive 

species are efficiently generated by the photo-induced fragmentation of photo-initiators. 

[51] These reactive species will then react with the monomer to generate chain-starting 

species (radical photopolymerization) or ion pairs (ionic photopolymerization) 

responsible for the propagation step. The last step corresponding to termination of 

polymeric chain may occur by disproportionation or combination of active species or by 

the transfer of chains. [52] Compared with the chemical and electrochemical 

polymerization, photochemical polymerization exhibits the advantages such as low costs 

required for its implementation, the fast processing speed of the reactions, the low energy 

cost required and less pollution. 

1.4.2 Chemical/ Electrochemical doping  

Another route to improve the electrical conductivity in polymers is chemical or 

electrochemical doping to introduce extra charge carriers, such as polarons and dipolarons, 

and favor charge transfer along the polymer chains over hopping.  

As mentioned, the first semiconducting polymer synthesized was the polyacetylene 

(PA), in the decade of the seventies. In its natural state, PA is almost insulating. When 

exposing the film to the vapor of iodine in room temperature, the conductivity 

dramatically increased. At highly doped state (iodine concentration was 30% per CH unit), 

the conductivity enhanced up to 2 * 104 S cm-1, which is comparable to that of common 

metals. However, such high conductivity is not stable and rapidly decreased, making it 

difficult for further study. [53] Anyway, it provides an effective path to change the 

properties of the materials.  

Even so, it is difficult to precisely control the chemical doping processes, partly 
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because the measurement of the exact oxidation level is not straightforward, and also the 

choice of dopants is limited. Therefore, an electrochemical doping process was 

demonstrated by the Crispin team as a versatile tool to optimize the TE power factor of 

conducting polymers. [54] In their work, the TE properties of PEDOT doped with PSS 

were controlled electrically by varying the gate voltage of the organic electrochemical 

transistor (OECT). An increase in gate voltage to +1.4 V led to a decrease in electrical 

conductivity from more than 224 to 0.3 S cm-1, which was accompanied by an increase 

in the Seebeck coefficient to 400 μV K-1. At an intermediate gate voltage of +0.8 V 

(corresponding to an oxidation level of 14.5%), an optimal compromise between σ and S 

was obtained, resulting in the highest measured power factor of 23.5 μW m-1 K-2. (Figure 

1-10)  

Electrochemical doping facilitates the control and measurement of the oxidation level 

via tuning of the electrode potential while enabling the measurement of the charging 

currents. Moreover, many counterions are available to balance the doping charges along 

the polymer chains simply by adding different salts in the electrolyte. 

 
Figure 1-10 (A) Schematic view of the setup for thermoelectric characterization of PEDOT−PSS 

between the source (S) and drain (D) in a three-terminal OECT; (B) electrical conductivity (blue 

symbols) and Seebeck coefficient (red symbols) as functions of gate voltage; (C) calculated power 

factor as functions of gate voltage. [54] 

A few months later, similarly, Kim et al. exhibited a very large power factor of PEDOT 

films of 1,270 μW m-1 K-2 at the doping potential of 0.1 V vs Ag/Ag+, operated on a three-

electrode system. Such high performance TE material could be processed as flexible and 

cuttable thermoelectric films to generate electricity by fingertips. [55] Sometimes, the 
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electrochemical doping could also be named as electrochemical dedoping, when the 

applied potential results in a dedoping process of the polymers.   

1.4.3 Secondary doping 

Phenomenologically, a primary dopant for a conducting polymer drastically changes 

the electronic, optical, magnetic and/or structural properties of the polymer and is 

accompanied by a large increase in conductivity. De-doping of the dopants would result 

in a reversal of the newly induced properties. Defined by MacDiarmid and Epstein, a 

secondary dopant is an apparently 'inert' substance which, when applied to a primary-

doped polymer, induces still further changes in the above properties including a further 

increase in conductivity. It differs from a primary dopant in that the newly enhanced 

properties may persist even upon complete removal of the secondary dopant. It is shown 

that the effects of secondary doping are based primarily on a change in molecular 

conformation of the polymers. [56]  

 
Figure 1-11 (A) Diagram of the structural rearrangement of PEDOT:PSS. The amorphous PEDOT:PSS 

grains (left) are reformed into crystalline PEDOT:PSS nanofibrils (right) via a charge-separated 

transition mechanism (middle) via a concentrated H2SO4 treatment; (B) HAADF-STEM images of 

PEDOT:PSS films treated with various concentrations of H2SO4. Scale bars, 200 nm. [57] 

B
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Recently, Kim et al. reported the solution-processed crystalline formation of 

PEDOT:PSS via H2SO4 treatment, and the conditions were rigorously controlled (i.e., the 

H2SO4 concentration, treatment T , and processing details). When PEDOT:PSS is treated 

with highly concentrated H2SO4 that can undergo autoprotolysis (2H2SO4 ↔ H3SO4
+ + 

HSO4
−), the two ions could stabilize the segregated states of the positively charged 

PEDOT and negatively charged PSS and then induce a significant structural 

rearrangement in the PEDOT:PSS with the removal of PSS and lead to the formation of 

crystallized nanofibrils, as shown in Figure 1-11. Due to the highly ordered and densely 

packed PEDOT:PSS nanofibrils via structural rearrangement, the corresponding 

conductivity increased up to 4380 S cm-1. [57] 

Another typical case is the use of polar organic solvent treatments such as dimethyl 

sulfoxide (DMSO), ethylene glycol (EG), N,N-dimethylformamide (DMF) and 

tetrahydrofuran (THF) for the improvement of PEDOT:PSS. [58, 59] Generally, the 

corresponding electrical conductivity would increase from 0.1 ~ 1 S cm-1 to over 1,000 S 

cm-1. Such remarkable increase is primarily ascribed to the improvement in mobility as a 

result of more extended conformation of polymer chains, thinning of insulating PSS shells, 

improved orientation and coherence of conductive PEDOT grains, etc. Very recently, 

Pipe et al. observed the simultaneous increase of both electrical conductivity and Seebeck 

coefficient by immersing the PEDOT:PSS film in EG or DMSO bath for a certain time 

in inert atmosphere. [60] Different from the common observed trade-off relationship for 

σ and S, the simultaneous increase indicates the mobility enhancement due to the chain 

rearrangement overwhelms the reduction in carrier concentration via the removal of PSS. 

(Figure 1-12) Moreover, as PSS molecules are much larger than PEDOT molecules and 

contain a much greater number of covalent bonds, the removal of PSS and consequent 

increase in the average van der Waals character of bonds within the polymers makes a 

decrease in the cross-plane thermal conductivity κ. As it is challenging to measure the 

thermal conductivity in plane for films less than 100nm thick, the authors used an 

approximation of κ, and finally derived a maximum ZT value of 0.42 at room temperature, 
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which is still the highest value yet reported among conducting polymers.  

 
Figure 1-12 (A) electrical conductivities σ; (B) Seebeck coefficients S and (C) vertical (cross-plane) 

thermal conductivities κ of the PEDOT:PSS films at different treating times. [60] 

1.4.4 Stretching treatment 

Highly oriented polymer chains allow the carrier to move easily because of the 

increased carrier mobility via the overlap of π-π bonds in conjugated polymer chains. In 

particular, stretching the polymers could yield highly oriented films which are expected 

to show high electrical conductivity. [61-63] As reported [61], Hiroshige et al. evaluated 

uniaxial stretching effect on thermoelectric properties of a series of copolymers consisting 

of both unsubstituted and 2,5-dialkoxy-substituted phenylenevinylenes (P(ROPV-co-

PV); RO = MeO, EtO (ethoxy) and BuO (butoxy)). It is found that electrical 

conductivities of the polymers were increased largely with the increase in stretching ratio. 

Moreover, the change of S via stretching treatment is associated with the properties of the 

substituent in polymers. For P(MeOPV-co-PV) and P(EtOPV-co-PV), S remained stable 

at the almost same level irrespective of stretching ratio, indicating the unchanged carrier 

concentration in the stretching alignment. While for P(BuOPV-co-PV), S varied inversely 

with σ. Possibly, incorporation of a highly electron-donating butoxy group, having high 

affinity to an acceptor dopant, affected the domination of the carrier concentration over 

thermoelectric properties. In addition, due to the rearranged molecular structure via 

stretching, stretched poly(p-phenylene vinylene) (PPV) exhibited a higher doping level 

in FeCl3 solution than the unstretched one. [63] In general, stretching treatment is proved 

to be an effective way to optimize the thermoelectric properties of the polymers. 

A B C
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1.5 Polymer blends: Polymer nanocomposites 

Recently, in addition to the modification of polymer itself, organic-based 

nanocomposites have also become the central focus of developing the next generation TE 

materials in that it is possible to enhance the electrical conductivity while reducing the 

thermal conductivity significantly in such nanocomposites. [64, 65] Besides the 

dramatically increased electrical conductivity via the combination with highly conductive 

materials such as carbon nanotube, graphene, inorganic materials, another two main 

physical mechanisms are accounted for the TE performance enhancements of 

nanocomposites: (1) the nanoscale grain size or inclusion which enhances phonon 

boundary scattering even at elevated temperatures, and (2) the energy filtering effect of 

charge carriers at the boundary and/or via enhanced ionized impurity scattering at the 

organic/inorganic interfaces, both of which strongly scatter the heat phonons and thus 

largely decrease the lattice thermal conductivity of nanocomposites and increase the ZT 

value. As a result, recent advances in organic TE nanocomposites exhibited remarkable 

performances and also showed great promise of printing large-area, flexible TE modules. 

1.5.1 Carbon materials 

In general, carbon-based materials are abundant, non-toxic, easy to scale-up, and 

compatible with solution-based processes for large-scale production. They are also 

lightweight and mechanically flexible, which provide a new form factor to produce 

flexible and portable TE devices. In addition, their large π−π conjugated systems (formed 

through fused aromatic rings) and the large specific surface areas greatly promote 

effective interfacial contacts between carbon particles and conducting polymers, thereby 

leading to a synergistic effect of property enhancements. 

1.5.1.1 Carbon nanotubes 

Being a typical example of 1D nanoparticles, carbon nanotubes (CNTs) have been 

extensively studied in both fundamental and technological researches due to their 

extremely high mechanical, electrical and thermal conductive properties (intrinsic values: 
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σ > 104 S cm-1, κ~ 103 W m-1 K-1). It is generally accepted that CNTs cannot be directly 

used as TE materials due to their high thermal conductivity, however, when effectively 

combining with polymer materials with intrinsic low conductivities, conducting 

polymer/CNT composites have become one main class of the promising TE materials. 

Yu et al. found that the electrical conductivity of the PEDOT:PSS/CNTs composites 

dramatically enhanced up to ~105 S cm-1, while the corresponding S almost keeps constant, 

inducing an optimized power factor of 160 μW m-1 K-2 at room temperature. [66] Due 

to the π−π interaction between CNT and polymers, the nanotubes establish intermolecular 

connections (the junctions shown in Figure 1-13) which facilitates electrical conduction. 

Additionally, the highly orientated CNT can also enhance the degree of ordering of the 

polymer chains around the aligned CNT, thereby enhancing the σ. [67] On the other hand, 

as mentioned, the thermal conductivity in organic TE materials is probably dominated by 

the phonons of varying frequencies. [28] Although the junctions could promote electron 

conduction, it can reversely lead to phonon scattering, making the CNT/polymer 

composites to exhibit a polymer-like thermal conductivity, ranging from 0.2 to 0.7 W m-

1 K-1, which is much smaller than that of pure CNT. [3, 68, 69]  

 

Figure 1-13 Nanotubes are coated by PEDOT:PSS particles, making nanotube-PEDOT:PSS-nanotube 

junctions in the composites. The presence of the junction is believed to give rise to exceptional 

thermoelectric transport properties (i.e., deterring heat transport as opposed to favorable pathways for 

electrons). [66] 

It is worth mentioning that processing condition including the coating method, the type 

of carbon nanotubes, mixing ratio, solvent, stabilizer, temperature and so on could 
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strongly affect the properties of the polymer/CNT composites. [70, 71] For example, 

compared to the drop-casting method, spray-printed CNT/poly(3-hexylthiophene) 

composites with 50 wt% CNT exhibits a much higher power factor of 325 μW m-1 K-2 

under the same conditions. [65]  

1.5.1.2 Graphene 

Graphene, an atomically thin sheet of hexagonally arranged carbon atoms, with its 

unique properties such as high specific surface area (~2630m2 g-1 in theory), good 

mechanical and electrical properties, and the possibility of functionalizing the graphene 

surface, has aroused much attention in the flexible TE application. [28, 72] It is also 

reported that graphene remains stable over a vast range of temperatures that is essential 

for reliability in the energy related applications. In addition, the large specific surface 

areas offered by atomically thin sheet structure is considered to strengthen the π−π 

conjugation interactions between the polymers and graphene which can induce the 

formation of an ordered polymer chain.  

PANI/graphene nanocomposite films with three types of graphenes with different 

structure characteristics were prepared through a solution-assistant dispersing method. It 

was found that structural defects and oxygen content in the graphene were closely related 

to the TE performance of the resulting composites. Higher TE properties were obtained 

in the composite film using graphene with lower levels of structural defects and oxygen 

impurities. This could be explained by the weakening of the π−π conjugation interactions 

between polymer and graphene as well as the worsening of electrical transport of 

graphene itself, resulting from the impurity and defects in the graphene. The conformation 

of PANI molecules was first changed from a compacted coil to an expended coil by the 

chemical interactions between PANI and m-cresol solvent and then was further expanded 

by the strong π-π stacking between PANI and graphene. (Illustration in Figure 1-14) The 

highly expanded molecular conformation of PANI facilitated the chain ordering during 

solvent evaporation while decreasing the structural defects along the backbone, thus 

leading to the increase in carrier mobility. Ultimately, the maximum electrical 
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conductivity and power factor of the composite films reached 856 S cm-1 and 19 μW m-1 

K-2, respectively. [73]  

 
Figure 1-14 Schematic illustration of the synthesis procedure of PANI/graphene composite film by a 

simple solution-assistant dispersing process. [73] 

1.5.1.3 Co-polymer 

Despite the carbon tubes and graphene, there are still works on co-polymers for 

thermoelectric applications. On one hand, the co-polymerization is a strong tool to 

incorporate molecular segments of different nature in a polymer chain. This method 

allows to synthesize co-polymers with better thermoelectric efficiency than the 

corresponding homo-polymers. On the other hand, the co-polymerization of two 

monomers could lead to a multilayer structured co-polymer films, which may yield 

exciting results.  

 
Figure 1-15 Cross-section SEM images of the nanofilms: (a) PEDOT:PSS, (b) PEDOT:PSS/PTh, (c) 

PEDOT:PSS/P3MeT, (d) PEDOT:PSS/P3HT. The values given above the SEM images are the carrier 

mobility (cm2 V-1 s-1)) corresponding to the co-polymers. [74] 
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As shown in Figure 1-15, compared to the pristine PEDOT:PSS, carrier mobility of the 

co-polymers with the layered structure was largely enhanced, providing a facile and 

general method for synthesizing materials with better TE performance for a wider array 

of applications. [74]  

1.5.2 Inorganic Nanoparticles 

Although the combination of carbon material with polymers intriguingly results in high 

electrical conductivities and low thermal conductivities, the Seebeck coefficient almost 

keeps constant during the processing. On such basis, inorganic materials with high 

Seebeck coefficient is considered to be another promising filler for the improvement of 

organic polymers. Similarly, such nanocomposites would also exhibit low thermal 

conductivity due to the phonon scattering or energy filtering effect at the junctions. 

Moreover, these nanoparticles could also react as the templates for rearrangement of the 

polymer chains, further improving the properties of the polymer/inorganic material 

composites.  

Through a facile synthesis, PEDOT:PSS/ tellurium nanocomposites with a power 

factor of 71 μW m-1 K-2 was obtained. [75] Interestingly, the σ of the composite was found 

to be higher than values obtained for both neat PEDOT:PSS and tellurium nanowires. The 

authors ascribed the increase to the fact that the PEDOT:PSS protects the Te nanorods 

from oxidation and improves interparticle contact. Moreover, Te nanorods can also react 

as the template which impacts the nanostructure of the polymer complex, and then further 

enhance the σ. [32] Moreover, the thermal conductivity of the composites was calculated 

around 0.3 W m-1 K-1, which is much lower than the bulk κ of tellurium of 2 W m-1 K-1. 

The high interfacial area between tellurium nanowires and PEDOT:PSS was thought to 

lead to phonon scattering, which reduces the thermal conductivity. Overall, a figure of 

merit ZT ~ 0.1 was achieved.  

Consequently, the polymer blends is proved to be an effective strategy towards high-

performance thermoelectric materials. Moreover, the modification method such as 

chemical/electrochemical doping, secondary treatment we mentioned above for the 
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polymer itself could also be applied to the further improvement of the obtained polymer 

blends. Nowadays, organic TE materials with high ZT value can be easily obtained. Here, 

several typical organic materials with expectable properties at room temperature are 

summarized in Table 1-3. 

Table 1-3 Typical values of the main thermoelectric parameters in conducting polymers, carbon 

materials and inorganic nanoparticles based polymer composites at room temperature. 

Material 
σ S κ PF 

ZT Ref 
(S cm-1) (μV K-1) (W m-1 K-1) (μW m-1 K-2) 

Conducting polymers 

EC-PP-PEDOT ~1200 ~100  1270  [55] 

heavily I-doped PA 11110 28.4  ~900  [76] 

DMSO-mixed 

PEDOT:PSS+EG 

~900 ~75 ~0.32 469 0.42 [60] 

EG-mixed PEDOT:PSS+EG ~900 ~62 ~0.37 ~350 0.28 [60] 

EC-PEDOS-C6 335 ~100  354.7  [77] 

DMSO-mixed 

PEDOT:PSS+HZ 

1310 49.3 0.3 318.4 0.31 [78] 

PEDOT:Tos +TDEA ~80 ~200 0.37 324 0.25 [31] 

PEDOT:BTFMSI+HZ ~1080 ~37 0.19 147 0.22 [49] 

EC-PEDOT:PSS ~23 ~100 0.17 23.5 0.04 [54] 

Carbon materials based polymer composites 

PANi/rGO/PEDOT /CNT ~1900 ~120  ~2710  [79] 

DWNT/(PEDOT:PSS)/TCPP 960 ~70  ~500  [70] 

Polystyrene/SSWCNT ~1250 ~58 ~0.3 413 0.41 [80] 

Spray-printed CNT/P3HT ~345 ~97  ~325  [65] 

SWNT/PANI hybrid 769 ~48 0.43 176 0.12 [64] 

PEDOT:PSS/CNT+EG ~750 ~45  ~151  [81] 

PEDOT:PSS/SWNT ~4000 ~18 ~0.53 ~140  [69] 

Inorganic nanoparticles based polymer composites 

PEDOT:PSS/PAA/Bi2Te3 380 79 0.36 ~240 0.2 [82] 

PEDOT:PSS/Bi2Te3 ~250 ~150 0.558 131 0.08 [83] 

DMSO-PEDOT:PSS/ Te ~15 260  100  [84] 

PEDOT:PSS/ Te 19.3 163 0.2~0.3 71 ~0.1 [75] 

PEDOT:PSS/ Gold Nanorod ~2000 ~12  ~30  [85] 
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1.6 Outlines 

As one kind of “green” energy conversion materials, organic TE materials have caused 

more and more concerns. In order to practical application, researchers are strived to 

improve the thermoelectric properties. Experimentally, it is important to control the 

structure and surface morphology of organic materials, and optimize the doping level, 

thereby collectively leading to the balanced TE properties while simultaneously 

engineering an electronic structure. As known, high doping level results in a high 

electrical conductivity σ. However, excessive doping would generate detrimental defects 

and traps, which reduces carrier mobility μ and then σ. Generally, when a low doping 

level is maintained, a small σ is achieved because of the comparatively low carrier 

concentration n. The reduced σ can be reversely compensated by significantly improved 

S due to the low level of doping, giving rise to the maximum power factor. Moreover, by 

careful design of suitable molecular structures of organic semiconductors, highly intrinsic 

μ is expected to be achieved. Namely, an optimal doping level, as well as the suitable 

molecular structures could collectively give a large improvement of the power factor. On 

the other side, the thermal conductivity in organic TE materials is generally recognized 

to be dominated by κL. When constructing suitable nanostructures or fabricating 

nanocomposites of conducting polymers, thermal vibrations would be confined due to the 

interfacial phonon scattering, leading to largely decrease in κL. Simultaneously, the carrier 

mobility could also be benefited owing to anisotropic charge transport. Together, it can 

be seen that TE property parameters are able to be decoupled in organic TE materials, in 

stark contrast to those of conventional inorganic analogues, therefore showing great 

promise of organic TEs. Moreover, what makes organic TE materials stand out is the easy 

processing of flexible TE materials, which is indeed difficult to realize in inorganic TE 

materials. On the basis, here, we studied on some typical organic TE materials such as 

polyaniline and PEDOT, and then developed their thermoelectric performance for a 

promising TE material. The details for this thesis are as follow: 

Chapter 1 is “General introduction”. In this part, we introduce the development process 



31 
 

and working mechanism of thermoelectric materials. Influencing factors for the 

thermoelectric properties are also discussed. Finally, several effective methods to improve 

the thermoelectric performance for organic semiconductors have been summarized 

detailedly.  

Chapter 2 is “Thermoelectric properties of PEDOT films prepared by electrochemical 

polymerization”. Thermoelectric (TE) properties of flexible and free-standing poly(3,4-

ethylenedioxythiophene) (PEDOT) films synthesized via galvanostatic polymerization of 

3,4-ethylenedioxythiophene in propylene carbonate containing sulfated poly(β-

hydroxyethers) (S-PHE) as polymer electrolyte were elaborately studied. Both electrical 

conductivities (σ) and Seebeck coefficients (S) of the PEDOT:S-PHE films were 

increased by decreasing the temperature (T) or by increasing the current density (J) during 

electrosynthesis. Possible reasons for the lack of a trade-off relation commonly observed 

between σ and S are discussed on the basis of SEM and oxidation-level measurements. 

Preparation of the PEDOT:S-PHE films was optimized with respect to T and J. In addition, 

the oxidation level of the PEDOT:S-PHE films was controlled by potential and the change 

of their TE performances was discussed in conjunction with the change of chemical 

species involved. The power factor (PF = σS2) of the PEDOT:S-PHE films reached 7.9 

μW m-1 K-2, leading to a dimensionless TE figure-of-merit (ZT) of 0.013. 

Chapter 3 is “Thermoelectric performances of graphene/polyaniline composites 

prepared by one-step electrosynthesis”. Composite films comprising graphene and 

polyaniline were prepared in one step by a facile electrochemical technique with graphene 

oxide (GO) and aniline monomer as raw materials, and their thermoelectric properties 

were investigated. Electrical conductivities of the composite films generated on the 

fluorine-doped tin oxide (FTO) electrode were dependent on the weight ratio of GO and 

aniline, and they exhibited a peak value of 30 S cm-1 at the GO/aniline ratio between 5:1 

and 10:1, while Seebeck coefficients were less dependent on the weight ratio. The 

maximum power factor (PF) for the composite films was ca. 1 μW m-1 K-2. When the 

FTO electrode was replaced by the stainless steel electrode, conductivities of the 
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composite films with the GO/aniline ratio of 8:1 were increased up to ca. 130 S cm-1. As 

a result, the PF and the dimensionless thermoelectric figure-of-merit (ZT) at room 

temperature reached 3.6 μW m-1 K-2 and 0.008, respectively. The ZT value is the highest 

among those reported so far for graphene/PANI composites. Possible reasons for the 

conductivity enhancement on the stainless steel electrode are also discussed on the basis 

of electrochemical measurements and X-ray photoelectron spectroscopy. 

Chapter 4 is “Electrosynthesis of multilayer film stacked alternately by poly(3,4-

ethylenedioxythiophene) and reduced graphene oxide from aqueous solution”. Multilayer 

films stacked alternately by poly(3,4-ethylenedioxythiophene) and reduced graphene 

oxide layers were electrochemically synthesized from a single aqueous solution 

containing 3,4-ethylenedioxythiophene (EDOT) and graphene oxide (GO) by oxidizing 

EDOT and reducing GO repeatedly on the conductive substrate. In the proposed 

technique, film thicknesses of the respective layers were easily tuned by the electrolysis 

time, and the number of layers was increased just by repeating the potential-step sequence. 

Chapter 5 is “Highly improved thermoelectric performances of PEDOT:PSS/SWCNT 

composites by solvent treatment”. Composites of poly(3,4-ethylenedioxythiophene): 

poly(styrenesulfonate) (PEDOT:PSS) and single-wall carbon nanotube (SWCNT) were 

prepared by mixing aqueous dispersions of PEDOT:PSS and SWCNT at different weight 

ratios. By being soaked with DMSO for two minutes at room temperature, the 

PEDOT:PSS/SWCNT composite with an optimized SWCNT weight ratio of 74 wt% 

exhibited a high electric conductivity of 3,800 S cm-1 and a reasonable Seebeck 

coefficient of 28 μV K-1, leading to a promising power factor of 300 μW m-1 K-2. 

Chapter 6 is “Conclusions”. Several important conclusions of this study are given in 

detail and suggestions are provided for further study. 
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Chapter 2  Thermoelectric properties of PEDOT films prepared by 

electrochemical polymerization 

2.1 Introduction 

Thermoelectric (TE) devices based on the Seebeck effect are able to harvest electricity 

from waste heat generated from households, chemical plants, or even human bodies by 

utilizing the diffusion of charge carriers induced by the gradient of temperature. Up until 

quite recently, a number of studies have been devoted to the development of TE devices 

based on inorganic materials such as Bi-Te, Co-Sb, Bi-Pb, Sn-Te alloys, and transition 

metal oxides. [1-3] They provide fairly high TE performances at elevated temperatures, 

in particular. These inorganic TE materials, however, are expensive, rare, heavy, and 

relatively difficult to process, and thus impeding their widespread use. The performance 

of a TE material is judged by a dimensionless TE figure-of-merit (ZT) and a power factor 

(PF) defined, respectively, by ZT= σS2T/κ and PF=σS2, where σ, S, κ, and T are electric 

conductivity, Seebeck coefficient, thermal conductivity, and absolute temperature, 

respectively. A typical inorganic TE material, Bi2Te3, gives ZT values greater than unity, 

which is a numerical target for a practical use of the materials in the TE devices. In recent 

years, organic TE materials have received a growing interest because of their advantages 

of low cost, abundance of raw materials, flexibility, and relatively simple manufacturing 

processes over traditional inorganic TE materials. [4-8] They are aimed at harvesting low- 

temperature exhaust heat below 200 oC which occupies a large part of waste heat. 

Conducting polymers that exhibit high conductivities at oxidized (doped) states are a 

promising class of organic TE materials and among a variety of conducting polymers, 

poly(3,4-ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT:PSS) that is 

commercially available has been intensively studied so far due to its stability in ambient 

atmosphere and extremely high conductivities exceeding 103 S cm-1. [9] A high ZT value 

of 0.42 at room temperature is reported for PEDOT:PSS films treated with dimethyl 

sulfoxide (DMSO) and ethylene glycol (EG). [10] The commercially obtained 

PEDOT:PSS has also been mixed with Bi2Te3 [11], Te [12], carbon nanotubes [13], 
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graphene [14], and Au nanoparticles [15] at different compositions to seek for 

PEDOT:PSS composites with higher TE performances. 

In the present study, PEDOT films were prepared via a constant-current (galvanostatic) 

polymerization of 3,4-ethylenedioxythiophene (EDOT) in propylene carbonate (PC) 

containing a polymer electrolyte (S-PHE in Scheme 2-1) as dopant. In general, 

conducting polymers prepared electrochemically are fragile and need substrates for fixing 

them on. [16-18] In contrast, it has been reported that the electrosynthesized PEDOT:S-

PHE films are flexible, free-standing, and mechanically strong. [19] These excellent film 

features allow us to use them in vertical TE devices as well as in in-plane TE devices. 

The former devices are favorable compared with the latter in a sense that flexible and 

compact TE devices can be realized by utilizing a soft nature of organic materials. It was 

found that both σ and S values of the PEDOT:S-PHE films were simultaneously increased 

by decreasing the polymerization temperature or by increasing the current density during 

polymerization. The observed simultaneous increase of σ and S were discussed on the 

basis of the SEM observations of the PEDOT:S-PHE films and oxidation-level 

measurements. The polymerization temperature, current density and oxidation level were 

optimized to yield higher TE performances for the PEDOT:S-PHE films. Furthermore, 

the oxidation level of the PEDOT:S-PHE films was controlled by potential and the change 

of their TE performances was discussed in conjunction with the change of chemical 

species involved. To the best of our knowledge, this may be the first to report an 

electrochemical control of oxidation states for tuning TE performances of conducting 

polymers. 

2.2 Experimental 

2.2.1 Materials 

Poly(β-hydroxyethers) (PHE) (Mw = 50000, Mw/Mn = 2.7) and propylene carbonate 

(PC) were purchased from Sigma-Aldrich, while 3,4-ethylenedioxythiophene (EDOT), 

tetraethylammonium perchlorate (TEAP), sulfur trioxide pyridine, and 

tetrabutylammonium hydroxide (40% in water) were obtained from TCI. PC and EDOT 
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were distilled under reduced pressure and stocked in a Schenk tube filled with Ar gas. S-

PHE was synthesized according to Scheme 2-1 as described previously. [19, 20] The 

degree of sulfonation ratio of the synthesized S-PHE were almost 100%. All the other 

reagents were used as received without further purification. 

 

Scheme 2-1. Synthesis of sulfated poly(β-hydroxyethers) (S-PHE) from poly(β-hydroxyethers) (PHE). 

2.2.2 Preparation of PEDOT:S-PHE films and their characterizations 

PEDOT:S-PHE films were prepared in the two-electrode system with thin stainless 

steel (SUS 304) sheets used as working and counter electrodes, unless otherwise stated. 

The surface area of the working electrode was defined to be 1 cm2. Galvanostatic 

polymerization of PEDOT:S-PHE films was carried out in PC containing S-PHE (50 mM), 

EDOT (0.5 M), and H2O (0.5 M) at different current densities and at temperatures varying 

from -30 to 10 oC. After polymerization, the PEDOT:S-PHE films were peeled off from 

the SUS electrodes and rinsed in neat PC and ethanol, and then dried under vacuum at 50 
oC for 12 hours. Thus obtained free-standing polymer films were subjected to the 

measurements of σ, S, and other properties. Conductivities of the PEDOT:S-PHE films 

were measured using the four-probe method with a resistivity meter (Loresta-GP MCP-

T610, Mitsubishi Chemical Corp.). A custom-made setup composed of thermocouples 

and Peltier devices (Figure 2-1) was used to evaluate Seebeck coefficients, where it was 

calibrated in advance with the Seebeck coefficients of -18 and +22 μV K-1 reported, 

respectively, for alumel and chromel alloys at room temperature. (Figure 2-2) [21] 

PHE 

S-PHE 
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Thermal conductivities (κ) can be defined as κ = ραCp, where ρ, α, and Cp denote density, 

thermal diffusion coefficient, and heat capacity of the film, respectively. The α values of 

the PEDOT:S-PHE films were measured with an apparatus (Mobile 2, ai-Phase Co., Ltd.) 

and the Cp values were obtained with a differential scanning calorimeter (DSC-60, 

Shimadzu). All these TE properties of the PEDOT:S-PHE films were measured at room 

temperature. Film morphologies were observed with a field-emission scanning electron 

microscope (SEM, JSM-6320F, JEOL) and ultraviolet-visible-near-infrared (UV-Vis-

NIR) spectra were taken on a spectrophotometer (UV-3150, Shimadzu). Electrochemical 

measurements were made with an automatic polarization system (HSV-100, Hokuto-

Denko).  

 

Figure 2-1 Schematic illustration of a setup for measuring Seebeck coefficients. 
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Figure 2-2 Seebeck coefficients of metals measured with our setup and reported in the literature. 

2.2.3 Spectroelectrochemisty 

UV-vis-NIR absorption measurements of the PEDOT:S-PHE films were made at room 

temperature with an air-tight thin layer cell (5 mm optical pathlength) with a polymer-

coated ITO as the working electrode, ITO as the counter electrode, and the Ag/Ag+ (0.01 

M) reference electrode in a separate compartment. [22] Absorption spectra of the polymer 

film biased at different potentials were subtracted by that of the ITO electrode. PC was 

used as solvent with S-PHE (50 mM) as supporting electrolyte. 

2.2.4 Control of oxidation states of PEDOT:S-PHE films 

Oxidation states of the PEDOT:S-PHE films were controlled by applying a given 

potential to the PEDOT:S-PHE film on SUS using the three-electrode electrochemical 

cell with the Ag/Ag+ (0.01 M) reference and Pt wire counter electrodes in PC containing 

TEAP (0.1 M). The PEDOT:S-PHE films at various oxidation states were washed in 

ethanol, dried, and then subjected to the measurements of the TE characteristics. 

Oxidation levels [23] of the polymer films were calculated by using the following 

equation:  

Oxidation level (%) = *100     (2-1) 

where M, F, and W denote the sum of molecular weights of the monomer units of PEDOT 

and S-PHE, Faraday constant, and the weight of the PEDOT:S-PHE film, respectively. Q 
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in eqn. 2-1 is the amount of electricity passing through the electrode when the potential 

is stepped from a sufficiently negative potential, where the film can be completely 

reduced, to the more positive potential for oxidation of the films. Details of the 

measurements are described earlier. [24]  

2.3 Results and discussion 

2.3.1 Characterization of PEDOT:S-PHE film 

 

Figure 2-3 (A) and (B) Photos of PEDOT:S-PHE film, and (C) and (D) SEM images of cross-sectional 

view of PEDOT:S-PHE film of 17 μm in thickness grown at J = 4.0 mA cm-2 on ITO substrate. 

Figure 2-3A and 2-3B depict photos of a PEDOT:S-PHE film, showing a smooth and 

shiny surface with soft and flexible features. The cross-sectional SEM image of the 

PEDOT:S-PHE film grafted on indium-tin-oxide (ITO) substrate is shown in Figure 2-

3C and 2-3D, which illustrate that the film is uniform and dense. Free-standing PEDOT:S-

PHE films with shiny surfaces were always obtained under the polymerization conditions 

applied in the present study, unless otherwise stated. As is usual in the 

electropolymerization of conducting polymers, film thicknesses of the PEDOT films were 

controlled by changing the amount of electricity (Q) passing through the electrode during 

galvanostatic polymerization. Figure 2-4 shows a plot of film thickness of PEDOT:S-
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PHE vs. Q obtained at current densities (J) of 1.0, 2.0, and 3.0 mA cm-2 at room 

temperature. The plot fits a single straight line irrespective of the difference in J.  

 
Figure 2-4 Thicknesses of PEDOT:S-PHE films plotted against Q for galvanostatic polymerization at 

different J values at room temperature. 

2.3.2 Optimization of preparation conditions for PEDOT:S-PHE films 

Influences of J during polymerization on σ, S, and PF of the PEDOT films were studied. 

Figure 2-5A depicts changes of σ and S with J observed with the PEDOT:S-PHE films (Q 

= 1.8 C cm-2 corresponding to 25 μm in thickness) prepared at 10 oC. The figure shows 

that when the J is increased from 0.5 to 4 mA cm-2, the σ increases remarkably from 50 

to 170 S cm-1. The increase of σ with J has been reported earlier for the PEDOT:S-PHE 

films. [19] Similarly to the increase of σ, the S value was also increased with the increase 

in J, although the change is much smaller than that of σ. By the simultaneous increase of 

σ and S with the increase in J, the PF was drastically increased from 0.5 to 4.0 μW m-1 K-

2, as shown in Figure 2-5B. We attempted to apply higher current densities to obtain 

PEDOT:S-PHE films with much greater PF values. Because of the high solution 

resistance at 10 oC, however, it was difficult to apply current densities higher than 4.0 mA 

cm-2 so far as the galvanostat is employed. We used a constant resistance and a high 

voltage of 100 V to generate constant currents such as leading to J values much greater 

than 5 mA cm-2. When the J is higher than 5 mA cm-2, however, the resulting films became 

fragile and difficult to be used for the σ and S measurements. 
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Figure 2-5 (A) σ and S, and (B) PF of PEDOT:S-PHE films (Q = 1.8 C cm-2; T = 10 oC) prepared at J 

= 0.50 to 4.0 mA cm-2. 

PEDOT:S-PHE films were grown by changing the polymerization temperature (T) 

from 10 to -30 oC at a constant J of 0.50 mA cm-2. Figure 2-6A illustrates σ and S for the 

PEDOT:S-PHE films as a function of T. As is clearly seen in the figure, the σ is increased 

from 50 to 160 S cm-1 corresponding to the decrease of T from 10 to -30 oC. Likewise, 

the S was also increased from 12 to 16 μV K-1 for the same temperature change. 

Consequently, the PF was greatly increased from 0.7 to 4.0 μW m-1 K-2 as shown in Figure 

2-6B. The polymerization temperature was not lowered further below -30 oC due to the 

enhanced resistance of the solution. In order to optimize PF of the PEDOT:S-PHE films 

with respect to J and T, PEDOT:S-PHE films were prepared by changing J at a constant 

T of -30 oC, which gives the highest PF at J = 0.50 mA cm-2. Figure 2-7A depicts 

dependences of J on σ and S for the PEDOT:S-PHE films. The change of S is small for 

the change of J ranging from 0.40 to 2.1 mA cm-2. In contrast, the σ was increased with 

the increase of J and exhibited a maximum of 200 S cm-1 when the J is around 1.2 mA 

cm-2. By increasing J further, the σ was decreased. Consequently, the PF had a peak value 

of 5.2 μW m-1 K-2 for the PEDOT:S-PHE films grown at T = -30 oC and J = 1.2 mA cm-

2, as shown in Figure 2-7B. It is likely that the degradation of the PEDOT:S-PHE films 

due to over-oxidation is responsible for the decrease of σ at higher current densities.  
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Figure 2-6 (A) σ and S, and (B) PF of PEDOT:S-PHE films (Q = 1.8 C cm-2; J = 0.50 mA cm-2) 

prepared at T = -30 to 10 oC. 
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Figure 2-7 (A) σ and S, and (B) PF of PEDOT:S-PHE films (Q = 1.8 C cm-2; T = -30 oC) prepared at 

J = 0.40 to 2.1 mA cm-2. 

2.3.3 Theoretical analysis for the simultaneously increase of σ and S 

A salient feature to be noted in Figure 2-5A and 2-6A is a simultaneous increase of σ 

and S with the increase in J or with the decrease in T, in contrast to a trade-off relation 

between σ and S commonly observed for a number of inorganic TE materials. [1] Up to 

the present time, a couple of studies with conducting polymers and their composites have 

reported a simultaneous increase of the two TE quantities by changing chemical 

compositions or preparation conditions, although no detailed explanation for this has not 

been attempted. [25-29] We will discuss below a possible reason for the lack of a trade-

off relation observed for PEDOT:S-PHE films.  

The trade-off relation between σ and S can simply be expected by assuming the 

following equations: [30] 
σ = enμ                (2-2) 
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           (2-3) 

where μ denotes the carrier mobility, n the concentration of charge carriers, m* the 

effective mass of charge carriers, and kB, , T, and e have their usual significances. Eqn. 

2-3 derived for metals and degenerate inorganic semiconductors predicts an increase of S 

with a decrease of n and such a trend has been frequently observed for organic TE 

materials as well. [31-33] At first, oxidation levels of as-synthesized PEDOT:S-PHE films 

were measured with J and T as parameter. Figure 2-8A for the change of J represents that 

the oxidation level, which is proportional to n, is decreased with the increase of J, while 

as shown in Figure 2-8B, the oxidation level tends to increase with the increase of T. In 

both figures, the directions of the change of S are opposite to those for the oxidation level 

as expected from eqn. 2-3. According to eqn. 2-2, the increase of n (oxidation level) may 

lead to the increase of σ if μ does not change much with a change of n as in the case of 

most inorganic solids, and thus a well-known trade-off relation can be expected between 

σ and S.  
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Figure 2-8 Oxidation levels of PEDOT:S-PHE films prepared under the same polymerization 

conditions (A) as in Figure 2-5 and (B) as in Figure 2-6. The S values are reproduced from those in 

Figure 2-5 and 2-6. 

As for conducting polymers, however, the charge-transport is mainly governed by the 

interchain and intrachain hopping of charge carriers from one localized state to another 

within a lattice of molecular sites. Generally, an ordered chain arrangement would result 

in reduced barriers of both interchain and intrachain hopping, and therefore enhance μ. 

[7, 31] Figure 2-9 and 2-10 compare the surface morphologies of PEDOT:S-PHE films 
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prepared under the same polymerization conditions as in Figure 2-5 (J = 0.50 to 4.0 mA 

cm-2 at T = 10 oC) and in Figure 2-6 (T = 10 to -30 oC at J = 0.50 mA cm-2), respectively. 

As seen from the SEM images, with the increase in J or the decrease in T, the surface 

morphology of the PEDOT:S-PHE film becomes smoother, implying more intimate 

interactions of adjacent polymer chains by π-π stacking. Such ordered chain arrangement 

may facilitate the hopping transport or metallic conduction between the polymer chains 

and further enhance μ in the PEDOT:S-PHE films. The highly improved carrier mobility 

should be beneficial to the improvement of σ, because the changes of n (oxidation level) 

accompanied by the changes of J or T are small as shown in Figure 2-8.  

 
Figure 2-9. SEM images of PEDOT:S-PHE films (Q = 0.36 C cm-2; T = 10 oC) prepared at E = 0.50 

to 4.0 mA cm-2. 
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Figure 2-10 SEM images of PEDOT:S-PHE films (Q = 0.36 C cm-2; J = 0.50 mA cm-2) prepared at T 

= 10 to -30 oC. 

In summary, a simultaneous increase of σ and S for the PEDOT:S-PHE films can be 

explained as follows: the increase in J or the decrease in T leads to the decrease of the 

oxidation level responsible for the increase of S, while such a change in J or T induces 

denser morphologies leading to the enhanced μ or σ. Thus both S and σ are increased by 

increasing J or decreasing T. 

2.3.4 Optimization of the oxidation level of PEDOT:S-PHE film via electrochemistry 

Crispin and his research group have revealed that the oxidation state of conducting 

polymers is a crucial factor for determining the TE performances. [31, 34] Theoretical 

considerations are also made on influences of the oxidation state on the TE performances. 

[35, 36] In ref. 34 with regioregular poly(3-hexylthiophene) (rrPHT) films, the oxidation 

state of the films was changed by chemically oxidizing the rrPHT films with nitrosyl 

hexafluorophosphate (NOPF6) and the oxidation level was evaluated with X-ray 

photoelectron spectroscopy (XPS) from the ratio of the intensities of the P(2p) signal from 

PF6
− counter ions and the S(2p) signal from rrPHT. In ref. 31, the oxidation level of the 

PEDOT films prepared by chemical oxidation of EDOT monomers was evaluated also by 

use of XPS. In the present study with PEDOT:S-PHE films, the oxidation state was 
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controlled by potential and the oxidation level was precisely determined by potential-step 

chronocoulometry as has been performed previously. [24] 

Figure 2-11A depicts a cyclic voltammogram of the PEDOT:S-PHE film, where the 

potential of as-synthesized PEDOT:S-PHE film was initially set at -1.6 V until the 

polymer film may be reduced completely and then scanned to the anodic direction. The 

oxidation level of the PEDOT:S-PHE film is plotted against potential in Figure 2-11B. As 

has been reported earlier for poly(3-metylthiophene) [24] and other conducting polymers 

[37-39], the logarithm of oxidation level increases linearly with potential and tends to 

saturate at more positive potentials. The maximum oxidation level for the PEDOT:S-PHE 

film was around 16%, slightly smaller than 20-30% reported for conducting polymers 

doped with small anions such as ClO4
- and PF6

-. Absorption spectra of the PEDOT:S-

PHE film were taken at different potentials in order to identify chemical species that may 

be generated at various oxidation states of the polymer film (Figure 2-12). At a 

sufficiently negative potential of -1.2 V, the polymer film exhibits a main absorption band 

at 610 nm, ascribable to π-π* transition of a neutral PEDOT film. By increasing the 

potential, the intensity of the 610-nm band decreases, and a new broad band appears at 

900 nm and gains its intensity, suggesting the increased fraction of polarons and/or π-

dimers in the PEDOT:S-PHE film. When the applied potential was increased further, both 

the 610- and 900-nm bands disappeared and only absorption band in the NIR due to 

bipolarons was observed. [40] 

 
Figure 2-11 (A) Cyclic voltammogram and (B) plot of oxidation level vs. potential (E) for PEDOT:S-

PHE film (Q = 0.18 C cm-2; J = 1.2 mA cm-2; T = -30 oC) measured in PC/TEAP (0.1 M) at room 
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temperature. Potential-scan rate in Figure 2-11A is 50 mV s-1. 

 
Figure 2-12. In-situ absorption spectra of PEDOT:S-PHE film (Q = 0.02 C cm-2; J = 1.0 mA cm-2) 

prepared on ITO electrode at room temperature. The applied potential was changed from -1.2 to 0.5 V 

vs. Ag/Ag+, although absorption spectra at 0.1-0.5 V were not shown here because no appreciable 

changes of spectra were seen. 

The PEDOT:S-PHE films were prepared under the optimized polymerization 

conditions (J = 1.2 mA cm-2; T = -30 oC) and the films were biased at respective potentials 

in PC/TEAP (0.1 M) to control their oxidation states. After the potentiostatic control of 

the oxidation state, the PEDOT:S-PHE films were peeled off from the SUS substrate and 

were subjected to the σ and S measurements. The obtained σ and S values are plotted in 

Figure 2-13A against the oxidation level in place of potential. As the oxidation level was 

decreased from 10 to 0.1%, the σ was decreased greatly from 150 to 0.2 S cm-1 while the 

S was increased monotonously from 19 to 123 μV K-1. The PF values calculated from σ 

and S in Figure 2-13A are plotted against the oxidation level in Figure 2-13B. The plot 

demonstrates a significant influence of the oxidation state of the polymer film on PF. The 

maximum PF value of 7.9 μW m-1 K-2 was obtained at the oxidation level of 6%, where 

predominant chemical species on PEDOT chains are π-dimers and bipolarons. The κ 

value of the PEDOT:S-PHE film was evaluated as 0.186 W m-1 K-1, comparable to the 

literature value of 0.18 W m-1 K-1 for PEDOT:PSS [41], by using the equation κ = ραCp 

with the data of ρ = 1.02 g cm-3, Cp = 1.38 J g-1 K-1, and α = 1.32 x 10-7 m2 s-1 measured 

in this study. The combination of the maximum PF of 7.9 μW m-1 K-2 with the k of 0.186 
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W m-1 K-1 yielded a ZT value of 0.013 at 300 K. 
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Figure 2-13 (A) σ and S, and (B) PF of PEDOT:S-PHE films (Q = 0.90 C cm-2; J = 1.2 mA cm-2; T = 

-30 oC) plotted against oxidation level.  

2.4 Conclusions 

Flexible and free-standing PEDOT:S-PHE films were prepared by galvanostatic 

polymerization and their thermoelectric performances were investigated. In contrast to a 

trade-off relation between σ and S observed for inorganic TE materials, σ and S values 

were simultaneously increased by decreasing the polymerization temperature or by 

increasing the current density during polymerization. The reason for this unique feature 

characteristic of conducting polymers was explained reasonably on the basis of SEM and 

oxidation-level measurements. The influence of oxidation state of the PEDOT:S-PHE 

films on their TE performances was also studied by changing the oxidation level by 

controlling the applied potential. Under the optimized polymerization conditions (T = -30 
oC, J = 1.2 mA cm-2, oxidation level = 6%), the PF and ZT values of the PEDOT:S-PHE 

films were 7.9 μW m-1 K-2 and 0.013, respectively. 
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Chapter 3  Thermoelectric performances of graphene/polyaniline 

composites prepared by one-step electrosynthesis 

3.1 Introduction 

Thermoelectric (TE) materials have received much interest because they are 

capable of directly converting exhaust heat to electricity with no use of moving 

mechanisms responsible for noises and outages. Their performances are evaluated 

by a thermoelectric power factor (PF) and a dimensionless thermoelectric figure-

of-merit (ZT) defined by PF= S2σ and ZT= S2σT/κ, where S, σ, κ, and T are Seebeck 

coefficient, electric conductivity, thermal conductivity, and absolute temperature, 

respectively. Bi2Te3, which has been used in a Peltier element, is a typical inorganic 

TE material giving a ZT value close to unity, [1] which is believed to be a numerical 

target for a practical use of the TE materials. TE materials based on inorganic 

compounds have been intensively studied so far and those having ZT values greater 

than unity have already been developed. However, the high TE performances of 

them tend to be realized only at increased temperatures beyond 400 oC, although a 

large part of exhaust heat from households as well as chemical plants, so-called 

low-temperature exhaust heat, is known to be below 200 oC and thus TE materials 

efficient at low temperatures are needed for practical applications. In addition, most 

of efficient inorganic TE materials developed so far are composed of Bi, Sb, Te, 

Pb, Co, or Ge, that are expensive, brittle, unstable in air, and even toxic. Very 

recently, an increasing number of studies have been devoted to organic alternatives 

to inorganic TE materials. In general, organic compounds are weak against heat 

compared with inorganic ones, but they can be used for an effective recovery of a 

low-temperature exhaust heat occupying 70% of a total exhaust heat. Instead, 

organic TE materials are attractive candidates because of low cost of fabrication 

due to a plenty of resources and ease of synthesis, light weight, flexibility, and low 

thermal conductivities leading to high ZT values. Conducting polymers match the 

above conditions and polyaniline (PANI), one of conducting polymers, was an 
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organic TE material studied first by Toshima group in 1999. [2, 3] Conducting 

polymers such as polypyrrole [4, 5], polyphenylenevinylenes [6], polythiophene 

[7], and its derivatives including poly(3,4-ethylene-

dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) have also been investigated 

as a class of possible organic TE materials. It has been reported that the 

commercially available PEDOT:PSS films after treatment with organic solvents 

and/or chemical or electrochemical control of their oxidation levels give the ZT 

values of 0.25 [8], 0.31 [9], and 0.42 [10]. Another strategy to improve the TE 

performances is to fabricate composites by expecting a possible synergistic effect 

arising from a combination of materials with different properties. Indeed, 

composites of carbon nanotube (CNT) and conducting polymers were examined 

and a synergistic effect was found. [11-14] Composites consisting of PANI and 

graphene oxide (GO) or reduced GO have also been intensively studied. [15-22]  

In the present study, graphene/PANI composites prepared by a simple electrochemical 

technique developed earlier for producing electrochemical capacitors are investigated 

from the viewpoint of their application to TE materials. [23] The composites with 

different weight ratios of graphene and PANI are prepared, and their conductivities and 

Seebeck coefficients are measured at room temperature to evaluate TE performances. It 

is found that the conductivities of the composite films are enhanced by four times when 

the fluorine-doped tin oxide (FTO) electrode is replaced by the stainless steel (SUS) 

electrode. The composite films prepared on the SUS electrodes with the GO/aniline 

weight ratio of 8:1 give the maximum PF of 3.6 μW m-1 K-2 and ZT value of 0.008 at 

room temperature. The conductivity enhancement on the SUS electrode is also discussed 

on the basis of electrochemical measurements and X-ray photoelectron spectroscopy. 

3.2 Experimental 

3.2.1 Preparation of GO/aniline film 

GO was synthesized from a natural graphite powder (SNO-10 from SEC Carbon Ltd.) 

by a modified Hummers method as described. [24] A desired concentration of GO-
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dispersed solution was prepared by adding a given amount of GO powder into 10 mL of 

deionized water and ultrasonicated for one hour to enhance exfoliation. Mixtures of 

GO/aniline at different weight ratios (WGO/WANI) were prepared by adding a controlled 

volume of purified aniline into 10 ml of 3 mg mL-1 GO dispersion. The GO/aniline 

mixtures were well dispersed after being sonicated for 10 min. GO/aniline films (0.50 

mg) with different GO/aniline weight ratios were prepared by casting a given volume of 

the above mixtures on an FTO electrode or a thin stainless steel (SUS 304) sheet fixed by 

a double-face adhesive tape on a glass plate. Surface areas of the GO/aniline films were 

controlled to be 0.785 cm2 (diameter of the film: 1.0 cm) irrespective of the weight ratio. 

A photo of the composite film prepared as described below is shown in Figure 3-1B. 

 

Figure 3-1 (A) Illustration of a two-electrode cell for electrochemical conversion of GO/aniline film 

to erGO/PANI composite and (B) photo of erGO/PANI film. 

3.2.2 Preparation of erGO/PANI film 

The structure of the two-electrode cell is shown in Figure 3-1A, where a filter paper 

soaked with acid (2 M H2SO4) is sandwiched between the two conductive substrates (FTO 

or SUS) on which GO/aniline films having the same GO/aniline ratios are deposited. The 

successive triangular-wave voltage between -1.4 and +1.4 V at a scan rate of 100 mV s-1 

was applied to the electrodes to convert GO to its reduced form (electrochemically 

reduced GO: erGO) and, concurrently, to oxidize aniline to PANI in the GO/aniline films 

deposited on the electrodes. Alternatively, the redox cycles were performed by stepping 

the applied voltage between +1.4 and -1.4 V with a rest time of 20 s at each stepped 

voltage. As is schematically shown in Figure 3-2, the top GO/aniline film will be oxidized 
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to give PANI and the bottom film will be reduced to give erGO. When the voltage is 

reversed, on the other hand, GO in the top film will be reduced and aniline in the bottom 

film will be oxidized. Thus, by cycling the voltage between +1.4 and -1.4 V in the voltage-

sweep and –step methods, aniline and GO in both films can be simultaneously oxidized 

and reduced to PANI and erGO, respectively. The voltage of 1.4 V was decided according 

to our previous work. [23] After the experiment, the two-electrode cell was short-circuited 

and decomposed to pick up erGO/PANI composite films, and then the free-standing 

composite films (ca. 5 μm in thickness) were obtained. 

 

Figure 3-2 Illustration for mechanisms of electrochemical conversion of GO/aniline film to 

erGO/PANI composite in two-electrode cell. 

3.2.3 Characterization of erGO/PANI film 

The obtained erGO/PANI films were then subjected to the measurements of 

conductivity, Seebeck coefficient, and other properties. Conductivities of the composite 

films were determined by the four-probe method using a resistivity meter (Loresta-GP 

MCP-T610, Mitsubishi Chemical Corp.). Seebeck coefficients were measured using a 

custom made set-up composed of thermocouples and Peltier devices. This set-up was 

calibrated with the Seebeck coefficients of -18 and +22 μV K-1 reported for alumel and 

chromel alloys at room temperature, respectively, which is consistent with that reported 

in the literature. XPS spectra of the composite films were taken on an X-ray photoelectron 

spectroscopy (XPS: ESCA-3400, Kratos Analytical). Film morphologies were observed 

with a field-emission scanning electron microscope (SEM, JEOL JSM-6320F). 
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Electrochemical measurements were made with an automatic polarization system 

(Hokuto Denko HSV-100). 

3.3 Results and discussion 

3.3.1 Influence of electro-polymerization method on erGO/PANI film 

 

Figure 3-3 Changes in conductivity (σ) of GO/aniline (WGO/WANI=8) film with electrolysis time, 

prepared on FTO electrodes by a) voltage-sweep and b) voltage-step methods. In the former method, 

voltage of the two electrodes was cycled between -1.4 and +1.4 V at a sweep rate of 100 mV s-1, while 

in the latter, voltage was stepped repeatedly between +1.4 and -1.4 V, and kept at respective voltages 

for 20 s. Weights of the respective GO/aniline films were ca. 0.50 mg. All the curves and the vertical 

segments in Figures 3-3 are drawn for guides of eyes. 

In our previous study [23], GO/aniline films in the two-electrode cell were converted 

successfully to erGO/PANI composite films by cycling the voltage between -1.4 and +1.4 

V at ±100 mV s-1. The integral area of the current vs. voltage curve during the voltage 

cycling could be a measure of the extent of the reaction and also provided an integral 

capacitance of the composite film. In the present study, GO/aniline films was treated in a 

similar fashion and the voltage cycling was stopped at a given time to decompose the 

two-electrode cell and pick up thus treated films for the conductivity measurements. 

Black circles in Figure 3-3 depict conductivities of the films obtained in this way, where 

the WGO/WANI of GO/aniline film was 8:1 and the FTO electrode was used. The films 

were almost insulating when the time of the voltage cycling was shorter than 10 hours, 

whereas the conductivity increased slowly with time and was 20 S cm-1 even 15 hours 
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after the start of voltage cycling. In order to shorten the time required for the conversion 

of GO/aniline to erGO/PANI, a square-wave voltage between +1.4 and -1.4 V was applied 

to the cell (20 s at each voltage). The conductivities of the composite films converted by 

the square-wave voltage are shown by blue circles in Figure 3-3. As expected, the 

conductivities increase in much shorter time and level off at ca. 30 S cm-1 at 13 hours or 

later, although the conductivity values of the composite films prepared under the same 

condition are somewhat scattered. We have already noted that the almost complete 

conversion to the composite requires longer times when the WGO/WANI values of the 

GO/aniline films are larger. [23] In view of this, in the subsequent study, we electrolyzed 

the GO/aniline in the two-electrode cell for 20 hours irrespective of their composition 

(WGO/WANI). 

3.3.2 Influence of GO/aniline weight ratio (WGO/WANI) on erGO/PANI film 

 

Figure 3-4 Changes in A) conductivity (σ), B) Seebeck coefficient (S), and C) power factor (PF) of 

erGO/PANI composite with GO/aniline weight ratio, WGO/WANI, where GO/aniline films were treated 

by voltage-step method with FTO electrodes. 

Figure 3-4 illustrates conductivities (σ), Seebeck coefficients (S), and power factors 

(PFs) of the erGO/PANI films obtained by electrosynthesis of GO/aniline films with 

different WGO/WANI values on the FTO electrodes for 20 hours by using the square-wave 

voltage. It is seen from Figure 3-4A that the conductivities increase with the increase of 

WGO/WANI and show a broad peak in the range of WGO/WANI between 5 and 10. By 

increasing the ratio of GO in the GO/aniline film further, the conductivities dropped to 

around 10 S cm-1. Figure 3-4B depicts a plot of Seebeck coefficient against WGO/WANI. 

The Seebeck coefficients are positive, demonstrating that main charge carriers in the 
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composites have a positive sign. As is the case of conductivities, Seebeck coefficients of 

the composite films are scattered, but we see that they are not dependent much on 

WGO/WANI compared with the conductivities. Figure 3-4C depicts power factors of the 

composite films calculated with the data shown in Figures 3-4A and 3-4B. The figure 

shows clearly that there is a WGO/WANI value which gives a maximum power factor of ca. 

1 μW m-1 K-2. By referring to this result, the GO/aniline films of WGO/WANI = 8 were 

employed for examining an influence of an electrode material as described below. 

3.3.3 Influence of working electrode (FTO or SUS) on erGO/PANI film 

In Figure 3-5 are compared the TE properties of the GO/aniline films (WGO/WANI = 8) 

treated with the FTO and SUS electrodes using the voltage-step technique (±1.4 V). As 

shown in Figure 3-5A, conductivities of the composite films prepared with SUS (red) 

start to increase with a lapse of electrolysis time without delay like the case of FTO (blue) 

and reach ca. 130 S cm-1 10 hours after the start of electrolysis, being followed by the 

decrease of conductivities by further electrolysis. It is likely that the conductivity decrease 

is due to overoxidation of PANI on the SUS electrode. Seebeck coefficients were also 

measured for the composite films prepared on FTO and SUS electrodes and the results 

are depicted in Figure 3-5B. In contrast to the case of conductivities, the Seebeck 

coefficients were almost independent of the electrolysis time for both FTO and SUS 

electrodes, and were around 16 μV K-1 irrespective of the difference of the electrode 

materials, although the Seebeck coefficients for the FTO electrode were small in the short 

electrolysis time. It is well-known in TE materials studies that there is a trade-off relation 

between conductivity (σ) and Seebeck coefficient (S). It is likely that such a relation does 

not hold for the erGO/PANI composites: a large change in σ with a negligible change in 

S with the electrolysis time. It is known that the Seebeck coefficient (S) is explained by 

the following equation: [25] 

                                     (1) 

where m* denotes the effective mass of charge carriers, n the density of charge carriers, 

and kB, , T, and e have their usual significances. Thus, almost constant values of S in Fig. 
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3-5B suggest that the density of charge carriers (n) does not change with the electrolysis 

time so far as the m* value is constant. On the other hand, the electrical conductivity (σ) 

is a product of n and the charge carrier mobility (μ) as expressed by σ = enμ. Therefore, 

the σ values should not change when the n and μ values do not change. Nevertheless, the 

σ values change with the electrolysis time as shown in Figure 3-5A. Consequently, the 

observed change of σ is likely to be ascribed to the development of electrically conductive 

domains in the GO/aniline film with the increase in the electrolysis time.  

 

Figure 3-5 Changes in A) conductivity (σ), B) Seebeck coefficient (S), and C) power factor (PF) of 

GO/aniline (WGO/WANI = 8) films with electrolysis time, where GO/aniline films were treated by 

voltage-step method with a) FTO and b) SUS electrodes.  

Figure 3-5C depicts the power factors of the composite films prepared with the SUS 

electrode in comparison with those with the FTO electrode. The maximum power factor 

for the former films is close to 3.6 μW m-1 K-2 when the electrolysis time is 10 hours, 

while the power factor for the latter film is less than 1 μW m-1 K-2. Very recently, thermal 

conductivities of reduced graphene oxide-polyaniline composites have been reported to 

be 0.1078 to 0.1433 W m-1 K-1 for 0 to 80 wt% of reduced GO, less dependent on the 

composition ratio. [21] If we assume the thermal conductivity of the erGO/PANI film 

(WGO/WANI = 8) as 0.13 W m-1 K-1, one can evaluate the maximum ZT value for the 

composite films as 8x10-3 at room temperature. This ZT value is much smaller than those 

for the PEDOT:PSS films, [8-10] but is high compared with those reported so far for 

graphene/polyaniline composites: 1.37×10-3 [15], 1.26 x 10-4 [17], 4.86 x10-4 [18], 

1.95x10-3 [20], 4.23x10-4 [21], and 4.6x10-3 [22]. It is also much greater than those for 

PANI alone. [3] 
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3.3.4 Characterization and analysis of erGO/PANI film 

 
Figure 3-6 Linear-sweep voltammograms (LSVs) of A) FTO and B) SUS electrodes in aqueous 

solutions of 0.1 M KCl (broken line) and 2 M H2SO4 (solid line) at 50 mV s-1. LSVs on GO-deposited 

FTO and GO-deposited SUS electrodes are also included in the figure and expressed by red lines, 

while those on bare FTO and SUS electrodes are by black lines. 

We will now discuss the reason for the conductivities of the erGO/PANI composites 

enhanced by the use of the SUS electrode. Figure 3-6A depicts linear-sweep 

voltammograms (LSVs) of FTO and GO-deposited FTO electrodes measured with a 

three-electrode system in aqueous solutions of 0.1 M KCl and 2 M H2SO4, while Figure 

3-6B denote LSVs on SUS and GO-deposited SUS electrodes in the same solutions. On 

the bare FTO electrode in KCl solution (black broken curve), only small cathodic currents 

flow at potentials more positive than -1.4 V. In the H2SO4 solution, the cathodic current 

rise starts at 0.7 V, which is shifted to a positive direction (black solid curve) due to the 

reduction of protons on the FTO electrode. LSVs of GO-deposited FTO in KCl and H2SO4 

solutions (red broken curve) suggest that the reduction of GO deposited on FTO takes 

place in KCl solution and the GO reduction is slightly enhanced in H2SO4. Here, by 

comparing LSVs of FTO and GO-deposited FTO electrodes in the H2SO4 solution, we 

see that in the two-electrode cell, GO on FTO will be reduced without appreciable 

evolution of hydrogen gas. As is shown in Figure 3-6B, on the other hand, protons are 

more easily reduced on SUS than FTO because of a low hydrogen overpotential of SUS 

and GO deposited on SUS is reduced at the same potentials as the reduction of protons. 

Therefore, one can presume that in the two-electrode cell experiments with SUS, the 
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electrochemical reduction of GO may take place concurrently with the evolution of 

hydrogen gas on the surface of SUS. On this basis, we presume that the relatively high 

conductivities of the erGO/PANI composites prepared with SUS are due to an efficient 

conversion of GO to erGO by the electrochemical reduction of GO in the presence of a 

highly reducing hydrogen gas.  

 

Figure 3-7 SEM images of erGO/PANI composites obtained by electrolysis of GO/aniline 

(WGO/WANI=8) films on A) and B) FTO, and C) and D) SUS electrodes. 

The erGO/PANI composites were prepared by using the voltage-step technique (±1.4 

V, 10 hours) with the FTO and SUS electrodes and the SEM images of the obtained 

composite films are shown in Figure 3-7. At low magnification, both the surfaces of the 

composites prepared with FTO and SUS show a wrinkled structure characteristic of GO. 

A clear difference is seen in the SEM images taken at high magnification: PANI 

nanoparticles are dispersed better in the erGO/PANI composite prepared with SUS than 

in those obtained with FTO. The more uniformly-dense distribution of the PANI 

nanoparticles for the composites obtained with the SUS electrode may be related to the 

evolution of hydrogen gas during preparation of the composites. 

Table 3-1 Fitted results (%) of C1s XPS spectra of erGO/PANI composites prepared on FTO and SUS 
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electrodes 

 

 

Figure 3-8 XPS spectra for C1s of erGO/PANI (WGO/WANI=8) composite films obtained by voltage-

step method with A) FTO and B) SUS electrodes. 

Figures 3-8A and 3-8B show the C1s XPS spectra of the erGO/PANI-8:1 films 

(WGO/WANI = 8) prepared with the FTO and SUS electrodes, respectively, and detailed 

information of each peak in the fitted results of the C1s XPS spectra is summarized in 

Table 3-1. The composite film (FTO) contains 33.2% oxygenated carbons including 

13.7% C–O (hydroxyl and epoxy) centered at 286.5 eV, 5.3% C=O (carbonyl) at 287.8 

eV, and 14.2% O-C=O (carboxyl) at 289.1 eV. [26, 27] Carbon atoms of 66.8% are 

nonoxygenated, including 28.3% sp2 carbons at 284.3 eV and 38.5% sp3 carbons (defect) 

at 285.15 eV. When the SUS electrode is used in the two-electrode cell, on the other hand, 

sp2 carbons increase from 28.3% to 38.9% with a slight decrease of sp3 carbons (38.5% 

to 32.2%). The nonoxygenated carbon groups in erGO/PANI (SUS) increase from 66.8% 

to 71.1%, suggesting that the oxygen-containing functional groups are removed 

effectively by using SUS in place of FTO. The effective removal of the oxygen species 

on the SUS electrode can be a reason for the formation of highly conductive erGO/PANI 

composites. 
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3.4 Conclusions 

Composite films of graphene/polyaniline were prepared by a one-step 

electrochemical technique with GO and aniline monomer, and their thermoelectric 

performances were optimized with respect to the electrolysis time and the weight 

ratio of GO and aniline. It was found that the electrical conductivities of the 

composite films can be enhanced ca. four times by employing SUS in place of FTO, 

while no appreciable change was observed for the Seebeck coefficients. The 

composite films of the GO/aniline weight ratio of 8:1 prepared on the SUS 

electrodes gave the maximum power factor of 3.6 μW m-1 K-2 and ZT value of 

0.008 at room temperature. In addition, the conductivity enhancement on the SUS 

electrode were accounted for in terms of the efficient removal of oxygen species 

of GO by the direct electrochemical reduction of GO on SUS concurrently with the 

reduction of GO by hydrogen gas generated by reduction of protons on SUS. 
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Chapter 4  Electrosynthesis of multilayer film stacked alternately by 

poly(3,4-ethylenedioxythiophene) and reduced graphene oxide from 

aqueous solution 

4.1 Introduction 

Since the late 1970’s, electrically conducting polymers based on π-conjugated 

polymers have attracted a great deal of attention from many researchers, especially in the 

field of plastic electronics [1-5]. To further enhance their electrical performances by the 

synergistic effects, many types of composites of conducting polymers and carbon-based 

nanomaterials have been developed and applied to organic electronics such as capacitors 

[6], electrochromic displays [7], and thermoelectrics [8-12]. Among carbon-based 

materials, graphene has attracted a huge interest in recent years because of their excellent 

mechanical, thermal, and electrical properties [13]. 

In most reports, however, conducting polymers and graphene or graphene-like 

materials are mixed in the composites without any detailed control of their structures. It 

is interesting to obtain the multilayer films stacked alternately by two materials with 

different electronic properties, because such a multilayer structure may lead to 

manifestation of anisotropic properties in thermal and electrical conduction [14]. Actually, 

it has been reported that thermoelectric properties of inorganic materials are improved by 

the introduction of quantum-well superlattice structures using multilayer structure [15]. 

In this report, we describe a novel and facile technique to obtain the multilayer structure 

of conducting polymers and graphene by electrolysis of an aqueous solution of 3,4-

ethylenedioxythiophene (EDOT) [16-18] and graphene oxide (GO) [19, 20]. EDOT is 

known as a monomer of poly(3,4-ethylenedioxythiophene) (PEDOT), which is one of the 

most famous conducting polymers due to its highly electrical conductivity [21, 22]. The 

electrolytic polymerization of EDOT in water can easily give PEDOT. On the other hand, 

GO can be obtained by oxidation of natural graphite, followed by exfoliation of graphite 

oxide. With a large amount of oxygen-containing functional groups such as hydroxyl, 

alkoxy, epoxy, carbonyl, and carboxyl groups, GO has a negative surface charge and is 
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well-dispersed in water. It is well-known that GO can be reduced to give a graphene-like 

material (reduced GO, rGO) by electrochemical means [23-26]. These facts hint us that 

the multilayer film stacked by PEDOT and rGO can be obtained by applying a suitable 

potential sequence on a conductive substrate in aqueous solutions containing only EDOT 

and GO (Scheme 4-1A). It is very useful from the viewpoint of industrial aspect to utilize 

the electrolysis method because this method can develop to prepare the film with large 

area. The resulting multilayer composite films (PEDOT/rGO) were characterized by X-

ray photoemission spectroscopy (XPS), X-ray diffraction (XRD) and field-emission 

scanning electron microscopy (FE-SEM) analysis, and electrical conductivity 

measurements. The multilayer structures of PEDOT and rGO were controlled by the 

electrode potentials and the electrolysis times. 

 

 
Scheme 4-1 (A)Electrochemical oxidation of EDOT at anodic potential (Eox) and reduction of GO at 

cathodic potential (Ered) in aqueous solution of EDOT and GO to generate PEDOT and rGO films, 

respectively; (B) Potential-sequence to produce multilayer film composed of PEDOT and rGO. 

 

A

B
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4.2 Experimental 

4.2.1 Preparation of multilayered PEDOT/rGO film 

GO was synthesized from a natural graphite powder (SNO-10, SEC Carbon Ltd.) by a 

modified Hummers method as described [27]. The multilayered PEDOT/rGO films were 

electro-synthesized via alternate potential-sequence in an aqueous solution consisted of 3 

mg mL-1 GO and 20 mM EDOT. Then PEDOT layer was formed at anodic potential, 

while rGO layer at cathodic potential. (Illustration is given in Scheme 4-1B) The 

multilayer structures and thicknesses of PEDOT and rGO could be controlled by the 

electrode potentials and the electrolysis times. 

4.2.2 Characterization of multilayered PEDOT/rGO film 

The obtained films were then characterized by XPS (ESCA-3400, Kratos Analytica), 

XRD (Bruker AXS), and FE-SEM (JEOL JSM-6320F). Film thicknesses were evaluated 

by a 3D laser microscope (Keyence, VK-9700). Electrical conductivities were measured 

by the four-probe method using a low resistivity meter (Mitsubishi Chemical, Loresta-GP, 

MCP-T610). 

4.3 Results and discussion 

4.3.1 Potential-sweep voltammograms   

Figure 4-1 depicts potential-sweep voltammograms of an ITO electrode in an aqueous 

solution containing EDOT and GO with Pt wire and Ag/AgCl as counter and reference 

electrodes, respectively. As a reference, a potential-sweep voltammetry was carried out 

in an aqueous KCl solution. In the KCl solution, cathodic currents due to the reduction of 

water were observed at around -1.3 V vs. Ag/AgCl, while the voltammogram in the 

solution containing both EDOT and GO showed an anodic current at around 1.0 V vs. 

Ag/AgCl ascribable to the oxidation of EDOT and a cathodic current at more positive 

potentials than in the KCl solution, which can be ascribed to the reduction of GO. 
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Figure 4-1 Potential-sweep voltammograms of ITO electrode at 50 mV sec-1 in aqueous solution 

containing EDOT (20 mM) and GO (3.0 mg mL-1) (red: positive scan, blue: negative scan) and only 

KCl (3.0 M) (dashed black: background), respectively. 

4.3.2 Characterization and analysis 

The PEDOT film obtained at 1.1 V was subjected to the XPS analysis. The C1s signals 

of the film were observed at 285 eV as a broad peak and at 287 eV as a shoulder (Figure 

4-2A). The signal at 285 eV can be ascribed to sp2 and sp3 carbons of PEDOT and GO, 

while the signal at 287 eV is due to oxygenated carbons such as ester, ether, and hydroxyl 

groups in GO [28, 29]. For reference, the XPS spectrum of a PEDOT:PSS film prepared 

by electrolytic polymerization of EDOT in the presence of poly(styrenesulfonic acid) 

(PSS) is shown in Figure 4-2B, where no shoulder is seen at 287 eV. These results 

demonstrate that GO is incorporated in the PEDOT film as a counter anion. When the 

film was reduced at -1.0 V in an aqueous solution containing only KCl as an electrolyte, 

the intensity of the shoulder at 287 eV decreased (Figure 4-2C). The decreased intensity 

of the shoulder upon electrochemical reduction implies that oxygen groups of GO doped 

in PEDOT film are eliminated to give a reduced GO (rGO), consistent with the previous 

results [28]. 

The films were further characterized by XRD analysis. The electrochemically oxidized 

film showed a broad peak at around 8°, due to the (001) diffraction corresponding to a 

distance of 1.1 nm between stacked GO sheets (Figure 4-2D). This is consistent with the 

thickness of a GO single layer, which was observed to be around 1 nm [30]. After the 
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electrochemical reduction of the film, the intensity of this peak became weak, and instead, 

the intensity of another peak at 26° increased. The latter peak is at a slightly lower angle 

than the peak for bulk graphite, suggesting that the rGO sheets stayed exfoliated and 

disorderly packed in the film [31, 32]. PEDOT films as thick as 4-6 μm were prepared by 

a prolonged electrolysis of an aqueous solution of EDOT and GO. The resulting films 

were peeled off from the ITO substrate and subjected to the measurements of electrical 

conductivities using the four-probe method. The free-standing PEDOT films exhibited 

low conductivities of the order of 10-5 S cm-1. The low conductivities may be ascribed to 

the incorporation of the insulating GO layers into the PEDOT films as a dopant. When 

the as-prepared PEDOT film was electrochemically reduced in KCl solution, the 

conductivity of the film was increased drastically to a few S cm-1 due to the reduction of 

GO in the film to the electrically conductive rGO. 

 

 

Figure 4-2 C1s XPS spectra of (a) PEDOT film obtained by oxidizing solution with EDOT and GO, 

(b) PEDOT:PSS film, and (c) PEDOT film reduced in KCl solution. (284.5 eV: C-C (sp2); 285.2 eV: 

C-C (sp3 defect); 286.3 eV: C-O (hydroxyl and epoxy); 287.2 eV: C=O (carbonyl); 288.6 eV: O-C=O 

(carboxyl)); (d) XRD patterns of PEDOT film (red line) and PEDOT film reduced in KCl solution 

A B

C D
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(black line). (* signal from ITO substrate) 

The thicknesses of the PEDOT and rGO films obtained by various electrolysis times 

were monitored by 3D-laser microscope. In both oxidation and reduction reactions, the 

thicknesses were linearly increased with the electrolysis time (Figure 4-3A and 3B), 

although the film growth rates estimated by the least-squares method were greatly 

different: 120 and 8.0 nm min-1 for oxidation and reduction, respectively. The film 

morphology was further analyzed by FE-SEM. The PEDOT layer showed a slightly 

wrinkled surface, suggesting the incorporation of GO (Figure 4-3C). The wrinkle was 

more notable on rGO layer (Figure 4-3D). These wrinkle surfaces are typical of GO and 

rGO. 

  

  
Figure 4-3 Thicknesses (A: PEDOT, B: rGO) and FE-SEM images (C: PEDOT, D: rGO) of PEDOT 

films obtained by oxidation at 1.0 V and rGO films by reduction at -1.1 V in the same solution as in 

Figure 4-1 at various electrolysis times. 

4.3.3 Formation of multilayers composed of PEDOT and rGO 

The above results suggest a possible formation of multilayers composed of PEDOT 

and rGO. To confirm this, the following experiment was performed (Figure 4-4A): the 

A B

C D
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ITO electrode was raised by 2.5 mm after each electrolysis while the potential was 

stepped to 1.1 V for 30 sec and then to -1.0 V for 2 min, and this potential-step sequence 

was repeated four times (Figure 4-4B). A photograph of the resulting film is shown in 

Figure 4-4C. Surfaces of the bands 1, 3, 5, and 7 on the film showed a dark-blue color, 

whereas those of the bands 2, 4, 6, and 8 were dark-gray, typical of the oxidized PEDOT 

and the rGO, respectively. When the water was dropped on the film, it was located only 

on the PEDOT surface (Figure 4-4D), reflecting that PEDOT is hydrophilic due to ionic 

oxidized PEDOT and oxygen groups in GO and rGO is hydrophobic due to the lack of 

oxygen groups by the reduction of GO. The difference of wettability is responsible for 

the fact that the vertical length of each band is not uniform though the electrode was raised 

by the same distance of 2.5 mm. The thicknesses of the eight layers measured by a 3-D 

laser microscope are shown in Figure 4-4E. It shows that the thickness of each layer 

increases almost linearly under the potential-step sequence employed in this experiment 

(Figure 4-4B). Although the film thickness increased linearly until 30 cycles, but the grow 

rate of the thickness is reduced and did not show linearity at 200 cycles. These results 

strongly demonstrate the formation of multilayer structure stacked alternately by PEDOT 

and rGO. 
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Figure 4-4 (A) Schematic illustration of experiment to demonstrate formation of PEDOT/rGO 

multilayer structure. (B) Potential-step sequence applied to ITO working electrode for the fabrication 

A
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of PEDOT/rGO multilayer composite film. Photographs of (C) PEDOT/rGO multilayer film and (D) 

the same film on which water was dropped. (E) Change of film thickness of the composite film. 

PEDOT [33, 34] and its composites with graphene [11, 12] are well-known as good 

candidates for the high-performance thermoelectric materials. As above-mentioned, it is 

known that the introduction of multilayer structure can improve the thermoelectric 

properties in the case of inorganic materials due to their quantum-well effects [15]. Thus, 

the introduction of multilayer structure into the composite of PEDOT and rGO will be 

expected to show some unique thermoelectric performances as well. The application of 

this multi-layered composite film to thermoelectric materials is under progress. 

4.4 Conclusions 

We have succeeded in the synthesis of multilayer composite films stacked alternately 

by PEDOT and rGO by a repetitive potential application for reducing and oxidizing an 

aqueous solution containing only EDOT and GO. In the proposed technique, GO acts as 

a supporting electrolyte and a dopant. On the other hand, when the electrochemical 

reduction was carried out, not only GO doped in PEDOT but also GO in solution were 

reduced to give rGO, so that a single rGO layer was deposited on the PEDOT layer. Thus, 

multilayer structure stacked alternately by PEDOT and rGO can be easily obtained just 

by applying the repetitive potential of 1.0 and -1.1 V. It was revealed further that the 

thickness of each layer can be easily controlled by the electrolysis time. The preparation 

of PEDOT/rGO multilayer composite films thick enough to enable us to measure physical 

properties such as electrical and thermal conductivities, and Seebeck coefficients for their 

thermoelectric application with a special attention on the anisotropic natures is currently 

under investigation. 
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Chapter 5  Highly improved thermoelectric performances of 

PEDOT:PSS/SWCNT composites by solvent treatment 

5.1 Introduction 

Thermoelectric (TE) devices based on the Seebeck effect now have aroused increasing 

attention as clean energy-conversion systems which can harvest electricity from waste 

heat. [1, 2] Performance of TE material is described by a dimensionless TE figure-of-

merit (ZT) and a power factor (PF) defined by ZT= S2σT/κ and PF= S2σ, respectively, 

where S, σ, κ, and T are Seebeck coefficient, electrical conductivity, thermal conductivity, 

and absolute temperature, respectively. [3] Traditional inorganic TE materials are usually 

expensive, rare, heavy, and relatively difficult to process, and thus impeding their 

widespread use. In this regard, with advantages of low cost, abundance of raw materials, 

flexibility, and relatively simple manufacturing processes, organic TE materials have 

received a growing interest.  

Among the organic TE materials, conducting polymers such as poly(3,4-

ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT:PSS), polyaniline (PANI) and 

poly(3-hexylthiophene) (P3HT) have been intensively studied so far. [4-6] However, 

these pristine polymers always exhibit relatively low electrical conductivity which largely 

suppressed their applications. [7] To satisfy the requirement for promising TE materials, 

further improvement of the performance is deserved. One effective way is to combine 

polymers simply with highly conductive carbon nanotubes (CNTs). [6, 8] Due to the π−π 

interaction between CNT and polymers, the nanotubes establish intermolecular 

connections which facilitates electrical conduction. Additionally, the highly orientated 

CNT can also enhance the degree of ordering of the polymer chains around the aligned 

CNT, thereby enhancing the σ. [9] On the other hand, the thermal conductivity in organic 

TE materials is probably dominated by phonons. [10] Although the junctions between 

CNT and polymer chains could promote electron conduction, it is known that the 

junctions can reversely act as the barrier for phonon transport between carbon nanotubes, 

making the CNT/polymer composites to exhibit a polymer-like thermal conductivity, 
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ranging from 0.2 to 0.7 W m-1 K-1, which is much smaller than that of pure CNT (~1000 

W m-1 K-1). [8, 11, 12] Accordingly, we could expect relatively low thermal conductivity 

as well as the high electrical conductivity by the combination of CNT and polymer, which 

may lead to an expectable ZT value. 

Till now, several works on high performance conjugated polymers with CNT have been 

published. Quite recently, Cho et al. reported a large PF of 151 μW m-1 K-2 for 

PEDOT:PSS/CNT composites by treating them in ethylene glycol (EG) for one hour 

followed by annealing at 140 oC for ten minutes.[6] Similar PF values of 140 and 160 

μW m-1 K-2 have also been reported earlier for the PEDOT:PSS/ single-wall carbon 

nanotube (SWCNT) composites. [11, 13] However, such obtained composites often 

requires complicated fabrication process. Here, a more facile technique to produce 

PEDOT:PSS/SWCNT composites with a larger PF of 300 μW m-1 K-2 is demonstrated. 

To best of our knowledge, such PF value is the highest among the PEDOT:PSS/CNT 

composites reported before. [6, 8] 

5.2 Experimental 

5.2.1 Materials 

SWCNT ink (EC-DH, 0.2 wt%) was purchased from Meijo Nano Carbon Co. Ltd, 

while PEDOT:PSS (Clevios PH1000, 1.1 wt%) from Heraeus. Before use, SWCNT ink 

was diluted to 0.1 wt% with distilled water in order to reduce the viscosity. All the other 

reagents were obtained from TCI and used as received without further purification.  

5.2.2 Preparation of PEDOT:PSS/SWCNT and their characterizations 

PEDOT:PSS/SWCNT composites with various SWCNT weight ratios (WSWCNT) were 

prepared by simply mixing two aqueous dispersions of PEDOT:PSS and SWCNT at 

different feeding weight ratio and then stirring overnight. Then, 60 μL of the mixed 

solution was doctor bladed on the precleaned glass substrates and dried at 60 OC, unless 

otherwise stated. The precleaning of the glass substrates was performed by immersed in 

the piranha (H2SO4/H2O2 3/1 v/v) solution for 3 h, then rinsed with detergent, deionized 
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water and ethanol subsequently. [14] The thickness of the as-obtained composite films 

was around 1 μm. All the solvent treatment were implemented at room temperature and 

then dried at 60 OC. 

Thickness of the PEDOT:PSS/SWCNT composites was obtained by 3D Laser 

Scanning Microscope (VK-9700, KEYENCE), while conductivities were measured using 

the four-probe method with a resistivity meter (Loresta-GP MCP-T610, Mitsubishi 

Chemical Corp.). A custom-made setup composed of thermocouples and Peltier devices 

was used to evaluate Seebeck coefficients, where it was calibrated in advance with the 

Seebeck coefficients of -18 and +22 μV K-1, respectively, for alumel and chromel alloys 

at room temperature. [3] All these TE properties of the PEDOT:PSS/SWCNT composites 

were measured at room temperature. Film morphologies were observed with a field-

emission scanning electron microscope (SEM, JSM-6320F, JEOL) and a transmission 

electron microscopy (TEM, JEM 2010, JEOL) attached with energy dispersive X-ray 

spectrometer (EDX, JED2300-T, JEOL). Element amount was analyzed on element 

analysis (EA, CHNS/0 2400Ⅱ). 

5.3 Results and discussion 

5.3.1 TE performance of as-prepared PEDOT:PSS/SWCNT composites 

The TE performances of as-prepared composite films with different CNT contents are 

shown in Figure 5-1. σ and S values of the pristine PEDOT:PSS film are 0.2 S cm-1 and 

19 μV K-1 (PF = 0.007 μW m-1 K-2), while those for the SWCNT film are 303 S cm-1 and 

24 μV K-1 (PF = 17 μW m-1 K-2). By increasing WSWCNT, the PF values were increased 

and the maximum PF was attained at WSWCNT = 74 wt%. However, the PF value was still 

as small as 29 μW m-1 K-2. It is quite likely that these low TE performances of as-prepared 

composites are ascribed to the surfactant, sodium dodecylbenzenesulfonate (SDBS), used 

to disperse SWCNTs in water, which can prevent a charge transport in the composites 

because of its insulating property. Indeed, when the as-prepared SWCNT films were 

soaked in water, the weights of the SWCNT films were decreased to ca. one fourth of 

those for the original films, demonstrating that a lot amount of surfactant is included in 
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the SWCNT ink.  

0 20 40 60 80 100
0

100
200
300
400
500
600

WSWCNT (wt%) 

 
 

0
4
8
12
16
20
24

S 
/ 

V
 K

-1

 / 
S 

cm
-1

 

A

0 20 40 60 80 100
0
5

10
15
20
25
30
35

WSWCNT (wt%)

PF
 / 

W
 m

-1
 K

-2

 

 

B

 
Figure 5-1 Changes of (A) σ and S, and (B) PF of PEDOT:PSS/SWCNT composites with WSWCNT. 

5.3.2 PEDOT:PSS/SWCNT composites with solvent treatment 

Five polar solvents such as acetonitrile (AN), water (H2O), ethanol (EtOH), ethylene 

glycol (EG), and DMSO were examined as a soaking medium for removing the surfactant 

from the as-prepared composites to improve their TE performances. The values of σ, S, 

and PF for the PEDOT:PSS/SWCNT composites (WSWCNT = 74 wt%) treated with the 

five polar solvents for one hour are compared in Figure 5-2. As expected, the composites 

soaked in all these solvents exhibited a distinct enhancement in conductivity. Furthermore, 

a slight increase in Seebeck coefficient was observed. Among all the polar solvents 

examined, DMSO was found to exhibit the most effective capability for improving the 

TE performances. The PF of the DMSO-treated composite reached 210 μW m-1 K-2, much 

greater than 29 μW m-1 K-2 for the as-prepared PEDOT:PSS/SWCNT composite.  
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Figure 5-2 (A) σ and S, and (B) PF of PEDOT:PSS/SWCNT composites (WSWCNT = 74 wt%) soaked 

in different polar solvents for one hour at room temperature. (NT denotes no treatment with polar 

solvent) 
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Figure 5-3 SEM images of (A) non-solvent treated SWCNT, (B) non-solvent treated 

PEDOT:PSS/SWCNT composites, (C) DMSO-treated SWCNT and (D) DMSO-treated 

PEDOT:PSS/SWCNT composites. 

Figure 5-3 shows the SEM images of SWCNT and PEDOT:PSS/SWCNT composite 

films before and after solvent treatment. As to the composites before DMSO treatment, 

no CNT bundles are seen by being covered with a lot amount of SDBS (Figure 5-3A and 

3B). When the films were washed with DMSO, the bundle structures were observed. 

(Figure 5-3C and 3D) These SEM observations suggest that an effective removal of 

electrically insulating SDBS is responsible for a drastic increase in σ of the composites 

by DMSO treatment shown in Figure 5-2A. Indeed, an obvious decrease of film weight 

of SWCNT and PEDOT:PSS/SWCNT composites via DMSO treatment in Figure 5-4 is 

observed. The figure shows that the weight of a SWCNT film is decreased from 300 to 

70 μg by soaking the film in DMSO. Similar changes of film weights were observed also 

for PEDOT:PSS/SWCNT composites. To confirm the reason for the weight change, the 

elemental analysis of the SWCNT films before and after DMSO treatment was carried 

out (shown in Table 5-1). It was found that the weight ratio of sulfur originating from 

SDBS (348 g mol-1) was decreased from 8 % to 3 % by DMSO treatment. This implies 
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that an original SWCNT film (300 μg) contains 261 μg of SDBS, while the DMSO-treated 

SWCNT film (70 μg) does only 24 μg of SDBS, showing that more than 90% SDBS is 

removed from the SWCNT film by DMSO treatment and the weight loss of SWCNT film 

observed in Figure 5-4 arises mainly from removal of SDBS. It is known well that the 

treatment with DMSO can effectively remove excess PSS molecular which gives rise to 

insulating properties on surfaces of PEDOT grains. Indeed, as is shown in Figure 5-4, the 

weight loss was observed also for the PEDOT:PSS film soaked in DMSO, although the 

degree of the weight change is much smaller than those for PEDOT:PSS/SWCNT 

composites.   

Table 5-1 Weight percent of C, H, S in SWCNT and DMSO treated SWCNT by element analysis.. 

 SWCNT DMSO treated SWCNT 

Sample 1 Sample 2 Average Sample 1 Sample 2 Average 

C (wt%) 63.24 63.93 63.58 78.20 77.30 77.75 

S (wt%) 8.26 7.57 7.92 2.90 3.24 3.07 
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Figure 5-4 Weights of 60 μL of mixed solutions as a function of WSWCNT before (blue cubic) and after 

(red circle) DMSO treatment.  

Additionally, in contrast to DMSO-treated SWCNT, it was observed that additional 

materials are attached on some junctions between CNTs in the composite film (Figure 5-

3D). To confirm this, high resolution transmission electron microscopies of these thin 

films were measured (Figure 5-5A and 5B). While DMSO-treated SWCNT showed only 

bundle structures, some particles were observed at the junctions between CNTs of the 

composite film. These particles were characterized to be PEDOT:PSS by the elemental 
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analysis using the energy dispersive X-ray spectrometer attached with TEM. As explained, 

the presence of the junctions is believed to promote the electron conduction which gives 

rise to exceptional thermoelectric properties. [13, 15] Consequently, the enhancement of 

the conductivities for the PEDOT:PSS/SWCNT composite film can be ascribed to the 

improvement of charge-transport by the introduction of PEDOT:PSS located at the 

junctions between CNTs. 

 
Figure 5-5 TEM images of (A) SWCNT and (B) PEDOT:PSS/SWCNT composites. 

5.3.3 Optimization of the TE performance of PEDOT:PSS/SWCNT composites  

Figure 5-6 depicts an influence of the soaking time on σ and S for 

PEDOT:PSS/SWCNT composites treated with DMSO. The figure shows that by soaking 

the composite just for two minutes at room temperature, σ was increased dramatically 

from 500 to 3,800 S cm-1 while the S was increased slightly from 24 to 28 μV K-1. When 

the treatment time was longer than two minutes, the σ of the composite started to decrease, 

in agreement with the dedoping studies of PEDOT:PSS with EG and DMSO previously 

published. [16] PSS is known to be involved in the PEDOT:PSS as non-ionized and 

ionized molecules. The ionized PSS could act as the effective dopant for PEDOT:PSS, 

while the non-ionized one as barriers for electric conduction. By the DMSO treatment, 

the insulating PSS can be effectively removed from PEDOT:PSS chains which are 

responsible for electric conduction. [17] When the treatment time is longer than two 

minutes, however, not only the insulating non-ionized PSS layer, but also the dopant PSS 

could be removed. Namely, PEDOT:PSS could be dedoped when the DMSO treating 
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time is longer, which may decrease the conductivity. As we mentioned before, 

PEDOT:PSS here is acted as the junctions to promote the carrier transport. However, 

when the conductivity of the PEDOT:PSS is decreased, the resistivity in the junctions for 

carrier transport would increase, decreasing the electrical conductivity.  
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Figure 5-6 Influence of DMSO-treatment time (t) on (A) σ and S, and (B) PF for PEDOT:PSS/SWCNT 

composites (WSWCNT = 74 wt%) at room temperature.  

In view of the above findings, TE performances of the PEDOT:PSS/SWCNT 

composites soaked with DMSO for two minutes at room temperature were studied as a 

function of WSWCNT. The changes of σ, S, and PF for thus treated PEDOT:PSS/SWCNT 

composites with a change of WSWCNT  are depicted in Figure 5-7. It is seen from the 

figure that both σ and S values of the DMSO-treated composites exhibited maxima of 

3,800 S cm-1 and S = 28 μV K-1, respectively, at WSWCNT = 74 wt% and, consequently, the 

PF of the composite reached a peak value of 300 μW m-1 K-2. It is quite striking that such 

a facile treatment (two-min soaking in DMSO at room temperature) is successful in 

improving the PF value of the as-prepared PEDOT:PSS/SWCNT composite (WSWCNT = 

74 wt%) almost ten times from 29 to 300 μW m-1 K-2. The change of σ with WSWCNT in 

Figure 5-7 may be explained in the following way. As we described before, the junctions 

between the SWCNT and PEDOT:PSS promotes the charge transport, thus enhancing 

their electrical conductivity. However, when the ratio of SWCNT in the composite is 

increased further, the number of the junctions originated from the connection of 

PEDOT:PSS and SWCNT would reduce. Consequently, the electrical conductivity 

decreased, which, on the other hand, explained the reason of a relatively small σ value of 
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the SWCNT film compared with that of the composites. We presume that the best 

balanced condition is attained at WSWCNT = 74 wt% in our experiments with aqueous 

dispersions of PEDOT:PSS and SWCNT. 
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Figure 5-7 Changes of (A) σ and S, and (B) PF of PEDOT:PSS/SWCNT composites treated with 

DMSO for two minutes at room temperature with WSWCNT.  

5.4 Conclusion 

By simply mixing the aqueous dispersions of SWCNT and PEDOT:PSS at different 

weight ratios, PEDOT:PSS/SWCNT composites were prepared. With an optimization of 

the feeding weight ratio of PEDOT:PSS and SWCNT, a peak value of PF at 29 μW m-1 

K-2 was achieved. Furthermore, when being soaked in DMSO for two minutes at room 

temperature, these composites yielded a highly improved TE performance at WSWCNT = 

74 wt%: σ = 3,800 S cm-1, S = 28 μV K-1, and PF = 300 μW m-1 K-2. The PF is the largest 

among those reported so far for composites based on PEDOT:PSS and CNT. 
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Chapter 6  Conclusion 

6.1 Summary of the study 

The research presented in this dissertation focus on the fabrication and development of 

PEDOT and polyaniline based organic TE materials. It is important to control the 

structure and surface morphology of organic materials, and optimize the doping level, 

thereby collectively leading to the balanced TE properties while simultaneously 

engineering an electronic structure. On such basis, the fabrication conditions were 

carefully investigated and the morphology and characterizations were described for 

innovative organic materials. In addition, further treatment such as secondary doping, 

electrochemical dedoping were also deeply studied to enhance their thermoelectric 

performance for a promising TE material. The main conclusions in this thesis were 

summarized as follows: 

1. Flexible and free-standing PEDOT:S-PHE films were prepared by galvanostatic 

polymerization and their thermoelectric performances were investigated. In contrast 

to a trade-off relation between σ and S observed for inorganic TE materials, σ and S 

values were simultaneously increased by decreasing the polymerization temperature 

or by increasing the current density during polymerization. The reason for this unique 

feature characteristic of conducting polymers was explained reasonably on the basis 

of SEM and oxidation-level measurements. The influence of oxidation state of the 

PEDOT:S-PHE films on their TE performances was also studied by changing the 

oxidation level by controlling the applied potential. Under the optimized 

polymerization conditions (T = -30 oC, J = 1.2 mA cm-2, oxidation level = 6%), the 

PF and ZT values of the PEDOT:S-PHE films were 7.9 μW m-1 K-2 and 0.013, 

respectively. 

2. Composite films of graphene/polyaniline were prepared by a one-step 

electrochemical technique with GO and aniline monomer, and their 

thermoelectric performances were optimized with respect to the electrolysis 

time and the weight ratio of GO and aniline. It was found that the electrical 
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conductivities of the composite films can be enhanced ca. four times by 

employing SUS in place of FTO, while no appreciable change was observed 

for the Seebeck coefficients. The composite films of the GO/aniline weight 

ratio of 8:1 prepared on the SUS electrodes gave the maximum power factor of 

3.6 μW m-1 K-2 and ZT value of 0.008 at room temperature. In addition, the 

conductivity enhancement on the SUS electrode were accounted for in terms of 

the efficient removal of oxygen species of GO by the direct electrochemical 

reduction of GO on SUS concurrently with the reduction of GO by hydrogen 

gas generated by reduction of protons on SUS. 

3. Multilayer composite films stacked alternately by PEDOT and rGO were successfully 

synthesized via a repetitive potential application for reducing and oxidizing an 

aqueous solution containing only EDOT and GO. In the proposed technique, GO acts 

as a supporting electrolyte and a dopant. On the other hand, when the electrochemical 

reduction was carried out, not only GO doped in PEDOT but also GO in solution were 

reduced to give rGO, so that a single rGO layer was deposited on the PEDOT layer. 

Thus, multilayer structure stacked alternately by PEDOT and rGO can be easily 

obtained just by applying the repetitive potential of 1.0 and -1.1 V. It was revealed 

further that the thickness of each layer can be easily controlled by the electrolysis time. 

The preparation of PEDOT/rGO multilayer composite films thick enough to enable 

us to measure physical properties such as electrical and thermal conductivities, and 

Seebeck coefficients for their thermoelectric application with a special attention on 

the anisotropic natures is currently under investigation. 

4. PEDOT:PSS/SWCNT composites could be successfully prepared by simply mixing 

the aqueous dispersions of SWCNT and PEDOT:PSS at different weight ratios,. With 

an optimization of the feeding weight ratio of PEDOT:PSS and SWCNT, a peak value 

of PF at 29 μW m-1 K-2 was achieved. Furthermore, when being soaked in DMSO for 

two minutes at room temperature, these composites yielded a highly improved TE 

performance at WSWCNT = 74 wt%: σ = 3,800 S cm-1, S = 28 μV K-1, and PF = 300 
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μW m-1 K-2. The PF is the largest among those reported so far for composites based 

on PEDOT:PSS and CNT. 

6.2 Outlook 

We have demonstrated some novel methods to fabricate and develop the typical organic 

TE materials expectably. Still, the pursuit of new organic materials with more desirable 

TE properties should move forward. In stark contrast to those of conventional inorganic 

analogues, TE property parameters are able to be decoupled in organic TE materials, 

therefore showing great promise of organic TEs. On the other hand, owing to the 

advantages of mechanical flexibility, cost-effectiveness, light-weight, and scalable 

production methods, organic TE materials hold great promise in a range of applications 

such as flexed or curved TE devices and wearable electronic devices operated just by 

body heat. More importantly, manufacturing methods such as screen-printing, ink-jet 

printing and roll-to-roll printing have been shown to be scalable methods for production 

of organic TE generators. With all these exciting advances in organic TE materials, the 

development of personal, portable, and flexible thermal modules will no longer be just a 

possibility. 
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