Thesis Summary

Electronic structure of Kondo insulator Yb_{1-x}Zr_xB₁₂ and Kondo lattice Yb₂Pt₆X₁₅

(X=Al, Ga) studied by photoemission spectroscopy

(光電子分光による近藤絶縁体 Yb1-xZrxB12 および

近藤格子 Yb₂Pt₆X₁₅(X=Al, Ga)の電子状態の研究)

Name: Awabaikeli Rousuli

In my doctoral work, electronic structures of Zr, Y and Lu-doped Kondo insulator YbB₁₂ and Kondo lattices Yb₂Pt₆X₁₅ (X=Al, Ga) and YbNi₂X'₂ (X'=Si, Ge) were studied by means of hard x-ray photoemission spectroscopy (HAXPES) with h ω =5.95 keV, low-energy photoemission spectroscopy (LEPES) with h ω =7 eV, vacuum ultraviolet photoemission spectroscopy (VUVPES) with h ω =182 eV and angle-resolved photoemission spectroscopy (ARPES) with h ω =35 eV.

The electronic structure of Kondo insulators $Yb_{1-x}Zr_xB_{12}$ were investigated by means of HAXPES and LEPES. In the Yb 3*d* HAXPES spectra, both Yb²⁺ and Yb³⁺ derived structures were clearly seen for $0 \le x \le 0.875$, indicating valence fluctuation. The Yb valence decreases with Zr substitution and on cooling. The valence at 300 K changes from 2.93 for YbB₁₂ (x=0) to 2.83 for Yb_{0.125}Zr_{0.875}B₁₂ (x=0.875). The Yb³⁺ 4*f* multiplet structures in the valence-band spectra shifts to the deeper binding energy (*E*_B) with Zr substitution, reflecting that the Yb³⁺ 4*f* hole level becomes closer to Fermi level (*E*_F). The energy shifts of the B 1*s* and Zr 3*d*_{5/2} peaks toward deeper *E*_B, which is understood as a result that the supplied electrons by Zr substitution push *E*_F to higher energy of the conduction-band DOS. The detailed gap formation at *E*_F were clearly observed by LEPES. In YbB₁₂, the pseudo gap at 18 meV starts to open from 130 K. The *c*-*f* hybridization and Yb 4*f*_{7/2} peaks are observed at 15 and 45 meV, respectively. With Zr-doping, the *c*-*f* hybridization peak disappears and the spectral weight at *E*_F is gradually recovered by Zr substitution and the pseudo gap is closed.

The electronic structure of Yb1-xRxB12 (R=Y, Lu) were also studied by means of HAXPES and LEPES for comparison with the results of $Yb_{1-x}R_xB_{12}$. Both Yb^{2+} and Yb³⁺ derived structures clearly seen in the Yb 3d HAXPES spectra and the intensity of Yb²⁺ components gradually increases while that of Yb³⁺ gradually decreases with increasing R-concentration. The Yb 3*d* spectra of Yb_{0.125}Y_{0.875}B₁₂ shows temperature dependence on cooling, and the Yb valence is ~ 2.88 at 300 K and gradually decreases to 2.84 at 20 K. In the valence-band HAXPES spectra at 300 K, the Yb²⁺ 4f and Yb³⁺ 4f derived structures are observed near E_F and at 6 -12 eV, respectively. With R-doping the Yb³⁺ 4f multiplet structures gradually shifts to higher $E_{\rm B}$ side and the Yb 4f hole level gradually closer to $E_{\rm F}$. In the B 1s spectra, the energy shifts toward higher $E_{\rm B}$ side with R-doping are also observed. The chemical shifts in the core level suggest that the conduction electron is transferred mainly from B site to Yb site, inducing the decrease of the Yb valence. Temperature dependent LEPES was also performed for $Yb_{1-x}R_xB_{12}$. We clearly observed the pseudo gap is still opens in Yb_{0.5}Y_{0.5}B₁₂ and Yb_{0.5}Lu_{0.5}B₁₂ in contrast to Yb_{0.5}Zr_{0.5}B₁₂, where the pseudo gap is already closed. The gap is closed in $Yb_{0.125}Y_{0.875}B_{12}$. These results suggest that the electron doping plays significant role in the pseudo gap closing. The large change in the maximal value of in the magnetic susceptibility (T_{max}) observed only in the Zr-doping system Yb_{1-x}Zr_xB₁₂ is also originated from the electron doping system.

The electronic structures of Kondo lattices $Yb_2Pt_6X_{15}$ were investigated by means of HAXPES, LEPES, VUVPES and ARPES. In the Yb 3d HAXPES spectra, the both Yb²⁺ and Yb³⁺ derived structures were clearly observed. The intensity of the Yb²⁺ (Yb³⁺) structures for Yb₂Pt₆Al₁₅ gradually increases (decreases) on cooling, showing significant valence fluctuation. The estimated Yb valence of Yb₂Pt₆Al₁₅ is 2.89 at 250 K gradually decreases to 2.83 at 20 K. On the other hand, the Yb 3d spectra for Yb₂Pt₆Ga₁₅ show almost temperature-independent with the Yb valence of 2.34. The Energy shifts toward lower $E_{\rm B}$ by ~0.3 eV was observed in the Pt 4f states on going from X=Al to Ga. At the same time, in the valence-band HAXPES and VUVPES spectra, we found the energy shift toward deeper $E_{\rm B}$ in the Yb³⁺ 4f multiplet structures. These results compared with the Kondo lattices YbNi₃X₉. In these system, YbNi₃Al₉ has antiferromagnetic ground state and Yb valence close to 3+. On the other hand, YbNi3Ga9 exhibits a typical valence fluctuation behavior. We compared the valence-band and core level spectra of both $Yb_2Pt_6X_{15}$ and $YbNi_3X_9$ systems, and proposed a common electronic model. We described the enhanced $c \cdot f$ hybridization and $T_{\rm K}$ in Yb₂Pt₆X₁₅ based on the Pt-derived DOS at $E_{\rm F}$ and the Yb³⁺ 4f hole level relative to $E_{\rm F}$ together with results from YbNi₃X₉. We also conclude that the larger conduction-band DOS of Pt at $E_{\rm F}$ compare to that of Ni at $E_{\rm F}$ is a main reason for their different physical properties. The same trend is observed between YbNi₂Si₂ with low $T_{\rm K}$ and YbNi₂Ge₂ with high $T_{\rm K}$. The similarity suggests that the characteristic universalities in the electronic structure when the compounds with the same crystal structure and similar conduction electron states move from non-magnetic to magnetic regions in the Doniach phase diagram. We performed ARPES measurements on $Yb_2Pt_6X_{15}$ and the results show very clear Fermi surface structure and c-f hybridization band structures. Base on periodic And erson model without the 4f4f Coulomb interaction energy, we fitted the cfhybridization band structures and estimated the effective mass enhancement factor and hybridization energy are 1.18 and ~0.0008 eV for Yb₂Pt₆Al₁₅, and those are ~1.59 and 0.13 eV for Yb₂Pt₆Ga₁₅.