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Majorana bound state of a Bogoliubov-de Gennes-Dirac Hamiltonian in arbitrary

dimensions

Ken-Ichiro Imura1, Takahiro Fukui2, Takanori Fujiwara2
1Department of Quantum Matter, AdSM, Hiroshima University, 739-8530, Japan

2Department of Physics, Ibaraki University, Mito 310-8512, Japan

(Dated: September 16, 2011)

We study a Majorana zero-energy state bound to a hedgehog-like point defect in a topological
superconductor described by a Bogoliubov-de Gennes (BdG)-Dirac type effective Hamiltonian. We
first give an explicit wave function of a Majorana state by solving the BdG equation directly, from
which an analytical index can be obtained. Next, by calculating the corresponding topological
index, we show a precise equivalence between both indices to confirm the index theorem. Finally,
we apply this observation to reexamine the role of another topological invariant, i.e., the Chern
number associated with the Berry curvature proposed in the study of protected zero modes along
the lines of topological classification of insulators and superconductors. We show that the Chern
number is equivalent to the topological index, implying that it indeed reflects the number of zero-
energy states. Our theoretical model belongs to the BDI class from the viewpoint of symmetry,
whereas the spatial dimension d of the system is left arbitrary throughout the paper.

I. INTRODUCTION

Topological classification of matter dates back to reinterpretation of the Kubo formula for the Hall conductance in
terms of the first Chern number associated with the Berry connection and curvature. [1, 2] The integer quantum Hall
effect (IQHE) was thus given a status as a prototype of topologically distinguishable states of matter. An extensive
use of this idea; reclassifying many-body states by means of topological invariants, has been, on the other hand,
started much recently. In the topological classification, matters are classified into a periodic table of ten universality
classes, including Z and Z2 type topological insulators and superconductors. [3–6] The range of its applicability has
been further extended beyond such “bulk classifications” , which involves only the Berry connection in momentum
(k-) space, to include various kinds of topological defects and associated protected zero-modes. [7, 8]
With the periodic table in hands, we still need to establish how to relate this topological classification to reality.

In the case of IQHE we did not have to ask this question, since a physical quantity, i.e., the Hall conductance was
directly related to a topological invariant. The same type of reasoning is possible for the Z2 topological insulator,
since it can be regarded as the time reversal counterpart (Z2-version) of the IQHE; as quantum spin Hall insulator.
[9–14] As for the protected zero-modes, similar topological invariant, i.e., the Chern number has been proposed, [7, 8]
which involves the Berry connection in both k- and x- (real) space. Still, a sufficient reasoning why such topological
invariants guarantee the existence of zero modes is lacking. As the Kubo formula for the Hall conductance is to the
IQHE, so which physical quantity is to the protected zero-modes? We are still in search for its precise analogue.
Specific two models, Dirac fermions with a monopole in 3D [15] as well as those with a vortex in 2D[16] have been

known as prototypes of fermions with protected zero-energy states. For these models, zero-energy wave functions have
been explicitly obtained,[15, 16] and index theorem has been successfully established.[17–19] Here, the index theorem
[20] claims the equivalence between the analytical index concerning the zero-energy states and the topological invariant
associated with the configuration of the order parameter. The Chern number with respect to the Berry curvature has
also been calculated for these models. [7, 8] Remarkably, the Chern number and the topological index reached the
same expression, although the starting points are quite different.
For a closer inspection on the proposed Chern number and its precise agreement with the topological index, we

study in this paper a Majorana zero-energy state bound to a topological defect in a BdG-Dirac type superconductor
in d-spatial dimensions. We first give an explicit wave function of the zero-energy state by solving the BdG equation
directly. Next, by calculating the corresponding topological index, we confirm the index theorem. Finally, we apply
this observation to reexamine the role of the Chern number associated with the Berry curvature. We show that the
Chern number is equivalent to the topological index in arbitrary dimensions, implying that it indeed reflects the
number of protected zero-energy states.
The structure of the paper is as follows: In Sec. II, we construct normalizable zero-energy wave functions of the

model, and identify its analytic indices. The equivalence of analytic and topological indices is explicitly established,
i.e., the index theorem is concretized in Sec. III. In Sec. IV we reexamine the structure of topological arguments
based on the Berry connection and curvature, and contrast it with those of earlier sections. We establish an explicit
one-to-one correspondence between the index of the Hamiltonian and the topological Chern number. In Sec. V,
summary and discussions are given.

http://arxiv.org/abs/1107.5629v2
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II. ZERO-ENERGY STATE OF THE BDG-DIRAC HAMILTONIAN

Let us consider a superconducting condensate described by the following BdG-Dirac type Hamiltonian,

H = −iΓj∂j + Γd+aφa, (1)

where j, a = 1, · · · , d. In order to make our parallelism illustrative and convincing The spatial dimension d is kept
arbitrary throughout the paper. The Γ-matrices obey {Γµ,Γν} = 2δµν for µ, ν = 1, · · · , 2d. We also define for
later use a generalized chiral matrix by Γ2d+1 = (−i)dΓ1 · · · γ2d, which anti-commutes with Γµ. The field φa denotes
the a-th component of a given multicomponent order parameter. In Eq. (1) two types of Γ-matrices, associated
with the kinetic and the order parameter part of the Hamiltonian, have been introduced in the Nambu notation
for a system of Dirac fermions in an arbitrary spatial dimension d. When d = 2 the order parameter φ has two
components, φ = (φ1, φ2), each corresponding to the real and the imaginary part of a gap function. When d = 3 the
φ-field acquires a third component φ3, which represents a mass term encoding a band inversion. Such a 3-component
order parameter has been proposed for describing proximity effects in a topological insulator/superconductor hybrid
system. [7, 21] The d-component order parameter field φ in Eq. (1) is a natural generalization of this to the case
of an arbitrary spatial dimension d. In what follows we assume that the chemical potential is set, unless otherwise
mentioned, to zero; the model has chiral symmetry (see below for details).
Let us consider a point defect of φ located at the origin, i.e., we assume that φ takes the following hedgehog

configuration,

φj(x) = ∆(r)x̂j , (2)

where r is the radial coordinate and x̂j = xj/r. We assume ∆(∞) = const. and impose ∆(0) = 0 to ensure the
regularity of φ at the origin. Physically, such a point defect may be associated with the presence of a vortex or a
monopole but here we assume that the hedgehog configuration (2) is given as a background field, and do not take
account of the effects of associated electromagnetic field.
The same (mathematical) model, Eq. (1), in cases of d = 2 and d = 3, has been extensively investigated, but in a

different physical context. [15–18] In contrast to these existing studies, the system we have in mind is a topological
insulator under the proximity effect of a superconductor. [7, 21] Let us also mention that a variant of the same
model with a specific choice of ∆(r) = r has been recently investigated in Ref. [22]. Compared with this model, our
model assumes a realistic behavior of the gap function, ∆(∞) =const., which makes the problem nontrivial even for
zero-energy states.
In the classification of topological insulators and superconductors, our setup, i.e., Eq. (1) with (2), belongs to the

BDI symmetry class, [8] which has both particle-hole and chiral symmetries. Particle-hole symmetry is described by
{H, C} = 0, where C is an antiunitary operator with C2 = 1. With an appropriate choice of the Γ-matrices, it can
be made C = K, where K is the complex conjugation operator, implying that the Hamiltonian is antisymmetric.
[23] The chiral symmetry of the model is described by {H,Γ2d+1} = 0. It may seem awkward to some readers, since
in conventional relativistic massless Dirac systems, chiral symmetry exists only in even spatial dimensions. In the
present case, however, since chiral symmetry is extended to include the internal space of the order parameter field;
dimension is doubled, chiral symmetry is allowed in arbitrary dimensions d.
We derive normalizable zero-energy wave functions describing electronic states bound to the defect. We deal with

the case of d: odd and even separately, due to the representation of the Γ-matrices.

A. Zero-energy state: case of d = 2n+ 1

To solve the eigenvalue equation for H it is convenient to work with a concrete representation of the Γ-matrices. In
odd spatial dimensions, d = 2n+ 1, the Γ-matrices can be chosen as

Γj = γj ⊗ 1⊗ σ1, Γd+j = 1⊗ γj ⊗ σ2, (3)

where j = 1, · · · , d, and

Γ2d+1 = 1⊗ 1⊗ σ3. (4)

Here, γ’s are conventional γ-matrices given in Appendix A. This choice of the Γ-matrices have the following advantage;
the Hamiltonian matrix (1) decomposes into independent blocks of two chiral components,

H = −i

(
γj ⊗ 1∂j + 1⊗ γjφj

γj ⊗ 1∂j − 1⊗ γjφj

)
. (5)
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Correspondingly, let Ψ = (Ψ+,Ψ−)
T be a chirally-decomposed zero-energy wave function; when Ψ− = 0 (Ψ+ = 0),

the chirality of the wave function Ψ is +1 (−1). The eigenvalue equation, HΨ = 0, can be written as
(
γj ⊗ 1∂j ± 1⊗ γjφj

)
Ψ± = 0. (6)

To solve the above equation, it is convenient to use the following notation: [15] the action of the matrix a⊗ b to the
wave function Ψ is defined as (a ⊗ bΨ)αλ = aαβbλρΨβρ = aαβΨβρ(b

T )ρλ = (aΨbT )αλ, which enables us to regard Ψ
as a matrix-valued wave function. By the use of this notation, Eq. (6) can be written as

γj∂jΨ± ∓Ψ±(γ
j)Tφj = 0. (7)

If we note Eq. (A5), we have

γj∂jΨ̃± ∓ (−)nΨ̃±γ
jφj = 0, (8)

where we have introduced Ψ̃± = Ψ±Γ, using Γ, a product of γ-matrices defined as in (A3), and n is an integer

specifying the spatial dimension d = 2n + 1. For the hedgehog configuration (2), we may assume that Ψ̃± depends

only on r, namely, ∂jΨ̃±(r) = x̂jΨ̃
′(r), where Ψ̃′(r) ≡ ∂rΨ̃±(r), and also that the matrix wave function Ψ̃± is diagonal,

(Ψ̃±)αβ(r) = δαβψ±(r). It then follows that

ψ′
±(r)∓ (−)n∆(r)ψ±(r) = 0, (9)

and its solutions given by

ψ± = C± exp

[
±(−)n

∫ r

0

∆(r′)dr′
]
, (10)

where C± is a numerical constant. Obviously, only either of ψ+ or ψ− is normalizable depending on n and on the
sign of ∆(∞). Thus, the normalizable zero-energy wave function is given by

Ψ =

(
Ψ+

0

)
= C+

(
Γ
0

)
exp

[
(−)n

∫ r

0

∆(r′)dr′
]

(11)

for (−)n∆(∞) < 0, and

Ψ =

(
0
Ψ−

)
= C−

(
0
Γ

)
exp

[
−(−)n

∫ r

0

∆(r′)dr′
]

(12)

for (−)n∆(∞) > 0. Eqs. (11, 12) are indeed chirally decomposed zero-energy wave functions, i.e., the eigenvalue of
Eq. (4) is +1 for Eq. (11), whereas −1 for Eq. (12). Namely, they signify that for a given ∆(∞) > 0 the chirality of
the zero-energy state is (−)n+1. If ∆(∞) < 0, on the other hand, it is given by (−)n.

B. Zero-energy state: case of d = 2n

The procedure of constructing the zero-energy wave function is similar. The difference stems from the representation
of the Γ-matrices: In the present case, there is not such a convenient chirally-decomposed representation as has been
adopted in odd dimensions. So that in even spatial dimensions, we use the following Γ-matrices

Γj = γj ⊗ 1, Γj+d = γ2n+1 ⊗ γj , (13)

where j = 1, · · · , d (= 2n), and

Γ2d+1 = γ2n+1 ⊗ γ2n+1. (14)

Here, γ-matrices are also defined in Appendix A. The zero-energy wave function obeys

− iγj ⊗ 1∂jΨ+ γ2n+1 ⊗ γjφjΨ = 0. (15)

By the use of the similar notation for the matrix-valued wave function in the previous subsection, we have

− iγj∂jΨ̃ + (−)nγ2n+1Ψ̃γjφj = 0, Ψ̃ ≡ ΨΓ. (16)
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Recall that Γ is defined in (A3). Taking Eq. (2) into account and assuming

Ψ̃(r) = ψ(r) + iγ2n+1ϕ(r), (17)

the l.h.s. of the above equation can be converted into

−iγj(ψ′ + iγ2n+1ϕ′) + (−)nγ2n+1∆(ψ + iγ2n+1ϕ)γj

= −iγj [ψ′ − (−)n∆ϕ] + γjγ2n+1 [ϕ′ − (−)n∆ψ] , (18)

where ψ′ = ∂rψ and ϕ′ = ∂rϕ. This leads to the following coupled equations

ψ′(r) = (−)n∆(r)ϕ(r),

ϕ′(r) = (−)n∆(r)ψ(r). (19)

These equations formally allow two independent solutions

ψ±(r) = ±(−)nϕ±(r) = C± exp

[
±

∫ r

0

∆(r′)dr′
]
. (20)

The normalizability of the wave functions imposes C± = 0 for ∆(∞) ≷ 0. These two kinds of wavefunctions are
reminiscent of those in Eqs. (11) and (12). However, in either case of Eq. (20), the chirality of the wave function is

Γ2d+1Ψ = γ2n+1Ψ(γ2n+1)T

= γ2n+1Γ†Ψ̃γ2n+1

= (−)nΨ, (21)

where we have used the facts that Ψ̃γ2n+1 = γ2n+1Ψ̃ for Ψ̃ in Eq. (17) and Γ†γ2n+1 = (−)nγ2n+1Γ† which follows
from Eq. (A5). We thus find that the chirality of the zero-mode in d = 2n dimensions is given by (−)n independently
of the sign of ∆(∞). This is in contrast with the odd dimensional case described in the previous subsection: In even
dimensions, x → −x does not cause space reflection and two configurations φ and −φ belong to the same topological
sector. To obtain the zero-energy state with opposite chirality we may consider the following configuration;

φj(x) = ∆(r) ×

{
x̂j (j = 2, 3, · · · , d)
−x̂1 (j = 1)

(22)

This is a mirror reflection of Eq. (2) with respect to the x1-axis. It is easy to see that zero-energy wave function can
be written as

Ψ = γ1(ψ(r) + iγ2n+1ϕ(r)), (23)

where ψ and ϕ are given by Eq. (20). Due to the presence of γ1 the chirality of the wave function becomes −(−)n.

C. Index of the Hamiltonian: the analytic index

As in the case of d = 2 and 3, we define the index of the Hamiltonian with respect to its zero-energy state. Let N±

be the number of zero-energy states of H whose chirality, i.e., the eigenvalue of Γ2d+1, is ±1, respectively. Then the
index of H is defined by

indH ≡ N+ −N−. (24)

Let us assume that the Hamiltonian Eq. (1) allows only one zero-energy bound state, which has been obtained so far
in Sec. II A and II B. Then, provided that ∆(∞) > 0, the index (24) reads

indH =

{
(−)n (d = 2n)
(−)n+1 (d = 2n+ 1)

. (25)
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III. INDEX THEOREM

In the last section we have explicitly constructed chirally decomposed zero-energy states in order to introduce and
determine the analytical index of the Hamiltonian. The obtained index is given in Eq. (25) as a function of the spatial
dimension d. These worked out thanks to specific representations of the Γ-matrices, e.g., Eqs. (3) and (4), or Eqs.
(13) and (14). Here, we consider a priori another index of the Hamiltonian, called a topological index, the evaluation
of which involves no specific representation of the Γ-matrices. The equivalence of the two indices is then guaranteed
by the index theorem: [17–19]

indH = lim
m→0

TrΓ2d+1 m2

H2 +m2

= c+ lim
m→0

1

2

∫

|x|→∞

Jj(x)dSj . (26)

The first (second) line corresponds to analytical (topological) representation of the index. In the second line, c is
defined by

c = lim
M→∞

TrΓ2d+1 M2

H2 +M2
, (27)

and the current density Jj(x) is generally expressed as

Jj(x) ≡ lim
y→x

tr Γ2d+1Γj

(
1

−iH+m
−

1

−iH+M

)
δd(x− y)

= lim
y→x

tr Γ2d+1Γj

(
iH

H2 +m2
−

iH

H2 +M2

)
δd(x− y). (28)

where, we have introduced the Pauli-Villars regulator with mass M to make the current well-defined, which yields
the term c in Eqs. (26) and (27). [18] In the second line of Eq. (26) the integration is taken over Sd−1, i.e., the
boundary of Rd. The first line of Eq. (26), or the definition of index in Eq. (24) reflects analytical properties of the
Hamiltonian, as the solution of the BdG equation as investigated in the previous section. The second line of Eq. (26),
on the contrary, is associated with topological properties of the order parameter.
The Pauli-Villars regulator introduced in Eq. (24) becomes particularly important, when the gauge potential is

taken into account; the second term of (28) gives, indeed, the Chern number associated with the magnetic field.
Here, on the contrary, since the gauge potential is not considered, the integration of the second term vanishes after
M → ∞. The current density is indeed well-defined even without the Pauli-Villars regulator. (Below, we will verify
this explicitly.) In the plane wave basis, it can be calculated as

Jj(x) =

∫
ddk

(2π)d
e−ikxtr Γ2d+1Γj(iH)

1

H2 +m2
eikx. (29)

Here, we have introduced an abbreviation for the inner product, kx = kjxj . In the following, we evaluate this
expression, i.e., carrying out the integration over the momentum in Eq. (29) in two different ways.

A. Direct calculation of the topological index

We first evaluate Eq. (29) directly. In such a direct calculation, there is no need to specify the representation of
the Γ-matrices. Note the relation,

e−ikxH2eikx = −(∂j + ikj)
2 + φ2a − iΓjΓd+a∂jφa. (30)

Then, we have

Jj(x) =

∫
ddk

(2π)d
tr Γ2d+1Γj(iΓd+aφa)

1

k2j + φ2a +m2 − iΓjΓd+a∂jφa

=

∫
ddk

(2π)d
tr Γ2d+1Γj(iΓd+aφa)

∞∑

l=0

(iΓjΓd+a∂jφa)
l

(k2j + φ2a +m2)l+1
. (31)
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In Eq. (31), the series expansion is quite useful, if we note that ∂jφa = O(r−1) as well as dSj ∝ rd−1dd−1Ω, implying
that terms with l ≥ d vanish when integrated over the surface of Sd−1 in Eq. (26). Note also that Γ2d+1 appears in
the above equation only once, and hence the terms with l < d− 1 vanish if one takes the trace. It follows that only
the l = d− 1 term gives a finite contribution to the index, which is indeed well-defined. At this point, one can clearly
see that the Pauli-Villars regulator for the current density, as expressed in Eq. (28), was indeed not necessary in the
present case. We reach

Jj(x) =

∫
ddk

(2π)d
tr Γ2d+1Γj(iΓd+aφa)

(iΓjΓd+a∂jφa)
d−1

(k2j + φ2a +m2)d
+O(r−d)

= id
[
tr Γ2d+1ΓjΓd+aΓj1Γd+a1Γj2Γd+a2 · · · · · ·Γjd−1Γd+ad−1

]

× φa∂j1φa1
∂j2φa2

· · ·∂jd−1
φad−1

∫
ddk

(2π)d
1

(k2j + φ2a +m2)d
+O(r−d). (32)

By the use of tr Γ2d+1Γµ1Γµ2 · · ·Γµ2d = (2i)dǫµ1µ2···µ2d for µj , νj = 1, · · · , 2d, and

∫
ddk

(2π)d
1

(k2 + h)α
=

Γ(α− d
2 )

(4π)
d
2 Γ(α)hα−

d
2

, (33)

we have

Jj(x) =
id(2i)dǫdΓ(

d
2 )

(4π)
d
2 Γ(d)(φ2a +m2)

d
2

ǫjj1j2···jd−1ǫaa1a2···ad−1φa∂j1φa1
∂j2φa2

· · ·∂jd−1
φad−1

, (34)

where ǫd ≡ (−)d(d−1)/2, which is due to the rearrangement of the arguments in the totally antisymmetric tensor,
ǫj(d+a)j1(d+a1)···(d+ad−1)jd−1 = ǫdǫ

jj1···jd−1(d+a)(d+a1)···(d+ad−1). Let us assume that φ2a → |φ|2 ≡ const. at |x| → ∞.
Then,

indH =
(−)dǫdΓ(

d
2 )

2π
d
2 (d− 1)!

∫

|x|→∞

ǫjj1j2···jd−1ǫaa1a2···ad−1 φ̂a∂j1 φ̂a1
∂j2 φ̂a2

· · · ∂jd−1
φ̂ad−1

dSj

=
(−)dǫdΓ(

d
2 )

2π
d
2 (d− 1)!

∫

|x|→∞

ǫa1a2···ad φ̂a1
dφ̂a2

dφ̂a3
· · · dφ̂ad

, (35)

where φ̂a = φa/|φ|, and hence, φ̂2a = 1.
So far our calculation was generic, not depending on a specific form of the order parameter, as in Eq. (2). Eq. (35)

is a general expression of topological index for an arbitrary configuration of the order parameter. For a particular
case of the hedgehog configuration, Eq. (2), the integral in Eq. (35) reduces simply to the surface area of Sd−1 with
a unit radius, which leads to

indH = (−)dǫd. (36)

When ∆(∞) > 0, this coincides exactly with the analytical index in Eq. (25).

B. Relating the topological index to a transition function

In the last subsection we have directly evaluated Eq. (29) and obtained a couple of expressions for the topological
index; a general formula, Eq. (35) and a concrete expression for the hedgehog configuration, Eq. (36). These
expressions will be compared with the Chern number due to the Berry connection in the next section IVA. Here,
to see a more direct relationship between these two, we derive an alternative expression of the topological index.
This will correspond to the Chern number in section IVB expressed by the transition function. To this end, let us
introduce another specific representation of the Γ-matrices than the one we used for the evaluation of the analytical
indices. The representation we use here makes chiral symmetry of the Hamiltonian manifest.
Let γµ be the γ-matrices in 2d−1 dimensions given in Appendix A, and let Γµ be the Γ-matrices in 2d+1 dimensions

which are constructed by γµ such that

Γµ = γµ ⊗ σ1, (µ = 1, · · · , 2d− 1),

Γ2d = 1⊗ σ2,

Γ2d+1 = 1⊗ σ3. (37)
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Regardless of d, the Hamiltonian turns out to be

H =

(
D

D†

)
, (38)

where

D = −iγj∂j + γd+aφa − iφd. (39)

We also introduce a matrix Q by

e−ikxHeikx = Q− iΓ · ∂, (40)

where Γ · ∂ = Γj∂j . It is explicitly given by

Q = Γjkj + Γd+aφa. (41)

For the Γ matrices Eq. (37) we can write it as

Q =

(
Q

Q†

)
, Q = γjkj + γd+aφa − iφd1. (42)

The matrix Q plays the role of the transition function in Sec. IVB. Indeed, by the use of Q†Q = R2
0 ≡

∑d
j=1 k

2
j +

∑d
a=1 φ

2
a, we can define the unitary matrix Q̂ ≡ Q/R0.

Taking the limit m→ 0, we see that the current (29) can be written as

Jj(x) →

∫
ddk

(2π)d
tr Γ2d+1Γj 1

Q− iΓ · ∂
, (43)

where j = 1, · · · , d. Note that Γ · ∂ = ∂̃Q · ∂, where ∂̃j ≡ ∂kj
, which is distinguished from ∂j ≡ ∂xj

. Then, the
expansion

(Q− iΓ · ∂)−1 = (Q− iΓ · ∂)
1

(Q− iΓ · ∂)2

= (Q− iΓ · ∂)
1

R2
0

∞∑

n=0

(
(i∂̃ Q · ∂Q+ 2ik · ∂ + ∂2)

1

R2
0

)n

(44)

yields the current

Jj(x) =

∫
ddk

(2π)d
id

R2d
0

tr Γ2d+1∂̃jQQ(∂̃Q · ∂Q)d−1 +O(|x|−d). (45)

Inserting this into the r.h.s. of Eq. (26), we can express the index of H as an integral over the 2d− 1 dimensional
space, the d− 1 dimensional sphere at the spatial infinities and the d dimensional momentum space. The expression
thus obtained, however, is not manifestly topologically invariant as it stands. It is possible to write indH as an
integral of (2d− 1)-form as

indH =
2ǫdi

dd!

(2π)d(2d)!

∫
tr (Q̂†dQ̂)2d−1, (46)

where Q̂ = Q/R0 is the transition function and d = dkj ∂̃j + dxj∂j is the exterior derivative with respect to x and
k. The topological invariance now becomes manifest since the (2d− 1)-form in the integral changes only by an exact
form under any continuous deformation of the transition function. For reference, we will give a derivation of Eq. (46)
in Appendix B.
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IV. TOPOLOGICAL INDICES VS. TOPOLOGICAL INVARIANTS (BERRY CURVATURE)

How (topological) indices are related to the topological invariants, i.e., Chern numbers, expressed in terms of the
Berry curvature? In Refs. [7, 8], a Chern number, analogous to the one in Refs. [1, 2], but characterizing the
protected zero-modes, has been proposed. For bulk topological insulators and superconductors, Chern numbers given
in terms of a Berry curvature in k-space, are used as a topological quantum number of the ground state. Here, the
one proposed in Refs. [7, 8] involves the Berry connection in both k- and x-space.
Let H be the corresponding Hamiltonian proposed in Refs. [7, 8],

H = Γjkj + Γd+aφa + λΓ2d+1 ≡ ΓµXµ, (47)

where µ = 1, 2, · · · , 2d + 1, and Xµ = Xµ(kj , xj , λ). We assume that this model is defined at |x| → ∞, where
φ2a = |φ|2 = const, so that it includes d parameters {kj}, d− 1 parameters {xj} (these should be denoted by, say, θj ,
the coordinates of Sd−1, but for simplicity, we use xj), and one parameter λ, i.e, in total 2d parameters {kj , xj , λ}.
Then, we see that H2 = k2j + |φ|2 + λ2 ≡ R2, which implies that the eigenvalues of this Hamiltonian are ±R. Let ψj

(j = 1, 2, · · · , 2d−1) be a set of orthonormal eigenstates with eigenvalue −R,

Hψj = −Rψj. (48)

Then, the Berry connection one-form and curvature two-form are, respectively, defined by

A = ψ†dψ, (49)

F = dA+ A2, (50)

where ψ = (ψ1, ψ2, · · · , ψ2d−1) is a 2d × 2d−1 matrix and d = dkj∂kj
+ dxj∂xj

+ dλ∂λ. It should be noted that the
projection operator [24] to the negative eigenstates can be written as

P = ψψ† (51)

=
1

2

(
1−

H

R

)
. (52)

Then, Eq. (51) leads to P (dP )2dP = ψF dψ†, which immediately gives

tr F d = tr P (dP )2d. (53)

The d-th Chern number for H is defined by

cd(H) =
1

d!

(
i

2π

)d ∫
tr F d. (54)

This is a topological invariant, to be sure, but identifying it as the index is not more than a speculation. As mentioned
earlier, Eq. (54) is expressed in terms of a Berry curvature which involves, in addition to kj , the coordinates xj
surrounding the defect as parameters for the Berry connection and curvature. This suggests that the Chern number
(54) characterizes the zero-energy states peculiar to the defect. Though in d = 2 and 3, the topological index and
the Chern number are shown to be equivalent,[19] its direct proof is still missing. Below we establish an explicit
one-to-one correspondence between the two quantities, which is valid in arbitrary dimensions. The two quantities are
indeed shown to be equivalent, but possibly differ by a sign factor depending on the spatial dimension.

A. Direct calculation of the Chern number

One-form of the projection operator is

dP = − 1
2Γ

µdX̂µ, (55)

where X̂µ = Xµ/R. Then, we have

tr F d = −
1

22d+1
tr ΓµX̂µ

(
ΓνdX̂ν

)2d

= −
1

22d+1
(2i)dǫµ1µ2···µ2d+1

1

R2d+1
Xµ1

dXµ2
· · · dXµ2d+1

. (56)
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Now let us divide {Xµ} into {φa} and {kj} (we regard λ as the (d + 1)-th momentum kd+1). Here, note that the
first Xµ in the above equation cannot be a momentum, since otherwise it vanishes after the integration over the
momentum. So that

ǫµ1µ2···µ2d+1Xµ1
dXµ2

· · · dXµ2d+1
= (−)dǫa1a2···adǫj1j2···jd+1

2dCd+1φa1
dφa2

· · · dφad
dkj1dkj2 · · · dkjd+1

=
(2d)!

(d− 1)!
(−)dǫa1a2···adφa1

dφa2
· · ·dφad

dd+1k. (57)

Therefore, we have

cd(H) =
(−)d−1(−)d

d!(2π)d2d+1

(2d)!

(d− 1)!

∫
ǫa1a2···adφa1

dφa2
· · · dφad

∫
dd+1k

(k2 + |φ|2)d+
1
2

= −
Γ(d2 )

2π
d
2 (d− 1)!

∫
ǫa1a2···ad φ̂a1

dφ̂a2
· · ·dφ̂ad

, (58)

where φ̂a = φa/|φ|. It thus turns out that

indH = (−)d+1+d(d−1)/2cd(H). (59)

This establishes an explicit one-to-one correspondence between the topological index and the Chern number, which
is valid for a generic configuration of order parameters. The two quantities are indeed equivalent but their relative
sign shows a systematic alternation as a function of d. For d = 3 this extra sign factor is typically −1.

B. The transition function

Here, we give another derivation of Eq. (59), i.e., by the use of the transition function. The transition function,

which will be denoted as Q̂, includes all the topological information of the Chern number. The calculations presented
in this subsection correspond to those of Sec. III B.
The Γ-matrices (37) lead to the Hamiltonian

H =

(
λ1 Q
Q† −λ1

)
, (60)

where Q is defined in Eq. (42). Then, Q†Q+ λ21 = QQ† + λ21 = R2
1. By the use of some reference states, we can

fix the gauge of the wave functions such that

ψ = PφN−1, (61)

where N2 = φ†Pφ is a normalization matrix. Let us introduce two kinds of the reference states

φ+ =

(
0
1

)
, φ− =

(
−1
0

)
. (62)

Then, the normalization matrix is given by

N± =

√
R± λ

2R
1 (63)

and corresponding gauge-fixed wave function is given by

ψ+ =
1√

2R(R+ λ)

(
−Q

(R+ λ)1

)
,

ψ− =
1√

2R(R− λ)

(
−(R− λ)1

Q†

)
. (64)

The implication of the subscripts ± would be clear; ψ± have singularities, respectively, in the south and north poles
on S2d, associated with the Dirac string. It turns out that the transition function g at λ = 0 defined by ψ+ = ψ−g is
given by

g = ψ†
−ψ+ =

Q

R
≡ Q̂, (65)
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where Q̂†Q̂ = 1. Using tr F d = dω2d−1(A,F ), where ω2d−1 denotes the 2d− 1 th Chern-Simons form, and ω2d−1(A+
V, F )− ω2d−1(A,F ) = ω2d−1(V, 0) + dα2d−2 with V = dgg−1 and α2d−2 being a certain (2d− 2)-form, we reach

cd =
(−)d−1id(d− 1)!

(2π)d(2d− 1)!

∫

S2d−1

tr (Q̂†dQ̂)2d−1. (66)

In view of Eq. (46), we have established the relation (59) again.

V. SUMMARY AND DISCUSSIONS

We have investigated a Majorana zero-energy state in a topological superconductor in arbitrary dimensions in order
to reexamine the relation between the topological index and the Chern number associated with the Berry curvature.
We have first counted the analytical index by solving the BdG equation directly, and next calculated the topological
index characterizing the topological configuration of the order parameter. We have confirmed that they indeed
coincide. Based on these observations, we have finally calculated the Chern number also in arbitrary dimensions.
The obtained Chern number coincides with the topological index apart from an extra sign factor depending on the
dimension. In this sense, the Chern number for systems with a topological defect is endowed with the role of the
index for the protected zero-energy states.
The model we have studied in this paper belongs to class BDI with particle-hole, chiral, and resultant time-reversal

symmetries. Among them, chiral symmetry has played a crucial role in the index theorem, since the index is defined
as eigenvalues of the chirality operator. Note that the BDI class with a point defect (in the notation of Ref. [8],
δ = d − D = 1) is classified by a Z-type topological number, which gives physically the number of protected zero-
energy states. A more generic class of similar character; possessing particle-hole symmetry with non-trivial topological
defects is class D, which on the contrary, does not preserve chiral symmetry. In class D protected zero-energy states
are characterized by a Z2-type topological number, i.e., the choice is simply, whether there exists one of such, or none.
This reduction of symmetry [25] from class BDI to D is analogous to the relation between IQHE (class A) and Z2

(quantum spin Hall) insulators (class AII) in two spatial dimensions (d = 2, 2D).
According to the classification by Teo and Kane [8], there are other classes with various kinds of topological defects

which allow protected zero modes. It may be quite interesting to explore the relationship between the topological
invariants associated with the Berry connection and curvature, which may be valid, in a sense, in the adiabatic
approximation, and index-like quantities directly reflecting the protected zero modes, which are free from any approx-
imations.

Acknowledgments

This work was supported in part by Grant-in-Aid for Scientific Research from JSPS (No. 21540378) and by the
“Topological Quantum Phenomena” Grant-in Aid for Scientific Research on Innovative Areas from the Ministry of
Education, Culture, Sports, Science and Technology (MEXT) of Japan (Nos. 23103502, 23103511).

Appendix A: γ-matrices

In this appendix, we summarize the representation of the γ-matrices useful to obtain the zero-energy wave functions
in Sec. II. We first define the conventional γ-matrices in 2n+ 1 dimensions such that

γ2k−1 = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
k−1

⊗ σ1 ⊗ σ3 ⊗ · · · ⊗ σ3

︸ ︷︷ ︸
n−k

γ2k = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
k−1

⊗ σ2 ⊗ σ3 ⊗ · · · ⊗ σ3

︸ ︷︷ ︸
n−k

(A1)

where k = 1, · · · , n, and

γ2n+1 = σ3 ⊗ · · · ⊗ σ3

︸ ︷︷ ︸
n

= (−i)nγ1 · · · γ2n, (A2)

which obey {γµ, γν} = 2δµν . Define also,

Γ = γ1γ3 · · · γ2n+1, (A3)
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and notice

Γ2 = (−1)[(n+1)/2] = (−1)n(n+1)/2. (A4)

Then, we have

(γµ)T = (γµ)∗ = (−)nΓγµΓ−1, (A5)

for µ = 1, 2, · · · , 2n, 2n+ 1.

Appendix B: Derivation of Eq. (46)

In the trace of Eq. (45), Q, ∂̃jQ and ∂jQ effectively anti-commute one another because of the presence of Γ2d+1.
Noting this, we can put Jj(x) as

Jj(x) = ǫd

∫
ddk

(2π)d
id

R2d
0

tr [Γ2d+1∂̃jQ∂̃j2Q · · · ∂̃jdQQ∂j2Q · · ·∂jdQ]

= ǫd

∫
ddk

(2π)d
id

R2d
0

tr [Γ2d+1∂̃1Q∂̃2Q · · · ∂̃dQǫjj2···jdQ∂j2Q · · ·∂jdQ]

=
idǫd

(2π)dd!

∫
ǫjj2···jd
R2d

0

tr [Γ2d+1(dkQ)dQ∂j2Q · · ·∂jdQ], (B1)

where we have suppressed the nonleading terms for |x| → ∞ and dk = dkj ∂̃j is the exterior derivative on the
momentum space. Using this and the volume form on the (d− 1) dimensional sphere

dSj =
1

(d− 1)!
ǫjj2···jddxj2 · · ·dxjd , (B2)

we can write Eq. (26) as

indH =
idǫd

2(2π)dd!(d− 1)!

∫
ǫjj

′

2···j
′

ddxj′
2
· · · dxj′

d

∫
ǫjj2···jd
R2d

0

tr [Γ2d+1(dkQ)dQ∂j2Q · · ·∂jdQ]

=
(−i)dǫd
2(2π)dd!

∫
1

R2d
0

tr [Γ2d+1Q(dkQ)d(dxQ)d−1]

=
(−i)dǫd
(2π)d

d!

(2d)!

∫
1

R2d
0

tr[Γ2d+1Q(dQ)2d−1], (B3)

where we have introduced exterior derivatives by dx = dxj∂j and d = dx + dk. In the representation Eq. (37) of Γ
matrices and for Q given by Eq. (42), the integrand can be further simplified as

1

R2d
0

tr[Γ2d+1Q(dQ)2d−1] =
1

R2d
0

tr[QdQ†(dQdQ†)d−1 −Q†dQ(dQ†dQ)d−1]

= (−1)d2tr(Q̂†dQ̂)2d−1 + d(· · · ), (B4)

where d(· · · ) denotes total derivative terms and has no contribution to indH. Eq. (46) immediately follows from Eqs.
(B3) and (B4).
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