
A Study on Refined Neural Network Approach with Data
Transformation for Software Fault Prediction

(ソフトウェアフォールト予測のためのデータ変換を用
いたニューラルネットワークアプローチに関する考察)

Dissertation submitted in partial fulfillment for the
degree of Doctor of Engineering

Momotaz Begum

Under the supervision of
Professor Tadashi Dohi

Dependable Systems Laboratory,
Department of Information Engineering,

Graduate School of Engineering,
Hiroshima University, Higashi-Hiroshima, Japan

September 2017

iii

Abstract

Software fault prediction is one of the most fundamental techniques in software

fault management, and is used to assess the software product reliability and to

control the development processes. Software reliability is an important facet of

software quality, and is defined as the probability of failure-free software oper-

ation for a specified period of time in a specified environment. For the purpose

of quantitative assessment, software reliability growth models (SRGMs) have

been widely used during the last four decades. Since SRGMs are essentially

stochastic models with abstractions, they must be built under several simplified

mathematical assumptions, and, at the same time, their parameter estimation

with the fault count data observed in software testing is not a trivial task. Be-

cause the maximum likelihood estimation, which is commonly used, is reduced

to a multi-modal nonlinear optimization problem with constraints, and requires

the much computation effort. Apart from SRGMs based on stochastic model-

ing, artificial neural network (ANN) has gained much popularity to deal with

non-linear phenomena arising in applications to time series forecasting, pattern

recognition, function approximation, etc. Comparing with non-trivial stochas-

tic models, it is easy to implement the ANN for the software fault prediction,

since the feed-forward back-propagation (BP) type of learning algorithm can be

widely used to estimate the internal parameters, such as connection weights.

In this thesis, we concern the software fault prediction using a multilayer-

perceptron neural network, where the underlying software fault count data is

transformed to the Gaussian data, by means of the well-known five data trans-

formation methods. More specially, we mainly consider the long-term prediction

of the number of software faults, and propose a refined neural network approach

with the grouped data, where the multi-stage look-ahead prediction is carried

out with a simple multilayer perceptron neural network with multiple outputs.

In details, we discuss two different research topics; one-stage look-ahead predic-

tion and multi-stage look-ahead prediction.

In Chapter 2, we focus on a prediction problem with the common multilayer

perceptron neural network of the cumulative number of software faults in se-

quential software testing. We apply the well-known back propagation algorithm

iv

for feed forward neural network architectures. We also discuss not only the

point estimation but also the sensitivity of the neural network architecture on

input neuron and hidden neuron by applying the well-known“ rules of thumb”

techniques. It is revealed that the rule of thumb is rather accurate to obtain

the nearly optimal network architecture for real failure data analyses.

In Chapter 3 and Chapter 4, we pay our attention to the software fault

prediction and prediction interval for long term. Here we study the long-term

prediction of the number of software faults, and propose a refined neural network

approach with the grouped data, where the multi-stage look-ahead prediction

is done with a simple multi-layer perceptron neural network with multiple out-

puts. Under the assumption that the software fault count data follows a Poisson

process with an unknown mean value function, we transform the underlying

Poisson count data to the Gaussian data via five data transformation methods.

Next, we predict the long-term behavior and derive the predictive interval of

the cumulative number of software faults in sequential software testing by the

refined neural network. On the other hand, nonhomogeneous Poisson process

(NHPP)-based SRGMs are widely used for modeling the detection of software

faults in software testing. By comparing our proposed models with conven-

tional ones, we show the utility of our neural network models. It is exposed

which method is an appropriate one in the both viewpoints of point estimation

and interval estimation, throughout our simulation experiments and real failure

data analyses.

In Chapter 5, we concern the optimal software release time which minimizes

the relevant expected software cost via a refined neural network approach with

the grouped data, where the multi-stage look-ahead prediction is performed

with a simple three-layer perceptron neural network with multiple outputs. To

our best knowledge, there have no research result on the optimal software re-

lease problems for long-term prediction via a refined neural network approach.

To analyze the software fault count data which follows a Poisson process with

unknown mean value function, we transform the underlying Poisson count data

to the Gaussian data by means of one of five data transformation methods, and

predict the cost-optimal software release time via a neural network. We compare

our neural network approach with the common NHPP -based SRGMs. Finally,

v

we conclude the thesis with some remarks in Chapter 6.

viii

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor Professor

Tadashi Dohi, the supervisor of my study, for the continuous support of my

Ph.D study and related research, for his patience, motivation, and immense

knowledge. His guidance helped me in all the time of research and writing of

this thesis. I could not have imagined having a better advisor and mentor for

my Ph.D study.

Besides my advisor, I would like to thank the rest of my thesis committee:

Professor Takio Kurita, and Associate Professor Hiroyuki Okamura, for their

insightful comments, encouragements and checking the manuscript, but also

for the hard question, which incented me to widen my research from various

perspectives. And I also wish to thank the MEXT (Ministry of Education,

Culture, Sports, Science, and Technology) Japan Government Scholarship for

financial support during three years.

Finally, it is my special pleasure to acknowledge the hospitality and encour-

agement of the past and present members of the Dependable Systems Labora-

tory, Department of Information Engineering, Hiroshima University. Last but

not the least, I would like to thank my family: my husband, my parents and

to my brothers and sister for supporting me spiritually throughout writing this

thesis and my life in general.

Contents

Abstract iv

Acknowledgements ix

1 Introduction 1

1.1 Software Fault Prediction . 1

1.2 Software Reliability Assessment 2

1.3 Artificial Neural Network (ANN) 4

1.4 Data Transformation . 7

1.5 Predictive Interval (PI) . 8

1.6 Optimal Software Release Problem (SRP) 9

1.7 Organization of Dissertation . 11

2 Point Estimation of Cumulative Number of Software Faults :

One stage look-ahead prediction 15

2.1 Neural Network Approach . 15

2.1.1 Preliminary Set-up . 17

2.1.2 Neural Network Architecture 17

2.2 Numerical Examples . 20

2.2.1 Data Sets . 20

2.2.2 Predictive Performance 20

2.3 Effect of number of hidden neurons and input neurons 22

2.4 Numerical Illustrations . 24

2.4.1 Setup . 24

2.4.2 Effect of number of hidden nodes 25

2.4.3 Effect of number of input nodes 26

xi

xii CONTENTS

2.4.4 One-stage look ahead point prediction 30

3 Multi-stage look-ahead prediction : Refined Neural Network

Architecture 31

3.1 Model Description . 31

3.1.1 NHPP-based Software Reliability Modeling 31

3.1.2 A Refined Neural Network Approach 33

3.2 Numerical Experiments . 38

3.2.1 Discussion . 39

3.3 Simulation Experiments . 49

3.3.1 Point Estimation . 50

4 Predictive Interval: Refined Neural Network Approach 55

4.1 Delta Method . 55

4.2 One-stage look ahead prediction 57

4.3 PI for multi-stage look-ahead prediction 63

4.4 Numerical Experiments . 64

4.4.1 Interval Estimation . 64

4.4.2 Statistical Properties of Estimators 72

5 Optimal Software Release Decision : Refined NN Approach 85

5.1 Point Estimation . 85

5.1.1 NHPP-Based Software Reliability Modeling 85

5.1.2 Refined NN approach . 87

5.2 Optimal Software Testing Policy 92

5.3 Numerical Illustrations . 95

5.3.1 Predictive Performance 95

5.3.2 Results . 95

6 Conclusions 107

6.1 Summary and Remarks . 107

6.2 Future Works . 109

Appendix A AE result for four DS1 ∼ DS4 data sets 111

A.1 DS1 . 113

CONTENTS xiii

A.2 DS2 . 113

A.3 DS3 . 113

A.4 DS4 . 113

Appendix B AE result for four DS5 ∼ DS8 data sets 129

B.1 DS5 . 130

B.2 DS6 . 130

B.3 DS7 . 130

B.4 DS8 . 130

Bibliography 147

Publication List of the Author 155

List of Figures

2.1 Architecture of feed forward MLP neural network. 20

2.2 Time-dependent behavior of relative error 22

2.3 Overall experimental process. 24

2.4 s+1 testing day predicated value (DS4 22:15:1). 29

2.5 Time-dependent behavior of relative error (DS7 10:7:1). 29

3.1 Architecture of back propagation type MIMO. 34

3.2 Configuration of prediction scheme via MIMO. 34

3.3 Time-dependent behavior of relative error with DS1 at 60% ob-

servation point. 41

3.4 Time-dependent behavior of relative error with DS6 at 60% ob-

servation point. 41

3.5 Determination of the transformation parameter λ (DS1 with 50%

observation point). 48

3.6 Determination of the transformation parameter λ (DS2 with 50%

observation point). 49

3.7 Case1 Fitted dataset . 52

3.8 Case4 S-shaped dataset . 52

3.9 Time-dependent behavior of relative error with Case1 (k = 40). 54

4.1 Prediction Interval . 60

4.2 Predictive Interval with optimal hidden and input neurons. . . . 63

4.3 A algorithm for simulation based predictive interval method. . . 65

4.4 Prediction Interval for Delta method with DS1. 70

4.5 Predictive Interval for Simulation based method with DS1. . . . 71

4.6 Prediction Interval for delta method with Case1. 74

xvii

xviii LIST OF FIGURES

4.7 Prediction Interval for Simulation based method with Case1. . . 75

4.8 Prediction Interval for delta method with Case2. 76

4.9 Prediction Interval for simulation based method with Case2. . . . 77

4.10 Prediction Interval for delta method with Case3. 78

4.11 Prediction Interval for simulation based method with Case3. . . . 79

4.12 Prediction Interval for delta method with Case4. 80

4.13 Prediction Interval for simulation based method with Case4. . . . 81

4.14 Real predictive interval with Case1 ∼ Case4 82

5.1 Architecture of back propagation type MIMO. 93

5.2 Configuration of prediction scheme via MIMO. 94

5.3 DS1. 97

5.4 DS2. 98

List of Tables

2.1 Data transform formulae. 22

2.2 Average Relative error in point prediction. 23

2.3 Data sets observed in study. 25

2.4 Average Relative error in point prediction. 27

2.5 Average Relative error in point prediction. 28

3.1 NHPP-based SRGMs. 42

3.2 Data transform formulae. 43

3.3 Data sets observed for multi-stage look ahead prediction. 43

3.4 AE according to observation point for four (DS1 ∼ DS4) datasets 44

3.5 AE according to observation point for four (DS5 ∼ DS8) datasets 45

3.6 AE according to prediction length for four (DS1 ∼ DS4) datasets 46

3.7 AE according to prediction length for four (DS5 ∼ DS8) datasets 47

3.8 Comparison table for both cases with all datasets 48

3.9 Comparison of average relative errors for fifteen days prediction

with Case1 ∼ Case4 (l = 15). 53

4.1 Prediction PI measures. 59

4.2 Prediction PI measures. 62

4.3 DS1∼ DS4. 68

4.4 DS5∼ DS8. 69

4.5 Case1∼ Case4. 73

4.6 Real Predictive Interval. 74

4.7 Statistics of estimators of the software cumulative number of fault

data. 83

xix

xx LIST OF TABLES

5.1 Posteriori optimal software testing time for eight datasets. 92

5.2 Prediction results of optimal software testing time with DS1 with

c2 = 4. 98

5.3 Prediction results of optimal software testing time for DS1 with

c2 = 9. 99

5.4 Prediction of optimal software release time for DS2 with c2 = 4. 99

5.5 Prediction of optimal software release time for DS2 with c2 = 9. 100

5.6 Prediction results of optimal software testing time with DS3 with

c2 = 4. 100

5.7 Prediction results of optimal software testing time with DS3 with

c2 = 9. 101

5.8 Prediction results of optimal software testing time with DS4 with

c2 = 4. 101

5.9 Prediction results of optimal software testing time with DS4 with

c2 = 9. 102

5.10 Prediction results of optimal software testing time with DS5 with

c2 = 4. 102

5.11 Prediction results of optimal software testing time with DS5 with

c2 = 9. 103

5.12 Prediction results of optimal software testing time with DS6 with

c2 = 4. 103

5.13 Prediction results of optimal software testing time with DS6 with

c2 = 9. 104

5.14 Prediction results of optimal software testing time with DS7 with

c2 = 4. 104

5.15 Prediction results of optimal software testing time with DS7 with

c2 = 9. 105

5.16 Prediction results of optimal software testing time with DS8 with

c2 = 4. 105

5.17 Prediction results of optimal software testing time with DS8 with

c2 = 9. 106

A.1 Comparison of average relative errors for five days prediction with

DS1 (l = 5). 114

LIST OF TABLES xxi

A.2 Comparison of average relative errors for ten days prediction with

DS1 (l = 10). 115

A.3 Comparison of average relative errors for fifteen days prediction

with DS1 (l = 15). 116

A.4 Comparison of average relative errors for twenty days prediction

with DS1 (l = 20). 117

A.5 Comparison of average relative errors for five days prediction with

DS2 (l = 5). 118

A.6 Comparison of average relative errors for ten days prediction with

DS2 (l = 10). 119

A.7 Comparison of average relative errors for fifteen days prediction

with DS2 (l = 15). 120

A.8 Comparison of average relative errors for twenty days prediction

with DS2 (l = 20). 120

A.9 Comparison of average relative errors for five days prediction with

DS3 (l = 5). 121

A.10 Comparison of average relative errors for five days prediction with

DS3 (l = 10). 122

A.11 Comparison of average relative errors for five days prediction with

DS3 (l = 15). 123

A.12 Comparison of average relative errors for five days prediction with

DS3 (l = 20). 123

A.13 Comparison of average relative errors for five days prediction with

DS4 (l = 5). 124

A.14 Comparison of average relative errors for five days prediction with

DS4 (l = 10). 125

A.15 Comparison of average relative errors for five days prediction with

DS4 (l = 15). 126

A.16 Comparison of average relative errors for five days prediction with

DS4 (l = 20). 127

B.1 Comparison of average relative errors for five days prediction with

DS5 (l = 5). 131

xxii LIST OF TABLES

B.2 Comparison of average relative errors for five days prediction with

DS5 (l = 10). 132

B.3 Comparison of average relative errors for five days prediction with

DS5 (l = 15). 133

B.4 Comparison of average relative errors for five days prediction with

DS5 (l = 20). 134

B.5 Comparison of average relative errors for five days prediction with

DS6 (l = 5). 135

B.6 Comparison of average relative errors for five days prediction with

DS6 (l = 10). 136

B.7 Comparison of average relative errors for five days prediction with

DS6 (l = 15). 137

B.8 Comparison of average relative errors for five days prediction with

DS6 (l = 20). 138

B.9 Comparison of average relative errors for five days prediction with

DS7 (l = 5). 139

B.10 Comparison of average relative errors for five days prediction with

DS7 (l = 10). 140

B.11 Comparison of average relative errors for five days prediction with

DS7 (l = 15). 141

B.12 Comparison of average relative errors for five days prediction with

DS7 (l = 20). 142

B.13 Comparison of average relative errors for five days prediction with

DS8 (l = 5). 143

B.14 Comparison of average relative errors for five days prediction with

DS8 (l = 10). 144

B.15 Comparison of average relative errors for five days prediction with

DS8 (l = 15). 145

B.16 Comparison of average relative errors for five days prediction with

DS8 (l = 20). 146

LIST OF TABLES xxiii

Acronyms and abbreviations

SRM Software reliability model

AIC Akaike information criterion

AT1 Anscombe square-root transform

AT2 Asymptotically unbiased transformation

BP Back propagation

BT Bartlett transform

EM Expectation and maximization

FT Fisz transform

MIMO Multiple input multiple output

MLP Multi-layer perceptron

NHPP Nonhomogeneous Poisson process

SRATS Software reliability assessment tool with spread sheet

SRGM Software reliability growth model

SSE Sum of squared errors

Chapter 1

Introduction

Our modern society depends on computer systems, so that there are numerous

different applications, such as nuclear reactors, financial trading systems and

medical systems, etc. Therefore, failure may occur even when software is used.

Nowadays, predicting software faults is an applicable issue and a major anxiety

for software developers and engineers. In a software development project, most

of software engineers set goals to provide high quality software.

1.1 Software Fault Prediction

Software fault prediction is one of the most fundamental techniques in software

fault management, and is used to measure the software product reliability and

to control the development processes. Software reliability is an important facet

of software quality, and is described as the probability of failure-free software

operation for a specified period of time in a specified environment. For the

purpose of quantitative assessment, SRGMs have been extensively used dur-

ing the last four decades. Since SRGMs are essentially stochastic models with

abstractions, they must be built under several simplified mathematical assump-

tions, and, at the same time, their parameter estimation of the fault count

data observed in software testing is not a trivial task. Because the maximum

likelihood estimation, which is commonly used, is reduced to a multi-modal

nonlinear optimization problem with constraints, and requires the much com-

putation effort. Apart from SRGMs based on stochastic modeling, ANN has

gained much popularity to deal with non-linear phenomena arising in applica-

tions to time series forecasting, pattern recognition, function approximation,

1

2 CHAPTER 1. INTRODUCTION

etc. Comparing with non-trivial stochastic models, it is easy to implement the

ANN for the software fault prediction, since the feed-forward back-propagation

(BP) type of learning algorithm can be widely used to estimate the internal

parameters, such as connection weights. Cai et al. [7] examined that handling

datasets with‘ smooth ’ trends is more effectiveness in the neural network

approach than handling datasets with large fluctuations. They concluded that

the neural network approach is much better in prediction than SRGMs. Sherer

[67] predicted software faults in several NASA projects with neural networks

[70], [71]. It should be pointed out that the neural network-based approach has

some drawbacks for application in software reliability assessment. The major

problem is the design of neural network architecture, involving the number of

input neurons in each layer and the number of hidden layers, so that both of

them must be determined carefully through trial-and-error heuristics. Caruana

[69] showed generalization results on a variety of problems as the size of the net-

works varies. Second, in related works on neural network application to predict

the number of software faults, the prediction is always deterministic. In other

words, the point prediction of the number of software faults detected at each

testing day is given as an output of complex non-linear functions with trained

parameters. In this case, it can be anticipated that the accuracy of future point

forecast significantly reduces.

In this thesis, we concern the software fault prediction using a multilayer

perceptron (MLP) neural network (NN), where the underlying software fault

count data is transformed to the Gaussian data, by means of the well-known

data transformation methods. More specially, we mainly consider the long-term

prediction of the number of software faults, and propose a refined neural network

approach with the grouped data, where the multi-stage look-ahead prediction

is carried out with a simple MLP NN with multiple outputs. In details, we

discuss two different research areas; one-stage look-ahead prediction and multi-

stage look ahead prediction.

1.2 Software Reliability Assessment

In our modern society, computer systems become more essential and compli-

cated. Especially, critical software applications increase in size and complexity

1.2. SOFTWARE RELIABILITY ASSESSMENT 3

day by day. Software reliability is a still challenging issue because almost all

computer-based systems are controlled by software. Especially, quantification of

software reliability is quite important from the standpoint of product liability.

Since the quantitative software reliability is defined as the probability that soft-

ware failures caused by software faults do not occur for a given period of time,

SRGM has been extensively studied in both software engineering and reliability

engineering community. In fact, during the last four decades, a large number

of SRGMs have been proposed in the literature, and some of them have been

used to assess software reliability and to control quantitatively software testing

[29],[34]. Since SRGMs are stochastic models with abstractions, they must be

built under several simplified mathematical assumptions, and, at the same time,

their parameter estimation with the fault count data observed in software test-

ing is not a straightforward task. Because the maximum likelihood estimation,

which is commonly used, is reduced to a multi-model nonlinear optimization

problem with constraints, and it requires a large amount of computation. An-

other problem with SRGMs is the model selection from a great number of SRGM

candidates. During the last four decades, over three hundred SRGMs have been

proposed in the literature. Among them, SRGMs based on NHPPs have been

extensively used for describing the stochastic behavior of the number of de-

tected faults, from their tractability and goodness-of-fit performance. Achcar et

al. [3], Goel and Okumoto [14], Goel [15], Gokhale and Trivedi [16], Ohba [38],

Ohishi et al. [39], Okamura et al. [40], Yamada et al. [55], Zhao and Xie [58],

among others, are well-known as representative NHPP-based SRGMs. These

NHPP-based SRGMs can be classified into parametric models, where the mean

value function or the intensity function characterizing NHPP-based SRGMs is

known in advance. More precisely, since the parametric SRGMs depend on the

statistical property of fault-detection time, the choice of NHPP-based SRGMs

is equivalent to choosing the fault-detection time distribution. However, the

lesson learned from a number of empirical researches reported during the last

four decades suggests that the best parametric SRGM does not exist, which can

fit every type of software fault data. This fact means that the best parametric

NHPP-based SRGM has to be selected carefully from many candidates by check-

ing their goodness-of-fit performance in each software development project. The

4 CHAPTER 1. INTRODUCTION

conclusion from the empirical research suggests that the best SRGM in terms

of the goodness-of-fit performance depends on the kind of software fault count

data. In other words, there does not exist in the best SRGM which can fit every

software fault count data. Sharma et al. [49] proposed a selection method of

the best SRGM by using the concept of distance. However, it appears to be

a questionable method and does not motivate us to use the maximum likeli-

hood estimation. In addition, it is worth mentioning that the best SRGM with

the highest goodness-of-fit to the past observation does not always possess the

best predictive performance to the future (unknown) software fault detection

pattern.

On the other hand, there are two classes of SRGMs; analytical SRGMs and

data-driven artificial neural network models. However, none of these models

satisfy the requirement levels of software developers [50]. Furthermore, predic-

tion of software faults is an important measurement to find reliable software

in the software operational phase. Sometimes professional managers use any

predictor for software quality after release. Abaei et al. [2] explained software

fault prediction based on different machine learning techniques such as decision

trees, decision tables, random forest, neural network, nave Bayes and distinctive

artificial immune systems classifiers. They made a conclusion　 that　 random

forest outperform the other methods. In this thesis, we consider NHPP-based

SRGMs to predict point estimation for long term prediction.

1.3 Artificial Neural Network (ANN)

ANN is a computational metaphor inspired by the brain and nervous system

study, and consists of an input layer with some inputs, multiple hidden layers

with hidden neurons and one output layer. The input layer of neurons can

be used to capture the inputs from the outside world. Since the hidden layer

of neurons has no communication with the external world, the output layer of

neurons sends the final output to the external world. Hence, determining an

appropriate number of hidden neurons is an important design issue in neural

computation.

Apart from the stochastic modeling, ANN has gained much popularity to

deal with non-linear phenomena arising in applications to time series forecast-

1.3. ARTIFICIAL NEURAL NETWORK (ANN) 5

ing, pattern recognition, function approximation, etc. Comparing with non-

trivial stochastic models, it is easy to implement the ANN for the software

fault prediction, since the feed-forward back-propagation (BP) type of learning

algorithm is widely used to estimate the internal parameters, such as connec-

tion weights. Software fault prediction using the ANN was proposed first by

Karunanithi et al. [21], Karunanithi and Malaiya [22],[23]. They applied sim-

ple MLP feed forward neural networks, which enjoy a universal approximation

ability [6] to represent an arbitrary nonlinear mapping with any degree of accu-

racy, in the prediction of software fault-detection time in software testing. Since

their seminal contributions, the ANN approach has been frequently applied to

different estimation /prediction problems in software engineering. Khoshgoftaa

et al. [24],[26], Khoshgoftaar and Szabo [25] considered the problems to identify

fault-prone modules in software quality assessment. Site [48] compared some

ANN approaches with a set of SRGMs from the viewpoint of prediction. Pai

and Hong [42], Tian and Noore [51],[52], Su and Huang [50], Noekhah et al.

[37], Mahajan et al. [33] utilized some evolutionary computing techniques and

machine learning techniques to improve the predictive performance for the clas-

sical ANN models. Hu et al. [17] applied the ANN approach to predict both

software fault detection and correction processes simultaneously.

On the other hand, it should be pointed out that the neural network-based

approach has some drawbacks for application in software reliability assessment.

First, the design of neural network architecture, involving the number of neu-

rons in each layer and the number of hidden layers, is arbitrary so that it must

be determined carefully through try-and-error heuristics. Second, the above

references with neural application to predict the number of software faults are

based on the deterministic output. In other words, the point prediction of the

number of software faults detected at the next testing day is given as an output

of complex non-linear functions with trained parameters. Hence, it may be clear

that the quantitative software reliability as a probability cannot be obtained in

this framework. The basic but implicit assumption in reliability engineering

is that the number of faults is given by a non-negative integer-valued random

variable, which is deeply related to the software reliability. Apart from the

practical requirement in software engineering, it is often pointed out that the

6 CHAPTER 1. INTRODUCTION

unsatisfactorily low prediction performance arises when neural networks provide

ambiguity on the data. In this case, the accuracy of future point forecasts sig-

nificantly drops. More specifically, when the training data in neural networks is

sparse, the point prediction in neural computing may be less reliable. Dissimilar

to the familiar SRGMs, it is impossible to quantify the software reliability as a

probability by applying the common ANN approach. This feature penalizes us

to use the ANN when quantifying the software reliability measures such as the

software reliability, mean time to software failure, etc. On one hand, through

the ANN is a simple connectionist model depending on the architecture, it can

be considered as a statistically nonparametric model without specific model as-

sumptions. As mentioned above, a huge number of SRGMs have been developed

in the literature [1], [3], [14], [15], [16], [28], [38], [39], [40], [55], [58], but al-

most all of them are based on some parametric assumptions whose cannot been

validated for every fault count data. In that sense, the ANN approach can be

viewed as one of nonparametric models with no specific model assumptions. In

fact, the ANN approach provides a data-driven modeling framework and can

bridge several kinds of machine learning techniques. Yang et al. [57] applied

a model mining technique to provide a generic data-driven SRGM. Xiao and

Dohi [54] proposed a nonparametric wavelet method to estimate NHPP-based

SRGM. Park et al. [61] also compared several data-driven approaches with the

existing SRGMs.

BP is a common method of training ANN. The BP algorithm is the well-

known gradient descent method to update the connection weights, to minimize

the squared error between the network output values and the teaching signals.

There are two special inputs; bias units which always have the unit values.

These inputs are used to evaluate the bias to the hidden neurons and output

neurons, respectively. We refine the existing ANN approach as a data-driven

model from the view point of software fault prediction. In particular, we deal

with the grouped data which consists of the number of software fault counts

detected at each testing date, although the existing ANN approaches focus on

only the software fault-detection time data which are not easily available in

actual software testing. It is worth noting that the ANN approaches in early

works [17], [21], [22], [23], [24], [25], [26], [33], [37], [48], [50], [51], [52] just

1.4. DATA TRANSFORMATION 7

considered the one-stage look-ahead prediction, and did not consider the long-

term prediction of the cumulative number of software faults detected in future.

It is a surprising fact because such a problem does not occur in the common

SRGMs [46].

1.4 Data Transformation

It is common to input real value data in the MLP neural network. Since our

problem is to predict the number of software faults newly detected at the next

testing day, however, the underlying data should be integer. In general, it is con-

venient to treat a real number in almost all neural network computing, and to

apply the useful property of the Gauss distribution for constructing prediction

intervals approximately (e.g. see [27]). Hence we suppose that the software fault

count is described by the Poisson law [29], [34], [43], [53]. In the existing litera-

ture, some of the authors concern the prediction of the software fault-detection

time and handle the real number in their neural network calculations. Such a

pre-data processing is common in the wavelet shrinkage estimation [54], but has

not been considered in the software fault prediction via the ANN. According to

the idea by Xiao and Dohi [54], we apply five data transform techniques from the

Poisson data to the Gaussian data. More specifically, we use Bartlett transform

(BT) [5], Anscombe transform (AT1) [4], Fisz transform (FT) [12], Asymptoti-

cally unbiased transformation (AT2) [32] and BoxCox power transformation [8]

as the most major normalizing and variance-stabilizing transforms.

The AT1 is widely used to pre-process the Poisson data before processing

the Gaussian data. Taking the AT1, the cumulative number of software fault

data can be approximately transformed to the Gaussian data. The AT1 is a

natural extension of the well-known BT, which is known as the most funda-

mental data transform tool in statistics. The FT is characterized by square

root transformation as an extension of BT. As the forward Anscombe transfor-

mation is nonlinear, it generally leads to biased estimates if one uses either its

direct algebraic inverse or the asymptotically unbiased inverse (AT2). An ex-

perimental analysis using a few state-of-the-art-denoising algorithms which in a

very efficient filtering solution that is competitive with some of the best existing

methods for Poisson image denoising [32]. Recently [59] AT2 used for Wavelet

8 CHAPTER 1. INTRODUCTION

shrinkage estimation (WSE) for estimating NHPP-based SRM. To reduce the

bias of the wavelet estimator used the algebraic unbiased inverse transformation

for software reliability assessment. The numerical study with real software fault

count data, they show the effectiveness of the WSE combined with the unbiased

inverse transformation. The main objective of Box and Cox [8] considered two

approaches. The first approach is used by the Maximum Likelihood method

(MLE). It ’s conceptually easy and the profile likelihood function is easy to

compute in this case. Also it’s easy to obtain an approximate confidence inter-

val (CI) for because of the asymptotic property of MLE. The second approach

outlined is to use a Bayesian method. We need to first ensure that the model

is fully identifiable. Problem is that it has an unknown parameter λ. Their

suggestion was to“fix one, or possibly a small number, of λs and go ahead with

the detailed estimation”. In their examples, they used what ’s usually called

“ snap to the grid”methods to choose the estimate of λ.

1.5 Predictive Interval (PI)

Reliability of a software system can be adversely affected by the number of

residual faults present in the system. The main goal of software developers

is to minimize the number of faults in the delivered code. A predictive inter-

val(PI) is an estimate of an interval in which future observations will fall, with

a certain probability, given what has already been observed. PIs are often used

in regression analysis and future observation. In the traditional statistics, the

interval estimation is useful to take account of the uncertainty of point esti-

mate itself, though it is difficult to obtain analytically the statistical estimator

distribution of the target output. Hwang and Ding [18] and Veaux et al. [60]

give the fundamental theory and the learning algorithms to obtain predictive

intervals for neural networks, with help of nonlinear regression models. In gen-

eral, there are three conventional methods to calculate predictive intervals in

nonlinear regression problems; delta method, Bayesian method and bootstrap

method. MacKay [35]considers a Bayesian predictive interval with application

to classification problems. Nix and Weigend [36] develop a probabilistic neural

network and propose an approximate method to obtain the output probability

distribution by means of the mean and variance of the output. On an excellent

1.6. OPTIMAL SOFTWARE RELEASE PROBLEM (SRP) 9

survey on predictive intervals with neural networks, see Khosravi et al. [27]. In

this thesis, we obtain predictive intervals of the cumulative number of software

faults detected at each testing day using the multilayer perceptron (MLP) neural

network, where the simplest three layers MLP is assumed with the well-known

back-propagation algorithm. To predict the number of software faults, we im-

pose a plausible assumption that the underlying fault-detection process obeys

the Poisson law with unknown parameters. In numerical experiments with eight

actual software development project data sets and four simulation experiment

data sets, we evaluate the one-stage and multi-stage look-ahead prediction in-

terval in sequential software testing, and compare these data transformation

methods in terms of coverage rate and prediction interval width. Since our

method is based on a combination of Monte Carol and normal BP in spite

of BPs existing nature, we show that our methods are useful to calculate the

predictive intervals on the on-going progress of software debugging process.

1.6 Optimal Software Release Problem (SRP)

The optimal software testing policy which is equivalent to the optimal soft-

ware release policy has been also considered by many authors. The problem

to determine the optimal timing to stop software testing is called the optimal

software release problem (SRP). In fact, there is a well-recognized tradeoff re-

lationship in software costs. If the length of software test is much shorter, then

the total testing cost can be reduced but the larger debugging cost after releas-

ing software may occur in the operational phase, because the debugging cost

in operational phase is much more expensive than that in the testing phase.

Conversely, the longer testing period may result in higher software reliability,

but leads to increase the testing cost. Thus, it is important to find an appro-

priate software release time taking account of the expected total software cost.

Okumoto and Goel [14] derived the optimal software release time such that the

software reliability attains a certain requirement level, for their NHPP-based

SRGM. Alternative way introduced in [14] is to stop software testing so as to

minimize the expected total software cost, by taking account of the tradeoff rela-

tionship. Since the seminal work, many authors consider a number of cost-based

software release problems under different model assumptions and optimization

10 CHAPTER 1. INTRODUCTION

criteria.

A number of optimization problems have been formulated under different

modeling assumptions (see [10], [31], [44], [45], [72]). More specifically, they

formulate the optimal software testing problems under the assumption that the

software fault count process in both testing and operational phases follow a

completely known stochastic point process such as NHPP-based SRGM. On

the other hand, it is known that there does not exist the best SRGM to fit

every software fault count data, the formulation of the optimal software testing

problems strongly depend on the exact statistical estimation of software fault

count process. In fact, non-parametric inference of software fault count process

under the incomplete knowledge on the fault counting phenomenon is another

issue in SRGM research. They propose an interesting graphical method to find

directly an optimal software testing time which minimizes an expected software

cost. However, they just treat software fault-detection time data as well, and

fail to make the multi-stage look-ahead prediction in long-term. Kaneishi and

Dohi [62], Saito and Dohi [47] and Xiao and Dohi [54] develop novel statistical

estimation approaches for software fault count process in testing. However, these

methods fail to predict the long-term behavior of software fault count process

and are not applicable to the optimal software testing problems. Recently,

Saito et al. [63] propose a non-parametric method to predict approximately the

optimal software testing time by minimizing the upper or lower bound of the

expected software cost. Dohi et al. [11] consider an optimal software testing

problem by means of the MLP-based software fault prediction, and estimates

the optimal software testing time.

We present a novel method to estimate the optimal software release time

which minimizes the relevant expected software cost via a refined neural net-

work approach with the grouped data. The MLP-based software fault prediction

has also considered as an alternative non-parametric approach of software fault

count. Since neural networks with BP learning algorithm are conventional to

deal with not only time series analysis but also pattern recognition and classifi-

cation (see Blum and Li, [6]). There is a significant challenge on how to predict

the software release time minimizing the relevant expected cost. Especially, we

have refined a neural network approach considered in Dohi et al. [11] by in-

1.7. ORGANIZATION OF DISSERTATION 11

troducing the MIMO type MLP. Since the computation technique on artificial

neural network has been improved during the last three decades, it will be pos-

sible to apply more sophisticated neural computation technique to predict the

optimal software testing time more accurately.

1.7 Organization of Dissertation

This thesis is organized as follows:

In Chapter 2, we focus on a prediction problem with the cumulative number

of software faults detected at each testing day using the MLP neural network,

where the simplest three layers MLP is assumed with the well-known back-

propagation algorithm. To predict the number of software faults, we impose a

plausible assumption that the underlying fault-detection process obeys the Pois-

son law with unknown parameters. Since it is appropriate to input the training

data as real number in the conventional MLP neural network, we propose to

apply three data transformation methods from the Poisson count data to the

Gaussian data: BT [5], AT1 [4], and FT [12]. One of the major problems facing

in software fault prediction is the selection of input and hidden neurons num-

ber for the architecture of neural networks. To keep relatively small errors on

software fault prediction, it is very important to train the neural network. The

minimal error reflects better stability, and higher error reflects worst stability.

When the neural network is trained, the error of training set becomes small for

training data. On the other hand, when new data is available to the neural

network, the error may be extremely large. Therefore, we concentrate on this

issue and try to determine the optimal number of hidden neurons and input

neuron through experiments.

In numerical experiments with eight real software development project data

sets, we evaluate the one-stage look-ahead point prediction in sequential software

testing, and compare these data transformation methods in terms of the average

relative error.

In Chapter 3, we refine the existing ANN approach as a data-driven model

from the view point of software fault prediction. In particular, we deal with the

grouped data which consists of the number of software fault counts detected at

12 CHAPTER 1. INTRODUCTION

each testing date, although the existing ANN approaches focus on only the soft-

ware fault-detection time data which are not easily available in actual software

testing. We apply five data transformation techniques [4], [5], [12], [8] and [32]

from the Poisson law to the Gaussian law, and translate the underlying software

fault prediction problem to a nonlinear Gaussian regression problem with the

ANN. Next, we make the long-term prediction of the software fault count by

creating the multiple output. This idea comes from Cheng et al. [9] [61]. It

is worth noting that the ANN approaches in early works [17], [21], [22], [23],

[24], [26], [25], [33], [37], [48], [50], [51], [52] just considered the one-stage look

ahead prediction, and did not consider the long-term prediction of the cumula-

tive number of software faults detected in future. It is a surprising fact because

such a problem does not occur in the common SRGMs [46]. We combine the

above two ideas in the ANN approach and predict the number of software faults

in the sense of long run. In numerical examples with eight actual software fault

count data sets, we compare our refined ANN methodology with eleven NHPP-

based SRGMs [41] in terms of predictive performance with the average relative

error.

In Chapter 4, software reliability in one of the most important attributes

in software quality metrics. To predict the number of software faults detected

in testing phase, a number of approaches have been applied during the last

four decades. Among them, the neural network approach plays a significant

role to estimate and predict the number of software fault counts. In here,

we derive the predictive interval of the cumulative number of software faults

in sequential software testing. We apply the well-known approximation based

method delta [27] method and simulation based predictive interval method to

construct the predictive interval. Throughout examples with real software fault

data and simulation experiment, it is shown that our ANN approach affords a

more appropriate prediction device and tends to have an enhanced performance

from the viewpoint of predictability.

In Chapter 5, we consider a software release decision to stop the software

testing by minimizing the expected total software cost. We present a novel

method to estimate the optimal software release time which minimizes the rel-

evant expected software cost via a refined neural network approach with the

1.7. ORGANIZATION OF DISSERTATION 13

grouped data. The MLP-based software fault prediction has also considered as

an alternative nonparametric approach of the software fault count. An idea on

multiple input multiple output (MIMO) by Park et al. [61] and propose a re-

fined neural network approach to predict the long-term behavior of the software

fault count with the grouped data. They impose a plausible assumption that

the underlying fault count process obeys the Poisson law with an unknown mean

value function, and propose to utilize three data transform methods from the

Poisson count data to the Gaussian data; [4], [5], [12], [8] and [32]. In numerical

examples with eight actual software fault count data, we compare our neural

network approach with the common NHPP-based SRGMs. It is shown that

our proposed method could provide a more accurate and more flexible decision

making than the common stochastic modeling approach.

Finally, the thesis is concluded with some remarks and future directions in

Chapter 6.

Chapter 2

Point Estimation of
Cumulative Number of
Software Faults : One stage
look-ahead prediction

In this chapter, we consider on a prediction problem with the common MLP

neural network of the cumulative number of software faults in sequential software

testing. We apply the well-known BP algorithm for feed forward neural network

architectures. To predict the number of software faults, we impose a plausible

assumption that the underlying fault-detection process obeys the Poisson law

with unknown parameters. Since it is appropriate to input the training data

as real number in the conventional MLP neural network, we propose to apply

three data transformation methods from the Poisson count data to the Gaussian

data: BT[5], AT1 [4] and FT [12] of the cumulative number of software faults

in one-stage look-ahead prediction. To keep relatively small errors on software

fault prediction, it is very important to train the neural network. We experiment

with different numbers of hidden neurons and number of input neurons for all

datasets.

2.1 Neural Network Approach

Notation;

xi: the cumulative number of software faults detected at i

15

16 CHAPTER 2. ONE STAGE LOOK-AHEAD PREDICTION

x̃i: any data transformation method at i(i = 1, 2, . . . , n), be the input for the

neural network

s: number of output neuron

k: one hidden layer with k (= 1, 2, . . .) hidden neurons

x̃s: output for the neural network

wij: the connection weight from i-th input neuron to j-th hidden neuron

n: the number of software fault count data

w0j: the bias weights for j-th hidden neuron

w′
0s: the bias weights for s-th output neuron

hj: weighted sum of j-th hidden neuron at j = 0, 1, . . . , k

f(hj): sigmoid function for respective hidden neuron

x̃s: summative and weighted inputs from respective hidden neuron in the output

layer

wjs: the weight is connected from j-th hidden neuron to s-th output neuron.

f(x̃s: sigmoid function for s-th output neuron

N : the prediction period (integer value)

x̃o
s: the teaching signal

α: the momentum

η: the learning rate

δhj: the output gradient of j-th hidden neuron

δx̃s: the output gradient of s-th output neuron

Λ(t): expected cumulative number of failures occurred (equivalently the cumu-

lative number of minimal repairs) by time t

λ(t): failure intensity function of component

2.1. NEURAL NETWORK APPROACH 17

X∗
k,i: the original failure time data for i = 1, 2, . . . , n, at k-th simulation

τ̂∗(k): the software fault during time τ∗

2.1.1 Preliminary Set-up

In the common neural computation, it is noted that the ANN including the

simplest MLP with only one output neuron is regarded as a nonlinear regression

model, where the explanatory variables are randomized by the Gaussian white

noise. In other words, the output data in the MLP is implicitly assumed to

be a realization of a nonlinear Gaussian model. On the other hand, since one

handles the Poisson count data as integer values in the software fault prediction,

the underlying data shall be transformed to the Gaussian data in advance. Such

a pre-data processing is common in the wavelet shrinkage estimation [54], but

has not been considered in the software fault prediction via the ANN. According

to the idea by Xiao and Dohi [54], we apply three data transform techniques from

the Poisson data to the Gaussian data. More specifically, we use BT [5], AT1

[4], FT [12] as the most major normalizing and variance-stabilizing transforms.

Table 2.1 summarizes the data transform techniques and their inverse transform

formulae. In the table, xi denotes the cumulative number of software faults

detected at i (i = 1, 2, . . . , n)-th testing day. Then, we have the transformed

data x̃i by means of any data transformation method. Let x̃i (i = 1, 2, . . . , n)

and x̃s (s = 1) be the input and output of the neural network, respectively.

Then, the prediction of the cumulative number of software faults are given by

the inversion of the data transform. Figure 2.1 depicts the architecture of back

propagation type MIMO, where n is the number of software fault count data

and s is the prediction length. We suppose that there is only one hidden layer

with k (= 1, 2, . . .) hidden neurons in our neural network.

2.1.2 Neural Network Architecture

ANNs are widely used for functional approximation and statistical inference.

The term of“ artificial neural network” usually refers to mathematical model

employed in neural network computing and artificial intelligence. NNs have the

learning ability based on the training data or initial experiences, similar to the

18 CHAPTER 2. ONE STAGE LOOK-AHEAD PREDICTION

human brain. Although the neural network in the human brain is composed of

a large number of highly interconnected processing elements (neurons) working

in parallel, much simpler structure with input layer, hidden layer and output

layer is assumed for the common MLP feed forward artificial neural network. It

consists of an input layer with some inputs, hidden layer with hidden neurons

and one output layer. The input layer of neuron can be used to capture the in-

puts from the outside world. The hidden layer of neurons has no communication

with the external world, but the output layer of neuron sends the final output

to the external world. The main function of hidden layer neurons is to receive

the inputs and weights from the previous layer and to transfer the aggregated

information to the output layer by any transfer function. This output can act

as an input of the output layer. The input layer neurons have no computational

task. It just receives inputs and associated weights, and passes them to the

next layer. For the value coming out of an input neuron, x̃i (i = 1, 2, . . . , n),

it is common to add two special inputs; bias units which always have the unit

values. These inputs are used to evaluate the bias to the hidden neurons and

output neurons, respectively. Let wij ∈ [−1, 1] be the connection weight from

i-th input neuron to j-th hidden neuron, where w0j and w′
0s denote the bias

weights for j-th hidden neuron and s-th output neuron, respectively for the

training phase with i = 0, 1, . . . , n, j = 0, 1, . . . , k and s = 1. Each hidden

neuron calculates the weighted sum of the hidden neuron, hj , in the following

equation:

hj =
n∑

i=1

x̃ijwij + w0j . (2.1)

x̃s =
k∑

j=1

f(hj)w
′
js + w′

0s. (2.2)

Because x̃s are also summative and weighted inputs from respective hidden

neuron in the output layer, the weight w′
js is connected from j-th hidden neuron

to s-th output neuron. The output value of the network in the training phase,

x̃s, is calculated by f(x̃s) = 1/ exp(−x̃s). In the BP algorithm, the error is

propagated from an output layer to a successive hidden layer by updating the

weights, where the error function is defined by

2.1. NEURAL NETWORK APPROACH 19

SSE =

∑N
1 (x̃o

s − x̃s)
2

(N − 1)
(2.3)

with the prediction value x̃s, the teaching signal x̃o
s and N is the prediction

period (integer value). Next we quickly overview the BP algorithm. It updates

the weight parameters so as to minimize SSE between the network output values

x̃s (s = 1) and the teaching signals x̃o
s, where each connection weight is adjusted

using the gradient descent according to the contribution to SSE in Eq.(2.3). The

momentum, α, and the learning rate, η, are controlled to adjust the weights and

the convergence speed in the BP algorithm, respectively. Since these are the

most important tuning parameters in the BP algorithm, we carefully examine

these parameters in pre-experiments. Here we set α = 0.25 ∼ 0.90 and η =

0.001 ∼ 0.500. Then, the connection weights are updated in the following:

wij(new) = wij + αwij + ηδhj x̃i

(i = 1, 2, . . . , n, j = 1, . . . , k), (2.4)

w′
js(new) = w′

js + αw′
js + ηδx̃sx̃s

(j = 1, 2, . . . , k, s = 1), (2.5)

where δhj and δx̃s are the output gradient of j-th hidden neuron and the

output gradient in the output layer, and are defined by

δhj = f(hj)(1− f(hj)), (2.6)

δx̃s = x̃s(1− x̃s)(x̃
o
s − x̃s), (2.7)

respectively. Also, the updated bias weights for hidden and output neurons

are respectively given by

w0j(new) = w0j + αw0j + ηδhj , (2.8)

w′
0s(new) = w′

0s + αw′
0s + ηδx̃s. (2.9)

The above procedure is repeated until the desired output is achieved.

20 CHAPTER 2. ONE STAGE LOOK-AHEAD PREDICTION

Figure 2.1: Architecture of feed forward MLP neural network. .

2.2 Numerical Examples

2.2.1 Data Sets

We use four real project data sets cited in the reference [29]; DS1∼DS4, which

consist of the software fault count (grouped) data. In these data sets, the length

of software testing and the total number of detected software faults are given by

(62, 133), (22, 54), (41, 351) and (114, 188) respectively. To find out the desired

output via the BP algorithm, we need much computation cost to calculate the

gradient descent, where the initial guess of weights, wij , w
′
js, w0j and w′

0s, are

given by the uniform random varieties ranged from -1 to +1, the number of

total iterations in the BP algorithm run is 1,000 and the convergence criteria

on the minimum error is 0.001.

2.2.2 Predictive Performance

The predictive performance is evaluated with the software fault count data

through the sequential testing, so that we make the one-stage look ahead pre-

diction based on the past observation. More specifically, we use all the software

fault count data experienced before the prediction point as the input data and

predict the next one fault count (number of software faults detected at the next

2.2. NUMERICAL EXAMPLES 21

testing day). For this purpose, our MLP neural network architecture is some-

what different from [19], [20], [21], [22], [23], [24], [25], [26] because the number

of input neurons increases one by one as the observation point goes on. In the

first step, the fault count data detected at each testing day is transformed to

the Gaussian data by BT, AT1 and FT. Next, we input the transformed data

into the MLP neural network, where the momentum, learning rate and initial

weights are given carefully. By means of the back propagation, we update all

the weights and obtain one output which is regarded as a predicted number of

software fault counts at the next testing day.

Suppose that the observation point is given by the n-th testing day. In

this case, n software fault counts data are used for training the MIMO neural

network. The capability of the prediction model is measured by the average

relative error (AE),

AEN =

∑N
s=1 REs

N
, (2.10)

where REs is called the relative error for the next prediction period N and is

given by

REs =

∣∣∣∣ (x̃o
s − x̃s)

x̃o
s

∣∣∣∣ (s = 1, 2, . . . , N). (2.11)

So we regard the prediction model with smaller AE as a better prediction

model.

Table 2.2 presents the predictive performance based on AE for four datasets

with and without data transformation, where the values in round brackets de-

note the number of input layer neurons and the number of hidden layer neurons.

From this table, the data transformation does not lead to the better predictive

performance, because AE is independent of the Gaussian distribution property.

In Figure 2.2, we illustrate the time-dependent behavior of RE and compare

data transformation methods with DS1. From this result, it can be observed

that the most stable method is the FT and the method without transformation

(Normal) does not always give better results in the middle and later testing

phases. In comparison of three transformation methods, the most classical

Bartlett transform works poorly and cannot give the decreasing trend as the

software testing goes on.

22 CHAPTER 2. ONE STAGE LOOK-AHEAD PREDICTION

Table 2.1: Data transform formulae.

Formulae

Method Data transform Inversion transform

AT1 [4] x̃i = 2
√
xi + 3/8

x̃2
s−3/2
4

BT [5] x̃i = 2
√
xi + 1/2

x̃2
s−2
4

FT [12] x̃i =
√
xi + 1 +

√
xi

x̃2
s+x̃−2

s −2
4

(a) DS1 (b) DS2

(c) DS3 (d) DS4

Figure 2.2: Time-dependent behavior of relative error

2.3 Effect of number of hidden neurons and in-
put neurons

Artificial neural networks consist of several neurons. These neurons receive

information from neurons of the previous layer and pass them on to the next

layer. Neurons are affiliated with each other by edges. The intensity of the

connection between two neurons is represented by a weight value and this weight

value stores the knowledge of the neural network. There are a number of factors

that affect the performance of neural network such as the number of neurons in

the hidden layer, the number of hidden layer, learning rate etc. We have studied

2.3. EFFECTOF NUMBEROF HIDDEN NEURONS AND INPUT NEURONS23

Table 2.2: Average Relative error in point prediction.

Dataset Average Relative Error

Data transformation AE

DS1(10,8) Normal 0.3161

AT1 0.6154

FT 0.4837

BT 0.7213

DS2(5,7) Normal 0.6555

AT1 1.1302

FT 1.1925

BT 1.7521

DS3(5,9) Normal 0.4749

AT1 1.9412

FT 1.2615

BT 1.4662

DS4(15,10) Normal 0.7387

AT1 1.7872

FT 0.6247

BT 1.2671

the effect of the number of neurons in the hidden layer and input neurons in

the input layer. The overall experimental process is described in Figure 2.3 In

the first step, we consider two cases on preprocessing the dataset; one is data

transforming from the Poisson data to the Gaussian data with BT, AT1 and FT

(see Table 2.1), another without transform. The data with/without transform

are input to the neural network, where the output is the point prediction of

the cumulative number of software faults detected at the next testing day. The

architecture of NN is same as previous section (see Figure 2.1)

24 CHAPTER 2. ONE STAGE LOOK-AHEAD PREDICTION

Figure 2.3: Overall experimental process.

2.4 Numerical Illustrations

2.4.1 Setup

We use eight real project data sets cited in [29]; DS1∼DS8, which consist of the

software-fault count data. Table 2.3 summarizes the data sets and their cumu-

lative numbers of software faults detected in testing. To find out the desired

output via the BP algorithm, we need much computation cost to calculate the

gradient descent, where the initial guess of weights, wij , w
′
js, w0j and w′

0s, are

given by the uniform random varieties ranged from -1 to +1, the number of

total iterations in the BP algorithm run is 1,000 and the convergence criteria

on the minimum error is 0.001.

The prediction performance is evaluated in sequential software testing, so

that we make the one-stage look-ahead prediction based on past observation and

sequentially evaluate the prediction performance. As a prediction performance

measure, we introduce the average relative error. Suppose that the observation

point is the n-st testing day and that n software fault counts data are available.

For the actual value on the number of software fault counts at the s-th testing

day, the relative error (RE) Eq. 2.11 and average relative error (AE) Eq. 2.10

takes account of the past history.

2.4. NUMERICAL ILLUSTRATIONS 25

Table 2.3: Data sets observed in study.

Dataset
#

Testing days Number of faults Project type

1 62 133 Command and Control subsystem

2 41 351 Flight Data subsystem

3 114 144 Command and Data subsystem

4 22 54 Real Time Command & Control

5 73 367 Commercial Subsystem

6 181 224 Command and Data subsystem

7 81 461 Brazilian Electronic Switching System

8 140 100 Telecommunications switch software

2.4.2 Effect of number of hidden nodes

Hidden layers play a vital role in the performance of back Propagation neural

network. A major problem in applying neural networks is specifying the size

of the network. Even for moderately size networks the number of parameters

may become large compared to the number of data. Many researchers put their

best effort in analyzing the solution to the problem that how many neurons are

kept in hidden layer in order to get the best result, but unfortunately no body

succeed in finding the optimal formula for calculating the number of neurons

that should be kept in the hidden layer so that the neural network training time

can be reduced and also accuracy in determining target output can be increased.

An“ structured trial and error”method is used by the maximum developer for

selecting a neural network’s number of hidden neuron approximation. Y. Liu et

al. [73] in their approach to optimize the number of neurons in the hidden layer

using benchmark datasets and estimation of the signal-to-noise-ratio figure. F.

Fnaiech et al. in [13] make an attempt to prune the hidden nodes of the feed

forward architecture by initially creating a non linear activation function of

hidden nodes as Taylor’s expansion and then NARX (nonlinear auto regressive

with exogenous input) model is used. To keep relatively small errors on software

fault prediction, it is extremely important to train the neural network. The

minimal error reflects better stability, and higher error reflects worst stability.

We experiment with different numbers of hidden neurons for a fixed number

26 CHAPTER 2. ONE STAGE LOOK-AHEAD PREDICTION

of input neurons for all datasets. The excessive hidden neurons cause the so-

called over fitting problem and tend to overestimate the complexity of the target

problem. To choose the optimal number of hidden neurons we follow the well-

known“ rules of thumb” for choosing a suitable architecture. We determine

the number of hidden nodes by (2/3)(number of inputs+outputs) [56].

Table 2.4 presents the prediction performance based on AE for eight datasets

with and without data transformation, where the values in“ Architecture”

denote the number of input neurons, the number of hidden neurons and the

output neuron in this order. According to rules of thumb, we fix input neuron

numbers and change the hidden neurons. From this result, FT provides the

better prediction performance in all cases, except in DS#6, in here the other

transformation gives the relatively small output values. In addition, we observe

that the architecture, 5:3:1, 5:4:1, 10:7:1, 15:10:1 and 20:14:1, lead to less error

than the other architectures. From the results we find that the rule of thumb is

rather accurate to obtain the nearly optimal network architecture.

2.4.3 Effect of number of input nodes

In most situations, there is no way to determine the best number of input nodes

without training several networks and estimating the generalization error. If

we have too many input neurons, we may get higher training error and higher

generalization error, due to under-fitting and large statistical bias. Once the best

number of hidden neurons is known, we can change the input neuron numbers

and can make a different architecture to find out the optimal number of input

neurons.

Table 2.5 presents the prediction performance based on AE for all datasets

with and without data transformation. It is shown that when the number

of input neurons increases, the error rate also increases, but some cases e.g.,

DS#3∼DS#5 without transform provide the better results for 11:7:1, 12:10:1

and 12:7:1 than FT, because AE is independent of the Gaussian distribution

property. It should be noted that the neural network has one major drawback

for application in software reliability assessment, i.e., in the common neural

network computing the initial weight is randomly selected, so it acts as a trial-

and-error heuristics.

2.4. NUMERICAL ILLUSTRATIONS 27

Table 2.4: Average Relative error in point prediction.

Average Relative Error

Effect of hidden neurons

Dataset # Architecture AT1 FT BT Normal

1 5:3:1 0.3370 0.1041 0.4139 0.1433

5:4:1 0.5148 0.9771 1.3048 2.1271

5:5:1 0.5236 0.1253 0.4253 0.3215

2 5:3:1 0.2417 0.5412 1.1774 1.1478

5:4:1 0.1639 0.3685 0.8222 0.7348

5:5:1 1.5236 1.0235 3.1253 1.9356

3 10:5:1 1.7969 0.5747 0.9225 0.9162

10:7:1 0.9043 0.2685 0.7069 0.6712

10:8:1 2.5369 1.2536 3.1235 3.3698

4 15:5:1 1.8627 1.2515 1.9189 1.3079

15:10:1 0.6845 0.6122 0.8647 0.7851

15:15:1 1.1627 1.0488 2.1147 1.2387

5 10:5:1 1.3895 0.9713 1.1568 0.6985

10:7:1 0.8704 0.7001 0.9882 0.9257

10:8:1 1.7845 1.0134 1.1575 1.6134

6 20:5:1 2.1763 0.986 0.5412 1.1398

20:10:1 1.3895 0.9713 1.1568 2.7634

20:14:1 0.9852 1.1207 0.7613 1.2078

7 10:5:1 1.4713 0.9231 1.4801 0.9474

10:7:1 0.9958 0.4847 1.2128 0.7487

10:8:1 0.7856 0.8945 0.9645 1.2356

8 5:3:1 1.9457 1.3531 1.8537 0.9147

5:4:1 0.8387 0.6914 1.3731 0.9537

5:5:1 2.0931 1.0537 1.4526 1.0535

28 CHAPTER 2. ONE STAGE LOOK-AHEAD PREDICTION

Table 2.5: Average Relative error in point prediction.

Average Relative Error

Effect of input neurons

Dataset # Architecture AT1 FT BT Normal

1 4:3:1 0.7856 0.2796 0.9225 0.8262

5:3:1 0.3045 0.0685 0.5706 0.3671

6:3:1 2.3075 0.7943 2.4508 3.3484

2 4:4:1 1.2591 0.7447 1.2135 0.9344

5:4:1 0.5196 0.0481 0.8222 0.3687

6:4:1 2.1235 0.9536 3.1253 1.4589

3 10:7:1 0.7469 0.1548 0.2386 0.3489

11:7:1 0.9632 0.8456 1.2536 0.2356

12:7:1 1.2536 1.1025 4.1253 1.8523

4 12:10:1 2.4562 1.4523 1.9825 0.9456

13:10:1 1.7458 1.1023 2.0123 1.0425

14:10:1 0.9256 0.8596 1.1235 1.2536

5 10:7:1 1.2456 0.9819 1.1523 3.1245

11:7:1 1.4253 1.4856 1.4586 2.8569

12:7:1 2.8563 1.8156 1.8963 1.4523

6 12:10:1 2.4528 1.8456 0.9827 2.8452

13:10:1 1.7852 0.9856 1.7459 1.4756

14:10:1 0.4587 0.4523 0.9336 1.1245

7 10:7:1 1.8745 0.8965 1.3785 0.9859

11:7:1 2.2851 1.6285 1.1789 1.1287

12:7:1 1.3570 0.8745 2.4859 2.5897

8 4:4:1 1.8956 1.4523 0.9856 1.6456

5:4:1 1.2451 0.5423 1.4523 1.1235

6:4:1 2.4589 1.4253 1.8567 1.8596

2.4. NUMERICAL ILLUSTRATIONS 29

Figure 2.4: s+1 testing day predicated value (DS4 22:15:1).

Figure 2.5: Time-dependent behavior of relative error (DS7 10:7:1).

30 CHAPTER 2. ONE STAGE LOOK-AHEAD PREDICTION

2.4.4 One-stage look ahead point prediction

To get the one-stage look ahead point prediction value, we use DS # 4. Noting

that our dataset contains 22 days, we wish to know 23th point prediction value

of the cumulative number of software faults for all transform methods. From

the result of Tables 2.4 and 2.5, it is seen that FT can give less error rate and

more reliable prediction results than the others. Figure 2.4 shows that result

based on the best neural network architecture. From this figure we can say that

FT gives little larger value than the others.

Since software is written by humans, errors will be always involved in the

product. From this well-known fact, it can be recognized that the PIs can predict

the number of software fault counts under uncertainty, which will experience in

the future operational phase, and can be useful for the probabilistic inference

with subjective significance level controlled by the software test manager. We

have investigated the effect of a number of hidden and input nodes on prediction

accuracy according to the rules of thumb. The experimental results have shown

that the proposed approach gave the acceptable results for prediction using the

different neural network architectures.

Chapter 3

Multi-stage look-ahead
prediction : Refined Neural
Network Architecture

In this chapter, we consider the long-term prediction of the number of soft-

ware faults, and propose a refined NN approach with the grouped data, where

the multi-stage look-ahead prediction is carried out with a simple MLP neural

network with multiple outputs. Under the assumption that the software fault

count data follow a Poisson process with an unknown mean value function, we

transform the underlying Poisson count data to the Gaussian data via five data

transformation methods. Next, we predict the long-term behavior of software

fault counts by the neural network. In numerical examples with eight actual soft-

ware fault data sets, we compare our neural network approach with the existing

software reliability growth models based on an nonhomogeneous Poisson process,

in terms of predictive performance with average relative error. It is shown that

our neural network approach affords a more appropriate prediction device and

tends to have an enhanced performance of the viewpoint of predictability in the

early phase of software testing.

3.1 Model Description

3.1.1 NHPP-based Software Reliability Modeling

Here we summarize the software reliability growth modeling. Suppose that a

software system test starts at time t = 0. Let X(t) be the cumulative number

31

32 CHAPTER 3. MULTI-STAGE LOOK-AHEAD PREDICTION

of software faults detected by time t, where {X(t), t ≥ 0} denotes a stochastic

(non-decreasing) counting process in continuous time. In particular, it is said

that X(t) is a NHPP if the following conditions hold:

• X(0) = 0,

• X(t) has independent increments,

• Pr{X(t+ h)−X(t) ≥ 2}=o(h),

• Pr{X(t+ h)−X(t) = 1}= λ(t;θ)h+ o(h),

where o(h) is the higher term of infinitesimal time h, and λ(t;θ) is the

intensity function of an NHPP which denotes the instantaneous fault detection

rate per each fault. In the above definition, θ is the model parameter (vector)

included in the intensity function. Then, the probability that the cumulative

number of software faults detected by time t equals x is given by

Pr{X(t) = x} =
{Λ(t;θ)}x

x!
exp{−Λ(t;θ)}, (3.1)

where

Λ(t;θ) =

∫ t

0

λ(x;θ)dx (3.2)

is called the mean value function and indicates the expected cumulative

number of software faults up to time t, say, Λ(t;θ) =E[X(t)].

If the mean value function Λ(t;θ) or the intensity function λ(t;θ) is spec-

ified, then the identification problem of the NHPP is reduced to a statistical

estimation problem of unknown model parameter θ. In this way, when the

parametric form of the mean value function or the intensity function is given,

the resulting NHPP-based SRGMs is called parametric NHPP-based SRGMs.

Table 3.1 contains the representative NHPP-based SRGMs and their mean value

functions. Okamura and Dohi [41] summarized these eleven parametric NHPP-

based SRGMs and developed a parameter estimation tool, SRATS (Software

Reliability Assessment Tool with Spread Sheet), based on the maximum like-

lihood method, and the EM (Expectation and Maximization) algorithm. In

SRATS, the best SRGM with the smallest AIC (Akaike information criterion)

3.1. MODEL DESCRIPTION 33

is automatically selected, so the resulting best SRGM can fit best the past data

on software fault counts among the eleven models.

Suppose that n realizations of X(ti), xi (i = 1, 2, . . . , n), are observed up to

the observation point t (≥ tn). We estimate the model parameter θ by means

of the maximum likelihood method. Then, the log likelihood function for the

grouped data (ti, xi) (i = 1, 2, . . . , n) is given by

LLF (θ) =
∑n

i=1

(
(xi − xi−1) log

{
Λ(ti;θ)− Λ(ti−1;θ)

}
− log

{
(xi − xi−1)!

})
− Λ(tn;θ), (3.3)

where Λ(0;θ) = 0, x0 = 0 and t = tn for simplification. The maximum

likelihood estimate of the model parameter, θ̂, can be obtained by maximizing

Eq.(5.3) with respect to the model parameter θ. Once the model parameter

is estimated, our next concern is to predict the future value of the intensity

function or the mean value function at an arbitrary time tn+l (l = 1, 2, . . .),

where l denotes the prediction length. In parametric modeling, the prediction

at time tn+l is easily done by substituting the estimated model parameter θ̂

into the time evolution Λ(t;θ), where the unconditional and conditional mean

value functions as an arbitrary future time tn+l are given by

Λ(tn+l; θ̂) =

∫ tn+l

0

λ(x; θ̂)dx, (3.4)

Λ(tn+l|X(tn) = xn; θ̂) = xn +

∫ tn+l

tn

λ(x; θ̂)dx

= xn + Λ(tn+l; θ̂)− Λ(tn; θ̂). (3.5)

When the mean value function is unknown, a few nonparametric approaches

have been developed [62],[47]. However, it should be noted that those ap-

proaches can deal with the fault -detection time data, but do not work for future

prediction. The wavelet-based method in [54] can treat the grouped data, but

fails to make the long-term prediction in nature. In the following section, we

use an elementary ANN for the purpose of long-term software fault prediction.

3.1.2 A Refined Neural Network Approach

Artificial neural network (ANN) is a computational metaphor inspired by the

34 CHAPTER 3. MULTI-STAGE LOOK-AHEAD PREDICTION

Figure 3.1: Architecture of back propagation type MIMO.

Figure 3.2: Configuration of prediction scheme via MIMO.

brain and nervous system study, and consists of an input layer with some inputs,

multiple hidden layers with hidden neurons and one output layer. The input

layer of neurons can be used to capture the inputs from the outside world. Since

the hidden layer of neurons has no communication with the external world, the

output layer of neurons sends the final output to the external world. Hence, de-

termining an appropriate number of hidden neurons is an important design issue

in neural computation. In here we consider a multiple-inputs multiple-outputs

(MIMO) neural network with only one hidden layer. Similar to Section 3.1,

suppose that n software fault count data (ti, xi) (i = 1, 2, . . . , n) are observed

at the observation point t (= tn). Our concern is about the future prediction of

the cumulative number of software faults at time tn+l (l = 1, 2, . . .).

3.1. MODEL DESCRIPTION 35

3.1.2.1 Preliminary Set-up:

In the common neural computation, it is noted that the ANN including the

simplest MLP with only one output neuron is regarded as a nonlinear regression

model, where the explanatory variables are randomized by the Gaussian white

noise. In other words, the output data in the MLP is implicitly assumed to

be a realization of a nonlinear Gaussian model. On the other hand, since one

handles the Poisson count data as integer values in the software fault prediction,

the underlying data shall be transformed to the Gaussian data in advance. Such

a pre-data processing is common in the wavelet shrinkage estimation [54], but

has not been considered in the software fault prediction via the ANN. According

to the idea by Xiao and Dohi [54], we apply five data transform techniques from

the Poisson data to the Gaussian data. Table 3.2 and Section 1.4 summarizes

the data transform techniques used and their inverse transform formulae. In the

table, xi denotes the cumulative number of software faults detected at i (i =

1, 2, . . . , n)-th testing day. Then, we have the transformed data x̃i by means of

any data transformation method. Let x̃i (i = 1, 2, . . . , n) and x̃n+l (l = 1, 2, . . .)

be the input and output for the MIMO neural network, respectively. Then, the

prediction of the cumulative number of software faults is given by the inversion

of the data transform. Figure 3.1 depicts the architecture of back propagation

type MIMO, where n is the number of software fault count data experienced

before the observation point tn and l is the prediction length. We suppose that

there is only one hidden layer with k (= 1, 2, . . .) hidden neurons in our MIMO

neural network.

3.1.2.2 Training Phase:

Suppose that all the connection weights (nk weights from input to hidden layer,

kl weights from hidden to output layer in Fig. 3.1) are first given by the uni-

formly distributed pseudo random varietes. In the MIMO, if these weights are

completely known, then it is possible to calculate (x̃n+1, . . . , x̃n+l) from the in-

put (x̃1, . . . , x̃n) directly. However, since it is impossible to train all the weights

including k(n+ l) unknown patterns in principle via the common BP algorithm,

it is needed to develop a new long-term prediction scheme for the MIMO. Sup-

pose that n > l without any loss of generality. In Fig. 3.2, we illustrate the

36 CHAPTER 3. MULTI-STAGE LOOK-AHEAD PREDICTION

configuration of our prediction scheme. In order to predict the number of soft-

ware faults for l testing days from the observation point tn, the prediction has

to be made at the point tn−l. This implies that only (n− l)k+ kl = nl weights

can be estimated with the training data experienced for the period (tn−l, tn]

and that the remaining k(n + l) − nl weights are not trained at time tn. We

call these k(n + l) − nl weights the non-estimable weights in this paper. As

the prediction length is longer, the number of non-estimable weights becomes

greater and the prediction uncertainty also increases more. In this scheme, the

transformed data (x̃1, . . . , x̃n−l) are used for the input in the MIMO, and the

remaining data (x̃n−l+1, . . . , x̃n) are used for the teaching signals in the training

phase. The BP algorithm is the well-known gradient descent method used to

update the connection weights, so as to minimize the squared error between the

network output values and the teaching signals. For the value coming out of

an input neuron, x̃i (i = 1, 2, . . . , n − l), it is common to add two special

inputs; bias units which always have the unit values. These inputs are used to

evaluate the bias to the hidden neurons and output neurons, respectively. Let

wij ∈ [−1, 1] be the connection weight from i-th input neuron to j-th hidden

neuron, where w0j and w′
0s denote the bias weights for j-th hidden neuron and

s-th output neuron, respectively for the training phase with i = 0, 1, . . . , n− l,

j = 0, 1, . . . , k and s = n− l+1, n− l+2, . . . , n. Each hidden neuron calculates

the weighted sum of the input neuron, hj , in the following equation:

hj =
n−l∑
i=1

x̃ijwij + w0j . (3.6)

Since there is no universal method to determine the number of hidden neu-

rons, we change k in the pre-experiments and choose an appropriate value. After

calculating hj for each j , we apply a sigmoid function f(hj) = 1/ exp(−hj) as

a threshold function in the MIMO. Since hj are summative and weighted inputs

from respective hidden neuron, the s-th output s = n− l+1, n− l+2, . . . , n in

the output layer is given by

x̃s =
k∑

j=1

f(hj)w
′
js + w′

0s. (3.7)

3.1. MODEL DESCRIPTION 37

Because x̃s are also summative and weighted inputs from respective hidden

neuron in the output layer, the weight w′
js is connected from j-th hidden neuron

to s-th output neuron. The output value of the network in the training phase,

x̃s, is calculated by f(x̃s) = 1/ exp(−x̃s). In the BP algorithm, the error is

propagated from an output layer to a successive hidden layer by updating the

weights, where the error function is defined by

SSE =

∑n
s=n−l+1(x̃

o
s − x̃s)

2

(l − 1)
(3.8)

with the prediction value x̃s and the teaching signal x̃o
s observed for the

period (tn−l+1, tn].

The BP algorithm updates the weight parameters so as to minimize SSE

between the network output values x̃s (s = n − l + 1, n − l + 2, . . . , n) and the

teaching signals x̃o
s, where each connection weight is adjusted using the gradi-

ent descent according to the contribution to SSE in Eq. (3.8). The momentum,

α, and the learning rate, η, are controlled to adapt the weights and the con-

vergence speed in the BP algorithm, respectively. Since these are the main

tuning parameters in the BP algorithm, we carefully examine these parameters

in pre-experiments. We set α and η like as previous in Section 2.1.2. Then, the

connection weights are updated in the following:

wij(new) = wij + αwij + ηδhj x̃i

(i = 1, 2, . . . , n− l, j = 1, . . . , k), (3.9)

w′
js(new) = w′

js + αw′
js + ηδx̃sx̃s

(j = 1, 2, . . . , k, s = n− l + 1, . . . , n), (3.10)

where δhj and δx̃s are the output gradient of j-th hidden neuron and the

output gradient in the output layer, and are defined by

δhj = f(hj)(1− f(hj)), (3.11)

δx̃s = x̃s(1− x̃s)(x̃
o
s − x̃s), (3.12)

respectively. Also, the updated bias weights for hidden and output neurons

38 CHAPTER 3. MULTI-STAGE LOOK-AHEAD PREDICTION

are respectively given by

w0j(new) = w0j + αw0j + ηδhj , (3.13)

w′
0s(new) = w′

0s + αw′
0s + ηδx̃s. (3.14)

The above procedure is repeated until the desired output is achieved.

3.1.2.3 Prediction Phase:

Once the nl weights are estimated with the training data experienced for the

period (tn−l, tn] through the BP algorithm, we need to obtain the remaining

k(n + l) − nl non-estimable weights for prediction. Unfortunately, since these

cannot be trained with the information at time tn, we need to give these values

by the uniform pseudo random varieties ranged in [−1, 1]. By giving the random

connection weights, the output as the prediction of the cumulative number of

software faults, (x̃n+1, . . . , x̃n+l), are calculated by replacing Eqs. (3.6) and

(3.7) by

hj(new) =
n∑

i=1

x̃ijwij(new) + w0j(new), (3.15)

x̃n+s =
k∑

j=1

f(hj(new))w
′
js(new) + w′

0s(new), (3.16)

respectively, for i = 1, 2, . . . , n, j = 1, 2, . . . , k and s = 1, 2, . . . , l. Note that

the resulting output is based on one sample by generating the uniform pseudo

random variates only once. In order to obtain the prediction of the expected

cumulative number of software faults, we generate m sets of random variates

and take the arithmetic mean of the m predictions of (x̃n+1, . . . , x̃n+l), where

m = 1, 000 is confirmed to be enough in our preliminary experiments. In other

words, the prediction in the MIMO neural network is reduced to a combination

of the BL learning and a Monte Carlo simulation on the connection weights.

3.2 Numerical Experiments

We use eight real project data sets cited in the reference [29]; DS1∼ DS8, which

consist of the software fault count (grouped) data . In Table 3.3 summarizes the

data sets used for analysis, where “Testing days” means the total testing days,

3.2. NUMERICAL EXPERIMENTS 39

n denotes the total number of software faults detected in testing, and “Project

type” implies the project name where each dataset are used.

To find out the desired output via the BP algorithm, we need much compu-

tation cost to calculate the gradient descent, where the initial guess of weights,

wij , w
′
js, w0j and w′

0s, are given by the uniform random varieties ranged from -1

to +1, the number of total iterations in the BP algorithm and the convergence

criteria on the minimum error issame as previous. In Figures 3.5 and 3.6, we

give two examples on how to determine the optimal transformation parameter

λ∗ for BoxCox power transformation. In our experiments, it is shown that the

search range of λ should be [−3,+2].

Suppose that the observation point is given by the n-th testing day, tn. In

this case, (n − l) software fault counts data are used for training the MIMO

neural network. The capability of the prediction model is measured by the

average relative error (AE),

AEl =

∑l
s=1 REs

l
, (3.17)

where REs is called the relative error for the future time t = n+ s and is given

by

REs =

∣∣∣∣ (x̃o
n+s − x̃n+s)

x̃o
n+s

∣∣∣∣ (s = 1, 2, . . . , l). (3.18)

So we regard the prediction model with smaller AE as a better prediction model.

3.2.1 Discussion

In appendix A and B summarize the results on AE for the underlying data

set DS1∼ DS8 at 50% ∼ 90% observation points of the whole data for the

prediction length l=5, 10, 15, and 20 days. For instance, we divided AE by

two ways, according to observation point and prediction length. Table 3.4 ∼

3.5 shows the result for AE according to observation point for all datasets. In

here, l means that prediction length,“ ’Middle Testing” represents 50% ∼ 70%

observation point, and “Late Testing” implies the observation point 80%– 90%.

From these results, it can be seen that (i) Our MIMO (BT) neural network

could work well to predict the cumulative number of software faults in the early

testing phase, (ii) Late testing phase SRGM (txvmax) provides the better result

than MIMO.

40 CHAPTER 3. MULTI-STAGE LOOK-AHEAD PREDICTION

Table 3.6–3.7 shows the result of AE according to prediction length for all

datasets. Where, O Point means observation point, “Short Term” implies that

5–10 testing days and “Long Term” indicate 15–20 testing days. For short-

term point prediction, most of the case MIMO method provides a better result

for relatively small testing time except DS2 at 70% ∼ 90% observation point.

Surprisingly, this is true even if the testing time longer our refined NN approach

provides a better result. Summary of the two criteria represent by Table 3.8 for

all datasets.

Figures 3.3 ∼ 3.4 we illustrate the time-dependent behavior of RE and com-

pare SRGMs with DS1 and DS6 at 60% observation point for 20 output length

respectively. From this result, it can be observed that from early testing to

late testing AT2 provide less error than others. Without transform (Normal)

deals worse result. SRGM (llogist) without early testing phase it sounds good

(see Figure 3.3). On the other hand , in Figure 3.4 BT gives better result than

SRGM. Though we omit to show all the results for brevity, it can be seen that

the SRGM (gamma) leads very close results to the BT.

From Figures 3.5 and 3.6, it can be recognized that the adjustment of λ is

quite sensitive to the predictive performance and has to be done through the

try-and-error heuristics. However, for an arbitrary λ, we can know that the

multi-stage look-ahead prediction of software fault count is possible with the

MIMO type of MLP.

3.2. NUMERICAL EXPERIMENTS 41

Figure 3.3: Time-dependent behavior of relative error with DS1 at 60% obser-
vation point.

Figure 3.4: Time-dependent behavior of relative error with DS6 at 60% obser-
vation point.

42 CHAPTER 3. MULTI-STAGE LOOK-AHEAD PREDICTION

Table 3.1: NHPP-based SRGMs.

Model (Abbr.) Mean value function

Exponential Λ(t) = aF (t)

(exp) [14] F (t) = a{1− exp(−bt)}

Gamma Λ(t) = aF (t)

(gamma) [55] F (t) =
∫ t

0
cbsb−1 exp (−cs)

Γ(b) ds

Pareto Λ(t) = aF (t)

(pareto) [1, 28] F (t) = 1− (c
t+c)

b

Truncated normal Λ(t) = aF (t)−F (0)
1−F (0)

(tnorm)[40] F (t) = 1√
2πb

∫ t

−∞ exp (− (s−c)2

2b2)ds

Log normal Λ(t) = aF (log t)

(lnorm) [3, 40] F (t) = 1√
2πb

∫ t

−∞ exp (− (s−c)2

2b2)ds

Truncared logistic Λ(t) = aF (t)−F (0)
1−F (0)

(tlogist) [38] F (t) = 1
1+exp (− t−c

b)

Log logistic Λ(t) = aF (log t)

(llogist) [16] F (t) = 1
1+exp (− t−c

b)

Truncated extreme value maximum Λ(t) = aF (t)−F (0)
1−F (0)

(txvmax) [39] F (t) = exp(− exp{(− t−c
b)})

Log extreme value maximum Λ(t) = aF (log t)

(lxvmax) [39] F (t) = exp(− exp{(− t−c
b)})

Truncated extreme value minimum Λ(t) = aF (0)−F (−t)
F (0)

(txvmin) [39] F (t) = exp(− exp{(− t−c
b)})

Log extreme value minimim Λ(t) = a(1− F (− log t))

(lxvmin) [15, 39] F (t) = exp(− exp{(− t−c
b)})

3.2. NUMERICAL EXPERIMENTS 43

Table 3.2: Data transform formulae.

Formulae

Method Data transform Inversion transform

AT1 [4] x̃i = 2
√
xi + 3/8

x̃2
n+l−3/2

4

AT2 [32] x̃i = 2
√
xi + 1/8

2∗x̃2
n+l−1

8

BT [5] x̃i = 2
√
xi + 1/2

x̃2
n+l−2

4

FT [12] x̃i =
√
xi + 1 +

√
xi

x̃2
n+l+x̃−2

m+l−2

4

BoxCox [8] when λ = 0, x̃i = log(xi) exp(x̃n+l)

when λ ̸= 0, x̃i =
xλ
i −1
λ (λ ∗ x̃n+l + 1)

1/λ

Table 3.3: Data sets observed for multi-stage look ahead prediction.

Dataset Testing
days

n Project type

1 62 133 Command and Control subsystem

2 41 266 Flight Data subsystem

3 46 144 Control application system

4 109 553 Real-time control application & Con-
trol

5 111 481 Monitoring and real-time control sys-
tem

6 73 367 Commercial Subsystem

7 81 461 Brazilian Electronic Switching System

8 114 144 Telecommunications switch software

44 CHAPTER 3. MULTI-STAGE LOOK-AHEAD PREDICTION

T
ab

le
3.
4:

A
E

ac
co
rd
in
g
to

ob
se
rv
at
io
n
p
oi
n
t
fo
r
fo
u
r
(D

S
1
∼

D
S
4)

d
at
as
et
s

l
M

id
d
le

T
e
st
in
g

L
a
te

T
e
st
in
g

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

5
M

IM
O

M
IM

O
M

IM
O

S
R
G
M

S
R
G
M

B
o
x
C
o
x

F
T

B
o
x
C
o
x

tx
v
m
in

tx
v
m
a
x

1
0

M
IM

O
S
R
G
M

M
IM

O
S
R
G
M

A
T
2

tl
o
g
is
t

A
T
2

lx
v
m
a
x

1
5

M
IM

O
M

IM
O

S
R
G
M

A
T
2

A
T
2

tx
v
m
a
x

2
0

M
IM

O
M

IM
O

B
o
x
C
o
x

A
T
2

D
S
1

l
M

id
d
le

T
e
st
in
g

L
a
te

T
e
st
in
g

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

5
M

IM
O

M
IM

O
S
R
G
M

S
R
G
M

S
R
G
M

F
T

F
T

lx
v
m
in

lx
v
m
in

tx
v
m
a
x

1
0

M
IM

O
M

IM
O

S
R
G
M

A
T
2

A
T
2

lx
v
m
in

1
5

M
IM

O
M

IM
O

F
T

B
o
x
C
o
x

2
0

M
IM

O

A
T
1

D
S
2

l
M

id
d
le

T
e
st
in
g

L
a
te

T
e
st
in
g

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

5
M

IM
O

M
IM

O
M

IM
O

M
IM

O
S
R
G
M

A
T
2

B
T

B
T

F
T

tx
v
m
a
x

1
0

M
IM

O
S
R
G
M

S
R
G
M

B
T

tx
v
m
a
x

tx
v
m
a
x

1
5

M
IM

O
S
R
G
M

A
T
1

tx
v
m
a
x

2
0

M
IM

O

F
T

D
S
3

l
M

id
d
le

T
e
st
in
g

L
a
te

T
e
st
in
g

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

5
M

IM
O

S
R
G
M

S
R
G
M

S
R
G
M

S
R
G
M

F
T

tx
v
m
a
x

tx
v
m
a
x

lx
v
m
a
x

lx
v
m
a
x

1
0

M
IM

O
M

IM
O

S
R
G
M

M
IM

O

B
o
x
C
o
x

B
T

lx
v
m
a
x

A
T
2

1
5

S
R
G
M

M
IM

O
S
R
G
M

tx
v
m
a
x

A
T
1

tx
v
m
a
x

2
0

M
IM

O
M

IM
O

B
T

A
T
1

D
S
4

3.2. NUMERICAL EXPERIMENTS 45

T
ab

le
3.
5:

A
E

ac
co
rd
in
g
to

ob
se
rv
at
io
n
p
oi
n
t
fo
r
fo
u
r
(D

S
5
∼

D
S
8)

d
at
as
et
s

l
M

id
d
le

T
e
st
in
g

L
a
te

T
e
st
in
g

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

5
S
R
G
M

S
R
G
M

S
R
G
M

S
R
G
M

S
R
G
M

g
a
m
m
a

tx
v
m
a
x

tx
v
m
a
x

lx
v
m
a
x

tx
v
m
a
x

1
0

M
IM

O
S
R
G
M

S
R
G
M

S
R
G
M

S
R
G
M

F
T

lx
v
m
a
x

tx
v
m
a
x

lx
v
m
a
x

tx
v
m
a
x

1
5

M
IM

O
S
R
G
M

S
R
G
M

S
R
G
M

B
T

tx
v
m
a
x

tx
v
m
a
x

tx
v
m
a
x

2
0

M
IM

O
S
R
G
M

M
IM

O

B
T

tx
v
m
a
x

B
T

D
S
5

l
M

id
d
le

T
e
st
in
g

L
a
te

T
e
st
in
g

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

5
M

IM
O

M
IM

O
S
R
G
M

M
IM

O
S
R
G
M

B
T

F
T

tx
v
m
a
x

F
T

lx
v
m
a
x

1
0

M
IM

O
M

IM
O

M
IM

O
S
R
G
M

F
T

B
T

F
T

tx
v
m
a
x

1
5

M
IM

O
M

IM
O

M
IM

O
S
R
G
M

B
T

A
T
2

F
T

tx
v
m
a
x

2
0

M
IM

O
M

IM
O

M
IM

O

A
T
1

B
T

A
T
1

D
S
6

l
M

id
d
le

T
e
st
in
g

L
a
te

T
e
st
in
g

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

5
M

IM
O

S
R
G
M

S
R
G
M

M
IM

O
S
R
G
M

F
T

tx
v
m
a
x

tx
v
m
a
x

B
T

tx
v
m
a
x

1
0

M
IM

O
M

IM
O

M
IM

O
M

IM
O

B
T

A
T
1

F
T

F
T

1
5

M
IM

O
S
R
G
M

M
IM

O
S
R
G
M

B
T

tx
v
m
a
x

A
T
1

tx
v
m
a
x

2
0

M
IM

O
M

IM
O

M
IM

O

B
T

F
T

B
T

D
S
7

l
M

id
d
le

T
e
st
in
g

L
a
te

T
e
st
in
g

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

5
M

IM
O

S
R
G
M

S
R
G
M

M
IM

O
M

IM
O

F
T

lx
v
m
a
x

lx
v
m
a
x

B
T

B
T

1
0

M
IM

O
M

IM
O

M
IM

O
S
R
G
M

S
R
G
M

B
o
x
C
o
x

B
T

F
T

lx
v
m
a
x

e
x
p

1
5

M
IM

O
M

IM
O

M
IM

O
S
R
G
M

F
T

A
T
2

B
T

tx
v
m
a
x

2
0

M
IM

O
M

IM
O

M
IM

O
M

IM
O

A
T
2

B
T

A
T
2

B
T

D
S
8

46 CHAPTER 3. MULTI-STAGE LOOK-AHEAD PREDICTION

T
ab

le
3.
6:

A
E

ac
co
rd
in
g
to

p
re
d
ic
ti
on

le
n
gt
h
fo
r
fo
u
r
(D

S
1
∼

D
S
4)

d
at
as
et
s

O
P
o
in

t
S
h
o
rt

T
e
rm

L
o
n
g
T
e
rm

5
1
0

1
5

2
0

5
0
%

M
IM

O
M

IM
O

M
IM

O
M

IM
O

B
o
x
C
o
x

A
T
2

A
T
2

B
o
x
C
o
x

6
0
%

M
IM

O
S
R
G
M

M
IM

O
M

IM
O

F
T

tl
o
g
is
t

A
T
2

A
T
2

7
0
%

M
IM

O
M

IM
O

S
R
G
M

B
o
x
C
o
x

A
T
2

tx
v
m
a
x

8
0
%

S
R
G
M

S
R
G
M

tx
v
m
in

lx
v
m
a
x

9
0
%

S
R
G
M

tx
v
m
a
x

D
S
1

O
P
o
in

t
S
h
o
rt

T
e
rm

L
o
n
g
T
e
rm

5
1
0

1
5

2
0

5
0
%

M
IM

O
M

IM
O

M
IM

O
M

IM
O

F
T

A
T
2

F
T

A
T
1

6
0
%

M
IM

O
M

IM
O

M
IM

O

F
T

A
T
2

B
o
x
C
o
x

7
0
%

S
R
G
M

S
R
G
M

lx
v
m
in

lx
v
m
in

8
0
%

S
R
G
M

lx
v
m
in

9
0
%

S
R
G
M

tx
v
m
a
x

D
S
2

O
P
o
in

t
S
h
o
rt

T
e
rm

L
o
n
g
T
e
rm

5
1
0

1
5

2
0

5
0
%

M
IM

O
M

IM
O

M
IM

O
M

IM
O

A
T
2

B
T

A
T
1

F
T

6
0
%

M
IM

O
S
R
G
M

S
R
G
M

B
T

tx
v
m
a
x

tx
v
m
a
x

7
0
%

M
IM

O
S
R
G
M

B
T

tx
v
m
a
x

8
0
%

M
IM

O

F
T

9
0
%

S
R
G
M

tx
v
m
a
x

D
S
3

O
P
o
in

t
S
h
o
rt

T
e
rm

L
o
n
g
T
e
rm

5
1
0

1
5

2
0

5
0
%

M
IM

O
M

IM
O

S
R
G
M

M
IM

O

F
T

B
o
x
C
o
x

tx
v
m
a
x

B
T

6
0
%

S
R
G
M

M
IM

O
M

IM
O

M
IM

O

tx
v
m
a
x

B
T

A
T
1

A
T
1

7
0
%

S
R
G
M

S
R
G
M

S
R
G
M

tx
v
m
a
x

lx
v
m
a
x

tx
v
m
a
x

8
0
%

S
R
G
M

M
IM

O

lx
v
m
a
x

A
T
2

9
0
%

S
R
G
M

lx
v
m
a
x

D
S
4

3.2. NUMERICAL EXPERIMENTS 47

T
ab

le
3.
7:

A
E

ac
co
rd
in
g
to

p
re
d
ic
ti
on

le
n
gt
h
fo
r
fo
u
r
(D

S
5
∼

D
S
8)

d
at
as
et
s

O
P
o
in

t
S
h
o
rt

T
e
rm

L
o
n
g
T
e
rm

5
1
0

1
5

2
0

5
0
%

S
R
G
M

M
IM

O
M

IM
O

M
IM

O

g
a
m
m
a

F
T

B
T

B
T

6
0
%

S
R
G
M

S
R
G
M

S
R
G
M

S
R
G
M

tx
v
m
a
x

lx
v
m
a
x

tx
v
m
a
x

tx
v
m
a
x

7
0
%

S
R
G
M

S
R
G
M

S
R
G
M

M
IM

O

tx
v
m
a
x

tx
v
m
a
x

tx
v
m
a
x

B
T

8
0
%

S
R
G
M

S
R
G
M

S
R
G
M

lx
v
m
a
x

lx
v
m
a
x

tx
v
m
a
x

9
0
%

S
R
G
M

S
R
G
M

tx
v
m
a
x

tx
v
m
a
x

D
S
5

O
P
o
in

t
S
h
o
rt

T
e
rm

L
o
n
g
T
e
rm

5
1
0

1
5

2
0

5
0
%

M
IM

O
M

IM
O

M
IM

O
M

IM
O

B
T

F
T

B
T

A
T
1

6
0
%

M
IM

O
M

IM
O

M
IM

O
M

IM
O

F
T

B
T

A
T
2

B
T

7
0
%

S
R
G
M

M
IM

O
M

IM
O

M
IM

O

tx
v
m
a
x

F
T

F
T

A
T
1

8
0
%

M
IM

O
S
R
G
M

S
R
G
M

F
T

tx
v
m
a
x

tx
v
m
a
x

9
0
%

S
R
G
M

lx
v
m
a
x

D
S
6

O
P
o
in

t
S
h
o
rt

T
e
rm

L
o
n
g
T
e
rm

5
1
0

1
5

2
0

5
0
%

M
IM

O
M

IM
O

M
IM

O
M

IM
O

F
T

B
T

B
T

B
T

6
0
%

S
R
G
M

M
IM

O
S
R
G
M

M
IM

O

tx
v
m
a
x

A
T
1

tx
v
m
a
x

F
T

7
0
%

S
R
G
M

M
IM

O
M

IM
O

M
IM

O

tx
v
m
a
x

F
T

A
T
1

B
T

8
0
%

M
IM

O
M

IM
O

S
R
G
M

B
T

F
T

tx
v
m
a
x

9
0
%

S
R
G
M

tx
v
m
a
x

D
S
7

O
P
o
in

t
S
h
o
rt

T
e
rm

L
o
n
g
T
e
rm

5
1
0

1
5

2
0

5
0
%

M
IM

O
M

IM
O

M
IM

O
M

IM
O

F
T

B
o
x
C
o
x

F
T

A
T
2

6
0
%

S
R
G
M

M
IM

O
M

IM
O

M
IM

O

lx
v
m
a
x

B
T

A
T
2

B
T

7
0
%

S
R
G
M

M
IM

O
M

IM
O

M
IM

O

lx
v
m
a
x

F
T

B
T

A
T
2

8
0
%

M
IM

O
S
R
G
M

S
R
G
M

M
IM

O

B
T

lx
v
m
a
x

tx
v
m
a
x

B
T

9
0
%

M
IM

O
S
R
G
M

B
T

e
x
p

D
S
8

48 CHAPTER 3. MULTI-STAGE LOOK-AHEAD PREDICTION

Table 3.8: Comparison table for both cases with all datasets

Observation point Prediction length

Dataset Middle Testing Late Testing Short Term Long Term

DS1 MIMO(AT2) SRGM(txvmax) SRGM(txvmax) MIMO(AT2)

DS2 MIMO(FT) SRGM(lxvmin) SRGM(lxvmin) MIMO(AT1)

DS3 MIMO(BT) SRGM(txvmax) MIMO(BT) SRGM(txvmax)

DS4 MIMO(AT1) SRGM(lxvmax) SRGM(lxvmax) MIMO(AT1)

DS5 SRGM(txvmax) SRGM(txvmax) SRGM(txvmax) SRGM(txvmax)

DS6 MIMO(BT) SRGM(txvmax) MIMO(FT) MIMO(AT1)

DS7 MIMO(BT) SRGM(txvmax) MIMO(FT) MIMO(BT)

DS8 MIMO(AT2) MIMO(BT) MIMO(BT) MIMO(BT)

(a) 5 output neurons with 30 hidden neu-
rons.

(b) 10 output neurons with 20 hidden neu-
rons.

(c) 15 output neurons with 10 hidden neu-
rons.

(d) 20 output neurons with 50 hidden neu-
rons.

Figure 3.5: Determination of the transformation parameter λ (DS1 with 50%
observation point).

3.3. SIMULATION EXPERIMENTS 49

(a) 5 output neurons with 50 hidden neu-
rons.

(b) 10 output neurons with 20 hidden neu-
rons.

(c) 15 output neurons with 10 hidden neu-
rons.

(d) 20 output neurons with 40 hidden neu-
rons.

Figure 3.6: Determination of the transformation parameter λ (DS2 with 50%
observation point).

Finally, we cannot obtain the strong conclusion on how to design the MIMO

for the purpose of software fault prediction. However, the lesson learned from

the numerical experiments suggests that the multi-stage look-ahead prediction

of software fault count is possible with the MIMO neural network, and that

the data transform from the Poisson data to the Gaussian data works better to

predict the number of software faults accurately.

3.3 Simulation Experiments

To investigate the accuracy of our methods, Monte Carlo simulation is carried

out. Here, we also focus on the single time data. Suppose that the (unknown)

time process follows an exponential NHPP model, λ(t) = a{1 − exp(−bt)},

with model parameters (a, b) = (413.2050, 0.0461). We generate the original

50 CHAPTER 3. MULTI-STAGE LOOK-AHEAD PREDICTION

failure time data X∗
k,i for i = 1, 2, . . . , n, at k-th simulation as the pseudo

random variables, are given by 0 < T1 ≤ T2 ≤ · · · ≤ Tn with realizations

0 < t1 ≤ t2 ≤ · · · ≤ tn by the thinning algorithm [30]. Consider the case where

the failure time distribution F (t) and the intensity function λ(t) are completely

unknown. Then, it can be shown that X∗
k,1, X∗

k,2, · · · (k = 1, 2, . . . ,m) follows

an NHPP with intensity function λ(t), where (m = 1000), after that we make

grouped data from time data. That is, it is assumed that n failures occur by time

t and the realizations of Ti (i = 1, 2, . . . , n), say, ti are observed, where tn ≤ t.

Without any loss of generality, we can make count data from the random variable

Xi = Ti ≤ Tn ∈ [i = 1, 2, . . . , n] with realizations xi = ti ≤ tn ∈ [i = 1, 2, . . . , n]

for i = 1, 2, . . . , n, less than or equal to the maximum length. We regard the

pair (ti, xi) (i = 1, 2, . . . , n) as a software count data of the underlying NHPP.

From 1000 samples we select 4 types of cases (1) Case1, Fitted which is fit with

real mean value function, (2) Caes2, Underfitted is not exact fit with real mean

value function, (3) Case3, over fit to the real value is called Overfitted dataset

and (4) Case4, S-shaped which behavior like s. Figure 3.7 and 3.8 show the

structure of two datasets Case1 and Case4 respectively. In here, we recognized

the dataset as like as Case1, Case2, Case3 and Case4 respectively.

3.3.1 Point Estimation

For n software fault data, we estimate point prediction for long-term. In that

case, we observed 50% past data as our input to the NN for next 15 days. In

previous Section 3.1.2 we described our refined NN approach. After preprocess-

ing our simulation 4 datasets we estimated point prediction for long-term by five

data transformation method with the Normal method. Table 3.2 and Section

1.4 summarizes the data transform techniques used and their inverse transform

formulae. Suppose that the observation point is given by the n-th testing day,

tn. In this case, (n-l) software fault counts data are used for training the MIMO

type of MLP. The capability of the prediction model is measured by the average

error (AE) cited in Eq.(3.17). where REs is called the relative error for the

future time t = n+ s and is given by in Eq. (3.18). So we regard the prediction

model with smaller AE as a better prediction model.

Table 3.9 summarize the results on AE for the underlying cases Case1, Case2,

3.3. SIMULATION EXPERIMENTS 51

Case3 and Case4 at 50% observation points of the whole data for the predic-

tion length l = 15 days, where“ Best λ” denotes the optimal transformation

parameter in the sense of minimum AE, and the bold number implies the best

prediction model in the same category. For instance, Table 3.9 gives the predic-

tion results on the cumulative number of software faults for 15 days at respective

observation points, when the number of hidden neurons changes from k = 10

∼ 50. In the MIMO type of MLP neural network, we compare five data trans-

form with the non-transformed case (Normal). It is seen that our MIMO-based

approaches provide smaller AEs than the Normal in almost all cases when the

observation point is 50%. Incase of Case1, the best prediction model is the

transformed MIMO (FT) with k = 40. On the other hand, for Case2 MIMO

with FT offers less error than the Normal MIMO with k = 20. Focusing on the

number of hidden neurons in the MIMO type of MLPs, we expected that the

larger k may lead to the better predictive performance. In terms of predictive

performance, Case3 and Case4 with BT and FT provides the best prediction

result than Normal respectively. However, in the simulation experiment results,

it is seen that the data transformation can work well to give more accurate

prediction results in the MIMO type of MLPs. In the MIMO-based approach,

it is essential to determine feasible k and λ values, because the number of hid-

den neurons produce more expensive computation cost with dierent prediction

length l. Unfortunately, no universal method to determine the optimal λ and

hidden neuron number.

In Figure 3.9, we illustrate the time-dependent behavior of RE and compare

six data transform methods (Normal) with Case1. From this result, it can be

observed that without middle testing phase FT delivers less error. The common

approach Normal gives the worse result in the full testing phase, comparing with

other. On the other hand, the most standard BT, AT2, and BoxCox provide the

worse results and give the growing trend as the software testing. AT1 delivers

average error rate from first to last testing phase.

52 CHAPTER 3. MULTI-STAGE LOOK-AHEAD PREDICTION

Figure 3.7: Case1 Fitted dataset

Figure 3.8: Case4 S-shaped dataset

3.3. SIMULATION EXPERIMENTS 53

Table 3.9: Comparison of average relative errors for fifteen days prediction with
Case1 ∼ Case4 (l = 15).

50% observation (tn = 15)

Case2

Average Error(AE)

MIMO

k AT1 AT2 FT BT BoxCox(Best λ) Normal

10 1.0563 1.0952 0.8952 0.7514 1.3698(1.1) 2.4589

20 0.8531 1.1361 0.0756 1.369 0.9458(1.0) 1.9412

30 0.1362 0.2492 0.0911 0.3448 0.2771(0.7) 0.5062

40 0.3589 0.8781 0.0396 0.6391 1.069(0.3) 1.3497

50 0.1015 0.2639 0.0963 0.3940 0.6852(0.1) 0.7423

Case2

10 2.5896 3.4712 2.4820 1.6352 3.6094(1.1) 4.8956

20 2.1356 2.9841 0.0641 2.4810 1.0489(0.8) 3.6523

30 3.0564 1.8971 0.6749 0.9423 1.6357(1.4) 1.4758

40 0.9852 0.0918 0.0686 1.2301 0.6987(-0.3) 0.3497

50 0.0779 1.2891 0.9852 0.3289 0.4024(1.3) 0.504579

Case3

10 2.1324 0.0654 0.6894 2.4120 2.3145(-1.9) 4.2536

20 1.4578 1.6932 0.0335 1.9482 0.2837(2.0) 2.5896

30 0.0229 1.3472 1.2035 0.0151 1.9823(0.0) 0.3811

40 0.6417 0.9856 1.4712 0.7519 1.8742(1.2) 1.9786

50 0.2471 0.8945 0.3691 0.2981 0.8974(1.0) 1.8421

Case4

10 3.6451 1.6523 0.6417 0.8741 2.8963(1.3) 3.6012

20 1.6481 1.9631 1.2013 1.2475 1.9876 (-1.1) 3.1987

30 1.9685 0.3781 1.2489 0.3419 1.0947(0.9) 2.8475

40 0.2896 1.0143 1.0321 0.6389 1.6981(-0.8) 1.2589

50 1.0241 0.2781 0.2389 0.3141 0.8949(-0.3) 1.3698

54 CHAPTER 3. MULTI-STAGE LOOK-AHEAD PREDICTION

Figure 3.9: Time-dependent behavior of relative error with Case1 (k = 40).

Chapter 4

Predictive Interval: Refined
Neural Network Approach

In this chapter, we consider predictive interval for software fault data by neural

network approach. It is noted that the ANN including the simplest MLP with

only one output neuron is regarded as a nonlinear regression model, where the

explanatory variables are randomized by the Gaussian white noise. In other

words, the output data in the MLP is implicitly assumed to be a realization of

a nonlinear Gaussian model. On the other hand, since one handles the Poisson

count data as integer values in the software fault prediction, the underlying

data shall be transformed to the Gaussian data in advance. Two of these are

based on the fault data, one is one stage look ahead prediction and an other

is multi-stage look-ahead prediction, which are introduced in Chapter 2 and 3.

Throughout examples with real software fault data and simulation experiment, it

is shown that the proposed methods provide more accurate estimation results. In

the traditional statistics, the interval estimation is useful to take account of the

uncertainty of point estimate itself, though it is difficult to obtain analytically

the statistical estimator distribution of the target output.

4.1 Delta Method

Delta method is known as an elementary method of propagation of errors. It is a

commonly used approach which is easily implemented, not computer-intensive,

and can be robustly applied to many situations such as an approximation of the

variance for an arbitrary functional of random variables, based on Taylor series

55

56 CHAPTER 4. PI BY NN APPROACH

expansions. It is also used to obtain an asymptotic statistical estimator from

the knowledge of the limiting variance [60], [27].

Let δTr is the output gradient vector with respect to gradient values for all

output and hidden neurons in the MPL neural network:

δTr = [δx̃1, δx̃2, . . . , δx̃s, δh1, δh2, . . . , δhj] (4.1)

where δhj and δx̃s are the output gradient of j-th hidden neuron and the

output gradient in the output layer, and are defined at Eq. (2.8) In practice,

the neural network parameters such as pervious weights have to be adjusted by

minimizing the average SSE2. Let ∆wr is the Jacobian matrix with respect to

all updated weight parameters from an output neuron to hidden neurons. It is

computed for all the training samples, where

∆wr =

w′

1s(new) w11(new) w21(new) . . . wi1(new)

w′
2s(new) w12(new) w22(new) . . . wi2(new)

...
...

...
. . .

...

w′
js(new) w1j(new) w2j(new) . . . wij(new)

 (4.2)

In the above equation, w′
js(new)(s = 1) and (j = 1, . . . , k) are the new weights

of hidden neurons connected to the output neuron, and wij(new) are the new

weights of n input neurons which are connected to j-th hidden neuron in the

hidden layer. These weights, w′
js(new) and wij(new) , are given at Eq. (2.8).

Define the PIs of the cumulative number of software faults by [PIlow, P Iup]

in the MLP neural network computing. Then, the lower limit and upper limit

of PI are given by

PIlow = x̃s − t
1−α/2
n−l

√
1 + δTr (∆wT

r ∆wr)−1δr (4.3)

PIup = x̃s + t
1−α/2
n−l

√
1 + δTr (∆wT

r ∆wr)−1δr (4.4)

By adding (10) and (11), the PI can be expressed as

PIuplow = x̃s ± t
1−α/2
n−l

√
1 + δTr (∆wT

r ∆wr)−1δr (4.5)

In the above equations x̃s denotes the point eastimation value for s-th testing

days cited in Eq. 2.2, t
1−α/2
n−l is the α/2 - quantile of the student t-distribution

4.2. ONE-STAGE LOOK AHEAD PREDICTION 57

function with (n− l) degree of freedom, n is the number of inputs in the neural

network , and l is predicition period [27].

The Jacobian matrix (∆wr)and its gradient value (δTr) are quite hard to

obtain with all input data, so delta method contains a somewhat puzzling issue

to construct PIs. However the other calculations are comparatively modest.

Here, the Jacobian matrix and the gradient value are calculated and estimated

at off-line, although they can be potential sources of computational error for

constructing PIs. In addition, the quality of PIs and their optimal values of

gradient and Jacobian matrix must be carefully checked to satisfy the conver-

gence condition that the minimum error is achieved at a tolerance level.

4.2 One-stage look ahead prediction

• Without effect of hidden and input neuron:

In Chapter 2, we apply the NN methods to obtain point estimation for one-

stage look-ahead prediction. In that time we pre-processing the datasets

like as common in the wavelet shrinkage estimation [54], but has not been

considered in the software fault prediction via the ANN. According to the

idea by Xiao and Dohi [54], we apply three data transform techniques

from the Poisson data to the Gaussian data. More specifically, we use BT

[5], AT [4], FT [12] as the most major normalizing and variance-stabilizing

transforms. Table 2.1 summarizes the data transform techniques and their

inverse transform formulae. In the table, xi denotes the cumulative num-

ber of software faults detected at i (i = 1, 2, . . . , n)-th testing day. Then,

we have the transformed data x̃i by means of any data transformation

method. Let x̃i (i = 1, 2, . . . , n) and x̃l (l = 1) be the input and out-

put for the MIMO neural network, respectively. Then, the prediction of

the cumulative number of software faults is given by the inversion of the

data transform. We suppose that there is only one hidden layer with

k (= 1, 2, . . .) hidden neurons in our MIMO neural network. After com-

plete other equation in the Section 2.1.2 we got point estimation value

for 4 datasets. We derive the two-sided 95% prediction intervals of the

software fault data for one-stage look-head prediction with delta method.

58 CHAPTER 4. PI BY NN APPROACH

We use four real project data sets cited in the reference [29]; DS1∼DS4,

which consist of the software fault count (grouped) data. In these data

sets, the length of software testing and the total number of detected soft-

ware faults are given by (62, 133), (22, 54), (41, 351) and (114, 188)

respectively.

• PI Assesment

In order to measure the quality of PIs on the predictive software fault

counts, we need define two predictive measures called the PI coverage rate

(PICP) and the mean predictive interval width (MPIW) [27]. Let set up

the significance level as 95%. PCIP is the portion of the number of the

software fault count covered by the PIs, and is defined by

PICP =

∑N
s=1 CP s

N
, (4.6)

where

CPs =

 1 x̃s ∈ [PIlow, P Iup]

0 x̃s ∋ [PIlow, P Iup]
(4.7)

PIlow and PIup are the lower and upper predictive limits, x̃s is the actual

number of fault count at i-th testing day (i = 1, 2, . . . , k − 1).

On the other hand, MPIW evaluates the width of PIs, and is defined by

MPIW =

∑N
s=1 PIup − PIlow

N
, (4.8)

In Table 4.1 presents the predictive PI measures for four datasets with

and without data transformation, where the values in round brackets de-

note the number of input layer neurons and the number of hidden layer

neurons. It can be seen that the data transformation does work to cover

PICP with the corresponding narrow MPIWs. For practical usage of PIs,

one may understand the data transformation methods are needed because

their associated coverage rates are cover 95% significance level with wider

lengths between the lower and upper predictive limits. However, our pur-

pose here is to get the theoretically reasonable PIs which are consistent to

4.2. ONE-STAGE LOOK AHEAD PREDICTION 59

Table 4.1: Prediction PI measures.

Prediction PI measures

DataSet Data transformation PICP MPIW

DS1(10,8) Normal 0.9652 5056.98

AT1 0.9505 4556.94

FT 0.9798 3996.81

BT 0.9545 3031.80

DS2(5,7) Normal 0.9584 4061.82

AT1 0.9647 3849.68

FT 0.9695 5391.29

BT 0.9574 5294.29

DS3(5,9) Normal 0.9689 4998.96

AT1 0.9798 4597.04

FT 0.9798 5599.89

BT 0.9691 4132.62

DS4(15,10) Normal 0.9659 5469.40

AT1 0.9579 5684.64

FT 0.9654 6469.40

BT 0.9653 5226.08

60 CHAPTER 4. PI BY NN APPROACH

the approximate PIs based on the delta methods. This result enables us

to know that the PIs used to predict the number of software fault counts

which will experience in the future, and be useful for the probabilistic

inference with subjective significance level controlled by the software test

manager.

(a) AT with DS1 (b) BT with DS2

(c) Normal with DS3 (d) FT with DS4

Figure 4.1: Prediction Interval

In Figure 4.1 , we depict the sequential prediction results of software fault

counts and its 95% prediction intervals with four data transformation

methods with all datasets where the length of each box plot denotes the

two-sided 50% prediction intervals. It can be found that all the methods

cover the one-stage look-ahead prediction and the data itself within PIs

except DS3 with Normal. The PI construction delta method computa-

tional load is higher than others method but also the operational planners

and schedulers can enjoy the excellent quality of PI for software reliability

engineering.

• The effect of number of hidden nodes and input nodes:

4.2. ONE-STAGE LOOK AHEAD PREDICTION 61

We use eight real project data sets cited in [29]; DS1∼DS8, which consist

of the software fault count data. Chapter 2, Table 2.3 summarizes the data

sets and their cumulative numbers of software faults detected in testing.

The prediction performance is evaluated in sequential software testing,

so that we make the one-stage look-ahead prediction based on the past

observation and sequentially evaluate the prediction performance. In order

to measure the quality of PIs on the prediction of software fault counts, we

need to define three prediction measures called the PI coverage probability

(PICP), the mean prediction interval width (MPIW) and PI-normalized

averaged width (PINAW) [27] same as previous. PI-normalized averaged

width (PINAW) quantifies the wide constructed PIs;

PINAW = MPIW/R, (4.9)

where R is the range of the underlying target, and is used to compare

PIs. In Table 4.2 we give the prediction PI measures for eight datasets. It

can be seen that the data transformation works to increase PICP because

the corresponding MPIWs become wider. In practical usage of PIs, the

associated coverage rate is large enough if the width is narrow. From

this table we can say that in most of the cases FT provides narrow width

with higher coverage rate excluding DS# 6. On the other hand, BT can

give the better result than FT. Since the sharper PIs are theoretically

more informative and practically more useful than the wider PIs if it is

contains the high coverage probability, it is noted that PINAWs indicate

the sharpness of PIs, so that smaller PINAW is regarded as better PIs.

In overall discussion we can observe that NN with transform provide high

coverage probability with narrow width.

In Figure 4.14, we depict the sequential prediction results of software fault

counts and their PIs with four data transformation methods (including the

case with no transform) for the different datasets, where the best architec-

ture in each dataset is applied. Figure show the two-sided 95% prediction

intervals of cumulative number of software faults via delta method, where

the length of each box plot denotes the two-sided 50% prediction inter-

vals. It can be found that the PIs with FT can cover both of the one-stage

62 CHAPTER 4. PI BY NN APPROACH

Table 4.2: Prediction PI measures.

Prediction PI measures

Dataset # Data transform PICP PINAW MPIW

DS1(5,3) Normal 0.9232 30.4904 152.452

AT1 0.9762 48.4956 162.478

FT 0.9598 42.5052 112.526

BT 0.9532 48.557 242.785

DS2(5,4) Normal 0.9398 88.4904 442.452

AT1 0.9586 69.1568 345.784

FT 0.9642 54.825 274.125

BT 0.9786 90.4696 452.348

DS3(10,7) Normal 0.9478 15.4754 154.754

AT1 0.9614 54.8127 548.127

FT 0.9585 52.4784 524.784

BT 0.9589 45.4796 454.796

DS4(5,4) Normal 0.9504 38.6446 192.223

AT1 0.9654 40.3386 201.693

FT 0.9585 38.448 192.240

BT 0.9494 49.6048 248.024

DS5(14,10) Normal 0.9617 15.9846 223.785

AT1 0.9758 18.6584 261.218

FT 0.9897 11.0492 154.689

BT 0.9582 21.0611 294.856

DS6(10,7) Normal 0.9398 105.2142 1052.142

AT1 0.9584 45.6989 456.989

FT 0.9554 66.2489 662.489

BT 0.9855 43.2689 432.689

DS7(5,4) Normal 0.9281 53.8294 269.147

AT1 0.9588 56.9528 284.764

FT 0.9515 33.896 169.480

BT 0.9445 71.3624 356.812

DS8(5,4) Normal 0.9476 100.4246 502.123

AT1 0.9678 129.169 645.845

FT 0.9585 50.425 252.125

BT 0.9589 90.429 452.145

4.3. PI FOR MULTI-STAGE LOOK-AHEAD PREDICTION 63

(a) FT with DS2 (b) FT with DS3

(c) BT with DS5 (d) Normal transformation with DS7

Figure 4.2: Predictive Interval with optimal hidden and input neurons.

look-ahead point prediction and the actual data itself with DS3 (See (b)).

On the other hand, (c) shows that BT with DS5 does not cover the real

value in PIs. In addition, (d) illustrates that the case with no transform

for DS7 does not cover point estimation and real value.

4.3 PI for multi-stage look-ahead prediction

In biological organisms, neural networks are computational metaphor inspired

by the brain and nervous system study. They are greatly evaluated by some

mathematical models to understand these nervous mechanisms, which consist

of many simple processing units, called neurons. Neurons have interconnections

with weights to encode the knowledge of the whole network, which has a learning

algorithm so as to automatically develop internal representations. The most

widely used processing-unit models are the logistic function and the sigmoid

function. The MLP feed forward neural network consists of three types of

layers; an input layer, hidden layer and output layer. The input layer of neuron

64 CHAPTER 4. PI BY NN APPROACH

can be used to capture the inputs from the outside world. The hidden layer of

neuron has no communication with the external world, but the output layer of

neuron sends the final output to the external world. The main task of hidden

layer neurons is to receive the inputs and weights from the previous layer and to

transfer the aggregated information to the output layer by any transfer function.

For multi-stage look-ahead prediction we consider a multiple-inputs multiple-

outputs (MIMO) neural network with only one hidden layer. Similar to Chapter

3 Section 3.1.2, suppose that n software fault count data (ti, xi) (i = 1, 2, . . . , n)

are observed at the observation point t (= tn). Our concern is about the future

prediction of the cumulative number of software faults at time tn+l (l = 1, 2, . . .).

After that we calculated the point estimation for long term prediction as follows

as previous Section 3.1.2, subsection 3.1.2.1, 3.1.2.2 and 3.1.2.3.

4.4 Numerical Experiments

We use eight real project data sets cited in the reference [29]; DS1∼ DS8, which

consist of software fault count (grouped) data in 3.3. To find out the desired

output via the BP algorithm, we need much computation cost to calculate the

gradient descent. We set all values like as previously.

4.4.1 Interval Estimation

4.4.1.1 Real Data Anlysis

We derive the two-sided 95% prediction intervals of the software fault data with

delta and simulation based predictive interval methods. For interval estimation

we used eight datasets at the 60% observation point only 20 output neuron

except DS2 and DS3 at 50% observation point.

• Delta Method

In the previous Section 4.2, we discuss delta approach for construction of

prediction region with software cumulative number of fault data, since the

main purpose of this section is to analyze the eight real project data sets

of the software fault count data.

• Simulation based predictive interval method

4.4. NUMERICAL EXPERIMENTS 65

Set wij(new) and outputm to empty;

Set n to the total number ofinput node in the NN;

Set k to the hidden neuron number;

Set l to the output neuron number;

For (i = 1; i ≤ n; i++) {
For (j = 1; j ≤ k; j ++) {
Randomly generate wij(new) (wij(new) ∈ [−1, +1));
Calculate (hj) by:

Chapter 3 Subsection 3.1.2.3 Eq. (3.15)

For (s = 1; s ≤ l; s++) {
Calculate (x̃n+s) by:

Chapter 3 Subsection 3.1.2.3 Eq. (3.16)

For outputm (m ∈ [0, 1000]);
Add outputm to x̃n+s ;}}}
Finally, we calculate the two-sided 100(1− α) %
prediction intervals with significance level α ∈ (0, 1).
[output(m(α/2)), output(m(1− α/2))], [PIlow,PIup]
/*PIlow and PIup is the lower and upper bound of prediction interval*/

Figure 4.3: A algorithm for simulation based predictive interval method.

In the previous Chapter 3, we discuss about refined NN approach for long

term point estimation. In subsection prediction phase 3.1.2.3 we estimated

with the training data experienced for the period (tn−l, tn] through the

BP algorithm, we need to obtain the remaining k(n+ l)−nl non-estimable

weights for prediction. Unfortunately, since these cannot be trained with

the information at time tn, we need to give these values by the uniform

pseudo random varieties ranged in [−1, 1]. By giving the random con-

nection weights, the output as the prediction of the cumulative number

of software faults, (x̃n+1, . . . , x̃n+l), are calculated by Eqs. (3.15) and

(3.16) respectively in Chapter 3 Subsection 3.1.2.3, for i = 1, 2, . . . , n,

j = 1, 2, . . . , k and s = 1, 2, . . . , l. Note that the resulting output is based

on one sample of generating the uniform pseudo random variates only

once. In order to obtain the prediction interval of the expected cumu-

lative number of software faults, we generate m sets of random variates

where m = 1, 000 is confirmed to be enough in our preliminary experi-

ments. The Figure 4.3 is a simple algorithm to calculate the simulation

based predictive interval method, where α = 0.05.

Figures 4.4–4.5 show the two-sided 95% predictive intervals of software fault

data in the case of l = 20 via two prediction interval methods, where the length

of each box plot denotes the two-sided 50% prediction intervals with DS1. First

66 CHAPTER 4. PI BY NN APPROACH

we can find that the prediction intervals for delta method are longer than those

for simulation based method. This is because the delta method is subject to

much more uncertainty. Among delta approaches, the non transform MIMO

approach (Normal) gives tighter prediction regions with low coverage probabil-

ity, so Normal does not cover point estimation and real value. Second, it is

seen that the transformation for MIMO with AT1, AT2, BT, FT and BoxCox

is included point estimation and real value within the box range.

In order to measure the quality of PIs on the predictive software fault counts,

we need define predictive measures called the PI coverage rate (PICP), the mean

predictive interval width (MPIW) and PI-normalized averaged width (PINAW)

[27] same as previous. Let set up the significance level as 95%. Tables 4.3 and

4.7 present the comparison results of two prediction interval methods for DS1∼

DS4 and DS5∼ DS8 data sets where l = 20. In the table, “Data T” means the

data transformation, “Delta” means delta method and “Simulation” implies

that the simulation based method for prediction interval. From this result, it is

seen that the delta approach wider than simulation based method. On the other

hand, the simulation based method even narrow but its coverage probability is

over 95% significance level. In addition Normal for both cases, it does not cover

the coverage probability. Even MIMO with BoxCox also shows the worse result

for coverage probability in case of DS4 and DS5.

• Real predictive interval method

To validate the simulation based and delta method we need to calcu-

late real predictive interval for our four simulation data sets such as

Fitted, Underfitted, Overfitted and S-shaped denoted as Case1, Case2,

Case3 and Case4. In previous Chapter 3 in Section 3.3 we discussed

about simulation experiment data sets, where we generate m = 1, 000 ran-

dom samples by thinining algorithm. As like as previous section 4.4.1.2

we regard the pair (ti, xi) as a realization of the underlying NHPP. For

real predictive interval, the time process follows an exponential NHPP

model, Λ(t) = aF (t), Fi(t) = a{1 − exp(−bt)} with model parame-

ters (a, b) = (68764.95, 0.00177), (299.59, 0.00262), (183.87, 0.000416), and

(389.93, 0.000182) for Case1, Case2, Caes3, and Case4 respectively. Then

Conditional probability and thinning algorithm is used to generate ran-

4.4. NUMERICAL EXPERIMENTS 67

dom variable time sequences 1000 time. Afterthat, we remake group data

from a time sequence like as the previous case. Finally, we calculate the

two-sided 100(1−α)% predictive intervals with significance level α ∈ (0, 1),

where α = 0.05.

• Point estimation of real predictive interval

Based on the past software bug counting experiences, we predict the fu-

ture value of the intensity function or the mean value function from the

observation time t. In parametric modeling, the prediction is easily done

by substituting estimated model parameter θ̂ into the time evolution in

Λ(t; θ̂). By using SRATS tool [41], given x50 software bug data at time

t50, we estimate the best model parameter value θ̂ at time t in the sense of

maximum likelihood and the (unconditional and conditional) mean value

function at an arbitrary future time t100:

Λ(t100; θ̂) =

∫ t100

0

λ(x; θ̂)dx, (4.10)

Λ(t100|X(t50) = x50; θ̂) = x50 +

∫ t100

t50

λ(x; θ̂)dx

= x50 + Λ(t100; θ̂)− Λ(t50; θ̂). (4.11)

Figures 4.6–4.13 show the two-sided 95% predictive intervals of software fault

data in all cases with delta and simulation based method respectively. Observing

the whole data, we can easily realize the same result like as privious. For

Case1 and Case4, MIMO with AT1, FT, and BT provides real value and point

prediction within box plot (see Figures 4.7 and 4.8, 4.13 and 4.14) with delta and

simulation based method respectively. In addition, the results in the remaining

cases are same as ones in the neural network model including with AT2 and

BoxCox. Table 4.6 shows the result of real predictive interval at 50% observation

point with all cases. In that case, real predictive interval width is narrow but

its coverage probability is over 95% significance level.

4.4.1.2 Simulation Experiment Data Analysis

In previous Chapter 3, in Section 3.3 we discussed about simulation experimen-

tal data sets. Same as previous, we assume that the form of intensity function is

68 CHAPTER 4. PI BY NN APPROACH

Table 4.3: DS1∼ DS4.

60% observation point

DS1

Delta Simulation

Data T PICP MPIW PINAW PICP MPIW PINAW

AT1 0.9589 2174.98 108.75 0.9785 2152.74 107.63

AT2 0.9525 2112.45 105.62 0.9512 1618.45 100.66

FT 0.9458 1049.78 52.48 0.9569 2013.25 98.23

BT 0.9545 2098.25 109.91 0.9584 1964.78 49.92

BoxCox 0.9558 1075.25 53.75 0.9348 998.48 80.92

Normal 0.9289 1017.12 49.85 0.9308 1025.12 51.96

50% observation point

DS2

AT1 0.9585 2945.85 147.29 0.9683 2143.57 107.19

AT2 0.9472 2515.56 125.78 0.9545 1945.41 97.27

FT 0.9580 3258.86 162.94 0.9540 2145.78 107.29

BT 0.9654 3982.41 199.12 0.9635 3120.12 156.01

BoxCox 0.9523 2134.57 106.73 0.9571 2051.23 102.56

Normal 0.9445 1325.85 66.29 0.9347 1643.27 82.16

50% observation point

DS3

AT1 0.9558 5015.47 250.77 0.9595 4019.92 200.99

AT2 0.9549 4045.89 200.64 0.9681 3647.72 182.38

FT 0.9581 4012.12 200.61 0.9533 3782.25 189.11

BT 0.9625 4317.82 215.89 0.9543 3758.87 187.94

BoxCox 0.9455 2915.85 145.79 0.9565 3247.29 162.36

Normal 0.9248 2654.35 132.72 0.9351 2471.19 123.56

DS4

AT1 0.9532 5263.56 263.19 0.9683 6458.51 322.93

AT2 0.9582 5796.59 289.83 0.9523 5894.73 294.74

FT 0.9685 6125.49 306.27 0.9519 4785.84 239.29

BT 0.9651 5872.20 293.61 0.9453 4506.89 225.34

BoxCox 0.9451 4969.58 248.48 0.9351 4891.47 244.57

Normal 0.9263 2920.23 146.01 0.9289 1279.91 63.99

4.4. NUMERICAL EXPERIMENTS 69

Table 4.4: DS5∼ DS8.

60% observation point

DS5

Delta Simulation

Data T PICP MPIW PINAW PICP MPIW PINAW

AT1 0.9545 6589.91 299.54 0.9735 6989.87 349.49

AT2 0.9659 7156.59 357.83 0.9686 6789.46 339.47

FT 0.9586 7258.51 362.92 0.9541 6243.31 312.16

BT 0.9647 7564.43 378.22 0.9547 5678.71 283.93

BoxCox 0.9453 5489.94 274.50 0.9458 5472.82 273.64

Normal 0.9382 4234.37 211.72 0.9453 4989.59 249.48

DS6

AT1 0.9582 4712.24 235.61 0.9535 4576.67 228.83

AT2 0.9512 4523.33 226.17 0.9579 4971.18 248.56

FT 0.9612 4871.17 243.56 0.9589 4283.23 214.16

BT 0.9510 4279.29 213.96 0.9519 3986.58 199.33

BoxCox 0.9543 4585.83 229.29 0.9534 4575.51 228.77

Normal 0.9245 2987.49 149.37 0.9452 3698.45 184.92

DS7

AT1 0.9586 5698.45 284.92 0.9615 6125.89 306.29

AT2 0.9512 4953.23 247.66 0.9536 4989.91 249.46

FT 0.9586 5941.49 297.07 0.9585 6124.47 306.22

BT 0.9596 5210.31 260.52 0.9589 5426.63 271.33

BoxCox 0.9556 4653.28 232.66 0.9495 4523.21 226.16

Normal 0.9289 3961.45 198.07 0.9453 3212.24 160.61

DS8

AT1 0.9541 745.41 37.27 0.9555 643.23 32.16

AT2 0.9652 659.86 32.99 0.9656 712.20 35.61

FT 0.9553 598.89 29.94 0.9562 562.12 28.11

BT 0.9659 963.12 48.16 0.9585 496.56 24.83

BoxCox 0.9532 489.87 24.49 0.9594 589.89 29.49

Normal 0.9251 233.53 11.68 0.9343 375.86 18.79

70 CHAPTER 4. PI BY NN APPROACH

(a) AT1 for 20 output neuron (b) AT2 for 20 output neuron

(c) FT for 20 output neuron (d) BT for 20 output neuron

(e) BoxCox for 20 output neuron (f) Normal for 20 output neuron

Figure 4.4: Prediction Interval for Delta method with DS1.

completely known. Suppose that the failure-occurrence time data under mini-

mal fault, which are the random variables, are given by 0 < T1 ≤ T2 ≤ · · · ≤ Tn.

That is, it is assumed that n failures (minimal faults) occur by time t and the

realizations of Ti (i = 1, 2, . . . , n), say, ti are observed, where tn ≤ t. We regard

the pair (ti, xi) as a realization of the underlying NHPP. In here, we used point

estimation of our four simulation data sets such as Fitted, Overfitted, Underfit-

ted and S-shaped. After that we applied delta method described in Section 4.2

and simulation based prediction interval method described in Section 4.4.1.1.

Let set up the significance level as 95%. We estimated predictive interval for

50% observation point with l=15 for all data sets. Table 4.5 shows the result of

predictive measures with all cases such as Fitted, Underfitted, Overfitted and

4.4. NUMERICAL EXPERIMENTS 71

(a) AT1 for 20 output neuron (b) AT2 for 20 output neuron

(c) FT for 20 output neuron (d) BT for 20 output neuron

(e) BoxCox for 20 output neuron (f) Normal for 20 output neuron

Figure 4.5: Predictive Interval for Simulation based method with DS1.

S-shaped dataset respectively. First we can find that the measures for the delta

method is wider than those for simulation based model. In addition, all almost

all cases transformation with MIMO wider and coverage rate over 95%. On the

other hand, Normal is narrow and does not include the coverage probability.

Figures 4.6-4.13 presents the prediction interval of two methods, delta and

simulation based on predictive interval method respectively with all cases. All

of the cases of AT1, FT and BT contain the point estimation and real value

in their prediction region. On the other hand, Normal with simulation based

method coverage rate sounds good than delta method. AT2 and BoxCox show

the average result in both of cases.

72 CHAPTER 4. PI BY NN APPROACH

4.4.2 Statistical Properties of Estimators

Based on thinining algorithm [30] for random samples, we generate m = 1, 000

random samples. However, since the resulting estimate is calculated from a fixed

sample of failure time data t1, t2, · · · , tn, we cannot correspond to unknown fail-

ure patterns in the future, and cannot consider the uncertainty of the estimator

as a random variable. For such a problem, it is well known that the interval

estimation may work better to make the valid decision under uncertainty. Let

τ̂∗(k) be each estimate of the software fault during time τ∗ which is calculated

by using thinining algorithim samples, where k = 1, 2, · · · ,m. Also, we label

τ̂∗(m/2) and τ̄∗ = (
∑m

k=1 τ̂
∗
(k))/m as the median and the mean, respectively. The

variance V , skewness S and kurtosis K of estimators of the cumulative number

of software faults are defined by the following equations:

Vτ∗ =

∑m−1
k=1 (τ̂∗(k) − τ̄∗)2

m− 1
, (4.12)

Sτ∗ =

∑m
k=1(τ̂

∗
(k) − τ̄∗)3

mV
3
2
τ∗

, (4.13)

Kτ∗ =

∑m
k=1(τ̂

∗
(k) − τ̄∗)4

mV 2
τ∗

. (4.14)

Based on the estimator distributions, we derive variance, skewness and kurtosis

of the cumulative number of software faults. It is well known that if the skew-

ness is closed to 0.0 and the kurtosis is closed to 3.0, then we can regard the

estimator distribution as normal distribution approximately. Tables 4.7 present

the statistics of estimators of the cumulative number of software fault, when the

number of minimal testing days is 30.

4.4. NUMERICAL EXPERIMENTS 73

Table 4.5: Case1∼ Case4.

50% observation point

Case1

Delta Simulation

Data T PICP MPIW PINAW PICP MPIW PINAW

AT1 0.9632 157.95 10.51 0.9536 170.71 11.38

AT2 0.9482 229.02 15.27 0.9621 137.13 9.14

FT 0.9549 107.91 7.19 0.9429 106.47 7.09

BT 0.9521 113.71 7.59 0.9587 52.08 3.47

BoxCox 0.9479 183.75 12.25 0.9425 96.96 6.46

Normal 0.9189 46.30 3.08 0.9349 43.13 2.88

Case2

AT1 0.9592 197.62 13.17 0.9693 192.51 12.83

AT2 0.9653 196.38 13.09 0.9589 167.48 11.16

FT 0.9617 141.03 9.40 0.9623 124.48 8.29

BT 0.9551 157.57 10.51 0.9593 125.90 8.39

BoxCox 0.9546 177.88 11.85 0.9459 167.62 11.17

Normal 0.9263 111.95 7.46 0.9129 135.25 9.017

Case3

AT1 0.9512 142.94 9.53 0.9521 129.42 8.63

AT2 0.9641 198.22 13.21 0.9523 151.75 10.12

FT 0.9581 204.45 13.63 0.9557 188.67 12.58

BT 0.9547 75.34 5.02 0.9562 101.44 6.76

BoxCox 0.9596 143.83 9.58 0.9459 76.87 5.12

Normal 0.9154 51.62 3.44 0.9591 92.24 6.15

Case4

AT1 0.9589 125.07 8.34 0.9683 115.78 7.72

AT2 0.9492 156.76 10.45 0.9614 121.47 8.09

FT 0.9859 193.94 12.93 0.9519 158.89 10.59

BT 0.9459 179.42 11.96 0.9598 129.89 8.65

BoxCox 0.9587 157.64 10.51 0.9241 111.47 7.43

Normal 0.9459 125.45 8.36 0.9137 89.78 5.99

74 CHAPTER 4. PI BY NN APPROACH

(a) AT1 for 15 output neuron (b) AT2 for15 output neuron

(c) FT for 15 output neuron (d) BT for 15 output neuron

(e) BoxCox for 15 output neuron (f) Normal for 15 output neuron

Figure 4.6: Prediction Interval for delta method with Case1.

Table 4.6: Real Predictive Interval.

50% observation point

Real PI

Dataset PICP MPIW PINAW

Case1 0.9685 96.6 6.41

Case2 0.9496 85.63 5.71

Case3 0.9563 121.45 8.09

Case4 0.9512 123.51 8.23

4.4. NUMERICAL EXPERIMENTS 75

(a) AT1 for 15 output neuron (b) AT2 for 15 output neuron

(c) FT for 15 output neuron (d) BT for 15 output neuron

(e) BoxCox for 15 output neuron (f) Normal for 15 output neuron

Figure 4.7: Prediction Interval for Simulation based method with Case1.

76 CHAPTER 4. PI BY NN APPROACH

(a) AT1 for 15 output neuron (b) AT2 for15 output neuron

(c) FT for 15 output neuron (d) BT for 15 output neuron

(e) BoxCox for 15 output neuron (f) Normal for 15 output neuron

Figure 4.8: Prediction Interval for delta method with Case2.

4.4. NUMERICAL EXPERIMENTS 77

(a) AT1 for 15 output neuron (b) AT2 for15 output neuron

(c) FT for 15 output neuron (d) BT for 15 output neuron

(e) BoxCox for 15 output neuron (f) Normal for 15 output neuron

Figure 4.9: Prediction Interval for simulation based method with Case2.

78 CHAPTER 4. PI BY NN APPROACH

(a) AT1 for 15 output neuron (b) AT2 for15 output neuron

(c) FT for 15 output neuron (d) BT for 15 output neuron

(e) BoxCox for 15 output neuron (f) Normal for 15 output neuron

Figure 4.10: Prediction Interval for delta method with Case3.

4.4. NUMERICAL EXPERIMENTS 79

(a) AT1 for 15 output neuron (b) AT2 for15 output neuron

(c) FT for 15 output neuron (d) BT for 15 output neuron

(e) BoxCox for 15 output neuron (f) Normal for 15 output neuron

Figure 4.11: Prediction Interval for simulation based method with Case3.

80 CHAPTER 4. PI BY NN APPROACH

(a) AT1 for 15 output neuron (b) AT2 for15 output neuron

(c) FT for 15 output neuron (d) BT for 15 output neuron

(e) BoxCox for 15 output neuron (f) Normal for 15 output neuron

Figure 4.12: Prediction Interval for delta method with Case4.

4.4. NUMERICAL EXPERIMENTS 81

(a) AT1 for 15 output neuron (b) AT2 for15 output neuron

(c) FT for 15 output neuron (d) BT for 15 output neuron

(e) BoxCox for 15 output neuron (f) Normal for 15 output neuron

Figure 4.13: Prediction Interval for simulation based method with Case4.

82 CHAPTER 4. PI BY NN APPROACH

(a) Case1 (b) Case2

(c) Case3 (d) Case4

Figure 4.14: Real predictive interval with Case1 ∼ Case4

4.4. NUMERICAL EXPERIMENTS 83

Table 4.7: Statistics of estimators of the software cumulative number of fault
data.

Testing D Mean Variance Skewness Kurtosis

1 18.30 1.18 0.28 4.13

2 36.06 1.34 -0.38 5.123

3 53.02 1.57 -1.53 15.28

4 69.22 1.81 -2.63 22.21

5 84.69 2.07 -3.47 25.09

6 99.47 2.17 -4.00 33.59

7 113.58 2.50 -5.37 33.71

8 127.05 3.17 -8.82 33.83

9 139.92 3.23 -9.48 38.83

10 152.18 4.53 -9.41 62.46

11 163.87 7.07 -10.44 65.71

12 175.09 6.62 -10.35 75.72

13 185.81 6.06 -10.23 86.52

14 195.98 9.08 -10.89 103.58

15 205.72 10.81 -11.23 115.97

16 215.07 9.99 -11.09 119.60

17 223.97 9.08 -10.91 123.57

18 232.49 8.11 -10.66 131.48

19 240.63 7.11 -10.34 133.33

20 253.92 5.66 -10.38 134.30

21 255.82 5.11 -9.32 134.62

22 262.52 4.19 -8.51 135.27

23 269.68 3.37 -7.37 136.36

24 276.15 2.66 -5.78 140.03

25 282.33 2.10 -3.59 142.85

26 288.24 1.72 -086 145.01

27 293.88 1.54 2.04 148.44

28 299.27 1.60 4.61 169.71

29 304.42 1.91 6.65 175.01

30 313.00 9.54 2.27 186.28

Chapter 5

Optimal Software Release
Decision : Refined NN
Approach

In this chapter, we present a novel method to estimate the optimal software

testing time which minimizes the relevant expected software cost via a refined

neural network approach with the grouped data, where the multi-stage look-ahead

prediction is carried out with a simple three-layer perceptron neural network

with multiple outputs. To analyze the software fault count data which follow a

Poisson process with unknown mean value function, we transform the underlying

Poisson count data to the Gaussian data by means of five data transformation

methods, and predict the cost-optimal software release time via a neural network.

In numerical examples with eight actual software fault count data, we compare

our neural network approach with the conventional NHPP -based SRGMs. It is

shown that our proposed method could provide a more accurate and more flexible

decision making than the conventional stochastic modeling approach.

5.1 Point Estimation

5.1.1 NHPP-Based Software Reliability Modeling

Here we summarize the software reliability growth modeling. Suppose that

software system test starts at time t = 0. Let X(t) be the cumulative number

of software faults detected by time t, where {X(t), t ≥ 0} denotes a stochastic

(non-decreasing) point process in continuous time. In particular, it is said that

85

86 CHAPTER 5. SRP BASED ON REFINED NN APPROACH

X(t) is an NHPP if the following conditions hold:

• X(0) = 0,

• X(t) has independent increments,

• Pr{X(t+ h)−X(t) ≥ 2}=o(h),

• Pr{X(t+ h)−X(t) = 1}= λ(t;θ)h+ o(h),

where o(h) is the higher term of infinitesimal time h, and λ(t;θ) is the intensity

function of an NHPP which denotes the instantaneous fault detection rate per

each fault. In the above definition, θ is the model parameter (vector) included

in the intensity function. Then, the probability that the cumulative number of

software faults detected by time t equals x is given by

Pr{X(t) = x} =
{Λ(t;θ)}x

x!
exp{−Λ(t;θ)}, (5.1)

where

Λ(t;θ) =

∫ t

0

λ(x;θ)dx (5.2)

is called the mean value function and indicates the expected cumulative number

of software faults up to time t, say, Λ(t;θ) =E[X(t)].

If the mean value function Λ(t;θ) or the intensity function λ(t;θ) is spec-

ified, then the identification problem of the NHPP is reduced to a statistical

estimation problem of unknown model parameter θ. In this way, when the

parametric form of the mean value function or the intensity function is given,

the resulting NHPP-based SRGMs are called parametric NHPP-based SRGMs.

Table 1 contains the representative NHPP-based SRGMs and their mean value

functions. Okamura and Dohi [41] summarized these eleven parametric NHPP-

based SRGMs (See Chapter 3 Table 3.1) and developed a parameter estimation

tool, SRATS , based on the maximum likelihood method, and the EM algorithm.

In SRATS, the best SRGM with the smallest AIC is automatically selected, so

the resulting best SRGM can fit best the past data on software fault counts

among the eleven models.

Suppose that n realizations of X(ti), xi (i = 1, 2, . . . , n), are observed up to

the observation point t (≥ tn). We estimate the model parameter θ by means

5.1. POINT ESTIMATION 87

of the maximum likelihood method. Then, the log likelihood function for the

grouped data (ti, xi) (i = 1, 2, . . . , n) is given by

LLF (θ) =
∑n

i=1

(
(xi − xi−1) log

{
Λ(ti;θ)− Λ(ti−1;θ)

}
− log

{
(xi − xi−1)!

})
− Λ(tn;θ), (5.3)

where Λ(0;θ) = 0, x0 = 0 and t = tn for simplification. The maximum likeli-

hood estimate of model parameter, θ̂, can be obtained by maximizing Eq. (5.3)

with respect to the model parameter θ. Once the model parameter is estimated,

our next concern is to predict the future value of the intensity function or the

mean value function at an arbitrary time tn+l (l = 1, 2, . . .), where l denotes

the prediction length. In parametric modeling, the prediction at time tn+l is

easily done by substituting estimated model parameter θ̂ into the time evolu-

tion Λ(t;θ), where the unconditional and conditional mean value functions at

an arbitrary future time tn+l are given by

Λ(tn+l; θ̂) =

∫ tn+l

0

λ(x; θ̂)dx, (5.4)

Λ(tn+l|X(tn) = xn; θ̂) = xn +

∫ tn+l

tn

λ(x; θ̂)dx

= xn + Λ(tn+l; θ̂)− Λ(tn; θ̂). (5.5)

When the mean value function is unknown, on the other hand, a few non-

parametric approaches have been developed by Kaneishi and Dohi [62] and Saito

and Dohi [47]. However, it should be noted that those approaches can deal with

the fault -detection time data, but do not work for prediction in future. The

wavelet-based method by Xiao and Dohi [54] can treat the grouped data, but

fails to make the long-term prediction in nature. In the following section, we use

an elementary MIMO type of MLP for the purpose of the long-term software

fault prediction.

5.1.2 Refined NN approach

ANN is a computational model inspired by the structure and functions of bio-

logical neural networks. An ANN has several advantages but one of the most

significant ones is that it can train from past observation. The simplest ANN

88 CHAPTER 5. SRP BASED ON REFINED NN APPROACH

has three layers that are interconnected. The first layer consists of input neu-

rons. Those neurons send data to the second layer i.e. hidden layer, which sends

the outputs to the third layer. Subsequently, the hidden neurons have no com-

munication with the external world, so that the output layer of neurons sends

the final output to the external world. The problem is how to get an appropri-

ate number of hidden neurons in the neural computation. In here we consider

a MIMO neural network with only one hidden layer. Similar to Section 5.1.1,

suppose that n software fault count data (ti, xi) (i = 1, 2, . . . , n) are observed

at the observation point t (= tn). Our concern is about the future prediction of

the cumulative number of software faults at time tn+l (l = 1, 2, . . .).

5.1.2.1 First phase: Data transformation

The simplest MLP with only one output neuron is considered as a nonlinear

regression model, where the explanatory variables are randomized by the Gaus-

sian white noise. In particular, the output data in the MLP are indirectly

assumed to be realizations of a nonlinear Gaussian model. By contrast, the

fault count data are integer values. Hence, the original data shall be trans-

formed to the Gaussian data in advance. Such a pre-data processing is common

in the wavelet shrinkage estimation [54], but has not been considered in the

software fault prediction via the ANN. According to the idea by Xiao and Dohi

[54], used a pre-data processing which is common in the wavelet shrinkage esti-

mation, where the underlying data follows the Poisson data. In the same way,

we apply BT [5], AT1 [4], AT2[59], FT [12], and BoxCox power transformation

[8] as the most major normalizing and variance-stabilizing transforms. Table

3.2 and and Section 1.4 summarizes the data transform techniques used and

their inverse transform formulae. In the table, xi denotes the cumulative num-

ber of software faults detected at i (i = 1, 2, . . . , n)-th testing day. Then, we

have the transformed data x̃i by means of any data transformation method.

Let x̃i (i = 1, 2, . . . , n) and x̃n+l (l = 1, 2, . . .) be the input and output for the

MIMO neural network, respectively. Then, the prediction of the cumulative

number of software faults is given by the inversion of the data transform. Fig-

ure 5.1 depicts the architecture of back propagation type MIMO, where n is the

number of software fault count data experienced before the observation point tn

5.1. POINT ESTIMATION 89

and l is the prediction length. We suppose that there is only one hidden layer

with k (= 1, 2, . . .) hidden neurons in our MIMO neural network.

5.1.2.2 Second Phase: Training to the neural network

In Figure 5.1, n denotes input neuron number in the input layer, k is the hidden

neuron and l indicates output neuron so we assume that all the connection

weights (nk weights from input to hidden layer, kl weights from hidden to output

layer) are first given by the uniformly distributed pseudo random varietes. In our

MIMO type of MLP, output neuron can be calculated (x̃n+1, . . . , x̃n+l) from the

previous transformed input (x̃1, . . . , x̃n) if these weights are completely known.

But, in principle of the common BP algorithm, it is impossible to train all the

weights including k(n+l) unknown patterns, as a result, it is required to improve

the common BP algorithm for long-term prediction scheme.

• Long-term prediction scheme: In Figure 5.2, we show the structure

of our prediction scheme. For the long-term prediction, we assume that

n > l without any loss of generality. In order to predict the cumulative

number of software faults for l testing days from the observation point

tn, the prediction has to be made at the point tn−l. This implies that

only (n − l)k + kl = nl weights can be estimated with the training data

experienced for the period (tn−l, tn] and that the remaining k(n+ l)− nl

weights are not trained at time tn. We call these k(n+ l)−nl weights the

non-estimable weights. As the prediction length is longer, the number of

non-estimable weights becomes greater and the prediction uncertainty also

increases more. In this scheme, the transformed data (x̃1, . . . , x̃n−l) are

used for the input in the MIMO, and the remaining data (x̃n−l+1, . . . , x̃n)

are used for the teaching signals in the training phase.

• Common BP algorithm: Back propagation (BP) is a common method

for training a neural network. The BP algorithm is the well-known gra-

dient descent method to update the connection weights, to minimize the

squared error between the network output values and the teaching sig-

nals. There are two special inputs; bias units which always have the unit

values. These inputs are used to evaluate the bias to the hidden neurons

and output neurons, respectively. For the value coming out of an input

90 CHAPTER 5. SRP BASED ON REFINED NN APPROACH

neuron, x̃i (i = 1, 2, . . . , n− l), it is common to add two special inputs;

bias units which always have the unit values. These inputs are used to

evaluate the bias to the hidden neurons and output neurons, respectively.

Let wij ∈ [−1, 1] be the connection weight from i-th input neuron to j-th

hidden neuron, where w0j and w′
0s denote the bias weights for j-th hidden

neuron and s-th output neuron, respectively for the training phase with

i = 0, 1, . . . , n− l, j = 0, 1, . . . , k and s = n− l + 1, n− l + 2, . . . , n. Each

hidden neuron calculates the weighted sum of the input neuron, hj , in the

following equation:

hj =
n−l∑
i=1

x̃ijwij + w0j . (5.6)

Since there is no universal method to determine the number of hidden

neurons, we change k in the pre-experiments and choose an appropriate

value. After calculating hj for each j , we apply a sigmoid function f(hj) =

1/ exp(−hj) as a threshold function in the MIMO. Since hj are summative

and weighted inputs from respective hidden neuron, the s-th output s =

n− l + 1, n− l + 2, . . . , n in the output layer is given by

x̃s =
k∑

j=1

f(hj)w
′
js + w′

0s. (5.7)

Because x̃s are also summative and weighted inputs from respective hidden

neuron in the output layer, the weight w′
js is connected from j-th hidden

neuron to s-th output neuron. The output value of the network in the

training phase, x̃s, is calculated by f(x̃s) = 1/ exp(−x̃s). In the BP

algorithm, the error is propagated from an output layer to a successive

hidden layer by updating the weights, where the error function is defined

by

SSE =

∑n
s=n−l+1(x̃

o
s − x̃s)

2

(l − 1)
(5.8)

with the prediction value x̃s and the teaching signal x̃o
s observed for the

period (tn−l+1, tn].

Next we quickly overview the BP algorithm. It updates the weight param-

eters so as to minimize SSE between the network output values x̃s (s =

5.1. POINT ESTIMATION 91

n − l + 1, n − l + 2, . . . , n) and the teaching signals x̃o
s, where each con-

nection weight is adjusted using the gradient descent according to the

contribution to SSE in Eq. 5.8. The momentum, α, and the learning

rate, η, are controlled to adjust the weights and the convergence speed

in the BP algorithm, respectively. Since these are the most important

turning parameters in the BP algorithm, we carefully examine these pa-

rameters in pre-experiments. Then, the connection weights are updated

in the following:

wij(new) = wij + αwij + ηδhj x̃i

(i = 1, 2, . . . , n− l, j = 1, . . . , k), (5.9)

w′
js(new) = w′

js + αw′
js + ηδx̃sx̃s

(j = 1, 2, . . . , k, s = n− l + 1, . . . , n), (5.10)

where δhj and δx̃s are the output gradient of j-th hidden neuron and the

output gradient in the output layer, and are defined by

δhj = f(hj)(1− f(hj)), (5.11)

δx̃s = x̃s(1− x̃s)(x̃
o
s − x̃s), (5.12)

respectively. Also, the updated bias weights for hidden and output neurons

are respectively given by

w0j(new) = w0j + αw0j + ηδhj , (5.13)

w′
0s(new) = w′

0s + αw′
0s + ηδx̃s. (5.14)

The above procedure is repeated until the desired output is achieved.

5.1.2.3 Last Phase: Long-term prediction

Once the nl weights are estimated with the training data experienced for the

period (tn−l, tn] through the BP algorithm, we need to obtain the remaining

k(n + l) − nl non-estimable weights for prediction. Unfortunately, since these

92 CHAPTER 5. SRP BASED ON REFINED NN APPROACH

Table 5.1: Posteriori optimal software testing time for eight datasets.

t∗0

c2 DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8

2 50 28 33 59 49 64 45 74

3 51 35 37 89 61 73 69 114

4 51 35 44 89 61 73 70 114

5 54 36 44 89 61 73 70 114

6 56 36 44 89 61 73 70 114

7 62 36 44 89 61 73 70 114

8 62 36 44 89 61 73 75 114

9 62 36 44 89 61 73 75 114

10 62 36 44 89 61 73 75 114

cannot be trained with the information at time tn, we need to give these values

by the uniform pseudo random varieties ranged in [−1, 1]. By giving the random

connection weights, the output as the prediction of the cumulative number of

software faults, (x̃n+1, . . . , x̃n+l), are calculated by replacing Eqs.5.6 and 5.7 by

hj(new) =
n∑

i=1

x̃ijwij(new) + w0j(new), (5.15)

x̃n+s =
k∑

j=1

f(hj(new))w
′
js(new) + w′

0s(new), (5.16)

respectively, for i = 1, 2, . . . , n, j = 1, 2, . . . , k and s = 1, 2, . . . , l. Note that

the resulting output is based on one sample by generating the uniform pseudo

random variates only once. In order to obtain the prediction of the expected

cumulative number of software faults, we generate m sets of random variates

and take the arithmetic mean of the m predictions of (x̃n+1, . . . , x̃n+l), where

m = 1, 000 is confirmed to be enough in our preliminary experiments. In other

words, the prediction in the MIMO neural network is reduced to a combination

of the BL learning and a Monte Carlo simulation on the connection weights.

5.2 Optimal Software Testing Policy

5.2. OPTIMAL SOFTWARE TESTING POLICY 93

Figure 5.1: Architecture of back propagation type MIMO.

Suppose that the system test of a software product starts at t = 0 and

terminates at t = t0. Let TL be the software lifetime or the upper limit of the

software warranty period, where the time length (t0, TL] denotes the operational

period of software. When the software fault count data χn = {x1, . . . , xn}

which are the cumulative number of detected faults at time ti (i = 1, 2, . . . , n)

are observed at time tn (0 < tn ≤ t0), the model parameter θ̂ is estimated

with these data in parametric NHPP-based SRGMs. Define the following cost

components:

• c0 (> 0): testing cost per unit system testing time,

• c1 (> 0): debugging cost per fault in system testing phase,

• c2 (> c1): debugging cost per fault in operational phase.

Based on the above cost parameters, the expected total software cost is given

by

C(t0; tn, θ̂) =c0t0 + c1

{
xn + Λ(t0; θ̂)− Λ(tn; θ̂)

}
+ c2

{
Λ(TL; θ̂)− Λ(t0; θ̂)

}
.

(5.17)

Note that Λ(TL; θ̂) is independent of t0 and that Λ(tn; θ̂) = xn from Eq.(4).

When t0 = tn+l, l corresponds to the remaining testing length. Hence, our

94 CHAPTER 5. SRP BASED ON REFINED NN APPROACH

　

Figure 5.2: Configuration of prediction scheme via MIMO.

optimization problem is essentially reduced to

min
tn≤t0≤TL

C(t0;T, θ̂) ⇐⇒ min
tn≤t0≤TL

{
c0t0 − (c2 − c1)Λ(t0; θ̂)

}
⇐⇒ max

tn≤t0≤TL

{
Λ(t0; θ̂)−

c2 − c1
c0

t0

}
. (5.18)

When SRGMs are assumed, the mean value function Λ(t0; θ̂) can be esti-

mated from the underlying data. On the other hand, in the context of neural

computation, the output of MLP in Eq. 5.16 is regarded as an estimate of

Λ(t0; θ̂). Hence, output sequence (x̃n+1, x̃n+2, . . . , x̃n+l) denotes (Λ(tn+1; θ̂),

Λ(tn+2; θ̂), . . . , Λ(tn+l; θ̂)) in the MIMO type MLP. The essentially similar but

somewhat different dual problem was given by Dohi et al. [11]. Consequently,

the optimal testing time t̂0 is equivalent to the point with the maximum vertical

distance between the predicted curve Λ(t0; θ̂) and a straight line (c2−c1)t0/c0 in

the two-dimensional plane. Then, there exists a finite optimal software release

time. In fact, when t̂0 is equal to the observation point tn, then it is optimal

not to continue testing the software product any more. In other words, the

optimization problem considered here is a prediction problem of the function

Λ(t0; θ̂).

5.3. NUMERICAL ILLUSTRATIONS 95

5.3 Numerical Illustrations

We give numerical examples to predict the optimal software release time based

on the nonparametric inference approach, where eight data sets, DS1∼ DS8, are

used for analysis [29]. Table 3.3 in Chapter 3 shows the structure of the datasets

observed in this study. To find out the desired output via the BP algorithm,

we need much computation cost to calculate the gradient descent, where the

initial guess of weights, wij , w
′
js, w0j and w′

0s, are given by the uniform random

variates range [−1,+1], the number of total iterations in the BP algorithm run

is 1,000 and the convergence criteria on the minimum error is 0.001. In our

experiments, it is shown that the search range of the transformation parameter

λ should be [−3,+2].

5.3.1 Predictive Performance

To evaluate the prediction performance of the optimal software testing time via

MIMO type of MLP or SRGM, we define the error criterion in the following

Prediction Error =
∣∣∣ t̂0 − t∗0

t0∗

∣∣∣× 100, (5.19)

where t∗0 is a posteriori optimal testing time and is calculated by finding the

point l (= 0, 1, 2, . . . , q) which maximizes Λ(tn+l; θ̂)− (c2 − c1)tn+l/c0, and q is

satisfies tn+q = TL. This error criterion is used for the predictive performance

given all the data x1, x2, . . . , xn, xn+1, . . . , xn+q. In Table 5.1 with the whole

data (i.e., 100%), we present posteriori optimal testing times for DS1 ∼ DS7,

when c0 = 4 , c1 = 1 and c2 varies in the range of 2 ∼ 10 and for DS8 we change

c0 parameter, i.e c0 = 1 other parameter is same as previous.

5.3.2 Results

Since the cost parameter c2 is not sensitive, so we focus on only two cases;

c2 = 4 and c2 = 9 hereafter. In Tables 5.2 ∼ 5.17 we give the prediction results

on the optimal software testing time for DS1∼ DS8 with c2 = 4 and c2 = 9,

respectively, where the prediction of optimal testing time and its associated

prediction error are calculated at each observation point (50% ∼ 90% point of

the whole data). In these tables, the bold number implies the best prediction

96 CHAPTER 5. SRP BASED ON REFINED NN APPROACH

model than the best SRGM among eleven models and BoxCox shows the best λ.

In the MIMO type of MLP, we compare five data transform methods with the

non-transformed case (Normal) and the best SRGM. In the column of SRGM,

we denote the best SRGMs in terms of predictive performance (in the sense of

minimum average relative error; AE) and estimation performance (in the sense

of minimum Akaike information criterion; AIC) by P and E, respectively, where

AE denotes the capability of the prediction model and is defined by

AEl =

∑l
s=1 REs

l
, (5.20)

where REs is called the relative error for the future time t = n+ s and is given

by

REs =
∣∣∣ x̃o

n+s − x̃n+s

x̃o
n+s

∣∣∣ (s = 1, 2, . . . , l). (5.21)

So we regard the prediction model with smaller AE as a better prediction model.

Figures 5.3 and 5.4 illustrate the behavior of cumulative number of software

faults detected in the testing phase in DS1 and DS2, respectively. In Table 5.2

∼ 5.17, it is seen that our MIMO-based approaches in almost all cases provide

smaller prediction error than the common SRGM when the observation point is

50% ∼ 90% point. On the other hand, in the latter phase of software testing,

i.e., 80% ∼ 90% observation points, SRGMs, such as txvmax and txvmin, offer

less error than the MIMO type of MLP (See Tables 5.4 ∼ 5.7). Even in these

cases, it should be noted the best SRGM with the minimum AIC is not always

equivalent to the best SRGM with the minimum AE. This fact tells that one

cannot know exactly the best SRGM in terms of judgment on when to stop

software testing. Similar to Tables 5.8∼ 5.12, MIMO type of MLP gives the best

timing of software system test in the all (middle and late) testing phase. In this

experiment, it can be seen that the data transform does function well to predict

the optimal software testing time than the non-transform case. In DS6 and DS8

all most all testing phase SRGM offer better result. Furthermore, MIMO with

the non-transform (Normal) gives the best timing of software system test in that

tables (see Tables 5.12 and 5.13, 5.16 and 5.17 respectively). In Table 5.1 we can

see when we the cost parameter c2 increases, the resulting software testing time

5.3. NUMERICAL ILLUSTRATIONS 97

Figure 5.3: DS1.

also increases. Furthermore, it can be seen that relative error gets smaller as

the data increases in the case of 50% ∼90% observation points. This means that

the predictive optimal software release time can be updated by adding software

fault data. Since 80% and 90% observation points have already exceeded the

real optimal release time, the predictive optimal software release time of these

two cases is equivalent to the observation point (see Table 5.16). Therefore, it

can be said that our NN with BoxCox power transformation method works well

to judge when to stop the software testing and release to the software.

98 CHAPTER 5. SRP BASED ON REFINED NN APPROACH

　

Figure 5.4: DS2.

Table 5.2: Prediction results of optimal software testing time with DS1 with
c2 = 4.

50% observation (tn = 31)

MIMO (t̂0)

AT1 AT2 FT BT BoxCox(Best λ) Normal Best SRGM (t̂0)

49 49 49 50 51(0.7) 40 P: pareto, 40 (21.56%)

(3.92%) (3.92%) (3.92%) (1.96%) (0%) (21.56%) E: txvmax, 35 (31.37%)

60% observation (tn = 37)

52 52 51 52 51(1.5) 49 P:lnorm, 47 (7.84%)

(1.96%) (1.96%) (0%) (1.96%) (0%) (3.92%) E: txvmax, 38 (25.49%)

70% observation (tn = 43)

52 52 52 52 52(0.7) 52 P: txvmax, 51 (0%))

(1.96%) (1.96%) (1.96%) (1.96%) (1.96%) (1.96%) E: txvmax, 51 (0%))

80% observation (tn = 50)

52 54 56 57 54(0.6) 54 P: txvmin, 51 (0%))

(1.96%) (5.88%) (9.80%) (11.76%) (5.88%) (5.88%) E: lxvmin, 52 (1.96%)

90% observation (tn = 56)

58 57 57 57 57(1.0) 57 P: txvmax, 61 (19.6%)

(13.72%) (11.76%) (11.76%) (11.76%) (11.76%) (11.76%) E: lxvmin, 61 (19.6%)

5.3. NUMERICAL ILLUSTRATIONS 99

Table 5.3: Prediction results of optimal software testing time for DS1 with
c2 = 9.

50% observation (tn = 31)

MIMO (t̂0)

AT1 AT2 FT BT BoxCox(Best λ) Normal Best SRGM (t̂0)

51 51 51 51 51 (0.2) 51 P: pareto, 40 (35.48%)

(17.74%)) (17.74%) (17.74)% (17.74%)) (17.74%)) (17.74)%) E: txvmax, 35 (43.83%)

60% observation (tn = 37)

57 56 57 57 57(1.0) 56 P: lnorm, 47 (24.19%)

(8.06%)) (9.67%) (8.06%)) (8.06%)) (8.06%)) (9.67%) E: txvmax, 38 (38.71%)

70% observation (tn = 43)

58 56 58 58 61(0.4) 58 P: txvmax, 51 (17.74%)

(6.45%) (9.67%) (6.45%) (6.45%) (1.61%) (6.45%) E: txvmax, 51 (17.74%)

80% observation (tn = 50)

60 56 60 60 61(1.3) 60 P:txvmin, 61 (1.61%))

(3.22%) (9.67%) (3.22%) (3.22%) (1.61%)) (3.22%) E: lxvmin, 52 (16.13%)

90% observation (tn = 56)

61 61 61 61 61(0.7) 61 P: txvmax, 61 (1.61%)

(1.61%)) (1.61%)) (1.61%) (1.61%)) (1.61%)) ((1.61%)) E: lxvmin, 57 (8.06%)

Table 5.4: Prediction of optimal software release time for DS2 with c2 = 4.

50% observation (tn = 21)

MIMO (t̂0)

AT1 AT2 FT BT BoxCox(Best λ) Normal Best SRGM (t̂0)

32 26 35 32 32(0.5) 30 P: lxvmax, 26 (25.71%)

(8.57%) (25.71%) (0%) (8.57%) (8.57%) (14.28%) E: lxvmin, 22 (37.14%)

60% observation (tn = 25)

34 35 35 35 35(1.7) 30 P:tlogist 30 (14.28%)

(2.85%) (0%)) (0%)) (0%)) (0%)) (14.28) E: lxvmin, 27 (22.85%)

70% observation (tn = 29)

38 38 38 38 35(1.0) 34 P:lxvmin, 35 (0%))

(8.57%) (8.57%) (8.57%) (8.57%) (0%) (2.85%) E: lxvmin, 35 (0%)

80% observation (tn = 33)

39 39 38 38 35(0.8) 38 P:lxvmin, 35 (0%)

(11.42%) (11.42%) (8.57%) (8.57%) (0%) (8.57%) E: lxvmin, 35 (0%)

90% observation (tn = 37)

41 40 40 39 37(1.2) 41 P: txvmax, 37 (5.71%)

(17.14%) (14.28%) (14.28%) (11.42%) (5.71%) (17.14%) E: lxvmin, 39 (11.42%)

100 CHAPTER 5. SRP BASED ON REFINED NN APPROACH

Table 5.5: Prediction of optimal software release time for DS2 with c2 = 9.

50% observation (tn = 21)

MIMO (t̂0)

AT1 AT2 FT BT BoxCox(Best λ) Normal Best SRGM (t̂0)

34 34 35 35 26(1.2) 35 P: lxvmax, 26 (27.87%)

(5.55%) (5.55%) (2.77)% (2.77)% (27.87%) (2.77)% E: lxvmin, 22 (38.89%)

60% observation (tn = 25)

35 35 35 35 36(0.3) 38 P: tlogist, 30 (16.67%)

(2.77%) (2.77%) (2.77%) (2.77%) (0%) (5.55%) E: lxvmin, 27 (25%)

70% observation (tn = 29)

36 36 38 38 38(1.0) 41 P: lxvmin, 35 (2.77%)

(0%) (0%) (5.55%) (5.55%) (5.55%) (13.89%) E: lxvmin, 35 (2.77%)

80% observation (tn = 33)

41 41 41 41 38(1.0) 41 P: lxvmin, 35 (2.77)%)

(13.89%) (13.89%) (13.89%) (13.89%) (5.55%) (13.89%) E: lxvmin, 35 (2.77%))

90% observation (tn = 37)

41 41 41 41 41(0.1) 41 P: txvmax, 37 (2.77)%)

(13.89%) (13.89%) (13.89%) (13.89%) (13.89%) (13.89%) E: lxvmin, 39 (8.33%)

Table 5.6: Prediction results of optimal software testing time with DS3 with
c2 = 4.

50% observation (tn = 23)

MIMO (t̂0)

AT1 AT2 FT BT BoxCox(Best λ) Normal Best SRGM (t̂0)

39 40 43 42 43(1.0) 40 P: exp, 42 (4.54%)

(11.36%) (9.09%) (2.27%) (4.54%) (2.27%) (9.09%) E: lnorm, 40 (9.09%)

60% observation (tn = 28)

39 40 44 42 43(2.0) 40 P: pareto, 46 (4.54%)

(11.36%) (9.09%) (0%) (4.54%) (2.27%) (9.09%) E: lnorm, 46 (4.54%)

70% observation (tn = 32)

39 40 44 42 43(-2.7) 40 P: txvmax, 44 (0%)

(11.36%) (9.09%) (0%) (4.54%) (2.27%) (9.09%) E: gamma, 39 (11.36%)

80% observation (tn = 37)

39 40 44 43 43(1.0) 40 P: exp, 44 (0%)

(11.36%) (9.09%) (0%) (2.27%) (2.27%) (9.09%) E: lxvmin, 42 (5.54%)

90% observation (tn = 41)

46 45 45 45 44(1.3) 42 P: txvmax, 44 (0%)

(4.54%) (2.27%) (2.27%) (2.27%) (0%) (4.54%) E: lxvmin, 44(0%)

5.3. NUMERICAL ILLUSTRATIONS 101

Table 5.7: Prediction results of optimal software testing time with DS3 with
c2 = 9.

50% observation (tn = 23)

MIMO (t̂0)

AT1 AT2 FT BT BoxCox(Best λ) Normal Best SRGM (t̂0)

42 42 44 44 44(1.8) 40 P: exp, 44 (0%)

(4.54%) (4.54%) (0%) (0%) (0%) (9.09%) E: lnorm, 40 (9.09%)

60% observation (tn = 28)

42 39 40 41 42(1.0) 39 P: pareto, 46 (4.54%)

(4.54%) (11.36%) (9.09%) (6.82%) (4.54%) (11.36%) E: lnorm, 46 (4.54%)

70% observation (tn = 32)

39 40 44 42 43(0.9) 40 P: txvmax, 44 (0%)

(11.36%) (9.09%) (0%) (4.54%) (2.27%) (9.09%) E: gamma, 39 (11.36%)

80% observation (tn = 37)

39 40 44 43 43(1.0) 40 P: exp, 44 (0%)

(11.36%) (9.09%) (0%) (2.27%) (2.27%) (9.09%) E: lxvmin, 42 (5.54%)

90% observation (tn = 41)

46 45 45 45 44(2.0) 42 P: txvmax, 44 (0%)

(4.54%) (2.27%) (2.27%) (2.27%) (0%) (4.54%) E: lxvmin, 44 (0%)

Table 5.8: Prediction results of optimal software testing time with DS4 with
c2 = 4.

50% observation (tn = 55)

MIMO (t̂0)

AT1 AT2 FT BT BoxCox(Best λ) Normal Best SRGM (t̂0)

77 67 84 89 87(1.4) 64 P: exp, 77 (13.48%)

(13.48%) (24.72%) (5.62%) (0%) (2.24%) (28.09%) E: lxvmin, 109 (22.47%)

60% observation (tn = 64)

87 87 84 89 86(1.6) 69 P: txvmax, 65 (4.54%)

(2.24%) (2.24%) (9.09%) (0%) (4.54%) (11.36%) E: lxvmin, 109 (22.47%)

70% observation (tn = 76)

87 87 89 89 87(0.9) 69 P: txvmax, 77 (13.48%)

(2.24%) (2.24%) (0%) (0%) (2.24%) (11.36%) E: lxvmin, 109 (22.47%)

80% observation (tn = 87)

89 87 87 87 87(0.9) 109 P: lxvmax, 88(1.12%)

(0%) (2.24%) (2.24%) (2.24%) (2.24%) (2.47%) E: exp,109 (22.47%)

90% observation (tn = 98)

109 109 109 98 98(1.5) 109 P: lxvmax, 99(11.23%)

(22.47%) (22.47%) (22.47%) (10.11%) (10.11%) (22.47%) E: lxvmin, 109 (22.47%)

102 CHAPTER 5. SRP BASED ON REFINED NN APPROACH

Table 5.9: Prediction results of optimal software testing time with DS4 with
c2 = 9.

50% observation (tn = 55)

MIMO (t̂0)

AT1 AT2 FT BT BoxCox(Best λ) Normal Best SRGM (t̂0)

87 80 85 89 89(0.8) 70 P: exp, 77 (13.48%)

(13.48%) (24.72%) (5.62%) (0%) (0%) (28.09%) E: lxvmin, 109 (13.48%)

60% observation (tn = 64)

87 86 85 89 88(0.7) 109 P: txvmax, 65 (26.96.%)

(2.24%) (3.37%) (9.09%) (0%) (1.12%) (11.36%) E: lxvmin, 109 (13.48%)

70% observation (tn = 76)

87 87 89 89 87(0.9) 109 P: lxvmax, 77 (13.48%)

(2.24%) (2.24%) (0%) (0%) (2.24%) (13.48%) E: lxvmin, 109 (13.48%)

80% observation (tn = 87)

109 88 89 87 89(1.0) 109 P: lxvmax, 88 (1.12%)

(22.47%) (1.12%) (0%) (2.24%) (2.24%) (13.48%)) E: exp, 109 (22.47%)

90% observation (tn = 98)

109 109 109 98 98(1.5) 109 P: lxvmax, 99 (11.23%)

(22.47%) (22.47%) (22.47%) (10.11%) (10.11%) (22.47%) E: lxvmin, 109 (13.48%)

Table 5.10: Prediction results of optimal software testing time with DS5 with
c2 = 4.

50% observation (tn = 56)

MIMO (t̂0)

AT1 AT2 FT BT BoxCox(Best λ) Normal Best SRGM (t̂0)

56 56 57 57 56(1.8) 56 P: gamma, 111 (81.96%)

(8.20%) (8.20%) (6.55%) (6.55%) (8.20%) (8.20%) E: gamma, 111 (81.96%)

60% observation (tn = 67)

68 68 67 67 69(0.3) 111 P: txvmax, 68 (11.47%)

(11.47%) (11.47%) (9.83%) (9.83%) (13.11%) (81.96%) E: gamma, 111 (81.96%)

70% observation (tn = 78)

84 84 80 78 79(0.9) 111 P: lxvmax, 79 (29.51%)

(37.70%) (37.70%) (31.14%) (27.87%) (29.51%) (81.96%) E: gamma, 111 (81.96%)

80% observation (tn = 89)

111 111 89 111 111(1.6) 111 P: txvmax, 90 (47.54%)

(81.96%) (81.96%) (45.90%) (81.96%) (81.96%) (81.96%) E: gamma, 111 (81.96%)

90% observation (tn = 100)

111 111 111 111 111(1.5) 111 P: txvmax, 101 (65.57%)

(81.96%) (81.96%) (81.96%) (81.96%) (81.96%) (81.96%) E: gamma, 111 (81.96%)

5.3. NUMERICAL ILLUSTRATIONS 103

Table 5.11: Prediction results of optimal software testing time with DS5 with
c2 = 9.

50% observation (tn = 56)

MIMO (t̂0)

AT1 AT2 FT BT BoxCox(Best λ) Normal Best SRGM (t̂0)

61 68 60 67 65(1.2) 70 P: gamma, 111 (81.96%)

(8.20%) (8.20%) (6.55%) (6.55%) (8.20%) (8.20%) E: gamma, 111 (81.96%)

60% observation (tn = 67)

80 80 61 67 70(0.3) 111 P: txvmax, 68 (11.47%)

(11.47%) (11.47%) (9.83%) (9.83%) (13.11%) (81.96%) E: gamma, 111 (81.96%)

70% observation (tn = 78)

84 84 80 78 79(0.9) 111 P: txvmax, 79 (29.51%)

(37.70%) (37.70%) (31.14%) (27.87%) (29.51%) (81.96%) E: gamma, 111 (81.96%)

80% observation (tn = 89)

111 111 89 111 111(1.6) 111 P: txvmax, 90 (47.54%)

(81.96%) (81.96%) (45.90%) (81.96%) (81.96%) (81.96%) E: gamma, 111 (81.96%)

90% observation (tn = 100)

111 111 111 111 111(1.5) 111 P: txvmax, 101 (65.57%)

(81.96%) (81.96%) (81.96%) (81.96%) (81.96%) (81.96%) E: gamma, 111 (81.96%)

Table 5.12: Prediction results of optimal software testing time with DS6 with
c2 = 4.

50% observation (tn = 37)

MIMO (t̂0)

AT1 AT2 FT BT BoxCox(Best λ) Normal Best SRGM (t̂0)

63 56 50 65 69(1.2) 40 P: gamma, 73 (0%)

(13.70%) (23.28%) (31.50%) (10.96%) (5.48%) (45.20%) E :gamma, 73 (0%)

60% observation (tn = 44)

65 60 70 69 70(1.7) 41 P: gamma, 73 (0%)

(31.50%) (11.47%) (4.11%) (5.48%) (13.11%) (81.96%) E: gamma, 73 (0%)

70% observation (tn = 51)

69 65 71 69 73(-2.9) 65 P: txvmax, 52 (29.51%)

(5.48%) (31.50%) (2.74%) (5.48%) (0%) (31.50%) E:gamma, 73 (0%)

80% observation (tn = 58)

73 65 71 73 73(1.9) 65 P: txvmax, 59 (47.54%)

(0%) (31.50%) (2.74%) (0%) (0%) (31.50%) E: gamma, 73 (0%)

90% observation (tn = 66)

73 65 71 73 73(-0.5) 73 P: lxvmax, 73 (0%)

(0%) (31.50%) (2.74%) (0%) (0%) (0%) E: gamma, 73 (0%)

104 CHAPTER 5. SRP BASED ON REFINED NN APPROACH

Table 5.13: Prediction results of optimal software testing time with DS6 with
c2 = 9.

50% observation (tn = 37)

MIMO (t̂0)

AT1 AT2 FT BT BoxCox(Best λ) Normal Best SRGM (t̂0)

69 69 69 73 69(0.3) 56 P: gamma, 73 (0%)

(5.48%) (5.48%) (5.48%) (0%) (5.48%) (23.28%) E: gamma, 73 (0%)

60% observation (tn = 44)

70 70 70 73 70(-1.1) 65 P: gamma, 73 (0%)

(4.11%) (4.11%) (4.11%) (0%) (13.11%) (81.96%) E: gamma, 73 (0%)

70% observation (tn = 51)

70 70 71 73 73(-2.9) 65 P: txvmax, 52 (29.51%)

(4.11%) (4.11%) (2.74%) (0%) (0%) (31.50%) E:gamma, 73 (0%)

80% observation (tn = 58)

73 70 71 73 73(1.9) 65 P: txvmax, 59 (47.54%)

(0%) (4.11%) (2.74%) (0%) (0%) (31.50%) E: gamma, 73 (0%)

90% observation (tn = 66)

73 71 71 73 73(-0.5) 73 P: lxvmax, 73 (0%)

(0%) (2.74%) (2.74%) (0%) (0%) (0%) E: gamma, 73 (0%)

Table 5.14: Prediction results of optimal software testing time with DS7 with
c2 = 4.

50% observation (tn = 41)

MIMO (t̂0)

AT1 AT2 FT BT BoxCox(Best λ) Normal Best SRGM (t̂0)

42 46 49 50 46(1.9) 42 P: txvmax, 42 (40%)

(40%) (34.28%) (30%) (28.57%) (34.28%) (40%) E:lxvmin, 81 (15.71%)

60% observation (tn = 49)

56 56 65 55 65(0.3) 59 P: txvmax, 50 (28.57%)

(20%) (20%) (7.14%) (21.43%) (7.14%) (15.71%) E: lxvmin, 81 (15.71%)

70% observation (tn = 57)

69 58 71 59 59(0.9) 68 P: txvmax, 58 (17.14%)

(1.43%) (4.11%) (1.43%) (15.71%) (15.71%) (2.85%) E: lxvmin, 81 (15.71%)

80% observation (tn = 65)

69 69 71 71 73(1.9) 71 P: txvmax, 66 (6.06%)

(1.43%) (1.43%) (1.43%) ((1.43%) (4.28%) (1.43%) E: llogist, 73 (4.23%)

90% observation (tn = 73)

73 73 73 73 73(-0.5) 73 P: txvmax, 73 (4.23%)

(4.23%) (4.23%) (4.23%) (4.23%) (4.23%) (4.23%) E: gamma, 73 (4.23%)

5.3. NUMERICAL ILLUSTRATIONS 105

Table 5.15: Prediction results of optimal software testing time with DS7 with
c2 = 9.

50% observation (tn = 41)

MIMO (t̂0)

AT1 AT2 FT BT BoxCox(Best λ) Normal Best SRGM (t̂0)

49 49 52 65 56(1.0) 81 P: txvmax, 42 (44%)

(34.66%) (34.66%) (30.66%) (13.33%) (25.33%) (8%) E:lxvmin, 81 (8%)

60% observation (tn = 49)

65 65 65 70 70(-0.9) 81 P: txvmax, 50 (33.33%)

(13.33%) (13.33%) (13.33%) (3.75%) (3.75%) (8%) E: lxvmin, 81 (8%)

70% observation (tn = 57)

73 71 71 73 71(1.6) 81 P: txvmax, 58 (22.67%)

(2.67%) (5.33%) (5.33%) (2.67%) (5.33%) (8%) E: lxvmin, 81 (8%)

80% observation (tn = 65)

73 71 71 73 71(0.8) 81 P: txvmax, 66(12%)

(2.67%) (5.33%) (5.33%) (2.67%) (5.33%) (8%) E: llogist, 73 (2.67%)

90% observation (tn = 73)

73 73 73 75 73(-0.5) 81 P: txvmax, 73 (2.67%))

(2.67%) (2.67%) (2.67%) (0%) (2.67%) (8%) E: gamma, 73 (2.67%)

Table 5.16: Prediction results of optimal software testing time with DS8 with
c2 = 4.

50% observation (tn = 57)

MIMO (t̂0)

AT1 AT2 FT BT BoxCox(Best λ) Normal Best SRGM (t̂0)

65 65 65 65 76(1.2) 114 P: lxvmax, 114(0%)

(42.98%) (42.98%) (42.98%) (42.98%) (33.33%) (0%) E: gamma, 114 (0%)

60% observation (tn = 68)

70 74 80 68 69(-0.9) 114 P: lxvmax, 114 (0%)

(38.60%) (38.60%) (29.82%) (40.35%) (39.47%) (0%) E: lxvmin, 114 (0%)

70% observation (tn = 80)

80 80 80 80 91(1.0) 114 P: txvmax, 114 (0%)

(29.82%) (29.82%) (29.82%) (29.82%) (20.17%) (0%) E: lxvmin, 114 (0%)

80% observation (tn = 91)

114 114 91 91 91(-0.6) 114 P: lxvmax, 114(0%)

(0%) (0%) (20.17%) (20.17%) (20.17%) (0%) E: lxvmin, 114 (0%)

90% observation (tn = 103)

114 114 114 103 103(-0.5) 114 P: tlogist, 114 (0%))

(0%) (0%) (0%) (9.65%) (9.65%) (0%) E: lxvmin, 114 (0%)

106 CHAPTER 5. SRP BASED ON REFINED NN APPROACH

Table 5.17: Prediction results of optimal software testing time with DS8 with
c2 = 9.

50% observation (tn = 57)

MIMO (t̂0)

AT1 AT2 FT BT BoxCox(Best λ) Normal Best SRGM (t̂0)

80 76 65 80 91(1.2) 114 P: lxvmax, 114 (0%)

(29.82%) (33.33%) (42.98%) (29.82%) (20.17%) (0%) E: gamma, 114 (0%)

60% observation (tn = 68)

80 68 74 91 103(-0.9) 114 P: lxvmax, 114 (0%)

(29.82%) (40.35%) (38.60%) (20.17%) (9.65%) (0%) E: lxvmin, 114 (0%)

70% observation (tn = 80)

80 80 80 91 114(1.0) 114 P: txvmax, 114 (0%)

(29.82%) (29.82%) (29.82%) (20.17%) (0%) (0%) E: lxvmin, 114 (0%)

80% observation (tn = 91)

114 114 91 91 114(-0.6) 114 P: lxvmax, 114(0%)

(0%) (0%) (20.17%) (20.17%) (0%) (0%) E: lxvmin, 114 (0%)

90% observation (tn = 103)

114 114 114 103 114(-0.5) 114 P: tlogist, 114 (0%)

(0%) (0%) (0%) (9.65%) (0%) (0%) E: lxvmin, 114 (0%)

Chapter 6

Conclusions

6.1 Summary and Remarks

In Chapter 2, we consider on a prediction problem with the common multi-

player perceptron neural network of the cumulative number of software faults

in sequential software testing. We apply the well-known back propagation al-

gorithm for feed forward neural network architectures. To predict the number

of software faults, we impose a plausible assumption that the underlying fault-

detection process obeys the Poisson law with unknown parameters. Since it

is appropriate to input the training data as real number in the conventional

MLP neural network, we propose to apply three data transformation methods

from the Poisson count data to the Gaussian data: Bartlett transform (BT) [5],

Anscombe transform (AT1) [4] and Fisz transform (FT) [12] of the cumulative

number of software faults in one-stage look ahead prediction. To keep relatively

small errors on software fault prediction, it is very important to train the neural

network. The minimal error reflects better stability, and higher error reflects

worst stability. We experiment with different numbers of hidden neurons and

number of input neurons for all datasets.

In Chapter 3, we have considered the long-term prediction of the number

of software faults, and propose a refined neural network approach with the

grouped data, where the multi-stage look-ahead prediction is carried out with a

simple MLP neural network with multiple outputs. Under the assumption that

the software fault count data follows a Poisson process with an unknown mean

value function, we transform the underlying Poisson count data to the Gaussian

107

108 CHAPTER 6. CONCLUSIONS

data via five data transformation methods. In here, we also conducted a Monte

Carlo simulation for the single time data. We generate the original failure

time data X∗
k,i for i = 1, 2, . . . , n, at k-th simulation as the pseudo random

variables, by the thinning algorithm [30]. Consider the case where the failure

time distribution F (t) and the intensity function λ(t) are completely unknown.

Then, it can be shown that X∗
k,1, X∗

k,2, · · · (k = 1, 2, . . . ,m) follows an NHPP

with intensity function λ(t),Where (m = 1000), after that we make grouped

data from time data. That is, it is assumed that n failures occur by time t

and the realizations of Ti (i = 1, 2, . . . , n), say, ti are observed, where tn ≤ t.

We regard the pair (ti, xi) (i = 1, 2, . . . , n) as a software count data of the

underlying NHPP. From 1000 samples, we select 4 types of datasets (1) Fitted

(2) Underfitted (3) Overfitted and (4) S-shaped.

Throughout numerical experiments with eight real software fault data and

four simulation datasets, we compare our neural network approach with the

existing software reliability growth models based on an nonhomogeneous Poisson

process, in terms of predictive performance with an average relative error. It is

shown that our neural network approach with BT affords a more appropriate

point estimation and tends to have an enhanced performance from the viewpoint

of predictability in the early phase of software testing.

In Chapter 4, we have proposed one prediction interval method, which were

simulation-based approach. We have also applied the popular method for finding

approximations based on Taylor series expansions delta method for two cases

which were one-stage look-ahead and multi-stage look-ahead. Basically it is used

the nonlinear regression. Furthermore, we have calculated the higher moments

and two-sided prediction intervals, as well as the PICP, MPIW and PINAW.

We have also investigated several statistical properties with respect to various

estimators through simulation experiments and real data analysis. It could

be confirmed that the point estimate was included between the 95% two-sided

prediction intervals from the results of simulation experiment. On the other

hand, we have shown that the user could utilize the useful information in order

to determine the feature software fault by using the proposed neural network

methods in real example. In Chapter 5, we have formulated an innovative

technique to evaluate the optimal software release time using a neural network.

6.2. FUTURE WORKS 109

In our approach, a three-layer perceptron neural network with multiple outputs

is used, where the underlying software fault count data are transformed into the

Gaussian data by means of the well-known five data transformation method.

Then the prediction of the optimal software testing time, which minimizes the

expected software cost is carried out using the neural network. We have given

illustrative examples with eight real software fault data, where we compare our

approach with conventional NHPP -based SRGMs.

6.2 Future Works

For the same multi-stage look-ahead point estimation in Chapter 3, we will in-

vestigate the dependence of the hidden neuron and input neuron for refined NN

architecture. For instance, any adaptive approach to estimate optimal hidden

and input neuron will be useful to improve the estimation accuracy. We will also

apply the present techniques to the other problems. For instance, probabilistic

neural network (PNN) [68] is another challenging issue because the fast train-

ing process than back propagation and guaranteed to converge to an optimal

classifier in the estimation framework.

For the prediction interval in Chapter 4, we will focus on the interval esti-

mation of other software reliability measures (see [65],[64]). For this purpose,

we intend to apply the bootstrap method, which is a representative statistical

approach to replicate the original software fault data (e.g. see [62]).

Also, we will investigate various deep learning [66] architectures such as deep

neural networks, convolutional deep neural networks, deep belief networks and

recurrent neural networks for long-term prediction with the software fault count

data.

Appendix A

AE result for four DS1 ∼
DS4 data sets

Suppose that the observation point is given by the n-th testing day, tn. In this

case, (n− l) software fault counts data are used for training the MIMO neural

network. The capability of the prediction model is measured by the average

relative error (AE),

AEl =

∑l
s=1 REs

l
, (A.1)

where REs is called the relative error for the future time t = n+ s and is given

by

REs =

∣∣∣∣ (x̃o
n+s − x̃n+s)

x̃o
n+s

∣∣∣∣ (s = 1, 2, . . . , l). (A.2)

So we regard the prediction model with smaller AE as a better prediction model.

In appendix A Tables A.1∼A.16 summarize the results on AE for the un-

derlying data set DS1∼ DS4 at 50% ∼ 90% observation points of the whole

data for the prediction length l=5, 10, 15, and 20 days, where the bold number

implies the best prediction model in the same category. For instance, Table A.1

gives the prediction results on the cumulative number of software faults for 5

days prediction at respective observation points, when the number of hidden

neurons changes from k = 10 to 50. In the MIMO neural network, we com-

pare five data transform methods (AT1, AT2, FT, BT, and BoxCox) with the

non-transformed case (Normal) and the best SRGM. In the column of SRGM,

we denote the best SRGMs in terms of predictive performance (in the sense of

111

112 APPENDIX A. AE RESULT FOR FOUR DS1 ∼ DS4 DATA SETS

minimum AE) and estimation performance (in the sense of minimum AIC) by

P and E, respectively.

It is seen that our MIMO-based approaches in almost all k provide smaller

AEs than the common SRGM when the observation point is 50% point. In both

60% and 70% observation points, the best prediction models are MIMO (FT

and BoxCox) with k = 40, respectively. On the other hand, in the latter phase

of software testing, i.e., 80% ∼ 90% observation points, SRGMs, such as txvmin

and txvmax and txvmax, offer less AEs than the MIMO neural networks. Even

in these cases, it should be noted the best SRGM with the minimum AIC is not

always equivalent to the best SRGM with the minimum AE. This fact tells that

one cannot know exactly the best SRGM in terms of predictive performance

in advance. However, in almost all cases, it is seen that the data transform

can work well to give more accurate prediction results in the MIMO neural

networks. Especially, MIMO with BoxCox and AT2 tends to give the better

prediction result as the prediction length becomes longer for DS1.

Tables A.5∼A.8 present the prediction results on AE for DS2. Similar to

DS1, the MIMO neural networks can predict the cumulative number of software

faults in the early testing phase, say, 50%–60% observation point, better than

SRGMs. In this data, FT give the better prediction results. Focusing on the

number of hidden neurons in the MIMO neural networks, we expected first that

the larger k leads to the better predictive performance (See A.6–A.8). The

prediction results on AE for DS3 and DS4 summarize in Tables A.9–A.16. In

this case, comparing the data transform methods with SRGMs, we can find

txvmax and lxvmax provide the best prediction result in 60%–90% in Table

A.13, In the MIMO neural network approach, it is essential to determine a

feasible k value because the number of hidden neurons results in the expensive

computation cost with different prediction length l.

A.1. DS1 113

A.1 DS1

A.2 DS2

A.3 DS3

A.4 DS4

114 APPENDIX A. AE RESULT FOR FOUR DS1 ∼ DS4 DATA SETS

Table A.1: Comparison of average relative errors for five days prediction with
DS1 (l = 5).

50% observation (tn = 31)

MIMO SRGM

k AT1 AT2 FT BT BoxCox (Best λ) Normal Best Model

10 0.118 0.096 0.161 0.126 0.157(-0.5) 0.224

20 0.176 0.089 0.346 0.308 0.115(1.8) 0.137 P: pareto

30 0.121 0.071 0.096 0.462 0.028(0.7) 1.078 (1.280)

40 0.092 0.164 0.042 0.856 0.294(1.9) 0.136 E:txvmax

50 0.076 0.292 0.077 0.060 0.435(1.3) 0.078 (2.286)

60% observation (tn = 37)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.035 0.485 0.028 0.045 0.052(0.2) 0.056

20 0.026 0.384 0.073 0.021 0.116(1.6) 0.038 P:lnorm

30 0.183 0.021 0.127 0.131 0.072(1.1) 0.043 (0.023)

40 0.099 0.038 0.016 0.078 0.126(0.8) 0.029 E:txvmax

50 0.046 0.590 0.097 0.024 0.099(-0.3) 0.018 (0.764)

70% observation (tn = 43)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.136 0.053 0.257 1.094 0.245(0.245) 0.268

20 0.166 0.479 0.078 0.119 0.151(0.3) 0.172 P:txvmax

30 0.416 0.138 0.429 0.083 1.105(1.3) 0.083 (0.017)

40 0.173 0.428 0.065 0.043 0.016(0.8) 0.098 E:txvmax

50 0.076 0.041 0.048 0.031 0.122(0.9) 0.056 (0.017)

80% observation (tn = 50)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.313 0.421 0.037 0.066 0.031(1.7) 0.017

20 0.156 0.048 0.138 0.043 0.044(-0.4) 0.059 P:txvmin

30 0.167 0.035 0.164 0.042 0.019(0.2) 0.027 (0.007)

40 0.076 0.253 0.063 0.032 0.029(0.9) 0.018 E:lxvmin

50 0.013 0.058 0.029 0.048 0.119(0.8) 0.127 (0.022)

90% observation (tn = 56)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.237 0.157 0.032 0.319 0.145(0.4) 0.291

20 0.205 0.037 0.147 0.196 0.068(1.0) 0.043 P:txvmax

30 0.457 0.056 0.028 0.152 0.184(0.6) 0.186 (0.020)

40 1.325 0.116 0.067 0.359 0.023(1.7) 0.034 E:lxvmin

50 0.076 0.287 0.052 0.026 0.134(1.3) 0.161 (0.030)

A.4. DS4 115

Table A.2: Comparison of average relative errors for ten days prediction with
DS1 (l = 10).

60% observation (tn = 31)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 1.573 0.056 1.757 0.412 0.051(1.0) 0.958

20 2.144 0.141 1.242 0.166 0.166(0.0) 0.479 P:lxvmin

30 0.767 0.035 0.862 1.241 0.341(0.6) 0.841 (1.120)

40 0.508 0.199 0.762 0.928 0.069(0.6) 0.057 E:txvmax

50 0.539 0.058 0.603 0.791 0.479(1.3) 1.023 (3.480)

60% observation (tn = 37)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.938 0.118 1.645 1.098 0.043(0.7) 1.087

20 1.130 0.032 0.946 1.048 0.946(-1.0) 1.106 P:tlogist

30 1.022 0.155 0.534 1.715 0.537(1.0) 1.746 (0.025)

40 1.537 0.138 0.043 0.947 0.035(1.6) 0.850 E:txvmax

50 0.035 0.029 0.785 0.047 0.623(1.1) 0.513 (1.287)

70% observation (tn = 43)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 1.069 0.177 2.062 1.043 0.088(2.0) 1.088

20 0.137 0.064 1.723 1.066 0.219(1.0) 0.079 P:txvmax

30 1.062 0.107 1.647 0.549 0.265(1.4) 0.871 (0.077)

40 1.081 0.046 1.104 1.070 0.359(0.9) 1.058 E:txvmax

50 0.096 0.553 0.087 0.057 0.106(1.2) 1.099 (0.077)

80% observation (tn = 50)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 1.031 0.255 1.058 1.026 0.183(-2.0) 0.382

20 0.897 0.457 0.658 1.074 0.058(1.0) 3.039 P:lxvmax

30 0.541 0.069 1.035 2.452 0.452(1.5) 1.052 (0.018)

40 0.100 0.547 0.126 0.135 0.198(1.9) 0.907 E:lxvmin

50 0.067 0.079 1.048 0.269 0.339(1.2) 0.839 (0.056)

116 APPENDIX A. AE RESULT FOR FOUR DS1 ∼ DS4 DATA SETS

Table A.3: Comparison of average relative errors for fifteen days prediction with
DS1 (l = 15).

50% observation (tn = 31)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.341 0.281 1.039 1.319 0.056(-1.4) 0.348

20 1.713 0.039 1.716 1.034 0.339(0.3) 1.728 P:lxvmin

30 0.296 0.346 0.846 0.198 0.087(1.2) 1.298 (1.550)

40 0.082 0.050 1.234 1.220 0.641(-1.1) 1.461 E:txvmax

50 1.062 0.860 1.329 0.775 0.331(0.2) 1.073 (4.981)

60% observation (tn = 37)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 1.538 0.037 1.040 1.094 0.041(-1.0) 1.028

20 0.480 0.141 1.036 1.355 0.279(1.0) 1.047 P:tlogist

30 1.079 0.191 1.049 0.989 0.198(0.7) 2.076 (0.042)

40 0.637 0.165 1.159 1.046 0.792(0.6) 1.037 E:txvmax

50 0.038 0.217 0.044 0.047 0.427(0.5) 0.076 (0.049)

70% observation (tn = 43)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 1.439 0.049 1.076 1.055 0.524(0.6) 1.024

20 1.226 0.038 0.078 1.061 0.187(1.0) 0.087 P:txvmax

30 1.047 0.059 1.269 0.053 0.151(-1.8) 0.519 (0.028)

40 1.058 0.582 1.152 0.647 0.719(0.8) 1.129 E:txvmax

50 0.056 0.157 0.046 0.049 0.137(0.7) 0.072 (0.028)

A.4. DS4 117

Table A.4: Comparison of average relative errors for twenty days prediction
with DS1 (l = 20).

50% observation (tn = 31)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 1.362 0.277 0.491 1.231 0.018(-0.6) 1.240

20 0.319 0.146 1.318 0.909 0.169(0.0) 0.390 P:lxvmin

30 0.800 0.168 0.516 0.655 0.421(0.6) 0.634 (1.088)

40 1.124 0.267 1.384 1.216 0.293(0.2) 3.226 E:txvmax

50 2.300 0.120 0.526 0.864 0.591(-1.1) 0.451 (6.103)

60% observation (tn = 37)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 1.071 0.119 2.210 0.136 0.071(-2.0) 0.524

20 1.124 0.015 1.142 0.503 0.241(1.3) 2.072 P:llogist

30 0.076 0.125 0.240 0.506 0.034(-0.7) 0.630 (0.033)

40 0.159 0.455 0.199 0.120 0.641(0.8) 2.041 E:txvmax

50 0.049 0.199 0.090 0.057 0.056(2.0) 0.379 (0.042)

118 APPENDIX A. AE RESULT FOR FOUR DS1 ∼ DS4 DATA SETS

Table A.5: Comparison of average relative errors for five days prediction with
DS2 (l = 5).

50% observation (tn = 21)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.269 0.173 0.011 0.293 0.055(0.4) 0.073

20 0.079 0.078 0.456 1.251 0.046(1.3) 1.207 P:lxvmax

30 1.162 0.041 0.196 0.489 0.555(1.1) 0.341 (0.211)

40 1.059 0.154 1.041 0.264 0.279(1.7) 0.253 E:lxvmin

50 0.046 0.281 1.415 0.086 0.180(-0.9) 0.165 (2.011)

60% observation (tn = 25)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.138 0.177 1.026 0.047 0.472(1.0) 1.174

20 0.222 0.101 0.013 0.021 0.058(0.0) 0.152 P:tlogist

30 0.318 0.148 1.125 0.059 0.657(1.0) 0.173 (0.039)

40 1.099 0.171 1.041 0.035 0.531(1.9) 0.332 E:lxvmin

50 0.026 0.158 0.071 0.024 0.374(0.4) 1.015 (0.075)

70% observation (tn = 29)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 1.133 0.044 2.028 0.814 0.476(0.6) 1.159

20 0.027 0.104 1.029 1.019 0.380(0.0) 0.466 P:lxvmin

30 0.078 0.072 1.032 1.026 0.899(-0.7) 0.395 (0.021)

40 0.091 0.211 1.107 0.120 0.206(00.9) 1.055 E:lxvmin

50 0.063 0.062 0.108 0.029 0.331(0.7) 0.786 (0.021)

80% observation (tn = 33)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 1.031 0.061 1.023 1.096 0.394(0.5) 1.819

20 1.016 0.139 1.035 0.643 0.312(2.0) 0.988 P:lxvmin

30 0.084 0.034 1.032 1.026 0.339(1.0) 1.195 (0.026)

40 1.024 0.243 0.065 0.075 0.471(0.0) 1.023 E:lxvmin

50 0.896 0.043 0.029 0.746 0.107(-0.3) 0.885 (0.026)

90% observation (tn = 37)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.058 0.452 1.032 0.0846 0.876(1.3) 1.1521

20 1.921 0.911 0.069 0.028 0.149(0.6) 1.182 P:txvmax

30 0.682 0.022 0.679 1.036 03297(1.5) 1.050 (0.002)

40 1.035 0.018 1.067 1.036 0.017(2.0) 1.133 E:lxvmin

50 0.080 0.032 0.034 0.019 0.063(1.8) 0.603 (0.039)

A.4. DS4 119

Table A.6: Comparison of average relative errors for ten days prediction with
DS2 (l = 10).

50% observation (tn = 21)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

e 10 0.981 0.068 0.457 0.618 0.067(1.3) 0.541

20 0.077 0.149 0.368 0.136 0.139(-0.7) 0.216 P:txvmin

30 0.043 0.031 0.185 0.066 0.791(2.0) 0.035 (0.059)

40 0.245 0.127 0.052 0.079 0.114(1.5) 0.058 E:lxvmin

50 0.041 0.049 0.042 0.086 0.383(1.0) 0.065 (2.613)

60% observation (tn = 25)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.075 0.091 0.118 0.852 0.814(2.0) 0.189

20 0.068 0.159 0.238 1.390 0.755(0.0) 0.359 P:llogist

30 0.615 0.454 0.159 0.154 0.313(1.0) 0.273 (0.102)

40 0.692 0.479 0.138 0.147 0.983(0.0) 0.704 E:lxvmin

50 0.066 0.060 0.084 0.078 0.083(2.0) 0.136 (0.134)

70% observation (tn = 29)

MIMO SRGM

k AT1 AT2 FT BT BoxCox (Best λ) Normal Best Model

10 0.043 0.042 0.063 1.013 0.585(1.8) 1.051

20 1.026 0.051 1.013 0.192 0.289(1.0) 0.367 P:lxvmin

30 0.081 0.196 0.047 0.698 0.385(0.8) 0.551 (0.015)

40 1.013 0.188 0.071 0.098 0.291(1.1) 0.341 E:lxvmin

50 0.058 0.038 0.062 0.089 0.173(0.6) 0.284 (0.015)

120 APPENDIX A. AE RESULT FOR FOUR DS1 ∼ DS4 DATA SETS

Table A.7: Comparison of average relative errors for fifteen days prediction with
DS2 (l = 15).

50% observation (tn = 21)

MIMO SRGM

k AT1 AT2 FT BT BoxCox (Best λ) Normal Best Model

10 1.164 0.434 0.083 0.975 0.219(-0.1) 2.556

20 0.896 0.169 0.176 1.889 0.476(2.09 0.756 P:tnorm

30 1.175 0.201 0.805 0.897 0.116(1.0) 1.569 (0.227)

40 1.879 0.266 1.046 1.128 0.336(1.7) 0.238 E:lxvmin

50 0.145 0.448 0.070 0.284 0.215(1.4) 0.533 (2.865)

50% observation (tn = 21)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 3.346 3.293 0.267 4.142 0.159(1.0) 3.162

20 2.127 0.767 2.189 0.797 0.705(1.6) 1.158 P:llogist

30 0.994 3.158 1.396 1.032 0.211(1.3) 2.190 (0.161)

40 1.319 0.263 2.336 1.289 0.839(2.0) 1.097 E:lxvmin

50 0.183 3.309 0.192 0.160 0.039 (1.1) 0.385 (0.184)

Table A.8: Comparison of average relative errors for twenty days prediction
with DS2 (l = 20).

50% observation (tn = 21)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 2.060 0.090 1.060 1.145 0.473(1.0) 1.016

20 1.066 0.182 1.109 2.217 0.672(2.0) 1.023 P:lxvmax

30 1.047 0.072 1.056 0.357 0.745(0.5) 1.302 (0.310)

40 1.055 0.139 0.856 1.201 1.036(0.9) 1.251 E:lxvmin

50 0.084 0.078 0.088 0.099 0.305(2.0) 0.392 (2.960)

A.4. DS4 121

Table A.9: Comparison of average relative errors for five days prediction with
DS3 (l = 5).

50% observation (tn = 23)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.042 0.089 0.034 0.311 1.248(1.2) 0.332

20 0.048 0.069 0.314 0.141 0.941(0.7) 1.319 P:exp

30 0.126 0.027 0.236 0.187 0.217(1.1) 1.628 (0.105)

40 0.151 0.163 0.147 0.321 1.246(-0.6) 2.489 E:lnorm

50 0.427 0.375 0.091 0.314 1.241(1.1) 0.371 (2.262)

60% observation (tn = 28)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.056 0.098 1.028 0.036 1.245(1.4) 1.895

20 0.034 0.026 0.649 0.412 0.641(-1.0) 1.254 P:pareto

30 0.019 0.113 0.037 1.243 0.754(1.6) 0.987 (0.079)

40 0.108 0.033 0.017 0.595 0.281(1.6) 0.124 E:lnorm

50 0.016 0.109 0.082 0.014 0.943(2.0) 0.236 (1.255)

70% observation (tn = 32)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.039 0.112 1.623 1.254 0.679(1.3) 0.215

20 1.040 0.029 0.589 2.045 1.248(1.9) 0.264 P:txvmax

30 1.942 0.026 0.729 0.689 0.473(-0.9) 0.647 (0.019)

40 0.025 0.092 0.031 0.128 0.341(-1.3) 0.198 E:gamma

50 0.064 0.062 0.063 0.015 0.069(1.4) 0.322 (2.581)

80% observation (tn = 37)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.043 0.293 0.625 3.2589 0.985(1.7) 1.091

20 0.096 0.117 0.048 1.2589 1.258(-0.3) 0.389 P:exp

30 0.031 0.021 0.019 1.031 0.489(1.4) 0.215 (0.038)

40 0.039 0.070 0.041 0.085 0.327(0.9) 0.608 E:lxvmin

50 0.124 0.129 0.063 0.047 0.264(1.1) 0.182 (2.993)

90% observation (tn = 41)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.153 0.025 0.618 1.203 0.291(0.8) 0.381

20 1.921 0.111 0.377 0.698 0.746(-0.9) 0.343 P:txvmax

30 0.682 0.422 1.018 0.314 0.547(1.9) 0.658 (0.012)

40 1.035 0.618 0.314 0.228 0.149(0.9) 1.583 E:lxvmin

50 0.080 0.062 0.157 0.331 0.641(-0.8) 1.379 (3.064)

122 APPENDIX A. AE RESULT FOR FOUR DS1 ∼ DS4 DATA SETS

Table A.10: Comparison of average relative errors for five days prediction with
DS3 (l = 10).

50% observation (tn = 23)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.167 0.231 0.151 0.271 0.489(0.2) 0.636

20 0.371 0.137 0.355 0.112 0.331(-0.7) 0.483 P:exp

30 0.292 0.156 0.276 0.331 0.634(-1.0) 0.841 (0.113)

40 0.287 0.356 0.199 0.344 1.012(-1.6) 1.125 E:lnorm

50 0.461 0.481 0.324 0.194 0.329(1.3) 0.562 (3.587)

60% observation (tn = 28)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.233 0.217 0.127 0.251 0.677(-2.4) 1.098

20 0.549 0.356 0.179 0.187 0.181(1.2) 1.066 P:txvmax

30 0.142 0.191 0.137 0.137 0.649(-1.7) 2.112 (0.100)

40 0.241 0.239 0.104 0.149 0.982(1.0) 3.033 E:lnorm

50 0.431 0.429 0.231 0.255 0.624(-1.3) 1.108 (3.028)

70% observation (tn = 32)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.033 0.196 1.024 0.027 0.489(1.1) 0.526

20 1.034 0.047 0.309 0.141 0.128(0.9) 0.579 P:txvmax

30 0.319 0.311 0.112 0.034 0.879(-0.3) 1.258 (0.019)

40 0.045 0.047 0.317 0.129 0.693(-1.7) 0.985 E:gamma

50 0.446 0.191 0.217 0.104 0.312(1.2) 0.698 (2.581)

A.4. DS4 123

Table A.11: Comparison of average relative errors for five days prediction with
DS3 (l = 15).

50% observation (tn = 23)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 1.073 0.368 1.132 0.189 0.618(-1.2) 1.027

20 1.087 0.818 1.081 0.412 1.028(0.4) 0.941 P:txvmax

30 1.152 0.092 0.473 0.441 0.987(-0.3) 1.034 (1.285)

40 0.983 1.072 0.625 0.458 2.056(1.0) 3.023 E:lnorm

50 0.067 0.089 0.078 0.081 0.689(1.8) 0.908 (2.252)

60% observation (tn = 28)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.151 0.147 1.028 0.411 0.985(1.0) 1.089

20 0.058 1.028 0.466 0.349 0.875(-1.3) 1.187 P:txvmax

30 0.248 0.181 0.161 0.891 1.069(0.9) 1.137 (0.035)

40 0.189 0.259 0.174 0.319 0.467(-0.8) 1.1259 E:lnorm

50 0.443 0.433 0.299 0.313 0.745(1.3) 1.589 (1.255)

Table A.12: Comparison of average relative errors for five days prediction with
DS3 (l = 20).

50% observation (tn = 23)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.331 0.289 0.693 0.889 0.229(1.6) 0.349

20 0.214 0.236 0.1031 0.991 0.639(-1.1) 0.987 P:txvmax

30 0.673 0.196 0.981 1.029 1.021(1.6) 1.189 (1.285)

40 0.544 0.541 0.574 0.631 1.149(1.4) 4.214 E:lnorm

50 0.198 0.115 0.057 0.063 1.119(-1.9) 1.028 (2.252)

124 APPENDIX A. AE RESULT FOR FOUR DS1 ∼ DS4 DATA SETS

Table A.13: Comparison of average relative errors for five days prediction with
DS4 (l = 5).

50% observation (tn = 54)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.377 0.371 0.374 0.501 0.710(1.7) 1.028

20 0.527 0.551 0.292 0.421 0.699(1.0) 1.479 P:exp

30 0.209 0.578 0.239 0.336 0.402(-0.3 0.987 (0.853)

40 0.251 0.504 0.209 0.351 0.615(-0.9) 1.602 E:lxvmin

50 0.443 0.641 0.131 0.329 0.931(2.0) 1.494 (2.920)

60% observation (tn = 65)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.157 0.302 0.298 0.302 0.366(1.0) 1.031

20 0.266 0.249 0.523 0.295 0.863(-1.1) 1.689 P:txvmax

30 0.238 0.291 0.322 1.243 0.944(1.4) 2.749 (0.003)

40 0.196 0.141 0.063 0.384 0.639(-2.3) 1.248 E:lxvmin

50 0.116 0.024 0.098 0.310 0.213(-3.0) 1.168 (3.193)

70% observation (tn = 76)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.062 0.183 0.381 0.400 0.223(-0.3) 0.895

20 0.139 0.031 0.221 0.318 0.058(1.0) 1.025 P:txvmax

30 0.034 0.128 0.020 0.288 0.021(1.3) 1.350 (0.007)

40 0.243 0.278 0.116 0.129 0.058(0.2) 0.897 E:lxvmin

50 0.143 0.455 0.109 0.085 0.131(0.1) 1.029 (3.030)

80% observation (tn = 87)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.113 0.092 0.329 0.306 0.327(0.7) 1.061

20 0.433 0.227 0.247 0.145 0.210(-1.3) 1.309 P:lxvmax

30 0.471 0.533 0.211 0.095 0.097(-2.4) 1.015 (0.005)

40 0.163 0.212 0.061 0.189 0.189(-1.9) 0.688 E:lxvmin

50 0.071 0.059 0.089 0.182 0.287(1.0) 0.682 (2.782)

90% observation (tn = 98)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.169 0.616 0.076 0.147 0.619(1.8) 1.034

20 0.031 0.524 0.064 0.027 0.526(-0.7) 0.974 P:lxvmax

30 0.681 0.437 0.177 0.587 0.437(1.2) 0.1.369 (0.000)

40 0.049 0.354 0.198 0.035 0.349(0.1) 0.495 E:lxvmin

50 0.710 0.306 0.293 0.046 0.211(-0.1) 0.329 (2.928)

A.4. DS4 125

Table A.14: Comparison of average relative errors for five days prediction with
DS4 (l = 10).

50% observation (tn = 54)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.278 0.637 0.629 0.621 0.223(1.1) 1.352

20 0.425 0.089 0.053 0.505 0.055(1.2) 0.894 P:txvmax

30 0.212 0.861 0.044 0.053 0.021(1.3) 0.937 (0.031)

40 0.016 0.175 0.402 0.045 0.658(-0.7) 852 E:lxvmin

50 0.378 0.183 0.462 0.041 1.031(-2.3) 1.859 (5.374)

60% observation (tn = 65)

MIMO SRGM

k AT1 AT2 FT BT BoxCox Normal Best Model

10 0.428 0.127 0.447 0.223 0.366(1.1) 0.347

20 0.095 0.058 0.037 0.055 0.263(-1.1) 1.437 P:txvmax

30 0.604 0.211 0.325 0.021 0.244(1.0) 0.749 (0.106)

40 0.407 0.511 0.127 0.058 0.139(1.3) 3.126 E:lxvmin

50 0.071 0.135 0.274 1.310 0.113(2.0) 0.869 (5.626)

70% observation (tn = 76)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.478 0.592 0.539 0.485 0.411(1.2) 1.665

20 0.812 0.638 0.477 0.492 0.298(1.4) 2.035 P:lxvmax

30 1.485 0.069 0.313 0.406 0.191(1.6) 2.050 (0.016)

40 1.025 0.123 0.384 0.323 0.539(-2.2) 1.197 E:lxvmin

50 0.115 0.092 0.174 0.176 0.486(-0.1) 1.099 (5.576)

80% observation (tn = 87)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.218 1.039 0.016 0.221 0.602(-0.3) 1.258

20 0.055 0.043 0.317 0.151 0.447(-2.7) 0.941 P:txvmax

30 0.483 0.528 0.071 0.122 0.378(2.0) 0.446 (0.058)

40 0.986 0.512 0.069 0.111 0.325(1.0) 1.214 E:lxvmin

50 0.790 0.529 0.087 0.133 0.689(1.9) 2.427 (5.698)

126 APPENDIX A. AE RESULT FOR FOUR DS1 ∼ DS4 DATA SETS

Table A.15: Comparison of average relative errors for five days prediction with
DS4 (l = 15).

50% observation (tn = 54)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.379 0.207 0.426 0.555 0.327(1.3) 1.023

20 1.039 0.981 0.392 0.492 0.218(0.2) 1.021 P:txvmax

30 1.031 1.082 0.330 0.409 0.627(-1.3) 0.647 (0.040)

40 0.887 0.247 0.244 0.401 0.548(1.7) 0.189 E:lxvmin

50 1.451 0.062 0.220 0.385 0.661(2.0) 1.214 (7.914)

60% observation (tn = 65)

MIMO SRGM

k AT1 AT2 FT BT BoxCox Normal Best Model

10 0.342 0.227 0.338 0.329 0.368(0.6) 0.689

20 0.398 0.117 0.197 0.405 0.383(1.0) 2.018 P:txvmax

30 0.063 0.117 0.081 0.439 0.244(1.7) 0.698 (0.024)

40 0.279 0.594 0.314 0.610 0.471(-2.6) 1.125 E:lxvmin

50 0.022 0.161 0.109 0.651 0.663(-1.9) 2.056 (8.538)

70% observation (tn = 76)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.479 0.285 0.269 0.284 0.388(-2.2) 1.098

20 0.803 1.031 0.056 0.061 0.355(0.6) 1.458 P:txvmax

30 1.023 0.865 0.044 0.096 0.298(-1.7) 0.998 (0.028)

40 1.076 0.829 0.037 0.052 0.208(-2.7) 1.025 E:lxvmin

50 0.412 0.361 0.457 0.181 0.636(-1.0) 1.091 (9.258)

A.4. DS4 127

Table A.16: Comparison of average relative errors for five days prediction with
DS4 (l = 20).

50% observation (tn = 54)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.229 0.158 0.744 0.129 0.977(1.2) 1.096

20 0.058 0.085 0.459 0.036 0.415(0.3) 0.697 P:txvmax

30 1.196 1.347 0.290 0.054 0.362(1.8) 1.108 (0.048)

40 0.194 0.094 0.121 0.148 0.507(-2.7) 1.236 E:lxvmin

50 1.186 0.369 0.767 0.262 0.461(2.6) 0.741 (10.461)

60% observation (tn = 65)

MIMO SRGM

k AT1 AT2 FT BT BoxCox Normal Best Model

10 0.716 0.045 0.186 0.355 0.539(1.1) 1.024

20 0.149 1.079 0.045 0.265 0.477(1.1) 0.516 P:txvmax

30 0.013 0.044 0.068 0.219 0.394(1.1) 1.096 (0.124)

40 0.861 1.897 0.096 0.199 0.414(-2.4) 1.118 E:lxvmin

50 1.068 0.867 0.188 0.151 0.183(-1.9) 1.407 (11.458)

Appendix B

AE result for four DS5 ∼
DS8 data sets

In appendix B Tables B.1∼B.16 summarize the results on AE for the underlying

data set DS5∼ DS8 at 50% ∼ 90% observation points of the whole data for

the prediction length l=5, 10, 15, and 20 days. In DS5, 50%–90% all cases

SRGM with gamma, txvmax and lxvmax offer less AEs than the MIMO neural

networks (See table B.1 for l=5). In addition, for the prediction length l=10,

15, and 20 days, SRGM with txvmax and lxvmax provide best prediction result

than MIMO methods except 50% observation point in Tables B.2, B.3 and

B.4. Tables B.5–B.8 present the prediction results on AE for DS6. Similar to

DS1, DS2, and DS3, the MIMO neural networks can predict the cumulative

number of software faults early testing phase, say, 50%–70% observation point,

better than SRGMs. In this data, MIMO with FT, BT and AT1 give the

better prediction results. For DS7, the prediction length l=10, and 20 days

almost all testing phase MIMO with FT, BT and AT1 deliver small error than

SRGMs in Tables B.10 and B.12 respectively. On the other hand, for l=5, and

15 days SRGM with txvmax presents best prediction method (See Tables B.9

and B.11). Tables B.13–B.16 shows the results on AE for DS8. In that case ,

without few cases all most testing phase MIMO with AT2, BT and FT provide

best result than SRGMs. Comparing the data transform methods with the

non-transformed one, we cannot find any case where Normal provides the best

prediction result in Table include in appendix A and B. Finally, we cannot obtain

the strong conclusion on how to design the MIMO for the purpose of software

129

130 APPENDIX B. AE RESULT FOR FOUR DS5 ∼ DS8 DATA SETS

fault prediction. However, the lesson learned from the numerical experiments

suggests that the multi-stages look-ahead prediction of software fault count is

possible with the MIMO neural network, and that the data transform from

the Poisson data to the Gaussian data works better to predict the number of

software faults accurately.

B.1 DS5

B.2 DS6

B.3 DS7

B.4 DS8

B.4. DS8 131

Table B.1: Comparison of average relative errors for five days prediction with
DS5 (l = 5).

50% observation (tn = 55)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.103 0.198 0.0143 0.066 0.536(1.2) 0.984

20 0.175 0.052 0.042 0.086 0.385(1.3) 1.023 P:gamma

30 0.247 0.426 0.086 0.064 0.482(-0.5) 0.612 (0.008)

40 0.144 0.094 0.181 0.311 0.352(0.0) 1.021 E:gamma

50 0.111 0.364 0.119 0.171 0.685(-2.0) 1.011 (0.008)

60% observation (tn = 67)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.017 0.096 0.044 0.047 0.087(-2.5) 0.389

20 0.059 0.021 0.065 0.033 1.038(1.2) 1.023 P:txvmax

30 0.023 0.096 0.028 0.065 0.018(0.8) 0.412 (0.001)

40 0.241 0.127 0.029 0.062 0.431(-2.3) 1.012 E:gamma

50 0.048 0.019 0.065 0.017 0.632(-0.9) 1.033 (3.098)

70% observation (tn = 78)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.257 0.184 0.053 0.056 0.015(1.3) 0.895

20 0.056 0.088 0.117 0.124 0.387(1.9) 1.025 P:txvmax

30 0.023 0.022 0.065 0.028 0.521(1.3) 1.350 (0.001)

40 0.018 0.124 0.042 0.241 0.258(0.2) 0.897 E:gamma

50 0.048 0.022 0.101 0.012 0.131(0.1) 1.029 (3.024)

80% observation (tn = 89)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.213 0.252 0.038 0.857 0.144(1.7) 1.152

20 0.033 0.027 0.024 0.674 0.125(-2.3) 1.631 P:lxvmax

30 0.021 0.073 0.053 0.095 0.423(-3.0) 2.015 (0.000)

40 0.163 0.212 0.031 0.189 0.325(2.0) 0.589 E:gamma

50 0.071 0.059 0.097 0.911 0.124(1.0) 0.378 (3.035)

90% observation (tn = 100)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.037 0.689 0.193 0.237 0.229(1.4) 1.378

20 0.059 0.014 0.126 0.047 0.226(1.7) 1.234 P:txvmax

30 0.179 0.237 0.077 0.507 0.407(-2.0) 3.698 (0.001)

40 0.074 0.021 0.191 0.355 0.114(-1.1) 2.458 E:gamma

50 0.261 0.127 0.203 0.092 0.227(0.3) 1.017 (2.878)

132 APPENDIX B. AE RESULT FOR FOUR DS5 ∼ DS8 DATA SETS

Table B.2: Comparison of average relative errors for five days prediction with
DS5 (l = 10).

50% observation (tn = 55)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.055 0.079 0.048 0.058 0.396(1.2) 0.514

20 0.124 0.065 0.101 0.089 0.189(-2.3) 0.457 P:gamma

30 0.081 0.369 0.189 0.056 0.478(0.5) 0.414 (0.029)

40 0.278 0.178 0.639 0.566 0.147(0.6) 1.044 E:gamma

50 0.451 0.502 0.021 0.061 0.685(-2.0) 0.618 (0.029)

60% observation (tn = 67)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.637 0.727 0.191 0.123 1.021(1.0) 1.069

20 0.074 0.237 0.095 0.041 1.112(-2.0) 2.045 P:lxvmax

30 0.121 0.403 0.138 0.015 0.871(-1.8) 0.698 (0.004)

40 0.316 0.307 0.077 0.089 0.571(2.1) 0.508 E:gamma

50 0.408 0.239 0.067 0.251 0.689(-1.1) 0.439 (5.691)

70% observation (tn = 78)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.219 0.275 0.191 0.123 0.364(-0.3) 0.699

20 0.047 0.337 0.095 0.041 0.511(1.1) 1.011 P:txvmax

30 0.022 0.369 0.138 0.032 0.519(0.3) 1.220 (0.00)

40 0.116 0.512 0.077 0.129 0.589(-2.8) 0.634 E:gamma

50 0.141 0.239 0.067 0.052 0.481(-0.9) 1.021 (0.008)

80% observation (tn = 89)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.638 0.723 0.052 0.058 0.158(0.0) 1.895

20 1.023 1.027 0.036 0.049 0.105(1.0) 2.056 P:lxvmax

30 0.951 2.088 0.101 0.032 0.698(-1.1) 3.065 (0.008)

40 1.032 0.711 0.059 0.160 1.011(-2.7) 1.027 E:gamma

50 0.241 0.589 0.256 0.033 0.278(-1.0) 0.748 (5.526)

90% observation (tn = 100)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.487 0.247 0.322 0.217 0.375(-3.0) 1.017

20 0.317 0.655 0346 0.222 0.203(-2.9) 2.002 P:txvmax

30 0.0.691 0.367 0.108 0.021 0.691(0.0) 1.691 (0.003)

40 0.348 0.136 0.031 0.180 0.114(2.0) 1.025 E:gamma

50 0.343 0.292 0.269 0.179 326(-0.3) 0.894 (5.230)

B.4. DS8 133

Table B.3: Comparison of average relative errors for five days prediction with
DS5 (l = 15).

50% observation (tn = 55)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.525 0.431 0.095 0.025 0.127(1.0) 0.963

20 0.277 0.169 0.111 0.092 0.453(-1.1) 1.258 P:txvmax

30 0.435 0.326 0.132 0.049 0.616(-0.3) 1.028 (0.034)

40 0.233 0.139 0.156 0.511 0.263(0.7) 1.037 E:gamma

50 0.242 0.655 0.159 0.032 0.591(-2.7) 1.341 (0.044)

60% observation (tn = 67)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.637 0.727 0.043 0.049 1.201(0.0) 2.023

20 0.074 0.237 0.051 0.005 0.308(-2.9) 3.063 P:txvmax

30 0.021 0.403 0.107 0.078 0.199(-1.6) 2.301 (0.007)

40 0.016 0.307 0.109 0.124 0.895(2.3) 1.258 E:gamma

50 0.288 0.239 0.051 0.589 0.239(-1.7) 1.241 (8.269)

70% observation (tn = 78)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.236 0.048 0.153 0.050 0.489(1.3) 0.822

20 0.153 0.104 0.072 0.451 0.896(1.2) 1.040 P:txvmax

30 0.127 0.067 0.079 0.032 0.734(-0.7) 0.879 (0.003)

40 0.122 0.121 0.134 0.259 0.333(1.4) 1.055 E:gamma

50 0.114 0.132 0.059 0.144 0.353(1.9) 1.443 (8.018)

80% observation (tn = 89)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.065 0.051 0.098 0.591 0.369(1.2) 1.234

20 0.091 1.023 0.103 0.158 0.213(1.2) 1.152 P:txvmax

30 0.098 0.0678 0.156 0.163 0.671(-0.9) 1.126 (0.002)

40 0.108 0.0491 0.163 0.612 0.481(1.2) 0.981 E:gamma

50 0.212 0.053 0.119 0.825 0.347(-1.5) 1.024 (7.969)

134 APPENDIX B. AE RESULT FOR FOUR DS5 ∼ DS8 DATA SETS

Table B.4: Comparison of average relative errors for five days prediction with
DS5 (l = 20).

50% observation (tn = 55)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.248 1.611 1.235 0.623 1.287(-1.1) 1.083

20 1.021 1.069 0.301 0.092 0.653(1.3) 0.568 P:txvmax

30 1.201 0.636 0.309 0.049 1.016(0.0) 0.928 (0.037)

40 0.181 0.039 0.256 0.511 0.153(-3.0) 1.237 E:gamma

50 0.042 1.025 0.159 0.032 0.555(-2.6) 0.369 (0.068)

60% observation (tn = 67)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.522 0.712 0.011 0.063 1.201(-0.9) 1.203

20 0.291 0.363 0.029 0.059 1.235(1.2) 4.211 P:txvmax

30 0.128 0.577 0.631 0.037 1.021(1.6) 3.266 (0.009)

40 0.589 0.637 0.621 0.667 1.296(-2.7) 1.219 E:gamma

50 0.683 0.699 0.181 0.411 0.961(2.0) 0.987 (10.857)

70% observation (tn = 78)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.627 0.265 0.037 0.333 0.097(1.7) 0.548

20 0.841 0.162 0.101 0.260 0.289(0.6) 0.961 P:txvmax

30 0.622 0.685 0.062 0.092 0.281(1.6) 1.011 (0.021)

40 0.798 0.859 0.118 0.014 0.488(-0.3) 1.478 E:gamma

50 0.771 0.832 0.629 0.199 1.241(-0.9) 1.124 (10.484)

B.4. DS8 135

Table B.5: Comparison of average relative errors for five days prediction with
DS6 (l = 5).

50% observation (tn = 37)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.425 0.754 0.514 0.034 0.423(1.1) 1.258

20 0.287 0.332 0.457 0.095 0.397(1.2) 1.023 P:gamma

30 0.237 0.262 0.414 0.049 0.374(0.5) 0.985 (0.039)

40 0.189 0.259 0.141 0.389 0.189(1.0) 1.521 E:gamma

50 0.159 0.398 0.618 0.132 0.158(-2.8) 1.187 (0.039)

60% observation (tn = 44)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.348 0.475 0.144 0.247 0.475(-2.9) 0.502

20 0.724 0.963 0.335 0.333 1.038(-1.6) 0.559 P:gamma

30 0.381 0.271 0.079 0.265 0.366(1.2) 0.526 (0.082)

40 0.296 0.489 0.129 0.162 0.144(-2.3) 2.589 E:gamma

50 0.632 0.498 0.265 0.117 0.396(1.9) 1.962 (0.082)

70% observation (tn = 51)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.891 0.226 0.075 0.163 0.809(1.2) 0.895

20 0.143 0.196 0.375 0.181 0.779(-1.3) 1.025 P:txvmax

30 0.979 0.108 0.407 0.411 0.201(-2.3) 1.350 (0.052)

40 0.147 0.318 0.249 0.249 0.158(-2.7) 0.897 E:gamma

50 0.189 0.136 0.114 0.289 0.694(2.0) 3.699 (2.608)

80% observation (tn = 58)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.098 0.278 0.163 0.275 0.404(1.5) 2.693

20 0.557 0.386 0.189 0.164 0.863(-2.1) 1.478 P:txvmax

30 0.577 0.584 0.407 0.258 0.691(2.0) 1.962 (0.046)

40 0.618 0.341 0.318 0.154 0.158(-2.2) 1.203 E:gamma

50 0.482 0.209 0.045 0.169 0.744(1.6) 0.961 (2.696)

90% observation (tn = 66)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.777 0.113 0.277 0.164 0.229(1.4) 1.378

20 0.353 0.275 0.035 0.525 0.226(1.7) 1.234 P:lxvmax

30 0.259 0.401 0.110 0.053 0.407(-2.0) 3.698 (0.001)

40 0.405 0.677 0.906 0.135 0.114(-1.1) 2.458 E:gamma

50 0.079 0.042 0.091 0.033 0.227(0.3) 1.017 (2.765)

136 APPENDIX B. AE RESULT FOR FOUR DS5 ∼ DS8 DATA SETS

Table B.6: Comparison of average relative errors for five days prediction with
DS6 (l = 10).

50% observation (tn = 37)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.181 0.524 0.111 0.177 0.524(1.0) 2.412

20 0.123 0.235 0.057 0.062 0.432(-1.7) 1.965 P:gamma

30 0.458 0.597 0.151 0.132 0.597(-2.5) 0.895 (0.077)

40 0.355 0.228 0.187 0.139 0.581(1.9) 1.052 E:gamma

50 0.121 0.142 0.305 0.286 0.781(-3.0) 1.063 (0.077)

60% observation (tn = 44)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.538 0.339 0.416 0.164 0.586(1.2) 0.963

20 0.131 0.398 0.395 0.216 0.623(0.6) 0.619 P:gamma

30 0.607 0.425 0.288 0.187 0.728(1.9) 1.205 (0.111)

40 0.232 0.401 0.295 0.353 1.025(2.8) 1.369 E:gamma

50 0.375 0.644 0.195 0.109 0.844(-2.2) 1.366 (0.111)

70% observation (tn = 51)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.891 0.226 0.087 0.157 0.289(1.7) 0.774

20 0.143 0.196 0.375 0.166 0.509(0.3) 1.325 P:txvmax

30 0.979 0.108 0.407 0.766 0.201(1.3) 0.963 (0.089)

40 0.147 0.318 0.249 0.631 0.529(-2.6) 0.489 E:gamma

50 0.189 0.096 0.114 0.177 0.869(-2.2) 1.259 (4.578)

80% observation (tn = 58)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.210 0.248 0.181 0.235 0.404(1.9) 1.502

20 0.301 0.432 0.379 0.122 0.163(1.8) 1.269 P:txvmax

30 0.290 0.233 0.263 0.234 0.691(-2.6) 2.541 (0.075)

40 0.362 0.366 0.189 0.238 0.558(-2.7) 2.639 E:gamma

50 0311 0.776 0.160 0.244 0.744(1.2) 0.940 (4.814)

B.4. DS8 137

Table B.7: Comparison of average relative errors for five days prediction with
DS6 (l = 15).

50% observation (tn = 37)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.425 0.558 0.151 0.115 1.032(1.6) 3.256

20 0.477 0.544 0.452 0.196 1.252(-1.1) 1.569 P:gamma

30 0.336 0.272 0.411 0.119 0.940(-1.5) 1.638 (0.117)

40 0.642 0.547 0.177 0.146 0.663(-1.9) 1.205 E:gamma

50 0.191 0.182 0.352 0.159 0.699(2.3) 1.235 (0.117)

60% observation (tn = 44)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.131 0.379 0.199 0.254 0.891(1.0) 1.023

20 0.248 0.129 0.174 0.116 0.425(1.2) 0.967 P:gamma

30 0.188 0.371 0.156 0.079 0.226(-1.1) 1.265 (0.133)

40 0.285 0.396 0.166 0.813 1.923(-2.7) 1.023 E:gamma

50 0.414 0.515 0.125 0.248 0.296(-1.8) 1.963 (0.133)

70% observation (tn = 51)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.625 0.823 0.119 0.152 0.314(-1.7) 1.231

20 0.442 0.471 0.375 0.155 0.261(1.3) 1.021 P:txvmax

30 0.861 0.604 0.407 0.386 0.369(1.9) 0.581 (0.121)

40 0.781 0.333 0.249 0.768 0.432(1.2) 0.633 E:gamma

50 0.099 0.205 0.129 0.199 0.722(-2.7) 1.068 (6.408)

80% observation (tn = 58)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.378 0.298 0.129 0.235 0.372(2.0) 1.943

20 0.2871 0.386 0.131 0.292 0.574(-2.3) 2.041 P:txvmax

30 0.108 0445 0.363 0.127 0.314(1.1) 1.879 (0.102)

40 0.241 0.375 0.289 0.261 0.295(-2.0) 1.603 E:gamma

50 0.298 0.369 0.160 0.259 0.287(1.9) 1.256 (6.795)

138 APPENDIX B. AE RESULT FOR FOUR DS5 ∼ DS8 DATA SETS

Table B.8: Comparison of average relative errors for five days prediction with
DS6 (l = 20).

50% observation (tn = 37)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.869 0.498 0.241 0.143 1.029(1.2) 1.2896

20 0.731 0.848 0.471 0.133 0.6391.1) 2.059 P:gamma

30 0.599 0.288 0.174 0.163 0.592(2.3) 1.633 (0.145)

40 0.378 0.191 0.158 0.259 0.558(1.3) 0.986 E:gamma

50 0.122 0.193 0.128 0.185 0.569(-0.9) 1.369 (0.145)

60% observation (tn = 44)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.462 0.261 0.262 0.125 0.302(-1.1) 0.979

20 0.327 0.267 0.181 0.193 0.291(1.9) 0.749 P:gamma

30 0.536 0.293 0.265 0.291 0.671(1.3) 1.025 (0.167)

40 0.216 0.270 0.199 0.195 0.369(0.7) 1.634 E:gamma

50 0.296 0.351 0.167 0.137 0.319(2.0) 0.606 (0.167)

70% observation (tn = 51)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.133 0.151 0.323 0.158 0.987(1.8) 0.789

20 0.458 0.402 0.225 0.374 0.954(1.6) 1.429 P:txvmax

30 0.119 0.329 0.258 0.271 1.0325(1.2) 2.029 (0.149)

40 0.413 0.418 0.481 0.228 0.998(-2.0) 2.556 E:gamma

50 0.275 0.585 0.151 0.173 1.028(1.6) 3.026 (8.115)

B.4. DS8 139

Table B.9: Comparison of average relative errors for five days prediction with
DS7 (l = 5).

50% observation (tn = 41)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.298 0.311 0.028 0.053 0.241(1.9) 2.509

20 0.374 0.473 0.166 0.271 0.625(2.0) 1.353 P:txvmax

30 0.607 0.221 0.231 0.044 1.023(-0.5) 1.472 (0.029)

40 0.409 0.689 0.219 0.316 0.809(1.6) 2.187 E:lxvmin

50 0.177 0.176 0.261 0.236 1.158(-2.8) 1.605 (2.952)

60% observation (tn = 49)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.535 0.432 0.219 0.111 2.051(-1.2) 1.069

20 0.922 0.130 0.326 0.396 0.559(-1.9) 1.623 P:txvmax

30 0.142 0.115 0.291 0.068 0.713(1.1) 0.987 (0.007)

40 0.183 0.176 0.094 0.189 1.044(-2.9) 3.089 E:lxvmin

50 0.302 0.138 0.133 0.279 0.454(-1.9) 1.023 (3.036)

70% observation (tn = 57)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.929 0.823 0.181 0.473 0.263(1.6) 4.526

20 0.374 0.893 0.134 0.144 0.497(0.9) 2.051 P:txvmax

30 0.216 0.756 0.212 0.148 0.198(0.3) 1.625 (0.0031)

40 0.409 0.491 0.044 0.146 1.311(1.1) 1.368 E:lxvmin

50 0.575 0.665 0.126 0.142 1.504(-2.4) 1.649 (2.852)

80% observation (tn = 65)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.525 0.432 0.096 0.121 0.255(1.1) 2.421

20 0.496 0.089 0.125 1.020 1.089(-2.9) 1.754 P:txvmax

30 0.223 0.854 0.496 0.569 0.854(-2.0) 1.739 (0.043)

40 0.189 0.195 0.176 0.041 1.596(0.5) 3.800 E:llogist

50 0.453 0.138 0.369 0.127 1.087(1.1) 2.761 2.725)

90% observation (tn = 73)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.635 1.043 0.422 0.329 0.289(-2.4) 1.584

20 0.133 1.065 0.118 0.315 0.242(0.5) 2.683 P:txvmax

30 0.861 1.025 0.311 0.395 0.169(-2.7) 1.609 (0.004)

40 0.496 1.106 0.052 0.411 1.4061(2.0) 1.107 E:gamma

50 1.082 1.021 0.067 0.126 0.523(-2.3) 1.517 (2.948)

140 APPENDIX B. AE RESULT FOR FOUR DS5 ∼ DS8 DATA SETS

Table B.10: Comparison of average relative errors for five days prediction with
DS7 (l = 10).

50% observation (tn = 41)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.256 0.440 0.131 0.041 0.461(1.3) 2.243

20 0.266 0.393 0.067 0.071 0.163(2.0) 2.249 P:txvmax

30 0.278 0.189 0.095 0.098 1.297(-1.6) 1.162 (0.045)

40 0.828 0.615 0.051 0.108 0.512(-1.6) 1.346 E:lxvmin

50 0.154 0.162 0.202 0.116 1.054(-3.0) 1.696 (5.356)

60% observation (tn = 49)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.138 0.317 0.051 0.089 1.051(2.0) 1.479

20 0.390 0.064 0.096 0.406 0.487(0.9) 1.516 P:txvmax

30 0.018 0.629 0.077 0.411 1.162(-1.3) 0.962 (0.021)

40 0.296 0.608 0.135 0.035 1.954(-3.0) 3.581 E:lxvmin

50 0.199 0.159 0.148 0.139 0.394(-2.9) 1.521 (5.481)

70% observation (tn = 57)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.399 0.906 0.110 0.088 1.021(1.5) 1.259

20 0.948 0.812 0.042 0.257 0.981(1.6) 4.259 P:txvmax

30 0.643 0.607 0.121 0.273 0.887(-1.3) 3.509 (0.053)

40 0.654 0.993 0.081 0.279 1.201(1.6) 2.641 E:lxvmin

50 0.455 0.566 0.123 0.332 1.891(-2.9) 2.031 (5.061)

80% observation (tn = 65)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.196 0.271 0.099 0.116 0.293(1.7) 1.513

20 0.056 0.161 0.122 0.251 1.243(0.1) 1.611 P:txvmax

30 0.311 0.435 0.121 0.213 0.336(0.0) 2.390 (0.052)

40 0.421 0.663 0.048 0.091 0.821(0.5) 1.450 E:llogist

50 0.333 0.821 0.078 0.193 0.821(-1.9) 1.426 (4.971)

B.4. DS8 141

Table B.11: Comparison of average relative errors for five days prediction with
DS7 (l = 15).

50% observation (tn = 41)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.275 0.191 0.437 0.451 0.9851(0.3) 1.021

20 0.466 0.336 0.159 0.147 0.163(2.0) 1.032 P:txvmax

30 0.736 0.263 0.095 0.038 1.297(-1.6) 1.234 (0.052)

40 0.540 0.623 0.051 0.069 0.512(-1.6) 0.963 E:lxvmin

50 0.098 0.131 0.263 0.126 1.054(-3.0) 0.639 (5.356)

60% observation (tn = 49)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.189 0.221 0.421 0.198 1.981(-2.0) 1.686

20 0.133 0.311 0.096 0.420 0.398(1.1) 1.299 P:txvmax

30 0.265 0.411 0.077 0.321 1.631(-1.2) 2.158 (0.028)

40 0.161 0.069 0.135 0.078 1.023(1.2) 1.116 E:lxvmin

50 0.181 0.163 0.148 0.344 1.389(-3.0) 1.389 (7.104)

70% observation (tn = 57)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.049 0.264 0.217 0.065 1.649(0.0) 1.686

20 0.255 0.524 0.315 0.162 0.564(1.6) 0.391 P:txvmax

30 0.275 0.199 0.381 0.233 0.596(-1.3) 1.158 (0.053)

40 0.618 0.541 0.199 0.293 1.116(1.0) 1.484 E:lxvmin

50 0.978 0.407 0.196 0.461 1.389(2.0) 2.027 (5.061)

80% observation (tn = 65)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.098 0.254 0.421 0.065 0.963(0.1) 2.632

20 0.274 0.526 0.315 0.162 1.244(-2.6) 1.302 P:txvmax

30 0.574 0.861 0.164 0.233 1.269(0.3) 1.205 (0.056)

40 0.556 0.424 0.154 0.093 0.562(-2.5) 1.211 E:llogist

50 0.297 0.337 0.195 0.153 0.961(2.0) 1.302 (7.208)

142 APPENDIX B. AE RESULT FOR FOUR DS5 ∼ DS8 DATA SETS

Table B.12: Comparison of average relative errors for five days prediction with
DS7 (l = 20).

50% observation (tn = 41)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.395 0.112 0.272 0.249 0.946(-1.2) 0.963

20 0.253 0.741 0.140 0.059 0.827(-2.2) 1.632 P:lxvmax

30 0.516 0.170 0.162 0.264 1.063(-2.7) 1.258 (0.063)

40 0.156 0.393 0.321 0.241 0.632(1.8) 1.421 E:lxvmin

50 0.147 0.126 0.287 0.352 1.961(2.0) 2.036 (10.097)

60% observation (tn = 49)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.079 0.202 0.211 0.073 0.627(-2.3) 1.234

20 0.389 0.253 0.253 0.103 0.837(1.0) 0.961 P:txvmax

30 0.689 0.172 0.083 0.321 0.279(-1.9) 1.603 (0.065)

40 0.891 0.919 0.422 0.173 0.887(1.9) 1.962 E:lxvmin

50 0.995 0.482 0.063 0.155 1.063(-2.7) 2.633 (9.858)

70% observation (tn = 57)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.228 0.093 0.104 0.481 1.021(1.2) 1.532

20 0.263 0.208 0.107 0.552 0.563(1.7) 1.471 P:txvmax

30 0.145 0.296 0.205 0.395 0.896(-2.3) 1.204 (0.090)

40 0.384 0.509 0.301 0.084 0.635(-3.0) 1.020 E:lxvmin

50 0.142 0.353 0.422 0.723 2.311(-2.7) 0.784 (9.14)

B.4. DS8 143

Table B.13: Comparison of average relative errors for five days prediction with
DS8 (l = 5).

50% observation (tn = 57)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.261 0.281 0.191 0.196 0.289(1.1) 2.589

20 0.178 0.235 0.131 0.191 0.396(0.7 2.280 P:lxvmax

30 0.241 0.298 0.183 0.296 0.214(0.5) 1.277 (0.139)

40 0.394 0.307 0.384 0.503 0.323(1.1) 1.399 E:gamma

50 0.141 0.143 0.220 0.339 0.639(2.0) 1.148 (1.738)

60% observation (tn = 68)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 1.019 0.747 0.101 0.189 1.213(0.6) 1.495

20 0.094 0.643 0.194 0.258 0.603(1.0) 1.893 P:lxvmax

30 0.205 0.533 0.412 0.625 0.589(1.3) 0.791 (0.045)

40 0.258 0.651 0.225 0.281 0.521(1.2) 1.498 E:lxvmin

50 0.269 0.441 0.205 1.032 1.204(2.0) 1.364 (2.051)

70% observation (tn = 80)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.466 0.117 0.213 0.218 0.433(-1.6) 0.649

20 0.227 0.245 0.139 0.059 0.396(-0.9) 2.489 P:txvmax

30 0.647 0.921 0.313 0.091 0.638(-0.3) 1.212 (0.018)

40 0.361 0.461 0.163 0.245 1.293(1.8) 0.962 E:lxvmin

50 0.163 0.221 0.254 0.234 0.562(-2.3) 1.036 (3.125)

80% observation (tn = 91)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.113 0.457 0.401 0.031 0.397(1.9) 3.941

20 0.366 0.229 0.278 1.020 0.741(-1.3) 1.277 P:lxvmax

30 0.422 0.224 0.341 0.569 0.661(-2.3) 1.194 (0.032)

40 0.296 0.279 0.234 0.116 1.524(-0.5) 1.432 E:lxvmin

50 0.305 0.164 0.063 0.410 1.711(1.3) 1.491 (2.931)

90% observation (tn = 103)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.445 0.227 0.296 0.309 1.023(1.3) 1.054

20 0.552 0.496 0.369 0.201 1.361(1.3) 1.631 P:tlogist

30 0.451 0.351 0.313 0.228 1.061(-2.7) 1.619 (0.218)

40 0.415 0.223 0.363 0.312 1.011(2.2) 1.152 E:lxvmin

50 0.391 0.921 0.296 0.840 0.633(-2.8) 0.963 (0.299)

144 APPENDIX B. AE RESULT FOR FOUR DS5 ∼ DS8 DATA SETS

Table B.14: Comparison of average relative errors for five days prediction with
DS8 (l = 10).

50% observation (tn = 57)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.561 0.422 0.402 0.364 1.122(1.5) 2.209

20 0.378 0.341 0.319 0.457 1.115(0.7) 1.552 P:exp

30 0.241 0.493 0.301 0.169 1.429(0.5) 1.493 (1.061)

40 0.269 0.429 0.397 0.523 0.171(1.1) 1.477 E:gamma

50 0.489 0.354 0.359 0.382 1.363(-2.3) 0.616 (2.595)

60% observation (tn = 68)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 1.315 0.663 0.181 0.088 0.941(0.8) 1.044

20 0.256 0.919 0.236 0.169 0.912(1.1) 1.244 P:lxvmax

30 0.179 0.884 0.214 0.068 0.369(-1.3) 0.961 (0.072)

40 0.198 0.931 0.271 0.092 1.021(-2.2) 2.369 E:lxvmin

50 1.180 0.935 0.152 0.181 0.931(-3.0) 1.458 (3.768)

70% observation (tn = 80)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.466 0.269 0.085 0.257 1.513(-2.2) 1.393

20 0.227 0.879 0.158 0.188 1.026(-2.9) 3.201 P:txvmax

30 0.647 0.507 0.169 0.556 0.238(0.0) 1.899 (0.091)

40 0.361 0.361 0.131 0.441 1.201(1.8) 1.128 E:lxvmin

50 0.163 0.931 0.192 0.361 1.622(-2.8) 0.963 (7.881)

80% observation (tn = 91)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.549 0.448 0.082 0.314 0.996(1.3) 1.289

20 0.551 0.654 0.237 0.639 0.996(-2.6) 1.321 P:lxvmax

30 0.214 0.941 0.118 0.059 0.336(-3.0) 1.116 (0.045)

40 0.263 0.198 0.211 0.991 1.011(0.5) 1.966 E:lxvmin

50 0.323 0.133 0.418 0.553 1.211(1.6) 1.023 (4.884)

90% observation (tn = 103)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.369 0.443 0.153 0.369 0.596(-2.3) 0.962

20 0.695 0.123 0.299 0.194 0.336(1.9) 1.951 P:exp

30 0.336 0.512 0.414 0.148 0.667(-1.9) 2.622 (0.084)

40 0.456 0.772 0.174 0.322 0.629(-2.3) 1.189 E:lxvmin

50 0.336 0.663 0.095 0.115 0.624(-3.0) 1.261 (5.206)

B.4. DS8 145

Table B.15: Comparison of average relative errors for five days prediction with
DS8 (l = 15).

50% observation (tn = 57)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.289 0.941 0.096 0.231 0.699(1.4) 3.014

20 0.994 1.213 0.105 0.421 1.063(-0.7) 3.217 P:lxvmax

30 0.841 0.748 0.161 0.541 0.962(-3.0) 1.032 (0.310)

40 0.554 0.339 0.169 0.221 0.663(-3.0) 1.231 E:gamma

50 0.336 0.421 0.332 0.223 0.921(-2.1) 1.921 (3.491)

60% observation (tn = 68)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.636 0.179 0.335 0.228 0.526(-2.8) 2.0974

20 1.012 0.237 0.287 0.269 0.316(-1.3) 1.313 P:lxvmax

30 0.112 0.067 0.154 0.621 1.321(1.3) 1.208 (0.088)

40 0.603 0.172 0.332 0.186 0.963(-2.7) 1.394 E:lxvmin

50 0.443 0.485 0.269 0.171 1.014(0.0) 2.298 (5.546)

70% observation (tn = 80)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.306 0.259 0.642 0.189 0.963(2.1) 1.122

20 0.578 0.366 0.198 0.324 0.984(1.1) 2.650 P:txvmax

30 0.347 0.402 0.594 0.232 0.778(-1.0) 2.482 (0.091)

40 0.258 0.605 0.377 0.089 0.633(0.8) 1.029 E:lxvmin

50 0.151 0.348 0.159 0.285 0.691(1.3) 1.869 (7.881)

80% observation (tn = 91)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.536 0.271 0.366 0.276 0.697(1.7) 1.501

20 0.311 0.399 0.296 0.099 0.552(0.3) 1.059 P:txvmax

30 0.251 0.732 0.033 0.261 0.732(-2.5) 1.027 (0.018)

40 0.636 0.266 0.246 0.159 1.463(-1.5) 2.029 E:lxvmin

50 0.412 0.480 0.223 0.192 0.477(0.0) 1.048 (3.125)

146 APPENDIX B. AE RESULT FOR FOUR DS5 ∼ DS8 DATA SETS

Table B.16: Comparison of average relative errors for five days prediction with
DS8 (l = 20).

50% observation (tn = 57)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.415 0.134 0.172 0.231 0.629(-1.1) 2.414

20 0.894 0.229 0.195 0.508 0.335(1.1) 1.210 P:lxvmax

30 0.904 0.248 0.261 0.288 0.393(2.0) 3.141 (0.347)

40 0.687 0.169 0.369 0.296 0.567(0.0) 1.399 E:gamma

50 0.345 0.271 0.221 0.255 0.306(-3.0) 2.431 (4.334)

60% observation (tn = 68)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.585 0.172 0.487 0.098 0.994(1.2) 2.033

20 0.874 0.508 0.178 0.205 0.945(1.1) 1.030 P:lxvmax

30 0.521 0.159 0.251 0.116 1.074(-0.7) 1.019 (0.105)

40 0.633 0.254 0.433 0.252 0.708(1.1) 1.006 E:lxvmin

50 0.381 0.584 0.336 0.141 0.366(1.4) 1.028 (7.323)

70% observation (tn = 80)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.436 0.088 0.104 0.235 0.543(1.8) 1.33

20 0.195 0.247 0.201 0.323 0.944(-1.1) 1.421 P:txvmax

30 0.612 0.161 0.141 0.350 0.748(0.0) 2.358 (0.091)

40 0.607 0.441 0.285 0.332 0.709(-0.8) 1.723 E:lxvmin

50 0.741 0.504 0.173 0.411 0.504(1.1) 2.391 (7.981)

80% observation (tn = 91)

MIMO SRGM

k AT1 AT2 FT BT BoxCox(Best λ) Normal Best Model

10 0.158 0.509 0.179 0.096 0.359(1.1) 2.398

20 0.268 0.979 0.214 0.254 0.669(-2.3) 1.269 P:txvmax

30 0.288 0.604 0.146 0.266 0.604(1.5) 1.259 (0.104)

40 0.291 0.637 0.346 0.101 0.995(1.3) 1.332 E:lxvmin

50 0632 0.335 0.124 0.186 0.497(0.8) 2.303 (9.154)

Bibliography

[1] A. A. Abdel-Ghaly, P. Y. Chan, and B. Littlewood, “Evaluation of com-

peting software reliability predictions,” IEEE Transactions on Software

Engineering, SE-12 (9), pp. 950–967 (1986).

[2] G. Abaei, and A. Selamat, “Analysis of software fault prediction models

using machine learning techniques,” International Journal of Computer

& Information Science, 13 (2), pp. 29–36 (2012).

[3] J. A. Achcar, D. K. Dey, and M. Niverthi, “A Bayesian approach using

nonhomogeneous Poisson processes for software reliability models,” Fron-

tiers in Reliability (A. P. Basu, K. S. Basu and S. Mukhopadhyay, eds.),

pp. 1–8 (1998).

[4] F. J. Anscombe, “The transformation of Poisson, binomial and negative

binomial data,” Biometrika, 35 (3/4), pp. 246–254 (1948).

[5] M. S. Bartlett, “The square root transformation in the analysis of vari-

ance,” Journal of the Royal Statistical Society, 3 (1), pp. 68–78 (1936).

[6] E. K. Blum, and L. K. Li, “Approximation theory and feedforward net-

works,” Neural Networks, 4 (4), pp. 511–515 (1991).

[7] K. Y. Cai, Software Defect and Operational Profile Modeling, Kluwer

Academic Publishers, Boston (1998).

[8] G. E. P. Box, and D. R. Cox, “An analysis of transformations,” Journal of

the Royal Statistical Society, Series B (Methodological), 26 (2), pp. 211–252

(1964).

147

148 BIBLIOGRAPHY

[9] H. Cheng, P.-N. Tan, J. Gao and J. Scripps, “Multistep-ahead time series

prediction,” Advances in Knowledge Discovery and Data Mining (W. K.

Ng, M. Kitsuregawa, and J. Li, eds.), LNAI 3918, pp. 765–774 (2006) .

[10] S. R. Dalal, and A. A. McIntosh, “When to stop testing for large software

systems with changing code,” IEEE Transactions on Software Engineer-

ing, 20 (4), pp. 318–323 (1994).

[11] T. Dohi, Y. Nishio, and S. Osaki, , “Optimal software release scheduling

based on artificial neural networks,” Annals of Software Engineering, 8,

pp. 167–185 (1999).

[12] M. Fisz, “The limiting distribution of a function of two independent random

variables and its statistical application,” Colloquium Mathematicum, 3, pp.

138–146 (1955).

[13] F. Fnaiech, N. Fnaiech, and M. Najim, “A new feedforward neural network

hidden layer neuron pruning algorithm,” IEEE International Conference

on Acoustics, Speech, and Signal Processing, (ICASSP ’01), (2001).

[14] A. L. Goel, and K. Okumoto, “Time-dependent error-detection rate model

for software reliability and other performance measuress,” IEEE Transac-

tions on Reliability, R-28 (3), pp. 206–211 (1979).

[15] A. L. Goel, “Software reliability models: assumptions, limitations and

applicability,” IEEE Transactions on Software Engineering, SE-11 (12),

pp. 1411–1423 (1985).

[16] S. S. Gokhale, and K. S. Trivedi, “Log-logistic software reliability growth

model,” Proceedings of The 3rd IEEE International High-Assurance Sys-

tems Engineering Symposium (HASE-1998), pp. 34–41, IEEE CPS (1998).

[17] Q. P. Hu, M. Xie, S. H. Ng, and G. Levitin, “Robust recurrent neural

network modeling for software fault detection and correction prediction”,

Reliability Engineering & System Safety, 92 (3), pp. 332–340 (2007).

[18] J. T. G. Hwang, and A. A. Ding, “ Prediction intervals for artificial neural

BIBLIOGRAPHY 149

networks,” Journal of the American Statistical Association, 92 (433), pp.

748–757 (1997).

[19] N. Karunanithi, D. Whitley, and Yashwant K., “ Prediction of software

reliability using connectionist models,” IEEE Transactions on Software

Engineering, SE-18, pp. 563–574 (1992).

[20] N. Karunanithi, D. Whitley, and K. Yashwant,“Using neural networks in

reliability prediction,”IEEE Software, 9, pp. 53–59 (1992).

[21] N. Karunanithi, Y. K. Malaiya, and D. Whitley, “Prediction of software

reliability using neural networks,” Proceedings of The 2nd International

Symposium on Software Reliability Engineering (ISSRE-1991), pp. 124–

130, IEEE CPS (1991).

[22] N. Karunanithi, and Y. K. Malaiya, “The scaling problem in neural net-

works for software reliability prediction,” Proceedings of The 3rd Interna-

tional Symposium of Software Reliability Engineering (ISSRE-1992), pp.

76–82, IEEE CPS (1992).

[23] N. Karunanithi, and Y. K. Malaiya, “Neural networks for software relia-

bility engineering,” Handbook of Software Reliability Engineering (M. R.

Lyu, ed.), pp. 699–728, McGraw-Hill, New York (1996).

[24] T. M. Khoshgoftaar, D. L. Lanning, and A. S. Pandya, “A neural network

modeling for detection of high-risk program,” Proceedings of The 4th In-

ternational Symposium on Software Reliability Engineering (ISSRE-1993),

pp. 302–309, IEEE CPS (1993).

[25] T. M. Khoshgoftaar, and R. M. Szabo, “Predicting software quality dur-

ing testing using neural network models: a comparative study,” Interna-

tional Journal of Reliability, Quality and Safety Engineering, 1, pp. 303–

319 (1994).

[26] T. M. Khoshgoftaar, E. B. Allen, J. P. Hudepohl, and S. J. Aud, “Ap-

plication of neural networks to software quality modeling of a very large

telecommunication system,” IEEE Transactions on Neural Networks, 8

(4), pp. 902–909 (1997).

150 BIBLIOGRAPHY

[27] A. Khosravi, S. Nahavandi, D. Creighton, and A. F. Atiya, “A comprehen-

sive review of neural network-based prediction intervals and new advances,”

IEEE Transactions on Neural Networks, 22 (9), pp. 1341–1356 (2010).

[28] B. Littlewood, “Rationale for a modified Duane model,” IEEE Transac-

tions on Reliability, R-33 (2), pp. 157–159 (1984).

[29] M. R. Lyu (ed.), Handbook of Software Reliability Engineering, McGraw-

Hill, New York (1996).

[30] P. A. Lewis, and G. S. Shedler, “ Simulation of nonhomogeneous Poisson

processes by thinning,” Technical Report, DTIC Document 1978.

[31] Y. W. Leung, “Optimal software release time with a given cost budget,”

Journal of Systems and Software, 17, pp. 233–242 (1992).

[32] M. Makitalo and A. Foi “ A closed-form approximation of the exact unbi-

ased inverse of the Anscombe variance-stabilizing transformation,” IEEE

Trans Image Process 20 (9), pp. 2697–2698 (2011).

[33] R. Mahajana, S. K. Guptab, and R. K. Bedib, “Design of software fault

prediction model using BR technique,” Procedia Computer Science, 46,

pp. 849–858 (2015).

[34] J. D. Musa, A. Iannino, and K. Okumoto, Software Reliability, Measure-

ment, Prediction, Application, McGraw-Hill, New York (1987).

[35] D. J. C. MacKay, “The evidence framework applied to classification net-

works”, Neural Computation, 4 (5), pp. 720–736 (1987).

[36] D. Nix, and A. Weigend, “Estimating the mean and variance of the tar-

get probabilty distribution,” Proceedings of The 1994 IEEE International

Conference on Neural Networks, 1, pp. 55–60, IEEE CPS (1994).

[37] S. Noekhah, A. A. Hozhabri, and H. S. Rizi, “Software reliability prediction

model based on ICA algorithm and MLP neural network,” Proceedings of

The 7th Intenational Conference on e-Commerce in Developing Countries

(ECDC-2013), pp. 1–15, IEEE CPS (2013).

BIBLIOGRAPHY 151

[38] M. Ohba, “Infection S-shaped software reliability growth model,” Stochas-

tic Models in Reliability Theory (S. Osaki and Y. Hatoyama, eds.), pp.

144–165, Springer-Verlag, Heidelberg (1984).

[39] K. Ohishi, H. Okamura, and T. Dohi, “Gompertz software reliability model:

estimation algorithm and empirical validation,” Journal of Systems and

Software, 82 (3), pp. 535–543 (2009).

[40] H. Okamura, T. Dohi, and S. Osaki, “Software reliability growth models

with normal failure time distributions,” Reliability Engineering & System

Safety, 116, pp. 135–141 (2013).

[41] H. Okamura, and T. Dohi, “SRATS: Software reliability assessment tool

on spreadsheet,” Proceedings of The 24th International Symposium on

Software Reliability Engineering (ISSRE-2013), pp. 100–117, IEEE CPS

(2013).

[42] P.-F. Pai, and W.-C. Hong, “Software reliability forecasting by support

vector machines with simulated annealing algorithms,” Journal of Systems

and Software, 79 (6), pp. 747–755 (2006).

[43] H. Pham, Software Reliability, Springer-Verlag, London (2000).

[44] H. Pham, and X. Zhang, “A software cost model with warranty and risk

costs,” IEEE Transactions on Computers, 48 (1), pp. 71-75 (1999).

[45] H. Pham, “Software reliability and cost models: Perspectives, comparison,

and practice,” European Journal of Operational Researchy, 149, pp. 475-

489 (2003).

[46] R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and F. Torner,

“Evaluating long-term predictive power of standard reliability growth mod-

els on automotive systems,” Proceedings of The 24th International Sympo-

sium on Software Reliability Engineering (ISSRE-2013), pp. 228–237, IEEE

CPS (2013).

[47] Y. Saito, and T. Dohi, “Software reliability assessment via non-parametric

maximum likelihood estimation,” IEICE Transactions on Fundamentals

152 BIBLIOGRAPHY

of Electronics, Communications and Computer Sciences (A), E98-A (10),

pp. 2042–2050 (2015).

[48] R. Sitte, “Comparison of software reliability growth predictions: neural

networks vs. parametric recalibration,” IEEE Transactions on Reliability,

48 (3), pp. 285–291 (1999).

[49] K. Sharma, R. Garg, C. K. Nagpal, and R. K. Garg, “Selection of optimal

software reliability growth models using a distance based approach,” IEEE

Transactions on Reliability, 59 (2), pp. 266–276 (2010).

[50] Y.-S. Su, and C.-Y. Huang, “Neural-network-based approaches for soft-

ware reliability estimation using dynamic weighted combinational models,”

Journal of Systems and Software, 80, pp. 606–615 (2007).

[51] L. Tian, and A. Noore, “Evolutionary neural network modeling for soft-

ware cumulative failure time prediction,” Reliability Engineering & System

Safety, 87, pp. 45–51 (2005)

[52] L. Tian, and A. Noore, “On-line prediction of software reliability using an

evolutionary connectionist model,” Journal of Systems and Software, 77,

pp. 173–180 (2005).

[53] M. Xie, Software Reliability Modelling, World Scientific, Singapore, (1991).

[54] X. Xiao, and T. Dohi, “Wavelet shrinkage estimation for NHPP-based

software reliability models,” IEEE Transactions on Reliability, 62(1), pp.

211–225 (2013).

[55] S. Yamada, M. Ohba, and S. Osaki, “S-shaped reliability growth modeling

for software error detection,” IEEE Transactions on Reliability, R-32 (5),

pp. 475–478 (1983).

[56] ftp://ftp.sas.com/pub/neural/FAQ3.html# A-hu

[57] B. Yang, X. Li, M. Xie, and F. Tan, “A generic data-driven software

reliability model with model mining technique,” Reliability Engineering &

System Safety, 95 (6), pp 671–678 (2010).

BIBLIOGRAPHY 153

[58] M. Zhao, and M. Xie, “On maximum likelihood estimation for a general

non-homogeneous Poisson process,” Scandinavian Journal of Statistics, 23

(4), pp. 597-607 (1996) .

[59] D. Tada, X. Xiao, and H. Yamamoto,“Wavelet shrinkage estimation using

unbiased inverse transformation for software reliability assessment,” Proc.

of The 7th Asia-Pacific International Symposium on Advanced Reliability

and Maintenance Modeling (APARM2016), pp. 493–500 (2016).

[60] R. D. D. Veaux, J. Schumi, J. Schweinsberg, and L. H. Ungar,“Prediction

intervals for neural networks via nonlinear regression,”Technometrics, 40

(4), pp. 273-282 (1998).

[61] J. Park, N. Lee, and J. Baik, “On the long-term predictive capability of

data-driven software reliability model: an empirical evaluation,” Proceed-

ings of The 25th International Symposium on Software Reliability Engi-

neering (ISSRE-2014), pp. 45–54, IEEE CPS (2014).

[62] T. Kaneishi, and T. Dohi, “Software reliability modeling and evaluation

under incomplete knowledge on fault distribution,” Proceedings of The

7th IEEE International Conference on Software Security and Reliability

(SERE-2013), pp. 3–12, IEEE CPS (2013).

[63] Y. Saito, T. Moroga, and T. Dohi, “Optimal software release decision based

on nonparametric inference approach,” Journal of the Japan Industrial

Management Association, 66, pp. 396–405 (2016).

[64] M. C.van Pul, “Asymptotic properties of a class of statistical models in

software reliability,” Scandinavian Journal of Statistics, 19 (3), pp. 225–

253 (1992).

[65] H. Joe, “Statistical inference for general-order-statistics and

nonhomogeneous-Poisson-process software reliability models,” IEEE

Transactions on Software Engineering, 15 (11), pp. 1485–1490 (1989).

[66] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural

Networks,(61), pp. 85–117 (2015).

154 BIBLIOGRAPHY

[67] S. A. Sherer, “Software fault prediction,” Journal of Systems and Software,

29 (2), pp. 97–105 (1995).

[68] D. F. Specht, “Probabilistic neural network,” Neural Networks, (3), pp.

109–118 (1990).

[69] R. Caruana, “Generalization vs. net size,” Neural Information Processing

Systems,Tutorial.

[70] P. Guo, and M. R. Lyu, “A pseudo inverse Learning algorithm for feed for-

ward neural networks with stacked generalization applications to software

reliability growth data,” Neurocomputing,(56) pp. 101–121 (2004).

[71] P. K. Kapurr, S. K. Khatri, and D. N. Goswami, “A generalized dynamic

integrated software reliability growth model based on neural-network ap-

proach,” in Proceedings of The International Conference on Reliability,

Safety and Quality Engineering, pp. 831–838 (2008).

[72] X. Zhang, and H. Pham, “A software cost model with error removal times

and risk costs,” International Journal of Systems Science, 29 (4), pp.

435-442 (1998).

[73] Y. Liu, J. A. Starzyk, and Z. Zhu, “Optimizing number of hidden neurons in

neural networks,” in Proceedings of the 25th IASTED International Multi-

Conference: artificial intelligence and applications, pp. 121-126 (2007).

Publication List of the
Author

[A1] B. Momotaz, T. Dohi, Estimating prediction interval of cumulative num-

ber of software faults using back propagation algorithm, International Jour-

nal of Computer and Information Science, vol. 17, no. 2, pp. 25–34, May

2016.

[A2] Begum, M, T. Dohi, A neuro-based software fault prediction with Box-Cox

ower transformation, Journal of Software Engineering and Applications,

vol. 10, no. 3, pp. 288–309, March 2017.

[A3] M. Begum, T. Dohi, Optimal stopping time of software system test via

artificial neural network with fault count data, Journal of Quality in Main-

tenance Engineering, (accepted).

[A4] M. Begum, T. Dohi, Prediction interval of cumulative number of software

faults using multilayer perceptron, Applied Computing & Information Tech-

nology (R. Lee, ed.), Studies in Computational Intelligence, vol. 619, pp.

43–58, Springer International Publishing, Switzerland, 2016.

[A5] M. Begum, T. Dohi, Optimal software release decision via artificial neural

network approach with bug count data, Proceedings of The 7th Asia-Pacific

International Symposium on Advanced Reliability and Maintenance Model-

ing (APARM 2016), pp. 17–24, McGraw-Hill, Taiwan, Aug 2016.

[A6] M. Begum, T. Dohi, Prediction interval of cumulative number of soft-

ware faults using multilayer perceptron, The 3rd International Conference

on Applied Computing & Information Technology (ACIT2015), Okayama,

Japan, July 12–16, 2015

155

156 PUBLICATION LIST OF THE AUTHOR

[A7] M. Begum, T. Dohi, Prediction interval of software fault-detection time

using back propagation algorithm, The 2015 (66th) Chugoku-branch Joint

Convention of Institutes of Electrical and Information Engineers (RENTAI

2015), Yamaguchi, Japan, October 17, 2015 (Received award)

[A8] M. Begum, T. Dohi, Optimal software release decision via back propaga-

tion algorithm, The 2016 (67th) Chugoku-branch Joint Convention of In-

stitutes of Electrical and Information Engineers (RENTAI 2016), Higashi-

Hiroshima, Japan, October 22, 2016

