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Dissertation Summary

Recent computing infrastructure makes a large amount of information available to con-

sumers. Such large volume of data are responsible for information overload problems. A

lot of works related to useful information retrieval have been considered to solve the issue.

One of the most important primitive function of information retrieval is to select small

number of representative objects from a large scale database.

Top-k queries have been extensively used to make a choice of preferable objects from

large dataset. A scoring function and a number k, for number of objects to be selected,

are specified by users. Then, top-k query returns k objects based on the user defined

scoring function. Specifying a scoring function is sufficient and users do not have to define

any complex query conditions for retrieving k objects. Therefore, top-k query is more

preferable query interface for hand-held devices like smart-phones, tablets and tablets. On

the other hand, it is quite possible that scoring functions of every user may not be similar

for selecting top-k objects, which indicates that the top-k query results are valuable for

those users who share an identical scoring function.

Skyline query, which is also known as a popular information retrieval tool, has been

used to eradicate dominated objects. Skyline query can be used to select objects that are

preferable for all users whose scoring functions are not identical. However, it may retrieve

too many or too few objects.

Moreover, in order to retrieve the result of top-k or skyline query, it is necessary to

disclose the values of each data object. In some cases, to compute top-k or skyline query,

we have to disclose sensitive information.

In this dissertation, the author proposed a k-object selection mechanism that chooses

various k objects which are preferable for all users who may have non-identical scoring



function; meanwhile, it also ensures the privacy of attribute value during the process of

computation.

Now a days, we often have to retrieve necessary objects using hand-held devices like a

smart phone or fablets or tablets. In such environment, it is tough to define complex query

conditions like scoring function. Users want to retrieve objects by specifying only keywords

and the number of objects k. Our proposed method must be useful for such situation.

To achieve above mentioned query, the author used skyline query function. In order

to handle so called ”big data”, The author has considered a distributed algorithm for

computing a skyline query.

MapReduce is a popular distributed computing framework for big data applications.

To handle large-scale database, proposed algorithm has been developed on MapReduce

framework. In conventional distributed algorithms for computing a skyline query, the

values of each object of a local database have to be disclosed to another. Recently, we have

to be aware of privacy in a database, in which such disclosures of privacy information in

conventional distributed algorithms are not allowed. In this work, the author has enhanced

the security of the distributed algorithm so that the privacy of the data during processing

kept intact. In other words, the author proposed a novel approach to compute the skyline

in a multi-parties computing environment without disclosing individual values of objects

to another party.

The author starts this dissertation from discussion and background of the problem in

Chapter 1. Then, literature surveys on related topics of the dissertation is presented in

Chapter 2.

After that, the author splits this dissertation in several parts. The first part of this

dissertation considers a novel way of secure skyline computation on MapReduce. The

author has considered the situation where owner of dataset are multiparty rather than a

single entity. They want to find skyline query result but do not want to disclose any domain



values. Even if parties are not willing to share domain value ranking or order information −

as order itself may be considered as sensitive information. The author proposed a novel way

to resolve the situation and find the result of skyline query without knowing any domain

value. Our proposed algorithm have used MapReduce programming model to ensure the its

capability to process big data efficiently. Details of this process in expressed in Chapter 3.

In the second part of this dissertation, the author studies the problem of securely k-

object selection. When dataset belong to multiparty and privacy of data has become a vital

issue, conventional k-object selection algorithms are useless. Our model have addressed

the issue and it is capable to find k objects from dataset whose attribute values are not

discloseable. The author has discuss the issue in Chapter 4.

The third part of this dissertation, the author has considered one of the most impor-

tant application of the secure k objects selection function, which is the issue of finding

key person from social media. Conventional social media mining techniques use graph

mining algorithm to mine social media. But, the author has proposed a parallel model to

mine social media using skyline query. The author discussed details about this model in

Chapter 5.

Finally, a concluding discussion with future guideline for extending the work have been

discussed in Chapter 6.
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Chapter 1

Introduction

At every moment, enormous amounts of data are generated on every domain of life. Such

huge amounts of data can be used to interpret people and predict their behaviors more

diligently. With the increase of data volume in different aspects of life, advanced query

operators are necessary in order to help users to filter the huge amount of available data by

selecting a set of promising data objects. Skyline query [9, 22] and its variants [13, 48, 36]

are known as such advanced query. Unlike the traditional SQL queries, that return a

complete result set, skyline queries return all non-dominated objects from a given dataset.

An object is said to be non-dominated if it is not worse than any other object in any of

the attributes and is better in at least one of the attributes. Perhaps skyline queries have

been proposed for filling the gap between set-based SQL queries and rank-aware database

retrieval [14].

Let us consider the example of Figure 1.1. In the given example, we can see that

Figure 1.1(a) consists of a two dimensional dataset: d1 and d2 − along with data IDs. If

we compare the data object O4 with another data object O2, we can see that O4 is better

than O2 in every dimension (assuming smaller value is better). In such case, we say, O4

is dominating O2 or O2 is dominated by O4. However, it is also understandable that O4

1
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Figure 1.1: Understanding Skyline and top-k query

itself is dominated by O5. While comparing O5 with O6, none can be claimed to be better

in every dimensions. Hence, they do not dominate each other. The author discussed the

mathematical definition of dominance and skyline query in Chapter 2.

As the author mentioned that skyline query results are composed by the non dominated

objects, we can find from the Figure 1.1(b) that {O2, O4, O6, O8, O9} can not be member

of skyline query result set − they are somehow dominated by some other objects within

the dataset. However, there exists no other data objects within the given data set that can

dominate {O1, O3, O5, O7}. Hence, they are the result set of skyline query.

Top-k query is also known to be a popular tool in finding top k elements from a dataset.

In top-k query user must specify some scoring functions. Based on scoring functions top

k elements are ranked and returned to the user. Let us again consider the example given

in Figure 1.1(a) where a symbolic dataset is defined with d1 and d2 attributes. Users may

evaluate data points with his/her own scoring function. If a user’s scoring function defined

by the lowest aggregate of d1 and d2, which we call “scoring function α” as in Figure 1.1(b),

then top-2 data objects based on “scoring function α” are O3 and O5. However, another

user may look for the lowest d1 and have no interest in d2, which we can be evaluated by

“scoring function β” as in Figure 1.1(b). Top-2 answer based on “scoring function β” are

2



O1 and O9. However, it is to be mentioned that, to specify scoring function user must have

some domain knowledge. Perhaps, without having domain knowledge user can not specify

scoring function correctly. Moreover, scoring function of all user are not unique. Hence,

top-k result will vary from user to user.

Social networks or social media are computer based technology that allows us to create

and share information, events, interests, photos and many other forms of expression thor-

ough virtual communities or networks. It has vast amount of services, some are standalone

others are built-in. It is hard to define social media in some few sentences. However,

according to researchers, social medias have some common features like they are usually

Web 2.0 based interactive applications, contents (usually texts, photos, events, etc.) are

generated by users. User creates service-specific profiles which are managed by the service

provider and system facilitates users to be grouped together by connecting user profiles.

Gigantic amount of data are generated in every moment in social media. These dataset

are huge and complex. Big data is a term for dataset that are too large or complex that

traditional data processing application software is inadequate to deal with them. In or-

der to process big data, conventional sequential processing algorithms and techniques are

not efficient enough. Parallel algorithms are often required to process such complex data.

While designing parallel algorithms, designers must consider new issues like robustness,

fault-tolerance etc, − as well as computational efficiency retirements. To aid designers and

programmers, different programming models have been introduced in last few decades.

MapReduce, proposed by Google Inc., is one of such parallel programming models. This

programming model was designed to process huge amount of data (i.e. big data) with a

parallel, distributed algorithms on a cluster. While using such robust framework, program-

mers do not have to worry about factors like redundancy, fault tolerance etc. A MapReduce

framework orchestrates the processing by controlling the distributed nodes, running vari-

ous tasks in parallel, managing all communications and data transfers between the various

3



parts of the system, and providing for redundancy and fault tolerance. Hadoop, maintained

by Apache Software Foundation, is an open source implementation of Google’s MapReduce

framework.

1.1 Motivation

Privacy of data has become a burning issue in database community for last few decades.

Information privacy or data privacy is known to be the relationship between collection and

diffusion of data, technology, the privacy expectation of mass people, and the political & le-

gal issues surrounding them. Privacy issues are important whenever sensitive or personally

identifiable data are collected, stored, processed and destroyed in any forms − especially

in digital form. Sometimes, we have to hide individual values to preserve privacy, and

even we may not be allowed to disclose aggregate values or order values of data objects.

We know that in computation of skyline query result it is necessary to compare domain

(or attribute) values of each data objects. Even if for any efficient or tricky algorithms,

like BBS(Branch-and-Bound Skyline) [32] or Sort-Filter-Skyline(SFS) [12], it is essen-

tial to know the domain values prior computation. Lets consider the situation when the

ownership of data does belong to several persons or organizations, who are not interested

to disclose the domain values but want to calculate the result of skyline query. Conven-

tional skyline query algorithms are unable to resolve such situations. As a part of this

research work, the author proposed a novel approach to address the issue in distributed

environment. The author proposed a model to retrieve skyline query result securely on

MapReduce framework.

k-object selection problem was introduced in [37]. It is an interesting query for the user

who wants to find top k objects but do not have any domain knowledge. Conventional top-k

query requires some scoring function to identify the top k elements from the dataset. How-

ever in k-object selection problem, the authors proposed a novel algorithm to recommend

4



k objects for those users who do not have any prior domain knowledge. The algorithm was

designed by using skyline query. In previous model [37], it was assumed that domain val-

ues of data objects are disclosable. But in the situation when data objects are property of

different entities and corresponding entities are not willing to share its data, that algorithm

will not be useful. The author enhanced the algorithm and proposed a secured model to

solve the k-object selection problem. To overcome computational bottleneck imposed by

single core computation, the author designed this algorithm using MapReduce paradigm.

Social media like Facebook, tweeter or LinkedIn are good source of valuable information.

These medias generate enormous amount of data. The rate of growth of data volume is

increasing day by day. Such huge amount of data can be used to understand mass people

more effectively. It is also possible to use these huge data to interpolate mass peoples’

choice or their way of thinking. One way to do it is to find some key persons from social

media. These key persons may be used as ambassador of some certain product or opinion.

Most of the social mining techniques are designed as graph mining problem. The author

proposed a model, using Google’s MapReduce framework, where the author used skyline

query to find some key persons from social media. The author started with designing a

model where key persons of social media can be identified using three feature matrices

and skyline query’s dominance feature. Later the author upgraded our model using five

feature matrices. Our final model uses five social matrices: Friend power(Fp), Followee

strength (Fs),“Like” score (Ls), Comment support (Cs), and Group score (Gs) along with

dominance power of skyline query.

1.2 Thesis Organization

The rest of this thesis is organized as follows: First of all the author discussed some

fundamental knowledge and related works that are required to understand this work in

Chapter 2. Chapter 3 discuss details about proposed model where the author introduced

5



a novel way to compute skyline query result without disclosing domain values. The author

designed the model base upon the distributed computing framework − MapReduce. In

Chapter 4 the author reviewed the model of secure k-object selection problem. This

model was also designed based on the Google’s MapReduce framework. In Chapter 5 the

author discussed about the mining problem of social media. This chapter discuss about our

model of selecting or finding key persons of social media. This model was proposed using

skyline query for selecting key persons of social media. Finally, Chapter 6 concludes our

work and provide some future guideline to go forward.

6



Chapter 2

Background Knowledge

In this chapter, the author discussed fundamental knowledge and related works in details.

2.1 Skyline Query

In database researchers community, skyline query is known to be one of the most popular

and useful query tool for last few decades. A skyline query retrieves a set of objects,

each of which is not dominated by another data objects. Consider the example of a two

dimensional database, given in Figure 2.1. As we know, skyline query retrieves all non

dominated objects, we can see that there exists no other objects which can claim to be

better than {O2, O4, O7} . Hence they are the result of skyline query. On the other hand,

there exists at least one objects who can claim to be better than each of the remaining

objects: {O1, O3, O5, O6}. That means they are dominated by some one else. That’s why

they are eliminated from the result set.

In order to define dominance relationship and skyline query mathematically, let us

assume that there is an n-dimensional dataset DS, {d1, d2, . . . dn} be the n attributes of

DS and, m objects {O1, O2, · · · , Om}. This dissertation uses Oi.dj to denote the j-th

dimension value of object Oi. Without losing generality, we assume that smaller value in

7
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Figure 2.1: Skyline query

each attribute is better.

Dominance: An object Oi ∈ DS is said to dominate another object Oj ∈ DS, denoted

as Oi ≺ Oj , if Oi.dr ≤ Oj .dr (1 ≤ r ≤ d) for all d dimensions and Oi.dt < Oj .dt (1 ≤ t ≤ d)

for at least one attribute. We call such Oi as dominant object and such Oj as dominated

object between Oi and Oj . Example given in Figure 2.1, O3 is better than O6 in every

dimension, hence O3 ≺ O6 but in between O3 & O1, O3 �≺ O1 and O1 �≺ O3.

Skyline: An object Oi ∈ DS is said to be a skyline object ofDS, if and only if there is no

such object Oj ∈ DS (j �= i) that dominates Oi. The skyline of DS, denoted by Sky(DS),

is the set of skyline objects in DS. For example in Figure 2.1, Sky(DS) = {O2, O4, O7}.

Candidate Skyline: Candidate skyline is a super set of skyline, which means that

the candidate skyline must include all skyline objects though it may include non-skyline

objects. We use candidate skyline because it can be computed efficiently in distributed

environment and it is effective to prune dominated objects.

Candidate skyline is a set of objects that can be selected as follows. (1) We make a list

of sorted objects for each attributes. For example, sample dataset given in Figure 2.1, we

make two lists: {O7, O2, O4, O1, O3, O6, O5} on d1, {O4, O3, O6, O1, O2, O7, O5} on d2. (2)

We iteratively pop the top object from the sorted lists and add the object into candidate

8



skyline if the object is not in the candidate skyline. If the object is already in candidate

skyline, we increment counter of the object, which keeps how many time the object is

poped from the sorted lists. We continue the iterative procedure while all the counter

values are less than the number of attributes. In the example, {O7, O4} are added into

candidate skyline. Similarly, we add {O2, O3}. Then, we can find that the next object

O4 is already in candidate skyline and the counter for O4 becomes 2, which is the number

of attributes. Therefore, {O7, O4, O2, O3} are Candidate skyline in Figure 2.1. Note that

if one of the counter values becomes the number of attributes we can prune other objects

that are not in candidate skyline since all the other objects are dominated by the object

whose counter value is the number of attributes. In the example, O4 dominates all other

remaining objects.

It is possible to calculate Candidate skyline list without doing any single dominance test.

As the complexity of skyline computation depends on dominance test, it may be considered

as an efficient way of pruning non-dominant data objects. The way of calculating Candidate

skyline is explained in one of our paper [38].

2.2 Secure Skyline Query

The idea of “Secure skyline query” comes from the necessity of data privacy issue. Now

a days, computational complexity as well as data privacy have attracted considerable im-

portance from researcher community. From the definition, we know that: in order to

find the result of skyline query we have to check dominance relation. Dominance relation

can not be verified without knowing domain values of each attribute. Tricky algorithms

like Branch-and-Bound Skyline(BBS) [32] or Sort-Filter-Skyline(SFS) [12] also require

domain values to be disclosed. Assume a situation where the dataset belongs to different

parties and they are willing to find the result of skyline query but do not want to dis-

close their domain values. To understand the query problem, lets consider the example

9
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Figure 2.2: Secured Skyline query Problem

given by Figure 2.2. As shown in that example, data objects {O1, O2, O3} belongs to

Party1 and {O4, O5, O6, O7} belongs to Party2. In case where Party1 & Party2 want

to find the skyline query result but do not want to share domain values, skyline compu-

tation using conventional technique become impossible. Using conventional technique we

have to perform dominance check between objects of Party1 : {O1, O2, O3} and objects

of Party2 : {O4, O5, O6, O7} without knowing their d1 & d2 values − which is technically

impossible. The proposed model, explained in Chapter 3, addressed the issue and found

some solutions of this problem. The solutions were designed by using Google’s MapReduce

programming models and implemented on hadoop framework.

2.2.1 Hadoop - MapReduce

MapReduce is a programming model and software framework first proposed by Google Inc.

This programming model was designed to process huge amount of data (i.e. big data)

with a parallel, distributed algorithms on a cluster. While using such robust framework,

programmers do not have to worry about factors like redundancy, fault tolerance etc. A

MapReduce framework orchestrates the processing by controlling the distributed nodes,

running various tasks in parallel, managing all communications and data transfers between

10



the various parts of the system, and providing for redundancy and fault tolerance.

Users specify a map function that processes a key/value pair to generate a set of interme-

diate key/value pairs, and a reduce function that merges all intermediate values associated

with the same intermediate key. Many real world tasks are expressible in this model.

Hadoop is an open source implementation of the MapReduce framework, maintained

by Apache Software Foundation [5]. This framework is designed to allow users to define a

MapReduce job only by defining the map and reduce functions. In this framework, data are

represented as 〈key, value〉 pairs and computations are distributed across a shared nothing

cluster of autonomous machines. Jobs to be performed using the MapReduce framework

mainly refer to two user-defined functions, called Map and Reduce:

Map(k1, v1) → list(k2, v2)

Reduce(k2, list(v2)) → list(v3)

The Map function (sometimes called Mapper) processes on each 〈key, value〉 pair of input

data, and produces intermediate 〈key, value〉 pairs. The intermediate 〈key, value〉 pairs

are then sorted and grouped associated with the same intermediate key. The Reduce

function (sometimes called Reducer) takes a key and a list of values for that key, applies

the processing algorithm, and generates the final result. Models proposed by this research

work are basically MapReduce based algorithms. We designed algorithms which explore

the strength or power of parallel computing in distributed environment.

2.2.2 Secure Skyline Query Related Works

Proposed “Secure Skyline Query” model is motivated by previous studies of skyline query

processing, multiparty secure computation, as well as MapReduce based query processing.

11



Skyline Query

Borzsonyi et al. have proposed the skyline operator over large databases and proposed

three algorithms, which are Block-Nested-Loops(BNL), Divide-and-Conquer (D&C),

and B-tree-based schemes [9]. BNL compares each object of the database with every other

objects, and reports it as a result only if any other object does not dominate it. D&C

divides the dataset into several partitions such that each partition can fit into memory.

Local skyline objects for each individual partition are then computed by a main-memory

skyline algorithm. The final skyline is obtained by merging the local skyline objects for each

partition. Kossmann et al. improved the D&C algorithm and proposed nearest neighbor

(NN) algorithm for efficiently pruning dominated objects by partitioning the data space

iteratively based on the nearest objects in the space [22]. Chomicki et al. proposed Sort-

Filter-Skyline(SFS) as a variant of BNL [12], which can improve BNL by presorting. The

most efficient method so far is Branch-and-Bound Skyline(BBS), proposed by Papadias

et al., which is a progressive algorithm based on the best-first nearest neighbor (BF-NN)

algorithm [32].

Recently, parallel computing paradigm becomes very popular for skyline computation.

W.T. Balke et al. have introduced skyline queries in distributed environments in [7].

Vertically partitioned web information are supported by their work. Thereafter, within the

literature, abundant studies achievements had been received to address distributed skyline

queries. Both of Wang et al. and Chen et al. researched skyline queries in structured

P2P networks, named BATON networks, where peers are responsible for a partial region

of data space [44]. Rocha-Junior et al. [35] proposed a grid-based approach for distributed

skyline processing (AGiDS), which assumes that each peer maintains a grid-based data

summary structure for describing its data distribution. Arefin et al. [6] worked on agent

based privacy skyline-set for distributed database but the problem solved in this paper is

different from the conventional skyline query, which we are considering in this work.
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The MapReduce framework, which have been developed by Google, has become popular

to process queries over big data due to its scalability and fault tolerance. In [48], Zhang et al.

first proposed a preliminary way for skyline queries inMapReduce framework. Three skyline

algorithms, called MR-BNL, MR-SFS and MR-Bitmap, were proposed by the author using

the MapReduce framework. In [33], Park et al. introduced an efficient parallel algorithm,

SKY-MR, for processing the skyline queries. In the SKY-MR algorithm, a sky-quad tree

was introduced with a sample of the entire dataset and was utilized in the data partition

and local pruning.

Multi-party Secure Computation

Multi-party computation problem, which was introduced by Yao [46] and extended by

Goldreich, Micali, Wigderson [17] and many others, has attracted attention in privacy-

aware computing environment. Secure function evaluation, as was introduced by Yao,

allows a set P = {p1, · · · , pn} of n players/parties to compute an arbitrary agreed function

of their private data, even if an adversary may corrupt and control some players/parties in

various ways − the privacy of data will be preserved. Security in Multi-party Computation

means that the parties’ data remain secret (except for what is revealed by the intended

results of the computation) and that the results of computation are guaranteed to be

correct[17]. In general, Multi-party Computation protocols tend to be less efficient than

specific purpose protocols.

In privacy-preserving data mining problems, there are another multi-party secure com-

putation problems that have been discussed in the literature. Lindell and Agrawal proposed

two different privacy preserving data mining problems. In the problem defined in Lindell’s

paper [26], two parties, both having non public databases, want to jointly conduct a data

mining operation on the union of their two databases. The problem is how to compute

the operation without disclosing their database to other parties, or any third party. On

13



the other hand, in Agrawal’s paper [3], the problem is as follows: one party say ”Alice” is

allowed to conduct data mining operation on a private database owned by another party

say ”Bob”, the problem is how could Bob prevent Alice from accessing precise information

in individual data records, while Alice is still able to conduct the data mining operations.

Lindell and Pinkas used secure multi-party computation protocols to solve their problem,

while Agrawal used the data perturbation method.

MapReduce Implementations of Skyline Query

Google’s MapReduce [8, 19, 42] and its open source variant Hadoop [5] are powerful tools

for building scalable parallel applications. Recently, MapReduce has attracted a lot of

attention in handling “big data”. There exist some recent works on large-scale skyline

computation using MapReduce [21, 40]. In [36, 41], we have proposed a MapReduce based

algorithm to process k-dominant skyline query. The k-dominant skyline query can reduce

the number of retrieved objects by relaxing the dominance definition, in which an object

more likely to be dominated. However, all of the above methods cannot preserve privacy

of individual object during the distributed computation.

2.3 k-object Selection Query

k-object selection query is inspired by top-k query. The top-k query is considered as another

popular query tool in database researchers community. In order to retrieve results, in top-k

query, user have to define some scoring or ranking functions. Based on the scoring function

top k elements are returned to the user. But in situation when users do not have any prior

domain knowledge, it is difficult to specify scoring function. Moreover, scoring function of

different users may vary a lot. Hence, top-k results for one user may useless for another

user. To resolved the issue, k-object selection query was introduced in [37]. The result of

k-object selection query ensures that the outcome of the query will be useful to every user
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who have different linear scoring function on any domain attribute. Moreover, in k-object

selection query user do not have to specify any scoring function, hence, necessity of domain

knowledge is eliminated.

Top-k Query: If k be a positive integer and w be a weighting vector then the result set

TOPk(w) of the top-k query is a set of objects such that TOPk(w) ∈ DS, |TOPk(w)| = k

and ∀Oi, Oj : Oi ∈ TOPk(w), Oj ∈ DB − TOPk(w) it holds that Fw(Oi) ≤ Fw(Oj) where

Fw(O) is the inner product value ofw andO. In top-k query the number of retrieved objects

can be specified. However, specifying weight vector is not an easy procedure for users. The

information-retrieval society have been using keyword-based querying for decades. In such

information retrieval system a user specifies a keyword and gets necessary objects that

are closely related to that keyword. We assume that a user can specify k,the number of

necessary object, but can not specify any weighting vector.

2.3.1 k-object Selection Query Related works

Top-k about skyline queries were studied in [25, 32, 39]. Ranked skyline and k-dominating

queries were introduced by Papadias, et al. in [32]. If a set of objects in d-dimensional

space are given, a monotonic ranking function returns k objects in the d-dimensional space

which have the best (smallest or greatest) scores according to an input function. However,

k-dominating queries retrieve k objects that dominate the greatest number of objects.

Representative skyline query is discussed by Lin et al. in [25]. The query is formulated

as to select k skyline objects according to a objective function. The objective function is

pre-defined. Representative skyline query finds a set of k objects among all skyline objects

such that the number of objects dominated by this set is maximized.

An alternative definition of representative skyline query was defined by Tao, et al. [39].

A representative skyline query finds k representative objects from all skyline objects such

that the sum of the distances between each skyline object and its “closest” representative
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object is minimized. All of the idea mentioned above are to find k objects given a dataset

DS where attribute preferences or scoring functions in the dataset are also given.

2.4 Social Network Mining

Social network, also known as social media, are computer based methodology that allows

us to create and share information, events, interests, photos and many other forms of

expression thorough virtual communities or networks. Due to the vast amount of social

media services (standalone as well as built-in), it is hard to define social media in some

few sentences. However, according to researchers opinion, social medias have some com-

mon features: they are usually Web 2.0 based applications, contents (text, photo, events,

etc.) are generated by users, user creates service-specific profiles - managed by the service

provider and system facilitates users to be grouped together by connecting user profiles,

etc. Gigantic amount of data are generated in every moment in social media. These huge

amount of data can be used to manipulate mass people opinion more efficiently. Finding

some key persons could have been an interesting use of such huge amount of data. Most

of the researchers have considered social media mining as a problem of graph mining and

shown efficient ways to use graph mining algorithms. In our proposed model we have used

the dominance check principal of skyline query to find some key persons from social media.

We have used five social media matrices to address the issue and our proposed model uses

Google’s MapReduce frame work architecture in order to achieve parallelism to process

enormous amount of data from social media.

2.4.1 Social Media Mining Related Works

Discovering individuals who possess a given set of expertise, or who are familiar about a

given topic, is a widely studied problem, usually known as the expert retrieval problem.

The “expert finding task” was introduced by TREC in 2005. That task involved the
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exploration of an enterprise-data corpus (an email archive) and the retrieval of a set of

individuals who are specialists in some given topic. DeMartini et al. have introduced a

model for retrieving and ranking entities with its application to find experts [16]. The

“expert team formation problem” is known as another characterization of the expert finding

task. Such an approach uses the social associations among individuals, and the cumulative

communication cost as the optimization term of the objective function [23]. Cao et al.

have addressed the jury selection problem by using micro-blog services like Twitter to

solve decision-making tasks [10]. In order to reduce the overall decision-making error rate,

the authors have introduced two models for selecting jury members. They predict the error

rate of each user by evaluating a Twitter graph.

Although several works discussed user profiling on social media [4] [28], to the best of

our knowledge, our work is the first attempt that applies skyline query on Facebook, and

it performs an extensive analysis of the performance on different online groups. Therefore,

this research work complements the existing efforts for addressing key the person selection

problem and creates an opportunity to recruit them as brand ambassador.
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Chapter 3

Secure Skyline Query

A skyline query retrieves a set of representative objects, each of which is not dominated by

another object.

Recently, we have to be aware of privacy of individual object in a database. So far, a lot

of algorithms for computing skyline query have been proposed, some of which are designed

in distributed computing environment to be able to handle “big data” [1, 21, 33]. However,

none of them considered privacy issues in a database. In this Chanter, the author proposed

a novel approach so that data can be processed in distributed manner, meanwhile privacy

of individual object has been preserved.

Assume that many organizations have done some surveys about commission cost and

risk prediction. Assume that each of the organizations has collected a same kind of privacy

information of their customers. Since each organization does not want to disclose the

database, each can not compute skyline query of the union of all organizations’ databases

but only compute skyline query of its own database. It is no doubt that the skyline of the

union is more valuable than that of each.

Suppose, for example, two individual organization have done some market research

and they have collected a database about commission cost and risk prediction. These
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Figure 3.1: Multi-Party Skyline Computation

information are sensitive and both the parties are not wanting to disclose the values of

individual object. But, these two parties are willing to get the outcome of skyline query

of the cost and the risk from the union of the two parties’ database. In conventional

skyline computation methods, it is not possible to get the result of skyline query result

without disclosing the values to others. Proposed method can solve this issue, not only by

preserving data privacy but also by doing the job in distributed MapReduce framework.

The remaining part of this chapter is organized as follows.

Section 3.1 discusses about the problem statement. In Section 3.2, the author specified

details of the algorithms with proper examples and analysis.

3.1 Multi-Party Secure Skyline Problem

Let us consider a situation where several organizations have done some surveys about

commission cost and risk prediction. This paper assumes that each of the organizations

has collected a same kind of privacy information of their customers. Each organization

wants to find the result of skyline query of the union of these organizations’ databases.

But, none of them is allowed to disclose values of their database to other organizations.

We call participant organizations of the skyline computation as parties. To accom-
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plish the computation, we use a trusted third party as Coordinator. We assume that

Coordinator is not vulnerable to intruder and will not disclose sensitive information.

To simplify the problem, we assume the number of participant parties is two and denote

the two parties as DataNode1 and DataNode2, respectively.

In order to ensure the privacy of communication between the Coordinator andDataNodes,

the Coordinator uses Public-key cryptography, that is the Coordinator is equipped with

a public key (key1) and a private key (key2). DataNodes are informed about the key1 of

Coordinator and before sending any data packet to Coordinator, it must be encrypted by

key1. Only Coordinator can decrypt the data using key2. Similarly, both DataNodes use

the Symmetric-key cryptography for their own data’s privacy. Let the cryptography keys

be key3 and key4 for DataNode1 and DataNode2, respectively.

3.2 Multi-Party Secure Skyline Algorithm

The proposed algorithm consists of six steps: (1) Preparing the 〈key, value〉 pair, (2)

Ordering with MapReduce, (3) Disguise the original order, (4) Return of disguised order

values, (5) Merging and sorting, and (6) Skyline computation.

3.2.1 Preparing the 〈key, value〉 pair

In order to avoid confusion, we will denote encryption-key for the cryptographic key to

distinguish with the key of 〈key, value〉 pairs, which are used in MapReduce framework.

In Figure 3.1, each DataNode has a collection of two dimensional sensitive data. Both

DataNodes perform Symmetric-key cryptography (e.g. DES -Data Encryption Standard)

with private encryption-key before sharing any data with Coordinator.

Figure 3.2 illustrates the encryption and how to generate 〈key, value〉 pair’s of the first

digit, digit1, (the least significant digit). In the example, only the dimension d1 is described

though the same encryption were performed on all the sensitive dimensions. Each party
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Figure 3.2: Generation of 〈key, value〉 pair

encrypts their data as follows: (1) Each DataNode adds redundant bits for each ID by

using CRC(Cyclic Redundancy Check) scheme [45]. We call this process as “CRC Padding”.

Assume that, for the example case given in Figure 3.2, first record of DataNode1 whose

ID is O1, after padding modulo string becomes O′
1. (2) IDs with padded CRC bits, are

encrypted by the corresponding node’s encryption key. In example, we generate “key” (k11)

for the first record of DataNode1 (whose original ID was O1 , after padding it became O′
1)

by encrypting with key3. Note that owner of the encrypted id can decrypt but any other

parties cannot. Though CRC scheme is usually used as a transmission error checking tool,

we also used the CRC scheme to check whether a processed 〈key, value〉 is DataNode’s

(is inherent in DataNode). (3) We generate 〈key, value〉 pairs of the first digit (the least

significant digit). For example, 〈key, value〉 pair of the first record of DataNode1 is 〈k11, 8〉

(as the digit1 of dimension d1 for object O1 is 8) .

In our method, a key (an encrypted id) of a 〈key, value〉 pair must be unique. However,

there is a possibility that different records happen to have a same key (encrypted id) though

the possibility is extremely small. If such a collision is found by Coordinator, Coordinator
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Figure 3.3: Ordering with MapReduce

forces all DataNodes to reproduce keys (encrypted ids) with different “CRC Padding”.

Hence the possibility of conflicting in “CRC Padding” can be eliminated.

3.2.2 Ordering with MapReduce

In this stage, we order the encrypted ids based on their digit1 values in distributed manner

with MapReduce framework. The encrypted values of data IDs and corresponding digit1

values are stored in distributed file system (DFS ) more specifically in HDFS (Hadoop

Distributed File System). The Mapper reads each 〈encrypted id, digit1〉 and depicts as

Mapper ’s output: 〈digit1, encrypted id〉. According to the working principle of MapRe-

duce framework, the digit1 serves as key. MapReduce framework will shuffle and sort the

〈key, value〉 pairs so that the key (digit1) values are ordered and tagged together. The

Reducer layer collects the shuffled values and produce the sorted order of encrypted ids.
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Figure 3.4: Disguise the original order

Note that several encrypted ids may have same digit1 value as key and they will have the

same ranking index.

In Figure 3.3, we can see that a Mapper takes the 〈k11, 8〉 pair as input and produces

〈8, k11〉 as output. Similarly, a Mapper takes 〈k13, 1〉 and produces 〈1, k13〉, and so on.

After the shuffling, pairs are grouped by key and are feeded into Reducer layer. Reducer

produces the sorted order of encrypted id.

3.2.3 Disguise the original order

In order to conceal the actual order ({1, 2, 3, ...}) from intruders, we had better to shift

the density of the order distribution. The detailed idea of the order value transformation

is discussed in [2]. Brief explanation of the transformation is as follows: First of all, we

have to select a target distribution other than uniform distribution. Target distribution is

a user specified data distribution function such as Gaussain or Zipf or similar distribution.

After choosing the target distribution, we have to generate |X| unique values from the

target distribution where X is the collection of ordered sequence indices. Then, we sort

the generated random values into a table T. The sorted ith index value of ordered list
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Figure 3.5: Decryption and gathering order

(encrypted id) is then given the order value of T[i].

In Figure 3.4, our Distribution Shifter module receives the target distribution and

generate 6 unique (because, |X|= 6) values and after ordering T= {05, 06, 08, 15, 18,

23}. From previous step, we know that k17’s rank is 1 in our sorted list. We will replace

this rank with the first value of T, i.e., the new order index of k17 is 05. Similarly, k13’s

order index will be 06 and so on. Hence, we have been able to shift the order index while

preserving the order sequence − which we call as disguised order.

3.2.4 Return of disguised order values

Disguising the rank by the previous procedure makes the order of encrypted ids difficult

to find while it preserves the original order. After transferring distribution of the rank

values, the results are sent back to both DataNodes. Note that other parties cannot infer

the sensitive information since the original IDs are encrypted.

After receiving the result of the previous step, each DataNode tries to decrypt the

encrypted id with its own encryption-key. If the DataNode owns the received data, the

DataNode can easily identify it by the decrypted ID and the CRC code checking. For
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Figure 3.6: Merge and Sort

example, in Figure 3.5, when DataNode1 tries to decrepit k17 with its encryption key,

key3, it will get some value. Since the k17 does not belong to DataNode1, the CRC check

“Fails”. As the CRC “Fails”, DataNode1 discards further process of k17 data segment.

On the other hand, k11 passes the CRC check of DataNode1. Then, DataNode1 processes

k11 for the next round. Similar process is followed by each DataNode.

3.2.5 Merging and Sorting

After receiving the disguised order of digit1, each DataNode’s next job is to merge those

values with digit2 values. These new values along with encrypted IDs are sent to MapRe-

duce framework for sorting to get the order of digit2 and digit1. The encryption of IDs can

be done, after CRC padding, by using the encryption-key as mentioned in Section 3.2.1.

The encryption-key may be different to that used in digit1. In Figure 3.6 show the process

of the digit2 values. In DataNode1, O1 has been encrypted to a new encrypted id “k21”.

Since digit1’s disguised order of O1 is 23 and digit2’s value is 3, DataNode1 constructs the

concatenated value 3.23, which makes the order of digit1 preserved. Similarly, for O2, the

concatenated value becomes 2.08. After calculating all the concatenated values of dimen-

sion d1, we feed these data to MapReduce framework to get the order of ID’s. Similarly,
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we calculate the order of other dimension’s values. These orders will be used to calculate

a skyline query.

3.2.6 Skyline computation

From the output of MapReduce in the previous step, the Coordinator get the order of data

on each dimension. Coordinator uses these order to calculate candidates of skyline query.

The detailed process of this skyline calculation, which does not use individual values but

the orders, has originally published in [38]. In the work [38], the authors partition dataset

vertically and sort each partition. Then, Coordinator collects (ID, Rank) pairs. Figure 3.7

show the example. The left table of the figure has the encrypted-ids ordered by each

dimension rank value. ID(d1) is the sorted ID of d1, which shows that object k27 is the

1st and object k22 is the 2nd and so forth. Similarly, object k24 is the 1st on d2 and object

k23 is the 2nd and so forth.

Coordinator maintains a counter for each object. In the beginning, the counter for each

object is set to zero. Coordinator reads the encrypted-ids from the 1st row and increments

the counter values based on the row value. In the running example, the counter of k27

and k24 are incremented by the 1st row. Next, the counter of k24 and k23 are incremented

by the 2nd row. Next, the counter of k24 and k25 are incremented by the 3rd row. If

one of the counter becomes the number of dimensions, Coordinator will stop the increment

procedure. In the running example, Coordinator stops the increment procedure when k24’s

counter becomes 2 in the 3rd row. Then, Coordinator collects IDs whose counter value

is not 0 as a candidate skyline. In the example, the candidate will be {k27, k22, k24, k23}.

Note that other objects must be dominated by k24 whose counter values is 2.

After the candidates are collected, we examine dominance for all pairs of the candidate

objects. We use a sort filtering skyline (SFS) method [12] based on the order of the

counter values. As the number of candidates are much smaller than the number of objects
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Figure 3.7: Candidate Generation and skyline Computation

any skyline processing algorithm can check the dominance without spending a lot of time.

In the example, we can find that k23 is dominated by k24 and Coordinator finalizes the

skyline result as {k27, k22, k24} which are encrypted-ids of {O7, O2, O4}, respectively.

In Figure 3.7, the left table, which has order for each dimension, contains encrypted-ids.

In the figure, we explain the candidates generation procedure assuming k21 in d1 and k21

in d2 is the same. But, we have to note that the encrypted-ids for d1 and those of d2

are different, which prevents compromising relative merits of two anonymous records. In

the candidate generation process, each DataNode discloses the identity of encrypted-ids to

Coordinator. Only Coordinator knows the information of the left table. Each DataNode

does not find the information of records in the table that are owned by others.

3.3 Experiments

This section reports our experimental results to examine the effectiveness and efficiency of

proposed method. We have configured a cluster of 4 commodity PCs in a high speed Giga-

bit Ethernet networks, each of which has an Intel Core 2 Duo E8500 3.16 GHz CPU, 8GB

memory. We have compiled the source codes under Java V8. We have used Hadoop version

2.5.2 and 64 bit Cent-OS 7. We have set the replication parameter of Hadoop cluster to 2.
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Figure 3.8: Effect of Encryption & Ordering Process

Since none of the existing algorithm has considered the computation issue of secure skyline,

we could not compare to others. Instead, we could check the scalability of ours and report

a comparison of the time of skyline computation with the security enhancement and the

time of skyline computation without the security enhancement. We have used synthetic

dataset. The aim of our experiment design was to check computational overhead secure

approach over traditional non-secure approach.

A. Effect of encryption process over data distribution: Figure 3.8 (a) shows

the effect of encryption process over data distribution. We have varied data size from 50k

to 250k per node. Our experimental results for a single iteration of the process explained

in Section 3.2.1 shows that the runtimes are identical for Anti-correlated, correlated and

Independent dataset. Hence no effect of data distribution upon this step.

B. Ordering with MapReduce: Ordering with MapReduce is one of the vital time

consuming part of the proposed work, described in Section 3.2.2. Figure 3.8(b) shows

us the runtime comparison of different data distribution for MapReduce ordering. These

runtimes are recorded for a single iteration. We varied data size from 100k to 500k. It

shows that the ordering time varies very little (in terms of few milliseconds) for different

distribution.
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Figure 3.9: Disguising original order, Candidate selection & Skyline computation

C. Disguising the Original Order: Figure 3.9(a) shows the execution time com-

parison for Disguising the original order among different data distribution. The process is

described in Section 3.2.3. Our experimental results shows that this process is not affected

by data distribution at all. As shown in figure, we have varied our dataset size from 100k

to 500k and found the execution times are identical for Anti-Correlated, Correlated and

Independent data distribution.

D. Candidate Selection and Skyline Computation: This process is described in

Section 3.2.6. As shown in Figure 3.9(b), this process is affected by data distribution. We

varied our dataset size form 100k to 500k and found that this process is more efficient for

Correlated dataset and less efficient for Anti-Correlated dataset. However, the performance

for Independent dataset lies in between the performance for Anti-Correlated and Correlated

dataset.

E. Effect of domain value length: One of the interesting finding for our proposed

algorithm is given in Figure 3.10(a). In this experiment we have fixed the data size to 200k

and used two dimensional data but varied the domain value digit length and record the

execution time for complete calculation. We can see that the domain value digit length has

considerable effect on our proposed method. However, in conventional non-secure skyline
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Figure 3.10: Effect of domain value digit length & Secure vs Non-Secure Computation

algorithms like SFS are not affected by such digit length.

F. Secure vs Non-Secure Computation: Figure 3.10(b) gives us an idea about

computational overhead due to impose of secure computation scheme. It is obvious that

the secure approach requires some extra execution time. However, we can notice that

the computational overhead seems to be an identical value though the data size increased

linearly. Hence, it may not be considered as overhead when processing “big data”. In this

experiment we have fixed the domain value digit length to 3 and data dimension to 4.

3.4 Concluding Remarks

This chapter addresses the problem of privacy in distributed skyline query computation. In

privacy aware situation, we have to take into account the problem. The author proposed

a secure skyline query computation in MapReduce framework, which is a popular “big

data” computing framework. Through intensive experiments, the author demonstrated

the effectiveness and scalability of the proposed algorithm. In future, the author wants to

design optimized mechanisms for the proposed secure skyline computation. In addition,

the author wants to consider secure computation of other variants of skyline queries, such

as k-dominant skyline, k-skyband.
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Chapter 4

Secure k-object Selection

Top-k queries have been extensively used to make a choice of preferable objects from large

dataset. A scoring function and a number k, for number of objects to be selected, are

specified by users. Then, top-k query returns k objects based on the user defined scoring

function. It is quite possible that scoring functions of every user may not be similar for

selecting top-k objects, which indicates that the top-k query results are valuable for those

users who share an identical scoring function. And it has already been mentioned that to

specify a scoring function user must have some prior domain knowledge. k-object selection

query is inspired by the drawbacks of top-k query selection.

In this chapter, the author proposed a k-object selection mechanism that chooses various

k objects which are preferable for all users who may have non-identical scoring function;

meanwhile, it also ensures the privacy of attribute value during the process of computation.

4.1 k-objects Selection Problem

As illustrated in Figure 4.1, assume that, a symbolic dataset DB is partitioned between

two parties: Party1 & Party2 and the partitioned data are private. In order to select the

desired result of our k-object query, The author introduces an entity: “Partially Trusted
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Figure 4.1: Running Example

Coordinator”. The “Coordinator” is called “Partially Trusted”, because it does not dis-

close any value to other parties. The “Coordinator” is configured to perform Asymmetric

Cryptography, hence equipped with two encryption keys: one is known as public key −

key1, whenever parties send any data to the “Coordinator” it must have been encrypted

with key1. Another is known as private key − key2, data encrypted by key1 can only be

decrypted by key2. No one but the “Coordinator” knows key2. Besides “Coordinator”s

cryptographic configuration, parties are configured to perform Symmetric cryptography too.

Hence, each party has its own encryption key, for example, key3 & key4 are the Symmetric

encryption keys for Party1 & Party2 respectively. key3 & key4 are known to respected

parties only. Our algorithm is based on MapReduce framework and our Partially Trusted

Coordinator plays the role of master node of that cluster. In this research work, the au-

thor have proposed an efficient secure algorithm, which selects various k objects using

MapReduce.

4.2 Secure k-objects Selection using MapReduce

Proposed algorithm is composed of following five steps: (1) Preparing the 〈key, value〉

pair, (2) Sorting & disguising order using MapReduce, (3) Returning of ordered values, (4)
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Figure 4.2: Preparing the 〈key, value〉 pair

Merging, sorting and disguising original rank and, (5) Retrieving the k-object.

4.2.1 Preparing the 〈key, value〉 pair

In the beginning of explanation, let us note that key of 〈key, value〉 pair has no relation

with the term cryptographic encryption key. To avoid confusions, from now on, we will

denote the key for cryptographic encryption only by keyencr. Now, as shown in Figure 4.2,

each party has a collection of two dimensional data which are non-disclosable. Both parties

are capable to perform Symmetric cryptography (e.g. DES -Data Encryption Standard),

hence they are equipped with an encryption key, which is known to the corresponding party

only. Each party encrypts the ID of data using that encryption key. Before encrypting,

a predefined text segment (or character stream) is concatenated, as prefix, with the ID

of each data object. Reason of such concatenation is simple. This will help the party to

identify its own data later when the encrypted part will be decrypted again. Therefore, the

necessity of searching each parties′ entire data-space, for identifying its own data ID, will

be eliminated. Hence, the performance will be boosted. After encrypting the ID with some

prefix, we will get a new ID, let us call it encrypted id, which will be served as key (not

encryption key, but the MapReduce key-value pair’s key) for our consequence processing.
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For choosing the value parameter, first time, we will use the right most digit of the first

dimension. The same process will be repeated for all remaining digits and dimensions too.

To understand the idea of this stage more clearly, let us consider the example illustrated

by Figure 4.2. In the given example, we have considered the attribute price only. The ID

of first data of Party1 is O1. A prefix “*” is added with O1 and using its private encryption

key : key3 the ID with prefix is being encrypted. Assume that the encrypted id is k1. Any

outsider cannot recognize the original ID from the value k1 unless he/she has access to

encryption key : key3. We have already mentioned that key3 is known to Party1 only.

This encrypted id will serve as key in the next stage of processing which will be done in

MapReduce framework. Now, we will choose the right most digit (digit1) of the attribute

price as value. In the example, price value of O1 is 03, that implies the digit1 will be 3 for

O1. Hence, the 〈key, value〉 pair for this instance is: 〈k1, 3〉. And for next data object O2

the 〈key, value〉 pair will be: 〈k2, 7〉 and so on.

After constructing the 〈key, value〉 pair, data are sent to the “Coordinator”. As we

have already mentioned that the “Coordinator” plays the role of master node of our Hadoop

cluster, it processes the submitted data in MapReduce framework. The communication in

between the parties and “Coordinator” must have been encrypted by key1, so that only

the “Coordinator” can read the submitted 〈key, value〉 pair by decrypting key2. The same

process is followed for all data in Party1 & Party2.

4.2.2 Sorting & disguising order using MapReduce

In this stage, we sort the encrypted ids based on their digit1 values. The actual order of

the encrypted id are disguised due to privacy issue − as in some situations order itself a

sensitive information. We have done the job in withMapReduce framework. It is to be men-

tioned that we have used the most popular open-source implementation ofMapReduce − the

Hadoop framework. The encrypted values of data IDs and corresponding digit1 values are
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Figure 4.3: Sorting and disguise order using MapReduce

stored in distributed file system (DFS ) more specifically in HDFS (Hadoop Distributed File

System). The Mapper read each 〈encrypted id, digit1〉 and depict 〈digit1, encrypted id〉 as

Mapper ’s output. According to the working principle of MapReduce framework: the digit1

serves as key and the framework itself will shuffle and sort the data; so that the values with

similar key are tagged together and ordered. The Reducer layer collects the shuffled values

and produce the sorted order of encrypted ids. It is to be noted that several encrypted ids

may have same digit1 value as key and they will have the same ranking index.

In Figure 4.3 we can see that the first Mapper is taking the 〈k1, 3〉 pair as input and

producing 〈3, k1〉 as output. Similarly the next Mapper taking 〈k3, 9〉 and producing 〈9, k3〉,

and so on. After shuffling, values with similar key are grouped together and fed into Reducer

layer and the Reducer produces the sorted order of encrypted id. It is to be mentioned
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that, this ordered sequence ({1, 2, 3, ...}) is uniformly distributed.

After getting the order index, we need to disguise the actual order. We have already

mentioned that the sorted output of order sequence for encrypted id is actually uniformly

distributed. Because the default distribution of a order sequence is uniform. In order to

hide the actual order ({1, 2, 3, ...}) from intruders, it is a better idea to shift the density

of distribution to a target distribution. The details idea of this work is discussed in [2]. In

brief it could be expressed as follows: First of all we have to choose a target distribution

other than uniform distribution. After choosing the target distribution, we have to generate

|X| unique values from the target distribution where X is the collection of ordered sequence

indices (e.g.X = {1, 2, 3, ...}, and for digit1 the maximum value of |X| can be 10, but for

next iteration it will be larger: 10n for digitn). Sort the generated random values into a

table T . The sorted ith index value of ordered list (encrypted key) is then given the order

value of T[i].

If we look at the Figure 4.3, our Distribution Shifter module receives the target distri-

bution and generate 6 unique (because, |X|= 6) values and after ordering T= {05, 06, 08,

15, 18, 59}. From previous stage, we already know that k6 is ranked 1 in our sorted list.

However, we will replace this index with the first value of T. i.e. the new order index of

k6 is 05. Similarly k1, k5, k8 & k9’s order indices will be 06 and so on.

Hence we have been able to shift the order index while preserving the order sequence.

4.2.3 Returning of ordered values

Transferring to target distribution ensures us that the order indices of encrypted ids are

not disclosing the actual order information while we are also preserving the original order

sequence. After re-indexing the order-indices, results are sent back to both parties. As

the actual IDs are encrypted and order-indices are disguised, it’s not possible for Party1

or any third party intruder to retrieve any information of Party2 or vice-versa. After
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Figure 4.4: Decryption and gathering order

receiving the result from previous stage, each parity tries to decrypt the encrypted id with

its own encryption key. If the data belongs to the corresponding party, after decryption,

the party can easily identify it by checking the prefix it added in time of encryption. If the

decrypted ID does not start with the original prefix, it does not belong to that party. So

the party dispose that ID. If the prefix matches, the ID is searched and corresponding

order index is stored into its data repository. It is possible that, due to some coincidence,

several parties may have used same prefix or after decryption the decrypted ID is matched

with party’s original prefix. In that case the ID search throughout the data repository will

go in vain. It is difficult to find some way to avoid such coincidence. In other situations,

prefix addition will enable us to avoid unnecessary searching for deciding whether or not

this ID belongs to current party.

In Figure 4.4, when Party1 tries to decrepit k6 with its own encryption key: key3, it

gets some garbage values (not starting with “*” ). That indicates: k6 does not belong to

Party1. However, when k1 is decrypted, it results ∗O1, where “*” is the original prefix
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Figure 4.5: Merging, sorting and disguising original rank

added by Party1. Now the entire data repository is searched for O1 and when found then

O1 ’s disguised order value 06 for price attribute’s digit1 is preserved for next stage use.

4.2.4 Merging, sorting and disguising original rank

After receiving the order indices for digit1, each party’s next job is to merge those values

with digit2 values. These new values along with encrypted IDs are sent to MapReduce

framework for sorting to get the actual order. The encryption of IDs can be done by using

previous encryption key. But it is better to perform encryption with a new keyencr. The

idea of adding a prefix (described in section 4.2.1) is also applicable here. If we add new

character stream as prefix, using the old encryption key may also be acceptable. Again, as

the actual order will be uniformly distributed, the process described in section 4.2.2 will

be used to disguise the order rank.

In the Figure 4.5, we can see in Party1, O1 has been encrypted to a new value V1. We

can also see that the digit1 index of ID O1 is 06 and digit2 value is 0. And from that

information we construct the next value of price attribute as 0.06. Similarly, for ID O2 the

next value is 1.15. After calculating all the next values of price attribute, we feed these
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Figure 4.6: Disguised rank for distance & (price+ distance)

data to MapReduce framework to get disguised order of ID’s. The process is similar to

what we have explained in section 4.2.2. We have to calculate the disguised rank of other

attribute (e.g. distance) values too. Figure 4.6 shows the calculative result of the process

for distance and (price + distance) attribute. These orders will be used to calculate the

candidate of our result.

4.2.5 Retrieving the k-objects

Now, we have to find a list of candidate for skyline from the disguised attribute ranking

indices. For better understanding, in this section we are presenting the data IDs in plain

text format. In actual situation they will be encrypted by the corresponding parties. The

process of getting candidates skyline has originally proposed in one of our previous work,

but we omitted the reference for blind review. In the work, we have partitioned the dataset

vertically and sort each partition. That means, we have to sort the data objects according

to attribute values. Based on the result of sorting, the object IDs are given a ranking value.

A candidate finding module collects top IDs from each attribute horizontally. The module

maintains counter for each retrieved object. When a counter value becomes equal to the
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Figure 4.7: Retrieving k-objects

number of attributes, then it stops ID collection. The IDs collected by the module are

candidate of Skyline query result. In the Figure 4.7, data IDs are already sorted according

to price and distance. In first iteration, a candidate finding module will pick {O1, O5} −

as they are the top ranked objects. In second iteration {O9, O3} will be picked. In the

fourth iteration, the collecting procedure will be stopped as the counter value for O3 equals

2 which is the same as the number of attribute.

As the candidate finding module stops, we get the list of candidate skyline as: {O1, O5, O9, O3, O7, O6}.

The list of candidate skyline comes with the disguise ranking indices of original attributes:

price & distance and calculative attribute: (price+distance). From these disguise ranking

indices we have to find the skyline. As the number for candidates are not so high as the

original data, any skyline computation algorithm can perform the computation easily. The

skyline query will be calculated based on the disguise ranking indices of original attributes:

price & distance only. In the Figure 4.7, we can see that {O1, O5, O3, O7} be the result of
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skyline query.

After finding the result of skyline query, it is easy to find the ‘order of disguise rank ’

i.e. the ranking of disguise ranking. The aggregation of these ‘order of disguise rank ’

are considered as ranking value for our k-object selection problem. In our Figure 4.7, a

candidate object O1 has disguise rank 08, 29 & 25 for price, distance & (price+ distance)

respectively. Similarly, O5 has 33, 06 & 03 and so on. Using these disguised ranking indices,

we can find the order of disguised ranking : for O1 − {01, 04, 02} [ because 08 is the smallest

disguised rank index in price attribute, 29 is the fourth in distance and 25 is the second

in (price+ distance) attribute], similarly for O5 − {04, 01, 01} and so on.

When we calculate the sum of these indices, we will get our scoring values. As shown in

the Figure 4.7, O1’s scoring value 07 [e.g. 07 = 01+04+02], O5’s 06 [e.g. 06 = 04+01+01]

and so on. In our previous work [37], we have shown how to calculate the scoring value

using MapReduce framework.

If user sets the query for k = 2 then object O3 & O5 will be retrieved [since O3 &

O5’s sum (order of disguised rank) be the smallest two] as a result of our k-object selection

problem.

4.3 Performance Evaluation

This section reports the experimental results to validate the effectiveness and efficiency

of proposed method. We set up a cluster of 4 commodity PCs in a high speed gigabit

networks, each of which has an Intel Core 2 Duo E8500 3.16 GHz CPU, 8 GB memory.

These machines are connected with a Gbps LAN connection. We compile the source codes

under Java V8. We used hadoop version 2.5.2 and the OS platform was 64 bit CentOS 7.

The replication parameter of hadoop configuration was 2.

We have conducted a series of experiments with different data distributions, dimen-

sionalities, data cardinalities and changing attribute values’ digit length to evaluate the
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Figure 4.8: performance for different data dimension

effectiveness and efficiency of our proposed method. When designing experiments, our

main concern was to find the overhead of runtime costs needed for imposing secure com-

putation with respect to non-secure approach considered in [37]. It is certain that our

proposed secured algorithm will take some extra time than the conventional non-secure

approach defined in [37].

The data cardinality mentioned in our experiment is the size of total data distributed

among several parties. Each experiment is repeated five times and the average result is

considered for performance evaluation. Two data distributions are considered as follows:

Anti-Correlated: an anti-correlated dataset represents an environment in which, if an

object has a small coordinate on some dimension, it tends to have a large coordinate on at

least another dimension.

Independent: for this type of dataset, all attribute values are generated independently

using uniform distribution. Under this distribution, the total number of non-dominating

objects is between that of the correlated and the anti-correlated datasets.

4.3.1 Effect of Dimensionality

In Figure 4.8, we record the effect of dimensionality on runtime cost. We fix the data

cardinality to 100k and vary dataset dimensionality ranges from 2 to 8. The runtime costs
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Figure 4.9: Performance for different cardinality

of the algorithm increase along with the increase of dimensionality, which is quiet usual.

Runtime costs for secure computation is higher than the non-secure computation process

that we have proposed in our previous work [37]. For Anti-Correlated data, the increase of

cost is about hundred percent in lower and twenty percent in higher dimension. However,

increase of cost for Independent data is about fifty percent in higher dimension. Though the

percentage of runtime execution is significantly high, it is to be noted that, for both Anti-

Correlated and Independent data, the difference between secure and non-secure execution

times are almost a constant value. Which indicates that secure computation is more useful

for higher dimension computation, which is quite impressive. The run-time results for this

experiment are shown in Figure 4.8 (a) and (b) for Anti-correlated and Independent data

respectively.

4.3.2 Effect of Cardinality

In Figure 4.9, we record the effect of cardinality on runtime cost. For this experiment, we

fix the data dimensionality to 4 and vary dataset cardinality ranges from 100k to 400k. The

runtime costs of the algorithm increase along with the increase of cardinality, which is as

expected. For both Anti-Correlated and Independent dataset, the runtime cost overheads

are not significantly higher than the conventional approach. Moreover, in case of Anti-
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Correlated data, it seems to be almost identical. The experiments suggest that for higher

cardinality, our secure approach will not cost much overhead than previously proposed

non-secure approach [37].

Figure 4.9 (a) and (b) shows the performance on anti-correlated and independent

datasets respectively.

4.3.3 Effect of Digit length of values

In Figure 4.10, we record the effect of domain value digit size on runtime cost. For this ex-

periment, we fix the data dimensionality to 4 and cardinality to 100k. We vary the domain

value digit size of dimensions from 2 to 8. We can see that our proposed algorithm is heav-

ily affected by the length of attribute value digits. It is because of the multiple execution

of steps described in 4.2.2 and 4.2.3. The execution of steps 4.2.2 and 4.2.3 are directly

proportional to the length of attribute digit. From experimental result we do confirm that

the traditional approach is free from digit length effect, however the performance of our

proposed approach is highly affected by the length of attribute value. Hence, in case of

higher digit length values, its not suitable if performance is preferred over security.
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4.4 Concluding Remarks

This research work addresses k-object selection problem and present a secure distributed

algorithm for selecting k objects that are preferable for all users who may have different

preference. During the computation we have ensured the privacy of data. Hence mul-

tiple parties can participate without disclosing their sensitive data. The idea of skyline

query along with perturbed cipher have been used to select k objects and proposed an

efficient secure MapReduce algorithm. Effectiveness of the proposed algorithm can be ver-

ified by experimental results. It is possible to extend this work in a number of directions.

First, from the perspective of parallel computing, how to compute k-object from stream-

ing dataset. Secondly, to design an efficient index based (R-tree/B-tree) algorithm are

promising research topics.
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Chapter 5

Mining Social Media

In this chapter, the author considered the problem of selecting a small number of key

persons from a social media database. As a model of social media, the author selected the

data from Facebook database because of its usefulness, reputation, and popularity.

We use the idea of skyline query to solve the key person selection problem. However,

selecting a key person from the Facebook database is more complicated as compared to a

general skyline query, because it is different from general relational tables where there are

attributes and their corresponding domain values. We must consider the different metrics

in social media to handle large datasets. The metrics in social media may include the inter-

personal relationship (e.g. friend, follower), user’s group membership, their “comments,”

“comment feedback,” “likes,” picture and status “shares,” “blocks,” etc. In this work, we

consider friends, followers, “like” events, comment feedback, and memberships for different

groups to select the key person.

A symbolic Facebook database is illustrated in Figure 5.1. Let us assume that we want

to select a small number of key persons from this symbolic dataset. We consider following

criteria to select the key person:

1. Friend power − total number of friends that a person has in a social network
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UID Friends Followee Like Records Comment Feedback
������

G1 G2 G3 G4 G5

A C, D, G, K, …(34) B, L, H, …(81) (5, D),(7, D)... (36, C, Comment1),
(26, D, Comment3)…

1 1 1

B D, H, ...(20) A, F, W, …(73) (79, E), (79,K)… (27, C, Comment2),
(78, K, Comment8)…

1 1 1

C A, E, …(55) L, H, …(32) (61, A),(65, E)… (42, F,Comment15)… 1 1

D A, E, F, H, … (75) B, C, …(40) (33,B),(33,A)… (31, B, Comment6)… 1 1 1 1

E D, F, C, G, …(72) A, B, …(96) (101,L),(107,C)… (11, L, Comment17)… 1 1 1 1 1

F E, D, …(94) P, Q, …(56) (201, D),(209, L)… (20, D Comment11)… 1 1 1

G A, E, …(63) M, N, O, …(63) (301, P),(308,F)… (6, P, Comment12)… 1 1 1

H B, D, …(62) A, Q, M, …(71) (307, J), (455, I)… (37, C, Comment19)… 1 1 1

I K, L, …(30) O, P, R, …(23 (510, S), (544,U)… (36, L, Comment18)… 1 1

J P, Q, R, …(46) A, B, C, …(57) (515, A), (515,C)… (45, B, Comment7)… 1 1

… … … … … … … … … …

Figure 5.1: Example of Facebook data

2. Followee strength − total number of followers

3. “Like” score − average “like” count

4. Comment support − based on positive and negative comment replies

5. Group score − sum of the group scores of all groups to which the user belongs.

We assume a key person has a large number of friends, followers, higher average “like”

count, higher comment score; he/she also has the membership to important groups. User

U dominates another user U ′ if all the five criteria of U are better than or equal to those

of U ′’s and in at least one of the five criteria of U is better than that of U ′.

In Figure 5.1, the first, second, and third columns represent user id (denoted as UID)

of social media, friend list, and followee list (list that follows the UID), respectively.

The fourth column represents the “like” records in the pattern of 〈IDpost, UIDliker〉,

where IDpost is the unique ID of different posts or status update posted by different users

in social media, and UIDliker is the user id of the person who has given a “like” to

that post or status update. Facebook does not support any “dislike” event. Similarly,

the fifth column represents the comment feedback form different users in the pattern of
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〈IDpost, UIDreplyer, Commentfdbk〉, where IDpost is the unique id of different status up-

dates posted in social media, UIDreplyer is the user id of the commentator who has posted

a feedback comment to that status post, and the Commentfdbk is the text that has been

replied by the UIDreplyer. Note that Commentfdbk could have been a neutral, positive or

negative feedback. For simplicity, in this work, we did not consider comments on photos.

The sixth column represents the group membership of each user. We put 1 if UID is a

member of that group, otherwise we leave the cell blank.

The first record of Figure 5.1 shows that user “A” has several friends (C, D, G, K,· · · )

in the friends list, in which we assume the friend number count as 34 and the followee count

as 81. User “D” has given a “like” to the 5th and 7th status update of user “A,” meanwhile

users “C” and “D” have replied as Comment1 and Comment3 to the 36th and 26th “status

update” of user “A,” respectively. In addition, user “A” has membership of groups G1, G4,

and G5. In our example, there are five groups: Carrier support (G1), Sports (G2), Video

club (G3), Photography (G4), and Tourist (G5). As mentioned earlier, if a person is a

member of some particular group, the corresponding cell is marked as 1, otherwise it is left

blank or empty. In general, all five groups do not have the same importance depending on

the context of an analysis. However, in this study, we assume that the larger the number

of members in a group is the more important the group is in the analysis. In the rest of

the chapter, we term the group importance as “group weight.”

If we apply skyline query on our symbolic dataset, it will retrieve users “E” and “F”

as key persons. This is because user “E” has the highest number of followees, “like” score,

comment support, and the maximum group scores’ sum among all the other persons. On

the other hand, user “F” has the highest number of friends. Moreover, these two persons

dominate the rest of the users.

Facebook data are increasing in an exponential manner, and nowadays it has become

almost impossible to process such huge amounts of data in a single node computing system.
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Therefore, we apply MapReduce framework to speed up the computation and parallelism.

MapReduce is a programming model and software framework, that was developed by Google

Inc. Many real-world tasks are expressible in this model. Programmers find the system

easy to use and hundreds of MapReduce programs have been implemented; and around

one thousand MapReduce jobs are executed on Google clusters every day [8, 19, 42]. For

better understanding and simplicity, we tried to keep the MapReduce explanation figures

as simple as possible. In summary, the contributions of this work include the following

aspects:

• We have considered effective utilization methods of skyline query to handle

“Facebook data.”

• We develop a novel scalable parallel algorithm to select the key person.

• We have empirically proved the efficiency of the proposed method through extensive

experiments using synthetic datasets.

The rest of this chapter is organized as follows. Section 5.1 presents the notions and

properties of key person computation using skyline query. We explained the detailed algo-

rithm with appropriate examples and analysis in Section 5.2. We experimentally evaluate

the algorithm in Section 5.3 under a variety of settings. Section 5.4 concludes the chapter.

5.1 Preliminaries

In this section, we present definitions and basic properties of our key person selection

problem. Let us assume that Table 5.1 shows the calculated values of the data described

in Figure 5.1.

5.1.1 Social Network Metrics

At first, we introduce some definitions that are used in this work:
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User Friend Followee Like Comment Group

ID Power Strength Score Support Score

A 34 81 45 120 60

B 20 73 25 87 52

C 55 32 32 99 46

D 75 40 69 16 69

E 72 96 90 300 100

F 94 56 67 38 71

G 63 63 29 60 73

H 62 71 55 12 54

I 30 23 33 2 44

J 46 57 44 0 37

Table 5.1: Calculated Example Data

Definition 1 (Friend Power). Friend power, Fp, is the total number of friends that

a user has on social media. It can be denoted as follows:

Fp =| Friends | .

More friend counts indicate higher friend power. For example, in Table 5.1 user “E”

has more friends (72) than user “B” (20); therefore, Fp of “E” is better than that of “B.”

Definition 2 (Followee Strength). Followee strength, Fs, is the total number of

followers that a user has on social media. It is denoted as follows:

Fs =| Followee | .

More followers mean better followee strength. Table 5.1 illustrates that user “A” has

better followee strength (81) than user “D” (40).

Definition 3 (Like Score). Like score, Ls, is the average number of “like” count that

a user has achieved from his social media’s posts or status updates. It is defined as:

Ls =

∑
Like(IDpost)

| IDpost |
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where IDpost is a post or status update by UID and Like(IDpost) is the number of “likes”

achieved by IDpost. From Figure 5.1, user “C” has posted a status update whose IDpost is

“61” and it is “liked” by user “A.” Let us assume that 37 other people has given a “like”

to that post. Again, he/she has posted another status update whose IDpost is “65” and it

is “liked” by user “E.” Let us consider that 27 people have given a “like” to post “65.” If

we assume “C” has posted only two posts or updates, which are “61” and “65” and the

total number of “likes” received by the two posts or updates are 64, then the “like” score

of “C” is 32 [∵ (27 + 37)÷ 2 = (64÷ 2) = 32].

Definition 4 (Comment Support). Friends, followers, and others may give comment

feedback on some posts or status updates. The feedback can be neutral, positive, or

negative. Comment support is the numerical summation of positive and negative feedbacks.

If comment support is denoted by Cs, then

Cs =
∑

CommentBias(Commentn)

where CommentBias(Commentn) is a function that will return a numeric value of

Commentn. It returns +1 if the comment is positive, −1 if the comment is negative,

and 0 if the comment is neutral or unrecognizable. In Figure 5.1, user “B” has posted

a status update whose post ID is “27” and user “C” has replied with some text feed-

back: Comment2. Comment2 could be a positive, negative, or neutral sentence. Func-

tion CommentBias(Commentn) is responsible to find the bias of Comment2. The re-

turn value could be +1/ − 1/ 0 depending on the bias of the comment. Let us as-

sume that user “B” has received 175 positive, 88 negative, and 32 neutral comment feed-

backs in his/her status updates. His/her comment support Cs becomes 87 [∵ Cs(B) =

(+1)× 175 + (−1)× 88 + (0)× 32 = 87].

Definition 5 (Group Weight). A group with larger members has more importance
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than the ones with small members. It indicates the importance of a group on social network.

However, for generalization, we use the normalized value of group member count for each

group and call this measure “group weight” and denote it for group “t” as:

Gwt(t) =
Gcounts(t)∑n
i=1Gcounts(i)

where Gcounts(i) is the number of members in ith group and n is total number of groups.

Gcounts(t) denotes the number of members belonging to group “t” for which we are calcu-

lating the group weight. For example, if we assume that group “G1” has 300 members and

the total members of different groups are
∑n

i=1Gcounts(i) = 2413 then after normalizing

the Gwt value of “G1” becomes 12 [∵ Gwt(G1) = {(300÷ 2413) ≈ 0.12} × 100]. Similarly,

we assume that Gwt(G2) = 25, Gwt(G3) = 15, Gwt(G4) = 17 and Gwt(G5) = 31.

Definition 6 (Group Score). Group score is the summation of all group weights for

a user of a social media that he/she belongs to.

Gs(U) =
n∑

i=1

Gwt(i)×m(U, i)

where n is the total number of groups and m(U, i) is a group membership factor. m(U, i) is

1 if user U belongs to group i, otherwise m = 0. In Figure 5.1, user “A” is the member of

groups {G1, G4 & G5}. Summing the group weights of those groups, we can get the group

score of user “A,” Gs(A) = 12 + 17 + 31 = 60, which is also shown in Table 5.1.

5.1.2 Dominance and Skyline

Let us assume we have a datasetDS (shown in Table 5.1) with five attributes. We represent

friend power, followee strength, “like” score, comment support, and group score from (a1)

to (a5), respectively. We use Ui.ak to denote the kth (1 ≤ k ≤ 5) attribute value of a user

Ui, where i denotes user id (UID).
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Definition 7 (Person Dominance). A user U ∈ DS can dominate another user U ′

if user U ’s friend power, followee strength, “like” score, comment support, and group score

are better or equal to user U ′’s and at least one of the mentioned feature of U is better

than U ′’s. In Table 5.1 user “E” dominates user “B.” This is because user “E” has more

friends, followers, “like” score, comment support, and group score than user “B.”

Definition 8 (Key Person Skyline). A user U ∈ DS is in key person skyline of DS

if U is not dominated by any other user in DS. In Table 5.1, users “E” and “F” are not

dominated by any other user. Therefore, they represent the key person skyline result of

the dataset DS.

5.1.3 Comment Bias

“Opinion mining,” also known as “sentiment analysis,” [27] is a research area for finding

the bias of a comment. Opinions are important because they significantly influence our

behaviors. Classification of opinion can be formulated as a supervised learning problem

with three classes: positive, negative, and neutral. The features, which are often used in

this problem, are listed below [31]:

Terms and their frequency. These features are individual words or word n-grams

and their frequency counts. In some cases, we also consider word positions. These features

could have been quite effective in sentiment classification.

Part of speech. Findings of numerous research work indicates that adjectives are

significant indicators of opinions. Therefore, adjectives within a sentence have been treated

as special features.

Opinion words and phrases. Opinion words are words that are commonly used

to express positive or negative sentiments. For example, wonderful, beautiful, great, and

amazing are positive opinion words, whereas poor, bad, and horrible are negative opinion

words. Apart from individual words, there are also opinion idioms and phrases, e.g., a

56



piece of cake. Opinion words and phrases are influential to sentiment analysis for obvious

reasons.

In our proposed CommentBias() function, opinion words and phrases has been con-

sidered as key bias detection approach.

Rules of opinions. Although opinion words and phrases are important, there are

also many other expressions that contain no opinion words or phrases but they indicate

opinions or sentiments.

Negations. Negation words are crucial because their presence often change the ori-

entation of the opinion. For example, the sentence “I don’t like this book” is negative.

However, negation words must be handled with extra care because occurrences of such

words do not confirm a negative meaning. For example, the “not” in “not only but also”

does not change the orientation direction.

Syntactic dependency. Words dependency-based features generated from parsing or

dependency trees are also used by several researchers.

5.2 Key Person Finding Algorithm

Our MapReduce based key person finding algorithm has the following seven consecutive

calculation phases: (1) Friend power (Fp) (2) Followee strength (Fs) (3) “Like” score (Ls)

(4) Comment support (Cs) (5) Group weight (Gwt) (6) Group score (Gs) (7) Sorting and

skyline computation.

5.2.1 Friend Power (Fp)

Calculating the friend power (Fp) in MapReduce fashion is the first phase of algorithm. We

assume that our friend list DataSet is in kvs (key value storage) format and structured

as: 〈UID1, UID2〉, where UID2 is a friend of UID1. In addition these data are dis-

tributed among several DataNodes. When a Mapper reads 〈UID1, UID2〉 pair, it depicts
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Figure 5.2: Friend power computation procedure

one 〈key, value〉 pair as the intermediate result (i.e., Mapper output): 〈UID1, 1〉 indicating

that UID1 has one friend. According to MapReduce framework, the Mapper output is

shuffled; group by corresponding keys, and values are tagged together as list(values). In

the proposed case, the list(values) is represented by a sequence of 1′s. After shuffling and

grouping, data with the same key are fed into a single Reducer. The Reducer counts the

number of 1′s in the list(value) sequence and produces the counting result as our Fp.

Figure 5.2 represents the Fp computation procedure with its formal algorithm. For

the first input pair 〈A,C〉 the Map worker produces one 〈key, value〉 pair: 〈A, 1〉. This

is because user “A” has one friend “C,” and therefore, the friend power of “A” increases

by one. By applying (UID, count(value)) each Reduce worker produces the total friends

number (which we call friend power Fp). For example, user “A” has 34 friends, user “D”

has 75 friends, etc.
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Algorithm: Followee Strength Calculation
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Figure 5.3: Followee strength computation procedure

5.2.2 Followee Strength (Fs)

This section explains followee strength (Fs) calculation in MapReduce framework. This cal-

culation is similar with Fp calculation. In this case, we assume that our follower list DataSet

is in kvs format and structured as: 〈UID1, UID2〉, where UID2 is following UID1. As

stated earlier, this DataSet is distributed among severalDataNodes. When aMapper reads

〈UID1, UID2〉 it knows that UID2 is following UID1. Therefore, Mapper output depicts

a pair of value 〈UID1, 1〉, indicating that UID1 has one follower. According to MapReduce

framework, the Mapper output is shuffled, grouped by keys, and the corresponding values

are tagged together as list(values). Like the Fp calculation, the list(values) is represented

by the sequence of 1′s. After shuffling and grouping, data with the same key are fed into a

single Reducer. The Reducer counts the number of 1′s in the list(value) and produce the

counting result as our Fs.
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Figure 5.3 illustrate the followee strength computation process. Where for the first

input pair 〈A,B〉 Mapper produces 〈key, value〉 pair 〈A, 1〉 which means “A is followed

by another user B.” Here “B is followed by A” is not true. Subsequently, by applying

(UID, count(value)) each Reducer produces the total followee number (which we termed

as followee strength Fs); for example, user “B” has 73 followers, user “H” has 71 followers,

etc.

Algorithm: Like Score Calculation
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5.2.3 Like Score (Ls)

“Like” score (Ls) is one of the important matrices of a social network like Facebook.

This section explains the procedure of calculating Ls in MapReduce framework. Here, we

assume that the kvs format of our input data is structured as: 〈UID1, (IDpost, UID2)〉,
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where UID1 represents a user id that posted the original post or status update, IDpost

is the id of the post posted by UID1, and UID2 is the id of the person who gave “like”

to the IDpost. After reading 〈UID1, (IDpost, UID2)〉 pair, a Mapper confirms that user

UID1 receives a “like” for his/her post IDpost. Therefore, it depicts a (key, value) pair as:

〈UID1, IDpost〉. As we discussed previously, these values are shuffled, grouped together,

and values with similar key will be fed to a single Reducer. The list(values) would be a

collection of IDpost in which UID1 has achieved “likes” from other users. After shuffling, a

single Reducer calculates the average “likes” that user UID1 has achieved. The calculated

result is known as “like” score (Ls).

Figure 5.4 illustrates the “like” score (Ls) computation process with its formal algo-

rithm. The figure shows that when a Mapper reads 〈A, 5, D〉 as input, it depicts 〈A, 5〉 as

the intermediate output (i.e. Mapper output). Similarly, when a Mapper reads 〈B, 79, E〉

it produces 〈B, 79〉. After shuffling, each Reducer receives values with similar UID. In

Figure 5.4, the first Reducer gets the list(values) = 5, 7, · · · 5, · · · , 9 · · · and it calculates

the average of like score Ls. For example, the Ls value for user “A” is 45, for user “B” it

is 25, etc.

5.2.4 Comment Support (Cs)

Comment support (Cs) is another key matrix of social media. Users post status up-

date or comments in social media. Other people reply or send feedback on those status

update or comments. Comment feedback may be neutral, positive or negative. Some

feedback bias is too hard to understand due to their complexity. For simplicity, we

consider those complex feedbacks as neutral. Let us assume that we have a function

named CommentBias() that determines whether the parameter comment feedback is

positively or negatively biased. Let us also assume input data kvs format to be struc-

tured as: 〈UID1, (IDpost, UID2, Commentfdbk)〉. Where UID1 represent original sta-
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Algorithm: Comment Support Calculation
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Figure 5.5: Comment support (Cs) calculation procedure

tus posted by the person, IDpost is the post id, and UID2 is the user id that provides

the feedback. Commentfdbk is the plain text comment feedback. When Mapper reads

〈UID1, (IDpost, UID2, Commentfdbk)〉, it uses the CommentBias() function to get the

bias of comment feedback. CommentBias(Commentfdbk) returns +1 or −1 depending on

Commentfdbk being either a positive or negative comment. This function also returns 0

for neutral or complex comment, whose bias is hard to understand. After processing each

input data, each Mapper retrieves 〈UID1,±1〉, indicating UID1 receives positive or nega-

tive feedback. The Mapper does not produce any result if the CommentBias() returns 0

and has no significance in the calculation of Cs.

After shuffling and grouping based on key similarity, the list(values) will be a sequence
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of +1 and −1. Subsequently, each Reducer calculates the numerical aggregation (e.g., sum)

of those values and produces the result as comment support (Cs).

Figure 5.5 illustrates the process of calculating Cs. When aMapper reads 〈A, 306, C, Comment1〉,

then it tries to find the bias of Comment1 using CommentBias() function. Let us

assume Comment1 is a positive comment, and therefore, CommentBias() will return

+1. In this particular scenario, the Mapper output becomes 〈A,+1〉. Similarly for in-

put 〈A, 207, C, Comment3〉, mapper outputs 〈A,−1〉 (assuming Comment3 is a negative

comment). After shuffling, grouping, and feeding into Reducer the Comment Support (Cs)

is being calculated as 120 for user “A,” 87 for user “B,” etc. For better understanding, we

have included formal algorithm with in Figure 5.5.
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5.2.5 Group Weight (Gwt)

To calculate group weight, each mapper takes UID and their corresponding group lists as

input. Each Mapper generates a pair of intermediate output: 〈GID, value〉. Here, GID

represents group id. After shuffling and grouping by the corresponding GID, the Mappers

outputs are sent to Reducers. Each Reducer produces 〈GID, count(value)〉 pair for each

group, where count(value) is the membership number of each group. Finally, a separate

module named WeightCalculation calculates the normalized value of membership count.

These normalized values are known as Group Weight (Gwt).

Figure 5.6 shows the procedure of group weight computation. For the input pair

〈A,G1〉, Mapper produces 〈G1, 1〉. Subsequently, using 〈GID, count(value)〉 pair each

Reducer produces the total membership number for each group. For example, group “G1”

has 300 members, “G2” has 604 members, etc. After normalizing the Gwt value of “G1,”

it becomes 12 [∵ Gwt(G1) = (300 ÷ 2413) → 0.12 × 100, 2413 =
∑n

i=1Gcounts(i)] and the

Gwt value of “G2” becomes 25, etc.

5.2.6 Group Score (Gs)

In this MapReduce procedure each Mapper takes 〈UID,GID〉 pair and Gwt as input and

generates pairs: 〈UID, value〉 . Where value is the normalize weight value for each group.

On the downside, after shuffling each Reducer produces the 〈UID, sum(value)〉 pair for

each user. We termed sum(value) as group score (Gs).

Group score computation process is shown in Figure 5.7. For the input pair 〈A,G1〉,

Mapper produces pair 〈A, (G1, 12)〉. Here normalized group weight value for group “G1”

is 12. Subsequently, using sum(value) function, each Reducer produces the group score for

each user. To illustrate, user “A” has a group score of 60, user “B” has a group score of

52, etc. For better understanding, we have included a formal algorithm in Figure 5.7
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Broadcast: Group Weight (Gwt)
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Figure 5.7: Group score computation procedure

5.2.7 Sorting and Skyline Computation

We perform descending sort on UID according to Fp, Fs, Ls, Cs, and Gs. A similar

procedure has been applied for these five sorting. To avoid redundancy, we discuss only

about the sorting procedure based on Fp. Initially, each Mapper takes 〈UID,Fp〉 pair

as input and produces 〈Fp, UID〉 pair. After completing the shuffling process on Fp, all

〈FP , UID〉 pairs are sent as Reducers’ input. Subsequently, each Reducer outputs UID in

descending order based on Fp.

Figure 5.8 represents this sorting procedure. Mapper reverses the input pair 〈A, 34〉

as 〈34, A〉. After sorting on friend power in descending order each Reducer outputs sorted

UID. In Figure 5.8, user “F” holds the topmost position because of his/her highest Fp.

It is to be noted that to sort in descending order, we must override the default output key
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Algorithm : Ordering with MapReduce
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Figure 5.8: Sorting on friend power

class of Hadoop (because the default sorting operation of Hadoop framework is ascending).

For clear understanding, we have included a formal algorithm in Figure 5.8.

In the next stage, the proposed method receives five sorted UID lists respectively on

Fp, Fs, Ls, Cs, and Gs. We must select our key person based on these five criteria. That

means a key person has at most five times the opportunity to be selected as the best

person. Therefore, our method maintains a counter for each user and if a user is retrieved

five times, then it stops the candidate selection.

Figure 5.9 shows the skyline computation procedure. In the first iteration, it selects

users “F” and “E” as candidates and sets the frequency counter value 1 for “F” and 4
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for “E” [as it picks {F,E,E,E,E} in the first iteration]. Subsequently, it chooses user

“D,” “A,” and “G” as candidates and sets their corresponding frequency counter values.

Thereafter, the counter value for user “E” becomes 5, which is equivalent to the total

number of input criterion. Finally, the candidate list for key persons are {A,D,G,E, F}.

Now, we can easily compute skyline by comparing these candidates. The details of this

skyline computation procedure are discussed in [38]. For interested audiences, we briefly

describe the idea of that work below.

In the work [38], we partitioned the dataset vertically and sorted each partition. That

means, we have to sort the data objects according to domain values. Based on the result

of sorting, the object IDs are given a ranking value. An Eliminator module collects top

IDs from each domain horizontally. The module maintains a counter for each retrieved

object. When a counter value becomes equal to the number of domains, then it stops ID

collection. The IDs collected by the module are candidates of Skyline query result.

In Figure 5.9, UIDs are already sorted according to friend power, followee strength,

like score, comment support and group score. In the first iteration, the Eliminator module

picks {E,F,E,E,E}, as they are the top ranked UIDs. At the same time, the Eliminator

module maintains a counter for each retrieved UID. After the first iteration, the counter of

UID “E” is set to 4 as it occurs four times in the retrieved list. For the same reason, the

counter for UID F is set to 1. In the second iteration, {D,A,D,A,G} are picked and the

counters are set or updated (if needed). In the third iteration, the UID picking procedure

stops as the Eliminator module picks “E,” updates the counter value for “E,” and finds

that it is equal to 5, which is the same as the number of domains.

When the Eliminator module stops, it already has had a list of UIDs. In the example,

the list contains {F,E,D,A,G} − known as candidate list. Now, each of the elements in

the candidate list has its own domain values.

In the example, the domain value of “F” for five domain Fp,Fs, Ls, Cs & Gs are
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Figure 5.9: Skyline computation

{94, 56, 67, 38 & 71}, respectively. Table 5.2 shows us the domain values for all UID in the

candidate list:

uid Fp Fs Ls Cs Gs

F 94 56 67 38 71

E 72 96 90 300 100

D 75 40 69 16 69

A 34 81 45 120 60

G 63 63 29 60 73

Table 5.2: Candidates’ Domain Values

It is obvious, when we perform dominance tests among those candidate list UIDs, “E”

will dominate “A” and “G.” No one within the candidate list dominates “F,” “E,” and “D,”

therefore they are our desired key persons. The dominance test operations are performed

by the Simple Comparison module.

5.3 Performance Evaluation

This section reports our experimental results to validate the effectiveness and efficiency

of the proposed method. We set up a cluster of four commodity PCs in a high-speed

gigabit networks, each of which had an Intel Core 2 Duo E8500 3.16 GHz CPU, with 8 GB
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memory. These machines were connected with Cisco SG300-20 gigabit manageable switch.

We compile the source codes under Java V8. We used hadoop version 2.5.2 and the OS

platform was 64 bit CentOS 7. The replication parameter of hadoop configuration was 2.

One of the important goal for designing our experiments was to study the flexibility of

processing large amount of data using the proposed algorithm in MapReduce framework.

To study the effectiveness, we have compared our proposed method with “Single Node”

execution. The term “Single Node” is used to specify a standalone autonomous desktop

PC. It is neither a part of the MapReduce framework nor it is considered as a part of

any other cluster or grid. It is used to study the performance variation of our proposed

algorithm while not using MapReduce framework. We have also conducted experiments

with the domain value idea expressed in [34], where a similar problem is considered as the

graph mining problem. To conduct experiments, we used synthetic datasets (because of the

unavailability of Facebook data); each experiment is repeated five times and the average

result is considered for performance evaluation.

5.3.1 Effect of Proposed Algorithm in MapReduce

We study the effect of various steps described in Section 5.2. Figure 5.10 (a−f) shows the

effect of Fp, Fs, Ls, Cs, Gwt and Gs calculation. In general, social media mining problems

are considered as graph-mining problem. Similar graph mining problems are basically anal-

ogous to top-k query problem [e.g., ranking problem], rather than skyline query. However,

a top-k query requires users to have the domain knowledge, while for skyline query, no

domain knowledge is required. We have compared the performance of our proposed algo-

rithms with the skyline idea described in [34], where the problem of InfraSky is explained

as a graph-mining issue and domain values are expressed by indegree and outdegree of a

node. For example, in case of Fp calculation, we assumed that if user “A” has a friend “B”

then there exists a directed edge from node “B” to “A” and so on for other metrics. From
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each of the experimental results, shown in Figure 5.10, we can see that the performance of

using MapReduce is better than the performance of Single Node implementation as well as

the InfraSky idea defined in [34]. However, we can also observe in every experiment that

the execution time of using MapReduce framework is almost identical (almost a constant

value), even if the cardinality of data set increased significantly. This identical execution

time indicates that the proposed MapReduce-based method can be used to efficiently pro-

cess larger amounts of data than in our experiments. Meanwhile, the other methods are

not suitable for processing large scale of data, as their execution time increases linearly.
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Figure 5.10: Performance of domain value calculation
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5.3.2 Effect of Skyline Computation

The naive method of skyline computation is a greedy approach and it requires a lot of

computational resources like memory, and CPU time, etc. We report the performance on

skyline computation. For this experiment, the data cardinality varies from 50k to 800k.

The performance result is illustrated in Figure 5.11. In traditional way the complexity of

“single node” skyline computation is O(n2 − 1). It is observed that “single node”-based

method is highly affected by cardinality. If the data size increases more than 100k ,it

cannot compute the final result due to memory space limitations, and this is because of

the large cardinality of non-dominating records. However, our proposed algorithm does

not face such a problem. The implementation of dominance test portion of the idea [34]

was implemented in our proposed MapReduce framework, therefore, the execution time is

identical.

5.3.3 Effect of New Metrics

The major problem of using skyline query is that it may produce a “too few or too large”

result set. When the result set is too small, the user may not get any advantage from

the computation as the resultant data set may have been already occupied or may not be

interested to serve. When the result set is too large, it may also confuse the result seeker

in making any choice. Expanding the size of social media matrices work can minimize the
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possibility of encountering such a problem. In our previous work [47], we have used three

social media matrices: friend power (Fp), followee strength (Fs) and group score (Gs).

However, in this research work we have introduced two new metrics: “like” score (Ls) and

comment support (Cs). The enhancement of result due to upgrade of social media matrices

has been shown in Figure 5.12. It is clear that if we use the conventional three dimensional

approach [47], we may have very few results needed to select key persons. Meanwhile,

the proposed five dimensional approach gives us a better opportunity to choose the perfect

ones.
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Figure 5.12: Effect of introducing two new Social Media metrics

5.4 Concluding Remarks

In this study, the author addressed the problem of selecting key persons from different

groups of Facebook network. The author considered a novel algorithm to identify key

persons. The main feature of the proposed algorithm is that it can retrieve results us-

ing the skyline query. Moreover, in proposed approach the author considered the parallel

distributed MapReduce framework to speed up the computation process and to handle mas-

sive data. Extensive experiments demonstrate the efficiency of our algorithm for synthetic

datasets.

It is noteworthy to mention that this work can be expanded in a number of directions.
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First, to generate more precise results we need to consider the regular activities of people

in social networks such as share, check-in etc. Secondly, if the result is too high or too low,

management may be confused to select the key person. In such case we need to consider

other variant queries such as representative skyline query and top-k query.
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Chapter 6

Conclusion

In this chapter, the author first discussed the application of proposed models in Section 6.1.

Then in Section 6.2 the author discussed key contribution. And finally, in Section 6.3, the

author viewed the future scope for improving the current models.

6.1 Applications of proposed models

For last few decades, the skyline query is known to be a popular query algorithm for finding

interesting data. Proposed model (in Chapter 3) finds the result of skyline query without

disclosing domain values. Definitely, it will create opportunity for finding interesting objects

where data belongs to multiparty and parties are not interested to disclose the domain

values at all. The model is designed by using Google’s MapReduce framework, which gives

users to deploy the model in situations where conventional single core algorithms are not

suitable.

Model proposed in Chapter 4 is about secure k-object selection problem. Top-k query

is also a well known query. Such query requires some ranking or scoring function provided

by users. To define ranking/scoring function users have to have some domain knowledge.

Conventional k-object selection algorithms allow users to find top k objects without having
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any prior domain knowledge. But conventional approach is not useful when data belongs to

several parties who are not willing to share though want to provide answer of users query.

However, proposed model will be useful in such situations.

Social medias, like Facebook & Twitter, are source of gigantic amount of data. These

data can be used to understand mass people more closely. Such enormous amount of data

can also be used to manipulate people opinion, their way of thinking. One way of manipu-

lation is to find some influential social media users and use them as brand ambassador of

some product or some opinion. Proposed model, in Chapter 5, explains a way to find some

key person of social media using skyline query on MapReduce framework. As explained in

Chapter 5, our proposed model uses five social media matrices to find the key persons.

6.2 Contribution

Computational efficiency, as well as privacy of data have been received considerable at-

tention from database research community for decades. In this research work, the author

studied three sophisticated aspects of skyline queries and its variants: (i) Secure skyline

query (ii) Secure k-object selection and (iii) Finding key person of social media. Main

contributions are stated as follows:

6.2.1 Contribution on Problem I

Secure skyline query problem is described in Chapter 3. Skyline query is considered as one

of the most popular and useful query for last few decades in database research community.

Though the importance of such query is clear to researchers, conventional skyline query

algorithms are unable to deliver any result when domain values of data objects are hidden

or non-disclosable. The problem becomes worst when the authority of data belongs to

several parties and they are not willing to share or disclose its domain values but want

to find the result of skyline query. The author proposed a novel model where parties can
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compute the result of skyline query without disclosing a single domain value. However,

proposed model is designed by using Google’s MapReduce framework - which enables the

model’s capability of processing enormous amount of data in distributed environment.

Experimental result ensures that it will consume almost a constant overhead while applying

secure computation approach instead of non-secure conventional approach. Such constant

overhead is acceptable while considering the issue of data privacy.

6.2.2 Contribution on Problem II

k-object selection problem was defined as alternative to top-k query. In top-k query user

must define some scoring functions. But in situation where users do not have any domain

knowledge, conventional top-k query is useless. k-object selection query can help such

users. However, in the situation where data belongs to several parties and parties are not

willing to disclose any domain value but want to get result of k-object query: conventional

k-object selection algorithm will not work. In Chapter 4, proposed model has addressed

the issue. Proposed model is capable to retrieve k-object query result without having

exact domain values from different parties. This model is also designed by using Google’s

MapReduce framework to ensure its capability of processing BigData. Experimental results

also support capability of the model.

6.2.3 Contribution on Problem III

Social medias are sources of gigantic amount of data. These enormous amount of data

can be used to understand mass people in better way. Opinion of mass people can also be

manipulated by using such huge amount of data. The basic idea of successful manipulation

comes from selecting or finding some key person from social media. The author proposed

a model of finding key persons from social media. Though our proposed final model uses

five social media matrices the predecessor model used three matrices. In both models we
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have designed skyline query to identify some key persons from social media. Though the

conventional social media mining problems are considered as Graph Mining problem, which

are analogous to top-k query, this dissertation focused the issue from a new direction of

thinking using skyline query’s dominance check approach. Our experimental results showed

that the performance of final model was better than its predecessor.

6.3 Future Direction

This thesis suggests several promising direction for future research.

6.3.1 Secure skyline query

The secure skyline query issue addresses the problem of privacy in distributed skyline query

computation. In privacy aware situation, we have to take into account the problem. The

author proposed a secure skyline query computation in MapReduce framework, which is

a popular “big data” computing framework. Through intensive experiments, we demon-

strated the effectiveness and scalability of the proposed algorithm. Its possible to design

optimized mechanisms for the proposed secure skyline computation by minimizing the total

number of MapReduce job submitted to Hadoop framework. Secure computation of other

variants of skyline queries, like k-dominant skyline or k-skyband can also be considered in

future.

6.3.2 Secure k-object selection

Secured k-object selection problem was designed and presented as a secure distributed

algorithm for selecting k objects that are preferable for all users who may have different

preference. Privacy of data have been ensured during for the computation of multiparty

non-disclosable data. Hence multiple parties can participate without disclosing their sensi-

tive data. The idea of skyline query along with perturbed cipher have been used to select
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k objects and proposed an efficient secure MapReduce algorithm. Experimental results

ensured the effectiveness of the proposed algorithm. There exists some scopes to extend

this work in a number of directions. First, from the perspective of parallel computing, how

to compute k-object from streaming dataset. Secondly, to design an efficient index based

(R-tree/B-tree) algorithm are promising research topics.

6.3.3 Finding key person problem

In “Finding key person problem” study, we addressed the problem of selecting key persons

from different groups of Facebook network. The author proposed a novel model for iden-

tifying key persons. The main feature of our model is: it uses skyline query to retrieve

results. Moreover, proposed model consider the MapReduce framework to speed up the

computation process and to handle massive data in distributed manner. Extensive experi-

ments demonstrate the efficiency of our algorithm for synthetic datasets. It is noteworthy

to mention that this work can be expanded in a number of directions. First, to generate

more precise results we can consider the regular activities of people in social networks such

as share, check-in etc. Secondly, if the result is too high or too low, users of this model

may get confused to select appropriate key persons. In such case we need to consider other

variant queries such as representative skyline query and top-k query.
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