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Dissertation Summary

Problem of selecting good location is very important in the services and business field,

either for customers or for land owners. User/customer uses location selection query

to find good location to buy, to rent, or to visit. From user/customers perspective, a

location is more valuable if it is close to desirable facilities that can bring profits and

benefits for the location, and it is far from undesirable facilities that can reduce profits

and bring unfavorable effects for the location. On the other hand, location selection for

land owner aims to find other locations which are as good as his/her owned locations.

One of the important criteria for comparing his/her location to others is the locations

distance to desirable and undesirable facilities.

Skyline query is a well-known method for selecting small number of data objects,

and it also has been applied in the location selection problem. In some situation, there

are some candidate points, which are for example vacant rental rooms, on a map. In such

cases, we can utilize skyline query to select a preferable point. However, in some real

world situations, we cannot assume there are candidate points for the selection problem

on a map. For example, assume a businessman wants to build a new supermarket if

there is a good vacant area. The businessman may also want to take over a building that

is located in a good area at any cost. In such situation, the candidate points are not given

and the businessman has to find a good location in an area on the map. Two-dimensional
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area is much more complicated than a point; therefore, the area selection problem for

two-dimensional area is challenging and important. However, previous skyline algo-

rithms for location selection problem only consider zero dimensional objects and are

based on the assumption that there will always be some candidate points to be selected.

In this dissertation, we introduced two new variants of skyline query problem, Area

Skyline Query: Skyline query for selecting spatial area objects from customers per-

spective and Reverse Area Skyline Query: Skyline query for selecting spatial area ob-

jects from land owners perspective. To answer area skyline queries, first we developed

Unfixed-shape Area Skyline (UASky) algorithm in our feasibility study. To find area

skyline in UASky, we divide the query area by overlaying all Voronoi diagrams of all

facility types to generate the unfixed-shape disjoint areas, and calculate the minimum

(min) and maximum (max) distance from an area to the closest facility of each type.

In order to calculate these distances efficiently, we first compute distance from each of

vertexes that encloses an area. Note that we can efficiently compute the closest facility

from the vertexes by using Voronoi diagram. Also, note that one vertex is included by

more than one area. Then, after computing min distance from vertexes, we calculate

min-max distance for each area and record them in a table called Minmax table. Given

two unfixed-shape areas, a and a′, we say area a dominates area a′ if and only if max

distance of a is smaller or equal to min distance of a′ for all facility types. Skyline query

for areas selects all non-dominated areas from the set of the disjoint areas. Based on the

extensive experiments, UASky is affected by the number of facility types, as well as the

number of objects for each facility. The drawback of UASky is that it selects relatively

many areas as skylines, since a large area is likely to be selected as a skyline because

they have large max distance.
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One countermeasure for UASkys drawback is to divide a large area into smaller

areas. We used grid data structure to divide query area and proposed an efficient and

practical solution to the area skyline query problem called Grid based Area Skyline

(GASky) algorithm. GASky first divides query area into s number of grids. Then,

it finds non-dominant grids as the result. Comprehensive experiments show that the

processing time of GASky increases with the increase of the number of grids, facility

types, and number of objects. The experiment also shows that we can decrease the

ratio of skyline area by increasing the number of grids. Thus, higher number of grid

means smaller size of each disjoint area, which in turn will decrease the number of

skyline areas. By applying grid data structure, the GASky can control the number of

area skyline by changing the number of grids. In actual usage scenario, if a user prefers

selective areas, she/he had better increase the number of grid, which tends to reduce the

ratio of skyline areas.

The author has considered another area skyline query problem called ”reverse area

skyline query”, which are based on land owners’ perspective. Here, we combine GASky

method to compute min-max distance for each grid and a state-of-the-art reverse area

skyline algorithm using global skyline concept for two-dimensional area. We extend

conventional global skyline concept so it can be applied to two-dimensional area. This

query is very important for location selection in business or land owners perspective.

One of the important applications of reverse area skyline query is selecting promising

buyers of the area, since reverse area skyline query may give clues to the owner of the

area in finding who will be interested in the area. Furthermore, it also may help to

predict what type of business that would be suitable for the area considering the type

of business that has already exist in the reverse area skylines. To answer reverse area
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skyline problem, we proposed Reverse Area Skyline (RASky) algorithm. Comprehen-

sive experiments are conducted to show the effectiveness and efficiency of the proposed

algorithm.

To summarize, this dissertation addresses two new skyline queries in the location

selection problem for two dimensional areas: skyline queries for selecting spatial ar-

eas from customers perspective and owners perspective. The outline of this thesis is

organized like in the following passage. Chapter 1 presents the introduction of this dis-

sertation. Chapter 2 reviews about related works: skyline query and its variants, and

also some issues in skyline for location selection. We reported our feasibility study of

area skyline query problem in Chapter 3. In this chapter, we present our starter algo-

rithm, UASky. In Chapter 4 we proposed our efficient algorithm, GASky and compare

both algorithms, UASky and GASky, based on some related parameters. We find that

GASky outperforms UASky according to complexity computation and experiment re-

sults. In Chapter 5, we introduced another new skyline query problem, reverse area

skyline query, which is area selection problem based on owners perspective. In this

chapter, we presented a new definition of dynamic area skyline and proposed RASky

algorithm to answer reverse area skyline query problem. Our extensive experimental

study confirms that GASky and RASky algorithms are able to find reasonable number

of desirable skyline areas and can help users to find good locations. Finally in Chapter

6, we conclude our study and present some future directions
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Chapter 1

Introduction

Selecting locations is a very important subproblem of data mining. In all fields, like

business, tourism, or even in selecting restaurant for dinner, choosing the best location

will have a direct impact on cost, time, and effort. In some cases, when the location

has been chosen, it is difficult to be canceled because doing so and then finding another

location will require more cost, time, and effort. Therefore it is very important to de-

cide the right location in the first place. In business field, a company should consider

proximity to sites that usually attract many people, such as retail centers, stations, cus-

tomers’ house, office complexes, and hotel and entertainment centers as valuable criteria

for selecting a location. That is because those sites can bring profit and benefit for the

location. In addition, a company should also review potential competitor existence or

sites that can reduce profit and bring unfavorable effect on the location, such as garbage

dumps, pollution sources, high-crime areas, etc. We call sites that we prefer to be close

to our selected locations as desirable facilities, and otherwise as undesirable facilites.

In general, a location that is close to some desirable facilities and far from undesirable

facilities is called a better location. For example:
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• In the business field: a property company would like to build a new apartment

in a new region. The company has some candidate locations to be selected. To

attract customers, the apartment should be in an area that is close to train stations,

shopping centers, and schools, and far from open landfill.

• In the travel planning: when planning trip to a new area or country, a traveler

would like to stay in a hotel that will be convenient in location and cost. He/She

has some candidate hotels to be selected. He/She would like to find which hotel

that is close to attraction sites, train stations, and convenience stores and far from

crime areas and polluted areas.

In above cases, we consider a problem for selecting spatial “points” in a map from a

set of candidate “points” given by user that satisfy the user’s criteria which is close

to desirable facilities and far from undesirable facilities. To answer the problem for

selecting spatial “points”, we can apply the idea of the skyline query.

In database management system, skyline query [6] is a well known method for se-

lecting small number of data objects. It selects objects that are not dominated by another

object. Figure 1.1 shows a typical example of skyline. Consider a typical online book-

ing system. A user can select a hotel from the list in Figure 1.1(a) based on her/his

preference on the price and distance of the hotel to the beach. In this example, we

assume that smaller value is better for each attribute. In this situation,{h1, h3, h4} are

skyline objects because they are not dominated by another object. It means no other ob-

jects have smaller value in both two dimensions compared to {h1, h3, h4}. Other objects

({h7, h8, h2, h6, h5}) are dominated by h4, since h4 has smaller value in both dimensions.

Figure 1.1(b) shows skyline hotels from the given hotel list. Using the skyline query,

we can easily answer the problem for selecting spatial “points” in a map.
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Figure 1.1: Conventional Skyline

Figure 1.2(a) illustrates the skyline query for spatial points. Consider a situation

that a businessman wants to open a new supermarket. She/He would like to open the

supermarket in a building for rent. She/He prefers a building that is close to desirable

facilities such as a bus/train station, a university, and so forth, but it should be far enough

from some undesirable facilities, such as a similar supermarket (a potential competitor).

Let P be a set of spatial points, which are buildings for rent, to be chosen. Let F

be a set of facilities, which can be categorized into m types, F1, F2, ..., Fm. Each type

is classified into desirable or undesirable. We annotate “+” mark on the facility symbol

of desirable facilities like F+, while we annotate “−” mark on undesirable ones like F−.

Points p1, p2, and p3 (∈ P) in this figure are buildings for rent. Points illustrated with star

symbol, F1+ = { f 1+1 , f 1+2 , ..., f 1+m1
} ∈ F, represent locations of universities, which are

desirable facilities. Another desirable facilities are stations, which are illustrated with

triangle symbol, F2+ = { f 2+1 , f 2+2 , ..., f 2+m2
} ∈ F. Points with square symbol, F3− =

{ f 3−1 , f 3−2 , ..., f 3−m3
} ∈ F, represent competitors’ supermarkets, which are undesirable

3



Figure 1.2: The skyline queries for spatial points’ illustration

facilities.

Based on the map of Figure 1.2(a), we calculate a table as in Figure 1.2(b). In the

table, we record distance from a building to the closest facility of each of F1+, F2+, and

F3− types. For example, the closest university (F1+ facility (star)) from p1 is f 1+2 and

the distance is 4. Similarly, the closest station (F2+ facility (triangle)) from p1 is f 2+2

and the distance is 3. The closest competitor (F3− facility (square)) from p1 is f 3−3 and

the distance is 10. We multiply −1 to each distance value of undesirable facilities F−

so that we can say that smaller value is better in each of the attributes. In Figure 1.2,

p1 dominates p2 and p3 since p1 is located closer to desirable facilities and farther to

undesirable facilities. Therefore, skyline query for the spatial points returns p1.

Choosing good location in a map is not only important for businessman or a tourist

as consumer of location selection (a building for rent or a hotel in a map). It is also
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ID 1ܨା 2ିܨ 
h1 40 5 
h2 35 25 
h3 20 10 
h4 10 20 
h5 15 40 
h6 25 55 
h7 40 45 
h8 45 55 
q 30 30 
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Figure 1.3: Reverse Skyline Query Example

important for the owner of a building for rent or the owner of a hotel. Let us consider

a hotel dataset in Figure 1.3(a). Assume that a businessman wants to build a new hotel

q, which its details are represented as its distances to desirable (F1+) and undesirable

facilities (F2−). He/She would like to know which other hotels think that q is interesting,

because customer who choose those hotels might also be interested in q. Reverse skyline

query [13] (RSQ) is a variant of skyline query that answers this kind of problem. RSQ(q)

find a set of points that its distance to q is not dominated by its distance to another point.

Using a table like in Figure 1.3(b), we can easily find reverse skyline points of q using

reverse skyline algorithm [13]. Figure 1.3(c) shows that h2, h5, and h6 are RSQ of q.

For h2, its distances to q is the smallest distance in x-axis and y-axis compared to its

distances to other points. While for h5, its distance to q is the smallest distance in y-

axis, and h6’s distance to q is the smallest distance in x-axis. Intuitively, users who

are interested in h2, h5, and h6 hotels may also be interested in q. While skyline query

retrieves a set of skyline objects based on customer’s perspective, reverse skyline query
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retrieves a set of skyline objects based on business owner’s perspective.

1.1 Motivation

Notice that to perform the point location selection query, there are some candidate points

for example vacant rent rooms, on a map. In such cases, we can utilize skyline query

to select a preferable point. However, in some real world situations, we cannot as-

sume there are candidate locations for the selection problem on a map. For example, a

businessman wants to build a new supermarket if there is a good vacant area. The busi-

nessman may also want to take over a building that is located in a good area at any cost.

In such situation, the candidate points are not given and the businessman has to find a

good location in an area on the map. In other words, she/he has to find two-dimensional

area on the map. In the owner’s perspective, their owned object/property in a map is not

always a spatial point, it might also in the shape of area, which is two-dimensional area.

Two-dimensional area is much more complicated than a point; therefore, the area selec-

tion problem for two-dimensional area is challenging and important. However, previous

skyline algorithms for location selection problem only consider zero dimensional ob-

jects and based on the assumption that there are always some candidate points on a map

to be selected.

1.2 Contributions

All previous skyline algorithms are only suitable for spatial point location selection, as

later discussed in Chapter 2). Therefore this thesis addresses two new skyline queries in

the location selection problem for two dimensional areas: skyline queries for selecting
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spatial area objects from customers perspective and owners perspective.

1. Skyline queries for selecting spatial area objects from customers perspective

Let A be a rectangular target area, let F = {F1, ...Fm} be a set of facility types,

which can be categorized into m types and each type is classified as desirable or

undesirable facility. In this thesis we introduce a new variant of skyline query,

called area skyline query, which divides A into smaller two-dimensional disjoint

areas and select a set of areas which has closer distance from desirable facilities

and farther distance from undesirable facilities. To answer area skyline query, first

we conducted feasibility study on area selection problem. In this feasibility study,

we presented an algorithm called Unfixed-shape area skyline (UASky) algorithm.

We conducted extensive experiments to UASky and discovered its limitation. In

order to overcome the drawback of UASky, we proposed Grid-based area skyline

(GASky) algorithm. Comprehensive experiments showed that GASky has better

performance than UASky and in the same time resolves the limitation of UASky.

2. Skyline query for selecting spatial area objects from owners perspective

Not only from customer’s perspective, in this thesis we also extend area skyline

query problem from land owner’s perspective, called reverse area skyline query

problem. Let A be a rectangular target area in which there are spatial objects.

Each spatial object can be categorized into one of m facility types. Let Fk be a set

of type k (k = 1, ...m) objects, which are Fk = { f k1, f k2, ..., f knk} where nk is the

number of objects of the type k facility. Let g is an area in A belongs to the owner,

and g has distances to each closest facility type as its attributes. Reverse area sky-

line query selects a set of disjoint areas in A which are as preferable as g. By using
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the idea of “reverse skyline”, we developed Reverse area skyline (RASky) algo-

rithm to answer reverse area skyline query problem. Comprehensive experiments

are conducted to show the effectiveness and efficiency of our proposed algorithm.

1.3 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 reviews about related works

which are skyline query and its variants, and also some issues in skyline for location

selection. We report our feasibility study of area skyline query problem in Chapter 3.

In this chapter we present our starter algorithm, UASky. In Chapter 4, we propose our

efficient algorithm, GASky, and compare both UASky and GASky algorithms based on

some related parameters. We found that GASky outperform UASky according to com-

plexity computation and experiment results. In Chapter 5, we introduce a new skyline

query called reverse area skyline query, which is area selection problem based on prop-

erty or land owner’s perspective. In this chapter, we present a new definition of dynamic

area skyline and propose RASky algorithm to answer reverse area skyline query prob-

lem. Our extensive experiments confirm that GASky and RASky algorithms are able to

find reasonable number of desirable skyline areas and can help users to find good loca-

tions. Finally in Chapter 6, we conclude our study and present some future directions.
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Chapter 2

Related Works

In this chapter, we elaborate related works in skyline query, skyline query related to

location selection problems, and reverse skyline query. In Section 2.1, first we formulate

the basic concepts of the skyline query, address the importance of skyline query in

information filtering, and describe examples of skyline query algorithms. In Section 2.2

we discuss important skyline query variants on selecting spatial point objects. Finally

in Section 2.3, we present reverse skyline query and some important concepts such as

dynamic skyline and global skyline. We also describe the state-of-the-art reverse skyline

algorithms in this section.

2.1 Skyline Query

2.1.1 Problem Definition

Let DB be a n-dimensional database, and D = {d1, ...dn} are n attributes of DB, P =

{p1, ...pr} are r tuples (objects) of DB, and pi.dm is the value of pi in m dimension.

9



Definition 2.1.1 (Dominance). Object pi is said to dominate another object p j (denoted

as pi ≺ pj) if ∃ 1 ≤ m ≤ n pi.dm is better than pj.dm, and ∀1 ≤ m ≤ n,pi.dm is not worse

than pj.dm. Skyline objects are a set of objects in P, each of which is not dominated by

another object.

2.1.2 The Applications of Skyline

Skyline query is very useful for user to select a few interesting objects from huge amount

of objects without concern there is a better object that is not included in the result.

This result contains smaller number of non-dominated objects, so user can easily select

some of the objects in the list based on his/her further preference. For example while

selecting a house in a housing company, we have to face a huge number of houses

instead of just three or five houses. Thus, it is difficult for us to select best houses

based on the price, quality of building material, and distance to the main street, in a

short time. Similar example is selecting hotels in an online booking system or selecting

products like cameras, cell phones, computers, etc in e-commerce sites. There are so

many number of products which makes it impossible to compare all of them manually.

Using skyline query we can remove large number of products whose features are worse

than any other products and generate manageable number of non-dominated products

for user’s further selection. Consider selecting hotel example in Figure 1.1. Skyline

query reduces the hotel list from 8 hotels in Figure 1.1(a) to 3 hotels {h1, h3, h4}.

2.1.3 The Skyline Algorithms

Borzsonyi et al. first introduced the skyline operator over large databases and pro-

posed three algorithms: Block-Nested-Loops (BNL), Divide-and-Conquer (D&C), and
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B-tree-based schemes [6]. S ort-Filter-S kyline (SFS), which improves BNL by pre-

sorting, was proposed by Chomicki et al. as a variant of BNL [10]. Two progressive

methods Bitmap and Index for computing skyline have been proposed by Tan et al.,

which improve previous algorithm [38]. Currently, the most efficient method in com-

puting skyline is Branch-and-Bound S kyline (BBS), proposed by Papadias et al., which

is a progressive algorithm based on the Best First-Nearest Neighbor (BF-NN) algo-

rithm [31]. All of the proposed algorithms for skyline query processing are catego-

rized in two categories: index-based algorithms and non-index-based algorithms. BNL,

D&C, and Bitmap are examples of non-index-based skyline algorithms, while B-tree

based schema, BF-NN, and BBS are examples of index-based skyline algorithms. In

this section, we will describe about BNL as the example of non-index-based skyline

algorithms, and BBS as the example of index-based skyline algorithms.

Block Nested Loop (BNL) Algorithm

Comparing any object to other objects is a naive way to compute skyline. Although

it is simple, this method is definitely not efficient, since we have to compare n2 times,

where n is the number of objects in dataset. The ideas of BNL [6] is reducing object’s

comparison by maintaining a window of non-dominated objects in main memory. BNL

also uses a temporary file to store candidate objects when the window is full. At first

iteration when window is still empty, the first object will be automatically inserted into

the window. Then, as iteration continues there are three cases which can occur for the

next object o:

1. if o is dominated by another object in the window, then o will be discarded.

2. if o dominates some objects in the window, then those objects will be discarded,
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and o will be inserted to the window.

3. if o is not dominated by and also not dominates other object in the window, then

o will be inserted to the window.

After all of the data objects are processed, the candidate objects in the window which

are processed when the temporary file was empty are output as skyline. Otherwise,

compare other objects in window with objects in temporary file using the same way,

and output non-dominated objects as skyline. Consider a dataset in Figure 1.1(a). We

compute this dataset using BNL with window size set to 2, and process it sequentially

based on the subscript number of data. At first, h1 is inserted into empty window, fol-

lowed by h2. Since h2 is not dominated by h1, h2 is also inserted into window. When h3

is processed, h2 is dominated by h3, so h2 is discarded from window and h3 is inserted.

Temporary file is built when h4 processed. Next h5 is inserted to temporary file since it

is not dominated by h1 and h3 in window. When h6, h7, and h8 is processed, all three of

them are discarded since they are dominated by h1 and h3. At the end of iteration, there

are h1 and h3 in window, and h4 and h5 in temporary file. Since h1 and h3 are processed

when temporary file was empty, then both of them are member of skyline. BNL then

processed the temporary file using the same way, and output h4 as member of skyline.

Finally, the skyline objects are h1, h3, and h4 as illustrated in Figure 1.1(b).

Branch and Bound Skyline (BBS)

BBS [31] is based on nearest neighbor search [33]. In this section, we will explain BBS

using R-tree to partition the dataset. Every leaf/intermediate entry is executed based

on their mindist to the query point in ascending order. Minimum distance (mindist) of

object from the origin is equal to the sum of object’s coordinates and the mindist of
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Figure 2.1: Minimum Bounding Rectangle (a) and R-tree (b)

a MBR (i.e., intermediate entry) is equal to the mindist of its lower-left corner point.

BBS uses the best-first search to process the R-tree. Figure 2.1 illustrates minimum

bounding rectangle (MBR) and R-tree for example dataset in Figure 1.1(a). First, BBS

starts from the root node, then (e5,e6) are inserted to the heap H. The entry with smallest

mindist to origin (e5) is then expanded, thus removes it from the heap and enheaps its

children, so the members of heap are (e2,e1,e6). The next node to be visited is (e2),

so e2 is removed from heap, and its children are inserted. Now, the heap content are

(h3,h4,e6,e1). Continue to the next node to be visited, h3. Since it is not an intermediate

node, h3 would become the first skyline object, followed by h4 which is also a skyline

object. Next step is expanding e1, and inserting h1 and h2 into heap. Note that after h1
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Table 2.1: Heap Contents

Description HeapContents S kyline

access root < e5, 15 >< e6, 55 > ∅

expand e5 < e2, 20 >< e1, 40 >< e6, 55 > ∅

expand e2 < h3, 30 >< h4, 30 > < e1, 40 >< e6, 55 > {h3, h4}

expand e1 < h1, 45 > < e6, 55 >< h2, 60 > {h3, h4, h1}

is put into skyline list, we can discard e6 and h2, since e6 is dominated by h4 and h2 is

dominated by h4 and h3. Finally BBS output h3, h4 and h1 as skyline objects. Table 2.1

illustrates heap contents during BBS computation.

2.1.4 Other Related Works in Skyline Queries

Beside the conventional skyline queries, recently different aspects of skyline have been

investigated. Dynamic skyline query (DSQ) [31] is one of the variation of conventional

skyline query explained above. Instead of static position of query, the query location in

dynamic skyline query is continuously changing thus the skyline results are also chang-

ing frequently. The objective of DSQ is to return the skyline in the new data space,

which is the data space when the q becomes the origin point. Intuitively, in DSQ, we

want to find a set of skyline points which are interesting according to q. The problem

of DSQ has been recently investigated in several papers [34, 43, 8]. Another impor-

tant variation of skyline query which is called Reverse Skyline Query, proposed in [13],

offers very important concept to select skyline query based on business owner’s perspec-

tive. In the worst case, skyline query returns too many answer which makes user may

not be able to choose and make decision through so many objects. Hence, some papers
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like in [39, 24, 28] proposed methods to return only representative objects of skylines.

Representative skylines reduces skyline result’s number and return most representative

objects to the user. Instead of representative skyline, to help user choosing skyline ob-

jects, some papers work to rank skyline result based on quality of skyline objects using

different techniques, such as t f − id f weighting scheme [40] or subspace dominance

relationship [41]. Another way to find more important and meaningful skyline points

in high dimensional space is proposed by Chan et al. [7]. They introduced k-dominant

skyline query which retrieves points that are not dominated by another point in at least

one of k-dimension. K-dominant skyline relaxes the concept of dominance in skyline

query, so that it can reduce the result of skyline query computation. Conventional sky-

line in [6] only considers categorical attribute either with total or partial order. In fact,

in real life, the categorical attributes usually does not come with predefined order, but

it depends on each customer’s preferences. Wong et al. in [44] proposed an efficient

skyline algorithm to handle different preferences on nominal attributes. Moreover, in

order to handle various user preferences, study on user preferences using keywords or

textual description had been done in [9]. Along with the increasing of the dataset’s size

that costs both IO and CPU time, some researches apply distributed/parallel settings on

skyline query such as in [1] and [29].

2.2 Skyline on Selecting Spatial Objects

2.2.1 Spatial Skyline Query (SSQ)

Spatial skyline query was first introduced by Sharifzadeh et al. [35]. Given a set of data

points P and a set of query points Q, SSQ retrieves those points of P which are not
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dominated by any other point in P considering their derived spatial attributes, which is

the points distance to query points. The difference between spatial skyline query with

the regular skyline query is that the domination condition of P depends on the distance

to query points Q.

Assume members of a team want to have an important meeting in a restaurant. Their

offices are located at different fixed locations in a map. There are so many restaurants in

a map, but to reduce the choices, they need to find restaurants that are interesting based

on its distances from each of the team members’ location. A restaurant p is interesting

if there is no other restaurant that has smaller distance to all members’ location than p.

Let the set of points as member locations P in the d-dimensional space Rd, and

D(., .) be a distance metric defined in Rd. Given a set of d-dimensional query points

Q = {q1, · · · , qn} as restaurant locations on a map.

Definition 2.2.1 (Dominance for SSQ). p spatially dominates p′ with respect to Q iff

D(p, qi) ≤ D(p′, qi) for all qi ∈ Q and D(p, qj) < D(p′, qj) for at least one q j ∈ Q.

Spatial skyline is a set of objects in P, each of which is not spatially dominated by

another object.

Specifically, p spatially dominates p′ if every qi is closer to p rather than to p′. To

proof some query points are closer to p rather than to p′, [35] draws perpendicular bi-

sector line of the line segment pp′. With Euclidean distance metric, the point p spatially

dominates p′ if the query points are in the area of bisector p and not in the area of p′.

Bisector concept is also used in the Voronoi diagram to divide the region and claim that

all the objects in the bisector area of p will be closer to p than to any other point in area

space. Spatial skyline is a set of points that are not spatially dominated by another point.

Naive way to answer spatial skyline query is to compute the distance from all p to
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all q, then compare each p using spatial dominance rule to get spatial skyline points. To

reduce search space, Sharifzadeh and Shahabi [35] define concepts about dominator and

dominance region and applied geometric structures like Convex Hull (CH), Delaunay

graph (DG), and Voronoi Diagram (V) [11] to present some important geometric prop-

erties of spatial skyline points and proposed Branch-and-Bound Spatial Skyline (B2S 2)

algorithm and Voronoi-based Spatial Skyline (VS 2) algorithm.

Figure 2.2 shows an example of dominator and dominance region of a point p1.

Using the perpendicular bisector of p1 − p3, we know that p1 dominates p3 since q1

and q2 are in the same side with p1. If we draw a circle centered at the query point q1,

C(q1, p1) and q2, C(q2, p1) with radius D(q1, p1) and D(q2, p1), then every point placed

outside those two circles is guaranteed to have larger distance to q1 and q2 than p1,

while every point placed in the intersection of two circles is guaranteed to have smaller

distance to q1 and q2 than p1. Region outside the two circles is defined as dominance

region of p1 and intersection region of two circles is defined as dominator region of p1.
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(B2S 2) is an enhanced modification of BBS algorithm [31]. All the data points in

P are indexed by an R-tree. Let us consider that mindist(p,Q) is the sum of distances

between the data point p and the points in the set Q and mindist(e,Q) is the sum of

minimum distances between the node e in R-tree and the points of Q. First, (B2S 2)

computes the convex hull of CH(Q). For each node in root, (B2S 2) computes its mindist

to the CH(Q) and maintains a minheap H. The node with smallest mindist to CH(Q)

is then expanded, until (B2S 2) finds the first leaf node, let say p. This first leaf node

then becomes the first spatial skyline point. (B2S 2) then generates circle centered in

query points on CH(Q) with radius of its distance to p and determines dominator and

dominance region of p. Note that (B2S 2) does not generate this circle for query point qins

that is inside CH(Q). This happens because this circle is completely inside the union of

the circles made of query points on CH(Q), so it does not change the dominator region

of p.

To simplify the calculation, (B2S 2) builds a minimum bounding rectangle B for all

union of those circles. For each spatial skyline point found, (B2S 2) maintains the rect-

angle B. Each entry e is checked based on its position to B:

1. If entry e does not intersect with B, then e should be discarded.

2. If entry points pin placed inside CH(Q), then pin is a skyline point. This is based

on the fact that circles defining the dominator region of point pin intersect only at

pin if pin is inside CH(Q).

3. If e does not pass above tests, then e need to be compared against the entire spatial

skyline points.

(VS 2) is similar with (B2S 2) unless instead of using R-tree, it uses Voronoi diagram
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and adjacency list from Delaunay graph of P. (VS 2) uses a property that each point

which its Voronoi cell intersects with the boundaries of CH(Q) is a skyline point. This

is obvious because when a Voronoi cell intersects with CH(Q), it means at least one of

q in CH(Q) is closer to the Voronoi point. Similar with (B2S 2), (VS 2) first generates

CH(Q), then the closest point to one of query points, let say p, is visited. Using p,

(VS 2) builds corresponding circle and generates B which includes all candidate skyline

points. Next, (VS 2) visited Voronoi neighbors of p. Using the similar position checking

rule with (B2S 2), (VS 2) decides which point is skyline point, which point is discarded,

or compared against the entire skyline points. The experimental result showed that VS 2

outperforms B2S 2.

2.2.2 The Farthest Spatial Skyline Query (FSSQ)

Different from spatial skyline work, the problem of the farthest spatial skyline queries

is proposed in [46]. Given data points P and query points Q in two dimensional space,

the farthest spatial skyline query retrieves the data points which are farther from at least

one query point than from all the other data points. Let the set P contains points in the

d-dimensional space Rd, and D(., .) be a distance metric defined in Rd. Given a set of

d-dimensional query points Q = {q1, · · · , qn} and the two points p and p′ in Rd.

Definition 2.2.2 (Dominance for FSSQ). p spatially dominates p′ with respect to Q iff

D(p, qi) ≥ D(p′, qi) for all qi ∈ Q and D(p, qj) > D(p′, qj) for some qj ∈ Q. The

farthest spatial skyline is a set of objects in P, each of which is not spatially dominated

by another object.

Opposite from the spatial skyline query, this method is helpful to identify spatial

locations which are far from undesirable locations. Therefore, this problem is important
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in perspective of business location. Consider a company is looking for a desirable loca-

tion to build a new restaurant. The company need to select an optimal location, which

is far from the undesirable locations such as like garbage dump and pollution source,

among many potential locations. This problem can be solved in naive way using skyline

query by computing the distance of all potential locations to garbage dump and pollution

source. Using dominance for FSSQ, we can compute the farthest spatial skyline points

for the new restaurant. Since this method requires a lot of computation, to reduce the

computation, You et al. in [46] use some geometric properties and proposed Branch-

and-Bound Farthest S patial S kyline (BBFS). BBFS uses top-down branch-and-bound

search on R-tree to access nodes in decreasing order of distance from query points.

Let �⊥(p, p′) be a bisector line between p and p′,so it separates a space into two half

spaces, h(p, p′) and h(p′, p). h(p, p′) is the half space in which every point is closer to

p than p′, and h(p′, p) is otherwise.

There are some important properties in BBFS:

1. For two points p and p′, if CH(Q) is inside h(p′, p), then p dominates p′.

2. For two points p and p′, if �⊥(p, p′) intersects CH(Q), then p is incomparable

with p′.

3. A point p dominates every point in a nodes e, if four corner points of minimum

bounding rectangle e are dominated by p.

Besides R-tree structure, P also maintains Voronoi diagram of VD(P). BBFS main-

tains SumDist(e,Q) in a max-heap H of each entry e, while SumDist(e,Q) is the sum of

maxdist(q, e) for all q ∈ Q, and maxdist(q, e) is the maximum distance of all p to q in e.

To reduce dominance test, BBFS uses two different lists to maintain skyline points, FS N
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and FS I . Based on property in BFFS, skyline points in FS I are incomparable, so BBFS

only performs dominance test in FS N . The node with largest distance in the root then

expanded. When it reaches the first leaf node, let say p, then p becomes the first farthest

spatial skyline point, then it checks whether its Voronoi cell is disjoint, contained in, or

overlapped with CH(Q):

1. If a V(p) is disjoint with CH(Q), then p is inserted into FS N .

2. If a V(p) is contained inside CH(Q), then p is inserted into FS I .

3. If none of the above conditions, then p must be checked for the possible intersec-

tion and inserted into FS I if it intersects CH(Q) at least in one edge, otherwise p

is inserted into FS N .

For each iteration, every leaf node is compared to FS N , if it is not dominated by

any other point in FS N then it is checked whether it will inserted be into FS N or FS I .

Figure 2.3 shows an example of the farthest spatial skyline in [46].

First, max-heap H is filled with nodes of the root node, N1, N2, and N3. In this

example, N3 has the maximum SumDist, so N3 is popped and expanded. The first leaf

node that comes up is p9, and since FS N is empty and V(p9) is disjoint with CH(Q),

p9 becomes the first skyline point in FS N . The second leaf node popped is p1. Using

BBFS property, �⊥(p1, p9) is intersect with CH(Q) and V(p1) is disjoint with CH(Q),

so p1 becomes skyline in FS N . Using similar way, p2 and p8 are also become skyline

points in FS N . On the other hand, since V(p17) intersects with CH(Q), p17 inserted into

FS I so it cannot dominate any other points. On the next iteration, N8 is dominated by

p8 and N6 is dominated by p1. At final iteration, there are 14 skyline points, contained

in FS N ({p9, p1, p2, p8, p12, p19, p20, p3, p4}) and in FS I ({p17, p5, p18, p13, p15}).
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Figure 2.3: The farthest skyline query example [46]

2.2.3 General Spatial Skyline (GSSky) Query

In real life situation, there are many types of facility that have to be considered in se-

lecting good locations. Not only considering one type of facility, in [22], Lin et al.

introduced the problem of spatial skyline query with different types of facility, called

General Spatial Skyline (GSSky) query. Assume there is a set of hotels, a set of train

stations and a set of restaurants in the map, and a user wants to stay at hotel which is

close to train station and a restaurant. GSSky query tries to find skyline objects, hotel in

this case, that has smaller distance from every type of facilities (train station and restau-

rant). Given a set of objects P = {p1, ...pn} and a set of facility types F = {F1, ...Fm},
which can be categorized into m types. Each facility type has several members, for
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example, F1 has three objects F1 = { f 11, f 12, f 13}.

Definition 2.2.3 (Dominance for GSSkyQ). p spatially dominates p′ with respect to Q

iff D(p, Fi) ≤ D(p′, Fi) for all Fi ∈ F and D(p, F j) < D(p′, F j) for some F j ∈ F. The

general spatial skyline is a set of objects in P, each of which is not spatially dominated

by another object.

The naive way to find GSSky is first calculates distance from each object to each fa-

cility type, gets the smallest distance from each type for each object, and then calculates

the skyline. This naive method is not efficient since we have to calculate distance for

each object against all facility members. Lin et al. [22] proposed progressive GSSKy al-

gorithm which computes nearest neighbor distance values of the objects with two ways

search method, object oriented search and facility oriented search. In object oriented

search, for each object p, they applied nearest neighbor query where p is the query

point against all facility types F. While on the contrary, in facility oriented search they

applied incremental nearest neighbor(INN) algorithm against facilities simultaneously

where the query point is a facility point. Objects and each facility types are organized

using separate R-Tree. A local priority queue is employed for each facility member for

computing incremental nearest neighbor query, to retrieve the next closest object. A

global priority queue maintains the current closest object in each facility type. For each

iteration, object which is hit at least by one type of facility becomes a candidate skyline,

object that is fully hit first becomes skyline, and object that has not been hit after there is

one object had fully hit is pruned. Figure 2.4 shows the example of progressive GSSky

algorithm.

In Figure 2.4, apartments(a), train stations(b), and restaurants(s) are organized by

each R-tree, let say Ra,Rb,Rs. In the first iteration of facility oriented search, a3 is hit
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Figure 2.4: The general skyline query example [22]

by s2 and a4 is hit by b1. In the second iteration, a7 is hit by s3 and a2 is hit by b2. In

the third iteration, a7 is hit by s3 and a3 is hit by b1. We say that a7 has a redundant hit,

since it has already been hit by s2, the closest restaurant from a7. For a3, it has been fully

hit by both type, so a3 become the first skyline and we can pruned the rest of objects

that have no hit so far ({a6, a5, a1}). The next step is running the object oriented search

for candidate skyline objects, which are objects that have been hit by at least one type

({a4, a7, a2}).

2.2.4 Skyline based on Nearest and Farthest Neighbour (SkyNFN)

Query

Combining the farthest and nearest problem, [25] introduced Skyline based on Nearest

and Farthest Neighbor (SkyNFN) Query. Suppose a family wants to rent a house. Ac-

cording to the family, some favorable facilities like restaurant, supermarket, school, and
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library must be close to the house, while some unfavorable facilities like garbage dump,

criminal area, and noise sources must be far. Intuitively, a house is a better choice if its

farthest distance to desirable facility is smaller, and its nearest distance to undesirable

facility is larger. Given a set of objects P = {p1, ...pn} and a two set of facility objects

F = {Fd, Fu}, while Fd represents set of desirable objects and Fu represents set of unde-

sirable objects. p f npi is the farthest neighbor of object pi to desirable facility and pnnpi

is the nearest neighbor of object pi to undesirable facility.

Definition 2.2.4 (Dominance for SkyNFN). p spatially dominates p′ with respect to F

iff p f np < p f np′ and p f np ≥ p f np′ or pnnp ≤ pnnp′ and pnnp > pnnp′ . The SkyNFN is

a set of objects in P, each of which is not spatially dominated by another object.

Finding the nearest distance from undesirable facility is to guarantee that there is no

unfavorable facility within this range. On the other hand, finding the farthest distance

from desirable facility is to be sure that all favorable facilities are inside this range.

In [25], Lin et al. proposed EFFN algorithm to solve SkyNFN Query efficiently. EFFN

used quad-tree [14] to find nearest neighbor of an object to undesirable facilities. The

nearest neighbor of query object q might fall in the same block with q in quadtree, or in

adjacent block. First we compute the distance between q and the undesirable facilities

in the same block, let say p, then we compare its distance to the distance between

q to the undesirable facilities in the adjacent leaf blocks to see if there exists any leaf

blocks adjacent to query block which contains closer undesirable facility to query object.

Figure 2.5 shows that the closest undesirable facility from q is d8 since it is in the same

block with q, and no other point in the adjacent blocks that has closer distance than d8.

To find the farthest neighbor, EFFN divides the two-dimensional space into four

quadrants. In each quadrant, EFFN runs S FS algorithm with different dominance rules
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Figure 2.5: The nearest neighbor query using quadtree example [25]

to find skyline point for each quadrant. In quadrant I, the larger values are preferred in

either axis X and Y . In quadrant II, the smaller values in axis X and the larger value in

axis Y are preferred. Quadrant III prefers the smaller values in both axis, and quadrant

IV prefers the larger values in axis X and the smaller value in axis Y . The farthest

neighbor for any query point must be one of the skyline point in those four quadrants.

First, EFFN checks in which quadrant q is located and computes q’s distance to the

skyline point in the opposite quadrant, since opposite quadrant might have higher chance

to have the farthest neighbor. Next, similar to finding nearest neighbor, EFFN calculates

distance from q to each of skyline quadrants. Figure 2.6 illustrates the fourth quadrant

of desirable facilities’ space. EFFN computes the skyline points for each quadrant. In

this example, q is in quadrant four, and the opposite of quadrant four is quadrant two,

then we set initial farthest distance as the distance between q and f2. After initialization,

we compare initial distance with distance between q to other skyline points in other
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Figure 2.6: The farthest neighbor query using quadrant example [25]

quadrants to find the farthest desirable facilities.

2.2.5 Spatial Skyline with Preferences Query

In spatial skyline, distance is the first parameter that needs to be considered. In addition

to that, sometimes users also consider other preferences beside distance. For example,

in selecting a restaurant, a user might includes price, rating, or type of the restaurant into

his/her consideration. In [19], Kodama et al. consider distance and categorical attribute

of spatial point.

Assume some restaurants have locations in X and Y coordinates, a type of cuisine

served, like Chinese, French, Japanese, or Italian food, and a type of price, like low,

medium, or high price. Before choosing a restaurant, user describes his/her preferences
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in each categorical attribute in his/her profile, for example he/she prefers higher price

and prefer Italian food the most, then Japanese and French, and the last is Chinese food.

Formally, we can order the categorical preference of user profile into this order: Italian

≺ Japanese � French ≺ Chinese and high ≺ medium ≺ low. Using this order we can

say that Italian food is better than Japanese and French food, while Japanese and French

food are incomparable, and three of them are better than Chinese food. Given a query

point q, a set of objects P = {p1, ...pn}, each object p has an ID, a spatial attributes p.l,

and a value for each attribute a ∈ A, where A is the set of non-spatial attributes. Let

p.l be the distance from q to object p and p.ai be the value of attribute ai from object

p. We say object p dominates p′, if p is equal to or better than p′ in spatial and non-

spatial attributes, and if p is better than p′ at least in one attribute. Figure 2.7 shows the

example of spatial skyline with preferences query proposed in [19].

Using the same dominance rule as Definition 2.1.1 w.r.t user profile and BBS algo-

rithm, we can retrieve skyline object of query q. Based on user profile above, we can

discard a and f since they are far from user and user do not like them in categorical at-

tributes. c and e are dominated by b, and i, j, h are also not good in categorical attributes.

Finally we can find the skyline restaurants in Figure 2.7 are b, d, and g.

Different with Kodama et al., Arefin et al. [5] utilized surrounding facilities for cal-

culating the importance of locations and demonstrated that surrounding environment is

as important as other attributes for selecting spatial objects. Assume a user wants to rent

an apartment within 1000 meters of a well known place q. The user specifies that the

apartment must have nearby restaurants and supermarket within 500 meters. We called

the apartment as target facility, and the restaurants and the supermarkets as surround-

ing facilities. The number of restaurants and supermarkets within 500 meters from the
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Figure 2.7: The spatial skyline with preferences query example [19]

apartment also taken into account by the user, and the larger number is better in this

case. Moreover the user also considers about price and rating of the restaurants and su-

permarkets. The algorithm proposed in [5] has several steps. First, it indexes the target

facility and each surrounding facility into different aggregation R-trees (aR-tree) [21] to

maintain index of both spatial and non-spatial information of each facility. The aR-tree

has similar structure with R-tree, but each node entry in aR-tree is an aggregate values.

In the leaf node, aR-tree collects objects and their corresponding attributes values, while

internal node collects the minimum value in each attribute of its descendant objects and

total number of descendant objects. Second, user specifies a query point q and its dis-

tance Dq to select target facility, and distance to select surrounding facility from target

facility Ds. According to Dq, the algorithm selects the target facilities in the range of
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Dq. Third, user specifies preferable value of attributes in surrounding facilities which

influences the quality of the selected objects in the range Ds from the selected target

facilities. Fourth, it counts the number of such objects for each selected target facilities

and combines the count of surrounding facilities and the non-spatial information into a

table. Finally, it performs skyline queries to select spatial objects from the combined

table.

In addition, Arefin et al. in [4] also proposed a spatial skyline query for group of

users located at different positions. Their method can select a convenient place for all

users of a group if the group wants to hold a meeting in a restaurant, for example. Their

method not only considers the distance from each user in group and each restaurant, but

also take into account the non-spatial properties of the restaurants. In order to efficiently

search non-dominated objects, [4] uses VoR-tree [36], a variation of R-tree that is also

using the concept of Voronoi diagram to maintain Voronoi neighbor of each object.

Objects are indexed with R-tree, then each leaf node in R-tree has a pointer to disk

block that stores the information of Voronoi neighbor. Figure 2.8 shows the example of

Vor-tree applied in [4].

For selecting non-dominated restaurants, first, we calculate the centroid of user lo-

cations, and select the closest restaurant from the centroid, in this example r7 is the

closest restaurant from the centroid. Using the same method with spatial skyline query,

we draw circles whose radius are the distance from each user’s location to r7. The union

region of all the circles now becomes the search region of r7. Next, r7 becomes the

first skyline, and for all adjacent Voronoi points with r7 that has Voronoi cell completely

inside or intersect with search region of r7 ({r5, r2, r9}) are also inserted into the heap H.

Next, since r5 has the smallest sum of distance to all q, and r5 is not dominated by r7, r5
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Figure 2.8: The Vor-tree example in [4]

becomes the next skyline point. Then, r5 is popped from heap H and Voronoi neighbors

of r5 that have Voronoi cell inside of or intersecting with search region of r7 and have

not been checked, are inserted into the heap. Similarly, the process continues until the
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heap is empty.

2.2.6 Other Related Works in Skyline on Selecting Spatial Objects

Besides all of the researches explained above, there are many more researches which

discussed about spatial skyline in location selection. Based on the fact that spatial ob-

jects not only have spatial locations but also have quality attributes like rating and price,

Lu & Yiu [27] proposed Farthest Dominated Location (FDL) which takes into account

both quality attributes and spatial locations. FDL selects an object which have the far-

thest distance from other object which dominates it in quality attributes. Conventional

spatial skyline only considers about distance but does not take into account about user

direction. Guo et al. [16] stated that direction is also should be considered to select

best location, especially for mobile user. They proposed Direction-based Spatial sky-

lines (DSS), which retrieves nearest objects around the user from different directions.

In mobile environment, [17] studied on the problem of continuous skyline query, where

the query point is a moving object, so that the skyline points changes continuously ac-

cording to the query movement. Moreover, [20] proposed an approach for computing

skylines on routes (path) in a road network, which also considers various preferences,

not only distance attributes. In location based application, point locations are also aug-

mented with textual descriptions. To find places that are near to some spatial query

points and textually relevant with a set of keywords given by the user, Shi et al. [37]

proposed a method to answer Spatio-textual skyline (STS) query problem. Due to the

limited precision of mobile device and privacy issue, the input of a user location in lo-

cation based application is often in the form of spatial range. Lin et al. [23] proposed

some methods to answer Range-based Skyline Query (RSQ) problem.
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All of the above studies are based on the assumption that there are candidate points to

choose skyline location and focused only on spatial data points. In this thesis, different

from previous researches, we focused on the problem of area selection in which the

location of candidate query points q are not given.

2.3 Reverse Skyline Query

To understand reverse skyline query, first we will discuss about Dynamic Skyline Query

(DSQ). In the traditional skyline, the origin point is always (0,0) which we refer as static

skyline, because for the given dataset the skyline points will remain the same. In some

cases, when we consider different query point q as the origin, we will obtain different

skyline points according given query point, which we refer as dynamic skyline points of

q. The dynamic skyline query retrieves all objects that are not dynamically dominated

by other objects with respect to their distances to a given query point. With respect to

a given query point means that dynamic skyline query will transform every object into

new n-dimensional space with the query point as the new origin point.

Definition 2.3.1 (Dynamic Skyline Query). Given a query point q and a d-dimensional

data set P, a DSQ according to q retrieves all data points in P that are not dynamically

dominated. A point p ∈ P dynamically dominates p′ ∈ P w.r.t q if |qi − pi| ≤ |qi − p′i |, for

all i ∈ d, and |qj − pj| < |qj − p′j| for at least one j ∈ d.

Let us consider a list of hotel in Figure 1.1(a). For example, we want to compute

dynamic skylines of h5, (x = distance; y = price) = (15, 40). To find dynamic skyline

based on h5, we first transform objects as follows. If x value of objects is less than 15,

then transform the x value into 15+ (15x). Similarly, if y value of objects is less than 40,
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then transform y values into 40+(40y). These transformation results in transformed data

objects as in Figure 2.9(a). In the example, h2 = (35, 25) is transformed to h′2 = (35, 55),

h4 = (10, 20) is transformed to h′4 = (20, 60), and so forth. We, then, compute skyline

query for the transformed data objects as dynamic skyline query for h5 = (15, 40), which

retrieves h4, h6, q, h7. Different from skyline query, reverse skyline query [13] answers

skyline query from company’s/business owner’s perspective.

Definition 2.3.2 (Reverse Skyline Query). Given a d-dimensional dataset P and a query

point q ∈ P, we call an object p ∈ P a “reverse skyline” of q if q is a dynamic skyline of

p. In other words, p is in the reverse skyline of q iff �p′ ∈ P such that:|p′i−pi| ≤ |qi−pi|,
for all i ∈ d, and |p′ j − pj| < |qj − pj| for at least one j ∈ d

Intuitively,“reverse” skyline query of q retrieves a set of points that are as preferable

as q. Consider our example dataset in Figure 1.1(a). Suppose a business owner wants

to build a new hotel with price 30 and distance 30, respectively. She/he wants to know

which customers from the existing hotels that will be interested with his new hotel. The

naive way to find all reverse skyline objects for q is by performing dynamic skyline

query for each point p in dataset P. All p in P that have q as their dynamic skyline

become the reverse skyline set of q. Figure 1.1(b) shows hotels that have q as their

dynamic skyline. Intuitively, a user that is interested in h5 hotel may also be interested in

q since q is a dynamic skyline of h5. The similar intuition holds on h2 and h6. Therefore,

we can expect users who are interested in h2, h5, and h6 might also be interested in q.

Calculating dynamic skyline for each p in P to find reverse skyline of q needs very large

computation, since we have to consider each p in P, transform the d-dimension and

calculate dynamic skyline for each p. In order to reduce the search space, in [13], Dellis

and Seeger introduced Branch and Bound Reverse Skyline (BBRS) algorithm using a
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Figure 2.9: Dynamic Skyline (a) and Reverse Skyline (b)

concept called Global Skyline (GSL) and propose two efficient algorithms, Branch and

Bound Reverse Skyline (BBRS) and Reverse Skyline using Skyline Approximations

(RSSA). Furthermore, to overcome the limitation in RSSA, Gao et al. [15] proposed Full

Reuse-based Reverse Skyline (FRRS) and global-skyline-based reverse skyline (GSRS).

Definition 2.3.3 (Global Skyline (GSL)). Given a d-dimensional data set P and a query

point q, p is said globally dominates p′ with respect to q if: (1) (p-q)(p′-q)>0 for all

dimensions, and (2) distance p to q are smaller or equal then distance p′ to q for all

dimensions, and smaller at least in one dimension.

Black point ({h2, h3, h4, h5, h6, h7}) in Figure 2.10 shows the global skyline points of

query point q. In [13], Evangelos and Seeger has proved that reverse skyline point is

always a member of global skyline point.
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Figure 2.10: Global Skyline Points

2.3.1 BBRS algorithm

BBRS is improvement version of BBS algorithm [13, 15]. BBRS computes the reverse

skyline of q by expanding minheap H of R-tree index which maintains the distance of

each node entry to q. First, BBRS computes GSL(q) which contains the candidate of

reverse skyline points. For each p ∈ GSL(q), BBRS runs a window query. Window

query is the rectangle area with p as its center, and distance to a given query point q

and its extention as its border coordinates. If there is another point inside this rectangle,

then p is not in a reverse skyline of q, otherwise p is a reverse skyline of q. Figure 2.11

shows an example of MBR of R-tree(a) and heap situation(b) in BBRS.
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Similar with BBS, BBRS will expand node at top of the heap. In this example, j is

the first global skyline, and BBRS then builds a window query for j. When performing

window query, each time BBRS must traverse R-tree. Since there is no other point

inside the window query of j, then j becomes reverse skyline point. Using the same

calculation, after some iteration, h is another global skyline, but there is another point

in its window query, so h is not a reverse skyline point. Figure 2.12 illustrates window

query for j (a) and for h (b). This step continues until heap is empty, and the reverse

skyline points of q are ({ j, c, k}).

2.3.2 RSSA algorithm

The main idea of RSSA is to compute the dynamic skyline for each database object

in pre-processing step. These pre-computed dynamic skylines are then used to discard

points that are not belong to the reverse skyline. Using the dynamic skyline informa-
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Figure 2.12: Window queries example in [15]

tion of each point p, RSSA generates two region, The Dynamic Dominance Region of

p, DDR(p) and The Dynamic Anti-Dominance Region, DADR(p). DDR(p) contains

dominated points while DADR(p) contains non-dominated points, so that p which has q

inside DDR(p) will be discarded while p which has q inside DADR(p) will be a reverse

skyline point. The points that do not fall in DADR(p) or DDR(p) are then examined in

the refinement step. Similar to BBRS, in the refinement step, RSSA also uses a window

query for each candidate, but since the number of candidates is smaller after the filter-

ing step, the number of window query applied can be significantly reduced. Figure 2.13

shows the example of RSSA algortihm. In this example, since q falls in DADR of j,

then j is reverse skyline of q. RSSA has better performance than BBRS. Unfortunately,

every time RSSA runs the window query, it has to search R-tree from root repeatedly

thus burdening I/O and CPU costs, especially if the number of global skylines that do

not fall in DADR(p) and DDR(p) is very large.
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Figure 2.13: DDR and DADR example in [15]

2.3.3 FRRS algorithm

To avoid repeated traversal of the R-tree in RSSA when performing window query for

each global skyline point, Gao et al. [15] proposed Full Reuse-based Reverse Skyline

(FRRS) algorithm. In order to achieve better computational performance, they use sin-

gle traversal of the R-tree and efficient pruning technique. They used two heaps to

maintain visited nodes in R-tree, which they called as reuse technique. First heap, Hg,

maintains the nodes that are not globally dominated by global skyline points; another

heap, Hw, maintains the nodes that are globally dominated by global skyline points.

First, FRRS computes the global skyline of query point and insert them to Hg,

while the other entries that are globally dominated by retrieved global skyline points

are pushed into Hw. Next, using pre-computed dynamic skyline, FRRS checks each

global skyline in Hg whether it falls in DADR or DDR, and inserts the point into Hw.

Finally, for other global skylines that are not placed in DADR or DDR, FRRS runs win-

dow query and checks each window query using Hg and Hw without traversing R-tree.
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Although this reuse technique can reduce R-tree traverse time, maintaining Hg and Hw

in memory are also not very efficient especially for large data sets.

2.3.4 GSRS algorithm

To overcome the shortcomings in FRRS, Gao et al. [15] proposed global-skyline-based

reverse skyline (GSRS) algorithm and introduced global-1-skyline concept. Global 1-

skyline query points are set of points that is globally dominated by exactly one point.

In Figure 2.10, global 1-skyline points are h1 and h8. Given a D-dimensional data set P

and a query point q, for a window query corresponding to any point p ∈ P, if it does not

contain any global skyline point or global 1-skyline point, the window query must be

empty. Gao et al. [15] proved that we do not have to check all points against all windows

queries, we simply need to check whether there are any global skyline point or global

1-skyline point inside the query window.

2.3.5 Other Related Works in Reverse Skyline Queries

Because of the importance of its use in various fields of application, research in the re-

verse skyline has gained much attention in the database research community such as in

business planning and preference based marketing [13], and also in profile-based invest-

ment [45]. Similar with traditional reverse skyline query, many reverse skyline variants

had been proposed. Reverse skyline on data stream is proposed in [47]. In [42], reverse

skyline query is also applied in wireless sensor networks for environmental and habitat

monitoring. Furthermore in skyband, Liu et al. [26] introduced reverse k-skyband. Deal-

ing with big data, [32] proposed reverse skyline in parallel computation using MapRe-

duce. In [18], Islam et al. showed how to answer why-not questions in reverse skyline
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queries. The paper answered why a particular point is not in a reverse skyline, and what

should be done to put the point into a reverse skyline.

All of the proposed related works above only considers for zero dimensional data.

Specifically, none of them considers about how to select skyline or reverse skyline from

two dimensional objects. Therefore, we can not directly use these algorithms to answer

skyline and reverse skyline problem in two dimensional objects, such as areas in a map.
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Chapter 3

Unfixed-Shape Area Skyline

Let us consider again our example map in Figure 1.2(a). In some real world examples,

we cannot assume there are candidate points like p1,..., p3, for the selection problem on

a map. For example, the businessman wants to build a new supermarket if there is a

good vacant area. The businessman may also want to take over a building that locates

in a good area at any cost. In this situation, the candidate points are not given and the

businessman has to find a good location in an area on the map. In other words, she/he

has to find two-dimensional area on the map whose distance from desirable facilities

should be closer and distance from undesirable facilities should be farther. We call such

area as “Area Skyline”. Since an area may be in various shapes, the closest distances

and the number of areas are different for each different shape.

As discussed on the previous chapter, skyline query is a well known method for

selecting small number of desirable objects. It selects objects that are not dominated

by another object. In this chapter, we consider a method for selecting areas that are not

dominated by another area. Different from conventional skyline query, selecting areas

is more complicated because we are considering unfixed shaped areas and an area’s
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properties are changed if its shape is changed. To solve this problem, we introduce

the concept of area skyline query and propose Unfixed-shape Area Skyline (UASky)

algorithm.

3.1 Problem definition

Let A be a rectangular target area, where the businessman wants to build his supermar-

ket, on a map. Let F = {F1, ...Fm} be a set of facility types, which can be categorized

into m types. Each type is classified into desirable (annotated by +mark) or undesirable

(annotated by − mark). Each facility has several facility objects, for example, a desir-

able facility F1+ has three objects F1+ = { f 1+1 , f 1+2 , f 1+3 }. In Figure 1.2(a), desirable

facilities are university (F1+ facility (star)) and station (F2+ facility (triangle)), while

the undesirable facility is competitor supermarket (F3- facility (square)).

3.1.1 Disjoint Areas

To find area skyline, first of all, we have to divide the area A into some disjoint areas,

and we calculate the distance from an area to the closest location for each facility of

F+ and F− for each disjoint area. In our area selection problem, we have to find the

closest facility from a given area frequently. Voronoi diagram [11] is a well known data

structure that is useful for computing the closest facility.

Given a set of P points of F, the Voronoi diagram of P is the subdivision of the plane

into P disjoint regions. Each Voronoi region contains a point of P, say p, which is called

the Voronoi point of the region V(p).

In the Voronoi diagram of P, a point q lies in the region V(pi) if and only if dist(q, pi) ≤
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Figure 3.1: Voronoi Diagram for F1+ (a), F2+ (b), and F3− (c)

dist(q, pj) for each pj ∈ P with j � i, where dist(q, p) denotes the distance between q

and p. Figure 3.1 shows how we apply a Voronoi diagram in target area A based on each

facility type, university (a), station(b), and competitor supermarket(c). Using Voronoi

diagram, we can find the closest point in P from a given point q efficiently. For exam-

ple, if a query point lies in the region that contains f 1+1 in Figure 3.1 (a), the closest

university (star) from the query point is f 1+1 .

Since we are considering distances to all of the three facilities, we divide the area by

using three Voronoi diagrams. Figure 3.2 shows 13 disjoint areas (a1, a2, ..., a13) that are

divided by the three Voronoi diagrams of Figure 3.1.

3.1.2 Distance from / to an Area

For each disjoint area, we calculate two distances, which are minimum (min) distance

and maximum (max) distance to the closest facility for each F+ and F−. Figure 3.3

illustrates the min-max distance to the point (circle) from the triangle area. If the closest

facility (circle) is included in an area, the min distance from the area is 0.

For each disjoint areas, we calculate the min-max distance to the closest facility.
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Figure 3.2: Disjoint Areas divided by 3 Voronoi Diagrams

In order to calculate these distances efficiently, we first compute distance from each of

vertexes that encloses an area. In Figure 3.3, we calculate distance from v1, v2, and

v3, which are vertexes of the triangle area. Note that we can efficiently compute the

closest facility from the vertexes by using Voronoi diagram. Also, note that one vertex

is included by more than one area, for example, the vertex that lies at the intersection of

the three solid segments in Figure 3.2 is included by three areas a3, a7, and a10. Then,

after computing min distance from vertexes, we calculate min-max distance for each

area. Table 3.1 is the Minmax table of the restaurant example.

Figure 3.4 illustrates the corresponding facilities of a3 that is extracted from Fig-

ure 3.2. For example, area a3 is in the Voronoi region f 1+1 , f 2+2 , and f 3−1 . Thus, the
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Figure 3.3: Min Distance and Max Distance

closest F1+ facility from a3 is f 1+1 . Similarly, f 2+2 and f 3−1 is the closest F2+ and F3−

facility from a3, respectively.

To calculate the distance from f 3−1 to a3, we first calculate the distance from f 3−1 to

all vertexes that enclose a3. In Figure 3.4, vertex i, j, k, and l are vertexes that enclose

a3. The min distance from f 3−1 to a3 is the distance to one vertex or the distance to one

segment if the facility lies outside the area.

In this example, the min distance from f 3−1 to a3 is the distance to the segmenti j. As

we already have all the distances from f 3−1 to all vertexes, the max distance is the dis-

tance from f 3−1 to the farthest vertex of a3. In this example, vertex l is the farthest vertex.

So the max distance from f 3−1 to a3 is the distance from f 3−1 to vertex l. Similarly, we

calculate min-max distance for all areas to make the Minmax table.

3.2 Unfixed-shape Area Skyline (UASky) Algorithm

Let a.min(Fi) and a.max(Fi) be the min and the max distance to the closest facility of

Fi from area a, respectively.
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Table 3.1: Minmax Table for Areas

F1+ (star) F2+ (triangle) F3− (square)

Area min max min max min max

a1 41.4 174.4 31.0 162.9 −95.0 0.0

a2 0.0 103.1 0.0 82.0 −91.0 0.0

a3 44.0 157.8 37.1 152.3 −104.3 −43.3

a4 44.2 158.8 43.0 155.1 −87.0 −31.0

a5 13.3 51.6 27.6 57.7 −53.4 −23.3

a6 18.1 70.4 32.2 92.3 −78.3 −22.2

a7 8.8 51.6 0.9 43.0 −74.0 −46.0

a8 32.6 38.7 28.0 31.0 −57.0 −51.0

a9 10.7 32.6 14.4 28.0 −81.0 −57.0

a10 0.0 152.6 0.0 158.1 −104.3 0.0

a11 13.3 93.0 0.0 70.0 −147.6 −53.5

a12 0.0 106.3 14.1 114.0 −81.3 −24.7

a13 11.7 106.3 21.5 90.4 −153.4 −71.6

Definition 3.2.1 (Unfixed-shape Area Skyline Query). Given two unfixed-shape areas,

a and a′, we say area a dominates area a′ iff a.max(Fi) ≤ a′.min(Fi) in ∀Fi ∈ F. Skyline

query for areas selects all non-dominated areas from the set of the disjoint areas.

For example, area a8 (see Figure 3.2 and Table 3.1) is dominated by the area a9,

because area a9 has smaller max distance than that of min distance in F1+, F2+, and

F3−. Max distance of F is distance from the closest F facility to the farthest point in the

area. If a.max(F) is equal or smaller than a′.min(F), it means any sub-areas of a have

equal or smaller distance than area of a′. In this condition a′ is dominated by area a,
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Figure 3.4: Corresponding facilities for area a3

therefore, a′ is not an area skyline.

On the other hand, for example, a6 is not dominated by another area in our domi-

nance condition. Though min distance (13.3) to F1+ of a5 is smaller than that (18.1) of

a6, max distance (51.6) of a5 is not smaller than min distance (18.1) of a6. It means that

some sub-areas in a6 may have smaller F1+ distance value than those of sub-areas of a5

and we should not eliminate a6 because of a5’s F1+ distance. In this case, some area

in a5 might be closer to F1+ than area a6, for example, area a5 with distance 13.3 (min

distance of a5) to 18.1 (min distance of a6), are closer than a6.

After preparing the Minmax table, we can compute the skyline area using any con-

ventional skyline algorithms by using the dominance condition of areas. Using any sky-

line algorithm, we eliminate a8, and output the remaining areas, i.e., a1, ..., a7, a9, ..., a13

as the skyline area.
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Input         :  ܨଵ… 
Output      :  ܵ݇ݕ  
1. for each ܨ ∈  do ܨ
2.        build_voronoi ܸ(ܨ) 

 
3. divide area by all ܸ ܨ   into ݉ disjoint area ܽଵ…  
4. assign ID for each vertex of divided areas ݒଵ…  
5. for each ܨ ∈  do ܨ
6.        for each vertex ݒ  ,ୀଵ..   
7.                   find the closest ܨ in ܸ ܨ   

 
8. for each ܨ ∈  do ܨ
9.         for each ܽ  ,ୀଵ..   
10.                   calculate ݀݅ݐݏ(ܽ,  ܶ )  and record it intoܨ
11.                   calculate ݀݅ݐݏ௫(ܽ,  ܶ ) and record it intoܨ

 
          // procedure to remove dominated areas  
12. for each record in ܶ,  ଵ… doݐ
13.       if ݐ. .௫ܨ  ≤ ݐ  . ܨ . for allܨ ∈  do ܨ
14.               remove dominated area ݐ  from ܶ 
 
15. return  ܵ݇ݕ 

Figure 3.5: Unfixed-shape Area Skylines Algorithm

Each user has different preference about the facilities, for example, one may prefer

bus/train station compared to the university. The result of skyline area query contains

preferable area of all such users. Figure 3.5 shows Unfixed-shape Area Skyline (UAS ky)

Algorithm.

3.3 Experiment

There are two steps to find area skyline. Step one is to generate the Minmax table as

in Table 3.1, and step two is to find skyline area using any skyline algorithm. Since the

performance of the step two is not different from other conventional algorithm, in this

section, we only considered the step one calculation.
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Table 3.2: Parameters and Values

Parameters Values

Number of all objects 9, 15, 30, 45

Number of disjoint areas 12, 26, 73, 113

Number of different facility types 3, 4, 5, 6

We have conducted a set of experiments to test our proposed algorithm. We build the

system in a PC with Intel core i5 processor, 3.2GHz CPU, and 4GB main memory. We

evaluated our algorithm on synthetic datasets. Each experiment is repeated five times

and the average result is considered for performance evaluation. The parameters and

values that have been used in our experiments are given in Table 3.2. The result are

shown in Figure 3.6, 3.7, and 3.8.

3.3.1 Varying object number

In the first experiment, we evaluate the effect of number of objects on our proposed

algorithm. We set the number of different facility types to 3, which consist of two

types of desirable facilities and one type of undesirable facility, and vary the number

of objects for each facility from 3 to 15 objects, so the total objects become 9, 15, 30,

and 45. Recall that as the number of objects increase, the number of disjoint areas also

increases accordingly. Figure 3.6 shows the correlation between quantity of objects and

the processing time. From the result we observe that the processing time increases with

the increase of object number.
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Figure 3.6: Performance for different number of objects

3.3.2 Varying the number of disjoint areas

The second experiment is a side effect of first experiment. For this experiment, again we

set the number of different facility types to 3. In previous paragraph we have mentioned

that the number of disjoint areas becomes large with the increase of object number. For

the total objects 9, 15, 30, and 45, the number of disjoint areas become 12, 26, 73, and

113. As a result, it gradually increases the processing time. Figure 3.7 reports the result.

3.3.3 Varying the number of facility types (facility dimensions)

For the third experiment, we study the effect of number of facility types on our approach.

For this experiment, we set the number of objects to 3 for each facility type and vary

the number of facility types from 3 to 6. We set one type as undesirable facility for

every set. Figure 3.8 shows the result of this experiment. The result indicates that as the

number of facility types increases, the performance of the proposed method becomes

slower.
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Figure 3.7: Performance for different number of disjoint areas

Figure 3.8: Performance for different facility dimensions
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In summary all of the above experiments give the indication that the processing time

depends on the number of objects and the number of facility types. If the number of

facility types or the number of objects for each facilty increases then the processing time

also increases. This happens because the large number of facilities as well as objects

are responsible in increasing the number of Voronoi regions. As a result, the number

of disjoint areas becomes larger, which increases computational overhead and requires

more processing time to compute the area skyline.

In addition, we have examined the effect of the size of region that contains all query

areas. We found that the size of the region does not affect the performance.

3.4 Concluding Remarks

Selecting desirable areas from an integrated geographical information system is impor-

tant for various business applications. This chapter addresses a method to compute area

skyline queries. Area skyline queries find some areas that are not dominated by another

area according to its distance from desirable and/or undesirable facilities. Based on

the extensive experiments, the proposed algorithm is affected by the number of facility

types as well as the number of objects for each facility.

As we see in the motivated example, this method selects relatively many areas as

skyline. A large area is likely to be selected as a skyline because a large area likely

to have large max distance. One countermeasure for this property is to use a weight

that has an effect to dominate larger area. Another countermeasure is to divide a large

area into smaller areas. Currently, our area skyline algorithm is not so efficient to find

reasonable number of area skylines. We are going to investigate this issue in our next

work.
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Chapter 4

Grid Based Area Skyline

Area skyline query is a method for selecting good areas, which are near to desirable

facilities and far from undesirable facilities. It is an important method to select non-

dominated area from the users perspective, who need some good locations based on

his/her preference. In previous chapter, we introduced UASky algorithm to answer area

skyline query. The drawback of UASky algorithm is that it selects relatively many

areas as skyline. One of the main reason is because a large area likely to have large

max distance. One countermeasure for this is to divide a large area into smaller areas.

In this chapter, we have solved the drawback of UASky and improve its efficiency.

We proposed an efficient and practical solution to the area skyline query using grid

data structure, called Grid based Area Skyline (GASky) algorithm. We have conducted

intensive experiments to prove the efficiency of our algorithm.
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4.1 Problem definition

Let A be a rectangular target area, where the businessman wants to build his supermar-

ket, on a map. Let F = {F1, ...Fm} be a set of facility types, which can be categorized

into m types. Each type is classified into desirable (annotated by + mark) or undesir-

able (annotated by − mark). Each facility has several facility objects, for example, a

desirable facility F1+ has three objects F1+ = { f 1+1 , f 1+2 , f 1+3 }.

4.1.1 Grids and Vertexes

For simplicity, we assume the rectangular target area A is a square region. We, first,

divide A into s × s grids. Figure 4.1 is an example of such grids. To identify a grid, we

assign unique ID number to each of the grids from top-left g(0,0) to bottom-right g(s−1,s−1).

Each grid is surrounded by four vertexes, which we denoted as v(i, j), v(i, j+1), v(i+1, j),

and v(i+1, j+1), for the top-left (tL), top-right (tR), bottom-left (bL), and bottom-right (bR)

of g(i, j) (0 ≤ i ≤ s, 0 ≤ j ≤ s), respectively.

4.1.2 Distance between Grid to Point

Given two points p and q in A, let dist(p, q) be the Euclidean distance between p and

q. We have to calculate the distance from a given query point q and a grid g in A.

Since g is a two-dimensional region, we define two distance functions between g and q,

distmin(g, q) and distmax(g, q), which we call “minimum (min) distance” and “maximum

(max) distance”, respectively. The definition of distmin(g, q) and distmax(g, q) are as
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Figure 4.1: Targeted area divided into square grids

follows:

distmin(g, q) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if q lies inside g.

min{dist(p, q) | ∀p inside g} if q lies outside g.

distmax(g, q) = max{dist(p, q) | ∀ p inside g}

Figure 4.2 shows examples of min and max distance. Figure 4.2 (a) shows an exam-

ple if the query point (black dot) is inside the grid. The min distance of the grid from the

query point is 0, and the max distance is the distance from the query point to the farthest

vertex, which is (tR), of the grid. In Figure 4.2 (b), the min distance from the query

point (black dot) to the grid is the distance between the point to p∗, which is the closest

point from the query point inside the grid. The max distance is the distance between the
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Figure 4.2: Min. and Max. distance between Grid and Point

query point to tR.

4.1.3 Voronoi Diagram

Given a query point q in A. To find the closest object of a facility type F from the query

point, we used Voronoi Diagram as we used in UASky (see Figure 3.1).

4.1.4 Grid Dominance and Area Skyline

Let f kmin∗ be the object whose distmin(g, f kmin∗) is smaller than or equal to those of any

other object in Fk. Similarly, let f kmax∗ be the object whose distmax(g, f kmax∗) is larger

than or equal to those of any other object in Fk. Let distmin(g, Fk) and distmax(g, Fk)

be the minimum distance and the maximum distance, respectively, from grid g to f kmin∗

and f kmax∗.

Definition 4.1.1 (Grid based Area Skyline Query). For two grids, gi and gj, we say gi

dominates g j iff distmax(gi, Fk) ≤ distmin(gj, Fk) for all k (1 ≤ k ≤ m). Area skyline of A

is the set of all non-dominated grids in A.
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Figure 4.3: Grid dominance situation

Figure 4.3 illustrates the grid dominance. Let f , the black dot, be the nearest Fk

facility for g(1, 1), g(1, 2), g(2, 1) and g(2, 2). For grid g(1, 1), dist( f , u) is the minimum

distance of Fk. Similarly, dist( f , t), dist( f , r), and dist( f , s) are the minimum distance

for g(1, 2), g(2, 1), and g(2, 2), respectively. For grid g(1, 1), dist( f , x) is the maximum

distance of Fk. Similarly, dist( f ,w), dist( f , t), and dist( f , v) are the maximum distance

to g(1, 2), g(2, 1), and g(2, 2), respectively. The (blue) circle is the circle whose radius is

the maximum distance from f to g(2, 1). As we can see in the figure, g(1, 1) and g(2, 2)

intersect with this circle, which means that those two grids have smaller minimum dis-

tance from f . In this situation, we say that g(2, 1) and g(1, 1) are uncomparable with

respect to f . Similarly, g(2, 1) and g(2, 2) are uncomparable. On the other hand, g(1, 2)

does not intersect with the circle. In this situation, we say that g(2, 1) dominates g(1, 2)

with respect to f .
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4.2 Grid based Area Skylines (GASky) Algorithm

To handle the area skyline query, we first divide the target area into square grids. Next,

for each grid, we calculate the minimum and maximum distances of each type of fa-

cilities. Using the min and max distances, we retrieve non-dominated grids, which are

skyline areas.

4.2.1 Generate square-grid sub areas

Suppose an area A in Figure 1.2 (a) has been divided into 8*8 grids (s = 8). Figure 4.1

shows the grids. Each of the grids and its surrounding vertexes have identification num-

ber. For example, grid g(3, 1) is surrounded by vertexes v(3, 1), v(3, 2), v(4, 1), and

v(4, 2).

4.2.2 Min-Max distance calculation

In this step, we build Voronoi diagram for each type of facilities. Consider Figure 4.1

again. In this figure, there are three types of facilities. Therefore, we need to build three

Voronoi diagrams. Then, we find the closest facility for each type from each grid as

follows.

At first, we find the closest facility from each of the surrounding vertexes. Figure 4.4

(a) shows an example of Voronoi diagram for facilities of type F1+ (star symbol). Fig-

ure 4.4 (b) shows the closest F1+ from each of the surrounding vertexes, v(0, 0),...,

v(8, 8).

We calculate the minimum distance for Fk type for each grid as follows. First of

all, for each Fk object, find the grid that contains the Fk object and set the minimum
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Figure 4.4: (a) Voronoi Diagram for facility F1+ (star) (b) Closest F1+ for each vertex

distance for Fk of the grid to zero. Next, for each non-zero grid g, we calculate the

minimum distance by using the distances of the vertexes to their closest facility object.

These distances are recorded in a table like Figure 4.4 (b), that shows the distance from

vertexes to their closest facility type F1+. Since a grid has four vertexes and each vertex

can be located in different Voronoi cell, the closest object of each facility type for each

vertex on one grid may be different. For example, Grid (4, 5) in Figure 4.4 (a), the

closest F1+ facility of surrounding vertex v(4, 5) and v(4, 6) is f 1+3 . The closest F1+

facility of v(5, 5) is f 1+1 . The closest F1+ facility of v(5, 6) is f 1+2 .

Figure 4.5 shows how to calculate minimum and maximum distance for non-zero

grid. Let (x, y), (x′, y), (x, y′), and (x′, y′) be the coordinate of four vertexes of grid g.
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Since we have calculated minimum distance of all vertexes like in Figure 4.4 (b), let’s

assume that (x, y), depicted by the white dot, has the smallest distance value among the

4 surrounding vertexes of g. Let (a, b), depicted by the black dot, be the coordinate

values of the closest Fk object from (x, y). The distance between (a, b) and (x, y) is not

always be the minimum distance of (a, b) to g.

There are three cases to calculate minimum distance of a grid, which will be ex-

plained as follows. Let (x′, y) and (x, y′) be coordinate values of the two adjacent ver-

texes of (x, y). First case, if a is between x and x′ and b is not between y and y′, then

the minimum distance value is the difference between y and b. Second case, if a is not

between x and x′ and b is between y and y′, then the minimum distance value is the

difference between x and a. Otherwise, for the third case, the minimum distance value

of g to Fk is the Euclidean distance between (x, y) and (a, b). In Figure 4.5, minimum

distance of g for Fk (the closest Fk is (a, b)) is |b− y|, shown as straight line. Figure 4.6

(a), (b), (c) shows the three cases to calculate minimum distance of a grid. The max-

imum distance of g for Fk (the closest Fk is (a, b)) is the distance from (a, b) to the

farthest surrounding vertexes of g, which is (x′, y′). The dashed line in Figure 4.5 shows

the maximum distance.

4.3 Computational Cost Analysis

Note that step to remove dominated areas in both algorithm is using the same conven-

tional skyline algorithm, therefore the computational cost for this step is the same for

UASky and GASky and is not included in this calculation. Both UASky and GASky

have same procedures which are generating Voronoi diagram for each type, finding the

closest facility for each type to each vertex, and calculating minimum and maximum
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Figure 4.5: Min-max calculation for non-zero grid

Figure 4.6: Minimum distance calculation

distance for each area. The difference between UASky and GASky is that in GASky we

need to generate s × s grids, while in UASky we need to divide the whole area by all

Voronoi diagrams to get disjoint areas (step 3 in UASky).

In the computational geometry literature, following Voronoi diagram’s properties

have been studied. The worst time complexity to build a Voronoi diagram of n points

is O(n log n) and the expected time complexity to find the nearest Voronoi point is
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O(log n) [12]. If we utilize a quaternary tree together with a Voronoi diagram, the ex-

pected time complexity to construct a Voronoi diagram can be reduced to O(n) and the

time complexity to find the nearest Voronoi point can be reduced to O(1) [30].

Let m be the total number of facility types, n be the number of objects in each type.

The expected time complexity to construct m Voronoi diagrams for GASky and UASky

is O(mn). The time to find the nearest facility for each point is O(m).

Since there are s × s grids in GASky, there are O(s2) surrounding points. Therefore,

GASky takes O(s2m) in addition to the Voronoi diagrams’ construction time. As for

UASky, there are O(mn) Voronoi edges in total. The number of intersections of O(mn)

edges is O((mn)2), which are the number of surrounding vertexes. Therefore, UASky

takes O((mn)2) in addition to the Voronoi diagrams’ construction time. After calculating

minimum and maximum distance for each facility type for each grid, we record them

into Minmax table T .

4.3.1 Calculate Non-dominated Grid

To simplify the skyline query calculation, we multiply the min and max distance values

for undesirable facilities by -1. After this simplification, smaller value is better in each

of the distance values. We record distmin and distmax for each grid in the Minmax table

T , then calculate area skyline from T using grid dominance condition in Section 4.1.4.

Figure 4.7 shows Grid-based Area Skyline (GAS ky) Algorithm. After calculating

min and max distance for each grid, we can retrieve the skyline records from the Min-

max table T as area skylines.
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Input         :  ܨଵ…, ݏ 
Output      :  ܵ݇ݕ  
1. for each ܨ ∈  do ܨ
2.        build_voronoi ܸ(ܨ)  
3.        for each vertex ݒ(݅, ݆) from (0,0)ݒ to ݏ)ݒ,   (ݏ
4.                 find the closest ܨ in ܸ ܨ  from ݒ(݅, ݆)  
5.        for each grid ݃(݅, ݆) from ݃(0,0) to ݃(ݏ − 1, ݏ − 1)  
6.                  calculate ݀݅ݐݏ(݃(݅,  ܶ  ) and record it intoܨ ,(݆
7.                  calculate ݀݅ݐݏ௫(݃(݅,  ܶ  ) and record it intoܨ ,(݆
 
        // procedure to remove dominated grids  
8. for each record in ܶ,  ଵ… doݐ
9.         if ݐ. .௫ܨ  ≤ .ݐ  ܨ . for allܨ ∈  do ܨ
10.                  remove dominated grid ݐ from ܶ 

 
11. return ܵ݇ݕ  

Figure 4.7: Grid-based Area Skylines Algorithm

4.3.2 UASky

Through intensive experiments in unfixed-shape area method in our previous chapter,

we found that a large area is likely to be selected as skyline. This is because a large

area have larger max distance which makes it difficult to be dominated. Moreover, in

UASky we cannot change the shape, size and number of disjoint areas because they are

produced by intersection of all Voronoi diagrams. Thus, user can not control the number

of skyline areas in UASky. In contrast, in GASky user can control the number of grid,

which can prevent the problem in UASky. We will discuss this issue later in Section 4.4.

4.4 Experimental Evaluation

In this section, we conduct four experiments to examine selectivity and performance.

We performed our experiments in a PC with Intel Core i5 3.2GHz processor with 4GB of
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RAM. We evaluated our algorithm using synthetic datasets. Each experiment is repeated

ten times and we reported the average.

Since the step to remove dominated areas is the same for both UASky (Figure 3.5

step 8-10) and GASky (Figure 4.7 step 12-14), and the performance of this step is not

different from other conventional skyline algorithm, we exclude it from the processing

time calculation.

4.4.1 Comparison between GASky and UASky

In these experiments, we compared the performance of the proposed algorithm (GASky)

and our previous algorithm (UASky) in the feasibility study [2].

First, we compared processing time of GASky with that of UASky, and second,

we compared ratio of skyline areas of both algorithm. We also examined the effect of

number of facility type and number of objects in both algorithm.

We used two different synthetic data, say DB1a and DB1b for these experiments.

For DB1a, the default number of objects is 128. We varied the number of types to 2,

4, 8, 16, and 32 respectively. In these experiments, the number of desirable types is set

to be the same as the number of undesirable types. For DB1b, we fixed the number of

facility type is 2. Then, we varied the number of objects to 8, 12, 24, 48, 96, and 128.

In DB1a, the number of disjoint areas resulted by UASky was around 1800 and

in DB1b it was around 260 disjoint areas. In the first experiment, we set the number

of grids in GASky so that the number of grids in GASky becomes almost same to the

number of disjoint areas produced by UASky.

The results of first experiments are shown in Figure 4.8 and 4.9.

From these figures, we can see that GASky is faster than UASky especially when
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Figure 4.8: Processing time of DB1a

Figure 4.9: Processing time of DB1b
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Figure 4.10: Skyline Ratio of DB1a

the number of types become large. We can also observe that the number of facility type

affects the processing time more than the number of object. One of the main reason is

that the number of facility type affects the time to build Voronoi diagrams. The ratios of

skyline areas of this experiment are reported in Figure 4.10 and 4.11.

From these figures, we can see that using the similar number of grids, GASky has

better skyline ratio than UASky. In these figures, skyline ratio decreases up to 40%.

In order to have better skyline ratio, in the second experiments, using DB1a and

DB1b, we set the number of grids in GASky to be 10000 and 2500. The ratios of

skyline areas are reported in Figure 4.12 and 4.13. Figure 4.12 and 4.13 shows that

increasing the number of grids can reduce the skyline ratio until 5%.

Figure 4.12 and 4.13 also shows that GASky is sensitive to the increase of facility

types rather than the increase of objects. One of the main reasons is as follows. The

increase of the facility types with fixed number of objects causes decrease of density of
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Figure 4.11: Skyline Ratio of DB1b

Figure 4.12: Skyline Ratio of DB1a with 10.000 grids for GASky
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Figure 4.13: Skyline Ratio of DB1b with 2500 grids for GASky

each facility. It is equivalent to enlarging each grid, which tends to increase the ratio of

skyline areas.

4.4.2 Effect on Grid number

In these experiments, we used four different synthetic data, say DB2a, DB2b, DB2c,

DB2d. DB2a is random data consists of 128 objects with two types of facilities, one is

desirable and the other is undesirable facility. DB2b has the same types of facilities but

consists of 256 objects. DB2c and DB2d consist of 128 and 256 objects respectively,

with four types of facilities, two types are desirable and the others are undesirable facil-

ities.

For each data, we varied the number of grids to 144, 256, 400, 625, and 900. Fig-

ure 4.14 and 4.15 shows the results.
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Figure 4.14: Processing time varied with number of grids

Figure 4.15: Ratio of Skyline varied with number of grids
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From the results in Figure 4.14, we can observe that the processing time increases

with the increase of the number of grid, and data that has more facility types and more

number of objects also has longer processing time. The results in Figure4.15 illustrate

that the ratio of skyline decreases with the increase of the number of grids, and data

that has smaller number of facility types and number of objects decreases the ratio of

skylines. In other words, we can decrease the ratio of skyline area by increasing the

number of grids. Thus, higher number of grid means smaller size of each disjoint area,

which in turn will decrease the ratio of skyline. By applying grid data structure, the

GASky can control the number of area skyline by changing the number of grids.

In actual usage scenario, if a user prefers selective areas, she/he had better increase

the s, which tends to reduce the ratio of skyline areas. Since GASky is sensitive to

the increase of facility types, user should use larger s to reduce skyline ratio if she/he

increases the number of facility type.

In our motivating example, UASky generated 13 disjoint areas with the ratio of

skyline was 100%. Using the same method above, we applied GASky with 225 grids

and the skyline ratio was decreased to 30%. Figure 4.16 and 4.17 illustrates skyline area

after applying UASky and GASky.

4.4.3 Effect of Ratio of Desirable and Undesirable Types

In this experiment, we investigated the effect of ratio of desirable (or undesirable) fa-

cility among all facilities in UASky and GASky. In this experiment, we set the total

objects to 100, set the number of facility type to 10, and varied the number of desirable

and undesirable facility type to (10+, 0−), (8+, 2−), (6+, 4−), (4+, 6−), (2+, 8−), and

(0+, 10−). Figure 4.18 shows the results. We can see that the difference of the ratio has
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Figure 4.16: All targeted areas retrieved as skyline area using UASky

no significant effect to the processing time.

Moreover, this result also shows that GASky has better performance than UASky

for different ratio of desirable and undesirable facilities.

4.4.4 Scalability

In this experiment, we examined the scalability of the proposed algorithm. For this

purpose, we set the default number of facility’s types to 4, among which two types

are desirable facilities and the other two types are undesirable facilities. We set the

number of grids to 100. We varied the number of total objects to 100K, 200K, 300K,

400K, and 500K, respectively. Figure 4.19 shows the results. In summary, all of the

above experiments give the indication that the processing time depends on the number
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Figure 4.17: Decreased skyline area by using GASky

of objects, the number of facility types, and the number of grids. The processing time

increases with the increase of the number of facility types, the number of objects, and

the number of grids.

4.5 Concluding Remarks

Areas which are close to desirable facilities and far from undesirable facilities are im-

portant for various applications. The proposed area skyline queries help to find such

areas, which are not dominated by another area.

This chapter addresses a method to compute area skyline query using grid data struc-

ture. Comprehensive experiments are conducted to demonstrate the effectiveness and
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Figure 4.18: Effect of Desirable and Undesirable Types’ Ratio

Figure 4.19: Scalability of GASky Algorithm
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efficiency of the algorithm.

In future, we will extend our new area skyline query to answer area selection based

on owner’s perspective. We will also consider the challenging related open problems

such as considering more than one object for each facility type, selecting k-dominant

areas and how to utilize non-spatial property such as population density, price, etc., in

the selection of areas.

75



Chapter 5

Reverse Area Skyline

Area skyline query is an important method to select non-dominated area from the users’

perspective, who need some good locations based on his/her preference. Assume a real

estate company has an area g (grid (2,18) in Figure 5.1) to develop apartment, office,

or market complex. The company needs to know who will be interested in the area.

By using the idea of “reverse skyline”, reverse skyline areas of g can be identified.

Grey grids in Figure 5.2 are dynamic area skyline of grid (1, 14), while grey grids of

Figure 5.3 are reverse area skyline of g. Notice that g is a dynamic area skyline of

grid (1, 14), so that grid (1, 14) is a reverse area skyline of g. On the analogy of the

utilization of “reverse skyline”, the “reverse” skyline areas has invaluable information.

Let us consider a real estate company that have an area g (grid (2,18) in Figure 5.3).

Information about reverse area skyline, shaded area in Figure 5.3, must be useful for

such company to consider effective real estate developments so that the area attracts

many buyers. Reverse area skyline query can also be used for selecting promising buyers

of the area, since it may give the company clues to find who will be interested in the

area. In addition, it also may help to predict what type of business that would be suitable
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Figure 5.1: Area Skyline Queries

for the area considering the type of business that had already exist in the reverse area

skylines.

In this chapter, we present the reverse area skyline query and propose an effective

and efficient method to answer reverse area skyline problem.

5.1 Problem Definition

Let A be a rectangular target area in which there are spatial objects. Each spatial object

can be categorized into one of m facility types. Let Fk be a set of type k (k = 1, ...m)

objects, which are Fk = { f k1, f k2, ..., f knk} where nk is the number of objects of the type
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Figure 5.2: Dynamic Area Skyline of grid (1,14)

k facility.

5.1.1 Grids and Vertexes

We divide A into s × t square grids where s is the number of rows, and t is the number

of column. We can identify each grid using row number and column number. For

example, gi, j is a grid that lies in the i-th row and the j-th column. Each square grid is

surrounded by four vertexes, each of which can also be identified by row number and

column number. For example, top-left, top-right, bottom-left, and bottom-right vertex

of gi, j can be identified as vi, j, vi, j+1, vi+1, j, and vi+1, j+1, respectively. In Figure 5.4, we
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Figure 5.3: Reverse Area Skyline Result

defined the query grid g, and divided an area into 12x12 grids. g4,6 is surrounded by

four vertexes v4,6, v4,7, v5,6 and v5,7, respectively. For each vertexes, we find the nearest

object of each facility type using Voronoi diagram. After that, we calculate min and

max distance from each grid using the same calculation in GASky step 1 as discussed

in Section 4.2.2, and record the distances in the Minmax table. From now, we call one

record in Minmax table as one object.

5.1.2 Dynamic Area Skyline

Let min(dk(g)) and max(dk(g)) be the the min and max distance to facility fk of grid g,

and min(dk(q)) and max(dk(q)) be the the min and max distance to facility fk of query
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Figure 5.4: Target area divided into 12 x 12 grids

grid q. In order to calculate dynamic area skyline, we need to transform the distances

similar to conventional dynamic skyline. Let min(dk(g))T and max(dk(g))T are the trans-

formed min and max distance, respectively. There are six cases to transform min(dk(g))

and max(dk(g)) w.r.t query grid q into min(dk(g))T and max(dk(g))T . Figure 5.5 illus-

trates the transformation of six cases in dynamic area skyline.

In all cases, we assume min(dk(q)) and max(dk(q)) are 5 and 8, respectively. In case

1, assume min(dk(g)) and max(dk(g)) are 9 and 11. Since 9 and 11 are larger than 8, then

min(dk(q))T and max(dk(q))T become 1 (9-8) and 3 (11-8). In case 2, assume min(dk(g))

and max(dk(g)) are 6 and 11. Since 6 is between 5 and 8, and 11 is larger than 8,

then min(dk(q))T and max(dk(q))T become 0 and 3 (11-8). In case 3, assume min(dk(g))
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Figure 5.5: Transformation cases

and max(dk(g)) are 6 and 7. Since 6 and 7 are between 5 and 8, then min(dk(q))T and

max(dk(q))T become 0. In case 4, assume min(dk(g)) and max(dk(g)) are 1 and 11. Since

1 is smaller than 5 and 11 is larger and 8, then min(dk(q))T and max(dk(q))T become 0

and 3, just like in case 2. In case 5, assume min(dk(g)) and max(dk(g)) are 1 and 6. Since

1 is smaller than 5 and 6 is between 5 and 8, then min(dk(q))T and max(dk(q))T become

0 and 4 (5-1). In case 6, assume min(dk(g)) and max(dk(g)) are 1 and 4. Since 1 and 4

are smaller than 5, then min(dk(q))T and max(dk(q))T become 1 (5-4) and 4 (5-1).

We then formally defined Case 1 to 6 as:
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if min(dk(g)) ≥ max(dk(q)), then

min(dk(g))T = min(dk(g)) − max(dk(q))

max(dk(g))T = max(dk(g)) − max(dk(q))

(5.1)

if max(dk(g)) > max(dk(q)) and max(dk(q)) > min(dk(g)) ≥ min(dk(q)) , then

min(dk(g))T = 0

max(dk(g))T = max(dk(g)) − max(dk(q))

(5.2)

if min(dk(g)) ≥ min(dk(q)) and max(dk(g)) ≤ max(dk(q)) , then

min(dk(g))T = 0

max(dk(g))T = 0

(5.3)

if min(dk(g)) < min(dk(q)) and max(dk(g)) > max(dk(q)) , then

min(dk(g))T = 0

max(dk(g))T = max(dk(g)) − max(dk(q))

(5.4)

if min(dk(g)) < min(dk(q)) and min(dk(q)) < max(dk(g)) ≤ max(dk(q)) , then

min(dk(g))T = 0

max(dk(g))T = min(dk(q)) − min(dk(g))

(5.5)

if max(dk(g)) ≤ min(dk(q)), then

min(dk(g))T = min(dk(q)) − max(dk(g))

max(dk(g))T = min(dk(q)) − min(dk(g))

(5.6)

Definition 5.1.1 (Dynamic Area Skyline Query). For two objects, g and g′, we say g

dynamically dominates g′ w.r.t q, if and only if max(dk(g))T ≤ min(dk(g′))T for all k

(1 ≤ k ≤ m). Dynamic area skyline query of q retrieves the set of all area objects that

are not dynamically dominated by any other objects w.r.t q.
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Based on dynamic area skyline definition, we can formally define the reverse area

skyline of query area q.

Definition 5.1.2 (Reverse Area Skyline Query). Let G be a set of d-dimensional objects.

Reverse area skyline query w.r.t query area q retrieves all area objects g ∈ G where q is

in the dynamic area skyline of g. In other words, we say g is reverse area skyline of q if

�g′ ∈ G such that max(dk(g′))T ≤ min(dk(q))T for all k (1 ≤ k ≤ m) w.r.t g.

Using reverse area skyline query definition, we can compute reverse area skyline

query by performing dynamic area skyline query for each grid object, and retrieving

set of grid objects which have query area q in their dynamic area skyline result. But as

discussed in Section 2.3, to compute reverse skyline by computing dynamic skyline for

each object is time-consuming. In this chapter, we define global area skyline concept to

compute reverse area skyline. We extend global skyline concept in [13] so that it can be

applied in area skyline.

5.1.3 Disjoint, Overlap, Within/Contain

Using information of min and max distances, one object’s min and max distance might

disjoint, overlap, within/contain with another object’s min and max distance. Let us

consider the example of Figure 5.5 again. We define disjoint objects using case 1 and 6,

overlap objects using case 2 and 5, and case 3 and 4 for within/contain objects.

Definition 5.1.3 (Disjoint Objects). Object g disjoints with g′, if max(dk(g)) ≤ min(dk(g′))

or min(dk(g)) ≥ max(dk(g′)), for all k ∈ m.

Definition 5.1.4 (Overlap Objects). Object g overlaps with g′, if max(dk(g)) > max(dk(g′))

and max(dk(g′)) > min(dk(g)) ≥ min(dk(g′)), or if min(dk(g)) < min(dk(g′)) and min(dk(g′)) <
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max(dk(g)) ≤ max(dk(g′)), for at least one k ∈ m.

Definition 5.1.5 (Within/Contain Objects). Object g is within g′, if min(dk(g)) ≥ min(dk(g′))

and max(dk(g)) ≤ max(dk(g′)), for all k ∈ m. Object g contains g′ if min(dk(g)) <

min(dk(g′)) and max(dk(g)) > max(dk(g′)), for all k ∈ m.

These disjoint, overlap, and within/contain conditions are two-dimensional objects’

characteristics that are not exist in zero dimensional objects. Based on these character-

istics, we define Lemma 1 and 2 which are very important to efficiently compute reverse

area skyline using global area skyline concept.

Lemma 1. Let q be the query area. If g overlaps with or within/contain q, then g

must be a reverse area skyline of q.

Proof. Assume g is not a reverse area skyline of q. Then, there should be at least one

object that dynamically dominates q w.r.t g. If we apply dynamic area skyline of g, since

g overlaps or within/contains q, based on case 2, 3, 4, 5 in Section 5.1.2, min(dk(g))T

is always be 0, which makes it not possible to be dominated by other objects. It means

that q is a dynamic area skyline of g, and consequently, g is reverse area skyline of q.

So the assumption is not true and the proof is complete.
Figure 5.6 shows an illustration of Lemma 1. Figure 5.6 (a) shows original min-max

distance of q and g, while Figure 5.6 (b) shows min-max distance of qT after we apply

dynamic area skyline of g.

Lemma 1 provides an easy selection method for RASky algorithm to directly put

overlap/within/contain objects into reverse area skyline result.

Before defining global area skyline, let us consider the definition of global skyline

for zero dimensional data in [13]. Given a d-dimensional data set P and a query point

q, p1 is said globally dominates p2 with respect to q if: (1) (p1-q)(p2-q)>0 for all di-
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Figure 5.6: Lemma 1 situation

mensions, and (2) distance p1 to q are smaller or equal then distance p2 to q for all

dimensions, and smaller at least in one dimension. Let us consider point h2 and h1

in Figure 2.10. We said h2 is globally dominates h1, because (h1-q)(h2-q)>0 and dis-

tance h2 to q is smaller than distance h1 to q for all dimensions. In two-dimensional

case, the above situations become more complicated for overlap/within/contain condi-

tions. Lemma 2 shows that overlap/within/contain objects can not globally dominate

any other objects.

Lemma 2. Overlap/within/contain objects can not globally dominate any other ob-

jects

Proof. Let assume that g and g′ is in the same quadrant w.r.t q. g is an over-

lap/within/contain object w.r.t q, and g′ has min(dk(g′))T ≥ max(dk(g))T , for all k ∈ m,

so that g globally dominated g′, and g′ is not a reverse area skyline of q. On the contrary,

if we apply dynamic area skyline of g′, we can see that g can not dominate q, since g

and q are overlap/within/contain objects. This mean that g′ is reverse skyline of q and

should not be discarded by g.
Figure 5.7 shows an illustration of Lemma 2. Figure 5.7 (a) shows the original min-

max distance of q, g, and g′. Figure 5.7 (b) shows if g (overlap/within/contain object)
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Figure 5.7: Lemma 2 situation

globally dominate g′ w.r.t q, since max(dk(g))T is smaller than min(dk(g′))T , then g′ is

not a reverse skyline of q. But this will lead to wrong result. If we apply dynamic area

skyline on g′ as in Figure 5.7 (c), q is in dynamic area skyline of g′, which consequently

makes g′ as reverse area skyline of q. In this situation g should not be allowed to globally

dominate g′ in the first place, since g′ is reverse area skyline of q. Using Lemma 1 and

2, we can reduce the comparison step in calculating global area skyline because all the

overlap/within/contain objects do not participate in the comparison process.

5.1.4 Global and Global-1 Area Skyline

Based on Lemma 1 and 2, only disjoint objects will participate in global area skyline

computation. Let us consider disjoint situations in Figure 5.5 case 1 and 6. In Figure 5.5

case 1, min(dk(g)) and max(dk(g)) are larger than max(dk(q)), while in Figure 5.5 case

6 min(dk(g)) and max(dk(g)) are smaller than min(dk(q)). To differentiate between these

two disjoint conditions, we define diff (gk) as:
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diff (gk) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min(dk(g)) − max(dk(q))

if max(dk(q)) ≤ min(dk(g)).

max(dk(g)) − min(dk(q))

if max(dk(g)) ≤ min(dk(q)).

Notice that the value of diff (gk) could be “positive” (case 1) or “negative” (case 6).

Two objects g and g′ are in the same quadrant w.r.t q if (diff (gk))(diff (g′k)) >0 for all

k ∈ m. In Figure 5.8, since max(dk(g)) ≤ min(dk(q)),(15 ≤ 20), then diff (gk) < 0 while

diff (g′k) > 0, since min(dk(g′)) ≥ max(dk(q)), (30 ≥ 25). Using Lemma 1, Lemma 2,

and diff definition, we define global and global-1 area skyline.

Definition 5.1.6 (Global and Global-1 Area Skyline). For two objects, g and g′, we

say g globally dominates g′ w.r.t q, if and only if: (1)g and g′ are disjoint objects w.r.t

q, (2)(diff (gk))(diff (g′k)) > 0 and (3) max(dk(g))T ≤ min(dk(g′))T , for all k ∈ m. Any

objects g′′ becomes global-1 area skyline if there is only one other object that globally

dominates it.

5.1.5 Window Query

Window Query of grid w(g) w.r.t q, has minimum and maximum value for each k di-

mension, min(wk(g)) and max(wk(g)) where k ∈ m. It is defined as follows:

min(wk(g)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max(dk(q)) if min(dk(g)) ≥ max(dk(q)).

min(dk(g)) + diff (gk)

if max(dk(g)) ≤ min(dk(q)).
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Figure 5.8: Diff and Window query

max(wk(g)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max(dk(g)) + diff (gk)

if min(dk(g)) ≥ max(dk(q)).

min(dk(q)) if max(dk(g)) ≤ min(dk(q)).

Figure 5.8 shows an illustration of window query’s minimum and maximum value

in one dimension. Assume min and max distance for g, q, and g′ are (10,15), (20,25),

and (30,35). For w(g), since max(dk(g)) ≤ min(dk(q)), then diff (gk) is -5 (15-20), so

that min(wk(g)) and max(wk(g)) are 5 (10 + (-5)) and 20 (same value as min(dk(q))). For

w(g′), since min(dk(g)) ≥ max(dk(q)), then diff (g′k) is 5 (30-25), so that min(wk(g′)) and

max(wk(g′)) are 25 (same value as max(dk(q))) and 40 (35+5).

Lemma 3. Let g be a global area skyline of q, and g′ be a global or global 1-area

skyline of q with the same quadrant with g. If the window query of g contains g′ w.r.t q,

then g is not a reverse area skyline of q.

Proof. If the window query of g contains g′, then if we apply dynamic area skyline
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Figure 5.9: Lemma 3 situation

of g using formula in Section 5.1.2, we know that max(dk(g′))T is always smaller than

min(dk(q))T . It means that g′ will dynamically dominate q w.r.t g, therefore g can not be

a reverse area skyline of q.
Figure 5.9 illustrates Lemma 3 situation. Figure 5.9 (a) shows that w(g) is contain

g′, while Figure 5.9 (b) shows that g′ will dynamically dominate q w.r.t g, so that g is not

a reverse area skyline of q. Using Lemma 3, for each global area skyline we simply just

check whether at least one of other global or global 1-area skyline is within its window

query or not.

5.2 Reverse Area Skyline (RASky) Algorithm

Reverse area skyline algorithm (RASky) consist of two steps. At step 1, we divide

A into grids. For each grid, we find the nearest facility type, calculate its min and

max distance, and complete the distance information in Minmax table using the same

method in GASky step 1 [3] as explained in Section 4.2.2. In step 2, using information

in Minmax table from the first step, we calculate reverse area skyline using global area
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Figure 5.10: Sample map (a) and Minmax Table (b)

skyline. In this section, we will focus on the reverse area skyline step 2.

In this section we use sample map in Figure 5.10 (a) and set g3,2 as query area q,

then divide sample map into 5x5 grids. In this map we have two types of facilities,

F1+ and F2−, each of them has two objects F1+ = ( f 1+1 , f 1+2 ), F2− = ( f 2−1 , f 2−2 ). After

completing RASky step 1 in the sample map, we obtain Minmax table like in Figure 5.10

(b).

We index the grid by their min and max distance in Minmax table using R-tree

structure. Each leaf in the R-tree is in the format (id, qd,RECT ), where id is the number

of grid in Minmax table, qd is quadrant, and RECT is a bundle of all min and max

distances in a grid for all dimensions. For example, for 2 facility type, or 2-dimensional,

RECT has ( f 1min, f 2min) as bottom-left coordinate and ( f 1max, f 2max) as top-right

coordinate. Our query object RECT3,2 has bottom-left coordinate (15,10) and top-right

coordinate (29,25). Using RECT object, we build R-tree of Minmax table.

90



Figure 5.11: R-tree of disjoint objects

5.2.1 Building R-tree

RASky reads each object in Minmax table. Using Lemma 1 and 2, if the object is an

overlap/within/contain object, then it will automatically be a reverse area skyline object,

and will be excluded from R-tree and further computation. Only disjoint objects will be

inserted into R-tree. Let us consider Minmax table in Figure 5.10 (b). Since g0,4, g1,0,

g4,1, and g4,4 are disjoint objects (rows with bold border in Figure 5.10 (b)), they are

inserted into R-tree, while others directly become reverse area skyline of q. Figure 5.11

shows R-tree after inserting disjoint objects.

5.2.2 Finding Global and Global-1 area skyline

RASky inserts all root entries into heap H and sort them by their distance from q. Be-

sides H, we also use two additional heaps, Hg and Hg1, to maintain global area skyline

and global-1 area skyline. Since N1 is closest to q, its entry is expanded, and N1 is
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Figure 5.12: Window query in sample dataset

removed from H. Now H contents become RECT0,4, RECT4,1, and N2. As top of

H, RECT0,4 then becomes the first global area skyline and is inserted into Hg. Notice

that RECT4,1 is in the same quadrant with RECT0,4 and it is not globally dominated by

RECT0,4, so it is also inserted into Hg. Next N2 is expanded and RECT1,0 and RECT4,4

are inserted into H. Since RECT1,0 is in different quadrant with RECT0,4 and RECT4,1,

RECT1,0 also becomes global area skyline and is inserted into Hg. RECT4,4 is in the

same quadrant with RECT1,0, but since it is not globally dominated by RECT1,0, then it

is also inserted into Hg. Since there is no global-1 area skyline in this sample dataset,

then Hg1 is remain empty.

5.2.3 Applying Window Query

After getting all global area skylines, we build window query for each entry in Hg.

Using window query formula in Section 5.1.5, Figure 5.12 shows bottom-left and top-

right coordinate of each window query for query area RECT3,2 whose bottom-left and

top-right is (15,10) and (29,25), respectively.

Let us consider w(g0,4), diff (g0,41) is -1 (14-15) and diff (g0,42) is 0 (10-10). Using
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these values, we can compute min and max of w(g0,4) in dimension 1 as (2+(-1),15)

and in dimension 2 as (0+0,10), so that bL and tR coordinates are (1,0) and (15,10).

Since RECT4,1 has the same bL and tR coordinate with RECT0,4, then min and max

of w(g4,1) are the same with w(g0,4). This mean that RECT4,1 always contains w(g0,4)

and vice versa, so based on Lemma 3, both of them are not reverse area skyline of

g3,2. Now for w(g1,0), diff (g1,01) is 0 (29-29) and diff (g1,02) is 3 (28-25). Min and max

of w(g1,0) in dimension 1 as (29,39+0) and in dimension 2 as (25,40+3), so that bL

and tR coordinates are (29,25) and (39,43). Finally, for w(g4,4), diff (g4,41) is 4 (33-29)

and diff (g4,42) is 3 (28-25). Min and max of w(g4,4) in dimension 1 as (29,44+4) and

in dimension 2 as (25,38+3), so that bottom-left and top-right coordinates are (29,25)

and (48,41). RECT4,4 overlaps with w(g1,0), while window query of w(g4,4) contains

RECT1,0. Based on Lemma 3, RECT1,0 is reverse area skyline of q while RECT4,4 is

not. From the above computation, we can find that g0,4, g4,1, and g4,4 are not reverse area

skyline of g3,2 while the others are.

Shaded area in Figure 5.13 shows reverse area skyline of g3,2 in sample map Fig-

ure 5.10 (a), which is 88% of all grids. Next in the experiment section, we discover that

smaller size of query area q will reduce reverse area skyline result.

5.3 Experimental Evaluation

We experimentally evaluated RASky algorithm in a PC with Intel Core i5 3.2GHz

processor and 4GB of RAM. We conducted three experiments using three synthetic

datasets. In each experiment, we repeated five times and reported the average. We ex-

amined the effect of parameters such as number of objects, number of types, and number

of grids, to the step 1 and step 2 of RASky algorithm. We recorded the processing time
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Figure 5.13: Reverse area skyline for sample map

for step 1 and step 2 of RASky and the ratio of reverse area skyline resulted from each

experiment. Ratio of skyline is the number of reverse area skyline compared with the

number of grids in the experiment, Table 5.1 lists the synthetic datasets and parameters

in these experiments.

Table 5.1: Experimental Dataset

Dataset Objects Types Grids

DB1 1k,2k,4k,8k,16k 2 160k

DB2 1k 2,4,8,16 40k

DB3 1k 2 10k,40k,160k,640k
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5.3.1 Effect of Number of Objects

In these experiments, we examined the performance of RASky on the different number

of objects, when the number of facility types and the number of grids are fix, using DB1.

Figure 5.14 shows the processing time of this experiment. We can see that the increase

of the number of objects will increase the total processing time of RASky. In step 1,

increasing number of objects will increase the processing time to build Voronoi diagram.

However, since the number of Voronoi diagrams is fix according to the number of types,

increasing number of objects does not have effect in the size of Minmax table. Hence

in RASky step 2, increasing the number of objects has less effect, and the processing

time tends to decrease when the number of objects increases. The reason is because

increasing number of objects, while the number of grids is fix, increases the number

of non-disjoint objects. It means less objects will participate in global area skyline

computation, since only disjoint objects participates in the computation. Therefore the

processing time will be decreased. The ratio of reverse area skyline is increasing as

reported in Figure 5.15. Increasing the number of objects will cause smaller value on

min and max distances, but since the number of grids is fix when the number of objects

increase, the ratio of reverse area skyline still will increase.

5.3.2 Effect of Number of Types

In these experiments, we used a synthetic data DB2 that have fix number of objects and

number of grids. From the results in Figure 5.16, we can observe that the processing

time increases with the increase of the number of types. The increasing number of types

will require more Voronoi diagrams, which in turn increase the processing time. The

result illustrates that increasing the number of types significantly increase the process-
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Figure 5.14: Processing time of DB1

Figure 5.15: Reverse area skyline’s ratio of DB1
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Figure 5.16: Processing time of DB2

ing time of step 1. Similar with increasing number of objects, increasing number of

types with fixed number of grids will decrease the number of disjoint objects. Although

the number of disjoint objects decreases, the processing time still increases because in-

creasing facility types also means larger size of Minmax tables. Since the dimension is

increasing as the number of facility types increase, the ratio of skyline is also increasing

as shown in Figure 5.17.

5.3.3 Effect of Number of Grids

In these experiments, we evaluated the effect of number of grids while the number of

objects and number of types are fix, using DB3. Figure 5.18 shows that the number of

grids affects the processing time of step 1 and step 2. In step 1, increasing the num-

ber of grids means more comparison on Voronoi diagrams and more calculation time
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Figure 5.17: Reverse area skyline’s ratio of DB2

to obtain min and max distance, and in the same time enlarges the number of record

in Minmax table which also cause increasing the time needed for step 2 computation.

Increasing number of grids while number of objects and number of types are fix also

causing the number of disjoint objects to increase. In step 2, increasing number of dis-

joint objects will increase processing time since more objects will participate in global

area skyline computation. In Figure 5.19, the effect of number of grids affects ratio of

skyline differently compared to the effect of the number of objects and types. Increasing

the number of grids will decrease the ratio of skyline. The important reason of that is

because more grids has the same meaning of having smaller size of each grid, which

significantly decrease the ratio of skyline, since smaller area is likely to be dominated

by another area.

From all of experimental results, we can indicate that the total processing time of

RASky increases when the number of objects, number of facility types, and the number
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Figure 5.18: Processing time of DB3

Figure 5.19: Reverse area skyline’s ratio of DB3
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of grids increases. In addition, the ratio of skyline increases when the number of objects

and types increases, and decreases when the number of grids increases.

5.4 Concluding Remarks

In this chapter, we defined dynamic area skyline, global area skyline, and proposed

reverse area skyline algorithm (RASky) to solve the reverse area skyline query. This

query is very important for location selection from business’ or landowners’ perspective.

RASky has two steps, step 1 to compute Minmax table and step 2 to calculate reverse

area skyline. Smaller query area will obtain smaller number of reverse area skylines and

vice versa. Reverse area skyline gives invaluable information for landowner to pursue

targeted customer or to decide what type of business that would attract more customers.

Comprehensive experiments are conducted to show the effectiveness and efficiency of

the proposed algorithm. In the future, we will consider another skyline problem in two-

dimensional objects, such as selecting k-dominant areas. We are also interested in the

application of this method to road network, which also taken into account non-spatial

properties such as population density, price, traffic condition, and so on.
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Chapter 6

Conclusion

This thesis aims to answer location selection problem for two-dimensional area objects

using skyline query. Specifically, this thesis covered two different location selection

problem for area, one is based on user/customer’s perspective and another is based on

owner’s perspective. We proposed novel algorithms and showed the efficiency of our

approaches through extensive experiments.

The remaining of this chapter is organized as follows. Section 6.1 explores the

application of our developed algorithms. In Section 6.2, we continue with the contribu-

tions of this dissertation. Finally, in Section 6.3 we present some future works which

correspond to our works.

6.1 The Application of Location Selection Problem in

Areas

Location selection is very important in the services and business field, either for user/customer

or for location’s owner. User/customer of location utilizes location selection query to
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find good location to buy, to rent, or to visit. From user/customer’s perspective, the

location is more valuable if it is close to some facilities that can bring profit and ben-

efits for the location, and it is far from some facilities that can reduce profit and bring

unfavorable effect on the location. On the other hand, location selection for location’s

owner aims to find other locations which are as good as his/her owned locations. One

of the important criteria for comparing his/her location to others is the location’s dis-

tance to desirable and undesirable facilities. Skyline query is a well known method for

selecting small number of data objects, and it also has been applied in location selection

problem. However, previous skyline algorithm for location selection problem only con-

sider zero dimensional objects and based on the assumption that there are always some

candidate points to be selected. In this thesis, first we introduced area skyline queries

to answer user/customer’s need of location selection on two-dimensional objects. For

example, in the business field: suppose a property company would like to build a new

housing complex in a new region. To attract customers, the housing complex should

be in an area that is close to train stations, shopping centers, and schools, and far from

open landfill. Our area skyline algorithms can help the company finding potential area

for its new project and gain knowledge about the region and its facilities, thus reducing

cost of surveying the whole region. Moreover, consider a tourist start planning trip to

a new area or country. Sometimes a traveler would like to stay in an area that will be

convenient in location and cost. The proposed area skyline methods can help a tourist

to know which area is close to attraction sites, train stations, and convenience stores and

is far from crime areas and polluted areas. After that the tourist can search for place of

stay in the skyline areas. Next part of this thesis considers location selection problem

in two-dimensional area based on owner’s perspective which we called as reverse area
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skyline query. For example a real estate company has an area to develop apartment,

office, or market complex. The company needs to know, which other areas are as good

as his/her area. Our proposed algorithm help owner to obtain reverse skyline area from

the query area. Using reverse skyline area, owner can make further analysis about who

will be interested in the query area, since customer who are attracted with reverse area

skyline might also be attracted with the query area. Moreover, reverse area skyline also

helps business/land owner to learn more about the development on those area, so he/she

can decide effective real estate developments that can attract many buyers on query area.

6.2 Contributions

6.2.1 Area Skyline Query: Skyline query for selecting spatial area

objects from customers perspectives

In Chapter 3 and 4, we introduced area skyline queries and developed two algorithms,

UASky and GASky to answer this problem. UASky is not so efficient since it selects

many area as area skyline. We then presented GASky, to solve the limitation of UASky

and improve its efficiency. Using grid data structure, GASky is efficient and practical

solution of the area skyline query. By applying grid data structure, GASky can control

the number of area skyline so it retrieves reasonable number of area skylines. We have

conducted intensive experiments to prove the efficiency of our algorithm.
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6.2.2 Reverse Area Skyline Query: Skyline query for selecting spa-

tial area objects from owners perspectives

In Chapter 5, we defined dynamic area skyline, global area skyline, and proposed reverse

area skyline algorithm (RASky) to solve the reverse area skyline query. RASky utilizes

the step 1 of GASky algorithm to compute Minmax table. Reverse area skyline gives

invaluable information for area’s owner to pursue targeted customer or to decide what

type of business that would attract more customers. Comprehensive experiments are

conducted to show the effectiveness and efficiency of the proposed algorithms.

6.3 Future Works

Our current work uses Euclidean distance between area and facilities. In real life, areas

on a map also correspond to road network which is more complicated than Euclidean

distance. Moreover, road network is also taking into account many aspects such as the

direction of a road. In the future we will consider area skyline and reverse area skyline

using the real distance on the road network. Moreover, area in a map also has non-spatial

attributes such as population density, price, traffic condition, and so on. Exploring area

skyline and reverse area skyline which take into account non-spatial properties of the

area is also part of our future work. The challenging related open problems such as

considering more than one object for each facility type and selecting k-dominant areas

would be very important to increase the selectivity of the area skyline query and reverse

area skyline query.
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