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Chapter 1

Introduction

1.1 Background

1.1.1 High-speed Vision
In the past decades, many kinds of vision systems have been applied to various

fields, such as multimedia, industrial inspection, three-dimensional reconstruction, traffic

system, and so on. Most of conventional vision systems with standard video signals

(NTSC 30 fps / PAL 25 fps) are designed on the basis of the characteristics of the human

eye, which implies that the processing speed of these systems is limited to the recognition

speed of human eye. However, due to the bottleneck of sampling rate, the conventional

vision systems are not applicable for high-speed phenomenon which cannot be observed

with naked human eye, such as factory automation high-speed production line, hyper-

human manipulation, and high-speed object tracking in robotics. Therefore, various high-

speed vision systems that can operate at sound-level frame rate have been developed for

various hyper-human applications.

The transmission speed limitation from photo-detectors (PD) to processing ele-

ments (PE) is the sampling rate bottleneck of conventional vision systems. To overcome

this limitation, vision chips have been developed and execute real-time processes at a

rate of 1000 fps or more by integrating sensors and processors compactly. Bernard et

al. proposed an on-chip array of bare Boolean processors with half toning facilities and

developed a 65×76 Boolean retina on a 50 mm2 CMOS 2 μm circuit for the imager of an

artificial retina [1]. Eklund et al. verified the near-sensor image processing (NSIP) con-

1



2 CHAPTER 1. INTRODUCTION

cept, which describes a method to implement a two-dimensional (2-D) image sensor array

with processing capacity in every pixel, and have fabricated and measured a 32×32 pixels

NSIP [2]. Ishikawa et al. have developed a COMS vision chip for 1ms image process-

ing and proposed the S3PE(simple and smart sensory processing elements) vision chip

architecture with each PE connected to a PD without scanning circuits [3, 4]. Komuro et

al. proposed a dynamically reconfigurable single-instruction multiple-data (SIMD) pro-

cessor for a vision chip and developed a prototype vision chip based on their proposed

architecture, which has 64×64 pixels in a 5.4 mm 5.4 mm area fabricated using the 0.35

μm TLM CMOS process [5]. Ishii et al. proposed a new vision chip architecture special-

ized for target tracking and recognition, and developed a prototype vision chip using 0.35

μm CMOS DLP/TLM(3LM) process [6].

Many attempts to design real-time high-frame-rate (HFR) vision systems that can

process images at hundreds of frames per second or more have been made by implement-

ing image processing algorithms using parallel processing circuits on a field-programmable

gate array (FPGA) board that is directly connected to an HFR camera head. Hirai et al.

developed an flexibility FPGA-based vision system using the logic circuit to implement

the image algorithm [7]. Watanabe et al. developed a high-speed vision system for real-

time shape measurement of a moving/deforming object at a rate of 955 fps (256×256

resolution) [8]. Ishii et al. developed a high-resolution high-speed vision platform,

H3(Hiroshima Hyper Human) Vision, which can simultaneously process a 1024×1024

pixels image at 1000 fps and a 256×256 pixels image at 10000 fps by implementing

image processing algorithms as hardware logic on a dedicated FPGA board [9]. In the

latest two years, Ishii et al. developed a high-speed vision system called IDP Express, as

shown in Figure 1.1., which can execute real-time image processing at a rate from 2000

fps (512×512 resolution) to 10000 fps (512×96 resolution), and high frame rate video

recording simultaneously [10].

At present, high-speed vision systems can be used as robot sensors at hundreds of

hertz or more; several applications of these systems have been also reported. Ishii et al.

proposed a simple algorithm for high-speed target tracking using the feature of high speed

vision, and realized target tracking on the 1 ms visual feedback system [11]. Nakabo et al.
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(a) configuration of IDP Express vision system

(b) photo of IDP Express vision system

Figure 1.1: IDP Express high-speed imaging system

developed a 1 ms vision system, which has a 128×128 PD array and an all parallel pro-

cessor array connected to each other in a column parallel architecture, for 1 ms cycle-time

for visual servoing and applied it to high-speed target tracking [12]. Nakamura applied

high-speed vision system to virtual stillness for beating heart surgery [13]. Nakabo et al.

developed a 3D target tracking/grasping system, which are composed of a 1ms feedback

rate using two high-speed vision systems called column parallel vision (CPV) systems

and a robot hand arm [14]. Shiokata et al. proposed a strategy called ”dynamic holding”

and developed a experimental robot dribbling using a high-speed multi-fingered hand and

a high-speed vision system [15]. Mizusawa et al. used high-speed vision servoing to

tweezers type tool manipulation by a three-finger robot hand [16]. Nie et al. developed a

real-time scratching behavior quantification system for laboratory mice using high-speed

vision [17]. Wang et al. developed an intelligent HFR video logging system to automati-

cally detect high-speed unpredictable behavior and record video comprising images with
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dimensions of 512×512 pixels at a rate of 1000 fps [18]. Yang et al. proposed the concept

of dynamics-based visual inspection for verification of the structural dynamics of vibrat-

ing object [19], and proposed a“modal radar” algorithm as a structural damage analyses

methodology for modal testing that can localize and accurately quantify structural dam-

age which is difficult to detect by appearance-based visual inspection of a single image

[20]. Okumura et al. developed “1 ms Auto Pan-Tilt” technology, which can automati-

cally control the camera’s pan-tilt angles with high-speed vision feedback information to

always keep a object at the center of the field [21]. Ishii et al. developed an HFR laryngo-

scope that can measure the vibration distribution of a vocal fold in real time at hundreds

of hertz [22]. Gao et al. proposed a novel light-section method that can accurately obtain

a differential shape from a given reference 3D shape at a high frame rate by projecting

a self-projected light pattern [23]. Ishii et al. developed a high-speed vision system that

can be applied to real-time face tracking at 500 fps by using the GPU acceleration of a

boosting-based face tracking algorithm [24]. Gu et al. proposed a 2000 fps multi-object

feature extraction system based on FPGA implementation of the cell-based labeling algo-

rithm, which is suitable for hardware implementation and only few memory is required

for multi-object feature extraction [25]. Namiki et al. developed a novel air-hockey robot

system that switches strategies according to the playing styles of its opponent by using

the visual information received at the rate of 500 Hz [26]. Chen et al. developed an HFR

camera-projector system that can acquire and process 512×512 depth images in real time

at 500 fps and project computer-generated light patterns onto time-varying 3D scenes

[27]. Gu et al. proposed a high-speed vision-based shape and motion analysis system

for cells in microchannel flows, operates as a real-time inspection tool for cells flowing

in micro channels at several meters per second, where their shapes are deformed corre-

sponding to their mechanical properties [28]. With the development of the sampling rate

and resolution, such high-speed vision systems can also observe the vibration distribution

of an object excited at dozens or hundreds of hertz, which is too fast for the naked eye and

standard NTSC cameras. Figures 1.2 shows a 512×512 image sequence of the explosion

of a ballon, recorded with 2000 fps sampling rate vision system.
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t = 23.6425s t = 23.6430s t = 23.6435s t = 23.6440s

t = 23.6405s t = 23.6410s t = 23.6415s t = 23.6420s

Figure 1.2: High-frame-rate image sequence of the explosion of a balloon

1.1.2 Object Tracking
Tracking the same object robustly against complex appearance variations is a sig-

nificant task in the field of robot vision [29]. Many researchers have developed object

tracking methods and systems that provide a visual representation to robustly describe the

spatiotemporal characteristics of object appearance [30]. Object tracking methods using

a global visual representation that reflects the global statistical characteristics of an image

region to be tracked have been proposed on the basis of various global image features

such as optical flows [31, 32, 33], color histograms [34, 35, 36], and texture histograms

[37, 38, 39]. By encoding the object appearance information from the selected interest

points in images, local-feature-based object tracking methods have also been proposed on

the basis of local features such as scale invariant feature transform (SIFT) [40, 41], Haar-

like features [42, 43], the histogram of oriented gradient (HOG) [44, 45, 46], and the local

binary pattern (LBP) [47, 48, 49]. These appearance-based object tracking methods have

been applied in various real-world applications such as traffic monitoring [50, 51, 52],

video compression [53], and human-computer interaction [54, 55].

Several unsupervised and semi-supervised object detection methods have been re-

cently proposed to improve the localization accuracy in object tracking. These meth-

ods are based on spatio-temporal appearance cues across video frames such as max-path
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search [56, 57], tubelets [58], fast proposal [59], action tubes [60], bag of fragments [61],

and stacked sequential learning (SSL) [62].

However, most appearance-based approaches assume that the target object is be-

ing tracked by identifying its spatial statistical pattern, and that the target object can

be observed in a certain image region in which its spatial distribution represents its vi-

sual appearance. Several attempts at tracking low-resolution targets have been developed

[63, 64]. However, appearance-based object tracking suffers from difficulties in handling

complex real-world changes in object appearance, which are caused by factors such as

illumination variation, lens defocus, shape deformation, and partial occlusion.

1.2 Outline of Thesis
This thesis is organized as 6 Chapters including this introduction.

Chapter 2 summarizes related works on acoustic sensor-based source localization,

optical vibration detection, and real-time HFR vision..

In Chapter 3, I proposed a concept of vibration feature extraction with pixel-level

digital filters, and the robustnesses of pixel-level vibration source localization against

various appearance changes in HFR videos are analyzed in Chapter 4.

In Chapter 5, real-time vibration source tracking is implemented on a 1000 fps

vision platform and in which latency effect on digital filters can be reduced by applying

pixel-level digital filters to clipped region-of-interest (ROI) images.

Chapter 6, the final chapter, summarizes the contributions of this study and discuss

the future work.



Chapter 2

Related Works

2.1 Acoustic Sensor-based Source Localization
Sound source localization is one of the important technologies in robot audition that

are aimed to simulate human auditory sense in a robot for the detection and tracking of

sound sources in the real world [65], and numerous methodologies have been proposed

for enhancing sound source localization performance.

Simulating the frequency response of the human pinnae, which have direction-

dependent filtering functions for incoming sound waves, monaural spectral cues at dif-

ferent frequencies have been used for monaural sound source localization using a single

channel of sound[67, 68, 69].

Corresponding to human audition with the left and right ear, many binaural source

localization methods that use interaural cues derived by differentiating the acoustic fea-

tures at the left and right channels, such as interaural level difference (ILD) and inter-

aural time difference (ITD), have been proposed for azimuth localization [70, 71, 72,

73]. Considering the acoustic reflections due to the robot head and outer ears, interaural

cues have been expanded in the spectral domain for elevation localization [74, 75, 76].

Triangulation-based methods that use the azimuth directions estimated at two positions

have been proposed for distance localization [77, 78, 79]. However, the binaural approach

is limited in terms of source-localization accuracy when multiple sources are located in a

noisy environment, owing to the number of sound channels.

To improve the performance and robustness of source localization, the microphone

7
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array approach using multiple microphones spatially organized along various geometries

was proposed as an expansion of the binaural approach [80]. In the correlation methods

[81, 82, 83, 84], the cross-correlation matrix among acoustic signals from multiple micro-

phones is computed for indicating the distribution of the time delays of arrivals (TDOAs)

at the microphones, and its correlation peaks are estimated for sound source localiza-

tion. MUltiple-SIgnal-Classification (MUSIC) methods [85, 86, 87] have been proposed

for multi-source-localization to estimate the direction of arrival (DOA) by computing the

noise subspace with stochastic subspace identification and detecting the orthogonal peaks

in the noise subspace and the steering vectors, which correspond to the true directions

of the sound sources. Beamforming is a well-known signal processing technique used in

sensor arrays for directional signal propagation and has been used for microphone array-

based source localization [88, 89, 90] that can exploit the highest acoustic energy in all

the estimated directions by setting different gains for each microphone.

These source localizationmethodologies have been applied to many applications for

multi-speaker recognition and tracking, such as human-computer interaction [91, 92, 93],

intelligent rooms [94, 95, 96], and mobile robot audition [97, 98, 99]. They have also

been used in the fields of industry and transportation, in areas such as operational vi-

bration in product machines [100, 101], automobile vibration tests [102, 103, 104, 105],

running trains [106], and aircrafts in flight [107, 108]. Recently, several surveillance

systems for flying drone detection [109, 110, 111, 112] have been developed in which

the rotating frequencies at dozens or hundreds of Hertz are extracted from the acoustic

signals that are emitted by drone propellers. Open source software frameworks and hard-

wares that integrate state-of-the-art source localization algorithms have been distributed,

such as the HARK [113], ManyEars [114], embedded audition for robotics (EAR) [115],

and Kinect SDK [116]. HARK is an open-source software for robot audition that uses

multi-channel-based source localization. The localization of talking people with the stan-

dard deviation of 5 degrees at a distance of 1 to 15 m, have been reported on a telepres-

ence system embedded with an 8-channel circular microphone array [117]. ManyEars

is an open microphone-array system for beamforming-based source localization. An

omnidirectional-microphone-array system with eight microphones has been reported, in
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which the angular deviation was better than one degree in localizing a source at a distance

of 1.5 m [118]. EAR is an integrated auditory sensor with a linear array of eight micro-

phones, a data-acquisition-board and an FPGA processing unit; it can localize a sound

source with a precision of ±1 degree at the center of the microphone array [119]. Kinect

SDK provides a solution that can localize a sound source within a range of ±50 degrees

in front of the sensor; its error margins are 10 degrees or lower [120]. However, these

sound source localization techniques still remain inaccurate when the microphones are

distant from the source objects to be observed, because of the low directivity of sound

propagation.

2.2 Optical Vibration Detection
In previous decades, many optical sensing methodologies were studied for remote

monitoring of small vibration displacements [121].

Laser triangulation [122, 123] is a low-cost optical sensing method that detects the

positions of beam spots or patterns projected on an object with optical sensors, such as

a position sensitive device (PSD), and computes the distance between the optical sensor

and the object to be observed via triangulation, and many laser-triangulation-based stud-

ies on structural vibration measurement have been reported [124, 125, 126]. For smaller

vibration displacements, the Laser-Doppler-Vibrometer (LDV) system [127] is a well-

known optical sensing method that can measure a small change in the optical path length

along the beam axis at the level of the laser wavelength as the Doppler shift in the laser fre-

quency, which is caused by the target’s movement, and it has been used for small vibration

measurements in many application fields from structure damage detection to biomedical

dynamics sensing [128, 129, 130, 131]. Most of these optical sensors are designed for

small displacement measurements at a single point, and displacement distribution can be

obtained with their mechanical scans as a collection of small displacements at different

points, which are sampled at different timings; it is not suitable for the dynamic analysis

of non-stationary vibration distribution.

HFR video vibration analyses, for which vibration displacements at many points
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are captured at the same time, have also been reported as optical sensing methods for

vibration distributions in the audio frequency range. The HFR-video-based approach al-

lows the analysis of non-stationary vibration distributions, and it had been applied to

various applications, such as structural vibration analysis [132, 133, 134] and human

vocal fold vibration analysis [135, 136, 137]; the accuracies in most HFR-video-based

displacement measurements are limited in terms of their image resolution, which is de-

termined by the pixel pitch of the image sensor. To overcome this pixel-wise limitation in

measurement accuracy, HFR-video-based small vibration analyses have been conducted

with laser interferometry technologies, such as electronic speckle pattern interferome-

try (ESPI) [138, 139, 140, 141], for which small displacements at the laser-wavelength

level are significantly magnified with the laser interferometric fringe patterns. How-

ever, most HFR-video-based analyses have been conducted for offline-captured short-

term HFR videos and the vibration dynamics features, such as resonant frequency and

source location, have not been used for real-time applications such as visual feedback-

based target tracking.



Chapter 3

Concept of Vibration Features with Pixel-Level

Digital Filters

3.1 Vibration-based Features
An image sensor is regarded as a collection of photo sensors, the number of which

corresponds to the pixel number of the image sensor, and the image intensity at every pixel

in an image can be considered as a time sequential signal. The temporal periodic changes

in image intensity can be observed at pixels of vibration sources in images, depending

on their vibration frequencies in the audio frequency range, when the frame rate of a

vision system is sufficiently high to allow vibration measurement. Thus, an HFR vision

system can localize spatiotemporal changes in image intensities as a vibration distribution

by implementing digital filters, which is one of the basic operations in acoustic signal

processing for the analysis of sound and vibration dynamics at all the pixels in images

in order to pass signals in a specific band of frequencies for identifying and inspecting

their vibration frequency and other properties. Fig. 3.1 shows the concept of HFR-vision-

based vibration source localization presented in this study, wherein image features are

calculated from vibration distributions using pixel-level digital filters.

Our concept of vibration-based image processing is very effective as a dynamics-

based visual inspection technology in various applications fields; it is clearly different

from conventional appearance-based visual inspection with spatial pattern recognition

using single-frame-based image features. For example, it is difficult for the human eye to

localize a small flying insect, such as a mosquito, under complex background conditions,

11
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Figure 3.1: Concept of HFR-vision-based vibration source localization with pixel-
level digital filters.

because the wings of such small insects beat at very high frequencies at hundreds of Hertz

in the audio frequency range. Such rapid wing movements cannot be observed with the

human eye, while the human ear can sense the presence of a small insect by detecting its

buzzing sound as an acoustic signal. However, the human ear cannot identify its location

accurately because of the low directivity of sound propagation; the directivity of sound

is frequency dependent. If the periodic changes in the image intensities caused by the

beating of the wings of a small insect are detected as vibration-based image features for

their localization in an image, the small insect can be accurately localized and be con-

tinuously tracked under complex background conditions. In this study, we consider the

real-time target tracking of an object vibrating at 100 Hz or higher, such as a flying drone

with rotating propellers, to provide an example of HFR-vision-based vibration source lo-

calization using vibration-based image features, which can be simultaneously extracted

with pixel-level digital filters from an HFR video.
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Figure 3.2: Robustness of vibration features with pixel-level digital filters.

3.2 Robustness of Vibration Features with Pixel-Level

Digital Filters
Such a vibration feature can detect the temporal brightness variation in the audio-

frequency range at every pixel on the premise that the input images are captured at a high

frame rate.

Thus, it is very robust against the degradation of the image quality and the tar-

get’s appearance variation especially when the frequency range of the vibration source is

largely distant from that of background scenes, as illustrated in Figure 3.2, because it en-

ables pixel-wise vibration source localization only by implementing band-pass filters at all

the pixels in images without any spatial appearance representation. Such a very simple vi-

bration feature with band-pass filters is suitable for real-time vibration source localization

for drone tracking, where the operation frequency range of the drone’s propellers is much

higher than that of the temporal brightness changes at pixels around non-propeller regions

in images. When a vibrating object such as a flying drone with rotating propellers is cap-

tured in low-quality images using a zoom camera at a very-long distance (and thus with

limitations on the resolution of the lens and image sensor), the pixel-wise vibration fea-
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ture can accurately localize the vibrating object in the low-quality images. This is despite

the images being too spatially defocused or low-resolution for conventional appearance-

based approaches to identify the target. Thus, in the design of vibration-object tracking

systems, it is important to quantitatively verify the localization accuracy and detectabil-

ity of such a pixel-wise vibration-feature under degraded video-shooting conditions (such

as poor brightness, lens defocus, and low-resolution images) and confirm its robustness

against object appearance variations (such as object pose variations, complex background

scenes, and partial occlusions).



Chapter 4

Robustness Analysis of Vibration Features

Against Appearance Changes in

High-Frame-Rate Videos

4.1 Introduction
In this chapter, we investigate the effect of appearance variations on the detectability

of vibration feature extraction with pixel-level digital filters for HFR videos. In particular,

we consider robust vibrating object tracking, which is clearly different from conventional

appearance-based object tracking with spatial pattern recognition in a high-quality image

region of a certain size. For HFR videos of a rotating fan located at different positions

and orientations and captured at 2000 or 300 frames per second with different lens or

exposure time settings, we verify how many pixels are extracted as vibrating regions

with pixel-level digital filters. The effectiveness of dynamics-based vibration features is

demonstrated by examining the robustness against changes in aperture size and the focal

condition of the camera lens, the apparent size and orientation of the object being tracked,

and its rotational frequency, as well as complexities and movements of background scenes

and motion blurs in captured videos. Tracking experiments for a flying multicopter with

rotating propellers are also described to verify the robustness of localization under com-

plex imaging conditions in outside scenarios.

15
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4.2 Vibration Feature Extraction
Assuming that the input image of N × N pixels is captured at time t as I(x, t), and

the properties of a vibrating object are initially given, such as its center frequency f0. The

vibration feature to be evaluated in this study is calculated as follows:

(1) Pixel-level band-pass filter

The input image I(x, t) is filtered at every pixel x = (x, y) with a band-pass filter of

the center frequency f0 by adopting the following infinite impulse response (IIR) filter:

g(x, t) =
p−1∑
s=0

bsI(x, t − s) −
p−1∑
s=1

asg(x, t − s) (4.1)

where p is the filter order and as, bs are the tap coefficients. These parameters determine

the center frequency and bandwidth of the filter.

(2) Amplitudes of filtered image intensities

To remove the offset values in the image intensities, the differences between the

maximum and minimum values of I(x, t) and g(x, t) are computed at every pixel over a

cycle of the target’s vibration, T0 = 1/ f0, for t − T0 ∼ t as the following amplitudes of the

image intensities at time t:

IA(x, t) = Imax(x, t) − Imin(x, t) (4.2)

gA(x, t) = gmax(x, t) − gmin(x, t) (4.3)

where the maximum and minimum values are calculated as follows:

Imax(x, t) = max
t−T0<t′≤t

I(x, t′) Imin(x, t) = min
t−T0<t′≤t

I(x, t′) (4.4)

gmax(x, t) = max
t−T0<t′≤t

g(x, t′) gmin(x, t) = min
t−T0<t′≤t

g(x, t′) (4.5)

(3) Moving averages of filtered amplitudes

The average amplitude value of the brightness of the input image in a certain in-

terval ΔT f and that of the intensity and the filtered image are calculated at every pixel
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as:

K(x, t) =
1
ΔT f

∫ t

t−ΔT f
IA(x, t)dt (4.6)

G(x, t) =
1
ΔT f

∫ t

t−ΔT f
gA(x, t)dt (4.7)

where ΔT f is set to several times the cycle time T0.

(4) Vibration pixel localization

By thresholding the ratio of G(x, t) to K(x, t) with a threshold θ2, the pixel x is

judged to be a vibration pixel with the vibration component around the target frequency

f0 as follows:

V(x, t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

(
K(x, t) > θ1 and

G(x, t)
K(x, t)

> θ2

)

0 (otherwise)
(4.8)

where the pixel x is judged to be ambiguous and not extracted when the average amplitude

G(x, t) is lower than a threshold θ1.

In this study, we focus on offline quantitative verification of the accuracy and de-

tectability in localizing a vibration source such as a flying drone with rotating propellers

by using HFR videos, whereas we evaluate the execution times of our algorithm on a

personal computer (PC) in calculating the above-mentioned processes of (1)∼(4) toward

future real-time implementation. Table 4.1 summarizes the execution times for our algo-

rithm for different image sizes. Here we used a PC with an ASUSTek SABERTOOTH

X79 mainboard, Intel Core i7-4820K @ 3.70 GHz CPU, 8GB memory, and two 16-lane

PCI-e 2.0 buses with Windows 7 Enterprise 64-bit OS, and the filter order was set to

p = 4, which is the same parameter used in the experiments in Sections4.4. The execu-

tion time for our algorithm increased in proportion with the total number of image pixels.

In the case of real-time software execution, the operable frame rates of a vision system

are 6143, 1517, 372, 96, 25, and 6 fps for images with different sizes of 64 × 64, 128

× 128, 256 × 256, 512 × 512, 1024 × 1024, and 2048 × 2048 pixels, respectively. Low



18CHAPTER 4. ROBUSTNESSANALYSISOF VIBRATIONFEATURESAGAINST APPEARANCECHANGES INHIGH-FRAME-RATEVIDEOS

Table 4.1: Execution times on PC.
image size 64 × 64 128 × 128 256 × 256 512 × 512 1024 × 1024 2048 × 2048

exec time 0.16 ms 0.66 ms 2.69 ms 10.47 ms 39.78 ms 157.38 ms

resolution images can only be processed by software in real time at thousands of fps,

whereas our algorithm should be accelerated for real-time processing of higher resolution

images at high frame rates by implementing parallel processing logics of our algorithm

on specific accelerators such as FPGAs (Field Programmable Gate Arrays) and GPGPUs

(General-Purpose Graphic Processing Units).

4.3 Experiments for a Rotating Fan
We extracted the vibration features from HFR videos captured with different lens

settings to consider the robustness under the following seven imaging conditions.

4.3.1 Image Intensity
Several 512 × 512 videos of a rotating fan were captured at 2000 fps with dif-

ferent aperture values, which were adjusted to simulate various image intensities. We

applied pixel-level digital filters to these videos to analyze the robustness of the proposed

vibration-based localization method under brightness variations.

Figure 4.1 illustrates the video shooting conditions. Three 13-cm-diameter fans

with three blades were set at a distance of 20 m in front of the camera against a black

background. The center fan was the target, rotating at 37 revolutions per second (rps),

and the other two fans were rotating at 44 rps and 26 rps (left and right of the camera

view, respectively). These acted as obstacles to the tracked vibration motion. We used

a zoom lens with an adjustable focal length and maximum aperture of 16∼160 mm and

F2.0, respectively. We fixed the focal length to 90 mm, giving a measurement area of 1600

× 1600 mm for 512 × 512 pixels at a distance of 15 m in front of the camera head, where

one pixel corresponds to 3.1 mm2. The tap coefficients as, bs of the pixel-level digital

filters were set to operate as band-pass filters with center frequencies of f0 = 110 Hz and
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Figure 4.1: Overview of HFR video shoot.

half-widths of 10 Hz. The parameters were set to p = 4, ΔT f = 36 m·s, and T0 = 1/ f0 =

9 m·s. The thresholds θ1 and θ2 for vibration region extraction were set to 30 and 0.5,

respectively. These parameters were also used in the experiments reported in the rest of

this section.

The aperture value was gradually adjusted from F2.0 to F10.0 with a properly vary-

ing interval to darken the images. Figure 4.2a shows five input images of 512 × 512 pixels

illustrating the tendency of darkening. Figure 4.2b,c show the moving average distribu-

tions of the amplitude of the input images and pixel-wise filtered images, respectively.

With the weakening of the image intensity, the amplitude of both the input images and

filtered images decreased in the vibration area. However, in Figure 4.2d, the amplitude

ratio distributions of filtered images to input images remain roughly uniform under vari-

ations in image intensity. The vibration regions were steadily extracted by thresholding

these ratio values in our proposed algorithm, as shown in Figure 4.2e.
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Figure 4.2: (a) Input images; amplitude of (b) input; and (c) pixel-wise filtered

images; (d) amplitude ratios; (e) extracted vibration features.

The averaged values of the input and filtered images’ amplitude and their ratio in

the extracted pixels are shown in Figure 4.3a. The diameters of the extracted vibration

region are shown in Figure 4.3b From these figures, we can observe that, although the two

amplitudes changed under image intensity variations, the ratios remained between 80%

and 110%, and the diameters of the extracted vibration region corresponded to the size

of the fan in the captured images (except for exceptional cases containing oversaturated

images).



4.3 EXPERIMENTS FOR A ROTATING FAN 21

(a)

(b)

Figure 4.3: Averaged amplitudes and extracted region sizes with aperture variation.

(a) Averaged amplitudes of input and pixel-wise filtered images and their ratios on

the extracted pixels; (b) diameters of extracted vibration region.

4.3.2 Defocus Blur
To analyze the robustness of the proposed vibration extraction method when the

vibration source is out of focus, we captured several 512 × 512 videos of three rotating

fans at 2000 fps with different focus distances. The three fans and their rotation speeds

were as described in Section 4.3.1. In this experiment, they were located 5 m in front

of the camera lens. The focal length and aperture value were fixed at 50 mm and F6.0,

respectively. For such settings, the measurement area was 790 × 790 mm for 512 × 512

pixels at a distance of 5 m in front of the camera head, where one pixel corresponds to

1.5 mm2. The focus distance was gradually extended from 1.5 m to an infinite distance

by adjusting the lens setting.

Figure 4.4a shows the 512 × 512 input images contaminated by blur of different

intensities. Figure 4.4b,c show the moving average distributions of the amplitude of input

images and pixel-wise filtered images, respectively. In both cases, the amplitudes on the

extracted pixels became greater when the focus distance was set around the camera-object
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distance and vice versa. As shown in Figure 4.4d, the ratio distributions of the input to

filtered amplitudes on the extracted pixels remained roughly uniform at different focus

distances, and these were utilized to extract clean vibration regions in Figure 4.4e.

The averages of the input and filtered amplitude and their ratio on the extracted

pixels are shown in Figure 4.5a, and the diameters of the extracted vibration region is

shown in Figure 4.5b. From these figures, we can observe that, although the two ampli-

tudes change significantly with variations in the focus distance, the ratio values remained

between 70% and 80%. The diameters of the extracted vibration region correspond to the

size of the fan in the captured images when the focus depth was set around the camera-

object distance, and increased when the images were contaminated by the lens blur.
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Figure 4.4: (a) Input images; amplitude of (b) input; and (c) pixel-wise filtered

images; (d) amplitude ratios; (e) extracted vibration features.
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(a)

(b)

Figure 4.5: Averaged amplitudes and extracted region sizes with focus distance vari-

ation. (a) Averaged amplitudes of input and pixel-wise filtered images and their ra-

tios on the extracted pixels; (b) diameters of extracted vibration region.

4.3.3 Apparent Scale
To analyze the robustness of the proposed vibration extraction method when the

vibration source is located sufficiently remotely that it is difficult to recognize its appear-

ance from images, we captured several 512 × 512 videos of rotating fans at 2000 fps with

different focal lengths. The overall arrangement, including the camera, three fans, and

their rotating speed and background, was the same as described in Section 4.3.1, i.e., the

distance from the camera to the object was 20 m. The lens aperture was fixed to F5.0

and its focus distance was adjusted to give perfect focus. We gradually adjusted the focal

length from 20 mm to 160 mm to simulate changes in the vibration source’s apparent

scale in the images.

Figure 4.6a shows the input 512 × 512 images of three rotating fans, whose apparent

scale is increasing with the focal length. Figure 4.6b,c illustrate the moving average

distributions of the amplitude of the input and pixel-wise filtered images, respectively.

Although the two amplitudes differed while the focal length was increasing, the ratio
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distributions remained similar (see Figure 4.6d). Figure 4.6e shows the extracted regions

given by thresholding the amplitude ratio of every pixel.

Figure 4.7a quantifies the tendency of the averaged input and filtered images’ am-

plitude and their ratio distribution on the extracted pixels throughout the image-capture

procedure. Although the two amplitudes change significantly, the ratio values remained

around 80%. The diameters of the extracted vibration region correspond to the increasing

size of the fans in the captured images in Figure 4.7b.

(b)

(c)

(d)

0 255

0 255

0 1.4

(a)

(e)

20 mm 40 mm 80  mm 120 mm 160 mm

Figure 4.6: (a) Input images; amplitude of (b) input; and (c) pixel-wise filtered

images; (d) amplitude ratios; (e) extracted vibration features.
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(a)

(b)

Figure 4.7: Averaged amplitudes and extracted region sizes with focal length varia-

tion. (a) Averaged amplitudes of input and pixel-wise filtered images and their ratios

on the extracted pixels; (b) diameters of extracted vibration region.

4.3.4 Orientation
We analyzed the robustness of detection of the proposed vibration extractionmethod

to changes in the orientation of the vibration source. For this experiment, several 512 ×

512 videos of fans rotating at 37 rps were captured at 2000 fps from different orientations.

The focal length, focus distance, and aperture were set to 50 mm, 4 m, and F5.0, respec-

tively. The measurement area was 600 × 600 mm for 512 × 512 pixels at a distance of

5 m in front of the camera head, where one pixel corresponds to 1.2 mm2. The fan was

mounted on a goniometer to measure its rotation degree, and was located 4 m in front

of the camera. The initial rotation plane was 0◦ with respect to the camera axis, and the

angle was gradually increased to 90◦ at intervals of 5◦.

Figure 4.8a shows the input 512 × 512 images at different orientations towards the

camera lens. Figure 4.8b,c show the moving average distributions of amplitude of the

input images and pixel-wise filtered images, respectively. Figure 4.8d shows the two
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amplitudes’ ratio distributions, and Figure 4.8e shows the extracted vibration regions.

The averages of the input and filtered images’ amplitude and their ratio on the ex-

tracted pixels are shown in Figure 4.9a, and the minor axis tendency of the extracted

vibration region is shown in Figure 4.9b. From these figures, we can observe that the two

amplitudes changed slightly with the rotation, whereas the ratio values remained rela-

tively stable at around 85%. The minor axis of the extracted vibration region corresponds

to the size of the fan in the captured images throughout the process.

Figure 4.8: (a) Input images; amplitude of (b) input; and (c) pixel-wise filtered

images; (d) amplitude ratios; (e) extracted vibration features.
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(a)

(b)

Figure 4.9: Averaged amplitude values and extracted region sizes with orientation

variation. (a) Averaged amplitudes of input and pixel-wise filtered images and their

ratios on the extracted pixels; (b) minor axis lengths of extracted vibration region.

4.3.5 Rotation Speed
We analyzed the frequency range of the proposed vibration extraction method by

caturing several 512 × 512 videos of rotating fans at 2000 fps with different rotation

speeds. The three fans used in this experiment were as described in Section 4.3.1; the

rotation speed of the center fan was gradually increased from 26 rps to 44 rps in intervals

of 1 rps, whereas those of the fans on the left and right were fixed at 44 rps and 26 rps,

respectively. The distance from the camera to the object was 5 m. The focal length and

aperture value were fixed at 50 mm and F1.4, respectively. The measurement area was

790 × 790 mm for 512 × 512 pixels at a distance of 5 m in front of the camera. The

tap of coefficients and other parameters of the pixel-level band-pass filters were the same

those in Section 4.3.1; their center frequencies and half-widths were 110 Hz and 10 Hz,

respectively.

Figure 4.10a shows the 512 × 512 input images with different rotation speeds from
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31 rps to 43 rps. Figure 4.10b,c show the moving average distributions of amplitude of

the input images and pixel-wise filtered images, respectively. Although the variation of

the amplitudes of the input images was small in relation to the rotation speed, those of the

extracted pixels around the center three-wing fan became greater when its rotation speed

approached 37 rps, whose triple frequency almost corresponds to the center frequency

110 Hz of the band-pass filters. Figure 4.10d shows the ratio distributions of the two

amplitudes, and Figure 4.10e shows the extracted vibration regions.

Figure 4.10: (a) Input images; amplitude of (b) input; and (c) pixel-wise filtered

images; (d) amplitude ratios; (e) extracted vibration features.

The average amplitude of the input and filtered images and their ratio on the speci-
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fied pixels around the center fan are shown in Figure 4.11a when the rotation speed of the

center fan was changed from 26 to 44 rps; the brightness was periodically changed from

78 to 132 Hz, according to the three wings of the fan. Here the specified pixels around

the center fan were set to equal those of the extracted ones when the rotation speed was

37 rps. The number of the extracted pixels as vibration regions is shown in Figure 4.11b.

Thus, the pixels around the center fan were distinctly extracted as vibration regions when

its rotation speed was within 33 rps from 41 rps, which corresponds to the brightness

changes in the frequency range from 99 to 123 Hz. It highly corresponds to the center

frequency of 100 Hz and the half-width of 10 Hz of the pixel-level band-pass filters used

in this experiment.

(a)

(b)

Figure 4.11: Averaged amplitude values and number of extracted pixels with rota-

tion speed variation. (a) Averaged amplitudes of input and pixel-wise filtered images

and their ratios; (b) number of extracted pixels as vibration region.

4.3.6 Moving Fan
We analyzed the robustness of the proposed vibration extraction method when a

rotating fan moves against a complicated background scene. We captured 512 × 512
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videos of a moving rotating fan for 1.5 s at 2000 fps with the environment illustrated in

Figure 4.12. A 37-rps-rotation fan, whose size and rotation speed was the same as those

used in Section 4.3.1, was installed on a linear slider. The distance from the camera head

to the fan was 2 m. By controlling the slider mechanically, the fan moved alternatively in

the right and left directions with an amplitude of 30 cm at a cycle of 1.5 s. A wallpaper

patterned with many three-blade propellers, whose shape, size, and color were the same

as those of the rotating fan, was used as a spatial jamming pattern in this experiment,

because it is very difficult to distinguish the rotating fan from these patterns in a single

image. The focal length and aperture value of the lens were 25 mm and F1.4, respectively.

The measurement area was 500 × 500 mm2 for 512 × 512 pixels at a distance of 2 m in

front of the camera, where one pixel corresponds to 1 mm2.

Figure 4.13a shows the input of 512 × 512 images for 1.2 s, taken at intervals of

0.3 s. The translation speeds of the fan were 0.00, 0.96, 0.00, −0.40, and −0.60 m/s at

time t = 1.1, 1.4, 1.7, 2.0, and 2.3 s, respectively; the positive/negative signs indicate the

movements in the right/left direction. Figure 4.13b,c show the moving average distribu-

tions of the amplitude of the input and pixel-wise filtered images, respectively. Both the

moving average values in (b) and (c) became larger at the pixels around the moving fan,

whereas the moving average distributions of the pixel-wise filtered images were slightly

dilated in the direction opposite to the movement direction of the fan, because of the la-

tency effect in the digital filter. Figure 4.13d shows the two amplitudes’ ratio distributions,

and Figure 4.13e shows the extracted vibration regions. These regions excluded the pixels

around the three-blade-fan patterns on the background wallpaper, and they only involved

those around the moving fan. Several pixels around the fan were not detected, because

of the close similarity of the brightness around its blades with that of the background

three-blade-patterns. Thus, the brightness changed very little with time when the fan was

passing over the background patterns.
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Figure 4.12: Moving fan against three-blades-patterned background.
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Figure 4.13: (a) Input images; amplitude of (b) input; and (c) pixel-wise filtered

images; (d) amplitude ratios; (e) extracted vibration features.

The average amplitude of the input and filtered images and their ratio on the ex-

tracted pixels are shown in Figure 4.14a for 1.5 s, and the number of extracted pixels as

vibration regions and the translation speeds of the fan are shown in Figure 4.14b. When

the rotating fan was moving alternatively in the right and left directions, the ratio re-

mained at around 90% whereas the two amplitudes slightly changed. Here the number of

extracted pixels decreased around t = 1.5 and 2.1 s when the translation speed of the fan

increased. Because of the latency effect in the digital filter; the vibration features were

not extracted at the pixels around the side of the rotating fan opposite to its movement
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direction as illustrated in Figure 4.13e. Nevertheless, these results apparently indicate the

robustness of the proposed vibration extraction method when a rotating fan moves against

a complicated background.

(a)

(b)

Figure 4.14: Averaged amplitude values and number of extracted pixels when a

rotating fan moves. (a) Averaged amplitudes of input and pixel-wise filtered images

and their ratios on the extracted pixels; (b) number of extracted pixels as vibration

region and slider speeds.

4.3.7 Moving Background
We analyzed the robustness of the proposed vibration source extraction method

when observing a rotating fan against a moving background scene. The experimental

setting, which includes the distance from the camera to the fan, the lens parameters, the

background pattern, and the moving speed of the linear slider, was similar as that used in

Section 4.3.6, except that the 37-rps-rotating fan was fixed and the three-blades-patterned

wallpaper was installed on a linear slider to enable the background wallpaper to move in

the right and left directions at a cycle time of 1.5 s.

Figure 4.15a shows the input 512 × 512 images. The background moved at speeds

of 0.32, 0.64, 0.00, −0.8, and 0.00 m/s at time t = 1.1, 1.4, 1.7, 2.0, and 2.3 s, respectively.
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Figure 4.15b,c show the moving average distributions of the amplitude of the input and

pixel-wise filtered images, respectively. Due to the movement of the background wall-

paper, the moving averages in (b) had certain values at the pixels around the edges of

the three-blades-patterns, whereas those in (c) became larger only at the pixels around

the rotating fan. Figure 4.15d shows the ratio distributions of the two amplitudes, and

Figure 4.15e shows the extracted vibration regions. The extracted regions did not include

the pixels around the edges of the three-blades-patterns, and they involved only the pixels

around the fan. This means that its neighboring pixels were not always detected for the

same reason described in Section 4.3.6.

The average amplitude of the input and filtered images and their ratio on the ex-

tracted pixels are shown in Figure 4.16a for 1.5 s, and the number of extracted pixels

as vibration regions and the speeds of background wallpaper are shown in Figure 4.16b.

The two amplitudes slightly fluctuated, whereas the ratio remained at around 90% when

the background wallpaper was moving alternatively in the right and left directions. The

number of extracted pixels slightly fluctuated because several pixels around the rotating

fan were not extracted as illustrated in Figure 4.15e, where the blades of the fan and the

moving three-blades-patterns overlapped. Nevertheless, these results apparently indicate

the robustness of the proposed vibration extraction method for a rotating fan against a

moving patterned background.
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Figure 4.15: (a) Input images; amplitude of (b) input; and (c) pixel-wise filtered

images; (d) amplitude ratios; (e) extracted vibration features.
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(a)

(b)

Figure 4.16: Averaged amplitude values and number of extracted pixels with mov-

ing background. (a) Averaged amplitudes of input and pixel-wise filtered images

and their ratios on the extracted pixels; (b) number of extracted pixels as vibration

region and slider speeds.

4.3.8 Motion Blur
Several 648×488 videos of a target rotating fan were captured in 300 fps using

different exposure times that were adjusted to create motion blurs of different intensity

in images. We implemented pixel-level digital filters on these videos to investigate the

robustness of vibration-based localization against the motion blur of a vibrating object by

analyzing the quantified results.
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Figure 4.17: Overview of high-frame-rate video shoot.

Figure 4.17 shows the overall view of the video shoot. Two 13 cm diameter fans

with three blades were set in front of a black background at a distance of 2 m from the

camera. Our target fan was rotating at 43 rps, set to the left of the camera view, and the

other fan rotating at 33 rps, was set to the right of the camera view, acting as a obstacle

motion. The lens aperture and focal length were set to F1.4 and 25 mm, respectively, and

the measurement area was 533×402 mm for 648×488 pixels at a distance of 2 m in front

of the camera lens, where one pixel corresponds to 0.68 mm2. The tap coefficient as, bs

of the pixel-level digital filters were set such that they operated as band-pass filters, with

a center frequency of f0 = 130 Hz. The half width was 10 Hz to extract the vibration

regions of the left rotating fan. The parameters were set to p = 4, ΔT f = 12 ms, and

T0 = / f0 = 3 ms. The thresholds θ1 and θ2 for the vibration region extraction were set to

30 and 0.5, respectively.

The exposure time was gradually adjusted from 1.0 ms to 3.2 ms with an interval

of 0.2 ms. Figure 4.18(a) shows four input images of 648×488 pixels of different expo-

sure times with different motion blur intensity. Figure 4.18(b) and (c) illustrate amplitude

distributions of input images and pixel-wise filtered images at a moment, respectively.

Both display a variation with the change of motion blur. Figure 4.18(d) shows the ampli-

tude ratio distributions of pixel-wise filtered images to input images. These are roughly
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uniform with the change of motion blur. Figure 4.18(e) shows the vibration regions that

were extracted by thresholding the amplitude ratios in our proposed algorithm whose size

corresponds to the fan’s size in the captured images. The averaged values of the input,

filtered image amplitude, and corresponding ratio on the extracted vibration regions are

illustrated in Figure 4.19. Here, we can observe that although the two amplitudes were

varied with the change of motion blur intensity, their ratios remained in the range of 85%

to 95%, which can be utilized as a reliable feature for vibration region extraction.

4.4 Experiment for a Flying Multicopter
We analyzed the robustness of our vibration source tracking method with a flying

multicopter in two non-controlled outdoor scenarios where additional distraction moving

objects and unstructured backgrounds were presented; (a) trees-and-building background;

and (b) walking-persons background. In the experiments, we examined that the simulta-

neous effect of the multiple appearance variations tested in the previous section robustly

functions in real scenarios with cluttered and moving backgrounds. The multicopter used

in the experiments was an RC EYE One Xtreme (CEI Conrad Electronic Intl. (HK) Ltd.,

Hong Kong, China. ) with four 138-mm dual-blade propellers. The multicopter had di-

mensions of 225 × 225 × 80 cm, excluding propellers. The flapping frequency of each

propeller varied within the range 80–100 Hz according to the flight operation commands.

Color 512 × 512 videos of a flying multicopter were captured offline at 1000 fps for 15

s in each scenario with the recording time being limited by the memory size of the high-

speed camera. The body and propellers of the multicopter were painted red to extract its

location in images for evaluation, whereas our algorithm was processed for gray-level im-

ages. In the experiments, the tap coefficients as, bs of the pixel-level digital filters were set

to operate as band-pass filters with a center frequency of f0 = 80 Hz (twice the flapping

frequency of the dual-blade propellers) and half-width of 20 Hz. The other parameters

were set to p = 4, ΔT f = 44 m·s, and T0 = 1/ f0 = 6 m·s. The thresholds θ1 and θ2 were

set to 20 and 0.5, respectively.



40CHAPTER 4. ROBUSTNESSANALYSISOF VIBRATIONFEATURESAGAINST APPEARANCECHANGES INHIGH-FRAME-RATEVIDEOS

(a) input images I(x, t)

(b) input intensity amplitudes K(x, t)

(c) filtered intensity amplitudeG(x, t)

(d) amplitude ratio G(x, t)/K(x, t)

(e) extracted vibration features V(x, t)

Figure 4.18: (a) input images, intensity amplitude of (b) input and (c) pixel-wise
filtered images, (d) amplitude ratios, (e) extracted vibration features.

4.4.1 Trees-and-Building Background
We analyzed the 1000-fps video when the multicopter moves against an unstruc-

tured background. The multicopter flew in the right and left directions with vertical ele-

vation twice in 15 s in front of trees and a building, which were located at a distance of

approximately 8 m in front of the camera. The focal length, focus distance, and aperture

of the lens were set to 12 mm, 8 m, and F2.8, respectively. The measurement areas of 512
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Figure 4.19: average of input, filtered pixels, and corresponding ratios on the ex-
tracted pixels.

× 512 pixels were 5.3 × 5.3 m, where one pixel corresponds to 10.3 mm2 at a distance of

8 m.

Figure 4.20a–d shows the input images and the moving average distributions of the

amplitude of the input images and pixel-wise filtered images, as well as the ratio distribu-

tion of the two amplitudes’. The images were taken at intervals of 3 s for t = 0–15 s. Fig-

ure 4.20e,f show the vibration regions extracted by our algorithm, and magnified images

of 32 × 32 pixels around the averaged positions of the extracted pixels, respectively. These

averaged positions (blue “+” s) were plotted over the input images as well as those of the

red-color regions (red “+” s) in Figure 4.20g; they corresponded to the locations of the

red multicopter in images. For comparison, the tracking results of the other appearance-

based single-object tracking methods, which were prepared in Open CV Tracking API in

Open CV 3.0 [147], were illustrated as color-lined rectangular regions; (1) KCF [142];

(2) TLD [143]; (3) Median Flow [144]; (4) Boosting [145]; and (5) MIL [146]. The color

input images at 1000 fps were processed for all the single-object tracking methods, and

the object to be tracked was initially defined as the 32 × 24 subimage in the 32 × 32 ROI

region at t = 0 s as illustrated in Figure 4.20f.
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Figure 4.20: (a) Input images; amplitude of (b) input; and (c) pixel-wise filtered

images; (d) amplitude ratios; (e) extracted vibration features; (f) tracked positions;

(g) magnified images.

It can be seen that certain pixels around the propellers of the multicopter were ro-

bustly extracted as vibration features by our algorithm when the background scene just

directly behind the multicopter was varying with its flight trajectory (trees at t = 3, 9, 12,

and 15 s, and building at t = 0 and 6 s). When t = 0, 3, 6, 9, 12, and 15 s, the averaged po-
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sitions of the red-color regions in the images, which indicated to the actual locations of the

multicopter, were (447,104), (308,101), (432,162), (267,159), (361,200), and (305,247),

respectively, whereas those of the extracted pixels were (445,105), (313,106), (434,163),

(266,162), (356,200), and (312,247), respectively. Due to the partial occlusion of the

propellers by the multicopter itself, the averaged positions of the extracted pixels slightly

deviated from the actual locations of the multicopter, however, they almost corresponded

with the actual locations of the multicopter and the ROI regions illustrated in Figure 4.20f

wholly or partially involved the regions of the multicopter. In Figure 4.20g, it can be seen

that the tracking windows largely deviated from the target multicopter and mistracked

cluttered background scenes in all the single-object tracking methods. This is because

the object to be tracked was determined with a subimage in the low-resolution 32 × 24

region, and there were many unstructured patterns with similar appearance-based features

in the background scenes.
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Figure 4.21: xy trajectory of extracted vibration region in “trees-and-building back-

ground” experiment. (a) x- and y-coordinates and number of pixels; (b) xy trajec-

tory.

Figure 4.21a illustrates graphs that show changes in the x- and y-coordinate values
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of the averaged positions of the extracted pixels and the number of the extracted pixels for

15 s, and the xy trajectory for 15 s was plotted over the input image of 512 × 512 pixels

captured at t = 0 in Figure 4.21b. Whereas the number of the extracted pixels was not so

large and varied in the range of 7 to 75, we have confirmed that the xy trajectory of the

averaged positions of the extracted pixels were robustly extracted in correspondence with

the left-and-right motion and elevation of the flying multicopter when the background

scene directly behind the multicopter was frequently switched to trees in the center and a

building in the right side. Here we can observe certain fluctuations in the xy trajectory due

to the partial occlusion of the propellers. This is because our method only extracted the

regions of the propellers, by excluding the body of the multicopter, and the average posi-

tions of the extracted pixels were discretely changed within the region of the multicopter

when one propeller was unobservable with occlusion.

4.4.2 Walking-Persons Background
We analyzed the 1000-fps video when the multicopter moves against a background

with moving obstacles; the multicopter flew repeatedly in the right and left directions at

different heights in front of many persons with quick arm movements, who were walking

at a distance of approximately 6 m in front of the camera. The focal length, focus distance,

and aperture of the lens were set to 12 mm, 8 m, and F2.8, respectively. The measurement

areas of 512 × 512 pixels were 4.7 × 4.7 m, where one pixel corresponds to 9.2 mm2 at a

distance of 6 m.
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Figure 4.22: (a) Input images; amplitude of (b) input; and (c) pixel-wise filtered

images; (d) amplitude ratios; (e) extracted vibration features; (f) tracked positions;

(g) magnified images.
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Figure 4.23: xy trajectory of extracted vibration region in “trees-and-building back-

ground” experiment. (a) x- and y-coordinates and number of pixels; (b) xy trajec-

tory.

Figure 4.22a–d shows the input images, the moving average distributions of the
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amplitude of the input images, pixel-wise filtered images, and the ratio distribution of

the two amplitudes for t = 0–15 s. Figure 4.22e,f show the vibration regions extracted

by our algorithm, and magnified images of 32 × 32 pixels around the extracted pixels,

respectively. Figure 4.22g shows the averaged positions of the extracted pixels, those of

the red-color regions, and the tracking results of the single object tracking methods used

in the previous subsection, in which the object to be tracked was initially defined as a

32 × 24 subimage at t = 0 s as illustrated in Figure 4.22f. When the multicopter flew

repeatedly in the right and left directions at different heights in front of many walking

persons, our algorithm extracted certain pixels around the propellers of the multicopter as

vibration features without being disturbed by their quick movements. When t = 0, 3, 6, 9,

12, and 15 s, the averaged positions of the red-color regions in the images were (51,199),

(345,208), (114,128), (263,245), (295,205), and (54,262), respectively, and those of the

extracted pixels, (47,200), (343,209), (114,124), (262,246), (291,208), and (61,265), re-

spectively, had slight deviations from them due to the partial occlusion of the propellers,

however, the ROI regions illustrated in Figure 4.22f involved the regions of the multi-

copter at all times. Figure 4.22g shows that the tracking windows with the single-object

tracking methods, which were used in the previous subsection, largely deviated from the

target mulitcopter, and these appearance-based tracking methods are almost unable to

track in this scenario.

Figure 4.23a,b illustrate graphs that show changes in the x- and y-coordinate values

of the averaged positions of the extracted pixels and the number of extracted pixels for

15 s, and the xy trajectory for 15 s was plotted over the input image at t = 0. Corre-

sponding to the left-and-right motion of the flying multicopter at different heights, the xy

trajectory of the averaged positions of the extracted pixels were robustly extracted with-

out any disturbance by the moving background, including the fluctuation due to the partial

occlusion of the propellers, whereas the number of extracted pixels largely varied in the

range of 5 to 138.
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4.5 Concluding Remarks
In this chapter, we analyzed the detectability of a vibration source localization

method based on pixel-level digital filters applied to HFR video for rotating fans and

a flying multicopter with rotating propellers under various imaging conditions, whose ro-

tational frequencies were distinctly distant from those of the background scenes. The

robustness of the method under brightness changes, defocus blur, apparent scale and

pose variations, rotational frequency change, complex background and motion blur was

demonstrated using several 2000 fps or 300 fps videos of rotating fans captured by ad-

justing the lens parameters, the shooting angle, and the rotation of the fan or by moving

the fan and background pattern. The robustness of images that were simultaneously af-

fected by multiple appearance changes was also demonstrated using a flying multicopter

in various outside scenarios.
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Chapter 5

Real-Time Vibration Source Tracking Using

High-Speed Vision

5.1 Introduction
In this chapter, by applying pixel-level digital filters to clipped region-of-interest

(ROI) images, in which the center position of a vibrating object is tracked at a fixed po-

sition, we reduce the latency effect on a digital filter, which may degrade the localization

accuracy in vibration source tracking. Pixel-level digital filters for 128×128 ROI images,

which are tracked from 512×512 input images, are implemented on a 1000-fps vision

platform that can measure vibration distributions at 100 Hz or higher. Our tracking sys-

tem allows a vibrating object to be tracked in real time at the center of the camera view

by controlling a pan-tilt active vision system.

We present several experimental tracking results using objects vibrating at high fre-

quencies, which cannot be observed by standard video cameras or the naked human eye,

including a flying quadcopter with rotating propellers, and demonstrate its performance

in vibration source localization with sub-degree-level angular directivity, which is more

acute than a few or more degrees of directivity in acoustic-based source localization.

5.2 Latency Effect in Digital Filter
In order to stably extract vibration-based features, it is important to consider the

latency effect on a digital filter, on the basis of image data accumulated at the previous

51
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Figure 5.1: Pixel-level digital filters for tracked ROI images.

frames; the digital filter requires multiple images captured at frames during several times

of the cycle time of the vibration source in order to detect repetitive brightness changes

vibrating at its frequency. Thus, vibration-based features are not always suitable for target

tracking, because the digital filter latency effect may adversely affect the performance of

target tracking with visual feedback control. To reduce this latency effect in digital filters,

we introduce the following two ideas in this paper: (a) a digital filter for tracked ROI

images, and (b) single-cycle time features.

In general, the latency effect in digital filters becomes larger as a vibrating object

moves more quickly; it is determined by the translation displacement during several vi-

bration cycle times. When the translational speed of the vibrating object is not negligible,

several pixels are incorrectly detected as ghost vibration region; periodic changes in image

intensities can be observed during several vibration cycle times even when the object does

not still locate at these pixels in the current frame, because the object coordinate system

moves against the image coordinate system. To cancel such translational displacements

in original input images, we use ROI images in which a vibrating object is always tracked
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Figure 5.2: Masking process with single-cycle time feature for lowering latency
effect in digital filter.

as the image center for the pixel-level digital filter. The effectiveness of the ROI tracking

process in a digital filter is illustrated in Fig. 5.1. The latency effect in the digital filter is

significantly reduced, because the vibrating object is virtually fixed without translational

movement in the ROI images, and its vibration in image brightness is always observed

at pixels around the image centers; the ROI-image coordinate system corresponds to the

object coordinate system.

To determine the ROI location for tracking a vibrating object, simultaneous calcu-

lation of the image features that indicate the object’s position in images, such as moment

feature-based image centroids, is required. The latency effect still remains when comput-

ing vibration-based features for vibration source localization with digital filtered images.

To prevent this latency effect spreading over several cycle times of vibration, single-cycle

time features were introduced in this study; these features concern only the temporal

brightness change in a single cycle time of vibration, and the latencies in computing them

may be small within a single cycle time. However, they cannot judge whether there are

repetitive brightness changes according to vibration source, or one-time transient bright-

ness changes when the brightness edges of moving scenes pass over pixels during a single
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cycle time of vibration. Digital filter-based and single-cycle time features have their mer-

its and demerits in terms of latency and accuracy in the target tracking of a vibrating

object. In order to suppress the latency effect in digital filters, we introduce an additional

process for masking image regions extracted using pixel-level digital filters with single-

cycle time features. Fig. 5.2 shows the differences between digital filter-based features

and single-cycle time features, and the masking process for decreasing latency effect.

5.3 Tracking Processes
We introduce a vibration-based feature corresponding to the position of a vibrat-

ing object for target tracking, which is calculated by using pixel-level digital filters via a

masking process by single-cycle time feature extraction for tracked ROI images, in which

the vibrating object is always located in their center. We assume that the properties of a

vibrating object are initially given, such as its center frequency f0, and the size and pixel

interval of the ROI image are always fixed in the ROI tracking process. The proposed

algorithm involves two processes: (a) searching, and (b) ROI tracking. The searching

process is executed for detecting a vibrating object in the entire image region; the track-

ing process is executed for selecting ROI images by assuming HFR vision, in which the

translation displacement between frames is small and the tracked ROI image in the current

frame is located only in the neighborhood of that in the previous frame. Here, the input

image of N × N pixels and the tracked ROI image of N′ × N′ pixels are captured at time t

as I(x, y, t) and IR(x′, y′, t), respectively; (x, y) and (x′, y′) are their pixel coordinates.

5.3.1 ROI Tracking Process
5.3.1.1 Selection of ROI image

The ROI image IR(x′, y′, t) at time t is selected from the input image I(x, y, t) as

IR(x′, y′, t) = I(x′ + ox(t), y′ + oy(t), t), (5.1)
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where the start pixel coordinate (ox(t), oy(t)) is determined by the location of vibration

source (cx(t−δt), cy(t−δt)), which is estimated at the previous frame t−δt in the searching

process or ROI tracking process as

(ox(t), oy(t)) =
(
cx(t−δt) −

N′

2
, cy(t−δt) −

N′

2

)
. (5.2)

δt is the frame cycle time of the vision system.

5.3.1.2 Pixel-level digital filters

The ROI image IR(x′, y′, t) is filtered at every pixel with a band-pass filter, the center

frequency of which is f0. In this study, the following infinite impulse response (IIR) filter

is adopted as a band-pass filter:

g(x′, y′, t)=
p−1∑
s=0

bsIR(x′, y′, t−sδt)−
p−1∑
s=1

asg(x′, y′, t−sδt), (5.3)

where p is the filter order and as, bs are the tap coefficients. These parameters determine

the center frequency and bandwidth of the band-pass filter.

5.3.1.3 Moving averages of filtered image intensities

The average of the absolute value of the filtered image in a certain interval ΔT f and

that of the brightness of the ROI image are calculated at every pixel as

G(x′, y′, t) =
1
ΔT f

∫ t

t−ΔT f
|g(x′, y′, t)|dt, (5.4)

K(x′, y′, t) =
1
ΔT f

∫ t

t−ΔT f
IR(x′, y′, t)dt, (5.5)

where ΔT f is set to several times of the cycle time 1/ f0 to extract the vibration region.
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5.3.1.4 Vibration region extraction

The vibration region V(x′, y′, t) is extracted by thresholding the ratio of G(x′, y′, t)

to K(x′, y′, t) with a threshold θ2 as

V(x′, y′, t)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

(
K(x′, y′, t)>θ1 and

G(x′, y′, t)
K(x′, y′, t)

>θ2

)

0 (otherwise)
, (5.6)

where the pixel (x′, y′) is judged to be an ambiguous pixel not to be extracted when

K(x′, y′, t) is lower than a threshold θ1.

5.3.1.5 Single-cycle time feature extraction

By inspecting the difference between the maximum and minimum brightnesses of

the ROI images during one recent cycle time of vibration at every pixel, time-varying

brightness pixels are extracted as a single-cycle time feature:

D(x′, y′, t)=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 (Hmax (x′, y′, t)−Hmin (x′, y′, t)>θ3)

0 (otherwise)
, (5.7)

where Hmax(x′, y′, t) andHmin(x′, y′, t) are defined with a cycle time of vibration T0 = 1/ f0:

Hmax(x′, y′, t) = max {IR(x′, y′, t′), t−T0≤ t′ ≤ t} , (5.8)

Hmin(x′, y′, t) = min {IR(x′, y′, t′), t−T0≤ t′ ≤ t} . (5.9)

The single-cycle time feature is not so sensitive to a slight deviation between the

real and assumed cycle times, because the maximum and minimum brightness values do

not vary significantly during the cycle time when the frequency of the vibrating object is

slightly different from its assumed frequency.
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5.3.1.6 Masking by single-cycle time feature

The vibration region V(x′, y′, t) is masked with the single-cycle time featureD(x′, y′, t)

to reduce the latency effect on a digital filter:

F(x′, y′, t) = V(x′, y′, t) ∩ D(x′, y′, t), (5.10)

where “∩” means logical AND operation.

5.3.1.7 Localization of vibration source

To localize a vibrating object in the ROI image, the image centroid (cx(t), cy(t)) of

F(x′, y′, t) is calculated by using its 0th and 1st moment features, M0(t) and Mx(t), My(t):

(cx(t), cy(t)) =
(
Mx(t)
M0(t)

+ ox(t),
Mx(t)
My(t)

+ oy(t)
)
, (5.11)

M0(t) =
∑
x′ ,y′
F(x′, y′, t), (5.12)

Mx(t) =
∑
x′,y′
x′F(x′, y′, t), My(t) =

∑
x′,y′
y′F(x′, y′, t). (5.13)

When the number of one-pixels in F(x′, y′, t), which corresponds toM0(t), is smaller

than a threshold θ4, we consider the vibration source localization failed or unstable and

change to the searching process for the entire image region; otherwise, we go back to 1)

and continue the ROI tracking process at the next frame.

5.3.2 Searching Process
In our proposed algorithm, we switch to a searching process for detecting a vibrat-

ing object in the entire image region when the algorithm starts initially or vibration source

localization has failed in the ROI tracking process. In the searching process, gray-level

images of M × M pixels, IS (x′′, y′′, t), which are obtained from the input image of N × N

pixels at intervals of m pixels (N = mM), are processed,

IS (x′′, y′′, t) = I(mx′′,my′′, t), (5.14)
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where (x′′, y′′) is the pixel coordinate of IS (x′′, y′′, t).

The searching process is similar to subprocesses 2), 3), and 4) in the ROI tracking

process; VS (x′′, y′′, t) is extracted as the vibration region in IS (x′′, y′′, t) with the same

parameters

as those used in the ROI tracking process. To localize a vibrating object in the entire

image region, the image centroid (cx(t), cy(t)) in the xy coordinate is calculated using the

moment features of VS (x′′, y′′, t):

(cx(t), cy(t)) =
(
m
M′x(t)
M′0(t)

,m
M′x(t)
M′y(t)

)
, (5.15)

M′0(t) =
∑
x′′ ,y′′

VS (x′′, y′′, t), (5.16)

M′x(t)=
∑
x′′ ,y′′
x′′VS (x′′, y′′, t), M′y(t)=

∑
x′′ ,y′′
y′′VS (x′′, y′′, t). (5.17)

The searching process is iteratively executed until the number of ON-pixels in

VS (x′′, y′′, t) is greater than a threshold θ5; otherwise, we revert to the ROI tracking pro-

cess again at the next frame. The centroid of VS (x′′, y′′, t) is given as the initial parameter

of the ROI tracking process.

5.4 System Configuration
To show the effectiveness of vibration source localization using pixel-level digital

filters, we developed a prototype system that can simultaneously track a vibrating object in

the center of a camera view by implementing the vibration source localization algorithm

described in Section ?? in a high-speed target tracking system, whereby real-time image

processing at 1000 fps or more can be executed. The prototype system consists of a high-

speed vision platform, IDP Express [10], and a pan-tilt active vision system. Fig. 5.3

shows the configuration of the target tracking system for vibrating objects.

IDP Express consists of a compact camera head, the dimensions and weight of

which are 23×23×77 mm and 145 g, respectively, when no lens is mounted, a dedi-

cated FPGA board (IDP Express board), and a personal computer (PC). The camera head
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Figure 5.3: System configuration of target tracking system.

can capture and transfer 8-bit gray-level 512×512 images to the IDP Express board at

2000 fps. The IDP Express board has an FPGA for hardware implementation of the user-

specific algorithms and can transfer 512×512 input images and their processed results

to the standard PC memory at 2000 fps. We used a PC with the following specifica-

tions: ASUSTeK SABERTOOTH X79 mainboard, Intel Core i7-4820K @ 3.70 GHz

CPU, 8 GB memory, and two 16-lane PCI-e 3.0 buses. On the PC, various API func-

tions that facilitate camera head control and memory-mapped data access can be used on

Windows 7 (64-bit) for application software development.

The 2 degrees of freedom (DOF) active vision system is moved by pan and tilt

motors, which are compact and high-speed motors. The size of the active vision system is

12×12×7 cm without a camera head. To track a moving object, the camera head mounted

on the active vision system is controlled with visual feedback so that the center of its

camera view coincides with the image centroid of the vibration region, which is obtained

using the vibration source localization algorithm.

The vibration source localization algorithm is implemented by software on the IDP

Express and executed in real time on the PC at 1000 fps for 8-bit gray-level images of

128×128 pixels (N′ = M = 128), which are selected from the input images of 512×512
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Table 5.1: Execution times of ROI tracking process

time [ms]
1) Image acquisition and ROI image selection 0.02
2) Pixel-level digital filters 0.47
3) Moving averages of filtered image intensities 0.09
4) Vibration region extraction 0.06
5) Single-cycle time feature extraction 0.01
6) Masking by single-cycle time feature 0.01
7) Localization of vibration source 0.01
Total 1)–7) 0.66

pixels (N = 512). The processing time of the algorithm depends on the filter order p,

the interval for moving averages ΔT f , and the duration time for single-cycle time feature

extraction T0. Table 5.1 summarizes the execution times of the ROI tracking process. The

total execution time of the searching process is 0.83 ms, corresponding to subprocesses

1)–4) and 7) in the ROI tracking process; 128×128 images were used in both the searching

and ROI tracking processes in this study. Thus, the total execution times in both modes

are less than 1 ms, and we confirmed that the pan and tilt motors of the active vision

system are controlled by using the image centroid at a visual feedback rate of 1000 fps.

5.5 Experiments

5.5.1 Vibration Source Localization at a Fixed Camera Position
To verify the performance of our system at a fixed camera position without tracking

control of the active vision system, we present the experimental results for a rotating fan

moved by a linear slider. Fig. 5.4 shows the experimental setup. In the experiment, a

13-cm-diameter fan with three blades was installed on a linear slider 125 cm in front of

the camera head. To verify the position of its rotation center, a red marker was attached

at the center. A textured pattern of 25×25 cm size, which comprised shades of green, was

set behind the fan as the moving background; it was moved together with the fan by the

linear slider; the moving background was used to verify that the ROI tracking process

can perfectly suppress the noises of the moving background and reduce the latency effect

in digital filter. A textured wallpaper comprising shades of green was set behind the



5.5 EXPERIMENTS 61

sta�c background
moving background

fan (33 rps)

red marker

linear slider

high speed
camera head

130 mm

der

300 mm

mov

fa

Figure 5.4: Experimental setup for fixed camera position experiment.

above-mentioned textured pattern and fan as the static background; the static background

was used to check whether the searching process correctly finds a vibrating object to be

localized in 128×128 images, which are obtained from the entire 512×512 input image at

intervals of 4 pixels. The measurement area was 1200×1200 mm for 512×512 pixels at

a distance of 125 cm in front of the camera head, where one pixel corresponds to 2.0 mm.

The tap coefficients as, bs of the pixel-level digital filters were set so that they operated

as the band-bass Butterworth filters, the center frequency of which was f0 = 100 Hz and

half width was 10 Hz. The parameters were set to p = 4, ΔT f = 40 ms, and T0 = 1/ f0 =

10 ms. The thresholds θ1 and θ2 for vibration region extraction were set to 48 and 0.3,

respectively. The threshold θ3 for single-cycle time feature extraction was set to 40. The

thresholds θ4 and θ5 for vibration source detection were set to 256 and 16, respectively.

First, we checked the detectable frequency in the searching process in the experi-

ment for a rotating fan at a fixed location with no slider motion. The rotation frequency

of this fan time-varied in a range of 17 to 44 rps. Fig. 5.5 shows the 512×512 input im-

ages with different rotation speeds, and the extracted vibration region of 128×128 pixels

in the searching process. Fig. 5.6 shows the number of extracted pixels in the searching
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Input image t = 3.5 s t = 4 s t = 4.5 s 

t = 5 s t = 5.5 s t = 6 s t = 6.5 s 

Figure 5.5: Input images of 512×512 pixels and extracted vibration regions of
128×128 pixels in the searching process for different rotation speeds.

Figure 5.6: Number of extracted pixels in the searching process for different rotation
speeds.

process for different rotation speeds. When the rotation speed was in a range of 29 rps to

37 rps, our method could distinctly extract the pixels around the fan as vibration pixels.

The brightness values at the extracted pixels varied in a frequency range of 87 to 111 Hz.

This corresponds to the parameters of the band-pass filters used in the experiment, whose

center frequency was 100 Hz and half width was 10 Hz.

Next, we obtained the verification results when the linear slider moved alternately

in the right and left directions with an amplitude of 30 cm and at a cycle time of approx-

imately 1 s; the fan rotated at a constant speed of 33 rps. Fig. 5.7(a) shows the input

images of 512×512 pixels, taken at intervals of 0.17 s. We confirmed that the searching

process worked correctly and switched to the ROI tracking process to track the rotating

fan. The start time of observation in the ROI tracking process was t = 0; the experimental
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t=0.25 s t=0.75 s t=0.42 s t=0.59 s 

(a) Input images

t=0.25 s t=0.75 s t=0.42 s t=0.59 s 

(b) Vibration features extracted by our algorithm (“DS-ROI”)

t=0.25 s t=0.75 s t=0.42 s t=0.59 s 

(c) Digital filter-based features

t=0.25 s t=0.75 s t=0.42 s t=0.59 s 

(d) Single-cycle time features

Figure 5.7: Input images of 512×512 pixels and extracted vibration features in the
tracked ROI regions of 128×128 pixels at a fixed camera position.

data were discussed only for the ROI tracking process here. Fig. 5.8 shows the changes in

the image intensities for t = 0.2∼0.6 s at points A(256, 100), B(256, 155), and C(256, 186)

when the fan was passing over the vertical line of x = 256. Corresponding to three times

of the rotational frequency of the fan, periodic changes at a frequency of 100 Hz were

observed at point C locating around the fan; small changes were observed at point A on

the static background and low-frequency changes were observed at point B on the mov-

ing background. Using our algorithm, the image region around a vibrating object can be
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Figure 5.8: Temporal changes in image intensities at a fixed camera position.

extracted by detecting these changes in image intensities with pixel-level digital filters.

Fig. 5.7(b) shows the digital filter-based features masked with the single-cycle time

features in the ROI regions of 128×128 pixels, which were tracked by our algorithm

(“DS-ROI”). In Fig. 5.7(a), the red-line squares indicate the tracked ROI regions. The

red “+”s are the marker positions at the center of the fan and the green “+”s are the

xy centroids of the image features in the tracked ROI regions. It can be seen that the

xy centroids virtually coincide with the marker positions. Fig. 5.7(c) and (d) shows the

digital filter-based features and the single-cycle time features in the red-line square ROI

regions, respectively, which were calculated in real-time “DS-ROI” measurement. Owing

to the latency effect in the digital filter, Fig 5.7(c) indicates that the difference between

the marker position and the centroid of the digital filter-based features became larger

when the fan was moved quickly. In Fig. 5.7(d), it can be seen that the single-cycle time

features contained several background errors, corresponding to the moving background,

which may contribute to large deviations from the actual position of the fan.

To verify the effectiveness of the ROI tracking process in reducing the latency effect

in the digital filter, Fig. 5.9 shows the vibration features extracted without ROI tracking,

which were clipped in the red-line square ROI regions of 128×128 pixels, as illustrated

in Fig. 5.7(a): digital filter-based features without ROI tracking (“D-noROI,” (a)), single-

cycle time features without ROI tracking (“S-noROI,” (b)), and digital filter-based features

masked with single-cycle time features without ROI tracking (“DS-noROI,” (c)). The

vibration features in Fig. 5.9 were calculated offline using the input image sequences
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t=0.25 s t=0.75 s t=0.42 s t=0.59 s 

(a) Vibration features (“D-noROI”)

t=0.25 s t=0.75 s t=0.42 s t=0.59 s 

(b) Vibration features (“S-noROI”)

t=0.25 s t=0.75 s t=0.42 s t=0.59 s 

(c) Vibration features (“DS-noROI”)

Figure 5.9: Vibration features in the image region of 128×128 pixels, which were
calculated for the fixed whole image region with no ROI tracking.

stored during the real-time “DS-ROI” measurement.

Fig. 5.10 shows the xy coordinate values of the marker and the image centroids of

the vibration features extracted by “DS-ROI,” “D-noROI,” “S-noROI,” and “DS-noROI”

measurements for 2.5 s. Fig. 5.11 shows the deviations of these image centroids from

the marker position. It can be seen that the latency effect in the digital filter when the

digital filter-based features in Fig. 5.7(c) were calculated for the tracked ROI regions was

reduced, as compared with those in Fig. 5.9(a) calculated for the fixed whole image re-

gions. Fig. 5.9(c) indicates that this latency effect with no ROI tracking still remains

largely in the digital filter-based features masked with single-cycle time features, because

the dilated areas of the digital filter-based features involved several background errors

when the fan was moving quickly, which were miss-detected in the single-cycle time fea-

tures. Figs. 5.10 and 5.11 show that the image centroids in “DS-ROI” measurement most
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Figure 5.10: Image centroids of vibration features.
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Figure 5.11: Deviation of image centroids of vibration features.

closely matched the marker position of the fan; the image centroids in “D-noROI” mea-

surement widely deviated from the marker position because of the latency effect in the

digital filter when the fan moved faster, and those in “S-noROI” measurement had certain

deviations in the direction of y, which were caused by the moving background’s pattern.

A maximum deviation of 20 pixels was observed in “DS-noROI” measurement and the

mean of the deviation in “DS-ROI” measurement was 4.2 pixels, which corresponded to

8.4 mm at a distance of 125 cm from the camera head. Therefore, by introducing the ROI

tracking process, the latency effect in a digital filter can be mitigated without compro-

mising the filtering properties for detection of invisible high-speed vibration. Vibration

source localization with directive errors of 0.39 degrees was realized in “DS-ROI” mea-

surement.

Next, we verified the robustness of the proposed tracking method using a 33-rps-

rotation fan in a non-controlled indoor scenario, by comparing the obtained tracking re-
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sults with several state-of-the-art vision-based tracking methods. The fan to be tracked

was the same as that used in the previous experiment, and all parameters of the proposed

algorithm were set to the same values as those provided in the previous experiment. The

fan was observed at a fixed camera position without tracking control of the active vision

system, and it was alternately moved in the right and left directions with a manual vertical

shake at 1 Hz, at a distance of approximately 2.0 m from the camera head in a laboratory

scene. The measurement area was 160×160 mm for 512×512 pixels at a distance of 2.0 m

from the camera head, where one pixel corresponds to 3.0 mm.

Fig. 5.12 shows (a) the input images of 512×512 images, (b) the vibration features

extracted using the proposed algorithm, which were plotted in white over the ROI images

of 128×128 pixels with their centroids and the marker positions, and (c) the tracked results

obtained using the proposed and several single-object tracking methods, which were taken

at intervals of 4 s. We used the following single-object tracking methods: (1) KCF [142],

(2) TLD [143], (3) Median Flow [144], (4) Boosting [145], and (5) MIL [146], which

were prepared in Open CV tracking API in Open CV 3.0 [147], and illustrated as color-

line rectangular regions. The color input images of 512×512 pixels at 1000 fps, which

were captured during execution of the proposed method in real time, were processed

offline. The object to be tracked was initially defined as a 32×32 sub-image region around

the fan at t = 0; which was the start time of observation. Fig. 5.13 shows the centroid

of the vibration features, the marker position, and the tracked positions obtained using

single-object tracking methods for 13 s.

It can be observed that certain pixels around the rotating fan were extracted as the

vibration features when the background scene behind the fan was varied with its motion.

The ROI regions of 128×128 pixels were correctly tracked for the moving fan, as shown in

Fig. 5.12(b). In Fig. 5.12(c) and Fig. 5.13, the centroid of the vibration features matched

with the marker position in the proposed method, whereas the tracked windows were con-

siderably deviated from the target fan and background scenes were tracked incorrectly for

all single-object tracking methods. This was because there were unstructured patterns

with similar appearance-based features in the background scenes. Table 5.2 summarizes

the means of the deviations from the marker position in all the methods; they were com-
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t = 1 s t = 5 s t = 9 s t = 13 s 

(a) Input images

(b) Vibration features ROI regions

(c) Tracked positions

Figure 5.12: Input images of 512×512 pixels, masked vibration features in the
tracked ROI regions of 128×128 pixels, and tracked results for single-object tracking
methods in indoor scene experiment.

puted as the averaged deviations for 13 s. The proposed method achieved vibration source

localization with directive errors of 0.7 degrees in the uncluttered indoor scene, in which

appearance-based single-tracking methods did not work correctly.

5.5.2 Target Tracking Experiment
Next, we present the experimental results for real-time tracking when the camera

head was mechanically controlled by the 2-DOF active vision system such that the vibrat-

ing object was located at the center of the camera view. Fig. 5.14 shows the experimental

setup. We tracked a fan rotating at 33 rps as a vibrating object, which was the same as

that described in Subsection 5.5.1. The fan was alternately moved in the right and left di-
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Figure 5.13: Image centroids of vibration features and tracked position for single-
object tracking methods in indoor scene experiment.
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Table 5.2: Averaged deviations of image centroids of vibration features and tracked
positions for single-object tracking methods.

vibration KCF TLD median boosting MILfeatures flow
8.6 127.7 85.6 139.9 157.3 119.5

(unit: pixel)

moving  human

ac�ve vision

target fan (33 rps)

camera head

obstacle fan (18 rps)

red marker

Figure 5.14: Experimental setup for mechanical tracking experiment.

rections, with a manual vertical shake at 2 Hz, at a distance of approximately 1.4 m from

the active vision system in a laboratory scene. The measurement area was 500×500 mm

for 512×512 pixels at a distance of 1.4 m in front of the camera head, where one pixel

corresponds to 1.5 mm. As obstacles to tracking, a human with moving arms and a fan

rotating at 18 rps were set in the background. The static laboratory scene may act as dy-

namically changing disturbances in the camera view, according to the egomotion of the

camera head. All the parameters of our algorithm were set to the same values as those

provided in Subsection 5.5.1. The control target for the centroid of the vibration features

was set to the center of an input image of 512×512 pixels, (256, 256).

Fig. 5.15 shows (a) the experimental overviews, which were monitored by the sec-

ond video camera at a fixed position, (b) the input images of 512×512 pixels, in which the
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t = 3.0 s t = 4.2 s t = 3.4 s t = 3.8 s 

(a) Experimental overviews

t = 3.0 s t = 4.2 s t = 3.4 s t = 3.8 s 

(b) Input images

t = 3.0 s t = 4.2 s t = 3.4 s t = 3.8 s 

centroid of vibration feature red marker

(c) Vibration features in ROI regions

Figure 5.15: Experimental overviews, input images of 512×512 pixels, and masked
vibration features in the tracked ROI regions of 128×128 pixels in mechanical track-
ing experiment.

red-line squares indicate the tracked ROI regions, and (c) the vibration features extracted

by our algorithm, which were white-plotted over the ROI images of 128×128 pixels with

their centroids and the marker positions. These images were taken at intervals of 0.4 s for

t = 3.0∼4.2 s; t = 0 was the start time of observation. Fig. 5.16 shows (a) the centroid of

the vibration features and the marker position, and (b) the pan and tilt angles of the active

vision system for 10 s. Fig. 5.17 shows the deviations of the extracted centroids from the

marker position. Fig. 5.18 shows the temporal changes in the image intensities at A (64,

20), B (64, 85) and C (64, 108) in the ROI image of 128×128 pixels for t = 2.6∼2.9 s,

when the 33-rps fan passed over the 18-rps fan and the moving human in the background.

In Fig. 5.18, the periodic changes at 100 Hz at point A around the 33-rps fan

was within the frequency range of the pixel-level band-pass filters, whereas the temporal
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Figure 5.16: Centroid of vibration features, and pan and tilt angles of active vision
system in mechanical tracking experiment.
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Figure 5.17: Deviation of image centroids of vibration features in mechanical track-
ing experiment.

changes at points B and C, which correspond to the 18-rps fan and the moving human, re-

spectively, were much lower than 100 Hz, and had few components in the filter frequency

range. Thus, the rotating fan was continuously extracted and tracked around the center

of the camera view without miss-tracking any obstacle when the ROI region was passing

over the obstacle fan and the moving human, as shown in Fig. 5.15. In Fig. 5.15(b) and
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Figure 5.18: Temporal changes in image intensities in mechanical tracking experi-
ment.

Fig. 5.16(a), the centroid of the vibration features deviates slightly from the control target

of (256, 256). This tendency indicates that the tracking error from the image center was

caused mainly by the mechanical limit of the active vision system because the latency

effect on the digital filter in the experiment was insignificant. The vibrating object to

be tracked maintained its position at the center of the ROI region, and the deviation of

the centroid from the marker position is always small. The mean of the deviation was

4.5 pixels, and it corresponded to 6.8 mm at a distance of 1.4 m from the camera head.

Thus, vibration source localization was realized with directive errors of 0.28 degrees in

the experiment.

5.5.3 Flying Quadcopter Tracking Experiment
Finally, we present the experimental results when the active vision system tracked

a quadcopter flying in an outdoor scene as a vibrating object using our vibration source

localization method. The quadcopter used in the experiment was a Phantom 1 (DJI Co.

Ltd, China) with four 21-cm dual-blade propellers; its dimensions are 29×29×20 cm.

The quadcopter was flying diagonally upward at a distance of approximately 8 m from

the active vision system, and the flapping frequencies of the four propellers changed in

the range from 85 Hz to 95 Hz corresponding to the flight operation command. The

measurement area was 7.25×7.25 m for 512×512 pixels at a distance of 8 m in front of the

camera head, on which the f = 6 mm C-mount lens was mounted; one pixel corresponds

to 1.41 cm. According to twice the flapping frequencies of the dual-blade propellers, the

tap coefficients as, bs of pixel-level digital filters were set such that they operated as the
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t = 8 s t = 11 s t = 14 s t = 17 s 

(a) Experimental overviews

(b) Input images

centroid of vibration feature (64,64)centroid of silhouette

t = 8 s t = 11 s t = 14 s t = 17 s 

(c) Vibration features in ROI regions

Figure 5.19: Experimental overviews, input images of 512×512 pixels, and masked
vibration features in the tracked ROI regions of 128×128 pixels in flying quadcopter
tracking experiment.

band-bass filters, the center frequency of which was f0 = 180 Hz and half width was

20 Hz. The parameters were set to p = 4, ΔT f = 22 ms, and T0 = 1/ f0 = 6 ms. The

thresholds θ1 ∼ θ5 were the same as those provided in Subsection 5.5.1.

Fig. 5.19 shows (a) the experimental overviews, monitored using a video camera

at a fixed position, (b) the input images of 512×512 pixels with the tracked ROI regions

enclosed by the red-lines, and (c) the extracted vibration features, which were plotted in

white over the ROI images of 128×128 pixels with their centroids and the ground-truth

positions of the quadcopter. We used the xy centroid of the quadcopter’s silhouette in

the tracked ROI images as its ground-truth position. The silhouette was obtained as a

binary image by thresholding the dark-brightness pixels since there was no obstacle and

background in all the tracked ROI images. The images were taken at intervals of 3 s for

t = 8∼17 s; t = 0 was the start time of observation. Fig. 5.20 shows (a) the centroid of

the vibration features, and (b) the pan and tilt angles of the active vision system for 20 s.

Fig. 5.21 shows the deviations of the extracted centroids from the centroids of the silhou-

ettes and the corrected position for the four propellers, where many pixels were extracted
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(a) Centroid of vibration features

(b) Pan and tilt angles of active vision

Figure 5.20: Centroid of vibration features and pan and tilt angles of active vision
system in flying quadcopter tracking experiment.

Figure 5.21: Deviation of image centroids of vibration features in flying quadcopter
tracking experiment.

as vibration region. The corrected position was computed by adding an offset value to

the centroid of the silhouette, because there was a certain displacement between the cen-

ter position of the four propellers and that of the quadcopter’s silhouette. Assuming the

displacement was constant in the images, the offset value was set as (3.4, 8.8); it was the
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Figure 5.22: Temporal changes in image intensities in flying quadcopter tracking
experiment.

averaged displacement between the extracted centroids and the centroids of the silhou-

ettes for t = 0 ∼ 20 s. Fig. 5.22 shows the temporal changes in the image intensities at

A(30, 30), B(58, 64) and C(70, 75) in the ROI images of 128×128 pixels for t = 5.0∼5.2 s.

In the experiment, the target quadcopter was moved at its full speed in horizontal and

vertical directionsat a distance of 6∼8 m from the camera head.

In Fig. 5.22, the periodic changes at approximately 180 Hz at point A around a

dual-blade propeller was within the frequency range of the pixel-level band-pass filters,

whereas the temporal changes at points B and C, which correspond to the body of the

quadcopter and the background sky, respectively, had few components in the filter fre-

quency range. As shown in Fig. 5.19(c), the regions around the four propellers were ex-

tracted as vibration features by the pixel-level band-pass filters under lower resolution or

partially occluded conditions such that the size of the propeller was 13 pixels or less in the

camera view. Because of the mechanical delay in the tracking control of the active vision

system, a slight deviation of the centroid of the vibration features from the image center

can be observed in Fig. 5.19(b) and Fig. 5.20(a). Centroid of the quadcopter’s vibration

region was consistantly tracked at the center of the ROI regions, as shown in Fig. 5.19(c),

without any significant latency effect on the digital filter, and the deviation from the center

position of the quadcopter’s silhouette was constantly observed for t = 0 ∼ 20 s, as shown

in Fig. 5.21. The means of the deviations from the centroids of the silhouettes and the

corrected position for the four propellers were 9.5 pixel and 1.5 pixel, respectively. At a

distance of 8 m from the camera head, they corresponded to 13.8 cm and 2.1 cm, respec-

tively. The former represents the offset displacement between the quadcopter’s silhouette
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and its four propellers, and the latter indicates the averaged localization error in tracking a

flying quadcopter. Thus, the flying quadcopter was tracked in images with directive errors

of 0.15 degrees in the experiment.

5.6 Concluding Remarks
vision-based vibration source localization algorithm based on vibration-based im-

age features, which are obtained by detecting periodic changes in image intensities at

pixels around objects vibrating at audio-level frequency by using pixel-level band-pass

digital filters. This approach can significantly reduce the latency effect on digital filters by

introducing the ROI tracking process into a digital filter. Our algorithm was implemented

on a high-speed vision platform with a 2-DOF active vision system, and its effective-

ness in pixel-level vibration source localization was demonstrated by conducting several

tracking experiments for vibrating objects with visual feedback control at 1000 fps; a fan

rotating at 33 rps was tracked in images with directive errors of 0.28 degrees, and a flying

quadcopter with rotating propellers was tracked with directive errors of 0.15 degrees. The

experimental results show that the proposed HFR-vision-based method with pixel-level

digital filters enables vibration source localization with sub-degree-level angular directiv-

ity in real time.
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Chapter 6

Conclusion

This study, firstly we concentrated on the primitive vibration source localization with

pixel-level band-pass filters for temporal brightness changes, and it did not directly con-

cern the geometric motion of a target object; the frequency range of temporal brightness

changes at pixels around the target object may not be matched with that of its geometric

motion when the target object has a periodic surface pattern. To realize a more univer-

sal vibration feature detector, which is invariant to any spatial appearance of the target

object, it becomes more effective to apply our pixel-level band-pass filters to geometric

motion fields estimated by optical flow [148, 149]. This is one of well-known image

processing algorithms, instead of using the image brightness. Besides, by combining our

proposed dynamics-based vibration feature with appearance-based recognition methods,

the accuracy and robustness in vibration source localization will be remarkably improved

when the target frequency range overlaps with that of background scenes. Thus, in future

work, we intend to improve these points toward more universal vibration source localiza-

tion under more extreme conditions and accelerate the computational speed for real-time

processing of HFR video.

Then, we proposed a real-time tracking of a non-large object vibrating at a known

frequency, whose apparent size on the image sensor is less than the ROI region, and

the time-variation in vibration frequency and apparent size was not considered. In the

future, we plan to improve the algorithm for more universal vibration source localization

with automated tuning of parameters for digital filters, ROI scale adjustment, and other

additional processes as well as the performance of the system by using GPUs for enlarging

79
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the spatial resolution of the ROI region and accelerating the visual sampling rate for

higher frequency vibration detection; and expand our system for practical applications,

such as simultaneous surveillance of flying drones with accurate localization.
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Stacked Sequential Learning for Pedestrian Detection,” Proc. of the Iberian Conf.

Patt. Recog. Image Analysis, pp. 3–12, 2015.

[63] N. Jiang, H. Su, W. Liu, and Y. Wu, “Discriminative Metric Preservation for Track-

ing Low-Resolution Targets,” IEEE Trans. Image Process., Vol. 21, No. 3 pp. 1284–

1297, 2012.

[64] S. Biswas, G. Aggarwal, P. Flynn, and K, Bowyer, “Pose-robust recognition of low-

resolution face images,” IEEE Trans. Pattern Anal. Mach. Intell., Vol. 35, No. 12

pp. 3037–3049, 2013.



88 BIBLIOGRAPHY

[65] S. Argentieri, P. Danes, and P. Soueres, “A survey on sound source localization in

robotics: Binaural to array processing methods,” Comput. Speech Lang., vol. 34,

no. 1, pp. 87–112, Nov. 2015.

[66] J. Lanslots, F. Deblauwe, and K. Janssens, “Selecting sound source localization tech-

niques for industrial applications,” Sound Vibrat., vol. 44, no. 6, pp. 6–9, 2010.

[67] A. Fuchs, C. Feldbauer, and M. Stark, “Monaural sound localization,” Proc. INTER-

SPEECH, Aug. 2011, pp. 2521–2524.

[68] G. Jang and T. Lee, “A maximum likelihood approach to single-channel source sep-

aration,” J. Mach. learn. Res., vol. 4, pp. 1365–1392, Dec. 2003.

[69] K. Kim and Y. Kim, “Monaural sound localization based on structure-induced

acoustic resonance,” Sensors, vol. 15, no. 2, pp. 3872–3895, Feb. 2015.

[70] T. Van den Bogaert, T. Klasen, M. Moonen, L. Van Deun, and J. Wouters, “Horizon-

tal localization with bilateral hearing aids: Without is better than with,” J. Acoust.

Soc. Amer., vol. 119, no. 1, pp. 515–526, Jan. 2006.

[71] M. Raspaud, H. Viste, and G. Evangelista, “Binaural source localization by joint

estimation of ILD and ITD,” IEEE Trans. Audio, Speech, Lang. Process., vol. 18,

no. 1, pp. 68–77, Jan. 2010.

[72] T. May, S. Van De Par, and A. Kohlrausch, “A probabilistic model for robust local-

ization based on a binaural auditory front-end,” IEEE Trans. Audio, Speech, Lang.

Process., vol. 19, no. 1, pp. 1–13, Jan. 2011.

[73] U. H. Kim, K. Nakadai, and H. G. Okuno, “Improved sound source localization in

horizontal plane for binaural robot audition,” Appl. Intell., vol. 42, no. 1, pp. 63–74,

Jan. 2015.

[74] M. Aytekin, E. Grassi, M. Sahota, and C. F. Moss, “The bat head-related transfer

function reveals binaural cues for sound localization in azimuth and elevation,” J.

Acoust. Soc. Amer., vol. 116, no. 6, pp. 3594–3605, Dec. 2004.



BIBLIOGRAPHY 89

[75] H. Nakashima and T. Mukai, “3D sound source localization system based on learn-

ing of binaural hearing,” Proc. IEEE Int. Conf. Syst., Man, Cybern., Oct. 2005,

pp. 3534–3539.

[76] X. Zhong, W. Yost, and L. Sun, “Dynamic binaural sound source localization with

ITD cues: Human listeners,” J. Acoust. Soc. Amer., vol. 137, no. 4, pp. 2376–2376,

Jan. 2015.

[77] S. Vesa, “Binaural sound source distance learning in rooms,” IEEE Trans. Audio,

Speech, Lang. Process., vol. 17, no. 8, pp. 1498–1507, Nov. 2009.

[78] Y. C. Lu and M. Cooke, “Binaural estimation of sound source distance via the

direct-to-reverberant energy ratio for static and moving sources,” IEEE Trans. Au-

dio, Speech, Lang. Process., vol. 18, no. 7, pp. 1793–1805, Sept. 2010.

[79] E. Georganti, T. May, S. Van De Par, and J. Mourjopoulos, “Sound source distance

estimation in rooms based on statistical properties of binaural signals,” IEEE Trans.

Audio, Speech, Lang. Process., vol. 21, no. 8, pp. 1727–1741, Aug. 2013.

[80] B. Mungamuru and P. Aarabi, “Enhanced sound localization,” IEEE Trans. Syst.,

Man, Cybern. B, Cybern., vol. 34, no.3, pp. 1526–1540, Jun. 2004.

[81] C. H. Knapp and G. C. Carter, “The generalized correlation method for estimation

of time delay,” IEEE Trans. Acoust., Speech, Signal Process, vol. 24, no. 4, pp. 320–

327, Aug. 1976.

[82] J. Benesty, “Adaptive eigenvalue decomposition algorithm for passive acoustic

source localization,” J. Acoust. Soc. Amer., vol. 107, no. 1, pp. 384–391, Mar. 2000.

[83] J. Chen, J. Benesty, and Y. Huang, “Time delay estimation in room acoustic envi-

ronments: An overview,” EURASIP J. Appl. Signal Process., vol. 2006, pp. 1–19,

2006.



90 BIBLIOGRAPHY

[84] A. Brutti, M. Omologo, and P. Svaizer, “Comparison between different sound source

localization techniques based on a real data collection,” Proc. Hands-Free Speech

Commun. and Microphone Arrays, May 2008, pp. 69–72.

[85] R. O. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE

Trans. Antennas Propag., vol. 34, no. 3, pp. 276–280, Mar 1986.

[86] K. Nakamura, K. Nakadai, F. Asano, Y. Hasegawa, and H. Tsujino, “Intelligent

sound source localization for dynamic environments,” Proc. IEEE/RSJ Int. Conf.

Intell. Robots Syst., Oct. 2009, pp. 664–669.

[87] K. Okutani, T. Yoshida, K. Nakamura, and K. Nakadai, “Outdoor auditory scene

analysis using a moving microphone array embedded in a quadrocopter,” Proc.

IEEE/RSJ Int. Conf. Intell. Robots Syst., Oct. 2012, pp. 3288–3293.

[88] L. J. Griffiths and C. W. Jim, “An alternative approach to linearly constrained adap-

tive beamforming,” IEEE Trans. Antennas Propag., vol. 30, no. 1, pp. 27–34, Jan.

1982.

[89] B. D. Van Veen and K. M. Buckley, “Beamforming: A versatile approach to spatial

filtering,” IEEE ASSP Mag., vol. 5, no. 2, pp. 4–24, Apr. 1988.

[90] J. M. Valin, F. Michaud, and J. Rouat, “Robust localization and tracking of simul-

taneous moving sound sources using beamforming and particle filtering,” Robot.

Auton. Syst., vol. 55, no. 3, pp. 216–228, Mar. 2007.

[91] T. J. Tsai, A. Stolcke, and M. Slaney, “A study of multimodal addressee detection

in human-human-computer interaction,” IEEE Trans. Multimedia, vol. 17, no. 9,

pp. 1550–1561, Sept. 2015.

[92] V. P. Minotto, C. R. Jung, and B. Lee, “Simultaneous-speaker voice activity detec-

tion and localization using mid-fusion of SVM and HMMs,” IEEE Trans. Multime-

dia, vol. 16, no. 4, pp. 1032–1044, Jun. 2014.



BIBLIOGRAPHY 91

[93] M. F. Fallon and S. J. Godsill, “Acoustic source localization and tracking of a time-

varying number of speakers,” IEEE Trans. Audio, Speech, Lang. Process., vol. 20,

no. 4, pp. 1409–1415, May 2012.
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[123] R. G. Dorsch, G. Häusler, and J. M. Herrmann, “Laser triangulation: Fundamental

uncertainty in distance measurement,” Appl. Opt., vol. 33, no. 7, pp. 1306–1314,

Mar. 1994.

[124] S. Hertega and J. Liljencrantz, “Measurement of human vocal fold vibrations with

laser triangulation,” Opt. Eng., vol. 40, no. 9, pp. 2041–2044, Nov. 2001.

[125] J. H. Wu, R. S. Chang, and J. A. Jiang, “A novel pulse measurement system by us-

ing laser triangulation and a CMOS image sensor,” Sensors, vol. 7, no. 12, pp. 3366–

3385, Dec. 2007.

[126] J. H. Wu and R. S. Chang, “No-touch pulse measurement by laser triangulation,”

Proc. Biomedical Optics, 2005, pp. 383–390.

[127] P. Castellini, M. Martarelli, and E. P. Tomasini, “Laser doppler vibrometry: De-

velopment of advanced solutions answering to technology’s needs,”Mech Syst. and

Signal Process., vol. 20, no. 6, pp. 1265–1285, Aug. 2006.
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