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Several missense mutations in the protein kinase Cc (cPKC) gene have been found to cause spinocerebel-
lar ataxia type 14 (SCA14), an autosomal dominant neurodegenerative disease. We previously demon-
strated that the mutant cPKC found in SCA14 is misfolded, susceptible to aggregation and cytotoxic.
Molecular chaperones assist the refolding and degradation of misfolded proteins and prevention of the
proteins’ aggregation. In the present study, we found that the expression of mutant cPKC-GFP increased
the levels of heat-shock protein 70 (Hsp70) in SH-SY5Y cells. To elucidate the role of this elevation, we
investigated the effect of siRNA-mediated knockdown of Hsp70 on the aggregation and cytotoxicity of
mutant cPKC. Knockdown of Hsp70 exacerbated the aggregation and cytotoxicity of mutant cPKC-GFP
by inhibiting this mutant’s degradation. These findings suggest that mutant cPKC increases the level of
Hsp70, which protects cells from the mutant’s cytotoxicity by enhancing its degradation.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Spinocerebellar ataxia type 14 (SCA14) is an autosomal domi-
nant spinocerebellar ataxia that is clinically characterized by
slowly progressive cerebellar ataxia and caused by missense or
deletion mutations in the PRKCG gene, which encodes protein ki-
nase Cc (cPKC) [1,2]. cPKC is a neuron-specific isoform of PKC that
is especially abundant in cerebellar Purkinje cells (PCs) [3]. We
have previously demonstrated that missense mutations of cPKC
make this protein prone to aggregation in cultured cell lines and
primary cultured PCs [4–7]. The accumulation of misfolded pro-
teins is a common feature of various neurodegenerative diseases,
including Alzheimer’s, Parkinson’s and polyglutamine diseases
[8,9]. Therefore, SCA14 is caused by a mechanism common to other
neurodegenerative disorders.
Molecular chaperones are proteins that assist protein folding
during synthesis and that stabilize misfolded proteins generated
by various stresses, such as heat shock [10]. There are several re-
ports demonstrating that molecular chaperones accumulate in
inclusions of misfolded proteins in patient tissues and cellular
models of neurodegenerative diseases [11,12]. In addition, the
overexpression of molecular chaperones alleviates aggregate for-
mation, neurodegeneration and neuropathological functions in
model animals of neurodegenerative diseases [13,14]. In the pres-
ent study, we focused on the effects of SCA14 mutant cPKC on the
levels and distributions of molecular chaperones. Mutant cPKC sig-
nificantly elevated the level of heat-shock protein 70 (Hsp70) in
the presence or absence of aggregation. siRNA-mediated knock-
down revealed that the induction of Hsp70 protected cells from
the toxicity of mutant cPKC by enhancing the mutant’s degrada-
tion. These findings suggest that Hsp70 could be a novel therapeu-
tic target in SCA14.

2. Materials and methods

2.1. Materials

Dulbecco’s modified Eagle’s medium (DMEM), Alexa Fluor
546-conjugated anti-mouse IgG antibody and Alexa Fluor 350-
conjugated anti-rabbit IgG antibody were obtained from Life
Technologies (Carlsbad, CA, USA). The MISSION siRNA universal
ls from
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negative control and anti-b-tubulin 1 antibody were from Sigma
Aldrich (St. Louis, MO, USA). Anti-Hsp40, anti-Hsp70 and
anti-Hsp90 antibodies were from Enzo Life Sciences (Farmingdale,
NY, USA). Anti-GFP antibody, Ham’s F-12 medium and penicillin/
streptomycin solution were from Nacalai Tesque (Kyoto, Japan).
Anti-calbindin antibody was from Millipore (Billerica, MA).
Hsp70 siRNA (sense: 50-GAACCAGGUGGCGCUGAACdTdT-30,
antisense: 50-GUUCAGCGCCACCUGGUUCdTdT-30 [15]) was synthe-
sized by Hayashi Kasei (Osaka, Japan). Horseradish peroxidase
(HRP)-conjugated goat anti-mouse IgG and anti-rabbit IgG anti-
bodies were from Jackson ImmunoResearch Laboratories (West
Grove, PA, USA). Glass-bottomed culture dishes (35-mm diameter)
were from MatTek (Ashland, MA, USA). The Nerve-Cell Culture
System (neuron culture medium and dissociation solutions) was
from Sumitomo Bakelite (Tokyo, Japan).

2.2. Cell culture

SH-SY5Y cells were cultured in a DMEM/F-12 mixture (1:1)
supplemented with 10% fetal bovine serum (FBS), 100 units/ml
penicillin and 100 g/ml streptomycin in a humidified atmosphere
containing 5% CO2 at 37 �C. A mouse cerebellar primary culture
was prepared as described previously [5]. Briefly, E14 embryos
from pregnant ICR mice were dissociated using the dissociation
solutions of the Sumitomo Nerve-Cell Culture System according
to the manufacturer’s protocol. Dissociated cerebellar cells were
suspended in the neuron culture medium of the same system on
a 35-mm diameter glass-bottomed culture dish. Cells were cul-
tured for 28 days in vitro (DIV) in a humidified atmosphere con-
taining 5% CO2 at 37 �C.

2.3. Transfection of cPKC-GFP and siRNA

cPKC-GFP (wild-type (WT) and S119P and G128D mutants) was
expressed via adenoviral vectors using a tetracycline-regulated
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Fig. 1. SCA14 mutant cPKC-GFP upregulated Hsp70, but not Hsp40 and Hsp90. (A) Amou
(S119P or G128D) cPKC-GFP, as detected by immunoblotting. (B–D) Quantitative analyse
The amount of each protein was normalized to the amount of b-tubulin in the same blot.
⁄⁄p < 0.001 vs cells expressing WT cPKC-GFP (unpaired t-test).
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system, as described previously [16]. SH-SY5Y cells were
transfected with siRNA using Lipofectamine RNAiMAX (Invitrogen)
during cell spreading. Two adenoviral vectors (Ad-CMV-tTA and
Ad-TetOp-cPKC-GFP) were used for infection 1 day after cell
spreading. For dissociated cerebellar culture, two adenoviral vec-
tors (Ad-L7-tTA and Ad-TetOp-cPKC-GFP) were used for infection
at DIV14 to selectively express cPKC-GFP in PCs.

2.4. Immunoblotting and immunostaining

The amounts of cPKC-GFP, Hsp40, Hsp70 and Hsp90 were as-
sessed by immunoblotting cell lysates from SH-SY5Y cells express-
ing WT or mutant cPKC-GFP, as described previously [16]. Cells
were harvested 2 days after adenoviral transfection. The degrada-
tion of cPKC-GFP was analyzed by a chase assay after the arrest
of gene expression by tetracycline treatment [17] beginning
1 day after transfection. The cells were harvested before (0 h) or
after 24 h treatment with tetracycline (1 lg/ml), followed by
immunoblotting with anti-GFP antibody. All blots were probed
with anti-b-tubulin antibody as an internal control.

SH-SY5Y cells on glass-bottomed dishes were fixed with 4%
paraformaldehyde, followed by immunostaining with anti-Hsp70
mouse monoclonal antibody and Alexa Fluor 546-conjugated
anti-mouse IgG antibody [18]. Primary cultured cerebellar cells
were immunostained with anti-calbindin antibody and Alexa Fluor
350-conjugated anti-rabbit antibody to identify PCs, in addition to
Hsp70 immunostaining. Images of GFP and Alexa Fluor 546 fluo-
rescence were captured using a confocal microscope (LSM510ME-
TA, Carl Zeiss, Oberkochen, Germany).

2.5. Cytotoxicity assay

One day after siRNA transfection, SH-SY5Y cells were infected
with adenoviral vectors to induce cPKC-GFP expression. After fur-
ther 2-day cultivation, the cytotoxicity of the cPKC-GFP-expressing
WT S119PG128D
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cells was assessed by a lactate dehydrogenase (LDH) assay using
the CytoTox 96 NonRadioactive Cytotoxicity Assay (Promega,
Fitchburg, WI, USA) according to the manufacturer’s protocol.
3. Results

3.1. SCA14 mutant cPKC upregulates Hsp70

To examine whether SCA14 mutant cPKC affects the levels of
molecular chaperones, the amounts of Hsp40, Hsp70 and Hsp90 were
assessed by immunoblotting in SH-SY5Y cells expressing wild-type
(WT) or missense mutant cPKC-GFP (Fig. 1A). There was no signifi-
cant difference between the amounts of expressed WT and mutant
cPKC-GFP (Fig. 1B). The amount of Hsp70 was significantly elevated
in cells expressing mutant cPKC-GFP (Fig. 1D), whereas Hsp40 and
Hsp90 levels were slightly increased, but these increases were not
significant (Fig. 1C and E). We have previously demonstrated that
mutant cPKC-GFP tends to form aggregates [4]. In various neurode-
generative diseases, molecular chaperones are reported to accumu-
late in neural inclusions [11,12]. Therefore, the distribution of
Hsp70 was examined by immunostaining in cells expressing WT or
γPKC-GFP H

WT

S119P

γPKC-
GFP

Hsp70

WT SA

B

Fig. 2. Mutant cPKC-GFP upregulated Hsp70 in the presence or absence of the mutant’s
(S119P or G128D) cPKC-GFP. Hsp70 strongly colocalized to aggregates of mutant cPKC
cPKC-GFP. Scale bar, 20 lm. (B) Hsp70 and calbindin immunostaining of primary cultured
expressing WT cPKC-GFP (arrows) were similar to levels in non-expressing PCs (arrowhe
mutant cPKC-GFP (arrows). Scale bar, 20 lm.
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mutant cPKC-GFP. As we reported previously, mutant cPKC-GFP
tended to form aggregates, whereas WT cPKC-GFP was diffusely ex-
pressed in the cytoplasm (Fig. 2A). Consistent with immunoblotting
results, the immunoreactivity of Hsp70 was elevated in cells express-
ing mutant cPKC-GFP (Fig. 2A). Unexpectedly, this elevation was ob-
served in many cells without aggregates of mutant cPKC-GFP, in
addition to strong colocalization of Hsp70 immunoreactivity to the
mutant’s aggregates (Fig. 2A). This elevation of Hsp70 expression
was also observed in primary cultured PCs expressing mutant
cPKC-GFP (Fig. 2B). These results indicate that Hsp70 is upregulated
in cells expressing mutant cPKC independently of the mutant’s
aggregation.

3.2. Hsp70 is elevated to degrade mutant cPKC, protecting cells from
the mutant’s toxicity

To explore the role of Hsp70 upregulation, we attempted to
knock down Hsp70 using siRNA in cells expressing mutant cPKC-
GFP. siRNA against Hsp70 successfully decreased the level of
Hsp70 compared with control siRNA-transfected cells (Fig. 3A
and B). siRNA-mediated knockdown of Hsp70 significantly in-
creased mutant cPKC-GFP levels (Fig. 3A and C). To elucidate the
sp70 Calbindin

119P G128D

aggregation. (A) Hsp70 immunostaining of SH-SY5Y cells expressing WT or mutant
-GFP, although Hsp70 levels also increased in cells without aggregation of mutant
cerebellar PCs expressing WT or mutant (S119P) cPKC-GFP. The Hsp70 levels of PCs

ad). In contrast, Hsp70 immunoreactivity was obviously increased in PCs expressing

inocerebellar ataxia type 14 upregulates Hsp70, which protects cells from
oi.org/10.1016/j.bbrc.2013.09.013
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Fig. 3. Knockdown of Hsp70 increased mutant cPKC-GFP levels by inhibiting the mutant’s degradation. (A) Amount of cPKC-GFP and Hsp70 in cPKC-GFP-expressing SH-SY5Y
cells transfected with negative control (Cont or C) or Hsp70 (H) siRNA, as detected by immunoblotting. (B and C) Quantitative analyses of immunoblotting results for cPKC-
GFP (B) and Hsp70 (C). The amount of each protein was normalized to the amount of b-tubulin in the same blot. Mean values from three independent experiments are shown.
Error bars, SE. ⁄p < 0.05 (unpaired t-test). (D) The degradation of WT and mutant (S119P) cPKC-GFP was determined by a chase assay in cells transfected with control or Hsp70
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mechanism of how Hsp70 knockdown elevates the cPKC-GFP level,
we examined the degradation rate of cPKC-GFP by gene arrest by
tetracycline treatment [17]. Hsp70 knockdown slightly but signif-
icantly inhibited the degradation of mutant cPKC-GFP (Fig. 3D
and E). Next, we examined whether the aggregation and cytotoxic-
ity of mutant cPKC is affected by Hsp70 knockdown. siRNA against
Hsp70 significantly exacerbated the aggregation of mutant cPKC-
GFP (Fig. 4A and B). An LDH assay revealed that this siRNA did
not affect cytotoxicity to cells expressing WT cPKC-GFP (Fig. 4C).
As we previously reported, mutant cPKC-GFP significantly in-
creased the cytotoxicity, and this toxicity was significantly exacer-
bated by siRNA-mediated knockdown of Hsp70 (Fig. 4C). These
findings suggest that Hsp70 is upregulated to enhance the degra-
dation of mutant cPKC, protecting cells from the mutant’s toxicity.
4. Discussion

In the present study, we found that the SCA14 missense mutant
cPKC induced the upregulation of Hsp70 in cultured cell lines and
primary cultured PCs (Figs. 1 and 2). Consistent with its behavior in
other neurodegenerative diseases [11,12], Hsp70 strongly colocal-
ized to aggregates of mutant cPKC. Because the overexpression of
molecular chaperones reduces the aggregation of mutant proteins
[13,14], chaperones would stabilize the misfolded proteins to pre-
vent their aggregation. In the case of mutant cPKC, the Hsp70 level
was also increased in cells without any aggregates (Fig. 2). We have
previously demonstrated that mutant cPKC forms oligomers in
cells [5]. Accumulating evidence suggests that oligomers of mutant
protein have higher toxicity than do aggregates [19,20]. Hsp70
Please cite this article in press as: K. Ogawa et al., Mutant cPKC that causes sp
the mutant’s cytotoxicity, Biochem. Biophys. Res. Commun. (2013), http://dx.d
might prevent the oligomerization of mutant cPKC in cells without
aggregation.

siRNA-mediated knockdown of Hsp70 strengthened the notion
that the Hsp70 level increased to protect cells from the toxicity
of mutant cPKC. Because Hsp70 knockdown significantly reduced
the rate of mutant cPKC degradation, Hsp70 may have a role in
degrading mutant cPKC (Fig. 3). We have previously demonstrated
that mutant cPKC is degraded more rapidly than the wild-type
protein via both proteasomal and lysosomal pathways [17].
Although we did not determine which pathways are involved in
the Hsp70-mediated degradation of mutant cPKC, Hsp70 is known
to participate in both of these protein degradation pathways.
Regarding the proteasomal pathway, it is known that carboxyl ter-
minus of Hsp70-interacting protein (CHIP), an E3 ubiquitin ligase,
interacts with Hsp70 and ubiquitinates Hsp70 client proteins, lead-
ing to their degradation via the proteasome [21]. CHIP is reported
to be involved in the degradation of many causal proteins of neu-
rodegenerative diseases [22]. Therefore, it is possible that mutant
cPKC is also regulated by CHIP and that knockdown of Hsp70 pre-
vents CHIP from detecting and ubiquitinating mutant cPKC.
Regarding the lysosomal proteolytic pathways, Hsp70 enhances
macroautophagy, one type of lysosomal protein degradation, via
c-Jun N-terminal kinase (JNK) pathways [23]. In addition, Hsp70
is known to interact with heat shock cognate protein 70 (Hsc70)
[24], which is mainly involved in chaperone-mediated autophagy,
another type of lysosomal protein degradation [25]. Therefore,
Hsp70 might also affect chaperone-mediated autophagy. Further-
more, a small-molecule inhibitor of Hsp70 inhibits both protea-
some-mediated and lysosome-mediated protein degradation [26].
Thus, Hsp70 may render the rapid degradation of mutant cPKC
inocerebellar ataxia type 14 upregulates Hsp70, which protects cells from
oi.org/10.1016/j.bbrc.2013.09.013
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via these two degradation pathways. Moreover, Hsp70 can stabi-
lize lysosomal membranes, resulting in the protection of cells from
apoptosis by lysosomal rupture [27]. This property of Hsp70 might
contribute to its protective effect against the cytotoxicity of mu-
tant cPKC.

Our present findings indicate novel roles for Hsp70, which is
upregulated by SCA14 mutant cPKC, in therapeutic strategies for
treating neurodegenerative disease. Inhibitors of Hsp90 (17-allyla-
mino-17-demethoxygeldanamycin (17-AAG) and celastrol) are
reported to increase the levels of molecular chaperones, including
Hsp70 [28,29]. These chemicals have been demonstrated to have
the potential to inhibit aggregation and prevent neurodegenera-
tion in several neurodegenerative disease models [30–33]. Our
present findings strongly suggest that these chemicals have poten-
tial as novel therapeutics for SCA14.
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