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Ascidians, also known as sea squirts or tunicates, can accumulate a high level of 

vanadium ions in blood cells (Ueki and Michibata 2011; Michibata 2012; Ueki et al. 2014). 

As an example, Ascidia gemmata has been reported to accumulate 350 mM vanadium, which 

is 107-fold higher than the vanadium concentration in seawater (Michibata et al. 1991). 

Vanadium ions are absorbed from natural seawater in a +5 state; are reduced to a +4 state 

through the branchial sac, intestine, and blood plasma; and are stored in a +3 state in 

vanadocytes. Several genes and proteins involved in this accumulation and reduction have 

been identified (Kanda et al. 1997; Ueki et al. 2003a, 2007; Yamaguchi et al. 2004; Kawakami 

et al. 2006; Yoshinaga et al. 2007) and the application of genetically modified bacteria that 

express ascidians’ vanadium-binding proteins for bioaccumulation of heavy metals has been 

examined (Ueki et al. 2003b; Samino et al. 2012). 

Vanadium is one of most abundant transition metals with an average concentration of 

approximately 100 mg/kg (Taylor and van Staden 1994), widely exists in the Earth’s crust and 

is extensively employed in modern industry including metallurgy and petroleum refining 

(Myers et al. 2004; Zhang et al. 2014). Vanadium was also regarded as one of the essential 

elements, and has been used in dietary supplements and therapy for diabetic illness (French 

and Jones 1992; Thompson and Orvig 2001; Aureliano 2009). However, the presence of 

vanadium at intracellular concentration above several micromolar will becomes toxic to most 

organisms, which causes mutations and induces alterations of many important metabolic 

functions (Domingo 1996; Ghosh et al. 2014). 

Now days, the discharge of vanadium and vanadium compounds into water body 

have caused seriously environmental problem. Several approaches was developed for the 

treatment of vanadium-containing waste water like electrochemical treatment, precipitation, 
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ion exchange, evaporation, reverse osmosis, adsorption on activated coal and later biological 

treatment (Mack et al. 2007; Gadd 2009; Chojnacka 2010). Among these techniques, 

biological treatment (biosorption or bioaccumulation) is one of the common and cost-effective 

method to recover or eliminate vanadium and heavy metal ions from waste water treatment 

(Ghazvini and Mashkani 2009; Zhang et al. 2014; Huang et al. 2014; Ueki 2016). Due to 

highest ability of ascidian to accumulate vanadium, several researchers also used solitary 

ascidian animal to remediate vanadium and other heavy metal toxicities from water 

environment (Jaffar et al. 2015). However, the use of animal to remediate heavy metals is less 

effective since the animal spends much space and difficult to maintain. 

One of the possibilities for effective bioremediation or bioaccumulation technology 

is by using microorganism. Microorganisms have been viewed as one of the best way to deal 

with environmental pollution because they have ability to survive, grow and reproduce even 

in the harsh or extreme environment (Ghazvini and Mashkani 2009; Kamika and Momba 

2014; Zhang et al. 2014). In vanadium recovery, microorganisms are reported to cope with 

vanadate V(V) either by accumulating it or reducing it to a less toxic tetravalent vanadyl form 

(Lyalikova and Yurkova 1992; Antipov et al. 1998; Antipov et al. 2000; Carpentier et al. 2003; 

Ortiz-Bernad et al. 2004; Carpentier et al. 2005; van Marwijk et al. 2009). 

The intestinal organ of an ascidian is tough to be first location to contact with outer 

environment and absorbs vanadium ions. Intestinal organ of vanadium-rich ascidian, Ascidia 

gemmata, accumulated 11.9 mM of vanadium ions before stored in highest concentration in 

blood cell (Samino et al. 2012). Intestinal organ also harbors several types of bacteria as 

reported by Dishaw et al. (2014) that bacterial communities isolated from the gut of an 

ascidian, Ciona intestinalis, obtained from three disparate geographic locations exhibited 
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striking similarity in the abundance of operational taxonomic units (OTUs), consistent with 

the selection of a core community by the gut ecosystem, in which Proteobacteria (80%) were 

the predominant gut bacteria. In soil worm Eisenia foetida, host-bacterial interaction in 

intestinal organ could increase the ability of intestinal bacteria to accumulate heavy metals 

such as mercury (Kaschak et al. 2014), and for longtime interaction in such microenvironment 

it might lead the resistance of intestinal bacteria to heavy metal (Silver 1996).  

The host-bacterial interaction in ascidian by which intestinal bacteria resist to 

vanadium was firstly reported by Russian researchers that successfully isolated several 

bacterial strains of genus Pseudomonas from the intestine of ascidian that could resist the 

toxicity of vanadate up to 6 g/L (Lyalikova and Yurkova 1992; Antipov et al. 2000). The later 

researchers reported Shewanella oneidensis that is also capable of growth in the presence of 

vanadate as the sole electron acceptor and reduced vanadate V(V) to vanadyl V(IV) ions 

(Carpentier et al. 2003; Carpentier et al. 2005).  

From those findings discussed above, I expected that isolating bacteria from 

intestinal microenvironment of vanadium-rich ascidian Ascidia sydneiensis samea will result 

in the candidate of intestinal bacterial strains which are highly resistant to vanadium and 

could be used for decontaminating vanadium and other heavy metals toxicity. On other hand, 

I hypothesize that intestinal bacteria might contribute to vanadium distribution in ascidian by 

indirect mechanism. The possible contribution is that intestinal bacteria accumulate V(V), 

reduce it to V(IV) ions and transport it by phosphate and other metal transporters to intestinal 

lumen before finally is reduced it to more simple form and store in vanadocyte.  

My goal in the present study was to isolate vanadium-resistant bacteria from the 

intestine of the vanadium-rich ascidian A. sydneiensis samea, which is commonly found in 
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Japan and can accumulate vanadium at 12.9 mM at its blood cells (Michibata 1991), and 

determine whether these bacterial strains could accumulate vanadium ions. Sub-cellular 

localization analysis was also performed to determine whether vanadium accumulation could 

take place in or outside bacterial cells. I also determined the effects of pH on vanadium 

accumulation by vanadium-accumulating bacteria exposed to 500 μM vanadium-containing 

NaCl medium to increase the understanding of the applications of vanadium-resistant 

bacterial strains for decontaminating vanadium-containing wastewater at any pH. I also 

examined the ability of vanadium-resistant bacterial strains in accumulating several heavy 

metals ions, because in the previous studies the vanadium-binding protein was able to absorb 

heavy metal ions other than vanadium (Ueki et al. 2003b; Samino et al. 2012), and it should 

lead to development of a superior metal accumulator that could be widely used to remediate 

effluents contaminated with metals. 

In this study, I successfully isolated nine strain of vanadium-resistant bacteria from 

the intestine of A. sydneiensis samea. Phylogenetic analysis based on the 16S rRNA gene 

sequence indicated that five strains of bacterial strains belong to the genus Vibrio and four to 

genus Shewanella. Preliminary screening for each bacterial strain in accumulating V (IV) and 

V(V) revealed that strains V-RA-4 and S-RA-6 were capable to accumulate vanadium higher 

than that of the other strain when they were cultured with initial concentration of 200- and 

500-μM vanadium. In assay using 500-μM vanadium-containing media with different pHs 

was also found that vanadium accumulation by strains V-RA-4 and S-RA-6 decreased with 

the increasing of pH where the maximum absorption was achieved in pH 3, and these two 

bacterial strains exhibited mostly intracellular accumulation of vanadium. In addition, nine 

vanadium resistant bacterial strains are capable to accumulate either copper or cobalt ions but 
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neither molybdate nor nickel ions. These bacterial strains can be applied to protocols for 

bioremediation of vanadium and heavy metal toxicity and they could be also used to support 

my hypothesis on the contribution of intestinal bacteria in the extraordinary system of 

vanadium accumulation and reduction by ascidian animal. 
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Summary 

 

Isolation of naturally occurring bacterial strains from metal-rich environments has 

gained popularity due to the growing need for bioremediation technologies. In this study, we 

found that the vanadium concentration in the intestine of the vanadium-rich ascidian Ascidia 

sydneiensis samea could reach 0.67 mM, and thus we isolated vanadium-resistant bacteria 

from the intestinal contents and determined the ability of each bacterial strain to accumulate 

vanadium and other heavy metals. Nine strains of vanadium-resistant bacteria were 

successfully isolated, of which two strains, V-RA-4 and S-RA-6, accumulated vanadium at a 

higher rate than did the other strains. The maximum vanadium absorption by these bacteria 

was achieved at pH 3, and intracellular accumulation was the predominant mechanism. Each 

strain strongly accumulated copper and cobalt ions, but accumulation of nickel and molybdate 

ions was relatively low. These bacterial strains can be applied to protocols for bioremediation 

of vanadium and heavy metal toxicity. 
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Introduction 

 

Ascidians, also known as sea squirts or tunicates, can accumulate a high level of 

vanadium ions in blood cells (Ueki and Michibata 2011; Michibata 2012; Ueki et al. 2014). 

As an example, Ascidia gemmata has been reported to accumulate 350 mM vanadium, which 

is 107-fold higher than the vanadium concentration in seawater (Michibata et al. 1991). 

Vanadium ions are absorbed from natural seawater in a +5 state; are reduced to a +4 state 

through the branchial sac, intestine, and blood plasma; and are stored in a +3 state in 

vanadocytes. Several genes and proteins involved in this accumulation and reduction have 

been identified by our group in all organs (Kanda et al. 1997; Ueki et al. 2003a, 2007; 

Yamaguchi et al. 2004; Kawakami et al. 2006; Yoshinaga et al. 2007) and the application of 

genetically modified bacteria that express ascidians’ vanadium-binding proteins for 

bioaccumulation of heavy metals has been examined (Ueki et al. 2003b; Samino et al. 2012). 

The intestinal organ is internally exposed to natural seawater and harbors several 

types of bacteria. The presence of gut microbes in aquatic invertebrates has been investigated 

in Crustacea (Li et al. 2007; Rungrassamee et al. 2014), Mollusca (Simon and McQuaid 1999; 

Tanaka et al. 2004), and Echinodermata (Thorsen 1999; da Silva et al. 2006). Vibrio, 

Pseudomonas, Flavobacterium, Aeromonas, and Shewanella are the most commonly reported 

bacteria in the intestine of these marine invertebrates. In ascidians, Dishaw et al. (2014) 

reported that bacterial communities isolated from the gut of Ciona intestinalis found in three 

disparate geographic locations exhibited striking similarity in the abundance of operational 

taxonomic units (OTUs), consistent with the selection of a core community by the gut 

ecosystem, in which Proteobacteria (80%) were the predominant gut bacteria. 
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The ingestion of food is the dominant function of the gut micro-ecosystem, and 

several types of close interactions between aquatic invertebrates and their gut bacterial 

community have been described by Harris (1993). Other types of interactions include nutrient 

absorption, immune response, epithelial development (Brune and Friedrich 2000; Hooper et al. 

2001; Rungrassamee et al. 2014) and pathogenic interactions (Jayasree et al. 2006; Li et al. 

2007). Another important type of host-bacterial interaction is the ability of intestinal bacteria 

to accumulate heavy metals such as mercury (Kaschak et al. 2014), and intestinal bacteria are 

thought to be the first organisms affected by heavy metal discharge into the environment, 

which results in an increase in metal-resistant bacteria in the microenvironment (Silver 1996). 

This interaction could also lead to the development of heavy metal resistance and 

accumulation in gut bacteria. 

Several studies have investigated the importance of vanadium accumulation and 

reduction by bacteria (Antipov et al. 1998, 2000; Carpentier et al. 2003, 2005; Ortiz-Bernad et 

al. 2004; van Marwijk et al. 2009; Zhang et al. 2014). Antipov et al. (2000) reported that 

Pseudomonas isachenkovii isolated from the intestine of an ascidian exposed to 6 g/L 

vanadate could resist vanadium toxicity and use vanadate as an electron acceptor during 

anaerobic respiration. This study also identified vanadium-binding proteins related to the +4 

oxidation state, and distribution of vanadium ions in special swells on the surface of cell 

membranes. Carpentier et al. (2003, 2005) reported that Shewanella oneidensis was also 

capable of growth in the presence of vanadate as the sole electron acceptor and reduced 

vanadate V(V) to vanadyl V(IV) ions. 

The goal of this study was to isolate vanadium-resistant bacteria from the intestine of 

the vanadium-rich ascidian A. sydneiensis samea and determine whether these bacterial 
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strains could accumulate vanadium ions. Sub-cellular localization analysis was also 

performed to determine whether vanadium accumulation could take place in or outside 

bacterial cells. We also determined the effects of pH on vanadium accumulation by 

vanadium-accumulating bacteria exposed to 500 μM vanadium-containing NaCl medium to 

increase our understanding of the applications of vanadium-resistant bacterial strains for 

decontaminating vanadium-containing wastewater at any pH. We also examined the ability of 

vanadium-resistant bacterial strains in accumulating several heavy metals ions, because in our 

previous studies the vanadium-binding protein was able to absorb heavy metal ions other than 

vanadium (Ueki et al. 2003b; Samino et al. 2012), and it should lead to development of a 

superior metal accumulator that could be widely used to remediate effluents contaminated 

with metals. 

 

Materials and Methods 

 

Isolation and cultivation of vanadium-resistant bacteria from the intestine of A. sydneiensis 

samea 

Five adult A. sydneiensis samea collected from Kojima Port, Okayama Prefecture, 

Japan, were aseptically dissected and the intestinal contents were removed and diluted with 

sterile artificial sea water (ASW). Aliquots (10 μL) of 10-2 to 10-4 dilutions were 

inoculated/spread on the surfaces of agar culture medium in 20 mL sterile dishes. Four culture 

media were prepared in artificial seawater: (1) standard medium: yeast extract, 2.5 g/L; 

peptone, 5 g/L; glucose, 1.0 g/L; agar, 15 g/L (Atlas 2005); (2) 1/2 TZ agar medium: yeast 

extract, 0.5 g/L; peptone, 2.5 g/L; HEPES, 4.77 g/L; MnCl2-4H2O, 0.2 g/L; agar, 15 g/L 
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(Maruyama et al. 1993); (3) Posgate medium B (PB): yeast extract, 0.2 g/L; sodium lactate, 

2.5 g/L; KH2PO4, 0.25 g/L; NH4Cl, 0.5 g/L; agar, 0.2 g/L (Antipov et al. 1998); and (4) 

Difco™ Marine Agar 2216 (MA) medium (Hansen and Sørheim 1991). For screening, the 

strength of artificial seawater was varied by 0.75-times or 1.0-time by dissolving 27 or 36 g 

salt (Marine Art SF1, Tomita Pharmaceutical, Japan) per 1 L deionized water. The pH of each 

medium was set to neutral conditions (pH 7.0). Each medium was supplemented with 0, 0.5, 1, 

2.5, 5, and 10 mM Na3VO4 and incubated at 20°C for 48 h. Bacterial colonies that grew in 

media containing 10 mM Na3VO4 were selected for identification. 

 

Identification of vanadium-resistant bacteria isolated from the intestine of A. sydneiensis 

samea by 16S rRNA gene sequencing 

Colonies of bacteria were selected randomly from each medium and the whole cell of 

each colony was used as PCR template. The 16S rRNA gene was amplified using specific 

primers: 306F (5’-CCA GAC TCC TAC GGG AGG CAG C-3’) and 935R (5’-CGA ATT 

AAA CCA CAT GCT CCA C-3’) in a PCR reaction that contained an appropriate amount of 

bacterial cells, 0.2 mM each dNTP, 1 μM each of primers 306F and 935R, 1× reaction buffer, 

and 2.5 U Taq DNA polymerase (TaKaRa, Inc.) in a 20 μL reaction volume. After 

denaturation at 94°C for 2 min, 30 cycles of PCR were performed (94°C for 30 s, 50°C for 40 

s, and 72°C for 40 s) followed by a final extension at 72°C for 2 min. The PCR products were 

separated by 1.5% agarose gel electrophoresis and stained with ethidium bromide (EtBr). The 

band of the expected size (~650 bp) was excised, cloned, and sequenced with the 306F primer. 

DNA sequencing analyses was performed at the Natural Science Center for Basic Research 

and Development (N-BARD), Hiroshima University, Japan. The sequences of 16S rRNA 
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genes from each isolate were used as query to determine the closest prokaryotic species 

available in the GenBank database (http://blast.ddbj.nig.ac.jp/blastn?lang=en). The nucleotide 

sequences were submitted to DDBJ/EMBL/Genbank under accession number of LC108850 

through LC108858. Sequences were aligned using the CLUSTAL X 2.0 software (Larkin et al. 

2007), in which several regions with an alignment gap were completely removed from 

analysis and only 569 nucleotides sites were used to construct a phylogenetic tree using 

MEGA 6.0 software (Tamura et al. 2013). To provide confidence estimates for branch support, 

a bootstrap analysis was performed using 1000 trial replications. 

 

Measurement of vanadium and other heavy metals 

Medium for the measurement of metal accumulation, 1/2 TZ medium, was 

supplemented with either 200 and 500 μM of vanadyl sulfate (VOSO4, nH2O, n = 3–4, 99%) 

or sodium orthovanadate (Na3VO4). For other heavy metals accumulation, standard medium 

was supplemented with 10μM of either copper (II) chloride (CuCl2. 2H2O), cobalt (II) sulfate 

(CoSO4. 7H2O), nickel (II) chloride (NiCl2. 6H2O), or sodium molybdate (VI) (Na2MoO4. 

2H2O). Original 1/2 TZ medium without supplementation of any metal is denoted as 

“metal-free” medium. 

Bacterial cells in the lag phase (OD600 = 0.70 – 1.00) were used as inoculum and 

cultured in a specific media of 15 mL in 50 mL conical tubes with rotation at 180 rpm at for 

24 h. The culture was set as 20°C, which is a habitat temperature for ascidian animal. 

Bacterial cells were harvested by centrifugation at 8000 rpm for 3 min, washed three times 

with metal-free medium, and the cell pellet was heated overnight at 65°C. After obtaining the 

dry weight, 300 μL 1 N HNO3 was added to each sample and heated overnight at 65°C. Then 
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each sample was centrifuged at 10000 rpm for 10 min and the supernatant was used to 

measure vanadium and the contents of other heavy metals by atomic absorption spectrometry 

(AAS). Vanadium and other heavy metal contents were expressed as the weights per weight of 

dried cells (ng per mg).  

Growth of the strains at 15–35°C was determined in standard medium containing 0, 

200, and 500 μM vanadium. The growth of bacterial cells was assessed every 2 h by 

measuring their optical density (OD) at 600 nm. 

To determine the effects of pH on vanadium uptake, we used a protocol developed by 

López et al. (2000). Aliquots (150 μL) of bacterial cells were grown in standard 

vanadium-free medium at 25°C and rotated at 180 rpm until the late exponential phase for 24 

h. Bacterial cells were harvested by centrifugation and washed three times. A vanadium 

accumulation experiment was performed by suspending the harvested cells in NaCl medium 

consisting of 0.5 M NaCl, 500 μM vanadium (IV) or V(V), and 50 mM sodium phosphate 

buffer at the desired pH in a total volume of 15 mL rotated at 180 rpm at 25°C. 

Control-lacking cells were included in a similar manner. After 6 or 24 h of incubation, 

bacterial cells were harvested, washed, dried, and then 300 μL 1 N HNO3 was added to 

measure vanadium contents by AAS. 

 

Distribution of vanadium in bacterial cells 

The distribution of vanadium in bacterial cells under both acidic and neutral pH was 

determined following the procedures of Pabst et al. (2010) and Desaunay and Martins (2014). 

Bacterial cells initially exposed to 0.5 mM V(V) for 6 h of incubation were harvested by 

centrifugation at 8000 × g for 5 min, and bacterial cell pellets were treated with 20 mM EDTA 
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for 5 min with gentle shaking. These suspensions were centrifuged at 5000 × g for 5 min, and 

then the vanadium contents of the supernatant, which is supposed to be initially associated 

with membrane compartments, was measured by AAS. The bacterial cell pellets were 

digested with 1 N HNO3
 at 90°C overnight, and the vanadium contents, assumed to be 

retained in the cell’s cytoplasm after internalization (intracellular compartment), was 

determined by AAS. The sum of the two measurements of vanadium was considered the 

amount of vanadium accumulated by the whole cells. 

 

Statistical analysis 

All experiments on bioaccumulation of vanadium and other heavy metals by 

vanadium-resistant bacteria were conducted in triplicate and the averages of each 

measurement for each treatment are reported with their standard error (SE). A two-way 

analysis of variance (ANOVA) was performed to evaluate the effects of vanadium 

concentration, type of bacterial strain, and different pHs on V(V) and V(IV) accumulation. A 

one-way ANOVA was used to evaluate the effects of different bacterial strains on the 

accumulation of copper, cobalt, nickel, and molybdate ions. The significance of any 

differences was tested using Fisher’s least significant difference (LSD) test. The statistical 

significance of differences in the growth of vanadium-accumulating strains under different 

temperatures and vanadium concentrations was analyzed using a two-tailed Student’s t-test. 
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Results 

 

Identification of vanadium-resistant bacteria from the intestine of the vanadium-rich ascidian 

Ascidia sydneiensis samea 

At the beginning of this study, we determined the vanadium concentration in the 

intestinal contents of A. sydneiensis samea. The vanadium concentration of intestinal contents 

was 0.67 ± 0.07 mM (mean ± SD, n = 2). This value corresponds to about 20,000 times higher 

than that of seawater. The pH of the intestinal contents was also directly measured using a 

portable electric pH meter and was 8.03 ± 0.05 (mean ± SD, n = 3). This value is similar to 

that of natural seawater. Thus, the intestinal contents of this ascidian species was shown to be 

a vanadium-rich environment. 

Samples of intestinal contents of the vanadium-rich ascidian A. sydneiensis samea 

were then screened for the presence of bacteria resistant to vanadium using agar plates made 

with four media (standard, 1/2 TZ, PB, and marine agar medium) containing 0 to 10 mM 

sodium orthovanadate under aerobic conditions. This concentration is reported to be the upper 

limit, in which microorganisms such as bacteria (Hernández et al. 1998) or fungi (Bisconti et 

al. 1997) could tolerate the toxicity of vanadate. In each medium, numerous bacteria grew on 

the plate without supplementation with vanadium, but by increasing the concentration of 

vanadium, the number of colonies decreased, but some colonies appeared on the plate with 10 

mM sodium orthovanadate. No significant difference in the number of bacterial colonies was 

observed in each medium supplemented with different salt concentrations. Bacterial colonies 

that were able to grow in the presence of 10 mM sodium orthovanadate with different 

colorations from the four media were selected at random and used for identification. 
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Of the 51 bacterial colonies characterized based on their 16S rRNA gene sequences 

and compared to the GenBank Database, the majority (~80%) were closely related to Vibrio. 

Ten isolates of strain V-RA-1 were closely related to Vibrio splendidus strain 630 (99.89 ± 

0.13%), 11 isolates (V-RA-2) to Vibrio splendidus strain N08 (99.87 ± 0.09%), 8 isolates 

(V-RA-3 and V-RA-4) to Vibrio splendidus partial 16S (99.95 ± 0.13%) and Vibrio 

tasmaniensis (99.93 ± 0.13%), and 2 isolates to Vibrio tapetis (99.07 ± 0.81%). The remaining 

20% of isolates were closely related to the genus Shewanella; 4 isolates (S-RA-6 and S-RA-7) 

were related to Shewanella kaireitica (99.87 ± 0.17%) and Shewanella pasifica strain KMM 

(99.64%), 3 isolates to Shewanella pasifica strain UDC (99.88 ± 0.10%), and 1 isolate to 

Shewanella olleyana (98.72 %) (Table 1). 

To classify these vanadium-resistant bacterial strains, a phylogenetic tree was 

constructed using the neighbor-joining method (Tamura et al. 2013). This tree was based on 

the 569 nucleotides sites as described in the Materials and Methods and rooted using the 

genus Marinobacter as an outgroup. Fig. 1 is a dendrogram that shows the phylogeny of 

vanadium-resistant bacterial strains, in which five bacterial isolates belonged to the genus 

Vibrio and four to the genus Shewanella. 

 

Screening for vanadium-resistant bacteria that can accumulate vanadium (V) and (IV) 

To determine whether vanadium-resistant bacterial strains isolated from the intestine 

of A. sydneiensis samea were capable of accumulating vanadium, we determined the ability of 

each strain to accumulate both V(V) and V(IV) ions. All vanadium-resistant bacterial strains 

significantly accumulated V(V) and V(IV) ions at every concentration (P< 0.05) and 

straightly differed from control or in the absence of vanadium. Moreover, multiple 
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comparisons using the LSD test revealed highly significant differences between bacterial 

strains in accumulating V(V) (P< 0.05), of which strains V-RA-4 (300 ± 86 ng mg-1 dw) and 

S-RA-6 (376 ± 68 ng mg-1 dw) showed greater accumulation than the other strains (Fig. 2A). 

In addition, no significant differences between bacterial strains in accumulating V(IV) were 

observed (Fig. 2B).  

 

Characterization of growth of vanadium-accumulating strains V-RA-4 and S-RA-6 at various 

temperatures and vanadium concentrations 

Due to the highest vanadium (V) accumulation by strains V-RA-4 and S-RA-6, we 

examined the growth of these two bacterial strains at 15–35°C in the presence of 0, 200, and 

500 μM vanadium. The optimal temperature for growth strains V-RA-4 and S-RA-6 ranged 

from 20°C to 25°C (Fig. 3A and B), and the exponential phase occurred after 8–10 h of 

incubation. The growth strains V-RA-4 and S-RA-6 was not significantly affected by the 

vanadium concentration (P >0.05) (Fig. 3C and D). 

 

Effect of pH on vanadium uptake by the vanadium-accumulating strains V-RA-4 and S-RA-6 

For application purposes, it is important to explore the pH dependency of metal 

accumulation. To determine the effect of pH on vanadium uptake, the vanadium-accumulating 

strains V-RA-4 and S-RA-6 were cultured in 0.5 M NaCl medium containing 500 μM V(V) 

and V(IV) at pH 3, 7, or 9 at 25°C. Cultures were incubated for 6 and 24 h to assess vanadium 

accumulation during the lag phase or stationary phase. After harvesting, bacterial cells were 

dried and the vanadium contents was determined by AAS.  

Different pHs significantly affected vanadium accumulation by the two bacterial 
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strains V-RA-4 and S-RA-6 (P >0.05), in which the greatest accumulation of V(IV) and V(V) 

was detected under acidic conditions at pH 3. Total accumulation of V(IV) ions at pH 3 by 

strain V-RA-4 was 5,450 ± 1,348 ng mg-1 dw or five-fold higher than at pH 7 (1,225 ± 113 ng 

mg-1 dw) and pH 9 (924 ± 29 ng mg-1 dw). V(IV) accumulation by strain S-RA-6 was 4,126 ± 

530 ng mg-1 dw in pH 3 or four-fold higher than at pH 7 (956 ± 67 ng mg-1 dw) and pH 9 (964 

± 35 ng mg-1 dw) (Fig. 4A). 

Significant V(V) accumulation by strain V-RA-4 was observed at pH 3 after 6 h of 

incubation (19,405 ± 2,096 ng mg-1 dw) (Fig. 4B), and the total accumulation doubled after 24 

h of incubation (33,471 ± 6,477 ng mg-1 dw) (Fig. 4C). High accumulation of V(V) at pH 3 

was also detected in strain S-RA-6 after 6 h (19,493 ± 2,278 ng mg-1 dw), but decreased after 

24 h of incubation (18,509 ± 544 ng mg-1 dw). This suggests that the highest accumulation in 

strain S-RA-6 occurred before 24 h. In contrast, a small amount of vanadium accumulation 

was detected at pH 7 and 9; under these conditions, total accumulation was lower than 500 ng 

mg-1 dw. 

Strains V-RA-4 and S-RA-6 removed 16 and 13% of V(IV) ions, respectively, from 

aqueous solution at pH 3 (Table 2). In addition, these two vanadium-accumulating strains 

reduced ± 80% V(V) after 6 h, and accumulation was 1.5-fold higher after 24 h of incubation. 

In contrast, no significant removal of V(IV) and V(V) was observed at pH 7 or 9. Thus, these 

strains removed both V(IV) and V(V) effectively at pH 3. 

To determine whether the highest uptake of vanadium at pH 3 was actually caused by 

bacteria and not by precipitation due to a chemical interaction between vanadium and 

components of the medium, we tested bacteria-free controls incubated with 500 μM vanadium. 

The total vanadium detected in bacteria-free controls was less than 1% of the total vanadium 
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accumulated under the same conditions with bacterial cells suggesting that we can neglect the 

precipitation due to the chemical interaction between vanadium and components of the 

medium. 

 

Distribution of vanadium in bacterial cells 

A set of experiments to evaluate the subcellular distribution of vanadium in two 

bacterial strains, V-RA-4 and S-RA-6, was performed. To accomplish this, after 6 h of 

incubation in medium containing 0.5 mM vanadium (V), and harvesting, the bacterial cells 

were washed with EDTA to indirectly quantify vanadium associated with extracellular and 

intracellular compartments. 

A total of 2,866 ± 655 ng/mg dw and 3,810 ± 2,797 ng/mg dw vanadium appeared to 

be bound in the extracellular compartment strains V-RA-4 and SRA-6 at pH 3, respectively, 

and 8 ± 7 ng/mg dw (strain V-RA-4) and 17 ± 2 ng/mg dw (strain S-RA-6) at pH 7. The 

amount of vanadium retained in the cytoplasm (intracellular compartments) was 

approximately 80% of the total vanadium accumulated. The cytoplasm contained 10,356 ± 

2,745 ng/mg dw (strain V-RA-4) and 14,955 ± 2,509 ng/mg dw (strain S-RA-6) at pH 3 and 

108 ± 8 ng/mg dw (strain V-RA-4) and 184 ± 74 ng/mg dw (strain S-RA-6) at pH 7, 

respectively (Fig. 5). Thus, a small proportion of vanadium, ca. 20%, was released from 

strains V-RA-4 and S-RA-6 by EDTA extraction under both acidic and neutral pH, suggesting 

that vanadium was primarily accumulated in the intracellular compartments. 

 

Heavy metal accumulation by vanadium-resistant bacteria 

One of the strategies for enhancing the effectivity of bioremediation technology is to 
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search for novel microorganism having a wide range of uptake capacities of heavy metal ions. 

In this study we examined the ability of each vanadium-resistant bacterial strain to 

accumulate other heavy metals: copper (Cu), cobalt (Co), molybdate (Mo), and nickel (Ni) 

ions. Bacterial cells were cultured overnight in standard medium containing 10 μM of each 

metal at 25°C with rotation at 180 rpm. After harvesting and drying, the metal contents of 

bacterial cells were measured by AAS. 

Each vanadium-resistant bacterial strain exhibited significant bioaccumulation of 

copper and cobalt ions (Fig. 6A and B). The strains with the highest accumulation of copper 

ions were V-RA-3 (349 ± 23 ng mg-1 dw), V-RA-4 (282 ± 24 ng mg-1 dw), and S-RA-6 (267 ± 

9 ng mg-1 dw). In addition, vanadium-resistant bacteria removed a significant percentage of 

copper and cobalt ions from the medium. The removal of copper ions reached 30%, while that 

of cobalt ions reached 24% (Tables 3 and 4). In contrast, the accumulation of nickel and 

molybdate by each vanadium-resistant bacterial strain was relatively low; the nickel and 

molybdate ion contents of bacterial cells ranged from 0.50 to 9.50 ng mg-1 dw (Fig. 6C and 

D). 

 

Discussion 

 

Isolation of microorganisms from metal-rich environments has gained attention due 

to their resistance to high levels of metals, and because they may be used as a model for 

bioremediation technology. In this study, we first measured the V concentration in the 

intestinal contents of the vanadium-rich ascidian A. sydneiensis samea, which was 20,000 

times higher than in natural seawater. Then we screened the intestinal contents of this ascidian 
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for the presence of intestinal bacteria able to grow in the presence of 0–10 mM sodium 

orthovanadate. We found that the number of bacterial colonies decreased with increasing 

vanadium concentrations in the medium. Each bacterial colony that was able to grow in the 

presence of 10 mM vanadium showed various colorations from a clear halo to yellow and 

blue-dark ones. These colorations were indicated as a response to the toxicity of high 

concentrations of vanadate and a preliminary marker of vanadium accumulation or reduction 

and possible sequestration by bacterial cells (Hernández et al. 1998; Myers et al. 2004; van 

Marwijk et al. 2009). Thus, these bacterial colonies were selected at random and identified 

based on their 16S rRNA sequences. 

We successfully isolated nine strains of vanadium-resistant bacteria that are able to 

grow in the presence of 10 mM vanadium; five strains belong to the genus Vibrio and four 

belong to Shewanella. The most abundant strains of genus Vibrio, V-RA-2 and V-RA-4, 

corresponded to V. splendidus (99.87 ± 0.09%) and V. tasmaniensis (99.93 ± 0.13%), 

respectively, which have been associated with mortality in crustaceans, mollusks, and fish 

(Thompson et al. 2003; Faury et al. 2004; Romalde et al. 2014) or in ascidian they have been 

associated with biofilm communities (Behrendt et al. 2012; Blasiak et al. 2014). Strains 

S-RA-6 and S-RA-7 were the most abundant strains of the genus Shewanella, and 

corresponded to S. kaereitica (99.87 ± 0.17%) and S. pasifica (99.67%), which are commonly 

found in seawater, deep-sea sediment, and as biofilm formations on natural substrates 

(Ivanova et al. 2003; Jiang et al. 2007; Finnegan et al. 2011). They occur in very low numbers 

compared to other predominate intestinal bacteria; Vibrio and Shewanella are known to 

inhabit the gut of Ciona intestinalis with 1.5% and 4% OTU, respectively (Dishaw et al. 

2014), although the data for A. sydneiensis samea is not available yet. These facts suggested 
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that the selection by vanadium-rich medium worked well for selecting specific types of 

bacteria. 

Of the nine strains, strain V-RA-4, corresponding to Vibrio tasmaniensis, and S-RA-6, 

corresponding to Shewanella kaireitica, accumulated higher levels of vanadium ions than the 

other strains when they were incubated with vanadate V(V) ions at concentrations of 200 and 

500 μM, which are similar to the concentrations in the gut of A. sydneiensis samea. These two 

bacterial strains exhibited good growth in media containing various concentrations of 

vanadium (V) at an optimal temperature of 25°C (Fig. 3). The ability of these two bacterial 

strains to accumulate vanadate ions was 20-fold greater than genetically modified E. coli cells 

expressing AgVanabin2 (Samino et al. 2012) (264 ± 165 vs. 10.12 ± 0.64 ng mg-1 dw, 

respectively). In addition, these two strains have advantages in that they are natural bacteria 

and may not cause any ethical problems for their application. 

Use of the genus Vibrio in vanadium recovery is less popular than Saccharomyces 

(Willsky et al. 1985; Henderson et al. 1989; Kanik-ennulat et al. 1995; Bisconti et al. 1997), 

Enterobacter (Hernández et al. 1998; van Marwijk et al. 2009), Pseudomonas (Antipov et al. 

1998, 2000; Shirdam et al. 2006), and Shewanella (Carpentier et al. 2003, 2005; Myers et al. 

2004). To the best of our knowledge, this is the first report of vanadium accumulation by the 

genus Vibrio, which may increase our understanding of vanadium accumulation by various 

types of microorganisms. In contrast, Shewanella, particularly S. oneidensis, is the most 

versatile bacterium investigated to date and is widely used as a vanadium-reducing bacterium 

that reduces highly toxic vanadate to the less toxic vanadyl (Carpentier et al. 2003, 2005; 

Myers et al. 2004).  

The efficacy of heavy metal bioaccumulation by bacterial cells is affected by the pH 
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of the culture medium (López et al. 2000; Esposito et al. 2002). Prior to real-world 

applications, it is important to characterize the properties of vanadium under different pHs of 

bacterial culture. In this study, vanadium uptake by the two bacterial strains V-RA-4 and 

S-RA-6 increased at pH 3 and decreased linearly at pH 7 and 9. Both strains had the same 

optimal absorption pH for vanadate and vanadyl ions. The optimal pH of 3 for vanadium 

absorption reported in this study is consistent with that reported previously for vanadium 

absorption by Halomonas sp. GT-83 (Ghazvini and Mashkani 2009). These findings may 

provide an alternative bioremediation technology for vanadium wastewater recovery under 

acidic conditions, for which another bacterium such as Marinobacter sp. MW1 is unsuitable, 

which was reported by Kamika and Momba (2014) to be unable to reduce vanadium pollution 

from acidic mine water. 

To provide further evidence of the occurrence of both intracellular and cell surface 

absorption of vanadium, we examined the distribution of vanadium in bacterial cells exposed 

to 0.5 mM vanadium at different pHs. Our experimental results showed that EDTA treatment 

removed only 20% of bound vanadium both at pH 3 and 7. Accordingly, these two bacterial 

strains exhibited mostly intracellular accumulation of vanadium. 

It has been reported that intracellular accumulation is dominantly found in heavy 

metal decontamination by living cells (Shirdam et al. 2006; Desaunay and Martins 2014; 

Huang et al. 2014). In this type of accumulation, cell walls only function as a filter for heavy 

metals ions and control their diffusion towards the cytoplasm. The next steps are complex 

processes such as localization of the metal within specific organelles, enzymatic 

detoxification, and efflux pumps inside bacterial cells (Bowman 1983; Kanik-ennulat and 

Neff 1990; Antipov et al. 2000; Zhang et al. 2014; Huang et al. 2014). The majority of metal 
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ions in intracellular accumulation are commonly stabilized inside the cell and rarely released 

toward their environment, except when the cells die (Desaunay and Martins 2014). However, 

intracellular accumulation of vanadium reported in Neurospora craspa is followed by 

intracellular reduction of V(V) by the high concentration of intracellular reducing agents, and 

are subsequently removed as vanadyl V(IV) ions (Bowman 1983). From an ecological point 

of view, if accumulation and reduction are coupled in bacteria in the ascidian intestine, it may 

have important consequences in terms of metal mobility in a microenvironment such as the 

ascidian intestine, where uptake and release of vanadium between intestinal bacteria and 

intestinal cells of ascidians may occur. Therefore, our future studies will focus on vanadium 

reduction by vanadium-resistant bacterial strains to reveal these relationships. 

We also tested the ability of all strains of vanadium-resistant bacteria isolated from A. 

sydneiensis samea to accumulate other heavy metals. All strains exhibited high accumulation 

of Cu(II) and Co(II) ions, but low accumulation of Mo(IV) and Ni(II) ions. However, Cu(II) 

ion accumulation capacities of the bacterial strains were 1.5- and 7-fold lower than those 

reported by Samino et al. (2012) for copper ion accumulation. The bacterial strains identified 

here have safety advantages because they were obtained from a natural habitat. Several strains 

of vanadium-resistant bacteria were also able to remove up to 24% of Co(II) ions, which is 

the first report of cobalt accumulation by intestinal bacteria isolated from an ascidian. 

In conclusion, we identified nine strains of vanadium-resistant bacteria from the 

intestine of the vanadium-rich ascidian A. sydneiensis samea. Two of these strains can 

accumulate high levels of vanadium. Vanadium is primarily accumulated in the intracellular 

compartment. The growth profile and pH dependency of accumulation were characterized. All 

nine bacteria can also accumulate copper and cobalt ions. Therefore, these vanadium-resistant 
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bacteria could be used for the decontamination of metal-containing wastewater. 
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Table 1 Vanadium-resistant bacteria isolated from the intestinal content of Ascidia sydneiensis 

samea. 
Name of strain Most closely-related genus 

and species 
Number of 

colonies 
% similarity 
(s_ab score*) 

V-RA-1 Vibrio splendidus strain 630 10 99.89 ± 0.13 
V-RA-2 Vibrio splendidus strain N08 11 99.87 ± 0.09 
V-RA-3 Vibrio splendidus partial 16S 8 99.95 ± 0.13 
V-RA-4 Vibrio tasmaniensis strain 007 8 99.93 ± 0.13 
V-RA-5 Vibrio tapetis P502 2 99.07 ± 0.81 
S-RA-6 Shewanella kaireitica strain c931 4 99.87 ± 0.17 
S-RA-7 Shewanella pasifica strain KMM 4 99.64 
S-RA-8 Shewanella olleyana strain WA6 1 98.72 
S-RA-9 Shewanella pasifica strain UDC 3 99.88 ± 0.10 
 Total 51  

Note: * S_ab score is identity score for individual sequences ± standard deviation 

 
 
Table 2 Bioaccumulation of V(IV) and V(V) ions by strains V-RA-4 and S-RA-6 in NaCl 
medium containing 500 μM vanadium with different pH after 6 and 24 hours of culture. 

pH Strain 

Chemical 
species of 
vanadium 

Initial amt of 
vanadium in 
medium (ng) 

Culture 
time (h) 

Amt of vanadium 
accumulated by 
bacteria (ng)a 

Removal of 
vanadium from 

medium (%) 

3 V-RA-4    61,452 ± 16,675 16 
S-RA-6    48,888 ± 3,686 13 

7 V-RA-4 V(IV) 382,065 6 14,650 ± 1,834 4 
S-RA-6    11,531 ± 125 3 

9 
V-RA-4    11,355 ± 1,033 3 
S-RA-6    12,439 ± 711 3 

3 V-RA-4    308,853 ± 26,388 81 
S-RA-6    317,995 ± 30,152 83 

7 V-RA-4 V(V) 382,065 6 1,975 ± 131 1 
S-RA-6    2,160 ± 5 1 

9 V-RA-4    3,365 ± 435 1 
S-RA-6    2,419 ± 689 1 

3 V-RA-4   507,741 ± 151,414 133 
S-RA-6    329,926 ± 15,530 86 

7 V-RA-4 V(V) 382,065 24 23,285 ± 2,730 6 
S-RA-6    33,622 ± 21,803 9 

9 
V-RA-4    3,299 ± 290 1 
S-RA-6    3,214 ± 684 1 

a data represent the means ± standard deviations of three independent experiments  
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Table 3 Bioaccumulation of copper (II) ions by vanadium-resistant bacteria isolated from the 

intestine of Ascidia sydneiensis samea. 
Strain Initial copper 

conc. in 
medium (μM) 

Initial amount 
of copper in 
medium (ng) 

Amount of copper 
accumulated by 
bacteria (ng) a 

Removal Cu 
from medium 

(%) 
V-RA-1 10 9,532 1,772 ± 405 19 
V-RA-2   2,048 ± 684 21 
V-RA-3   2,818 ± 521 30 
V-RA-4   1,865 ± 98 20 
V-RA-5   1,675 ± 527 18 
S-RA-6   2,303 ± 587 24 
S-RA-7   2,550 ± 678 27 
S-RA-8   2,832 ± 759 30 
S-RA-9   1,138 ± 634 12 

a data represent the means ± standard deviations of three independent experiments  
 
 
Table 4 Bioaccumulation of cobalt (II) ion by vanadium-resistant bacteria isolated from the 

intestine of Ascidia sydneiensis samea. 
Strain Initial cobalt 

conc. in 
medium (μM) 

Initial amount 
of cobalt in 

medium (ng) 

Amount of cobalt 
accumulated by 
bacteria (ng) a 

Removal 
cobalt from 
medium (%) 

V-RA-1 10 8,840 960 ± 269 11 
V-RA-2   214 ± 8 2 
V-RA-3   283 ± 25 3 
V-RA-4   2,057 ± 140 23 
V-RA-5   1,821 ± 437 21 
S-RA-6   2,106 ± 12 24 
S-RA-7   958 ± 267 11 
S-RA-8   553 ± 262 6 
S-RA-9   1,744 ± 144 20 

a data represent the means ± standard deviations of three independent experiments  
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Fig. 1 Phylogenetic tree of vanadium-resistant bacteria isolated from the intestine of A. 
sydneiensis samea constructed using the neighbor joining (NJ) method based on 16S rRNA 
sequences. The percentage values are bootstrap possibilities determined for 1000 replicates. 
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Fig. 2 Bioaccumulation of V(V) (A) and V(IV) (B) by vanadium-resistant bacteria isolated 
from the intestinal contents of A. sydneiensis samea in medium containing 0, 200, and 500 
μM vanadium. Error bars show standard errors of averages calculated from three samples. For 
each bacterial strain, different letters in the each concentration of vanadium (0, 200, and 500 
μM) indicate a significant difference in accumulating vanadium between each strain at the 
level of P <0.05. 
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Fig. 3 The effects of temperature (A and B) and vanadium concentrations (C and D) on the 
growth of the vanadium-accumulating bacterial strains V-RA-4 and S-RA-6. Error bars show 
standard errors of averages calculated from three samples. 
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Fig. 4 Effect of pH on vanadium uptake by the vanadium-accumulating bacterial strains 
V-RA-4 and S-RA-6. Cells were cultured in 500 μM vanadium at pH 3, 7, and 9 with rotation 
at 180 rpm at 25ºC. V(IV) and V(V) uptake was monitored after 6 (A, B) and 24 h (C) of 
incubation. For each pH, different letters in the same bacterial strains indicate a significant 
difference between each pH at the level of P<0.05. 
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Fig. 5 Vanadium concentration in the subcellular compartments of cells of strains V-RA-4 and 
S-RA-6 obtained by EDTA chemical washing of cells previously exposed to 0.5 mM 
vanadium at pH 7 (A) and pH 9 (B). Error bars show standard errors of averages calculated 
from three samples. 
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Fig. 6 Accumulation of copper (II) (A), cobalt (II) (B), nickel (II) (C), and molybdate (IV) 
(D) ions by vanadium-resistant bacteria isolated from the intestine of A. sydneiensis samea. 
Bacterial cells were cultured in standard medium containing 10 μM of each metal in a total 
volume of 15 mL with rotation at 180 rpm at 25ºC for 24 h in a 50 mL conical tube. Error bars 
show standard errors of averages calculated from three samples. Bars with different letters are 
significantly different at P <0.05. 
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III. General Discussion 
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In recent years, the disposal of vanadium due to industrial activities has increased the 

environmental concern, especially to overcome the vanadium pollution. Isolation of 

microorganisms from vanadium-rich environments has promising an effective bioremediation 

strategy due to their resistance to high levels of metals. In this study, isolation of intestinal 

bacteria coping with vanadium ions from a vanadium-rich ascidian animal was motivated by 

not only the need for seeking microorganisms suitable in decontaminating vanadium and 

other heavy metals toxicity, but also in the future studies, I would also focus for seeking the 

evidence on intestinal bacteria contribution to mediate the cycling of vanadium ions in the 

intestine of ascidian animal as hyperaccumulator of vanadium. 

At the beginning of this study, I measured the V concentration in the intestinal 

contents of the vanadium-rich ascidian A. sydneiensis samea, which was 20,000 times higher 

than in natural seawater. Then I screened the intestinal contents of this ascidian for the 

presence of intestinal bacteria able to grow in the presence of 0–10 mM sodium orthovanadate. 

I found that the number of bacterial colonies decreased with increasing vanadium 

concentrations in the medium. Each bacterial colony that was able to grow in the presence of 

10 mM vanadium showed various colorations from a clear halo to yellow and blue-dark ones. 

These colorations were indicated as a response to the toxicity of high concentrations of 

vanadate and a preliminary marker of vanadium accumulation or reduction and possible 

sequestration by bacterial cells (Hernández et al. 1998; Myers et al. 2004; van Marwijk et al. 

2009). Thus, these bacterial colonies were selected at random and identified based on their 

16S rRNA sequences. 

I successfully isolated nine strains of vanadium-resistant bacteria that are able to 

grow in the presence of 10 mM vanadium; five strains belong to the genus Vibrio and four 
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belong to Shewanella. The most abundant strains of genus Vibrio, V-RA-2 and V-RA-4, 

corresponded to V. splendidus (99.87 ± 0.09%) and V. tasmaniensis (99.93 ± 0.13%), 

respectively, which have been associated with mortality in crustaceans, mollusks, and fish 

(Thompson et al. 2003; Faury et al. 2004; Romalde et al. 2014). In oyster, V. tasmaniensis 

expresses coper related gene to fight againts antibactericidal effects released by hemocyte 

(Vanhove et al. 2016), while in ascidian they have been associated with biofilm communities 

(Behrendt et al. 2012; Blasiak et al. 2014). Strains S-RA-6 and S-RA-7 were the most 

abundant strains of the genus Shewanella, and corresponded to S. kaereitica (99.87 ± 0.17%) 

and S. pasifica (99.67%), which are commonly found in seawater, deep-sea sediment, and as 

biofilm formations on natural substrates (Ivanova et al. 2003; Jiang et al. 2007; Finnegan et al. 

2011). They occur in very low numbers compared to other predominate intestinal bacteria; 

Vibrio and Shewanella are known to inhabit the gut of Ciona intestinalis with 1.5% and 4% 

OTU, respectively (Dishaw et al. 2014). By using metagenomic analysis on the intestinal 

content, Ueki’s group also found the similar data for the occurrence of genus Vibrio and 

Shewanella in the intestine of A. sydneiensis samea. These facts suggested that the selection 

by vanadium-rich medium worked well for selecting specific types of bacteria. 

The data for selecting specific types of bacteria from an ascidian animal by using 

vanadium-rich medium were also reported by Russian researcher around last two decades 

(Lyalikova and Yurkova 1992). They successfully isolated genus Pseudomonas from the 

intestine of ascidian that are cultured in 10 mM of vanadate, even though the species of an 

ascidian animal was not mentioned in their study. This genus was also reported to highly 

resist to high concentration of vanadium up to 50 mM. Similar high resistance to vanadate 

was also shown in my recent study on minimum inhibitory concentration of 
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vanadium-resistant bacterial strains isolated from the intestine of A. sydneiensis samea that 

could tolerate vanadium up to 40 – 50 mM (unpublish data).  

Of the nine strains, strain V-RA-4, corresponding to Vibrio tasmaniensis, and S-RA-6, 

corresponding to Shewanella kaireitica, accumulated higher levels of vanadium ions than the 

other strains when they were incubated with vanadate V(V) ions at concentrations of 200 and 

500 μM, which are similar to the concentrations in the gut of A. sydneiensis samea. These two 

bacterial strains exhibited good growth in media containing various concentrations of 

vanadium (V) at an optimal temperature of 25°C. The ability of these two bacterial strains to 

accumulate vanadate ions was 20-fold greater than genetically modified E. coli cells 

expressing AgVanabin2 (Samino et al. 2012). In addition, these two strains have advantages in 

that they are natural bacteria and may not cause any ethical problems for their application. 

Use of the genus Vibrio in vanadium recovery is less popular than Saccharomyces 

(Willsky et al. 1985; Henderson et al. 1989; Kanik-ennulat et al. 1995; Bisconti et al. 1997), 

Enterobacter (Hernández et al. 1998; van Marwijk et al. 2009), Pseudomonas (Lyalikova and 

Yurkova 1992; Antipov et al. 2000; Shirdam et al. 2006), and Shewanella (Carpentier et al. 

2003, 2005; Myers et al. 2004). To the best of my knowledge, this is the first report of 

vanadium accumulation by the genus Vibrio, which may increase my understanding of 

vanadium accumulation by various types of microorganisms. In contrast, Shewanella, 

particularly S. oneidensis, is the most versatile bacterium investigated to date and is widely 

used as a vanadium-reducing bacterium that reduces highly toxic vanadate to the less toxic 

vanadyl (Carpentier et al. 2003, 2005; Myers et al. 2004).  

The efficacy of heavy metal bioaccumulation by bacterial cells is affected by the pH 

of the culture medium (López et al. 2000; Esposito et al. 2002). Prior to real-world 
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applications, it is important to characterize the properties of vanadium under different pHs of 

bacterial culture. In this study, vanadium uptake by the two bacterial strains V-RA-4 and 

S-RA-6 increased at pH 3 and decreased linearly at pH 7 and 9. Both strains had the same 

optimal absorption pH for vanadate and vanadyl ions. The optimal pH of 3 for vanadium 

absorption reported in this study is consistent with that reported previously for vanadium 

absorption by Halomonas sp. GT-83 (Ghazvini and Mashkani 2009). These findings may 

provide an alternative bioremediation technology for vanadium wastewater recovery under 

acidic conditions, for which another bacterium such as Marinobacter sp. MW1 is unsuitable, 

which was reported by Kamika and Momba (2014) to be unable to reduce vanadium pollution 

from acidic mine water. 

To provide further evidence of the occurrence of both intracellular and cell surface 

absorption of vanadium, I examined the distribution of vanadium in bacterial cells exposed to 

0.5 mM vanadium at different pHs. The experimental results showed that EDTA treatment 

removed only 20% of bound vanadium both at pH 3 and 7. Accordingly, these two bacterial 

strains exhibited mostly intracellular accumulation of vanadium. 

It has been reported that intracellular accumulation is dominantly found in heavy 

metal decontamination by living cells (Shirdam et al. 2006; Desaunay and Martins 2014; 

Huang et al. 2014). In this type of accumulation, cell walls only function as a filter for heavy 

metals ions and control their diffusion towards the cytoplasm. The next steps are complex 

processes such as localization of the metal within specific organelles, enzymatic 

detoxification, and efflux pumps inside bacterial cells (Bowman 1983; Kanik-ennulat and 

Neff 1990; Antipov et al. 2000; Zhang et al. 2014; Huang et al. 2014). The majority of metal 

ions in intracellular accumulation are commonly stabilized inside the cell and rarely released 
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toward their environment, except when the cells die (Desaunay and Martins 2014). However, 

intracellular accumulation of vanadium reported in Neurospora craspa is followed by 

intracellular reduction of V(V) by the high concentration of intracellular reducing agents, and 

are subsequently removed as vanadyl V(IV) ions (Bowman 1983).  

In my recent study, vanadium-resistant bacteria strains also have ability to reduce 

V(V) to V(IV) ions and involve enzymatic mechanism. I detected both V(V) and V(IV) ions 

that exist in intra and extracellular compartment of bacterial cells as well they are also 

detected in supernatant. From this finding, it indicated that there are several possibilities by 

which vanadium accumulated in intracellular compartments (cytoplasm) of bacteria cells. The 

fist possibility is that V(V) ions are firstly reduced to V(IV) in extracellular compartments 

(membrane) and later transported to cytoplasm. In this case, I detected vanadate reductase 

activity which is predominantly exists in membrane fraction. The second possibility is that 

V(V) ions are transported directly from extracellular compartment to cytoplasm by 

transmembrane transporter or by simple diffusion, and later V(V) ions are reduced to V(IV) 

by enzymatic reduction as I also detected in cytoplasmic fraction. The final step, V(IV) ions 

are pumped out of the cell or released to supernatant. In line with these findings, previous 

result of vanadium reduction study in S. cerevisiae revealed that V(IV) and V(V) ions can 

enter the cell through the phosphate transport system, while V(V) ions are reduced thereafter 

to V(IV) by thiols and other reducing agents to takes place in the cytoplasm (Willsky et al. 

1984; Zoroddu et al. 1991; Zoroddu et al. 1996; Zoroddu and Masia 1997). It also indicated 

from data in Fig. 1 that vanadium-resistant bacterial strain significantly could accumulate 

V(V) and V(IV) ions. From an ecological point of view, if accumulation and reduction are 

coupled in bacteria in the ascidian intestine, it may have important consequences in terms of 
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metal mobility in a microenvironment such as the ascidian intestine, where uptake and release 

of vanadium between intestinal bacteria and intestinal cells of ascidians may occur. It might 

be concluded that vanadium-resistant bacterial strain may also contribute indirectly to 

vanadium accumulation and reduction in ascidian by preparing the reduced-V(IV) ions before 

transported to intestinal lumen. 

I also tested the ability of all strains of vanadium-resistant bacteria isolated from A. 

sydneiensis samea to accumulate other heavy metals. All strains exhibited high accumulation 

of Cu(II) and Co(II) ions, but low accumulation of Mo(IV) and Ni(II) ions. However, Cu(II) 

ion accumulation capacities of the bacterial strains were 1.5- and 7-fold lower than those 

reported by Samino et al. (2012) for copper ion accumulation. The bacterial strains identified 

here have safety advantages because they were obtained from a natural habitat. Several strains 

of vanadium-resistant bacteria were also able to remove up to 24% of Co(II) ions, which is 

the first report of cobalt accumulation by intestinal bacteria isolated from an ascidian. 

In conclusion, I identified nine strains of vanadium-resistant bacteria from the 

intestine of the vanadium-rich ascidian A. sydneiensis samea. Two of these strains can 

accumulate high levels of vanadium. Vanadium is primarily accumulated in the intracellular 

compartment. The growth profile and pH dependency of accumulation were characterized. All 

nine bacteria can also accumulate copper and cobalt ions. Therefore, these vanadium-resistant 

bacteria could be used not only for the decontamination of metal-containing wastewater, but 

also to support my hypothesis on their contribution in vanadium accumulation and reduction 

in ascidian animal. 
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IV. General Summary 
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Isolation of microorganisms from heavy metals or vanadium-rich environment are 

recommended for the bioremediation purposes in order to get the candidate of bacterial strains 

having highest resistance to the toxicity of heavy metals ions. In this study, I found that the 

vanadium concentration in the intestine of the vanadium-rich ascidian Ascidia sydneiensis 

samea could reach 0.67 mM, and thus I isolated vanadium-resistant bacteria from the 

intestinal contents and determined the ability of each bacterial strain to accumulate vanadium 

and other heavy metals.  

Nine strains of vanadium-resistant bacteria were successfully isolated, in which five 

strains belong to the genus Vibrio and four to genus Shewanella. Two bacterial strains, 

V-RA-4 and S-RA-6, accumulated vanadium at a higher rate than did the other strains. Further 

characterization of the two bacterial strains revealed that they exhibited good growth in media 

containing various concentrations (200- and 500-μM) of vanadium (V) at an optimal 

temperature of 25°C. The maximum vanadium absorption by these bacteria was achieved at 

pH 3, and intracellular accumulation was the predominant mechanism.  

Each vanadium-resistant bacterial strain also strongly accumulated copper and cobalt 

ions, but accumulation of nickel and molybdate ions was relatively low. These bacterial 

strains can be applied to protocols for bioremediation of vanadium and heavy metal toxicity. 
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