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Abstract

A20 is a negative regulator of NF-kB, and mutational loss of A20 expression is involved in the pathogenesis of autoimmune
diseases and B-cell lymphomas. To clarify the role of A20 in adult hematopoiesis, we generated conditional A20 knockout
mice (A20flox/flox) and crossed them with Mx–1Cre (MxCre+) and ERT2Cre (ERT2Cre+) transgenic mice in which Cre is inducibly
activated by endogenous interferon and exogenous tamoxifen, respectively. A20flox/flox MxCre+ (A20Mx) mice spontaneously
exhibited myeloid proliferation, B cell apoptosis, and anemia with overproduction of pro-inflammatory cytokines. Bone
marrow transplantation demonstrated that these changes were caused by hematopoietic cells. NF-kB was constitutively
activated in A20Mx hematopoietic stem cells (HSCs), which caused enhanced cell cycle entry and impaired repopulating
ability. Tamoxifen stimulation of A20flox/flox ERT2Cre+ (A20ERT2) mice induced fulminant apoptosis and subsequent
myeloproliferation, lymphocytopenia, and progressive anemia with excessive production of pro-inflammatory cytokines, as
observed in A20Mx mice. These results demonstrate that A20 plays essential roles in the homeostasis of adult hematopoiesis
by preventing apoptosis and inflammation. Our findings provide insights into the mechanism underlying A20 dysfunction
and human diseases in which A20 expression is impaired.
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Introduction

NF-kB plays fundamental roles in various physiological and

pathological processes, such as immunity, apoptosis, inflammation,

and cancer [1,2,3]. In an unstimulated state, NF-kB is sequestered

in the cytoplasm by binding to IkB proteins. Upon activation by

external stimuli, IkB proteins are phosphorylated by the IkB
kinase (IKK) complex and then degraded by ubiquitination. NF-

kB is released and translocates to the nucleus where it drives the

expression of target genes [1,2,3].

A20, also known as tumor necrosis factor alpha-induced protein

3 (TNFAIP3), now emerges as a major negative regulator of NF-

kB signaling [4,5]. A20 comprises an ovarian tumor (OTU)

domain at its N-terminus and seven Zn-finger motifs. The OTU

domain is predicted to have deubiquitinating protease activity, and

the Zn finger motifs possess E3 ubiquitin ligase and ubiquitin-

binding activities [4,5]. Thus, A20, acting as a ubiquitin-modifying

protein, may participate in a negative feedback loop controlling

NF-kB signaling [4,5]. The most compelling evidence that A20

plays an essential role in inhibiting inflammation are results of a

gene knockout experiment in which A20 deficient mice prema-

turely died because of severe systemic inflammation and cachexia

[6].

A20 is involved in various human diseases, including hemato-

poietic malignancies. Frequent loss of A20 expression in B-cell

lymphomas caused by biallelic deletions and/or point mutations

[7,8] indicates that A20 functions as a tumor suppressor in the

hematopoietic system. Moreover, single nucleotide polymorphisms

in A20 are associated with autoimmune and inflammatory

diseases, such as systemic lupus erythematosus (SLE) [9,10,11],

rheumatoid arthritis (RA) [12,13], and Crohn’s disease [14].

An approach to determine whether there is a causative

association between A20 mutations and pathogenesis employs

mice to target A20 in a tissue-specific manner. A number of A20

conditional knockout (cKO) mice have been generated for this

purpose. For example, B cell-specific deletion of A20 using a

CD19–Cre transgene results in hyper-responsiveness of B cells and
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causes autoimmune disease similar to SLE [15,16,17]. Deletion of

A20 from dendritic or myeloid cells using CD11c–Cre or LysM–Cre

transgenes, respectively, also induced autoimmune disease. The

former exhibited an SLE-like phenotype [18], and the latter

developed an RA-like disease [19]. Moreover, Villin–Cre transgenic

mice harboring a deletion of A20 from their epithelial intestinal

cells showed susceptibility to dextran sodium sulfate-induced colitis

[20].

Although these studies provide important insights into the role

of A20 as a suppressor of tumorigenesis and autoimmunity, its

role(s) in the normal functioning of the hematopoietic system of

adults remains to be determined. To address this issue, we created

mice in which A20 expression can be inducibly and preferentially

ablated in hematopoietic cells.

Materials and Methods

Mice
The detailed procedures for constructing the targeting vector

and generating the A20flox/flox mice are described in Text S1 (A20

cKO mice have been deposited in RIKEN BioResource Center

(http://www.brc.riken.jp/inf/en/index.shtml, RBRC05494).

A20flox/flox mice were crossed with Mx–1Cre (MxCre+) transgenic

mice [21] and ERT2Cre (ERT2Cre+) transgenic mice (C57BL/6-

Gt(ROSA)26Sortm1(cre/Est1)Arte, purchased from Taconic) to gener-

ate A20flox/flox MxCre+ and A20flox/flox ERT2Cre+ mice, respectively.

Mice backcrossed with the C57BL/6-Ly5.2 background at least

seven times were used here. This study was carried out in strict

accordance with the recommendations in the Guide for the Care

and Use of Laboratory Animals of the Hiroshima University

Animal Research Committee. The protocol was approved by the

Committee on the Ethics of Animal Experiments of the Hiroshima

University (Permit Number: A13-13). All mice were maintained

according to the guidelines of the Institute of Laboratory Animal

Science of Hiroshima University, all surgeries were performed

under sodium pentobarbital anesthesia and all efforts were made

to minimize suffering.

Western Blotting, Flow Cytometry, and Histopathology
Western blotting, flow cytometry, and histopathology were

performed as previously described [22,23,24]. Antibodies and a

staining kit used in these analyses are listed in Table S1.

Measurement of Serum Cytokine Concentration
Concentrations of pro-inflammatory cytokines (TNF-a, IFN-c,

GM-CSF, IL-1b, and IL-6) were measured using a BD Cytometric

Bead Array Flex Set Kit (BD Biosciences, San Diego, CA, USA)

according to the manufacturer’s instructions.

Colony Formation Assay
The colony formation assay was performed as previously

described [25].

Bone Marrow Transplantation (BMT), Competitive
Repopulation, and Cell Cycle Analyses
Transplantation of bone marrow (BM) cells, competitive

repopulation, and short-term BrdU incorporation assays were

performed as previously described [24].

Results

A20 flox/flox MxCre+ Mice Exhibited Severe Inflammation, B
Lymphocyte Apoptosis, and Premature Death
To conditionally ablate A20 function, we generated mice in

which exon 3 of A20 was flanked by two loxP sites (A20flox/flox mice,

Fig. S1A and S1B). To examine the role of A20 in hematopoietic

homeostasis, we crossed A20flox/flox mice with Mx–1Cre transgenic

(MxCre+) mice in which Cre is placed under the control of IFN-

responsiveMx–1 promoter [21]. Lack of A20 expression in A20flox/

flox MxCre+ mice was confirmed by western blotting of spleen

extracts prepared from A20flox/flox MxCre2 and A20flox/flox MxCre+

mice (hereafter referred to as control and A20Mx mice, respectively)

using an anti-A20 antibody (left panel of Fig. S1C).

Although A20Mx mice were apparently normal at birth, they

exhibited spontaneous emaciation and cachexia without stimula-

tion by polyinosinic:polycytidylic acid (pIpC), which is a strong

and transient inducer of IFN, and most mice died within six

months after birth (Fig. 1A). Hematological analysis of moribund

mice revealed anemia, proliferation of myeloid cells, and reduction

of B lymphoid cells in the peripheral blood (PB) (Table S2). The

macroscopic appearance of the mice was uniformly characterized

by massive hepatomegaly and enlarged spleens (indicated by an

arrowhead and an arrow, respectively, in the left panel of Fig. 1B),

which were frequently associated with lymph node (LN) swelling

(Table S2). Pathological analysis revealed infiltration of the lung

and liver by hematopoietic cells (indicated by arrows in the right

top and middle panels of Fig. 1B), formation of granulomas in the

liver (indicated by an arrowhead in the right middle panel of

Fig. 1B), and destruction of spleen architecture caused by the

proliferation of white blood cells (indicated by a white arrowhead

in the right bottom panel of Fig. 1B). Higher magnification of the

spleen showed that the most of the proliferated cells were with

segmented or multi-lobulated nuclei, strongly suggesting that these

cells were of myeloid in origin (indicated by arrowheads in the left

panel of Fig. S2).

We then analyzed the time-dependent changes in hematopoietic

parameters in control and A20Mx mice. The white blood cell count

(WBC), hemoglobin concentration (Hgb), and platelet (Plt)

number in the PB, and the absolute numbers of B lymphoid

(B220+), T lymphoid (Thy1.2+), and myeloid (Mac1+Gr1+) cells in

the PB and spleen were analyzed at three and six months after

birth. Although no significant difference was observed in the WBC

count and Plt number between the two groups, A20Mx mice

exhibited progressive anemia (top panels of Fig. 1C). In addition,

lineage analysis of WBCs in the PB and spleen revealed that the

numbers of myeloid cells were significantly increased, whereas

those of B lymphoid cells were significantly decreased in A20Mx

mice compared with control mice (middle and bottom panels of

Fig. 1C). To clarify the mechanism of B-cell reduction in A20Mx

mice, spleens of A20Mx mice and control littermates were

subjected to and anti-B-cell and TUNEL double staining. As

shown in Fig. S3, a significant portion of B lymphocytes in the

A20Mx spleen was positive for TUNEL, indicating that the B cell

reduction in A20Mx mice was due to apoptosis.

Because A20 inhibits NF-kB signaling and suppresses inflam-

matory pathway activity [4,5], we reasoned that the aforemen-

tioned findings were caused by sustained inflammatory responses.

Therefore, serum concentrations of pro-inflammatory cytokines,

including TNF-a, IFN-c, GM-CSF, IL-1b, and IL-6, were

measured and compared between the two groups. The concen-

trations of these cytokines were higher in A20Mx mice than in

control mice, and those of TNF-a, IFN-c, and GM-CSF were

significantly increased (Fig. 1D). These results indicate that

Role of A20 in the Hematopoietic System
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cytokine-mediated inflammation induced the proliferation of

myeloid cells and other hematopoietic abnormalities, which

subsequently damaged internal organs and eventually caused

premature death of A20Mx mice.

Transfer of the Aberrant A20Mx Hematopoietic
Phenotype to Naı̈ve Mice
To determine the cellular origin of the severe inflammation

observed in A20Mx mice, we performed BMT assays. Mononu-

clear BM cells derived from control and A20Mx mice were

transplanted into lethally irradiated syngeneic recipient mice

(hereafter, mice transplanted with control and A20Mx BM cells are

referred to as control and A20Mx BMT mice, respectively). One

month after BMT, all A20Mx BMT mice became moribund and

were sacrificed to assess hematopoietic and pathological changes.

Macroscopically, A20Mx BMT mice exhibited thymic atrophy and

splenic enlargement (indicated by an arrow and an arrowhead,

respectively, in the right top panel of Fig. 2A). Pathological

analysis revealed marked infiltration of hematopoietic cells in the

lung and liver (right 2nd and 3rd panels of Fig. 2A) and massive

proliferation of the same cell types in the spleen (right bottom

panel of Fig. 2A) of A20 BMT mice. The proliferated cells in the

spleen were with segmented or multi-lobulated nuclei, indicating

that the cells were mature granulocytes, as observed in the A20Mx

spleen (indicated by arrowheads in the right panel of Fig. S2).

Hematopoietic analysis showed an elevated WBC count, reduced

Hgb concentration, and decreased Plt number in A20Mx BMT

mice (top panel of Fig. 2B). Lineage analysis of the PB and spleen

revealed a significant increase in the numbers of myeloid cells and

a significant decrease in the numbers of B and T lymphoid cells in

both tissues (middle and bottom panels of Fig. 2B). The abnormal

phenotypes of A20Mx BMT mice were similar to those of A20Mx

mice, indicating that the inflammatory changes detected in A20Mx

mice were caused by hematopoietic cells.

Impaired Repopulation Ability, Enhanced Cell Cycle
Entry, and Constitutive NF-kB Activation in
Hematopoietic Stem Cells of A20Mx Mice
We then investigated whether the abnormal phenotypes of

A20Mx and A20Mx BMT mice were induced by hematopoietic

stem cells (HSCs). HSCs are usually defined as ‘‘lineage marker

(Lin) 2, Sca-1+ and c-Kit+ (LSK)’’ cells. However, in A20Mx mice,

Figure 1. Analysis of A20Mx mice. (A) Kaplan–Meier survival curves. (B) Macroscopic appearance and pathological images of an A20Mx mouse six
months after birth. In the left panel, the enlarged liver and spleen are indicated by an arrowhead and an arrow, respectively. In the right panel,
infiltrated myeloid cells in the lung and liver, granuloma formation in the liver, and destruction of spleen architecture are indicated by arrows, an
arrowhead, and a white arrowhead, respectively. (C) Time-dependent changes in hematopoietic parameters in the PB and spleen. *p,0.05 and
**p,0.01 (Student’s t-test). (D) Serum concentrations of pro-inflammatory cytokines. *p,0.05 and **p,0.01 (Student’s t-test). 1 below standard
range and out of invertable range.
doi:10.1371/journal.pone.0087425.g001
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this method is not appropriate, since serum concentration of IFN-

c is elevated and the expression level of Sca-1 was reported to be

up-regulated by IFNs [26]. Thus, to isolate HSCs, we used other

markers, ‘‘Lin2, CD482, CD150+’’, called as SLAM-code, which

distinguishes HSCs from progenitor cells [27].

HSCs isolated from control and A20Mx mice (Ly5.2+) were

transplanted into lethally irradiated Ly5.1+ recipients together

with Ly5.1+ BM MNCs as competitors (hereafter the recipient

mice transplanted with control and A20Mx HSCs are referred to as

control and A20Mx HSC BMT mice, respectively). Interestingly, in

contrast that the percentage of Ly5.2+ cells in the PB of control

HSC BMT mice increased after transplantation and accounted for

approximately 40% of WBCs at two months, that of A20Mx HSCs

BMT mice was significantly less and did not reach 10% of WBCs

during the observation period (Fig. 3A). These results indicate

severely impaired repopulating ability of HSCs in A20Mx mice

and suggest abnormal proliferation/differentiation status and cell

cycle kinetics of A20Mx HSCs.

To address this issue, HSCs isolated from control and A20Mx

mice were subjected to cell counting and short-term 5-bromo-29-

deoxyuridine (BrdU) uptake assay. As shown in Fig. 3B, Although

the absolute number of HSCs was considerably decreased in

A20Mx mice as compared to control mice, BrdU uptake by A20Mx

HSCs was significantly higher than that of control HSCs, indicating

that A20Mx HSCs entered the cell cycle at a higher rate.

A20 is a negative regulator of NF-kB [4,5] and NF-kB
activation is detected by its translocation from the cytoplasm to

the nucleus [1,28]. To investigate whether NF-kB activation

underlies the abnormal behaviors of HSCs, the intracellular

localization of NF-kB in HSCs of control and A20Mx mice were

examined by immunofluorescently staining with an anti-NF-kB
antibody. In contrast that NF-kB signals in control HSCs were

mainly observed in the cytoplasm, those in A20Mx HSCs were

significantly detected in the nucleus (Fig. 3C). These results

indicate that NF-kB was constitutively activated in A20Mx HSCs,

which caused increased cell cycle entry, perturbed their stemness

and eventually impaired the repopulating activity.

Rapid Apoptosis and Subsequent Anemia, Myeloid
Proliferation, and Reduced Numbers of Lymphocytes
Induced by Acquired A20 Deficiency in Hematopoietic
Cells
Because the expression of Cre in MxCre+ mice was controlled by

the IFN-responsive element [21], the activity of Cre was very likely

influenced by endogenous IFN. Therefore, we used an ERT2Cre

transgenic (ERT2Cre+) system in which Cre is fused to a mutated

estrogen receptor and can only be activated by exogenously

administered tamoxifen. For this purpose, we crossed A20flox/flox

mice with ERT2Cre+ mice and generated A20flox/flox ERT2Cre+

mice (hereafter referred to as A20ERT2 mice). A20flox/flox

ERT2Cre2 littermates were used as controls. A20ERT2 mice did

Figure 2. Analysis of A20Mx BMT mice. (A) Macroscopic appearance and pathological images of control BMT and A20Mx BMT mice. The atrophic
thymus and enlarged spleen are indicated by an arrow and an arrowhead, respectively. Note the infiltrating hematopoietic cells in the lung and liver
and the destruction of spleen architecture caused by excessive proliferation of myeloid cells in A20Mx BMT mice. (B) Time-dependent changes in
hematopoietic parameters in the PB and spleen. **p,0.01 (Student’s t-test).
doi:10.1371/journal.pone.0087425.g002
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Figure 3. Analysis of HSCs in control and A20Mx mice. (A) The percentages of Ly5.2+ cells in the PB of control and A20Mx BMT mice at 1 and 2
months after BMT are shown. **p,0.01 (Student’s t-test). (B) Cell number and BrdU incorporation in control and A20Mx HSCs. Representative results
of flow cytometry is shown in the left panels and the HSC number and percentage of BrdU-positive cells are shown in the right column. **p,0.01
(Student’s t-test). (C) Intracellular localization of NF-kB in control and A20Mx HSCs. Immunofluorescence staining of NF-kB and percentages of the NF-

Role of A20 in the Hematopoietic System
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not spontaneously develop abnormal phenotypes in contrast to

A20Mx mice. However, after tamoxifen administration, A20ERT2

mice became rapidly moribund, exhibited a marked decrease in

the number of hematopoietic cells and died within several days

(not shown). Macroscopical examinations revealed that the thymus

was atrophic, the spleen was pale, and liver had white spots (not

shown). Pathological analysis revealed that massive apoptosis

occurred in major organs, including hematopoietic tissues such as

the thymus, spleen, liver, and BM (Fig. S4A). Microemboli and

necrotic areas were also observed in the liver (indicated by an

arrow and arrowheads in Fig. S4A), suggesting that the white spots

in the liver were caused by ischemic necrosis. The measurement of

pro-inflammatory cytokines revealed that the concentrations of

these cytokines were higher in A20ERT2 mice than in control mice,

and those of TNF-a, IFN-c, and IL-6 were significantly increased

(Fig. S4B). These results indicate that loss of A20 in adult mice

induced fulminant apoptosis, possibly via rapid elevation of pro-

inflammatory cytokines.

We next investigated the effect of deleting A20 from hemato-

poietic cells by transplanting control and A20ERT2 BM cells into

lethally irradiated syngeneic mice and then administrating

tamoxifen (mice transplanted with A20ERT2 BM cells are

hereafter referred to as A20ERT2 BMT mice). Before tamoxifen

stimulation, the number of transplanted Ly5.2+ cells was

comparably increased in control BMT and A20ERT2 BMT mice,

and there was no significant difference in the values of

hematopoietic parameters between them (not shown). Tamoxifen

was administered eight weeks after transplantation [29] (Fig. 4A),

and two days later, all A20ERT2 BMT mice became moribund

with marked decrease in WBC count and Plt number in the PB (‘‘2

days’’ at top panels of Fig. 4A).

Tamoxifen-treated A20ERT2 BMT mice survived this stage, in

contrast to A20ERT2 mice that died after several days after

tamoxifen administration, probably because there were no severe

apoptotic changes in the non-hematopoietic tissues. Examination

of PB parameters showed that A20ERT2 BMT mice exhibited

progressive anemia, proliferation of myeloid cells, and reduction in

lymphocyte number, particularly that of B cells, as observed in

A20Mx and A20Mx BMT mice (bottom panels of Fig. 4A). The

analysis of the spleen four months after tamoxifen stimulation

showed a marked reduction of B and T lymphocytes and a

significant increase of myeloid cells (Fig. 4B).

To further investigate whether the changes in the hematopoietic

cell population in tamoxifen-treated A20ERT2 BMT mice were

caused by HSCs, competitive repopulation assays were performed.

Unlike to the MxCre system, the ERT2Cre system does not

respond to endogenous IFNs and no hematological abnormalities

were found in the unstimulated state, we used LKS markers to

isolate HSCs. LSK cells isolated from control and A20ERT2 mice

were transplanted to the recipient mice and tamoxifen was

administered 20 days after transplantation [30]. The recipient

mice transplanted with A20ERT2 LSK cells (hereafter referred to

as A20ERT2 LSK BMT mice, Fig. 5A). While control LSK BMT

mice were healthy during the observation period, A20ERT2 LSK

BMT mice became gradually emaciated and were sacrificed at 3.5

months after transplantation. The mice showed thymic atrophy

and splenomegaly (not shown), and hematopoietic analysis

demonstrated anemia and decreased numbers of Ly5.2+ lympho-

cytes in the PB, elevation of myeloid cell number, and reduction of

lymphoid cell numbers in the total and Ly5.2+ fractions of the

spleen (Fig. 5A and 5B). These abnormalities were similar to those

observed in A20ERT2 BMT as well as A20Mx and A20Mx BMT

mice. Therefore, we conclude that the abnormalities observed in

A20ERT2 LSK BMT mice can be primarily attributed to the

HSCs. Moreover, these abnormalities were found not only in the

donor (Ly5.2+) cells but also in the competitor cells (Ly5.1+),

indicating that the changes were propagated by cell–cell contact

and/or humoral factors, such as pro-inflammatory cytokines.

Discussion

A20 plays an essential role in inflammation, immune system,

apoptosis, and tumor suppression [4,5]. The biological roles of

A20 in development and in individual tissues have been analyzed

using A20 KO mice [6] and A20 cKO mice crossed with various

Cre transgenic mice [15,16,17,18,19,20,31], respectively. Howev-

er, to the best of our knowledge, the effect of acquired A20

deficiency on the adult hematopoietic system has not been

reported. To address this issue, we generated A20 cKO mice

and crossed them with two different inducible Cre transgenic

mice; Mx1–Cre and ERT2Cre transgenic mice in which Cre is

activated in response to endogenous IFN or exogenous tamoxifen,

respectively.

A20flox/flox MxCre+ (A20Mx) mice gradually debilitated and died

several months after birth (Fig. 1A) and hematopoietic, patholog-

ical, and serological analyses revealed massive inflammatory

changes in these mice (Fig. 1B–D). These images of the lung

and liver (Fig. 1B), strongly suggest that the mice died of

respiratory failure and/or liver dysfunction due to excessive

infiltration of hematopoietic cells. Because the Mx–1 promoter is

an IFN-responsive element, it is likely that cells that responded to

endogenous IFNs, such as macrophages and lymphocytes, lost the

A20 gene, did not attenuate IFN-mediated signaling, and

continuously produced pro-inflammatory cytokines, which even-

tually caused severe systemic inflammation and premature death.

To determine whether the phenotypes of A20Mx mice could be

primarily attributed to hematopoietic cells, BMT assays were

performed. Mice transplanted with A20Mx BM cells exhibited

abnormal phenotypes similar to those of A20Mx mice, indicating

that these changes were induced by hematopoietic cells (Fig. 2).

We also determined the ability of hematopoietic cells of control and

A20Mx mice to form colonies (Fig. S5). When cultured in vitro with

SCF+IL3+Epo or SCF+IL7, hematopoietic cells from control and

A20Mx mice formed similar numbers of colonies with similar

morphology. Thus, the hematopoietic abnormalities observed in

A20Mx mice were mainly attributed to excessive production of

pro-inflammatory cytokines and systemic inflammation.

To further investigate the effect of A20 deficiency on HSC

activity, we performed competitive repopulation assays in which

Lin2, CD482, CD150+ HSCs cells in control or A20Mx mice

(Ly5.2) were transplanted into recipients with Ly5.1 competitors.

Interestingly, the repopulation ability of A20Mx HSCs was

significantly impaired as compared to that of control HSCs

(Fig. 3A). In addition, BrdU incorporation assays showed an

enhanced proliferative ability of A20Mx HSCs (Fig. 3B). Further-

more, NF-kB was activated in a substantial portion of A20Mx LT-

HSCs as revealed by its presence in the nucleus (Fig. 3C). These

results indicated that the loss of A20 in the hematopoietic system

activated HSCs, entered them into the cell cycle, and eventually

impaired the repopulation ability. Quiescence is an important

kB-positive areas in the cells are shown in the left panels and right column, respectively. Cells in which NF-kB is translocated into the nucleus are
indicated by arrows. **p,0.01 (Student’s t-test).
doi:10.1371/journal.pone.0087425.g003
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Figure 4. Analysis of control and A20ERT2 BMT mice. (A) Time schedule of BMT, tamoxifen ip, blood sampling, and time-dependent changes in
hematopoietic parameters in the PB. **p,0.01 (Student’s t-test). (B) Percentages of Thy1.2+, B220+, and Mac1+/Gr1+ cells in the spleen 4 M after
transplantation. **p,0.01 (Student’s t-test).
doi:10.1371/journal.pone.0087425.g004
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Figure 5. Analysis of control and A20ERT2 LSK BMT mice. (A) Time schedule of BMT, tamoxifen ip, blood sampling, and time-dependent
changes of hematopoietic parameters and percentages of Ly5.2+ cells in the PB. *p,0.05 and **p,0.01 (Student’s t-test). (B) Percentages of different
hematopoietic compartments and the population of Ly5.2+ cells in the spleen 3.5 M after transplantation. **p,0.01 (Student’s t-test).
doi:10.1371/journal.pone.0087425.g005
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characteristic for HSCs to maintain their stemness and engraft-

ment activity. Our findings in this regard are consistent with those

of previous studies demonstrating that cycling HSCs lose its

repopulating ability [32,33,34]. Whether HSCs sense and directly

respond to inflammation is controversial [35,36]. Our results

suggest that HSCs could be a direct target of systemic

inflammation and support the idea that TNF-a and IFN-c are

major regulators of inflammatory responses of HSCs, as

documented in previous studies [34,37].

Next, we used ERT2Cre mice that respond to exogenously

administered tamoxifen but not to endogenous estrogens. As

expected, unlike A20Mx mice, A20ERT2 mice did not exhibit an

abnormal phenotype before tamoxifen stimulation. However,

tamoxifen administration induced rapid death of the A20ERT2

mice, which we attribute to severe apoptosis (Fig. S4). Moreover,

there was a marked decrease in the numbers of hematopoietic cells

in A20ERT2 BMT mice following tamoxifen treatment (Fig. 4).

These results indicate that loss of A20 induces rapid systemic

apoptosis of hematopoietic cells.

The roles of A20 in apoptosis differ among published studies.

For example, certain A20 deficient cells such as fibroblasts,

splenocytes, and enterocytes exhibit enhanced sensitivity to TNF-

a-mediated apoptosis [6,20]. In contrast, re-expressing A20 in A20

deficient lymphoma cells promotes apoptosis [7,8]. These findings

indicate that A20 might play reciprocal roles in cell survival and

cell death, depending on the cell types and cell contexts.

Accordingly, our present results demonstrate that acquired A20

deficiency induces fulminant apoptosis in all cell types, including

hematopoietic cells. This suggests that A20 primarily prevents

apoptosis in adult tissues. There is evidence that the interaction of

A20 with caspase-8 might play a role in this process [38].

The features shared by A20ERT2 and A20ERT2 LSK BMT

included an increase in the number of myeloid cells, a decrease in

the number of lymphocytes, and anemia, and similar to those of

A20Mx and A20Mx BMT mice (Figs. 1, 2, 4, and 5). Thus,

cytokine synthesis by hematopoietic cells that survived the

apoptotic stage was uncontrolled and caused fulminant inflam-

mation. Proliferation of myeloid cells would be a direct effect of

increased production of pro-inflammatory cytokines, and anemia

would be attributed to inflammation-induced impaired erythro-

poiesis as previously described [39]. In contrast, the mechanism

responsible for reducing lymphocyte numbers, particularly those of

B cells, remains to be clarified. Pathological analysis revealed that

B lymphocytes underwent apoptosis in the spleen (Fig. S3), in

contrast to previous reports, which show that in B cell-specific A20

deficient mice, B lymphocytes were hyper-reactive to exogenous

stimuli and resistant to apoptosis [15,16,17]. The mechanism(s)

underlying this discrepancy is unknown. One possibility is that B

cell behaviors in response to A20 deficiency might differ,

depending on the developmental stages at which A20 is deleted

(namely, in B lineage-committed cells or in more primitive cells

including HSCs). Another possibility is that death factor(s) secreted

by systemic inflammation, such as TNF-a might affect lympho-

cytes and induce apoptosis.

The role of A20 in B cell development/differentiation is of

particular interest, because hematopoietic malignancies with A20

mutations are exclusively B lineage lymphomas [7,8]. Mice with

deletions of A20 in the B lineage cells exhibit autoimmune-like

diseases but fail to develop lymphoproliferative disorders

[15,16,17]. Moreover, MALT lymphoma, a subtype of B-cell

lymphoma in which A20 is frequently mutated, originates from

mutated hematopoietic stem–early progenitor cells [40]. There-

fore, A20 function must be abrogated in early progenitor cells to

mimic B-cell lymphomas harboring A20 mutations, as accom-

plished here. However, because apoptosis decreased the number of

B cells in A20Mx and A20ERT2 mice (Figs. S3 and S4), anti-

apoptotic signal(s) might be necessary to exhibit a fully malignant

phenotype. To address this possibility, we are crossing A20Mx

mice with p53 knockout mice to prevent apoptosis, and with CagA

transgenic mice, a model for Helicobactor pylori infection that plays a

pivotal role in the initiation of MALT lymphoma [41].

In summary, we generated mice in which A20 can be inducibly

and preferentially deleted from hematopoietic cells and found that

acquired loss of A20 induced fulminant apoptosis and subsequent

systemic inflammation. Our results demonstrate the essential role

of A20 in the maintenance of adult hematopoietic cell homeostasis

and provide insights into the mechanism responsible for A20

dysfunction and human diseases with A20 mutations.

Supporting Information

Figure S1 Generation of A20 conditional knockout mice.
(A) Targeting strategy. Exon 3 of mouse A20 was floxed and the Frt-

flanked Neo-resistance gene was removed using Flp recombinase.

The positions of a 59 probe for Southern blotting and P1 and P2

primers for 39 genomic PCR analysis are shown. Restriction sites:

Ba, BamHI; Sac, SacI; Stu, StuI; Sal, SalI; Bg, BglII. (B) Southern

blotting and genomic PCR using a 59 probe and 39 primers,

respectively, to detect homologous recombination in two depen-

dent ES clones (#1 and #2). Germline (GL) and targeted allele-

derived bands are indicated by arrows (left panel), and the

recombination-specific PCR product is indicated by an arrowhead

(right panel). (C) Western blotting of A20 expression in A20flox/flox

MxCre+ mice. Proteins extracted from the spleens of LPS-

stimulated A20flox/flox MxCre2 and A20flox/flox MxCre+ mice were

blotted and probed with anti-A20- (upper panel) or anti-b-actin
antibodies (lower panel). The position of A20 is indicated by an

arrow.

(PDF)

Figure S2 Proliferation of mature myeloid cells in the
spleen of A20Mx and A20Mx BMT mice. Higher magnifi-

cation of HE-stained sections of the spleen of A20Mx and A20Mx

BMT mice. Mature myeloid cells with segmented or multi-

lobulated nuclei are indicated by arrowheads.

(PDF)

Figure S3 Apoptosis of B cells. Representative results of

double staining with an anti-B cell antibody and TUNEL in control

and A20Mx spleens (three weeks old). Blue and brown staining

patterns show B and apoptotic cells, respectively. The boxed areas

in the upper panels are magnified in the lower panels.

(PDF)

Figure S4 Analysis of control and A20ERT2 mice. (A) HE-

stained A20ERT2 tissues that show severe apoptosis. Microemboli

and necrotic areas in the liver are indicated by arrowheads and an

arrow, respectively. 1 below standard range and out of invertable

range. (B) Serum concentrations of pro-inflammatory cytokines.

*p,0.05 and **p,0.01 (Student’s t-test). 1 below standard range

and out of invertable range.

(PDF)

Figure S5 Colony formation assay. (A) The colony numbers

generated in the presence of SCF+IL3+Epo, and those generated

with SCF+IL7 are shown. No significant difference was observed

between control and A20Mx mice. (B) Representative images of

colonies. Colonies derived from both types of mice are similar in

size and shape.

(PDF)
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Table S1 Antibodies. All the antibodies used in this study are

listed.

(PDF)

Table S2 Characteristics of A20Mx mice. Hematopoietic

parameters of moribund A20Mx mice are described.

(PDF)

Text S1 Construction of a targeting vector and gener-
ation of A20 knockout mice. Detailed procedure of Construc-

tion of a targeting vector and generation of A20 knockout mice is

described.

(PDF)
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