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To build a supplementary theory from which we can derive a practical way of fostering 

inquiring minds in mathematics, this paper proposes a theoretical perspective that is 

compatible with existing ideas in mathematics education (radical constructivism, social 

constructivism, APOS theory, David Tall’s framework, the framework of embodied cognition, 

new materialist ontologies). We focus on the fact that descriptive and prescriptive statements 

can be treated simultaneously, and consider both descriptive and instantiated models in our 

minds. This indicates that descriptive statements in mathematics come from our descriptions 

of models, and prescriptive statements come from the instantiatedness of the instantiated 

models and non-existence of counterexample. As a practical suggestion from the proposed 

perspective, we point out that careful communication is needed so that students do not 

recognize the refutation of their arguments as a denial of their way of mathematical thinking. 
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Introduction 

Some undergraduate students seem to have only inadequately inquiring minds in 

mathematics, though inquiring minds are vital in continuing to study advanced mathematics. 

For example, a mathematician interviewed by Weber (2012) says, “I find students read a 

proof like they would read a newspaper and it’s impossible to understand proofs that way” (p. 

475). This comment implies that some students tend to accept proofs even before reading 

them, and as a result tend not to obtain the new insights that they would acquire through 

reading them. This is regarded as a “lack of inquiring minds” in this paper. In addition, these 

students also seem to uncritically accept most mathematical statements provided by their 

teachers in mathematics lectures. Following the distinction between a mathematical attitude 

and an attitude toward mathematics (Freudenthal, 1981, pp. 142–143), they lack 

mathematical attitudes, though they may have attitudes toward mathematics. 

This lack of inquiring minds or mathematical attitudes may also be conceptualized as a 

lack of “mathematical integrity,” a quality that involves commitment to mathematical truth 

(DeBellis & Goldin, 2006). To be specific, the phenomenon results from a lack of the 

unconscious belief that the discoverability of new mathematical results or the 

rediscoverability of already known mathematical results is open to everyone. For students 

without this discoverability belief, reading proofs or participating in mathematics lectures is 

not a process of (re)discovering mathematical results, but may instead be just a matter of 

encountering claims dependent on historical contingency, temporary human discourse, or 

authority. Some such students fail to make sense of mathematical statements, while others try 

to construct meanings such that the statements make sense to them. They do not check the 

validity of the statements, because they think that the statements are always correct if they 

only make sense. These students have difficulty in continuing to study mathematics. 

Therefore, in order to obtain practical implications from these cases to support successful 

mathematics learning, we need to identify the origins of discoverability beliefs and 

understand how they influence students. 

For this purpose, it is not enough to explain the origin of one’s discoverability belief as 

one’s successful experience in discovering some mathematical results by oneself. As an 

example of such a successful experience, we may take a kind of sudden insight within 

problem solving, known as an AHA! experience (cf. Liljedahl, 2005). Discoverability beliefs 
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also seem to depend on experiences of such subjective feelings. However, this explanation 

does not clarify the reasons why some students feel as if they have discovered something 

mathematical and others in the same lecture room do not. We may perhaps ascribe 

discoverability beliefs to uncontrollable subjective factors, but such a theoretical perspective 

is not useful for educational practice. For example, in terms of AHA! experiences, Liljedahl 

(2005) pointed out that “the environment for such an experience can be orchestrated, but the 

experience itself cannot” (p. 232). This implies that in order to get practical implications for 

the establishment of an adequate learning environment, we need to identify controllable 

objective factors that increase one’s probability of a successful experience or decrease one’s 

probability of an unsuccessful experience in (re)discovering some mathematical result. 

One possible approach to this problem is the epistemological one. Although new 

mathematical findings may sometimes depend on empirical evidence, establishing the 

validity of mathematical statements does not need empirical support in many cases. What is 

needed to establish mathematical truth is usually just mathematical reasoning. Thus, one’s 

feeling about discovery mainly depends on one’s own process of establishing mathematical 

knowledge. An origin of discoverability beliefs can be supposed to consist in such an 

epistemological process of human mathematical reasoning if mathematical truth does not 

depend on arbitrary human judgments. 

Several epistemological approaches to the process of establishing mathematical 

knowledge exist in mathematics education research, such as radical constructivism 

(Thompson, 2000; von Glasersfeld, 1995), social constructivism (Ernest, 1991, 1998), APOS 

theory (Dubinsky & McDonald, 2002), the three worlds of mathematics (Tall, 2004, 2008, 

2011), embodied cognition (Lakoff & Núñez, 2000), and new materialist ontologies (de 

Freitas & Sinclair, 2013). However, none of these explain how the discoverability belief, or 

whatever its counterpart is in each theory, arises. (Of course, they do provide explanations for 

broader educational phenomena, and their scant attention to discoverability belief is thus 

forgivable, because each theoretical perspective has its own purpose.) 

Thus, in order to obtain practical implications to support successful mathematics learning, 

we need a new supplementary theoretical perspective. As Cobb (2007) argued, “we should 

view the various co-existing perspectives as sources of ideas to be adapted to our purposes”; 

therefore, if the existing paradigms do not provide a direct solution, we must build a 

supplementary perspective integrating useful pieces of existing theoretical knowledge for a 

certain educational purpose. This paper attempts to build such a supplementary theory from 

which we can derive practical implications for the establishment of a learning environment 

where students can eventually acquire inquiring minds. 

Sufficient Conditions of the Supplementary Theory 

It is important to declare what conditions of the supplementary theory will be sufficient 

before trying to establish that supplementary theory. This will provide us with the needed 

constraints on the establishing process. In this regard, we make five assumptions in this 

paper. 

The first assumption is that the objective factors determine uniquely the set of viable 

subjective knowledge. In this paper, we must identify controllable objective factors related to 

discoverability beliefs in the subjective processes of students’ mathematical reasoning. Some 

readers may feel that this attempt is paradoxical because of the attempt to find objective 

factors in subjective processes. However, this paradox disappears if we specify that we are 

using the term “objective” to describe something from the observer’s (e.g., the teacher’s or 

the researcher’s) perspective, and the term “subjective” to describe something from the 

learner’s perspective. In radical constructivist theory, subjective knowledge is to an objective 
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problem what a key is to a lock (von Glasersfeld & Cobb, 1984). Although no single 

particular key can be uniquely determined by the particular lock, the set of usable keys is 

physically uniquely determined by the lock. Similarly, although valid subjective knowledge 

appropriate to solving an objective problem cannot be uniquely determined, we can assume 

that some set of viable subjective knowledge is uniquely determined by the problem. We thus 

establish the possibility of identifying influential objective factors for the viability of 

subjective knowledge, and will try to build a theoretical framework to capture such factors. 

The second assumption is that as a result of students’ use of learning strategies, their 

cognitive development follows David Tall’s theory (Tall, 2008) when they construct new 

mathematical concepts, even when reading proofs or participating in lectures. The theory 

partially incorporates APOS Theory (Dubinsky & McDonald, 2002) and conceptual 

metaphor theory (Lakoff & Núñez, 2000). It explains students’ cognitive transition from the 

earliest pre-school mathematics to graduate mathematics. However, it mainly explains 

successful development (outcomes), and is not directly suggestive for affective aspects such 

as attitudes or beliefs. The framework necessary for our purpose will be one which explains 

how some students autonomously begin to use successful learning strategies, resulting in the 

kind of cognitive development described by Tall’s theory, when reading proofs or 

participating in lectures. This explanation will elaborate an origin for discoverability beliefs. 

The third assumption is that we can compare the degrees of freedom of the solutions to a 

certain objective problem with those of an equivalent problem. Following the first 

assumption, for any problem for any student, the set of viable subjective knowledge for 

solving the problem is unique, but we cannot predict which knowledge in the set will actually 

survive or vie for survival, because many accidental factors influence the student. On the 

other hand, even if two problems are objectively equivalent, it is not necessarily warranted 

that two problems are subjectively similar to each other. If this third assumption holds, we 

can choose one among the equivalent problems, which will increases the probability that the 

intended knowledge actually vies. This paper will build a theory satisfying the third 

assumption. 

The fourth assumption is that the patterns of mathematical reasoning are common among 

students but that their consequences can differ because accidental factors cause students to 

arbitrarily arrange the patterns in their reasoning processes. This assumption is, albeit 

indirectly, supported by the existing research. For example, Nesher (1987) indicates that 

“most [misconceptions] are overgeneralizations of previously learned, limited knowledge 

which is now wrongly applied” (p. 37). Even unsuccessful students with misconceptions, as 

well as successful students, have some mathematical attitude toward generalization of their 

subjective knowledge. Another example is from the research on concept images. According 

to Tall and Vinner (1981), students have their own subjective images of each concept; some 

students successfully use concept images (Pinto & Tall, 2002) and others use them 

unsuccessfully (Tall & Vinner, 1981; Vinner & Dreyfus, 1989). However, both successful 

and unsuccessful mathematical thinking have some aspects in common. As a radical 

extrapolation from this fact, we make the forth assumption: if some pattern of mathematical 

reasoning is appropriately modeled, the process of loss of discoverability beliefs related to it 

can be explained in terms of the following four steps. First, all students use common patterns 

of mathematical reasoning in early learning. Second, however, due to accidental factors, 

some students fail to learn mathematics, in spite of the fact that their learning strategies are 

the same as those of successful students. Third, unsuccessful students mistakenly perceive 

that the reason why they failed is because they are using inadequate learning strategies. 

Finally, as a result, they eventually lose their discoverability beliefs and do not come to use 

successful learning strategies. Therefore, our theoretical framework must provide an 
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appropriate model of human mathematical reasoning. One of the practical goals of the 

framework will be to help students correctly recognize the validity of their initial learning 

strategies, because it is difficult to completely remove accidental factors. 

The final assumption is that successful experience of mathematical discovery depends 

mainly on mathematical reasoning, though some types of mathematical discovery may 

depend on physical evidence. If this assumption does not hold, we will not be able to 

understand why the validity of mathematical knowledge depends mainly on reasoning. On 

the other hand, this assumption implies that mathematical reasoning must have some 

prescriptive aspects. One example of such is that if the propositions � → � and � are true, 

then the proposition � should be true. If students do not perceive this prescriptive proposition 

from their mathematical reasoning, then they will not have experienced mathematical 

discovery. 

On the basis of these five assumptions, the main research task of this paper is to model 

the common patterns of human mathematical reasoning. The model must satisfy the 

following four sufficient conditions. First, it must identify the factors influencing the degrees 

of freedom of the solutions to a problem. Second, the model must explain how higher degrees 

of freedom tend to produce more accidental factors. Third, the model shows that the 

mechanisms of both successful and unsuccessful reasoning are the same except for the 

tendency to accept the influence of accidental factors. Finally, the model explains that a 

certain type of arrangement of reasoning patterns causes students to feel the presence of 

prescriptiveness in the knowledge at stake. 

In the following section, we will discuss the dual aspects of mathematical reasoning: 

prescription and description. Through the elaboration of both aspects, we will eventually 

succeed in modeling a mathematical reasoning that can satisfy the above conditions. 

Duality of Prescription and Description 

Ernest (1998) pointed out the limitations of prescriptive accounts of mathematics: 
Absolutist philosophies of mathematics such as logicism, formalism, and intuitionism attempt 

to provide prescriptive accounts of the nature of mathematics. Such accounts are 

programmatic, legislating how mathematics should be understood, rather than providing 

accurately descriptive accounts of the nature of mathematics. Thus they are failing to account 

for mathematics as it is, in the hope of fulfilling their vision of how it should be. (pp. 50-51, 

italics in the original) 

Thus, Ernest’s (1998) social constructivism takes a descriptive stance. It provides no account 

of which way of doing mathematics is correct, but rather describes how people do 

mathematics. Other existing research perspectives for mathematics education also take 

descriptive stances. They provide no account of which method of understanding mathematics 

is correct, but merely explain how students do mathematics. However, the preceding 

discussion is based on the following implicit assumption: we must exclusively choose 

prescriptive or descriptive philosophies. Both the prescriptive statement “X should be Y” and 

the descriptive statement “X is Y” can be simultaneously correct. 

For example, consider a group �,∗ . Suppose that � is a set, and that ∗ is a binary 

operation on �. The group axioms are as follows: (i) For all �, � in �, � ∗ � is also in �. (ii) 

For all �, � and � in �, � ∗ � ∗ � = � ∗ � ∗ � . (iii) There exists an element � in � such that, 

for every element � in �, the equation � ∗ � = � ∗ � = � holds. (iv) For each � in �, there 

exists an element � in � such that � ∗ � = � ∗ � = �, where � is the element defined in axiom 

(iii). From these axioms, we can derive the statement that the element � postulated in (iii) is 

unique, and we will say that � postulated in (iii) should be unique if someone argues that 

there are many elements postulated in (iii). In this case, both statements (involving “is” and 

“should be”) appear correct. This is explained by distinguishing between in and out of the 
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axiomatic system. The statement that the element �  postulated in (iii) is unique is a 

description of components in the system. The statement that the element � postulated in (iii) 

should be unique (or, more strictly, the statement that we should argue that � postulated in 

(iii) is unique) is a prescription for us who are out of the system. It is important that the 

element � (or the entity in the system) is not itself bound by the rules of logic, but that all 

thinking subjects who are out of the system and agree on the group axioms have an obligation 

to obey some logical inference rules. 

In general, a descriptive statement in an axiomatic system and the corresponding 

prescriptive statement out of the system can be simultaneously correct, because we can 

always distinguish between in and out of the given system. It is, therefore, an unjustifiable 

assumption that we cannot simultaneously consider both prescription and description. If we 

have the ability to self-reflect, and to distinguish between the outside of an axiomatic system 

and the overall framework that contains the inside and the outside of the system, then 

prescriptive statements and descriptive statements are dual properties of the overall 

framework. In addition, it is also important that humans out of the system are prescribed, and 

the entities in the system are described at the same time. 

Origin of Prescription 

If our reasoning always followed the rules of formal logic, the discoverability belief 

would be justified by the independence between these rules and human minds. In general, it 

is difficult to describe the actual practices of mathematics only by formal logic (e.g., Fallis, 

2003). Thus, we argue that the schemata of descriptions actually prescribe human reasoning. 

The schema of descriptions is, for example, the format of implication statements “� → �.” 

We do not assume that it pre-existed the modus ponens. Rather, we argue that modus ponens 

pre-existed the schema “� → �,” and that the schema was invented to describe a situation 

where one may infer � after knowing that � is true. Given the propositions � and � → �, we 

usually deduce proposition � for any propositions � and �. This does not imply the validity 

of modus ponens, but implies that there can be a situation where one may infer � after 

knowing that � is true. Similarly, the rule of conjecture elimination (inferring � from � ∧ �) 

pre-existed the schema “ � ∧ �,” and the rule of universal instantiation (inferring � �  for 

any element � from ∀� � � ) pre-existed the schema “∀� � � .” In general, an inference 

rule pre-existed its related schema. Thus, what one should infer depends on how one 

describes a given situation, and not on formal logic. 

From this perspective, it is necessary to identify what determines a valid description of 

the situation. Next, we shift to the question of how descriptive statements arise. 

Origin of Description 

In mathematics, some descriptive statements are contained within the axioms of the 

system under consideration, but even in advanced mathematics, we do not always think in 

completely formalized systems. We propose that, instead, descriptive statements originate 

from models in our minds. In the present paper, the term model has a dual meaning. In this 

regard, Mason’s (1989) idea is highly suggestive. According to Mason (1989), mathematical 

abstraction is described as “a delicate shift of attention from seeing an expression as an 

expression of generality, to seeing the expression as an object or property” (p. 2, italics in the 

original). Using the idea of “a shift of attention,” we will show the dual meaning of “model.” 

One meaning is “something that a copy can be based on because it is an … example of its 

type” (“Model,” n.d.-a). We call this an instantiated model. For example, the set of all 

integers, together with the operation +, is an instantiated model of a group in our minds, 

because it is a typical example of a group. With this in our minds, we can easily understand 
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any example of a group by analogy. We can also show that the set of all integers with the 

operation + is an instantiated model satisfying the group axioms. Similarly, because the 

experience of typicality can depend on subjective experiences, any example of a group can be 

an instantiated model. As it has not only the essential features of a group, but also non-

essential ones, it has more information than a group as an abstract object without any non-

essential features of a group. In general, an instantiated model satisfies a certain set of axioms, 

and carries more information than an abstract object without any properties which the axioms 

do not imply. A set of axioms do not have to be commonly accepted. Arbitrary logical 

expressions may be axioms. If a set of axioms is consistent, there exists at least one 

instantiated model for them. 

Another meaning of the term “model” is “something that represents another thing … as a 

simple description that can be used in calculations” (“Model,” n.d.-b). We call this a 

descriptive model. For example, a line in mathematics may be regarded as a descriptive 

model of a physical line, such as that made by a pencil, in our minds. A line in mathematics is 

defined by focusing attention on only some of the features of a physical line. It is a result of 

neglecting uninteresting features that. While a physical line does have width, we usually 

require in mathematics that a line have no width. In general, a descriptive model is created by 

focusing attention on only some of the features of other descriptive models or physical 

objects. Such a temporal creation is then refined with certain provisos (e.g., “it has no width”). 

The provisos prevent us from focusing attention on uninteresting features of the source 

descriptive models or objects. 

Most relevant here is the relativity between instantiatedness and descriptiveness. That is, 

when we focus attention on some essential features of an instantiated model, the abstract 

object constrained by the logical expressions of those features is a descriptive model of the 

instantiated model. When we create a new object by adding some extra features to an abstract 

object that is a descriptive model, the new object is an instantiated model of the descriptive 

model. In other words, any model in our minds can always be both instantiated and 

descriptive. Any model other than a physical object is an instantiated model of more abstract 

models or objects, and it is simultaneously a descriptive model of more concrete models or 

objects. The relativity between instantiatedness and descriptiveness allows us to dispense 

with the distinction between the terms “model” and “object.” In this sense, both terms may be 

used interchangeably, because every model can become an object of thought, and vice versa. 

By using the term “model,” one of the predominant origins of descriptive statements in 

mathematics can be explained as descriptions of models in our minds. We will provide two 

examples: the fundamental theorem of cyclic groups, and the construction of an equilateral 

triangle. Let us explain their possible models, for example, in the author’s mind. 

The fundamental theorem of cyclic groups: The theorem states that every subgroup of a 

cyclic group is cyclic. Let �  be a cyclic group generated by �. Following the definition of a 

cyclic group, �  simply consists of ⋯ ,�!!,�!!, �,�,�!,⋯; there is no other element in � . 

If a subgroup of �  has � different elements, they can be represented by �!! ,�!! ,⋯ ,�!!. 

From the group axioms, the subgroup contains �!"# !!,!!,⋯,!! , and �!"# !!,!!,⋯,!!  generates 

all elements in the subgroup. Thus, the theorem seems to be true. 

This way of creating descriptions of models in our minds implies various prescriptions. 

For example, when someone says that �  might not contain �, the author should argue that 

�  always contains � because �  is an example of a group. As another example, when 

someone points out that the order of a subgroup of �  is not always finite, the author should 

recognize that an example of a subgroup of �  in his mind is too specific. 

The construction of an equilateral triangle on a given line segment: Let �� be the given 

line segment. Draw a semicircle with center � and radius ��. Again, draw a semicircle with 
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center � and radius �� on the same side as the first semicircle. Let �  be the point of 

intersection of the semicircles. Then, the triangle ��� is equilateral. This is because the 

semicircles centered at � and � have radii of equal length, and all three segments ��, ��, 

and �� are the length of their radii. Thus, the construction seems to be valid. 

There are also various prescriptions in this case. For example, when someone says that 

the three edges ��, ��, and �� are not always equal, the author should argue that they are 

always equal, for the following reason. The point � is regarded as our instantiated model of 

the points on the semicircles � and �; the pairs ��, �� and ��, �� are regarded as our 

instantiated models of equivalent radii, and the lengths of ��, ��, and �� are regarded as 

our instantiated models of the transitivity rule. As another example, if someone points out 

that the author’s consideration depends on the belief that the two semicircles always intersect 

with each other, he should recognize that his consideration depends on a visual representation. 

Generally speaking, descriptive statements of some mathematical objects are created by 

accessing their models in human minds, and then describing these models. Given an 

axiomatic system (that is, a descriptive model), one creates an instantiated model of the given 

descriptive model in mind. Creating a descriptive statement in the system is creating a 

descriptive model of the current model in mind. There are two types of creation. One creates 

a description of a common property among all the instantiated models of the given 

descriptive model. The other creates a description of a property satisfied by only a particular 

instantiated model of the given descriptive model. If one mistakenly argues something based 

on the latter type, and someone points this out, then one should recognize the mistake (for 

example, that an example of a subgroup of �  is too specific, or the consideration of an 

equilateral triangle depends on a visual representation). Descriptive statements in 

mathematics, therefore, can come from descriptions of models in our minds, and prescriptive 

statements can come from the instantiatedness of the instantiated models and non-existence 

of counterexamples. From this perspective, the reason why proofs and refutations (Lakatos, 

1976) occur in the history of mathematics might be because humans (including 

mathematicians) sometimes create a description of a property satisfied by only a particular 

instantiated model of the given descriptive model. 

Conclusion 

In order to obtain the practical implications to support successful mathematics learning, 

especially with regard to discoverability, the author attempts to build a model of 

mathematical reasoning from a new theoretical perspective, presupposing the presence of 

mental models in the human mind. This paper asserts that strictly two types of mathematical 

reasoning exist, involving either the creation of instantiated or descriptive models from the 

mind’s present model. 

This proposed model of mathematical reasoning satisfies the four conditions presented in 

the second section. First, a factor influencing the degree of freedom in solving a problem 

lacks sufficient constraints to ignore non-essential features. For example, student 

overgeneralization of certain mathematical topics can be attributed to the creation of 

descriptive models focusing on their non-essential features. In other cases, student 

misjudgment might be attributable to an overly specific mathematical concept image caused 

by the creation of instantiated models with additional non-essential features. 

Second, if a learning environment permits students to focus on non-essential features, the 

probability of invalid mathematical reasoning will increase. The third vital property for 

successful reasoning entails focusing solely on the essential features that educators wish to 

teach; in contrast, unsuccessful reasoning is typified by a focus on non-essential features. 

318 17th Annual Conference on Research in Undergraduate Mathematics Education



Finally, students who focus entirely on essential features will feel a sense of 

prescriptiveness. If a descriptive model of a common property among all instantiated models 

of a current mental model is created, prescriptiveness arises from subjective non-falsifiability. 

Discoverability beliefs originate from the repeated exposure of non-existent counterexamples. 

As a practical suggestion from the proposed perspective, we point out that students might 

lose the discoverability belief if they recognize the refutation of their argument as a denial of 

their way of mathematical thinking. What the refutation actually denies might not be their 

attitude toward creating an instantiated model of the given descriptive model, but only the 

particular instantiated model contingently created at that time. If creating an instantiated 

model and describing it is an essential process of mathematics, a chain of reasoning means a 

chain of creating instantiated models or descriptive models of the already-created models. 

Then, many chains of reasoning are not deductive. If a student seems to mistakenly make a 

non-deductive chain of reasoning, the teacher should carefully communicate with the student, 

and try to recognize which chain would make such a conclusion. Otherwise, proofs and 

refutations do not work well as a social construction of mathematical knowledge in 

classrooms, and intersubjectivity cannot be established. In particular, it seems to be important 

for the teacher to pay attention not only to the student’s conclusion but also to their attitude 

toward developing new findings in order to foster inquiring minds in mathematics. This 

teacher’s attention can be one of controllable objective factors that increase one’s probability 

of a successful experience or decrease one’s probability of an unsuccessful experience in 

(re)discovering some mathematical result. 

There are at least two limitations of the proposed perspective. First, it is still not clear 

whether it is completely compatible with each existing research perspective. Second, the 

above practical suggestion is still based on assumptions whose validity is not always 

warranted (for example, whether reasoning always means creating models). The suggestion 

describes only a possible situation in classrooms. Further development of our theoretical 

framework in this regard provides an avenue for future research. 
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