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Abstract

The purpose of the study was to investigate the accuracy of two corrected intraocular pressure

(IOP) measurements by Corvis Scheimpflug Technology (CST)-IOPpachy and by corneal-

compensated IOP (IOPcc) using the Reichert 7CR (7CR) tonometers. We also investigated

the effects of corneal anatomical and structural parameters on the IOP measurements. The

participants included 90 primary open-angle glaucoma patients. We assessed the IOP mea-

surements, obtained by the CST, 7CR, and Goldmann applanation tonometer (GAT), using a

paired t-test with Bonferroni correction, Bland-Altman plots, and multiple regression analyses.

The 7CR-IOPcc gave the highest value (15.5 ± 2.7 mmHg), followed by the 7CR-IOPg (13.7 ±
3.1 mmHg), GAT-IOP (13.6 ± 2.2 mmHg), CST-IOP (10.3 ± 2.6 mmHg), and CST-IOPpachy

(9.7 ± 2.5 mmHg). The values of CST-IOPpachy were significantly lower than those obtained

by the other IOP measurement methods (all, p < 0.01). The values of 7CR-IOPcc were signifi-

cantly higher than those obtained by the other IOP measurement methods (all, p < 0.01).

Bland-Altman plots showed a mean difference between the GAT-IOP and the other IOP mea-

surements (CST-IOP, CST-IOPpachy, 7CR-IOPg, and 7CR-IOPcc), which were −3.20, −3.82,

0.14, and 2.00 mmHg, respectively. The widths of the 95% limits of agreement between all

pairs of IOP measurements were greater than 3 mmHg. With the exception of the 7CR-IOPcc,

all of the IOP variations were explained by regression coefficients involving gender, average

corneal curvature, and central corneal thickness. The IOP values obtained by the GAT, CST,

and 7CR were not interchangeable. Each new IOP measurement device that was corrected

for ocular structure had its own limitations.

Introduction

Intraocular pressure (IOP) is a fundamental parameter in every ophthalmic examination, and

it is of critical importance in the management of patients with glaucoma. It is therefore impor-

tant to accurately assess the IOP of glaucoma patients. The ideal tonometer should be accurate,

and yield reproducible results that are minimally influenced by corneal properties. The
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Goldmann applanation tonometer (GAT) has several excellent characteristics, including high

accuracy and high reproducibility [1, 2], and it is presently the clinical standard for IOP mea-

surements. However, corneal biomechanical properties, including the central corneal thick-

ness (CCT), influence IOP measurements when using this device [3–5].

More recently, numerous novel devices have been introduced to measure the IOP without

being affected by ocular biomechanical parameters, such as CCT and aging. These include the

Corvis Scheimpflug Technology (CST; Oculus, Wetzlar, Germany), the Ocular Response Ana-

lyzer (ORA; Reichert, Delpew, NY, USA), and the Reichert 7CR (7CR; Reichert). Table 1 lists a

comparison of these instruments. These devices measure IOP based on corneal deformation

information in response to an air impulse. In brief, they apply a precisely metered collimated

air impulse to the corneal apex. The air impulse causes the cornea to move inwards. When the

pressure of the air puff decreases, the cornea gradually returns to its normal configuration.

The 7CR and ORA measure the intensity of the reflected infrared light from the deforming

corneal surface. The signal intensity of the reflected infrared light is strongest when the appla-

nated corneal surface is flat. In contrast, the Corvis-ST Scheimpflug imaging system scans a

larger surface and is a more accurate determination of the corneal deformation process. This

system records the deformation process with 4,330 Scheimpflug images per second and can

detect Scheimpflug images of the applanation of the cornea. The 7CR and ORA evaluate the

IOP based on the inward and outward applanation points. The IOP readings are calculated

using the average of the inward and outward applanation powers, which is called the Gold-

mann-correlated IOP (IOPg) and is calibrated to correspond with the GAT-IOP values. The

algorithm-modified difference between the inward and outward applanations is then used

to further adjust the IOP measurements weakly associated with corneal viscoelastic proper-

ties and thickness; these values are referred to as the corneal corrected IOP (IOPcc) [6].

The IOP measurement using the CST is based only on the inward applanation point, and is

called the CST-IOP; it does not consider the CCT. However, a recent software update for

the CST used a correction formula [corrected IOP = measured IOP + k − age (550 − CCT)]

to correct the CST-IOP, called CST-IOPpachy, based on the patient’s CCT and age. The cor-

neal biomechanical properties should theoretically have less influence on the IOPcc and

CST-IOPpachy readings.

Unfortunately, the ORA device was not available in Japan during the study period, so we

compared the IOP measurements obtained by the CST, 7CR, and GAT in glaucoma patients.

Of particular interest were the differences between the IOPcc (corneal compensated IOP using

the 7CR) and IOPpachy (CCT and the aging corrected IOP using the CST). The effects of vary-

ing anatomical structures on the IOP measurements obtained by the three tonometers were

also assessed.

Table 1. Product comparison.

Corvis Scheimpflug Technology

(CST)

Ocular Response Analyzer (ORA)Reichert 7CR

(7CR)

What causes the applanation of the cornea? Air impulse Air impulse

What is used to detect the applanation of the cornea? 4,330 Scheimpflug images per second The signal intensity of the reflected infrared light

What is used to calculate the IOP values? Inward applanation points Inward and outward applanation points

Non-corrected IOP CST-IOP Goldmann-correlated IOP (IOPg)

Corrected IOP CST-IOPpachy Corneal corrected IOP (IOPcc)

What factors are weakly associated with the corrected

IOP?

Central corneal thickness and age Corneal viscoelastic properties and thickness

IOP, intraocular pressure; CST, Corvis Scheimpflug Technology.

doi:10.1371/journal.pone.0170206.t001

Corvis ST and Reichert 7CR
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Materials and Methods

This study was a prospective, comparative analyses of IOP measurements obtained from the

right eye of primary open-angle glaucoma (POAG) patients. The Hiroshima University Hospi-

tal’s institutional review board approved the study. With IRB permission, waivers of consent

for prospective chart review were obtained based on an explanation of the implications of such

activities, listed on a poster in the waiting rooms. In addition, it was registered with the Uni-

versity Hospital Medical Network (UMIN) clinical trials registry. The registration title was

“Intercomparison analysis of factors obtained from corneal biomechanical parameters mea-

surements having different measuring principles” and the registration number was JPRN-U-

MIN000016623. All of the study methods adhered to the tenets of the Declaration of Helsinki.

The Department of Ophthalmology of Hiroshima University Hospital recruited 90 partici-

pants with POAG, from September 2014 to March 2015.

The exclusion criteria included: corneal pathological conditions that could affect the mea-

surement of the IOP; a refractive error� −6.00 diopters (D) equivalent sphere, and corneal

astigmatism� 3.00 D; a history of refractive, corneal, or incisional glaucoma surgery; second-

ary glaucoma; any visual field loss due to non-glaucomatous pathology (including retinal,

optic nerve, or visual pathway disorders); low quality Scheimpflug images (indicated in red or

yellow) that could not be automatically analyzed; and 7CR measurements with a waveform

score < 7.0.

All patients underwent a full ophthalmic examination that included measurement of the

spherical equivalent refraction and the corneal curvature (KR-8001; Topcon Corporation,

Tokyo, Japan), the CCT (CASIA1; TOMEY Corporation, Aichi, Japan), and the axial length

of the eye (IOL master1; Carl Zeiss Meditec AG, Jena, Germany). The average corneal curva-

ture was calculated as the average of the horizontal and vertical corneal curvatures. The instru-

ments used for the IOP measurements were two newly developed noncontact tonometers

(CST and 7CR) and a clinical standard tonometer (GAT). During a single visit, the IOP was

measured three times with each device by an experienced clinicians between 10:00 and 17:00

hours, with the patient in the sitting position. In all cases, the IOP measurements using the

7CR and CST were obtained in a randomized order, by the same clinicians with a 5-minute

interval separating each device. Following these measurements, the subject was instructed to

sit down, and a clinician masked the 7CR and CST results. After approximately 30 minutes for

data masking, topical anesthesia consisting of 0.4% oxybuprocaine hydrochloride and fluores-

cein staining was applied, and then the ophthalmologist measured the IOP using the GAT.

We compared the IOP measurements by five methods using multiple comparisons. The

sample size estimates were based on the standard deviation of the differences between IOPs

(2.5 mmHg); minimal clinically important difference (1.0 mmHg); significance level (0.05);

and power (80%). The estimated sample size was therefore 88 eyes.

Statistical analysis

The data were expressed as the mean ± standard deviation (SD). Inter-device differences were

evaluated using the repeated measures ANOVA and a paired t-test with Bonferroni correction.

The 95% limits of agreement (LOA) between methods (the mean difference ± 1.96 SD contained

95% of the inter-method differences) was evaluated by Bland-Altman plots, which also assessed

simultaneous visual examinations for both fixed bias (any systematic difference between the

measurements) and proportional bias (any relationship of the discrepancies between the mea-

surements and the averaged IOP value). We used univariate regression models to study patient

parameters (gender, age, spherical equivalent, average corneal curvature, axial length, and CCT)

that might be associated with the IOP measurements obtained by each of the three tonometers.

Corvis ST and Reichert 7CR
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Subsequently, all subset and stepwise multivariate regression analyses were used to construct

models that best identified the parameters that were independently associated with these IOP

measurements. For the potential collinearity problem, we utilized the variance inflation factor

(VIF). VIF showed the variance inflation factor for each term in the model. A VIF> 5.0 indi-

cated a collinearity issue among the terms in the multivariate regression analyses. P values<

0.05 were considered to indicate statistical significance. The statistical analyses were performed

using JMP1, version 11.2.1 (SAS Institute Inc., Cary, NC, USA) and R, version 2.8.1 software.

Results

Table 2 summarizes the demographic data. The CST, 7CR, and GAT were used to measure the

IOP of the right eyes of 99 participants. The CST, 7CR, and GAT successfully measured the

IOP in 90 eyes. For the CST and 7CR measurements, high quality Scheimpflug images were

obtained in 95 eyes of the participants (96.0%) and waveform scores� 7.0 were obtained in 93

eyes of the participants (94.0%). Therefore, further analyses used 90 eyes of 90 participants [40

female and 50 male, all eyes on anti-glaucoma medication, including 71 eyes on F2a-prosta-

glandin (PG) analogues].

Fig 1 shows a comparison of the mean IOP of three measurements obtained by the different

devices. Overall, the 7CR-IOPcc measurements resulted in the highest values [15.5 ± 2.7 mmHg

(mean ± SD)], followed by 7CR-IOPg (13.7 ± 3.1 mmHg), GAT-IOP (13.6 ± 2.2 mmHg), CST-

IOP (10.3 ± 2.6 mmHg), and CST-IOPpachy (9.7 ± 2.5 mmHg). A repeated measures ANOVA

showed that there was a significant difference between the IOP measurements (all, p<0.001).

Using the paired t-test with Bonferroni correction, CST-IOPpachy showed significantly lower

values than CST-IOP (p< 0.001), and both the CST-IOPpachy and CST-IOP values were signifi-

cantly lower than the values from GAT-IOP, 7CR-IOPg, and 7CR-IOPcc (all, p< 0.001). The

7CR-IOPcc showed significantly higher values than the CST-IOPpachy, CST-IOP, GAT-IOP,

and 7CR-IOPg (all, p< 0.001); however, there were no significant differences between the

7CR-IOPg and GAT-IOP (p = 0.52).

Fig 2 shows Bland-Altman plots showing the agreement between the IOP measurements.

Fig 2A shows a comparison between the CST-IOP and GAT-IOP. The mean difference was

−3.20 mmHg. The 95% LOA was the narrowest at 3.43 mmHg. A fixed bias was present, but

we did not detect a proportional bias (r2 = 0.04; p = 0.07). Fig 2B shows the results of a compar-

ison between the CST-IOPpachy and GAT-IOP. The mean difference was −3.82 mmHg, and

the 95% LOA was 3.67 mmHg. We identified a fixed bias, but did not detect any proportional

bias (r2 = 0.03; p = 0.14). Fig 2C shows a comparison between the 7CR-IOPg and GAT-IOP.

The mean difference was 0.14 mmHg, and the 95% LOA was 4.05 mmHg. We did not detect a

fixed bias, but we identified a weak proportional bias (r2 = 0.20; p< 0.001). Fig 2D shows a

Table 2. Characteristics of primary open-angle glaucoma patients (n = 90).

Characteristic Mean ± SD Range

Age (year) 61.94 ± 11.35 30.8–82.0

Gender (female/male) 40/50

Spherical equivalent (diopter) -2.00 ± 1.66 -5.6–1.4

Average corneal curvature (mm) 7.72 ± 0.27 7.1–8.5

Axial length (mm) 25.22 ± 1.62 22.1–28.7

Central corneal thickness (μm) 524.43 ± 31.22 446–617

SD, standard deviation.

doi:10.1371/journal.pone.0170206.t002

Corvis ST and Reichert 7CR
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comparison between the 7CR-IOPcc and GAT-IOP. The mean difference was 2.00 mmHg.

This comparison resulted in the widest 95% LOA (4.42 mmHg). In addition, we identified

both a fixed and very weak proportional biases (r2 = 0.05; p = 0.03).

Fig 1. A comparison of mean IOP of three measurements using five methods. There were mean IOP of

three measurements by each method on each patient (n = 90). The IOP values are plotted as the mean ±
standard deviation. IOP, intraocular pressure; CST-IOP, IOP using the Corvis ST; CST-IOPpachy, corrected

CST-IOP; GAT-IOP, IOP using the Goldmann applanation tonometer; 7CR-IOPg, Goldmann-correlated IOP

using the 7CR tonometer; 7CR-IOPcc, corneal-compensated IOP using the 7CR tonometer.

doi:10.1371/journal.pone.0170206.g001

Fig 2. Bland-Altman plots for inter-method differences. A, The differences between the CST-IOP and

GAT-IOP. B, The difference between the CST-IOPpachy and GAT-IOP. C, The difference between the 7CR-

IOPg and GAT-IOP. D, The difference between the 7CR-IOPcc and GAT-IOP. The mean values and 95% LOA

are indicated by bold lines and solid lines, respectively. IOP, intraocular pressure; CST-IOP, IOP using the

Corvis ST; CST-IOPpachy, corrected CST-IOP; GAT-IOP, IOP using the Goldmann applanation tonometer;

7CR-IOPg, Goldmann-correlated IOP using the 7CR tonometer; 7CR-IOPcc, corneal-compensated IOP using

the 7CR tonometer; CI, confidence interval; LOA, limits of agreement.

doi:10.1371/journal.pone.0170206.g002

Corvis ST and Reichert 7CR
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Using univariate regression analyses, gender, average corneal curvature, and CCT each

were associated with the IOP in at least one of the IOP measurements (Table 3). We used step-

wise multivariate regression analyses to adjust for the interactions between variables. We

found that the average corneal curvature (β = −2.56; p = 0.009) independently influenced the

CST-IOPpachy measurement, and the average corneal curvature (β = −2.67; p = 0.004) and

CCT (β = 0.03; p< 0.001) independently influenced the CST-IOP measurement. Gender (β =

0.52; p = 0.03) influenced the GAT-IOP measurement, and CCT (β = 0.03; p = 0.005) influ-

enced the 7CR-IOPg measurement. None of these factors influenced the 7CR-IOPcc measure-

ment. We found that all the VIFs in identified factors in the stepwise multivariate regression

analysis were 1.0.

Discussion

Comparison of the five IOP measurements

The relationships between the IOP measurements were as follows. The CST-IOPpachy values

were lower than the CST-IOP values. Both the CST-IOPpachy and CST-IOP values were sig-

nificantly lower than the other IOP values. The GAT-IOP values were equal to the 7CR-IOPg

values. The 7CR-IOPcc values were the highest of the five IOP readings.

Some previously reported CST-IOP measurements were higher than the GAT-IOP mea-

surements [7–10] and other studies reported that the CST-IOP was similar to [11] or was

lower than [12] the GAT-IOP. Previous comparisons between the CST-IOP and GAT-IOP

were controversial [7–12]. The CST-IOPpachy was designed to reduce the effect of the CCT

and aging. In our results, the CST-IOPpachy values (which consider CCT) were lower than the

Table 3. The results of univariate and multiple regression analyses: Factors independently associated with the intraocular pressure measure-

ments (β, p, VIF).

IOP measurements

Independent variables

CST-IOPpachy CST-IOP GAT-IOP 7CR-IOPg 7CR-IOPcc

β p VIF β p VIF β p VIF β p VIF β p VIF

Univariate regression analysis

Sex (female) 0.32 0.229 0.55 0.045 0.61 0.010 0.72 0.029 0.35 0.227

Age (year) -0.02 0.367 -0.02 0.482 -0.02 0.282 -0.02 0.454 0.00 0.980

Spherical equivalent (diopter) -0.01 0.935 0.00 0.989 -0.06 0.665 0.08 0.691 0.16 0.365

Average corneal curvature (mm) -2.34 0.015 -2.40 0.015 -1.32 0.129 -1.13 0.351 -0.11 0.920

Axial length (mm) -0.18 0.280 -0.18 0.285 -0.10 0.506 -0.17 0.404 -0.14 0.438

Central corneal thickness (μm) 0.00 0.708 0.03 0.002 0.02 0.025 0.03 0.001 0.01 0.529

Stepwise multivariate regression analysis

Sex (female/male) 0.52 0.027 1.0 0.53 0.098 1.0

Age (year) -0.03 0.173 1.0

Spherical equivalent (diopter)

Average corneal curvature (mm) -2.56 0.009 1.0 -2.67 0.004 1.0

Axial length (mm)

Central corneal thickness (μm) 0.03 0.001 1.0 0.01 0.071 1.0 0.03 0.005 1.0

P values < 0.05 are shown in bold.

VIF, variance inflation factor (VIF > 5.0 indicates a collinearity issue); IOP, intraocular pressure; CST-IOP indicates the IOP using the Corvis ST;

CST-IOPpachy, corrected CST-IOP; GAT-IOP, IOP using the Goldmann applanation tonometer; 7CR-IOPg, Goldmann-correlated IOP as measured by the

7CR tonometer; 7CR-IOPcc, corneal-compensated IOP as measured by the 7CR tonometer.

doi:10.1371/journal.pone.0170206.t003

Corvis ST and Reichert 7CR
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CST-IOP values, and univariate and stepwise multivariate regression analyses indicated that

the CST-IOPpachy values were calibrated to eliminate the CCT effect. These results suggested

to us that our patients had a thick cornea. However, their CCT (524 ± 31.2 μm) was similar to

the average CCT (518 ± 29 μm) of Japanese POAG patients [13]. The exact reason for this dif-

ference between the CST-IOPpachy and the CST-IOP values is unknown.

In our study, there was no significant difference between the GAT-IOP and 7CR-IOPg

measurements. We hypothesize that the IOPg was designed to give the closest IOP measure-

ment, as was the GAT.

Vincent et al. [14]and Gungor et al. [15]reported that the 7CR-IOPcc values were approxi-

mately 2 mmHg higher than the GAT-IOP values. Our results are consistent with their previous

results. The reason may be that glaucoma patients were treated with glaucoma medications,

such as PG analogues, which induced a mild decrease in the CCT [16]. The GAT-IOP value

could be influenced by the decreased CCT and be lower than the true IOP value in these

patients.

Because the CST-IOPpachy was designed to reduce the effect of the CCT, the values would

be expected to be higher than the CST-IOP and GAT-IOP values when assuming a PG ana-

logue effect. However, the CST-IOPpachy values were lower than the CST-IOP or GAT-IOP

values. The PG analogue effect on CCT therefore cannot explain the IOP reading differences

among the tonometers. The exact reason for this discrepancy is unknown; however, differ-

ences in the detection ability of the tonometers in flat applanated conditions might account for

this discrepancy.

Agreement between the two corrected IOP measurements and the

GAT-IOP

Many previous reports [9, 10, 14, 15, 17, 18] have compared the GAT-IOP with the IOPcc, but

no reports have shown good agreement between these two parameters. In the present study, we

compared the GAT-IOP and 7CR-IOPcc measurements, and the GAT-IOP and CST-IOPpachy

measurements. We found that the mean difference between the two corrected IOP measure-

ments (7CR-IOPcc and CST-IOPpachy) and the GAT-IOP were 2.00 and −3.82 mmHg, with

95% LOA widths of 4.42 and 3.67 mmHg, respectively. Fixed biases were identified between the

two corrected IOP measurements and the GAT-IOP measurements. Proportional biases were

identified between the 7CR-IOPcc and GAT-IOP measurements, but not between the CST-IOP-

pachy and GAT-IOP measurements. Based on these results, the CST-IOPpachy and 7CR-IOPcc

devices were not interchangeable with respect to the GAT.

The effects of anatomical and structural factors on IOP measurements

Many previous reports used regression analyses to investigate the relationships of IOP mea-

surements using the CST and ORA to measure anatomical and structural parameters such as

the CCT [7–9, 11, 12, 18, 19], corneal curvature [9, 11, 18, 19], spherical equivalent [9], and

axial length [11, 18]. In the present study, we used stepwise multivariate regression analyses to

comprehensively analyze the anatomical and structural factors that affected IOP measure-

ments. We found that gender, the CCT, and the corneal curvature were significant factors.

Gender (β = 0.52; p = 0.03) was associated with the GAT-IOP; the GAT-IOP of females was

higher than that of males. We could not find studies that reported whether gender influenced

the accuracy of IOP measurements. Ocular rigidity is a parameter that influences the ability to

measure the true IOP [20]. The corneal structure and rigidity exhibit sexual dimorphism [21,

22]. Nakakura et al. [23] measured the amount of corneal displacement by photographing the

corneal profile at 5,000 frames/s (1 frame/0.2 ms) with a high-speed camera during noncontact

Corvis ST and Reichert 7CR
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tonometry. They reported that the age-related reduction in corneal rigidity was greater in

females than in males.

The CCT did not affect the CST-IOPpachy and 7CR-IOPcc values in this study, because

these values were calibrated to eliminate the CCT effect. In contrast, the corneal curvature

affected the CST-IOPpachy (β = −2.56; p = 0.009) and CST-IOP (β = −2.67; p = 0.004) values.

Liu et al. [24] reported that a steeper curvature had a more significant impact on the accuracy of

IOP measurements than a flatter curvature, and that IOP readings increased as the corneal cur-

vature decreased. The corneal curvature did not affect the GAT-IOP (β = −1.32; p = 0.1293)

readings. Mark [25] previously reported that the corneal curvature affected the GAT readings.

However, Kohlhaas et al. [26] and Francis et al. [27] recently reported a lack of correlation

between the IOP readings and the corneal curvature. Although the corneal curvature may affect

the GAT-IOP readings, this effect would be marginal in comparison with the effect of the CCT.

Age-related changes of the collagen framework may affect ocular tonometry by changes in

corneal biomechanical properties [28]. This possibility suggested to us that there was a signifi-

cant positive correlation between age and IOP measurements. However, previous reports [12,

29, 30] and our results contradicted this hypothesis. Although the CST uses a correction for-

mula to correct the CST-IOP based on the patient’s CCT and age, further studies are required

to determine whether it is more useful to correct for the corneal curvature and the CCT.

Using stepwise multivariate regression analysis, there was no high VIF, indicating that

there was no collinearity problem among the terms in the model.

The reliability of the CST and 7CR measurements

In our study, the IOP was successfully measured using CST in 96.0% and using 7CR in 94.0%

of the patients, respectively. These results suggested that each device had a high success rate

measurement, but the success rate measurement using the CST was better than that of the

7CR. Several studies utilized an intraclass correlation coefficient (ICC) to evaluate the reliabil-

ity of the CST-IOP and IOPcc measurements. They found that the ICC of the CST-IOP was

very good [7, 11, 12, 31] and the ICC of the IOPcc was good to very good [32–34]. We suggest

the reason was due to the presence or absence of an eye monitor during tonometry. In our

experience, some patients were startled by the first of three measurements on the same eye.

The patient’s eye was sometimes unable to fix on the fixation point, which caused alignment

problems. Using the CST, the operator could obtain information about the patient’s condition

by using an observation monitor. In addition, the monitor helped to align the center position

between the center positioning mark and the center of the pupil. In contrast, the timing of the

measurement and the position alignment were automatically controlled using the 7CR. There

was no observation monitor, thus the operator could not obtain information about the patient’s

condition. Automated timing of the measurement and position alignment system without an

observation monitor can enhance usability and make IOP measurements easier for the opera-

tor, but this system sometimes reflects the potential disadvantages in reliability of the 7CR

measurements.

The advantages and disadvantages of the CST and 7CR

The CST device initially only evaluated the CST-IOP. Subsequently, an updated CST software

program, the corrected IOP measurement, as CST-IOPpachy, based on the patient’s CCT and

age was added. However, our results showed that the CST-IOPpachy still did not measure

accurate levels of the IOP, because the CST-IOPpachy was affected by corneal biomechanical

properties such as the corneal curvature. The CST device is constantly being improved, so a

better device should soon be available. In contrast, the 7CR device measured the correct IOP,

Corvis ST and Reichert 7CR
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as IOPcc, based on the patient’s corneal viscoelastic properties and thickness. Thus, IOPcc

could be useful in the prognosis after refractive surgery [35–37]. However, there was no obser-

vation monitor in the 7CR, so the operator could not obtain information about the patient’s

condition, and the measurements were sometimes not reliable.

Our study involved some limitations. First, we only included glaucoma participants treated

with glaucoma medications in our comparison of the three tonometers. These patients gener-

ally were treated with glaucoma medications, which induce mild changes in corneal structure

and other properties [16]. Consequently, the corneal structure of glaucoma patients may differ

from that of patients without treatment. This also suggests that our results may not be applica-

ble to patients without glaucoma. Because glaucoma medications reduce elevated IOP, the IOP

measured in our glaucoma patients were within the normal range, so our results may not be

applicable in patients with a higher IOP. Second, Bolivar et al. [38] reported that treatment

with PG analogues might have an effect on corneal hysteresis. Unfortunately, the 7CR tonome-

ter does not consider corneal hysteresis, so we could not analyze the relationship between cor-

neal hysteresis and IOP measurements. Third, we evaluated the CST and 7CR devices in

comparison with the GAT, using GAT as a clinical standard. However, the GAT-IOP does not

provide the correct IOP, and it is still not known which IOP measurement is closest to the true

value.

Conclusions

Measurements of the IOP by the CST-IOPpachy were lower than the GAT-IOP measure-

ments, and those of the 7CR-IOPcc were consistently higher than those of the GAT-IOP. The

IOP values obtained by these three tonometers were not interchangeable. CST-IOPpachy mea-

surements were affected by the corneal curvature, and the CCT and corneal curvature did not

affect the 7CR-IOPcc readings. IOP measurements using the 7CR-IOPcc or CST-IOPpachy

corrected for ocular structures, but were associated with their own limitations.

Supporting Information

S1 Table. All relevant data. The data of the right eyes of 90 participants.

(XLSX)
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