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Abstract

Time reversal (T) violation is investigated through B physics. We utilize observables in the

process of Υ(4S) → BB̄, which are measurable in B factory experiments. Due to Einstein-

Podolsky-Rosen entanglement, the correlated information about BB̄ is available.

In this thesis, we introduce methodology to gain observables which are sensitive to T vio-

lation. The phenomenon of neutral meson mixing enables us to test discrete symmetries. The

event rates of two processes, B− → B̄0 and B̄0 → B− (− implies a CP eigenvalue), are utilized.

These processes are apparently related with flipping time direction so that the event number

difference of the processes seems to be a T violating quantity. However, it turns out that the

observables are not exact T violating quantities since a genuine time reversed process is unob-

served in the experiments.

We construct time reversal-like asymmetries which consist of the event number difference

for the mixing processes of B meson. One can clarify how the asymmetries behave under T

transformation to demonstrate that the observable is not precisely a T violating quantity. The

overall factors of the time dependent decay rates are taken into account in this thesis. The

effect of mixing-induced CP violation in K meson system is extracted, which yields O(10−3)

contribution to an observable. Some combinations of the asymmetry enable us to constrain

parameters for wrong sign decay of B meson, which is suppressed in the standard model. As

a probe of physics beyound the standard model, CPT violation is testable via B0 − B̄0 mixing

observables. The constraints on BSM are obtained through the precise measurement in the

experiments. Furthermore, we suggest conditions for the asymmetry to be a T-odd quantity.

One of such conditions arises due to the difference of overall factors which form the asymmetry.
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Chapter 1

Introduction

The standard model (SM), which unifies weak and electromagnetic interactions [1–3], is a

successful model that is consistent with most phenomena observed in experiments. All the

elementary particles contained in the SM have been found after the discovery of Higgs boson

[4–6] at the Large Hadron Collider (LHC) experiment [7, 8]. The gauge symmetry based on

invariance under SU(3)c× SU(2)L×U(1)Y transformation leads to comprehensive description

of fundamental interactions.

However, the SM cannot explain several facts which are observed in experiments. One of

such issues is the origin of neutrino mass. Although neutrinos are massless in the SM, the

experimental results of neutrino oscillation [9, 10] demonstrated non-zero mass. Another issue

is the hierarchical structure of fermion mass. The observed mass spectra for quarks imply large

gaps, which require unnatural fine-tuning of theoretical parameters. To resolve these issues, the

SM needs its extension; models of physics beyond the standard model (BSM) are constructed

for certain motivation. In this context, a phenomenological evidence of BSM is worth pursuing

so that the experimental searches for a signal of BSM are extensively conducted.

To check the validity of a theory, discrete symmetries, which represent characteristic prop-

erties of the model, are tested in experiments. Such symmetries are based on the following

discrete transformations:

• Charge conjugation (C), which interchanges particle and its anti-particle.

• Parity (P) transformation, which flips the sign of spacial coordinates.

• CP transformation, based on a combined operation of C and P transformation.

• Time reversal (T) transformation, interchanging an initial state and a final state.

• CPT transformation, based on a combined operation of CP and T transformation.
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Chapter 1 Introduction

Provided that Lorentz invariance and Hermiticity are satisfied in local quantum field theory,

CPT symmetry must be conserved (CPT theorem [11,12]). Consequently, the SM should satisfy

CPT invariance. (CPT violating extension of the SM is suggested in Ref. [13].)

To understand what CPT theorem ensures, let us consider a CP conserving theory. This

case is depicted as follows:

CP CPT

conserved conserved

In this context, the T symmetric property is fixed in the following way:

CP T CPT

conserved conserved conserved

As shown above, T symmetry is required to conserve. Likewise, if we consider a CP violating

theory, T symmetry is determined:

CP T CPT

violated violated conserved

Hence, T symmetry should be violated in association with CP violation. In this sense, T

symmetry is automatically connected with CP symmetry under the presence of CPT invariance.

No clear evidence of CPT violation has been observed in experiments [14,15].

As originally suggested in Ref. [16], CP symmetry is violated through weak interaction in

the three-generation standard model. In the quark [17,18] sector, CP violation is caused by an

irreducible phase in Cabibbo-Kobayashi-Maskawa (CKM) [16, 19] mixing matrix, which char-

acterizes the flavor changing interaction in the charged current. In this sense, the measurement

of flavor changing processes are of particular importance to observe CP violation.

It is well-known that quarks are confined [20] inside hadrons so that we cannot directly

observe the interior particles. A bound state for quark and anti-quark is referred to as a

meson, which enables us to study physics in the quark sector. Therefore, phenomenology of

CP violation in the quark sector is discussed in weak decays of hadrons. For typical mesons,

the properties including their quantum numbers are shown in Tab. 1.1.
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Chapter 1 Introduction

Table 1.1: Properties of neutral mesons. In the second row, contained quarks which form a bound
state are exhibited. From the third to fifth row, quantum numbers of strangeness, beauty and spin-
parity are shown, respectively.

meson K0 K̄0 B0 B̄0 Bs B̄s ψ Υ(nS)

quark s̄d sd̄ b̄d bd̄ b̄s bs̄ cc̄ bb̄

S +1 −1 0 0 −1 +1 0 0

B 0 0 +1 −1 +1 −1 0 0

JP 0− 0− 0− 0− 0− 0− 1− 1−

As an experimental consequence for non-invariance of discrete symmetries, parity violation

[21] in weak interaction was detected through beta decays of nuclei [22]. Afterward, CP violation

in KL → 2π decay was first discovered in 1964 [23]. Furthermore, the evidences of CP violation

in K meson decay have been also verified in the experiments [24–27]. Subsequently, the result

[28, 29] of the B factory experiments confirmed large CP violation [30] which is predicted

in the SM. The flavor factories have also verified CP violation in B0 → K+π− [31, 32] and

B0 → ρπ [33, 34] decays. The result of the phenomenological analysis [35] demonstrates that

the measured CP violating phenomena [36] are consistent with the prediction of the theory,

which characterizes one of the most successful aspects of the SM.

Since the presence of CP violation is firmly clarified, T symmetry is expected to be violated

due to the CPT theorem. Crosschecking the CP violation and T violation, one can get infor-

mation about whether CPT symmetry is violated. In this sense, the experimental observation

of T violation provides a method to investigate BSM.

To discuss a phenomenological search for T violation, let us denote a probability of the

transition as P [i → j], where i and j indicate some (multi)particle state. Since time reversal

flips the direction of time, T symmetry is characterized in the following relations:P [i→ j] = P [j → i] (T symmetry is conserved.)

P [i→ j] 6= P [j → i] (T symmetry is violated.)

Consequently, the difference of the probabilities is a probe of T violation, i.e.,

P [i→ j]− P [j → i] ∝ (T violation). (1.1)

As shown above, one should prepare the transition probabilities for both i → j and j → i to
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Chapter 1 Introduction

measure the evidence of T violation.

Although the experimental confirmation of CP violation is well-established, the measure-

ment of time reversed processes is still a difficult task. Consider B0 → ψKS and its time

reversed process ψKS → B0. Since ψ −KS collision is not available in B factory experiments,

the process for ψKS → B0 is an undetectable mode.

For the purpose to measure CP and/or T violation in the quark sector, neutral meson mixing

is a particularly important phenomenon. Neutral meson such as K0 = (s̄d), is changed into

K̄0 = (sd̄), due to weak interaction. As a consequence of this phenomenon, the transition from

meson to anti-meson occurs through time evolution, e.g., K0 ↔ K̄0, B0 ↔ B̄0 and B0
s ↔ B̄0

s ,

where Schrödinger equation is applicable to the description of the mixing system.

In the CPLEAR experiment, K meson system is utilized to investigate T violation. The

experiment is conducted by proton-antiproton collision to produce kaons through a process of

strong interaction:

pp̄ −→

K+π−K̄0

K−π+K0
(1.2)

The kaons produced above are utilized to measure time dependent process rates of K0 → K̄0

and K̄0 → K0 [39]. These processes are related under the discrete transformations in the

following way:

K0 → K̄0 K0 → K̄0

CP

~ww� T

~ww�
K̄0 → K0 K̄0 → K0

As shown above, these processes are related with both CP and T transformation. Thus, if the

transition probability of K0 → K̄0 is different from one for K̄0 → K0, it implies both T violation

and CP violation. The measurement of the CPLEAR collaboration in Ref. [40] indicates that

non-zero time integrated asymmetry is observed, which results in the first demonstration of

T violation. However, this result was not surprising since CP violation in K meson system

had been already observed; to extract a T violating observable which is distinguished from CP

violation, these processes are irrelevant modes.

To experimentally identify flavor contents of B mesons, the following experimental method

is implemented: If B → l+X decay is measured, where X represents some accompanying

particles, the decaying particle is identified as B0 since B̄0 → l+X is suppressed due to the

∆B = ∆Q rule in the SM. In this sense, the state l+X can filter the flavor content of B0 = (b̄d).
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Chapter 1 Introduction

Likewise, one can identify B̄0 = (bd̄) if the final state is l−X. This method is so-called flavor

tagging [37], which is broadly implemented in B factory experiments to observe B0 and B̄0.

As another tagging method, CP tagging [38] enables us to identify CP eigenvalues of B

meson. If a final state is a CP eigenstate, the decaying particle is filtered as a state which has

the same CP value. The final state is taken as ψKS(L), which is a CP-odd (even) eigenstate in

the limit where KS(L) is a CP eigenstate. Consequently, if a B → ψKS decay is observed, the

decaying particle is identified as B−, where − stands for a CP eigenvalue.

In the B factory experiments such as BaBar and Belle, e+e− collision is utilized to produce

B mesons in the following process,

e+e− → Υ(4S)→ BB̄, (1.3)

where Υ(4S) is a spin-1 bottomonium resonance. Imposed by Bose statistics, the created pair

of B mesons should be a coherent state. In this context, Einstein-Podolsky-Rosen (EPR) entan-

glement [41] enables us to extract the correlated information about BB̄. As a consequence, if

one B0 is filtered by the flavor tagging, another one in a pair of BB̄ is determined as B̄0, which

is a state orthogonal to B0. In this way, a time dependent process B̄0 → B0 is measurable

in B factories. The same identification method applies to CP eigenstate B mesons. If B± is

filtered by the CP tagging, the B meson on the opposite side is identified as B∓ state at the

same time. Thus, one can measure the time dependent process for B− → B+ and B− → B̄0,

etc. The implementation of flavor-identification is sketched in Fig. 1.0.1 while the extraction

of CP eigenstate B meson is depicted in Fig. 1.0.2
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Υ(4S)

l+

X

B0

B̄0

Figure 1.0.1: Flavor-identification in entangled system of BB̄. On the upper side, B0 is filtered by
implementing the flavor tagging. B meson on the lower side is determined as B̄0 at the same time.

Υ(4S)

KL

ψ

B+

B−

Figure 1.0.2: Identification of a CP eigenvalue in entangled system of BB̄. On the upper side, CP
eigenvalue of B meson is filtered through the CP value of the final state. B meson on the lower side
is determined as B− at the same time.
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As an experimental check of T violation in the B factory experiment, the difference of the

event rate for B0 → B̄0 and B̄0 → B0 are measured by the BaBar collaboration [42]. These

mixing processes are related under discrete transformations in the following:

B0 → B̄0 B0 → B̄0

CP

~ww� T

~ww�
B̄0 → B0 B̄0 → B0

As depicted above, the processes are connected with both CP and T transformation. Therefore,

the difference of the transition probability for B0 → B̄0 and one for B̄0 → B0 signals both CP

violation and T violation. In the BaBar experiment [42], non-zero asymmetry was observed to

demonstrate T violation in B physics. As analogous to the context of the CPLEAR experiment,

the T violating result was not surprising since CP violation had been already measured in the

B factory experiments.

To observe T violation distinguished from CP violation, methodology is suggested in Ref.

[43], further discussed in Refs. [44–48] and reviewed in Ref. [49]. Their idea is based on mixing

processes of B meson for B− → B̄0 and B̄0 → B−, where B− is a CP-odd eigenstate. These

processes are related under discrete transformations in the following:

B̄0 → B− B̄0 → B−

not CP
�
�
��C
C
CC

~ww� T

~ww�
B− → B̄0 B− → B̄0

As one can see above, these two processes are not related with CP transformation. If the

transition probability for B̄0 → B− is different from one for B− → B̄0, it apparently implies T

violation which is distinguished from CP violation. Following this idea, the BaBar collaboration

reported [50] that they measured non-zero asymmetry. In this sense, the principle aim to

measure T violation has been accomplished in the processes which are not related with CP

transformation. (See review in the literature [51].)

However, it is suspicious that the measurement of the BaBar collaboration exactly indicates

T violation. In Ref. [52], it is pointed out that there exist subtleties in the BaBar measurement

since an inverse decay, a genuine time reversed process such as l+X → B0, is not observed in

the experiment. In their study, the BaBar observables are written in terms of an expression

which includes inverse decay amplitudes to clarify how the asymmetry is deviated from a T-odd

quantity. They demonstrated that BaBar asymmetry is identical to a T-odd quantity if and
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only if the following conditions are satisfied (these conditions are derived by assuming that

ψKS and ψKL are exact CP eigenstates):

(1) the absence of the wrong sign semi-leptonic B meson decays

(2) the absence of the wrong strangeness B meson decays

(3) the absence of CPT violation in the strangeness changing decays

Under the presence of wrong sign decay amplitudes of B̄0 → l+X and/or B0 → l−X, which

violate the ∆B = ∆Q rule, the final state l+X does not tell us exact information about the

flavor content of B meson. In this sense, the wrong sign semi-leptonic decay amplitude gives

rise to uncertainty to the flavor taggings. Such careful argument of T violation is discussed in

Refs. [53–56] for K meson system.

In this thesis, we analyze the time dependent asymmetry of the processes for B̄0 → B−

and B− → B̄0. Our investigation is the extension of the work in Ref. [52], incorporating the

difference of overall constants for the rates that form the asymmetry. The contribution from

CP and CPT violation in K meson mixing is taken into account. The asymmetry is written in

terms of parameters which are independent of redefinition of phases of quarks. We specify how

the asymmetries behave under T, CP and CPT transformation. It is shown that T conserving

terms also contribute to the observables although the original idea suggested a way to extract

T violation. Furthermore, in the latter part of this thesis, we show that some combinations of

the observables enable us to extract theoretical parameters of interest, e.g., wrong sign decay

amplitudes of B meson. CPT violating parameters are also extracted from the observables,

as investigated in B meson system in Refs. [57–59]. Our formulation is applicable to the

measurement in a future experiment, such as Belle II, which is expected to collect 50ab−1 data

sample. As a final remark in this thesis, we discuss the T conserving parts of the asymmetry.

One can find that the asymmetry is a T violating quantity when several conditions are satisfied.

This thesis is organized as follows: In Chap. 2, the system of neutral meson mixing is

briefly introduced. The time dependence of B0 and B̄0 states is derived in the simplified

description governed by the Weisskopf-Wigner approximation [60]. In Chap. 3, we discuss a

time dependent decay rate in entangled B meson system. The time dependent asymmetry is

defined to gain observables which are sensitive to non-invariance of the discrete symmetries. In

Chap. 4, we define theoretical parameters to express the asymmetry. In our notation, one can

argue unambiguous discrete transformation properties of the observables. The relation between

the notation in Ref. [52] and ours is also discussed. It turns out that the defined parameters

are phase convention independent quantities. The contribution from indirect CP violation in

K meson system is extracted. In Chap. 5, the event number asymmetry is analyzed in terms
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of the parameters defined in Chap. 4. We show that the constructed asymmetry consists of not

only the T-odd part but also T-even part. In Secs. 5.1-5.3, some parameters of interest, which

include CPT violation and wrong sign decay amplitude, are extracted from the observables. In

Chap. 6, we suggest the conditions that T-even parts of the asymmetry vanish. As an extension

of the discussion in Ref. [52], we suggest the intuitive reason why these conditions are imposed.

These conditions are categorized as two types: The first one requires the B meson state, which

appears in the diagram of B− → B̄0, being equivalent to a state in the genuine time reversed

process. The second condition accounts overall constant which forms the asymmetry. We find

that the second condition is needed when one takes account of the difference of overall constant

of the two rates. Chapter 7 is devoted to summary and future prospects.

This thesis is based on the published paper [61] and proceedings [62].
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Chapter 2

Neutral Meson Mixing

In this chapter, the system of neutral meson mixing is introduced. Such mixing phenomenon

occurs through weak interaction. The time evolution of the mixing system is governed by

Schrödinger equation [63]. The formulation of the neutral meson mixing is found in the liter-

ature [64–74]. In the following, the system for the B0B̄0 is addressed. The states for neutral

meson are transformed under CP as,

CP |B0〉 = − |B̄0〉 , CP |B̄0〉 = − |B0〉 , (2.1)

where flavor-definite states are denoted as |B0〉 and |B̄0〉. Hereafter, we adopt simplified for-

malism [60,75] for the system in which the wave function is given as,

|ψ(t)〉 = c1(t) |B0〉+ c2(t) |B0〉 . (2.2)

The time dependence of wave function for neutral mesons is described by the differential equa-

tion,

i
d

dt
|ψ(t)〉 = H |ψ(t)〉 , (2.3)

H = M − i

2
Γ =

M11 −
i

2
Γ11 M12 −

i

2
Γ12

M∗
12 −

i

2
Γ∗12 M22 −

i

2
Γ22

 , (2.4)

where t denotes proper-time for neutral mesons. Hamiltonian in Eq. (2.4) is given as a non-

Hermitian matrix to account decay of B0B̄0 system. In Eq. (2.4), M and Γ are Hermitian

matrices which stand for off-shell and on-shell intermediate states, respectively. The diagonal

part in Hamiltonian, i.e., Hii(i = 1, 2), expresses the transitions of B0 → B0 and B̄0 → B̄0

while the off-diagonal part given as Hij(i 6= j) is associated with the transitions of B0 ↔ B̄0.

10



Chapter 2 Neutral Meson Mixing

The discrete symmetries relate the matrix element,

M11 = M22, Γ11 = Γ22. (CPT limit) (2.5)

In the following, the formulation including CPT violation [52] is adopted. Effective Hamiltonian

in Eq. (2.4) is diagonalized as,

X−1HX = diag(ωH , ωL), X =

(
p
√

1 + z p
√

1− z
−q
√

1− z q
√

1 + z

)
, (2.6)

where ωH and ωL denote complex eigenvalues of Hamiltonian,

ωH(L) = MH(L) −
i

2
ΓH(L). (2.7)

We introduce parameters of the eigenvalues,

∆m = MH −ML, ∆Γ = ΓH − ΓL, (2.8)

m =
MH +ML

2
, Γ =

ΓH + ΓL
2

. (2.9)

The above eigenvalues are written in terms of the matrix elements of effective Hamiltonian. In

particular, the squared difference of the eigenvalues satisfies,

(ωH − ωL)2 =

[
(M11 −M22)− i

2
(Γ11 − Γ22)

]2

+ 4

(
M12 −

i

2
Γ12

)(
M∗

12 −
i

2
Γ∗12

)
. (2.10)

The real and imaginary parts in the above equation lead to relations,

(∆M)2 − 1

4
(∆Γ)2 = 4|M12|2 − |Γ12|2 + (M11 −M22)2 − 1

4
(Γ11 − Γ22)2, (2.11)

∆M∆Γ = 4Re(M12Γ∗12) + (M11 −M22)(Γ11 − Γ22). (2.12)

Furthermore, the mixing parameters are written in terms of the matrix element of effective

Hamiltonian,

(
p

q

)2

=
M12 −

i

2
Γ12

M∗
12 −

i

2
Γ∗12

, (2.13)

z = −
M11 −M22 −

i

2
(Γ11 − Γ22)

∆m− i

2
∆Γ

. (2.14)
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As shown in Eq. (2.14), z implies CPT violation in mixing since M11 − M22 (or Γ11 − Γ22)

vanishes in the CPT limit. For Bd system, the experimental constraint on z is obtained by the

BaBar collaboration [76]. In the following, we consider the system in which the incoming mass

eigenstates are given as,

|Bin
L 〉 = p

√
1− z |B0〉+ q

√
1 + z |B̄0〉 , (2.15)

|Bin
H〉 = p

√
1 + z |B0〉 − q

√
1− z |B̄0〉 . (2.16)

In the above equations, the state of BL (BH) is associated with a lighter (heavier) mass eigen-

state. As solution of Schrödinger equation, time evolution of the mass eigenstates is,

|BH(L)(t)〉 = e−iωH(L)t |BH(L)(0)〉 . (2.17)

For an initial condition for the system, we take pure eigenstates for strong interaction, setting,

|B0(0)〉 = |B0〉 , |B̄0(0)〉 = |B̄0〉 . (2.18)

In this circumstance, the time evolution of the definite flavor states is determined as,(
|B0(t)〉
|B̄0(t)〉

)
= Xdiag(e−iωH t, e−iωLt)X−1

(
|B0〉
|B̄0〉

)
, (2.19)

or, equivalently,

|B0(t)〉 = (g+(t) + zg−(t)) |B0〉 − p

q

√
1− z2g−(t) |B̄0〉 , (2.20)

|B̄0(t)〉 = −q
p

√
1− z2g−(t) |B0〉+ (g+(t)− zg−(t)) |B̄0〉 , (2.21)

g±(t) =
1

2
(e−iωH t ± e−iωLt). (2.22)

The initial condition is accounted in the time dependent factor in Eq. (2.22) since,

(g+(0), g−(0)) = (1, 0), (2.23)

is satisfied.

As for outgoing states of neutral mesons, the reciprocal basis is used for the system with

non-Hermitian Hamiltonian, as discussed in the literature [77–81]. The mass eigenstates satisfy

12



Chapter 2 Neutral Meson Mixing

orthogonal conditions,

〈Bout
H |Bin

H〉 = 1, 〈Bout
H |Bin

L 〉 = 0, 〈Bout
L |Bin

L 〉 = 1, 〈Bout
L |Bin

H〉 = 0. (2.24)

As states which satisfy the conditions in Eq. (2.24), outgoing mass eigenstates are defined,

〈Bout
H | =

1

2pq
(q
√

1 + z 〈B0| − p
√

1− z 〈B̄0|), (2.25)

〈Bout
L | =

1

2pq
(q
√

1− z 〈B0|+ p
√

1 + z 〈B̄0|). (2.26)

In K meson system, KL(S) is associated with a long (short)-lived mass eigenstate. As

discussed in Refs. [82, 83], we account CPT non-invariance in K meson mixing. The incoming

mass eigenstates for K mesons are given as,

|K in
L 〉 = pK

√
1 + zK |K0〉 − qK

√
1− zK |K̄0〉 , (2.27)

|K in
S 〉 = pK

√
1− zK |K0〉+ qK

√
1 + zK |K̄0〉 . (2.28)

The time dependence ofK meson system is obtained with replacement of (z, p, q)→ (zK , pK , qK).

and (ωH , ωL) → (λL, λS) in Eqs. (2.20-2.22), where λL and λS stand for the eigenvalues of

Hamiltonian in K meson system. The outgoing mass eigenstates are obtained as,

〈Kout
L | =

1

2pKqK
(qK
√

1 + zK 〈K0| − pK
√

1− zK 〈K̄0|), (2.29)

〈Kout
S | =

1

2pKqK
(qK
√

1− zK 〈K0|+ pK
√

1 + zK 〈K̄0|). (2.30)

As for estimation of the transition amplitude of neutral mesons, the analysis in the SM is

given in Ref. [84].
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Chapter 3

Time Dependent Decay Rate for

Entangled System of BB̄

In this chapter, the wave function for the entangled system of BB̄ is introduced. Subse-

quently, the time dependent asymmetry is constructed to obtain the observable sensitive to

violation of the discrete symmetries.

3.1 Entangled State of BB̄

As mentioned previously, B factory experiments are based on the process of Υ(4S)→ BB̄,

where Υ(4S) has spin-1. Bose statistics requires that created pairs of BB̄ should be a CP

symmetric state. In this context, the measurement of B and B̄ is correlated with each other,

which is associated with a coherent state. Due to the angular momentum conservation, the

produced pair of mesons is P-wave so that BB̄ should be a parity-odd state. Combining the

requirements of the P-odd and CP-even property, one should demand that the BB̄ pair is a

C-odd state. Therefore, the structure of the entangled wave function is,

|ψ〉 =
1√
2

(|B0(k, t)〉 ⊗ |B̄0(−k, t)〉 − |B̄0(k, t)〉 ⊗ |B0(−k, t)〉), (3.1)

where k denotes a momentum carried by the neutral meson at the rest frame of Υ(4S). The

relative sign in Eq. (3.1) represents the C-odd property of the wave function. The time depen-

dence of the definite flavor states in Eq. (3.1) results from neutral meson mixing, as shown in

Eqs. (2.20, 2.21). The EPR correlation of the flavors are measured for KK̄ [85,86] and BB̄ [87]

system, both of which reported the result consistent with the prediction of quantum mechanics.

Consequently, no clear evidences of decoherence [88] have been observed so far in the flavor

factory experiments. For K meson system, EPR correlation and decoherence are reviewed in

14
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the literature [89]. Under the presence of CPT violation in some quantum gravity model, the

coherence is weakened (ω-effect) as discussed in Refs. [90–92].

Since any orthogonal basis is available as an entangled BB̄ state, the wave function is also

written in terms of the CP eigenstates,

|ψ〉 =
1√
2

(|B+(k, t)〉 ⊗ |B−(−k, t)〉 − |B−(k, t)〉 ⊗ |B+(−k, t)〉). (3.2)

Hereafter, the momentum of neutral mesons is omitted for simplicity. We set t = 0 at the time

when pair-creation of BB̄ occurs. Let us denote f1 and f2 as final states observed at t1 and

t2 (t1 < t2). (f1 and f2 are referred to as a tagging side and a signal side, respectively.) The

transition amplitude for the correlated observation of the BB̄ pair is,

〈f1; f2|T |ψ〉 (3.3)

The squared quantity of the amplitude in Eq. (3.3) leads to time dependent decay rate, which

is in principle measured in B factory experiments. In Ref. [52], a general formula for the time

dependent decay rate of the entangled BB̄ system is given,

Γ(f1)⊥,f2 = e−Γ(t1+t2)N(1)⊥,2κ(1)⊥,2[cosh(yΓt) +
σ(1)⊥,2

κ(1)⊥,2
sinh(yΓt)

+
C(1)⊥,2

κ(1)⊥,2
cos(xΓt) +

S(1)⊥,2

κ(1)⊥,2
sin(xΓt)]. (3.4)

where t is defined as t2 − t1 and,

x =
mH −mL

Γ
, y =

ΓH − ΓL
2Γ

. (3.5)

As shown in Eq. (3.4), the rate is proportional to the factor of e−Γ(t1+t2), which accounts the

time after BB̄ creation. The time evolution of the signal side is represented as the hyperbolic

and trigonometric functions in Eq. (3.4) with time interval of t2 − t1. Note that x is an O(1)

quantity for B0 system while y is suppressed in the SM. The coefficient of the time dependent

functions in Eq. (3.4) are calculated in Ref. [52]. For completeness, we list the expressions of

these parameters in App. A.

3.2 Time Dependent Asymmetry

In this section, we give an asymmetry for the entangled decays of B mesons, including

overall factor N(1)⊥,2κ(1)⊥,2 in Eq. (3.4). A generic formula for the event number asymmetry of
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the two sets for final states: (f1, f2) versus (f3, f4) is written as,

A =
Γ(f1)⊥,f2 − Γ(f3)⊥,f4

Γ(f1)⊥,f2 + Γ(f3)⊥,f4
. (3.6)

In Chap. 5, the time dependent asymmetry in Eq. (3.6) is analyzed with specific final states

which are utilized in the BaBar experiment [50]. Using the master formula in Eq. (3.4), we can

rewrite the asymmetry,

A =

(
1√
NR

−
√
NR

)
cosh(yΓt) + ∆σ sinh(yΓt) + ∆S sin(xΓt) + ∆C cos(xΓt)(

1√
NR

+
√
NR

)
cosh(yΓt) + σ̂ sinh(yΓt) + Ŝ sin(xΓt) + Ĉ cos(xΓt)

, (3.7)

where,

NR ≡ N(3)⊥,4κ(3)⊥,4

N(1)⊥,2κ(1)⊥,2
, (3.8)

∆X ≡ 1√
NR

X(1)⊥,2

κ(1)⊥,2
−
√
NR

X(3)⊥,4

κ(3)⊥,4
, (forX = σ, C,S) (3.9)

X̂ ≡ 1√
NR

X(1)⊥,2

κ(1)⊥,2
+
√
NR

X(3)⊥,4

κ(3)⊥,4
. (forX = σ, C,S) (3.10)

NR in Eq. (3.8) stands for the ratio of overall normalization factors for a time dependent decay

rate in Eq. (3.4). In Eqs. (3.7, 3.9, 3.10), the contribution from overall factors are taken into

account. If one takes the limit,

NR → 1, y → 0, Ŝ → 0, and Ĉ → 0, (3.11)

the asymmetry defined in Eq. (3.7) becomes one used in the BaBar experiment [50]. In Eq.

(3.9, 3.10), ∆S (∆C) is identical to ∆S+
T (∆C+

T ) defined in Ref. [52] if one takes the limit of

NR → 1.

In practice, we only need to consider the time difference t within the interval which is shorter

than the life-time of B meson so that the approximation,

sinh(yΓt) ' yΓt, cosh(yΓt) ' 1, (3.12)

is valid since y � 1 for B0 meson system [93–96]. Thus, the time dependent asymmetry is
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expanded,

A '
−∆NR

2
+

∆σ

2
yΓt+

∆S
2

sin(xΓt) +
∆C
2

cos(xΓt)

1 +
σ̂

2
yΓt+

Ŝ
2

sin(xΓt) +
Ĉ
2

cos(xΓt)

, (3.13)

NR = 1 + ∆NR. (3.14)

Non-zero value of ∆NR in the above equation indicates that overall normalization ratio of decay

rates are slightly deviated from unity.
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Chapter 4

Definition of Parameters with

Definite Flavor States

In this chapter, we introduce parameters that appear in the event number asymmetry in

Eq. (3.13). In the time dependent decay rate, final states of B decay are given as the same ones

used for the BaBar experiment [50]. The neutral meson mixing parameters, (p, q, z, pK , qK , zK)

which are defined in the previous chapter, lead to the transformation property for the discrete

symmetry as,

p
CP or T

� q, p
CPT−−→ p, q

CPT−−→ q, (4.1)

z
CP−→ −z, z

T−→ +z, z
CPT−−→ −z. (4.2)

The transformation properties of the parameters in K meson system (pK , qK , zK) are the same

as (p, q, z), respectively.

Following Ref. [52], we introduce B meson decay amplitudes and inverse decay amplitudes,

Af ≡ 〈f |T |B0〉 , Āf ≡ 〈f |T |B̄0〉 , AID
f ≡ 〈B0|T |fT 〉 , ĀID

f ≡ 〈B̄0|T |fT 〉 , (4.3)

where fT is the time reversed state of f , i.e., the state with flipped momenta and spins. Note

that Af (Āf ) and AID
f (ĀID

f ) are interchanged under T transformation. Using notation in Eq.

(4.3), one denotes the following parameters,

λψKS,L
≡ q

p

ĀψKS,L

AψKS,L

√
1 + θψKS,L

1− θψKS,L

=
q

p

AID
ψKS,L

ĀID
ψKS,L

√
1− θψKS,L

1 + θψKS,L

, (4.4)

θψKS,L
=
AψKS,L

AID
ψKS,L

− ĀψKS,L
ĀID
ψKS,L

AψKS,L
AID
ψKS,L

+ ĀψKS,L
ĀID
ψKS,L

. (4.5)
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Note that ψKL and ψKS are not exact CP eigenstates. For the description of time dependent

asymmetries, the notation Gf , Sf and Cf are introduced with λf as,

Gf =
2Reλf

1 + |λf |2
, Sf =

2Imλf
1 + |λf |2

, Cf =
1− |λf |2
1 + |λf |2

, (4.6)

G2
f + S2

f + C2
f = 1. (4.7)

The parameters in Eqs. (4.5, 4.6) explicitly appear in coefficients of the master formula (A.1-

A.5). In Eq. (4.4), λψKS,L
is written in terms of the decay amplitude whose final state is the

mass eigenstate ψKS,L. The strangeness changing decay amplitudes can be expanded with

respect to amplitudes of flavor definite states, which are exhibited in App. B.

Note that the wrong strangeness decay amplitudes,

AψK̄0 , AID
ψK̄0 , ĀψK0 , ĀID

ψK0 , (4.8)

are numerically smaller than the right strangeness decay in the SM. The model independent

analysis is given in Ref. [97] for the two body B meson decays in which wrong sign kaons are

involved. The experimental constraints on wrong strangeness decay amplitudes are obtained

for B̄0 → ψK∗0 and B0 → ψK̄∗0 [98]. The right strangeness decay amplitudes are given as,

AψK0 , AID
ψK0 , ĀψK̄0 , ĀID

ψK̄0 . (4.9)

We treat wrong sign decay amplitudes as perturbation of small number. Using Eqs. (B.1-B.8),

one can obtain CP and CPT violating parameters in decays,

θψKS
' θK − zK , θψKL

' θK + zK , (4.10)

θK =
AψK0AID

ψK0 − ĀψK̄0ĀID
ψK̄0

AψK0AID
ψK0 + ĀψK̄0ĀID

ψK̄0

, (4.11)

where θK indicates CP and CPT violation in right strangeness decays of B meson, associated

with θ̂ψK in Ref [52]. The CPT violating parameter in K meson mixing, zK , is taken into

account in this study. When deriving Eq. (4.10), we treated zK , θK and wrong strangeness decay

amplitudes as perturbation and ignored higher order contributions. Within this approximation,

λψKS,L
is,

λψKS
' λ(1−∆λwst), λψKL

' −λ(1 + ∆λwst), (4.12)

λ ≡ q

p

pK
qK

ĀψK̄0

AψK0

√
1 + θK
1− θK

=
q

p

pK
qK

AID
ψK0

ĀID
ψK̄0

√
1− θK
1 + θK

, (4.13)
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where ∆λwst consists of the wrong strangeness decays,

∆λwst = λwst
ψK̄0 − λ̄wst

ψK0 , (4.14)

λwst
ψK̄0 ≡

pK
qK

AψK̄0

AψK0

√
1 + θψK0

1− θψK0

=
pK
qK

ĀID
ψK0

ĀID
ψK̄0

√
1− θψK0

1 + θψK0

, (4.15)

λ̄wst
ψK0 ≡

qK
pK

ĀψK0

ĀψK̄0

√
1 + θ̄ψK̄0

1− θ̄ψK̄0

=
qK
pK

AID
ψK̄0

AID
ψK0

√
1− θ̄ψK̄0

1 + θ̄ψK̄0

, (4.16)

θψK0 ≡
AψK0ĀID

ψK0 − AψK̄0ĀID
ψK̄0

AψK0ĀID
ψK0 + AψK̄0ĀID

ψK̄0

, θ̄ψK̄0 ≡
ĀψK̄0AID

ψK̄0 − ĀψK0AID
ψK0

ĀψK̄0AID
ψK̄0 + ĀψK0AID

ψK0

. (4.17)

In Eq. (4.17), non-zero values of θψK0 and θ̄ψK̄0 imply CPT violation in wrong strangeness

decays. Parameters including wrong strangeness decay amplitudes are defined as,

λ̂wst = λwst
ψK̄0 + λ̄wst

ψK0 . (4.18)

Since the wrong sign semi-leptonic decay amplitudes and CPT violation are small, we expand

Eqs. (4.15, 4.16) as,

λwst
ψK̄0 '

pK
qK

AψK̄0

AψK0

' pK
qK

ĀID
ψK0

ĀID
ψK̄0

, λ̄wst
ψK0 ' qK

pK

ĀψK0

ĀψK̄0

' qK
pK

AID
ψK̄0

AID
ψK0

. (4.19)

As shown in Eq. (4.12), λψKS,L
is composed of the leading part λ and the sub-leading part

suppressed by wrong strangeness decay amplitude. If one takes the CPT conserving limit in

Eq. (4.12), the relation in Ref. [99] is obtained. Note that λ has the definitive transformation

property of T, CP and CPT, i.e.,

λ
T−→ (λ)−1, λ

CP−→ (λ)−1, λ
CPT−−→ λ. (4.20)

We introduce G,S and C in the notation analogous to Eq.(4.6) by replacing λf with λ,

G =
2Reλ

1 + |λ|2 , S =
2Imλ

1 + |λ|2 , C =
1− |λ|2
1 + |λ|2 . (4.21)

In Eq. (4.22), |λ| is close to 1 since direct CP violation in strangeness changing decays and

mixing-induced CP violation in K and B system are small. Consequently, we can find that C
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is a small parameter. The parameters in Eq. (4.21) are transformed under T as,

G
T−→ 2Re(1/λ)

1 + |1/λ|2 =
2Reλ∗

|λ|2 + 1
= +G, (4.22)

S
T−→ 2Im(1/λ)

1 + |1/λ|2 =
2Imλ∗

|λ|2 + 1
= −S, (4.23)

C
T−→ 1− |1/λ|2

1 + |1/λ|2 =
|λ|2 − 1

|λ|2 + 1
= −C. (4.24)

One can verify that the CP transformation property of G,S,C is the same as Eqs. (4.22-4.24).

Thus, the CPT transformation property is also determined as,

G
CPT−−→ +G, S

CPT−−→ +S, C
CPT−−→ +C. (4.25)

One can also derive the transformation property of the parameters for wrong strangeness decays

in Eqs. (4.15, 4.16) as,

λwst
ψK̄0

T−→ λ̄wst
ψK0 , λwst

ψK̄0

CP−→ λ̄wst
ψK0 , λwst

ψK̄0

CPT−−→ λwst
ψK̄0 . (4.26)

Therefore, the parameters in Eqs. (4.14, 4.18) are transformed as,

∆λwst
T−→ −∆λwst, λ̂wst

T−→ λ̂wst. (4.27)

The CP transformation property of the parameters (4.14, 4.18) is the same as Eq. (4.27).

GψKS,L
, SψKS,L

and CψKS,L
are related with the parameters G,S and C as,

GψKS
' G+ S∆λIwst, GψKL

' −(G− S∆λIwst), (4.28)

SψKS
' S −G∆λIwst, SψKL

' −(S +G∆λIwst), (4.29)

CψKS
' C + ∆λRwst, CψKL

' C −∆λRwst, (4.30)

where we used notation for a complex number A, AR ≡ ReA,AI ≡ ImA. When deriving Eqs.

(4.28-4.30), we ignored higher order terms of C and ∆λwst. One can find that Eqs. (4.10,

4.28-4.30) lead to the relations given as,

θψKS
+ θψKL

= 2θK , θψKS
− θψKL

= −2zK , (4.31)

GψKS
−GψKL

= 2G, SψKS
− SψKL

= 2S, CψKS
+ CψKL

= 2C, (4.32)

GψKS
+GψKL

= 2S∆λIwst, SψKS
+ SψKL

= −2G∆λIwst, CψKS
− CψKL

= 2∆λRwst. (4.33)

In Eq. (4.13), we have included the contribution of indirect CP violation of K meson system,
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as carefully discussed in Refs. [100–103]. The expressions of G,C and S in Eqs. (4.22-4.24) are

invariant under the arbitrary large rephasing of,

〈K0| → e−iαK 〈K0| , 〈K̄0| → eiαK 〈K̄0| . (4.34)

Nevertheless, the mixing parameter ratio given as,

pK
qK

=
1 + εK
1− εK

' 1 + 2εK , (|εK | � 1) (4.35)

allows only the small rephasing αK � 1. In the following, we show how the correction arises

from εK . Keeping only the terms which are linear with respect to the parameter of mixing-

induced CP violation in K meson system, we expand G,S and C,

G = G′ − 2S ′εIK ,

S = S ′ + 2G′εIK ,

C = C ′ − 2εRK , (4.36)

whereG′, S ′ and C ′ are obtained by taking the limit (pK/qK)→ 1 inG,S and C: the parameters

in Eq. (4.36) are defined by replacing λ with λ′ in the expression for G,S and C,

λ′ =
q

p

ĀψK̄0

AψK0

√
1 + θK
1− θK

, G′ =
2Reλ′

1 + |λ′|2 , S ′ =
2Imλ′

1 + |λ′|2 , C ′ =
1− |λ′|2
1 + |λ′|2 . (4.37)

If one takes the limit where εK → 0, (G′, S ′, C ′) is identical to (ĜψK , ŜψK , ĈψK) defined in

Ref. [52]. The difference of the notations between ours and one given in Ref. [52] is summarized

in Tab. 4.1. For the CPT violation parameter of strangeness changing decay, one can show that

θψK1 and θψK2 are identical to θK in our notation, which leads to the relation of,

θ̂ψK = θK , ∆θψK = 0. (4.38)
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Table 4.1: Relation of the parameters in this thesis and ones in Ref. [52]. The first column shows
the quantities defined for the K meson mass eigenstates (KL,KS). From the third row to the eighth
row in the second column, the quantities in the first column are expanded up to the first order of εK ,
and written in terms of the quantities for the CP eigenstates K1,K2 in their notation. In the third
and fourth column, we show how the quantities in their notation are related to ones defined in this
thesis.

Notation in this thesis Notation in Ref [52] Notation in Ref. [52] Notation in this thesis

λψKS

pK
qK
λψK1 λψK1 λ′(1−∆λwst)

λψKL

pK
qK
λψK2 λψK2 −λ′(1 + ∆λwst)

GψKS
GψK1 − 2SψK1ε

I
K ĜψK =

GψK1 −GψK2

2
G′

SψKS
SψK1 + 2GψK1ε

I
K ŜψK =

SψK1 − SψK2

2
S ′

CψKS
CψK1 − 2εRK ĈψK =

CψK1 + CψK2

2
C ′

GψKL
GψK2 − 2SψK2ε

I
K ∆GψK =

GψK1 +GψK2

2
S ′∆λIwst

SψKL
SψK2 + 2GψK2ε

I
K ∆SψK =

SψK1 + SψK2

2
−G′∆λIwst

CψKL
CψK2 − 2εRK ∆CψK =

CψK1 − CψK2

2
∆λRwst

θK θ̂ψK =
θψK1 + θψK2

2
∆θψK =

θψK1 − θψK2

2
0
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If one changes the phase convention of the states, the phase of λ′ is transformed as follows,

λ′ → λ′e2iαK . (4.39)

Assuming the phase αK is small, G′, S ′, and εIK are changed as,

G′ → G′ − 2αKS
′,

S ′ → S ′ + 2αKG
′,

εIK → εIK − αK , (4.40)

while C ′ and εRK are invariant, i.e.,

C ′ → C ′, εRK → εRK . (4.41)

As phase convention independent notation, we use C ′ and εRK instead of C in the following

discussion. The numerical significance of εRK will be mentioned in the next chapter.

We turn to the definition for parameters including semi-leptonic decay amplitudes. In what

follows, from Eq. (4.42) to Eq. (4.47), we adopt the notations in Ref. [52]. Right sign semi-

leptonic decay amplitudes are denoted as,

Al+ = 〈l+X|T |B0〉 , AID
l+ = 〈B0|T |(l+X)T 〉 ,

Āl− = 〈l−X|T |B̄0〉 , ĀID
l− = 〈B̄0|T |(l−X)T 〉 , (4.42)

while wrong sign semi-leptonic decay amplitudes are given as,

Al− = 〈l−X|T |B0〉 , AID
l− = 〈B0|T |(l−X)T 〉 ,

Āl+ = 〈l+X|T |B̄0〉 , ĀID
l+ = 〈B̄0|T |(l+X)T 〉 . (4.43)

For the case of the SM, the wrong sign semi-leptonic decay amplitudes are numerically sup-

pressed compared with the right sign decay amplitudes. Thus, we ignore higher powers of the

wrong sign decay amplitudes. The parameters including semi-leptonic decay amplitudes are

defined as,

λl+ ≡ q

p

Āl+

Al+

√
1 + θl+

1− θl+
=
q

p

AID
l−

ĀID
l−

√
1− θl+
1 + θl+

, θl+ =
Al+A

ID
l− − Āl+ĀID

l−

Al+A
ID
l− + Āl+Ā

ID
l−
, (4.44)

λl− ≡ q

p

Āl−

Al−

√
1 + θl−

1− θl−
=
q

p

AID
l+

ĀID
l+

√
1− θl−
1 + θl−

, θl− =
Al−A

ID
l+ − Āl−ĀID

l+

Al−A
ID
l+ − Āl−ĀID

l+

, (4.45)
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Chapter 4 Definition of Parameters with Definite Flavor States

where θl± stands for CPT violation in semi-leptonic decays of B meson. By the definition in

Eqs. (4.44, 4.45), one can find the transformation law of the parameters for the semi-leptonic

decays, i.e.,

λl+
T−→ (λl−)−1, λl+

CP−→ (λl−)−1, λl+
CPT−−→ λl+ . (4.46)

We assume that CPT violating parameter θl± is small and treat it as perturbation. At linear

order of θl± and wrong sign semi-leptonic decay amplitudes, we obtain,

λl+ '
q

p

Āl+

Al+
' q

p

AID
l−

ĀID
l−
, λ−1

l− '
p

q

Al−

Āl−
' p

q

ĀID
l+

AID
l+
, (4.47)

where we can find that the contribution from θl± is negligible in Eq. (4.47). Following Ref. [52],

we also define Gl± , Sl± and Cl± analogous to Eq. (4.6) by replacing λf with λl± . Equation

(4.47) gives approximate expressions for Gl± , Sl± and Cl± as,

Gl+ =
2Reλl+

1 + |λl+|2
' 2Reλl+ , Gl− =

2Reλl−

1 + |λl−|2
' 2Re(λ−1

l− ), Cl± =
1− |λl±|2
1 + |λl±|2

' ±1,

Sl+ =
2Imλl+

1 + |λl+ |2
' 2Imλl+ , Sl− =

2Imλl−

1 + |λl−|2
' −2Im(λ−1

l− ). (4.48)

The parameters of Gl± , Sl± and Cl± explicitly appear in the coefficients of the time dependent

asymmetry analyzed in the subsequent chapter. Note that Gl± and Sl± are small numbers since

λl+ and λ−1
l− are suppressed due to the ∆B = ∆Q rule. We can find the relations,

Gl+ +Gl− = 2λ̂Rl , Sl+ − Sl− = 2λ̂Il , (4.49)

Gl+ −Gl− = 2∆λRl , Sl+ + Sl− = 2∆λIl , (4.50)

where λ̂l and ∆λl are defined as,

λ̂l ≡ λl+ + λ−1
l− , ∆λl ≡ λl+ − λ−1

l− . (4.51)

The parameters above are transformed definitively under CP, T and CPT,

λ̂l
T−→ (λl−)−1 + λl+ = +λ̂l, ∆λl

T−→ (λl−)−1 − λl+ = −∆λl. (4.52)

The CP transformation property of λ̂l and ∆λl is the same as Eq. (4.52). Hence, the CPT

transformation property of λ̂l and ∆λl is also determined as,

λ̂l
CPT−−→ λ̂l, ∆λl

CPT−−→ ∆λl. (4.53)
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Furthermore, one defines,

RM ≡
|p|2 − |q|2
|p|2 + |q|2 , ξl ≡

Āl−A
ID
l+ − Al+ĀID

l−

Āl−A
ID
l+ + Al+Ā

ID
l−
, C l

ξ,≡
1− |λlξ|2
1 + |λlξ|2

, (4.54)

λlξ ≡
Al+

Āl−

√
1 + ξl
1− ξl

=
AID
l+

ĀID
l−

√
1− ξl
1 + ξl

. (4.55)

In Eq. (4.54), RM implies mixing-induced CP and T violation in B meson system [52]. This

parameter is extracted from HFAG data [104] for the average of the experimental results,

RM = (−7± 9)× 10−4. (4.56)

As shown above, indirect CP violation B0 − B̄0 is small enough to treat it as perturbation.

In Eq. (4.54), ξl stands for CP and T violation in right sign semi-leptonic decays, which is

considered as a small number. We assume direct CP violation in B0 → l+X is small so that C l
ξ

in Eq. (4.54) is also treated as perturbation. Equations (4.28-4.30, 4.49, 4.50, 4.54) enable one

to write the asymmetry in Eq. (3.7) in terms of parameters which are exactly T-odd or T-even.

In the following, we address some significant points of the parameters defined in this chapter.

Note that the parameters given as,

S,C,G, θK , RM , z, zK , λ̂l,∆λl, ξl, C
l
ξ, λ̂wst and ∆λwst, (4.57)

have the definitive transformation properties exhibited in Tab. 4.2. In the processes which are

discussed in the subsequent chapter, KS,L is included as a final state, and the contribution

of mixing-induced T and CP violation, pK/qK , appears in the expressions of G,S,C, λ̂wst and

∆λwst. The CP and CPT violation parameter in K meson mixing denoted as zK , also affects

the time dependent asymmetry. In the subsequent chapter, the asymmetry is written in terms

of parameters in Eq. (4.57), and explicitly divided into T-odd and T-even parts.

The parameters defined as,

p/q, pK/qK , θψK0 , θ̄ψK̄0 , θl± , λ, λ
wst
ψK̄0 , λ̄

wst
ψK0 , λl± , and λlξ, (4.58)

are introduced to keep the definitive transformation property of parameters in Tab. 4.2. The

transformation property of the parameters in Eq. (4.58) is exhibited in Tab. 4.3.

The parameters given as,

θψK0 , θ̄ψK̄0 , θl± , C, θK , RM , z, zK , λ̂l,∆λl, ξl, C
l
ξ, λ̂wst and ∆λwst, (4.59)
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Chapter 4 Definition of Parameters with Definite Flavor States

are all small numbers, and our analysis is based on linear order approximation with respect to

the quantities given in Eq. (4.59) throughout this thesis.

Table 4.2: Transformation properties of the parameters under T, CP and CPT.

S C G θK RM z zK λ̂l ∆λl ξl C l
ξ λ̂wst ∆λwst

T − − + + − + + + − − + + −

CP − − + − − − − + − − − + −

CPT + + + − + − − + + + − + +

Table 4.3: Transformation properties of the parameters which are introduced to keep the definitive
transformation property of the quantities in Tab. 4.2

p/q pK/qK θψK0 θl+ λ λwst
ψK̄0 λl+ λlξ

T q/p qK/pK −θ̄ψK̄0 θl− (λ)−1 λ̄wst
ψK0 (λl−)−1 λlξ

CP q/p qK/pK θ̄ψK̄0 −θl− (λ)−1 λ̄wst
ψK0 (λl−)−1 (λlξ)

−1

CPT p/q pK/qK −θψK0 −θl+ λ λwst
ψK̄0 λl+ (λlξ)

−1
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Chapter 5

Analysis of

Time Dependent Asymmetry

In this chapter, we apply the event number asymmetry defined in Eq. (3.13) to the processes

for B meson decays. The time dependent asymmetry in this thesis includes the effect of different

normalization for the decay rates, i.e., non-zero value of ∆NR defined in Eq. (3.14). As the

BaBar asymmetry investigated in Ref. [50], the final states f1, f2, f3 and f4 are assigned with

ψKL, l
−X, l+X and ψKS, respectively. This process is referred to as I, which is associated

with the asymmetry for B− → B̄0 versus B̄0 → B−. We also consider other three processes

which can be obtained by interchanging l−X with l+X and ψKS with ψKL in the process I.

To summarize, we analyze the processes given as,

(I) (f1, f2, f3, f4) = (ψKL, l
−X, l+X,ψKS),

(II) (f1, f2, f3, f4) = (ψKS, l
−X, l+X,ψKL),

(III) (f1, f2, f3, f4) = (ψKL, l
+X, l−X,ψKS),

(IV) (f1, f2, f3, f4) = (ψKS, l
+X, l−X,ψKL). (5.1)

For all the above processes, we can find that the following parameters are treated as perturba-

tion,

∆NR, ∆σ, yΓt, ∆C, Ŝ, Ĉ. (5.2)

To analyze the processes in Eq. (5.1), the list for the coefficients of the trigonometric func-

tions in the decay rates is given in App. C. The time dependent asymmetry in Eq. (3.13) are
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Chapter 5 Analysis of Time Dependent Asymmetry

expanded,

A ' RT + CT cos(xΓt) + ST sin(xΓt)

+BT sin2(xΓt) +DT sin(xΓt) cos(xΓt) + ET (yΓt) sin(xΓt), (5.3)

where the coefficients of the time dependent trigonometric functions are given as,

RT = −∆NR

2
+

∆σ

2
yΓt ' −∆NR

2
, (5.4)

CT =
∆C
2
, ST =

∆S
2
, (5.5)

BT = −∆S
4
Ŝ, DT = −∆S

4
Ĉ, (5.6)

ET = −∆S
4
σ̂. (5.7)

In Eqs. (5.4-5.7), we ignored the contribution from ∆σy. Note that σ̂ and ∆S are O(1)

parameters and σ̂y gives rise to small contribution. The parametrization in Eq. (5.4-5.3) without

the last term can be found in Ref. [52]. In the following, the coefficients in Eqs. (5.4-5.7) are

analyzed for each process. We label suffix I− IV on the quantities associated with the processes

in Eq. (5.1) to distinguish them.

Below, the asymmetry and the coefficients for the process I are shown. The detailed deriva-

tion of the coefficients for the process I is given in App. D. For the other three processes, a

simple rule to obtain the coefficients for the processes II-IV from I is considered in App. E. We

first investigate ∆NR in Eq. (3.14) for the process I. Through Eq. (D.8), one can obtain,

∆N I
R = 2[−SzI +RM + λ̂Rwst −Gλ̂Rl − C l

ξ − ξRl ]. (5.8)

Using Eqs. (5.8, D.9-D.13), one can derive the coefficients in the time dependent asymmetry,

RI
T = −∆N I

R

2
= SzI −RM − λ̂Rwst +Gλ̂Rl + C l

ξ + ξRl , (5.9)

CI
T =

∆CI
2

= C − SzI + θRK + S∆λIl = C ′ − 2εRK − SzI + θRK + S∆λIl , (5.10)

SIT =
∆SI

2
= −[S(1−GzR)−GθIK +GS∆λRl ], (5.11)

BI
T = −∆SI

4
ŜI ' S[G(zIK −∆λIwst)− zI + SRM + Sλ̂Rwst − SC l

ξ − SξRl ], (5.12)

DI
T = −∆SI

4
ĈI ' S[zRK −∆λRwst −GzR − Sλ̂Il ], (5.13)

EI
T = −∆SI

4
σ̂I ' GS. (5.14)
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If one imposes the following conditions,

• No CPT violation

• No wrong sign decays

• No CP violation in B0 − B̄0 mixing and right sign semi-leptonic decays

• y → 0

it is shown that the asymmetry coincides the function adopted in the experiment [50],

AI = CI
T cos(xΓt) + SIT sin(xΓt). (5.15)

Under the presence of CPT violation, wrong sign decays, non-zero width difference of B meson

mass eigenstates and CP violation in B meson mixing and semi-leptonic decays, the relevant

function form is one given in Eq. (5.3).

All of the coefficients in Eqs. (5.9-5.14) are expressed in terms of the phase convention

independent parameters defined in the previous chapter. In Eq. (5.10), the contribution from

mixing-induced CP violation in K meson system explicitly appears. Assuming that all of mixing

induced CP violation of B0 system, direct CP violation in B0 → ψK0 and CPT violation in

strangeness changing decay of B meson are small numbers, we expand C ′ in Eq. (4.37),

C ′ ' 2−
∣∣∣∣qp
∣∣∣∣−
∣∣∣∣∣ĀψK̄0

AψK0

∣∣∣∣∣− θRK ,
∣∣∣∣qp
∣∣∣∣ ' 1− 1

2
Im

(
Γd12

Md
12

)
(5.16)

A theoretical prediction for the B0 system is given in Ref. [105], which enables us to extract,

Im

(
Γd12

Md
12

)
∼ O(10−4). (5.17)

As for direct CP violation in B0 → ψK0, theoretical evaluation is obtained in Refs. [74, 106],

which results in,

1−
∣∣∣∣∣ĀψK̄0

AψK0

∣∣∣∣∣ ' O(10−3). (5.18)

Consequently, mixing-induced CP violation in K meson system and direct CP violation in

B0 → ψK0 are dominant in the coefficient in Eq. (5.10), which predicts CI
T ∼ O(10−3), if CPT

violations and the wrong sign decay in B → lX in Eq. (5.10) are negligible. This prediction of

order is valid unless the cancellation between the parameters occurs.
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If the coefficients of the time dependent decay rate in Eqs. (5.9-5.13) were genuine T-odd

quantities, they would vanish in the limit of T symmetry. In other words, if there remain

non-vanishing contributions in the T symmetric limit, the coefficients are not T-odd quantities.

From Eqs. (5.9-5.14), one can observe the presence of T-even contributions. Some of them

do not vanish in the limit of T symmetry whereas there exist terms quadratic with respect to

T-odd quantities, which vanish in the T symmetric limit.

In what follows, we investigate conditions that require the asymmetry being a T-odd quan-

tity. The following relations are needed for T-even terms in each coefficient to vanish,

λ̂Rwst = 0, Gλ̂Rl = 0, C l
ξ = 0 → RI

T : T− odd, (5.19)

θRK = 0, S∆λIl = 0 → CI
T : T− odd, (5.20)

GθIK = 0, GS∆λRl = 0 → SIT : T− odd, (5.21)

SG∆λIwst = 0, S2λ̂Rwst = 0, S2C l
ξ = 0 → BI

T : T− odd, (5.22)

S∆λRwst = 0, S2λ̂Il = 0 → DI
T : T− odd. (5.23)

Since both real and imaginary part of λ do not vanish, G and S are non-zero quantities. Thus,

the conditions to obtain T-odd coefficients in Eqs. (5.19)-(5.23) are,

θK = ∆λwst = ∆λl = λ̂l = λ̂Rwst = C l
ξ = 0. (5.24)

The above relations except C l
ξ = 0 agree with ones obtained in Ref. [52]. The additional

condition is required since we account the overall constants in the time dependent decay rates.

In Tab. 5.1, we show how each coefficient of the asymmetry in Eq. (5.3) depends on a T-odd

combination of the parameters. The dependence on the T-even contributions of the parameters

is also exhibited. Likewise, the T-odd and even contributions for the processes II-IV are listed

in Tabs. 5.2-5.4, respectively.
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Table 5.1: Coefficients of the asymmetry for the process I and the sources which give rise to the
non-vanishing contribution to the time dependent asymmetry. The sources of the second column
correspond to T-odd terms and the others are associated with T-even terms. In the third column,
the contribution from CP and CPT violation in right strangeness decays is exhibited. In the fourth
column, the contribution from CP and CPT violation in the right sign semi-leptonic decays is shown.
In the fifth and the sixth column, T-even contribution from the wrong strangeness decays and the
wrong sign semi-leptonic decays are given, respectively.

T-odd terms θK 6= 0 C l
ξ 6= 0 AψK̄0 6= 0, ĀψK0 6= 0 Āl+ 6= 0, Al− 6= 0

RI
T SzI −RM + ξRl 0 C l

ξ −λ̂Rwst Gλ̂Rl

CI
T C − SzI θRK 0 0 S∆λIl

SIT −S[1−GzR] GθIK 0 0 −GS∆λRl

BI
T S[GzIK − zI + SRM − SξRl ] 0 −S2C l

ξ S2λ̂Rwst − SG∆λIwst 0

DI
T S[zRK −GzR] 0 0 −S∆λRwst −S2λ̂Il

EI
T GS 0 0 0 0

Table 5.2: The same table as Tab. 5.1 for the process II.

T-odd terms θK 6= 0 C l
ξ 6= 0 AψK̄0 6= 0, ĀψK0 6= 0 Āl+ 6= 0, Al− 6= 0

RII
T −SzI −RM + ξRl 0 C l

ξ λ̂Rwst −Gλ̂Rl

CII
T C + SzI θRK 0 0 −S∆λIl

SIIT S[1 +GzR] −GθIK 0 0 −GS∆λRl

BII
T −S[GzIK − zI − SRM + SξRl ] 0 −S2C l

ξ −S2λ̂Rwst + SG∆λIwst 0

DII
T S[zRK −GzR] 0 0 −S∆λRwst −S2λ̂Il

EII
T GS 0 0 0 0
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Table 5.3: The same table as Tab. 5.1 for the process III.

T-odd terms θK 6= 0 C l
ξ 6= 0 AψK̄0 6= 0, ĀψK0 6= 0 Āl+ 6= 0, Al− 6= 0

RIII
T SzI +RM − ξRl 0 −C l

ξ −λ̂Rwst Gλ̂Rl

CIII
T −C − SzI −θRK 0 0 S∆λIl

SIIIT S[1 +GzR] −GθIK 0 0 −GS∆λRl

BIII
T S[GzIK − zI − SRM + SξRl ] 0 S2C l

ξ S2λ̂Rwst − SG∆λIwst 0

DIII
T S[zRK −GzR] 0 0 −S∆λRwst −S2λ̂Il

EIII
T −GS 0 0 0 0

Table 5.4: The same table as Tab. 5.1 for the process IV.

T-odd terms θK 6= 0 C l
ξ 6= 0 AψK̄0 6= 0, ĀψK0 6= 0 Āl+ 6= 0, Al− 6= 0

RIV
T −SzI +RM − ξRl 0 −C l

ξ λ̂Rwst −Gλ̂Rl

CIV
T −C + SzI −θRK 0 0 −S∆λIl

SIVT −S[1−GzR] GθIK 0 0 −GS∆λRl

BIV
T S[−GzIK + zI − SRM + SξRl ] 0 S2C l

ξ −S2λ̂Rwst + SG∆λIwst 0

DIV
T S[zRK −GzR] 0 0 −S∆λRwst −S2λ̂Il

EIV
T −GS 0 0 0 0

From Tabs. 5.1-5.4, one can find that each coefficient of the asymmetry is related to one

in another process. It is shown that the following relations among the coefficients for four
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processes are satisfied:

RIV
T = −RI

T , RIII
T = −RII

T ,

CIII
T = −CII

T , CIV
T = −CI

T ,

SIIIT = SIIT , SIVT = SIT ,

BIII
T = −BII

T , BIV
T = −BI

T ,

DI
T = DII

T = DIII
T = DIV

T ,

EI
T = EII

T = −EIII
T = −EIV

T .

As shown above, the ten independent coefficients,

RI
T , R

II
T , C

I
T , C

II
T , S

I
T , S

II
T , B

I
T , B

II
T , D

I
T and EI

T , (5.25)

are available to constrain the theoretical parameters. In Tab. 5.5, we show how ten independent

combination of the coefficients can be written in terms of the CPT-even, CPT-odd and wrong

sign decay parameters. Since we have the eighteen parameters for B meson and K meson

decay and mixing, the number of the independent coefficients is not enough to determine all

the theoretical parameters.

The measurement of the coefficients are useful to obtain constraints on S and G as well

as various non-standard interactions, i.e., the wrong sign decay and CPT violation while the

asymmetry in Eq. (5.3) is not exactly T-asymmetry; some combinations of the coefficients

enable us to extract the theoretical parameters of interest. In the following sections, we inves-

tigate how to determine S and G and consider a method to constrain the various non-standard

interactions. In Sec. 5.1, we study the general case without any assumption. In the subsequent

section, we investigate two interesting cases, one of which is associated with the case that CPT

is a good symmetry in Sec. 5.2. For the case without wrong sign decay amplitudes, we also

suggest how to constrain the parameters in Sec. 5.3.
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Table 5.5: List of combinations of the independent coefficients in the asymmetry. In the first column,
the combinations for the experimental observables are shown. In the other columns, we specify how
a coefficient is written in terms of theoretical parameters. The parameters of interest are categorized
as three types given in each column.

CPT even parameters CPT violating parameters wrong sign decays

RI
T +RII

T

2
−RM + ξRl C l

ξ 0

RI
T −RII

T

2
0 SzI −λ̂Rwst +Gλ̂Rl

CI
T + CII

T

2
C θRK 0

CI
T − CII

T

2
0 −SzI S∆λIl

SIT + SIIT
2

0 SGzR −SG∆λRl

SIT − SIIT
2

−S GθIK 0

BI
T +BII

T

2
S2(RM − ξRl ) −S2C l

ξ 0

BI
T −BII

T

2
0 S(GzIK − zI) S(Sλ̂Rwst −G∆λIwst)

DI
T 0 S(zRK −GzR) −S(∆λRwst + Sλ̂Il )

EI
T GS 0 0

BI
T +BII

T

RI
T +RII

T

−S2 0 0

35



Chapter 5 Analysis of Time Dependent Asymmetry

5.1 Extracting Parameters of Interest: General Case

Let us first examine how the theoretical parameters are determined by the measurements of

the coefficients shown in Tab. 5.5. Note that we can constrain the product of GS through the

observation of ET . Since the coefficient is multiplied by y in Eq. (5.3), one cannot extract ET

solely from the time dependent asymmetry. Therefore, the value of y should be fixed through

another experiment. As defined in Eq. (3.5), y is proportional to the width difference of the

B meson mass eigenstates. A method to measure the product y cos 2β ' Gy is suggested in

Ref. [107]. Combining the measurement of the product EI
Ty ' GSy, one can determine S. The

absolute value of G is fixed through the approximate relation,

S2 +G2 ' 1−O(C2). (5.26)

where the quadratic term with respect to C is negligible. Consequently, the measurement of

ET determines (±G,S) within two-fold ambiguity. This ambiguity is removed if we assume

that the standard model contribution is dominant for the width difference. (See Fig. 5.1.1.)

-1.0 -0.5 0.5 1.0
G

-1.0

-0.5

0.5

1.0

S

Figure 5.1.1: Determination of G and S. These parameters are on the circle of unit length. Once S
is known, G is determined within two-fold ambiguity. This is reproduced from Ref. [61].

As an alternative way, the relation,

BI
T +BII

T

RI
T +RII

T

= −S2, (5.27)

is utilized to fix the absolute value of S. The sign ambiguity for S is removed since at the

leading order 2S is equal to SIIT − SIT . Provided that the sub-leading contribution does not

change the sign of the leading term, the sign of S is fixed through SIIT −SIT . Having determined

G and S, we can consider constraining the other theoretical parameters of interest.
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Note that the following relation is satisfied,

RI
T −RII

T

2
+
CI
T − CII

T

2
= −λ̂Rwst +Gλ̂Rl + S∆λIl . (5.28)

Since the right-handed side is independent of CPT violation, non-vanishing combination in

l.h.s. implies the unambiguous evidence of wrong sign decays. Furthermore, once S is fixed,

one can write the imaginary part of CPT violation in B decays,

θIK =
SIT − SIIT + 2S

2G
. (5.29)

However, the real part of θK cannot be solely extracted due to the small correction of C,

θRK + C =
CI
T + CII

T

2
. (5.30)

We stress that the following combination is also convenient,

−RM + ξRl + C l
ξ =

RI
T +RII

T

2
. (5.31)

To summarize, if any one of the following combinations,

RI
T −RII

T , CI
T − CII

T , SIT + SIIT , BI
T −BII

T , DI
T (5.32)

is non-zero, it implies the presence of CPT violation and/or wrong sign decay.
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5.2 Extracting Parameters of Interest:

CPT Symmetric Limit

In this section, we consider the case in the limit of CPT symmetry. In this circumstance,

all the contributions in the third column in Tab. 5.5 vanish. Since the wrong sign decay

parameters are CPT-even, the fourth column in Tab. 5.5 is not eliminated. Therefore, the

following parameters are fixed,

C =
CI
T + CII

T

2
, (5.33)

S =
SIIT − SIT

2
, (5.34)

RM − ξRl = −R
I
T +RII

T

2
. (5.35)

Moreover, the T-odd wrong sign semi-leptonic decay amplitude is extracted,

∆λIl =
CI
T − CII

T

2S
, (5.36)

∆λRl = −S
I
T + SIIT
2GS

. (5.37)

For the other wrong sign decay parameters, one can obtain three constraints,

RI
T −RII

T

2
= −λ̂Rwst +Gλ̂Rl , (5.38)

BI
T −BII

T

2
= S(Sλ̂Rwst −G∆λIwst), (5.39)

DI
T = −S(∆λRwst + Sλ̂Il ). (5.40)
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5.3 Extracting Parameters of Interest:

the absence of wrong sign decays

In this section, constraints on parameters in the case with no wrong sign decays are con-

sidered. In this limit, the wrong sign decay amplitudes are eliminated so that the relations in

Eqs. (5.29-5.31) are kept while r.h.s. in Eq. (5.28) vanishes. One can fix CP and CPT violation

of the mixing parameters in B meson system through the observables,

zI =
RI
T −RII

T

2S
, zR =

SIT + SIIT
2GS

. (5.41)

For K meson system, CP and CPT violation in mixing is also determined as,

zIK =
2DI

T + SIT + SIIT
2S

, zRK =
BI
T −BII

T − (CI
T − CII

T )

2SG
. (5.42)

39



Chapter 6

Conditions for

Authentic Time Reversal

We have learned from the previous chapter that the coefficients of the asymmetry do not

vanish in the T symmetric limit; although the main goal in the original suggestion in Ref. [43] is

to obtain genuine T violation, it turned out that T-even contribution is allowed. In this chapter,

we clarify why the T-conserving parts are included in the coefficients. One can show that, when

the following conditions are simultaneously satisfied, the coefficients in Eqs. (5.9-5.13) become

a T-violating object:

(1) Equivalence of B meson states.

(2) ∆N e
R = 0.

In the above conditions, we defined,

∆NR = ∆No
R + ∆N e

R (6.1)

where ∆N e
R (∆No

R) stands for the T-even (odd) part. The idea of the condition (1) is originally

addressed in Ref. [52].

In the following sections, the interpretation of the conditions (1) and (2) is addressed.
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Chapter 6 Conditions for Authentic Time Reversal

6.1 Condition of State Orthogonality of B mesons

In Chap. 5, we analyzed the time dependent asymmetry that indicates event number dif-

ference of the processes which are naively related with T transformation. In Fig. 6.1.1, the

diagram with (f1, f2) = (ψKL, l
−X), which is associated with B− → B̄0, is exhibited while its

naively time reversed process given as B̄0 → B− is shown in Fig. 6.1.2. As remarked previously,

the difference of the rates for these two processes are considered to obtain T violation. However,

rather than Fig. 6.1.2, an inverse decay process which is shown in Fig. 6.1.3 is a genuine time

reversed process for Fig. 6.1.1. It is straightforward to verify that Fig. 6.1.1 and Fig. 6.1.3

are related with the reverse of time direction. In the processes considered in this thesis, we

substituted Fig. 6.1.2 for Fig. 6.1.3 since signal sides of Fig. 6.1.1 and Fig. 6.1.2 are apparently

a time reversed process to each other. Since Fig. 6.1.2 is not a genuine time reversed process,

the asymmetry is slightly deviated from a T-violating quantity. The equivalence conditions

indicate that the initial (final) B meson states of the signal side in Figs. 6.1.2-6.1.3 are the

same as each other up to an overall phase factor.
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Figure 6.1.1: Process with (f1, f2) = (ψKL, l
−X). This is reproduced from Ref. [61].
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Chapter 6 Conditions for Authentic Time Reversal

The condition is given as, {
|B(→l+X)⊥〉 ∝ |Bl−X→〉
|B→ψKS

〉 ∝ |B(ψKL→)⊥〉
. (6.2)

The above relations show that B meson states in Fig. 6.1.2-6.1.3 are equivalent. Likewise, Fig.

6.1.4 is a genuine time reversed process of one given in Fig. 6.1.2. We apply state conditions

to B meson states in Figs. 6.1.1-6.1.4,{
|B(→l−X)⊥〉 ∝ |B(l+X→)〉
|B(→ψKL)〉 ∝ |B(ψKS→)⊥〉

. (6.3)

In the following, we discuss how the conditions are violated, as originally analyzed in Ref. [52].

Up to the normalization factors, violation of the state equivalences in Eqs. (6.2-6.3) is written

as,

〈B(l−X→)⊥|B(→l+X)⊥〉 6= 0, (6.4)

〈B(l+X→)⊥|B(→l−X)⊥〉 6= 0, (6.5)

〈B(→ψKS)⊥|B(ψKL→)⊥〉 6= 0, (6.6)

〈B(ψKS→)⊥|B(→ψKL)⊥〉 6= 0. (6.7)

The conditions in Eqs. (6.4, 6.5) indicate that one cannot exactly conduct the flavor tagging

under the presence of the wrong sign semi-leptonic decays. Similarly, the relations in Eqs. (6.6,

6.7) imply that the CP tagging is contaminated by the presence of CPT violation in B0 → ψK0

decays and wrong strangeness decays. Including overall factors and using our notation, violation

of the conditions in Eqs. (6.4-6.7) is shown as,
〈B(ψKL→)⊥|B(→ψKS)⊥〉 = N(→ψKS)⊥N(ψKL→)⊥(AψK0AID

ψK0 + ĀψK̄0ĀID
ψK̄0)

θK + ∆λwst

2
,

〈B(l−X→)⊥|B(→l+X)⊥〉 = 2N(l−→)⊥N(→l+)⊥Al+Ā
ID
l−
p

q
λl+ ,

(6.8)


〈B(ψKS→)⊥|B(→ψKL)⊥〉 = N(→ψKL)⊥N(ψKS→)⊥(AψK0AID

ψK0 + ĀψK̄0ĀID
ψK̄0)

θK −∆λwst

2
,

〈B(l+X→)⊥|B(→l−X)⊥〉 = 2N(l+→)⊥N(→l−)⊥Āl−A
ID
l+
q

p
λ−1
l− ,

(6.9)

where we used the expression for the states defined in App. F. In Eqs. (6.8, 6.9), the effect

of mixing-induced CP violation in K meson system is included in terms of our notation of

∆λwst in Eq. (4.14). Therefore, Eqs. (6.8, 6.9) show that the wrong sign semi-leptonic decays,

the wrong strangeness decays and CPT violation in strangeness changing decays cause tagging
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Chapter 6 Conditions for Authentic Time Reversal

ambiguities, which are formulated in terms of the state non-orthogonality.
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Chapter 6 Conditions for Authentic Time Reversal

6.2 Condition of Ratio for Overall Normalization Factor

In this section, we address why the condition (2) is needed to obtain T violating observables.

For simplicity, consider the case that the condition (1) is satisfied to demonstrate that violation

of ∆N e
R = 0 gives rise to T-even contribution to the asymmetry.

The following quantities are introduced for convenience,

Xo =
X(ψKL)⊥,l+X

κ(ψKL)⊥,l+X
− X(l−X)⊥,ψKS

κ(l−X)⊥,ψKS

, Xe =
X(ψKL)⊥,l+X

κ(ψKL)⊥,l+X
+
X(l−X)⊥,ψKS

κ(l−X)⊥,ψKS

, (6.10)

where X = σ, C and S. Note that Xo(Xe) defined in Eq. (6.10) is T-odd (even) due to the

explicit forms,

So = −2S(1−GzR), Co = 2[C − SzI ], (σo)l = 0, (6.11)

Se = 2[GzIK + (S2 − 1)zI ], Ce = 2[zRK −GzR], (σe)l = 2G, (6.12)

where for σo and σe, only the leading part is written since small parts of ∆σ and σ̂ are neglected

when multiplied by y in the time dependent asymmetry in Eq. (3.13). In this notation, the

observables defined in Eqs. (3.9-3.10) are,

∆X ' Xo − ∆NR

2
Xe =

(
Xo − ∆No

R

2
Xe

)
− ∆N e

R

2
Xe, (6.13)

X̂ ' Xe − ∆NR

2
Xo =

(
Xe − ∆No

R

2
Xo

)
− ∆N e

R

2
Xo. (6.14)

For the case of ∆NR = 0, it is straightforward to find that ∆X(X̂) is a T-odd (even) object.

As shown in Eq. (6.13), one finds that the T-even part of ∆NR leads to T-even contribution

to the observable. The same applies to X̂ so that ∆X (X̂) deviates from T-odd (even) when

∆N e
R has a non-zero value. Therefore, we can demonstrate that T-even part of ∆NR yields

T-even contribution to the coefficients of time dependent asymmetry in Eqs. (5.4-5.7).
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Summary

In this thesis, we have investigated the precise meaning of the observables in B factory

experiments. The processes of BB̄ mixing give the methodology to get the information about

non-invariance of T violation, as originally suggested in Ref. [43]. The EPR correlation of flavors

in Υ(4S) → BB̄ decays enables us to extract the time dependent processes of B meson. For

the purpose to obtain a probe of T violation discriminated from CP violation, we utilized the

time dependent decay rates for B− → B̄0 and B̄0 → B−, motivated by the BaBar measurement

[50]. Associated with these two processes, the time dependent asymmetry is constructed to

investigate violation of the discrete symmetries.

As description of the systems for B and K meson, neutral meson mixing is briefly intro-

duced to obtain the time evolution of wave function. The Weisskopf-Wigner approximation [60]

provides drastically simplified formalism to deal with the time dependence of neutral meson

states. Incoming and outgoing mass eigenstates in the system with non-Hermitian Hamilto-

nian are constructed through the orthogonality of the states. To examine the experimental

constraints, the CPT violating formulation is adopted for the mixing system.

We attempted to write the time dependent asymmetry in terms of the parameters in the

flavor based states. In our notation, the transformation properties for the theoretical parameters

are exact so that one can disentangle the transformation laws for the constructed asymmetry. It

is well-known that the mass eigenstate of KS,L is deviated from the CP eigenstates. We properly

treated these mass eigenstates in the analysis to calculate the contribution from indirect CP

violation. CP and CPT violation in K meson mixing is also accounted in the analysis to

examine the contribution. Moreover, it is shown that the introduced parameters are invariant

under rephasing of quarks.

In the analysis of BaBar [50] and the theoretical study [52], the difference of the overall

constants for the rates is eliminated. In general, the ratio of the overall constants for the two

decay rates is deviated from unity. Such slight deviation is taken into account in our analysis.
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It is shown that the proper function form of the asymmetry is obtained as an extension of

one utilized in the experiment [50] if one accounts CPT violation, wrong sign decays, non-

zero width difference between BH and BL and CP violation in B meson mixing and right

sign semi-leptonic decay. We also found that the asymmetry is expressed in terms of the

phase convention independent quantities. The effect of mixing-induced CP violation in K

meson system is extracted and it gives rise to O(10−3) contribution to the observable, which

is comparable to direct CP violation in the B0 → ψK0 decay. Assuming that no cancellation

between the parameters occurs, the coefficient of the cosine term in the asymmetry is O(10−3),

if the wrong sign semi-leptonic decays and CPT violation are negligible.

The theoretical parametrization for the coefficients of the time dependent trigonometric

functions in the asymmetries is explicitly formulated. With our notation, it turned out that

the coefficients are slightly deviated from T-odd quantities; there remain contributions which do

not vanish in the T symmetric limit. In this sense, we have redemonstrated that the observation

of T violation requires the measurement of genuine time reversed processes which include an

inverse decay process of B meson.

We have obtained the coefficients of the asymmetry for the processes I-IV, which are ap-

parently considered as T-odd quantities. The proper combinations of the coefficients enable us

to extract the theoretical parameters of interest. Provided that the width difference between

BH and BL is known, the three cases to constrain the parameters are discussed. For the most

general case, we can extract the parameters which are associated with sine and cosine of 2β

in the SM. We also found that non-zero value of some combination of the coefficient signals

CPT violation and/or the presence of the wrong sign decays. For the case of CPT-conserving

limit, the observables constrain the parameters for wrong sign semi-leptonic decays and wrong

sign strangeness decays of B meson, both of which are extremely suppressed in the SM. As

for the case of the absence of wrong sign decays, CPT violation for B and K meson mixing is

constrained.

Furthermore, we discussed why the T-conserving contributions appear in the coefficients.

It is shown that T-even terms in the asymmetry vanish when several conditions are satisfied.

These derived conditions are categorized as two types. The first one is referred to as equivalence

conditions which are associated with B meson states for a time reversal-like process and a

genuine time reversed process. As suggested in Ref. [52], B mesons for the two processes are

not equivalent to each other. We showed violation of the equivalence conditions in our notation

including the effects of mixing in K meson system. Since the difference of the overall factors

of rates is accounted in this study, one should consider an additional condition to obtain T-

odd observables. In particular, it is shown that T-even part of the ratio of the overall factors

can be the origin of T-even contribution. One can clarify that if these two conditions are
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simultaneously satisfied, the coefficients become T-odd quantities.

Through this study, we have learned that the subtle points are involved in the observation

of microscopic T violation whereas CP violation is firmly measured in the flavor factory ex-

periments. Obviously, the further check of the discrete symmetries gives us an unique tool to

investigate the validity of the theory. Since the ingredients in this study are applicable to future

B factory experiments, it is expected that the discrete symmetries will be well-understood by

the precise measurement with the principal aim for obtaining a signal of physics beyond the

standard model.
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Appendix A

Coefficients of Master Formula

In this appendix, the coefficients of the master formula for the time dependent decay rate

are shown. As originally given in Ref. [52], the coefficients are,

N(i)⊥,j =
1

4
NiNj{1 + (Ci + Cj)(RM − zR)}, Ni = |Ai|2 + |Āi|2, (A.1)

κ(i)⊥,j = (1−GiGj)

+[(Ci + Cj)(1−GiGj) + CjGi + CiGj]z
R − (Si + Sj)z

I

+GiGj(Ciθ
R
i + Cjθ

R
j )−GiSjθ

I
j −GjSiθ

I
i , (A.2)

σ(i)⊥,j = Gj −Gi

+[Ci(1 +Gj −Gi)− Cj(1−Gj +Gi)]z
R + (GiSj −GjSi)z

I

−CjGjθ
R
j + Sjθ

I
j + CiGiθ

R
i − SiθIi , (A.3)

C(i)⊥,j = −CiCj − SiSj
−[(Ci + Cj)(CiCj + SiSj) + CiGj + CjGi]z

R + (Si + Sj)z
I

+GjSiθ
I
j − [Ci(1− C2

j )− CjSiSj]θRj
+GiSjθ

I
i − [Cj(1− C2

i )− CiSiSj]θRi , (A.4)

S(i)⊥,j = CiSj − CjSi
+[CiCj(Sj − Si)− (C2

j +Gj)Si + (C2
i +Gi)Sj]z

R + (Cj − Ci)zI

−CiGjθ
I
j + [(C2

j − 1)Si − CiCjSj]θRj
+CjGiθ

I
i − [(C2

i − 1)Sj − CiCjSi]θRi , (A.5)

where Ai and Āi in Eq. (A.1) are the decay amplitude defined in Eq. (4.3). The indices i and

j represent the final state of tagging side (fi) and signal side(fj), respectively.
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Appendix B

Strangeness Changing

Decay Amplitudes

In this appendix, B meson decay amplitudes are explicitly given. Here, the amplitudes

with the mass eigenstates of K meson are decomposed into definite strangeness amplitudes.

For strangeness changing processes with an initial B meson, the decay amplitudes are,

AψKS
= 〈ψKout

S |Bin
0 〉 =

1

2pKqK
(qK
√

1− zKAψK0 + pK
√

1 + zKAψK̄0), (B.1)

AψKL
= 〈ψKout

L |Bin
0 〉 =

1

2pKqK
(qK
√

1 + zKAψK0 − pK
√

1− zKAψK̄0), (B.2)

ĀψKS
= 〈ψKout

S |B̄in
0 〉 =

1

2pKqK
(qK
√

1− zKĀψK0 + pK
√

1 + zKĀψK̄0), (B.3)

ĀψKL
= 〈ψKout

L |B̄in
0 〉 =

1

2pKqK
(qK
√

1 + zKĀψK0 − pK
√

1− zKĀψK̄0), (B.4)

while the inverse decay amplitudes are,

AID
ψKS

= 〈Bout
0 |ψK in

S 〉 = (pK
√

1− zKAID
ψK0 + qK

√
1 + zKA

ID
ψK̄0), (B.5)

AID
ψKL

= 〈Bout
0 |ψK in

L 〉 = (pK
√

1 + zKA
ID
ψK0 − qK

√
1− zKAID

ψK̄0), (B.6)

ĀID
ψKS

= 〈B̄out
0 |ψK in

S 〉 = (pK
√

1− zKĀID
ψK0 + qK

√
1 + zKĀ

ID
ψK̄0), (B.7)

ĀID
ψKL

= 〈B̄out
0 |ψK in

L 〉 = (pK
√

1 + zKĀ
ID
ψK0 − qK

√
1− zKĀID

ψK̄0). (B.8)

Plugging Eqs. (B.1-B.8) into Eq.(4.4), we can obtain Eqs. (4.13, 4.28-4.30).
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Appendix C

List of Coefficients for

Time Dependent Decay Rate

In this appendix, we give expressions for the coefficients of the time dependent trigonomet-

ric functions in Eq. (3.4). For the processes associated with the final states in Eq.(5.1), the

coefficients are,

S(ψKL)⊥,l−X = SψKL
− SψKL

zR − zI −GψKL
θIψKL

, (C.1)

S(l+X)⊥,ψKS
= SψKS

+ SψKS
zR − zI −GψKS

θIψKS
, (C.2)

C(ψKL)⊥,l−X = CψKL
− SψKL

Sl− +GψKL
zR + SψKL

zI + θRψKL
, (C.3)

C(l+X)⊥,ψKS
= −CψKS

− SψKS
Sl+ −GψKS

zR + SψKS
zI − θRψKS

, (C.4)

κ(ψKL)⊥,l−X = 1−GψKL
Gl− − (GψKL

+ 1)zR − SψKL
zI , (C.5)

κ(l+X)⊥,ψKS
= 1−GψKS

Gl+ + (GψKS
+ 1)zR − SψKS

zI , (C.6)

σ(ψKL)⊥,l−X = Gl− −GψKL
+ (1 +GψKL

)zR − SψKL
θIψKL

, (C.7)

σ(l+X)⊥ψKS
= GψKS

−Gl+ + (1 +GψKS
)zR + SψKS

θIψKS
, (C.8)

S(ψKL)⊥,l−X

κ(ψKL)⊥,l−X
= SψKL

+ SψKL
GψKL

Gl− + SψKL
GψKL

zR + (S2
ψKL
− 1)zI −GψKL

θIψKL
, (C.9)

S(l+X)⊥,ψKS

κ(l+X)⊥,ψKS

= SψKS
+ SψKS

GψKS
Gl+ − SψKS

GψKS
zR + (S2

ψKS
− 1)zI −GψKS

θIψKS
, (C.10)

C(ψKL)⊥,l−X

κ(ψKL)⊥,l−X
' C(ψKL)⊥,l−X , (C.11)

C(l+X)⊥,ψKS

κ(l+X)⊥,ψKS

' C(l+X)⊥,ψKS
, (C.12)

σ(ψKL)⊥,l−X

κ(ψKL)⊥,l−X
' −GψKL

, (C.13)

σ(l+X)⊥,ψKS

κ(l+X)⊥,ψKS

' GψKS
, (C.14)
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where we keep only the leading term in Eqs. (C.13-C.14) since it is multiplied by y in the

formulae of the decay rate in Eq. (3.4). The relation between the coefficients in I and ones in

II-IV is addressed in App. E.
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Appendix D

Coefficient for Process I

In this appendix, formulae are given for the quantities which appear in Eqs. (5.4-5.7). For

process I, ∆S,∆C,∆σ, σ̂, Ŝ and Ĉ are explicitly written. In the derivation of these formulae,

Eqs. (C.1-C.14) are utilized. We denote,

κ(1)⊥,2 = κl(1)⊥,2 + ∆κ(1)⊥,2, (D.1)

κ(3)⊥,4 = κl(3)⊥,4 + ∆κ(3)⊥,4, (D.2)

where the superscript l implies the leading part and ∆ denotes the small part which is treated

as perturbation.

The ratio of normalizations for rates is,

NR ' N3N4

N1N2

κl(3)⊥,4

κl(1)⊥,2

[
1 + (C3 + C4 − C1 − C2)(RM − zR) +

∆κ(3)⊥,4

κl(3)⊥,4
− ∆κ(1)⊥,2

κl(1)⊥,2

]
. (D.3)

Note that for the processes given in Eq. (5.1),

κl(1)⊥,2 = κl(3)⊥,4 = 1, (D.4)

is satisfied. For the process I, the ratio of overall normalization is given as,

N I
R ' NψKS

Nl+X
NψKL

Nl−X
[1 + 2(−SzI +RM −Gλ̂Rl )]. (D.5)

The ratios of Nl+X/Nl−X and NψKS
/NψKL

are slightly deviated from one,

Nl+X
Nl−X

= 1− 2(C l
ξ + ξRl ),

NψKS

NψKL

= 1 + 2λ̂Rwst. (D.6)
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Thus, one can obtain,

N I
R = 1 + ∆N I

R, (D.7)

∆N I
R = 2[−SzI +RM + λ̂Rwst −Gλ̂Rl − C l

ξ − ξRl ], (D.8)

where ∆N I
R is a small number so that we treat it as perturbation. The expressions of ∆SI and

∆CI in Eqs. (5.5-5.7) are,

∆SI =

(S(ψKL)⊥,l−X

κ(ψKL)⊥,l−X
− S(l+X)⊥,ψKS

κ(l+X)⊥,ψKS

)
− ∆N I

R

2

(S(ψKL)⊥,l−X

κ(ψKL)⊥,l−X
+
S(l+X)⊥,ψKS

κ(l+X)⊥,ψKS

)
' −2[S(1−GzR)−GθIK +GS∆λRl ], (D.9)

∆CI ' C(ψKL)⊥,l−X

κ(ψKL)⊥,l−X
− C(l+X)⊥,ψKS

κ(l+X)⊥,ψKS

= 2[C − SzI + θRK + S∆λIl ]. (D.10)

Note that the sub-leading parts of ∆σI and σ̂I are suppressed when multiplied with yΓt in

Eq. (5.3). We give the expression of the leading parts for ∆σI and σ̂I ,

(∆σI)l = 0, (σ̂I)l = 2G. (D.11)

The expressions for ŜI and ĈI in Eq. (5.6) are written as follows,

ŜI =

(S(ψKL)⊥,l−X

κ(ψKL)⊥,l−X
+
S(l+X)⊥,ψKS

κ(l+X)⊥,ψKS

)
− ∆N I

R

2

(S(ψKL)⊥,l−X

κ(ψKL)⊥,l−X
− S(l+X)⊥,ψKS

κ(l+X)⊥,ψKS

)
' 2[G(zIK −∆λIwst)− zI + SRM + Sλ̂Rwst − SC l

ξ − SξRl ], (D.12)

ĈI ' C(ψKL)⊥,l−X

κ(ψKL)⊥,l−X
+
C(l+X)⊥,ψKS

κ(l+X)⊥,ψKS

= 2[zRK −∆λRwst −GzR − Sλ̂Il ]. (D.13)
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Appendix E

Relation among Coefficients

for Processes I-IV

In this appendix, the relation among the coefficients for the processes I-IV in Eq. (5.1) is

shown.

First, the method to obtain the coefficient in process II (IV) from ones in I (III) is ad-

dressed. Process I and II (III and IV) are related with interchange of ψKL ↔ ψKS. Hence, the

coefficients of the process II (IV) are obtained by flipping the sign of the mixing parameter qK

and zK in the process I (III). The replacement of qK → −qK leads to the change of the sign of

S,G and λwst so that one can get the relation between II (IV) and I (III).

In the following, we present a simple rule which enables one to obtain the coefficients in

process IV from ones in II. The coefficients of the process IV are explicitly given as,

RIV
T = −SzI +

1

2
(Cl+ − Cl−)RM − ξRl − C l

ξ + λ̂Rwst −Gλ̂Rl , (E.1)

CIV
T =

1

2
(Cl− − Cl+)C + SzI +

1

2
(Cl−θ

R
KL
− Cl+θRKS

)− S∆λIl , (E.2)

SIV
T =

1

2
(Cl− − Cl+)S + SGzR +

G

2
(Cl+θ

I
KS
− Cl−θIKL

)

−GS(Cl+Re[λl+ ] + Cl−Re[λ−1
l− ]), (E.3)

BIV
T = S[−GzIK + zI +

Cl− − Cl+
2

SRM + SξRl ] + S2C l
ξ − S2λ̂Rwst + SG∆λIwst, (E.4)

DIV
T = S[zRK −GzR]− S∆λRwst +

Cl− − Cl+
2

S2λ̂Il , (E.5)

EIV
T =

Cl− − Cl+
2

GS. (E.6)

The processes II and IV are related with l+X ↔ l−X in Eq.(5.1). If one interchanges l+ and

l− in Eq. (D.6), the sign of C l
ξ and ξRl is reversed. Owing to Eqs. (4.49-4.50), the sign of λ̂Il

and ∆λRl is also flipped. Moreover, one needs to interchange Cl+ and Cl− in Eqs. (E.1-E.6) to
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get the coefficients of the asymmetry for the process II.
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Appendix F

Deviation from Orthogonality of

B Meson States

In this appendix, the derivation of Eqs. (6.8, 6.9) for orthogonality of B meson states is

given. Due to EPR correlation, if a B meson decays into ψKS at time t1, another B meson on

the opposite side does not decay into ψKS at the same time. The signal side at time t1 in Fig.

6.1.1 indicates the B meson state which is orthogonal to the tagging side, i.e.,

|B(→ψKL)⊥〉 = N(→ψKL)⊥(ĀψKL
|B0〉 − AψKL

|B̄0〉). (F.1)

It is straightforward to verify that the state in Eq. (F.1) is orthogonal to 〈ψKL|. Likewise, we

define B meson states which are orthogonal to the state on the opposite side,

〈B(ψKL→)⊥| = N(ψKL→)⊥(ĀID
ψKL
〈B0| − AID

ψKL
〈B̄0|), (F.2)

〈B(ψKS→)⊥| = N(ψKS→)⊥(ĀID
ψKS
〈B0| − AID

ψKS
〈B̄0|), (F.3)

|B(→ψKS)⊥〉 = N(→ψKS)⊥(ĀψKS
|B0〉 − AψKS

|B̄0〉). (F.4)

The inner product of Eqs. (F.4, F.2) is calculated with our notation including overall normal-

ization,

〈B(ψKL→)⊥|B(→ψKS)⊥〉 =
N(→ψKS)⊥N(ψKL→)⊥

2
(AψK0AID

ψK0 + ĀψK̄0ĀID
ψK̄0)[θK + ∆λwst], (F.5)

where Eqs. (B.1-B.8) are used. We treated zK , θψK0 , θ̄ψK̄0 , λ̂wst and ∆λwst as perturbation and

ignored the second order contribution of the small quantities. The deviation from zero in Eq.

(F.5) was confirmed previously in Ref. [52]. As for orthogonality of B meson states for semi-

leptonic decay, the inner products in the first line of Eq. (6.8) and in the second line of Eq. (6.9)
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are obtained. The B meson states orthogonal to semi-leptonic (inverse) decaying B meson are,

〈B(l−X→)⊥| = N(l−→)⊥(ĀID
l− 〈B0| − AID

l− 〈B̄0|), (F.6)

|B(→l+X)⊥〉 = N(→l+)⊥(Āl+ |B0〉 − Al+ |B̄0〉), (F.7)

〈B(l+X→)⊥| = N(l+→)⊥(ĀID
l+ 〈B0| − AID

l+ 〈B̄0|), (F.8)

|B(→l−X)⊥〉 = N(→l−)⊥(Āl− |B0〉 − Al− |B̄0〉). (F.9)

Thus, the inner product of the state in Eqs. (F.6-F.7) is,

〈B(l−X→)⊥|B(→l+X)⊥〉 = 2N(l−→)⊥N(→l+)⊥Al+Ā
ID
l−
p

q
λl+ . (F.10)

As shown above, orthogonality of the B meson states is violated up to the wrong sign semi-

leptonic decay amplitude as addressed in Ref. [52].
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