
Hiroshima Math. J.
00 (0000), 1–33

An unbiased Cp type criterion for ANOVA model with a tree
order restriction

Yu Inatsu

(Received Xxx 00, 0000)

ABSTRACT. In this paper, we consider a Cp type criterion for ANOVA model
with a tree ordering (TO) θ1 ≤ θj , (j = 2, . . . , l) where θ1, . . . , θl are population

means. In general, under ANOVA model with the TO, the usual Cp criterion has
a bias to a risk function, and the bias depends on unknown parameters. In order
to solve this problem, we calculate a value of the bias, and we derive its unbiased

estimator. By using this estimator, we provide an unbiased Cp type criterion for
ANOVA model with the TO, called TOCp. A penalty term of the TOCp is simply
defined as a function of an indicator function and maximum likelihood estimators.
Furthermore, we show that the TOCp is the uniformly minimum-variance unbiased

estimator (UMVUE) of a risk function.

1. Introduction

In real data analysis, ANOVA model is often used for analyzing cluster data.
Moreover, a model whose parameters µ1, . . . , µl are restricted such as a Sinple
Ordering (SO) given by µ1 ≤ · · · ≤ µl, is also important in the field of applied
statistics (e.g., Robertson et al., [14]). In addition, Brunk [4], Lee [11], Kelly
[9] and Hwang and Peddada [7] showed that maximum likelihood estimators
(MLEs) for mean parameters of ANOVA model with the SO are more efficient
than those of ANOVA model without any restriction when the assumption of
the SO is true.

However, in general, the classical asymptotic theory does not hold for the
model with parameter restrictions. For example, Anraku [2] showed that the
ordinal Akaike information criterion (AIC, Akaike [1]) for ANOVA model with
the SO, whose penalty term is 2× the number of parameters, is not an asymp-
totically unbiased estimator of a risk function. In order to solve this problem,
Inatsu [8] derived an asymptotically unbiased AIC for ANOVA model with the
SO, called AICSO. Furthermore, a penalty term of the AICSO can be simply
defined as a function of MLEs of mean parameters. On the other hand, Anraku
and Nomakuchi [3] investigated the k-variate normal distribution with mean
θ = (θ1, . . . , θk)

′ and covariance Σ where θ is an unknown parameter vector,
and Σ is a known positive definite matrix. In this setting, they proposed an
unbiased AIC when the parameter θ is restricted on a closed convex polyhedral
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cone. Nevertheless, above previous studies only considered the AIC under order
restrictions, and they do not consider other criteria such as Cp type criteria (see,
Mallows [13], Fujikoshi and Satoh [6]). Furthermore, particularly in Inatsu [8],
the considered restriction is the SO. In practice, the tree ordering (TO) given by
µ1 ≤ µj (j = 2, . . . , l), is also often used in applied statistics (see, e.g., Hwang
and Peddada [7]).

In this paper, we consider ANOVA model with the TO. For this model,
we derive an unbiased Cp type criterion. The remainder of the present paper
is organized as follows: In Section 2, we define the true model and candidate
model. Moreover, we derive MLEs of parameters in the candidate model. In
Section 3, we provide the Cp type criterion for ANOVA model with the TO,
called TOCp. In addition, we show that the TOCp is the uniformly minimum-
variance unbiased estimator (UMVUE). In Section 4, we show some properties
of the TOCp through numerical experiments. In Section 5, we conclude our
discussion. Technical details are provided in Appendix.

2. ANOVA model with a tree order restriction

In this section, we define the true model, and candidate models with order
restrictions. The MLE for the considered candidate model is given in Subsection
2.3.

2.1. True and candidate models. Let Yij be an observation variable on the
jth individual in the ith cluster, where 1 ≤ i ≤ k∗, j = 1, . . . , Ni for each i, and
k∗ ≥ 2. Here, we put N = N1 + · · · +Nk∗ and Yi = (Yi1, . . . , YiNi)

′ for each i.
Also we put Y = (Y ′

1 , . . . ,Y
′
k∗)′ and N = (N1, . . . , Nk∗)′.

Suppose that Y11, . . . , Yk∗Nk∗ are mutually independent, and Yij is dis-
tributed as

Yij ∼ N(µi,∗, σ
2
∗), (1)

for any i and j. Here, µi,∗ and σ2
∗ are unknown true values satisfying µi,∗ ∈ R

and σ2
∗ > 0, respectively. In other words, the true model is given by (1).

Next, we define a candidate model. Let Q1, . . . , Qk be non-empty disjoint
sets satisfying Q1 ∪ · · · ∪ Qk = {1, 2, . . . , k∗}, where 2 ≤ k ≤ k∗. Then, we
assume that Y11, . . . , Yk∗Nk∗ are mutually independent, and distributed as

Yij ∼ N(µi, σ
2), (2)

where µ1, . . . , µk∗ and σ2(> 0) are unknown parameters. In addition, for the
parameters µ1, . . . , µk∗ , we assume that

∀s ∈ {1, . . . , k}, ∀u1, u2 ∈ Qs, µu1 = µu2 , (3)

and
∀t ∈ {2, . . . , k}, ∀ν ∈ Qt, µq ≤ µν , (4)

where q ∈ Q1. Then, a candidate model M is defined as the model (2) with (3)
and (4). In particular, the order restriction (4) is called a Tree Ordering (TO).
For example, when k∗ = 7, k = 4, Q1 = {1, 3, 7}, Q2 = {2}, Q3 = {4, 5} and
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Q4 = {6}, the unknown parameters µ1, . . . , µ7 for the candidate model M are
restricted as

µ1 = µ3 = µ7 ≤ µ2, µ1 = µ3 = µ7 ≤ µ4 = µ5, µ1 = µ3 = µ7 ≤ µ6.

2.2. Notation and lemma. In this subsection, we define several notations.
After that, we provide the related lemma. Let l be an integer with l ≥ 2. Then,
define

Nl = {x ∈ N | x ≤ l} = {1, . . . , l}.
Moreover, let x1, . . . , xl be real numbers, and let N1, . . . , Nl be positive num-
bers. We put x = (x1, . . . , xl)

′ and N = (N1, . . . , Nl)
′. Furthermore, let

A = {a1, . . . , ai} be a non-empty subset of Nl, where a1 < · · · < ai when
i ≥ 2.

Next, define

xA = (xa1 , . . . , xai)
′, x̃A =

∑
s∈A

xs, x̄
(N)
A =

∑
s∈A Nsxs∑
s∈A Ns

=

∑
s∈A Nsxs

ÑA

.

For example, when l = 10 and A = {2, 3, 5, 10}, xA, x̃A and x̄
(N)
A are given by

xA = (x2, x3, x5, x10)
′, x̃A = x2 + x3 + x5 + x10,

x̄
(N)
A =

N2x2 +N3x3 +N5x5 +N10x10

N2 +N3 +N5 +N10
.

In particular, when A has only one element a, i.e., A = {a}, it holds that

xA = (xa)
′, x̃A = xa and x̄

(N)
A = xa. On the other hand, when A = Nl, it holds

that xA = x. For simplicity, we often represent x̄
(N)
A as x̄A. In addition, let A(l)

be a set defined as

A(l) = {(x1, . . . , xl)
′ ∈ Rl | ∀j ∈ Nl \ {1}, x1 ≤ xj}

= {(x1, . . . , xl)
′ ∈ Rl | x1 ≤ x2, . . . , x1 ≤ xl}.

Furthermore, for any integer i with 1 ≤ i ≤ l, we consider a family of sets J (l)
i

defined by

J (l)
i = {J ⊂ Nl | 1 ∈ J, #J = i},

where #J means the number of elements of the set J . For example, when l = 3,
it holds that

J (3)
1 = { {1} }, J (3)

2 = { {1, 2}, {1, 3} }, J (3)
3 = { {1, 2, 3} } = { N3 }.

Here, note that J (l)
1 = { {1} } and J (l)

l = { Nl } for any l ≥ 2. Similarly, for

any integer i with 1 ≤ i ≤ l and for any set J in J (l)
i , we consider the following

set A(l)(J):

A(l)(J) = {(x1, . . . , xl)
′ ∈ Rl | ∀s ∈ J, x1 = xs,

∀t ∈ Nl \ J, x1 < xt}.
Note that when J = Nl, it holds that Nl \ J = ∅. In this case, the proposition

∀t ∈ ∅, x1 < xt
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is always true. For example, when l = 3, it holds that

A(3)({1}) = {x = (x1, . . . , x3)
′ ∈ R3 | x1 < x2, x1 < x3},

A(3)({1, 2}) = {x ∈ R3 | x1 = x2, x1 < x3},
A(3)({1, 3}) = {x ∈ R3 | x1 = x3, x1 < x2},

A(3)({1, 2, 3}) = {x ∈ R3 | x1 = x2 = x3}.

It is clear that these four sets are disjoint sets and

3∪
i=1

∪
J∈J (3)

i

A(3)(J) = {x ∈ R3 | x1 ≤ x2, x1 ≤ x3} = A(3).

Similarly, in the case of l ≥ 2, it holds that

l∪
i=1

∪
J∈J (l)

i

A(l)(J) = {x ∈ Rl | x1 ≤ x2, . . . , x1 ≤ xl} = A(l), (5)

and A(l)(J) ∩A(l)(J∗) = ∅ when J ̸= J∗.
Next, for a vector x = (x1, . . . , xl)

′, an integer s with 1 ≤ s ≤ l and a real
number a, x[s; a] stands for an l-dimensional vector whose sth element is a and
tth element (t ∈ Nl \ {s}) is xt. For example, if x = (1, 4, 4, 3)′, then x[2;−1] =
(1,−1, 4, 3)′ and x[4; 5] = (1, 4, 4, 5)′. Moreover, for any integer s (≥ 2) with

1 ≤ s ≤ l and for any set J = {j1, . . . , js} of J (l)
s , where j1 < · · · < js, we define

a matrix D
(N)
J as follows. First, in the case of s = 1, the family of sets J (l)

1 has

only one set J = {1}, and we define D
(N)
J = 0. On the other hand, in the case

of s ≥ 2, the matrix D
(N)
J is the s− 1× s matrix whose ith row (1 ≤ i ≤ s− 1)

is defined as
1

ÑJ\{ji+1}
NJ [i+ 1;−ÑJ\{ji+1}]

′.

For example, when l = 3, it holds that

D
(N)
{1} = 0, D

(N)
{1,2} = D

(N)
{1,3} = (1 − 1),

D
(N)
{1,2,3} =

(
N1

N1+N3
−1 N3

N1+N3
N1

N1+N2

N2

N1+N2
−1

)
.

For simplicity, we often represent D
(N)
J as DJ .

Furthermore, we define a function η
(N)
l from Rl to A(l). For each vector

x = (x1, . . . , xl)
′ ∈ Rl, η

(N)
l (x) is defined as

η
(N)
l (x) = argmin

y=(y1,...,yl)′∈A(l)

l∑
i=1

Ni(xi − yi)
2. (6)
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In addition, let η
(N)
l (x)[s] be the sth element (1 ≤ s ≤ l) of η

(N)
l (x). Note that

well-definedness of η
(N)
l can be derived by using the Hilbert projection theorem

(see, e.g., Rudin [15]). For simplicity, we often represent η
(N)
l (x) as ηl(x).

Finally, we provide the following lemma:

Lemma 1. The following three propositions hold:

(1) It holds that

Rl =

l∪
i=1

∪
J∈J (l)

i

η−1
l

(
A(l)(J)

)
,

η−1
l

(
A(l)(J)

)
∩ η−1

l

(
A(l)(J∗)

)
= ∅ (J ̸= J∗).

(2) For any integer i with 1 ≤ i ≤ l and for any set J in J (l)
i , it holds that

η−1
l

(
A(l)(J)

)
= {x = (x1, . . . , xl)

′ ∈ Rl | DJxJ ≥ 0, ∀t ∈ Nl \ J, x̄J < xt}, (7)

where the inequality s ≥ 0 means that all elements of the vector s are
non-negative.

(3) Let i be an integer with 1 ≤ i ≤ l, and let J be a set with J ∈ J (l)
i .

Let x = (x1, . . . , xl)
′ be an element of Rl. Assume that x satisfies

x ∈ η−1
l

(
A(l)(J)

)
.

Then, it holds that

∀s ∈ J, ηl(x)[s] = x̄J ,
∀t ∈ Nl \ J, ηl(x)[t] = xt.

In particular, for the case of J = Nl, if x satisfies

x ∈ η−1
l (A(l)(J)) = {x ∈ Rl | DJxJ ≥ 0},

then, the following proposition holds:

∀s ∈ J, ηl(x)[s] = x̄J .

The proof of Lemma 1 is given in Appendix 1.

2.3. Maximum likelihood estimators for unknown parameters. In this
subsection, we derive MLEs for unknown parameters in the candidate model M.
First of all, we rewrite the candidate model. For any integer s with 1 ≤ s ≤ k

and for all elements q
(s)
1 , . . . , q

(s)
v of Qs, let Xs = (Y ′

q
(s)
1

, . . . ,Y ′
q
(s)
v

)′, where v is

the number of elements in Qs, and let Xst be a tth element of Xs. We put
X = (X ′

1, . . . ,X
′
k)

′,

µ
q
(s)
1

= · · · = µ
q
(s)
v

≡ θs,
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and θ = (θ1, . . . , θk)
′. In addition, define ns = N

q
(s)
1

+ · · · + N
q
(s)
v

and n =

(n1, . . . , nk)
′. Note that n1 + · · · + nk = N1 + · · · + Nk∗ = N . Then, the

candidate model can be rewritten as

Xst ∼ N(θs, σ
2), t = 1, . . . , ns,

with
θ1 ≤ θ2, . . . , θ1 ≤ θk.

Here, a parameter space Θ for the candidate model is defined as follows:

Θ = {(a1, . . . , ak)′ ∈ Rk | ∀u ∈ Nk \ {1}, a1 ≤ au}.
Next, we consider the log-likelihood for the candidate model. Let

X̄s =
1

ns

ns∑
v=1

Xsv, s = 1, . . . , k,

and let X̄ = (X̄1, . . . , X̄k)
′. Then, since Xst’s are independently distributed as

normal distribution, the log-likelihood function l(θ, σ2;X) is given by

l(θ, σ2;X) = −N

2
log(2πσ2)− 1

2σ2

k∑
s=1

ns∑
t=1

(Xst − θs)
2

= −N

2
log(2πσ2)− 1

2σ2

k∑
s=1

ns∑
t=1

(Xst − X̄s)
2

− 1

2σ2

k∑
s=1

ns(X̄s − θs)
2.

Hence, for any σ2 > 0, the maximizer of l(θ, σ2;X) on Θ is equal to the mini-
mizer of

H(θ; X̄) =
k∑

s=1

ns(X̄s − θs)
2

on Θ. In other words, the MLE θ̂ = (θ̂1, . . . , θ̂k)
′ of θ is given by

θ̂ = argmin
θ∈Θ

H(θ; X̄). (8)

We would like to note that the MLE θ̂ can be written by using (6) as η
(n)
k (X̄) =

θ̂. Here, we substitute X̄ for x = (x1, . . . , xk)
′. Then, from Lemma 1, there

exists a unique integer α with 1 ≤ α ≤ k and a unique set J with J ∈ J (k)
α such

that
DJxJ ≥ 0, ∀β ∈ Nk \ J, x̄J < xβ .

For this set J , it holds that

∀w ∈ J, θ̂w = x̄J =

∑
c∈J ncxc∑
c∈J nc

=

∑
c∈J ncX̄c∑
c∈J nc

,

∀β ∈ Nk \ J, θ̂β = xβ = X̄β . (9)
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Therefore, the MLE µ̂ = (µ̂1, . . . , µ̂k∗)′ of µ = (µ1, . . . , µk∗)′ can be written as

∀j ∈ Qs, µ̂j = θ̂s, (s = 1, . . . , k). (10)

On the other hand, the MLE σ̂2 of σ2 can be written as

σ̂2 =
1

N

k∑
s=1

ns∑
t=1

(Xst − X̄s)
2 +

1

N

k∑
s=1

ns(X̄s − θ̂s)
2

=
1

N

k∑
s=1

ns∑
t=1

(Xst − θ̂s)
2 =

1

N

k∗∑
i=1

Ni∑
j=1

(Yij − µ̂i)
2, (11)

because the function l(θ̂, σ2;X) is a concave function with respect to (w.r.t.)
σ2.

3. Cp type criterion for the candidate model

In this section, we derive an unbiased Cp type criterion for the candidate
model M. Here, we assume the following condition:

(C1) The inequality N − k∗ − 2 > 0 holds.

We do not need to assume that the true model is included in the candidate
model. First, we consider the risk function based on the prediction mean squared
error (PMSE). Let Y∗ = (Y ′

1,∗, . . . ,Yk∗,∗)
′ be a random vector, and let Y∗ be

independent and identically distributed as Y . Furthermore, for any integer s

with 1 ≤ s ≤ k and for all elements q
(s)
1 , . . . , q

(s)
v of Qs, we define Xs,∗ =

(Y ′
q
(s)
1 ,∗

, . . . ,Y ′
q
(s)
v ,∗

)′. In addition, we put X∗ = (X ′
1,∗, . . . ,X

′
k,∗)

′. The risk

function R based on the PMSE is given by

R = E

EY∗

 1

σ2
∗

k∗∑
i=1

Ni∑
j=1

(Yij,∗ − µ̂i)
2

 = N+E

[
1

σ2
∗

k∗∑
i=1

Ni(µi,∗ − µ̂i)
2

]
. (12)

Next, we define the following random variables:

Ȳi =
1

Ni

Ni∑
j=1

Yij (i = 1, . . . , k∗), σ̄2 =
1

N

k∗∑
i=1

Ni∑
j=1

(Yij − Ȳi)
2. (13)

Note that Ȳ1, . . . , Ȳk∗ and σ̄2 are mutually independent, and Ȳi ∼ N(µi,∗, σ
2
∗/Ni)

and Nσ̄2/σ2
∗ ∼ χ2

N−k∗ because Y11, . . . , YkNk
are independently distributed as

normal distribution. Then, we estimate the risk function R by using

(N − k∗ − 2)
σ̂2

σ̄2
. (14)
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Here, from (11) the MLE σ̂2 can be written as

σ̂2 =
1

N

k∗∑
i=1

Ni∑
j=1

(Yij − Ȳi)
2 +

1

N

k∗∑
i=1

Ni(Ȳi − µ̂i)
2

= σ̄2 +
1

N

k∗∑
i=1

Ni(Ȳi − µ̂i)
2. (15)

Therefore, (14) can be expressed as

(N − k∗ − 2)
σ̂2

σ̄2
= N − k∗ − 2 +

(
N − k∗ − 2

Nσ̄2/σ2
∗

)
1

σ2
∗

k∗∑
i=1

Ni(Ȳi − µ̂i)
2. (16)

On the other hand, from (9) and (10), it can be seen that µ̂1, . . . , µ̂k∗ are func-
tions of X̄1, . . . , X̄k. Moreover, for any integer s with 1 ≤ s ≤ k, it holds that

X̄s =
1

ns

ns∑
t=1

Xst =
1∑

q∈Qs
Nq

∑
q∈Qs

Nq∑
j=1

Yqj =
1∑

q∈Qs
Nq

∑
q∈Qs

NqȲq. (17)

Thus, X̄1, . . . , X̄k are functions of Ȳ1, . . . , Ȳk∗ , and µ̂1, . . . , µ̂k∗ are also functions
of Ȳ1, . . . , Ȳk∗ . Hence, noting that Ȳ1, . . . , Ȳk∗ and σ̄2 are independent, and
Nσ̄2/σ2

∗ ∼ χ2
N−k∗ and E[(χ2

N−k∗)−1] = (N − k∗ − 2)−1, the expectation of (16)
can be written as

E

[
(N − k∗ − 2)

σ̂2

σ̄2

]
= N − k∗ − 2 + E

[
1

σ2
∗

k∗∑
i=1

Ni{(Ȳi − µi,∗) + (µi,∗ − µ̂i)}2
]

= N − 2 + 2E

[
1

σ2
∗

k∗∑
i=1

Ni(Ȳi − µi,∗)(µi,∗ − µ̂i)

]

+E

[
1

σ2
∗

k∗∑
i=1

Ni(µi,∗ − µ̂i)
2

]

= N − 2− 2E

[
1

σ2
∗

k∗∑
i=1

Ni(Ȳi − µi,∗)µ̂i

]
+ E

[
1

σ2
∗

k∗∑
i=1

Ni(µi,∗ − µ̂i)
2

]
. (18)
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Therefore, by using (12) and (18), the bias B which is the difference between
the expected value of (14) and R, is given by

B = E

[
R− (N − k∗ − 2)

σ̂2

σ̄2

]
= 2 + 2E

[
1

σ2
∗

k∗∑
i=1

Ni(Ȳi − µi,∗)µ̂i

]

= 2 + 2E

 1

σ2
∗

k∑
s=1

∑
q∈Qs

Nq(Ȳq − µq,∗)µ̂q

 . (19)

Here, for any integer s with 1 ≤ s ≤ k, we put∑
q∈Qs

Nqµq,∗∑
q∈Qs

Nq
=

∑
q∈Qs

Nqµq,∗

ns
≡ αs,∗. (20)

Then, combining (10), (17) and (20), (19) can be expressed as

B = 2 + 2E

[
1

σ2
∗

k∑
s=1

ns(X̄s − αs,∗)θ̂s

]

= 2− 2E

[
1

σ2
∗

k∑
s=1

ns(X̄s − αs,∗)(X̄s − θ̂s)

]

+2E

[
1

σ2
∗

k∑
s=1

ns(X̄s − αs,∗)X̄s

]
.

Hence, noting that X̄s ∼ N(αs,∗, σ
2
∗/ns), we have

B = 2(k + 1)− 2E

[
1

σ2
∗

k∑
s=1

ns(X̄s − αs,∗)(X̄s − θ̂s)

]
. (21)

Next, we calculate the expectation in (21). Here, the following theorem
holds:

Theorem 1. Let l be an integer with l ≥ 2. Let n1, . . . , nl and τ2 be positive
numbers, and let ξ1, . . . , ξl be real numbers. Let x1, . . . , xl be independent random
variables, and let xs ∼ N(ξs, τ

2/ns), (s = 1, . . . , l). Put n = (n1, . . . , nl)
′,

ξ = (ξ1, . . . , ξl)
′ and x = (x1, . . . , xl)

′. Then, it holds that

E

[
1

τ2

l∑
s=1

ns(xs − ξs)(xs − η
(n)
l (x)[s])

]

=
l∑

i=2

(i− 1)P

ηl(x) ∈
∪

J∈J l
i

A(l)(J)

 .
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Details of the proof of Theorem 1 are given in Appendix 2 and 3. Note that
X̄1, . . . , X̄k are mutually independent, and X̄s ∼ N(αs,∗, σ

2
∗/ns) for any integer

s with 1 ≤ s ≤ k. Also note that from (8) the MLE θ̂ is given by θ̂ = η
(n)
k (X̄).

Therefore, from Theorem 1, the expectation in (21) can be expressed as

E

[
1

σ2
∗

k∑
s=1

ns(X̄s − αs,∗)(X̄s − θ̂s)

]

= E

[
1

σ2
∗

k∑
s=1

ns(X̄s − αs,∗)(X̄s − η
(n)
k (X̄)[s])

]

=

k∑
u=2

(u− 1)P

θ̂ ∈
∪

J∈J k
u

A(k)(J)

 = L, (say).

Hence, in order to correct the bias, it is sufficient to add 2(k + 1)− 2L to (14).
However, it is easily checked that L depends on the true parameters θ1,∗, . . . , θk,∗
and σ2

∗. For this reason, we must estimate L. Here, we define the following
random variable m̂ :

m̂ = 1 +

k∑
a=2

1{θ̂1<θ̂a}, (22)

where 1{·} is an indicator function. It is clear that m̂ is a discrete random
variable and its possible values are 1 to k. Incidentally, from the definitions of

A(k)(J), m̂ and θ̂, it holds that

θ̂ ∈
∪

J∈J k
u

A(k)(J) ⇐⇒ m̂ = k + 1− u ⇐⇒ k − m̂ = u− 1,

for any integer u with 1 ≤ u ≤ k. Therefore, the random variable k− m̂ satisfies

E[k − m̂] =

k∑
u=2

(u− 1)P

θ̂ ∈
∪

J∈J k
u

A(k)(J)

 = L.

Hence, in order to correct the bias, instead of 2(k + 1)− 2L, we add

2(k + 1)− 2(k − m̂) = 2(m̂+ 1)

to (14). In other words, it holds that

B = 2(k + 1)− 2E[k − m̂] = E[2(m̂+ 1)].

As a result, we obtain the Cp type criterion for the candidate model M with
the TO, called TOCp.

Theorem 2. A Cp type criterion for the candidate model M with the TO,
called TOCp is defined as

TOCp := (N − k∗ − 2)
σ̂2

σ̄2
+ 2(m̂+ 1),
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where σ̂2, σ̄2 and m̂ are given by (11), (13) and (22), respectively. Moreover,
for the risk function R given by (12), it holds that

E[TOCp] = R.

Remark 1. The TOCp is the unbiased estimator of R. Furthermore, unbi-
asedness of the TOCp holds even if the true model is not included in the candidate
model M.

In addition, for unbiasedness of the TOCp, the following theorem holds:

Theorem 3. The TOCp is the uniformly minimum-variance unbiased es-
timator (UMVUE) of R.

Proof. As we mentioned before, the random variable m̂ is a function of

θ̂1, . . . , θ̂k, and θ̂1, . . . , θ̂k are functions of X̄1, . . . , X̄k. Furthermore, X̄1, . . . , X̄k

are functions of Ȳ1, . . . , Ȳk∗ . Thus, m̂ is a function of Ȳ1, . . . , Ȳk∗ . On the other
hand, since µ̂1, . . . , µ̂k∗ are functions of Ȳ1, . . . , Ȳk∗ , from (15), we can see that
both σ̂2 and σ̄2 are functions of Ȳ1, . . . , Ȳk∗ . Therefore, from the definition of
the TOCp, the TOCp is a function of σ̄2 and Ȳ1, . . . , Ȳk∗ . Incidentally, noting
that Y11, . . . , Yk∗Nk∗ are mutually independent, and Yij ∼ N(µi,∗, σ

2
∗) where

1 ≤ i ≤ k∗ and 1 ≤ j ≤ Ni, the joint distribution function f(y;µ∗, σ
2
∗) can be

written as

f(y;µ∗, σ
2
∗)

= C1 exp

− 1

2σ2
∗

k∗∑
i=1

Niȳ
2
i +

Ni∑
j=1

(yij − ȳi)
2

+
k∗∑
i=1

Niµi,∗

σ2
∗

ȳi − C2

 ,

where ȳi, C1 and C2 are given by

ȳi =
1

Ni

Ni∑
j=1

yij , C1 =
1

(2πσ2
∗)

N/2
, C2 =

1

2σ2
∗

k∗∑
i=1

Niµ
2
i,∗.

Here, define

T0 =
k∗∑
i=1

NiȲ
2
i +

Ni∑
j=1

(Yij − Ȳi)
2

 , Ti = Ȳi, (i = 1, . . . , k∗).

Then, (T0, T1, . . . , Tk∗)′ is a complete sufficient statistic (see, e.g., Lehmann and
Casella [12]). Moreover, since σ̄2 can be written by using (T0, T1, . . . , Tk∗)′ as

σ̄2 =
1

N

(
T0 −

k∗∑
i=1

NiT
2
i

)
,

σ̄2 is a function of the complete sufficient statistic (T0, T1, . . . , Tk∗)′. Hence, the
TOCp which is a function of σ̄2 and Ȳ1, . . . , Ȳk∗ , is also a function of the complete
sufficient statistic. Therefore, since the TOCp is the unbiased estimator of R,
from Lehmann-Scheffé theorem (see, e.g., Knight [10]), the TOCp is the UMVUE
of R. □
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Remark 2. We would like to note that Davies et al. [5] showed the
bias-corrected Cp type criterion, MCp (given by Fujikoshi and Satoh [6]) is the
UMVUE of a risk function based on the prediction mean squared error for normal
linear regression models without any order restriction.

4. Numerical experiments

In this section, we confirm the estimation accuracy for the TOCp through
numerical experiments. In addition, we also calculate the selection probability
and the risk of the best model.

4.1. Estimation accuracy. Let Yij ∼ N(θi, σ
2), where i = 1, 2, 3, 4 and j =

1, . . . , Ni for each i. We set N1 = N2 = N3 = N4. Furthermore, we put
N = N1 +N2 +N3 +N4. In this setting, we consider the ANOVA model with
the following restriction:

∀j ∈ {3, 4}, θ1 = θ2 ≤ θj .

Hence, in this candidate model, the parameter space Θ is given by

Θ ≡ {θ = (θ1, θ2, θ3, θ4)
′ ∈ R4 | ∀j ∈ {3, 4}, θ1 = θ2 ≤ θj}.

Here, for comparison, we define the following criterion:

fCp = (N − k∗ − 2)
σ̂2

σ̄2
+ 2(k + 1),

where k is the number of independent mean parameters in the candidate model,
and the notation “f” of fCp is an abbreviation for “formal”. Thus, the penalty
term of the fCp is 2(3 + 1) in this candidate model. Note that under no or-
der restrictions, the fCp is equal to the usual unbiased Cp criterion. However,
since the parameters are restricted, the fCp is not necessarily (asymptotically)
unbiased estimator of the risk function in general.

Next, in this numerical experiments, we consider the following true param-
eters:

Case 1 : θ1 = 1, θ2 = 1, θ3 = 1.5, θ4 = 1.8, σ2 = 1,

Case 2 : θ1 = 1, θ2 = 1, θ3 = 1.05, θ4 = 1.05, σ2 = 1,

Case 3 : θ1 = 1, θ2 = 1, θ3 = 1, θ4 = 1, σ2 = 1,

Case 4 : θ1 = 1.2, θ2 = 1, θ3 = 0.8, θ4 = 1.3, σ2 = 1.

We would like to note that the vector of true parameters θ = (θ1, . . . , θ4)
′ is an

interior point of Θ in Case 1. Similarly, in Case 2, θ is an interior point of Θ, but
θ is very close to the boundary. On the other hand, θ is a boundary point of Θ
in Case 3. Moreover, in Case 4, θ is not included in Θ. Therefore, the true model
is included in the candidate model when Case 1–3. However, in Case 4, it is not
included. From 1,000,000 Monte Carlo simulation runs, we confirm estimation
accuracies (bias and MSE) of the TOCp and the fCp. Obtained results are given
in Table 4.1 and 4.2.
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Table 4.1 Risk of the candidate model, and estimation accuracies of each
criterion in Case 1–2

Case 1 Case 2
Risk TOCp fCp Risk TOCp fCp

N R−N Bias MSE Bias MSE R−N Bias MSE Bias MSE
12 2.49 0.00 4.71 -0.69 4.66 2.11 0.00 7.72 -1.69 10.46
36 2.79 0.00 2.61 -0.26 2.38 2.12 0.00 4.45 -1.62 6.89
100 2.96 0.00 2.14 -0.04 2.08 2.14 0.00 3.95 -1.50 5.95
200 3.00 0.00 2.04 0.00 2.03 2.16 0.00 3.72 -1.40 5.32
1000 3.00 0.00 2.02 0.00 2.02 2.34 0.00 3.17 -0.95 3.51
2000 3.00 0.00 2.00 0.00 2.00 2.50 0.00 2.87 -0.67 2.76

Table 4.2 Risk of the candidate model, and estimation accuracies of each
criterion in Case 3–4

Case 3 Case 4
Risk TOCp fCp Risk TOCp fCp

N R−N Bias MSE Bias MSE R−N Bias MSE Bias MSE
12 2.10 0.00 8.14 -1.79 11.35 2.32 0.00 10.25 -1.87 13.94
36 2.11 0.00 4.83 -1.78 8.00 2.78 0.00 7.84 -1.92 11.91
100 2.11 0.00 4.45 -1.78 7.63 4.03 0.00 12.31 -1.96 16.67
200 2.11 0.00 4.36 -1.79 7.56 6.01 -0.01 20.27 -1.99 24.65
1000 2.11 0.00 4.30 -1.78 7.49 22.00 0.00 84.89 -2.00 88.88
2000 2.11 0.00 4.27 -1.78 7.46 42.00 0.00 165.94 -2.00 169.94

From Table 4.1, we can see that the TOCp and the fCp are unbiased and
asymptotically unbiased estimators of R, respectively. Similarly, we can see that
the biases of the TOCp of Case 2 are similar to those of Case 1. On the other
hand, the bias of the fCp in Case 2 is still not small when the sample size N is
2000. Moreover, in Case 3, from Table 4.2 we can see that the the TOCp is the
unbiased estimator of R and the fCp has the asymptotic bias. In addition, from
Table 4.2 we can see that the fCp has asymptotic bias in Case 4. However, the
TOCp is the unbiased estimator of R. Furthermore, for the MSEs, from Table
4.1 we can see that the MSEs of the fCp are smaller than those of the TOCp in
Case 1 or Case 2 and large N . On the other hand, from Table 4.2 we can see
that the MSEs of the TOCp are smaller than those of the fCp in both Case 3
and 4.

4.2. Selection probability and the risk of the best model. In this sub-
section, we calculate selection probabilities in cases of using the TOCp and the
fCp, respectively. In addition, we also calculate the risk of the best model se-
lected by minimizing each criterion. Let Yij ∼ N(θi, σ

2), where i = 1, 2, 3, 4
and j = 1, . . . , Ni for each i. We set N1 = N2 = N3 = N4. Moreover, we put
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N = N1+N2+N3+N4. In this setting, we consider the following five candidate
models:

M1 : ANOVA model with θ1 = θ2 = θ3 = θ4,

M2 : ANOVA model with θ1 = θ2 = θ3 ≤ θ4,

M3 : ANOVA model with θ1 = θ2 ≤ θj , (j = 3, 4),

M4 : ANOVA model with θ1 ≤ θj , (j = 2, 3, 4),

M5 : ANOVA model without any restriction.

Note that these five candidate models are nested. Furthermore, in this simulation
we consider the following true models:

Case 1 : θ1 = θ2 = 1, θ3 = θ4 = 1.5, σ2 = 1,

Case 2 : θ1 = θ2 = 1, θ3 = 2.4, θ4 = 1.7, σ2 = 1.

From 10,000 Monte Carlo simulation runs, we calculate the selection probability
and the risk of the best model for each criterion in both cases. Obtained results
are given in Table 4.3 – 4.6.

Table 4.3 Selection probability (%) for the case of using each criterion
in Case 1

TOCp fCp

N M1 M2 M3 M4 M5 M1 M2 M3 M4 M5
40 46.70 14.74 28.88 4.98 4.70 48.13 14.82 27.37 4.71 4.97
80 24.98 14.67 48.36 6.11 5.88 25.63 14.68 47.60 6.11 5.98
120 13.69 10.99 62.06 6.57 6.69 14.02 10.99 61.64 6.62 6.73
160 6.99 7.69 70.11 7.70 7.51 7.13 7.69 69.95 7.72 7.51
200 3.27 4.70 77.12 7.60 7.31 3.31 4.70 77.06 7.61 7.32

Table 4.4 Selection probability (%) for the case of using each criterion
in Case 2

TOCp fCp

N M1 M2 M3 M4 M5 M1 M2 M3 M4 M5
40 3.24 0.22 80.98 7.76 7.80 3.50 0.22 80.39 7.91 7.98
80 0.04 0.00 84.72 7.74 7.50 0.04 0.00 84.64 7.78 7.54
120 0.00 0.00 84.29 7.30 8.41 0.00 0.00 84.27 7.32 8.41
160 0.00 0.00 84.32 7.98 7.70 0.00 0.00 84.32 7.98 7.70
200 0.00 0.00 84.50 7.49 8.01 0.00 0.00 84.50 7.49 8.01

From Table 4.3 – 4.6, we can see that the obtained results of using the
TOCp are very similar to those of using fCp in both cases. This implies that
using the criterion which has unbiasedness does not dramatically influence the
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Table 4.5 Risk for each candidate model, and the values of risks of
best models (R[TOCp], R[fCp]) selected by minimizing

the TOCp and the fCp in Case 1

N M1 M2 M3 M4 M5 R[TOCp] R[fCp]
40 43.50 43.40 42.71 43.32 44.03 43.98 43.98
80 86.02 85.20 82.90 83.46 84.01 84.52 84.54
120 128.51 126.92 122.96 123.46 123.99 124.47 124.48
160 171.00 168.61 162.99 163.51 164.02 164.29 164.29
200 213.51 210.30 202.97 203.49 203.98 204.01 204.01

Table 4.6 Risk for each candidate model, and the values of risks of
best models (R[TOCp], R[fCp]) selected by minimizing

the TOCp and the fCp in Case 2

N M1 M2 M3 M4 M5 R[TOCp] R[fCp]
40 54.46 54.71 42.94 43.48 44.01 43.82 43.85
80 107.94 107.86 82.99 83.50 83.99 83.55 83.55
120 161.44 161.02 123.02 123.51 124.02 123.59 123.59
160 214.90 214.10 163.01 163.53 164.02 163.59 163.59
200 268.39 267.22 203.01 203.50 204.01 203.57 203.57

performance of criteria such as the selection probability and the risk of the best
model.

5. Conclusion

Under ANOVA model with the tree ordering, we derived the unbiased Cp

type criterion, called TOCp. In addition, the TOCp is the unbiased estimator
even if the true model is not included in the candidate model. Moreover, we
show that the TOCp is the UMVUE. We confirmed the estimation accuracy
and we also calculated the selection probability and the risk of the best model
through numerical experiments.

We recall that the TOCp is derived under the tree ordering which is the im-
portant restriction in applied statistics. Nevertheless, there are other important
restrictions such as simple ordering and umbrella ordering. Hence, we should
derive the unbiased Cp type criterion under above restrictions. Moreover, we
should consider generalization of restrictions such as the restriction on a closed
convex polyhedral cone and the restriction on closed convex set with a smooth
boundary. Furthermore, we should investigate theoretical property of criteria
derived under order restrictions. These are left for the future work.
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Appendix 1: Proof of Lemma 1

In this section, we prove Lemma 1. First, we provide the following lemma.

Lemma A. The following three propositions hold:

(1) Let A and B be non-empty subsets of Nl, and let A ∩B = ∅. Then, it
holds that

x̄A < x̄B ⇒ x̄A < x̄A∪B < x̄B.

(2) Let A and B1, . . . , Bi be non-empty subsets of Nl, and let A and
B1, . . . , Bi be disjoint. Then, it holds that

∀j ∈ {1, . . . , i}, x̄A < x̄Bj ⇒ x̄A < x̄B , (A.1)

where B is given by

B =
i∪

j=1

Bj .

Similarly, it also holds that

∀j ∈ {1, . . . , i}, x̄Bj ≤ x̄A ⇒ x̄B ≤ x̄A. (A.2)

(3) Let A, B and C be non-empty subsets of Nl, and let A, B and C be
disjoint. Then, it holds that

x̄A < x̄C , x̄B ≤ x̄C ⇒ x̄A∪B < x̄C . (A.3)

The proof of Lemma A is omitted because it is easily obtained. Next, we
prove Lemma 1.

Proof. When l = 2, the statements of Lemma 1 are equivalent to Lemma
C given by Inatsu [8], and it is already proved. Therefore, we prove the case of
l ≥ 3.

First, we prove (1) of Lemma 1. From (5) it holds that

l∪
i=1

∪
J∈J (l)

i

A(l)(J) = {x ∈ Rl | x1 ≤ x2, . . . , x1 ≤ xl} = A(l),

and A(l)(J) ̸= A(l)(J∗) where J ̸= J∗. Therefore, from the definition of the
inverse image, it is clear that (1) holds because ηl is the function from Rl to
A(l).

Next, using mathematical induction we prove (2) and (3) of Lemma 1. Thus,
assume that Lemma 1 is true when l = 2, . . . , q−1. In this assumption, we prove

that Lemma 1 is also true when l = q. Here, in the case of i = 1, J (q)
1 has only

one set J = {1}. First, for this set J , we show the inclusion relation ⊃ of (7).
Let x = (x1, . . . , xq)

′ be an element of Rq satisfying

DJxJ ≥ 0, ∀t ∈ Nq \ J, x̄J < xt.
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Here, note that x̄J = x1. Hence, for any integer t with 2 ≤ t ≤ q, the inequality
x1 < xt holds. This implies that x ∈ A(q)(J) ⊂ A(q). Meanwhile, let

Hq(δ;x) =

q∑
u=1

Nu(xu − δu)
2.

Then, noting that x ∈ A(q), we get

0 ≤ min
δ∈A(q)

Hq(δ;x) ≤ Hq(x;x) = 0.

Therefore, it holds that

min
δ∈A(q)

Hq(δ;x) = Hq(x;x) = 0.

This equality means that ηq(x) = x ∈ A(q)(J). Thus, we obtain ηq(x) ∈
A(q)(J). Therefore, x ∈ η−1

q

(
A(q)(J)

)
holds. Hence, the inclusion relation ⊃ of

(7) in the case of J = {1} is proved. Next, we show ⊂ of (7). Let y = (y1, . . . , yq)
′

be an element of Rq satisfying y ∈ η−1
q

(
A(q)(J)

)
. In other words, we assume

that

ηq(y) = argmin
δ∈A(q)

Hq(δ;y) ≡ α = (α1, . . . , αq)
′ ∈ A(q)(J).

Here, noting that A(q)(J) is an open set, there exists an ε-neighborhood U(α; ε)
of α such that U(α; ε) ⊂ A(q)(J). Thus, for any element γ = (γ1, . . . , γq)

′ of Rq

satisfying γ ∈ U(α; ε) ⊂ A(q), it holds that

Hq(α;y) ≤ Hq(γ;y).

This implies that α is a local minimizer of Hq(δ;y). In addition, since Hq(δ;y)
is a strictly convex function on Rq w.r.t. δ, the local minimizer α is the unique
global minimizer. Moreover, it is clear that the global minimizer is y because
Hq(δ;y) is non-negative and Hq(y;y) = 0. Therefore, we get α = y and it holds
that

ηq(y) = α = y ∈ A(q)(J).

Hence, for any s with s ∈ Nq \ J , the inequality y1 < ys holds. Consequently,
the inclusion relation ⊂ of (7) in the case of J = {1} is proved.

Next, for any i with 2 ≤ i ≤ q− 1, we prove the inclusion relation ⊃ of (7).

Let i be an integer with 2 ≤ i ≤ q−1, and let J be a set with J ∈ J (q)
i . Assume

that x = (x1, . . . , xq)
′ is an element of Rq satisfying DJxJ ≥ 0 and x̄J < xt for

any t ∈ Nq \ J . Here, the function Hq(α;x) can be expressed as

Hq(α;x) =

q∑
d=1

Nd(xd − αd)
2 =

∑
s∈J

Ns(xs − αs)
2 +

∑
t∈Nq\J

Nt(xt − αt)
2

= H#J(αJ ;xJ ) +H#Nq\J(αNq\J ;xNq\J).

Therefore, it is easily checked that

min
α∈A(q)

Hq(α;x) ≥ min
αJ∈A(#J)

H#J(αJ ;xJ) +H#Nq\J(xNq\J ;xNq\J ). (A.4)
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In addition, we put xJ = (y1, . . . , y#J)
′ = y, αJ = (β1, . . . , β#J )

′ = β, NJ =
(n1, . . . , n#J)

′ = n and J∗ = N#J . By using these notations, we obtain

H#J(αJ ;xJ ) =
∑
s∈J

Ns(xs − αs)
2 =

#J∑
u=1

nu(yu − βu)
2 = H#J(β;y),

and

min
αJ∈A(#J)

H#J(αJ ;xJ) = min
β∈A(#J)

H#J(β;y).

Recall that Lemma 1 is true when l = 2, . . . , q−1 from the assumption of math-

ematical induction. Moreover, it also holds that D
(N)
J xJ ≥ 0. This inequality is

equal to D
(n)
J∗ yJ∗ ≥ 0. Furthermore, noting that J∗ = N#J and 2 ≤ #J ≤ q−1,

from (3) of Lemma 1 we get

min
αJ∈A(#J)

H#J (αJ ;xJ) = min
β∈A(#J)

H#J(β;y)

=

#J∑
u=1

nu(yu − ȳJ∗)2 =
∑
s∈J

Ns(xs − x̄J)
2. (A.5)

Hence, from (A.4) and (A.5), it holds that

min
α∈A(q)

Hq(α;x) ≥
∑
s∈J

Ns(xs − x̄J)
2 +

∑
t∈Nq\J

Nt(xt − xt)
2. (A.6)

Here, let γ = (γ1, . . . , γq)
′ be a q-dimensional vector whose sth element (s ∈ J)

is x̄J and tth element (t ∈ Nq \ J) is xt. Then, from the assumption, for any
t ∈ Nq \ J it holds that x̄J < xt. Thus, from the definition of γ, we obtain

γ ∈ A(q). Hence, the following inequality holds:

min
α∈A(q)

Hq(α;x) ≤ Hq(γ;x) =
∑
s∈J

Ns(xs − x̄J)
2 +

∑
t∈Nq\J

Nt(xt − xt)
2. (A.7)

Therefore, from (A.6) and (A.7) we get

min
α∈A(q)

Hq(α;x) = Hq(γ;x).

This implies that

ηq(x) = argmin
α∈A(q)

Hq(α;x) = γ.

Noting that from the definition of γ, we get γ ∈ A(q)(J), i.e., x ∈ η−1
q

(
A(q)(J)

)
.

Consequently, for any i with 2 ≤ i ≤ q − 1, the inclusion relation ⊃ of (7) is
proved.

Next, we prove the inclusion relation ⊂ of (7). Let i be an integer with

2 ≤ i ≤ q− 1, and let J be a set with J ∈ J (q)
i . Also let x = (x1, . . . , xq)

′ be an

element of Rq satisfying x ∈ η−1
q

(
A(q)(J)

)
. In other words, we assume that

ηq(x) = (α1, . . . , αq)
′ = α ∈ A(q)(J).
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Here, from the definition of A(q)(J), for any s ∈ J and for any t ∈ Nq \ J , it
holds that α1 = αs and α1 < αt. Incidentally, from the definition of ηq, we get

min
δ∈A(q)

q∑
i=1

Ni(xi − δi)
2 =

∑
s∈J

Ns(xs − αs)
2 +

∑
t∈Nq\J

Nt(xt − αt)
2

=
∑
s∈J

Ns(xs − α1)
2 +

∑
t∈Nq\J

Nt(xt − αt)
2.

In addition, for the subvector γ∗ = (γ1,γ
′
Nq\J)

′, we consider the following func-

tion:

H(γ∗;x) =
∑
s∈J

Ns(xs − γ1)
2 +

∑
t∈Nq\J

Nt(xt − γt)
2.

Noting that α∗ = (α1,α
′
Nq\J )

′ ∈ A(q−#J+1)({1}) and A(q−#J+1)({1}) is an

open set, there exists an ε-neighborhood U(α∗; ε) of α∗ such that U(α∗; ε) ⊂
A(q−#J+1)({1}). Let ζ = (ζ1, . . . , ζq)

′, and let ζ∗ = (ζ1, ζ
′
Nq\J)

′ ∈ U(α∗; ε).

Moreover, let ξ = (ξ1, . . . , ξq)
′ be a q-dimensional vector whose sth element

(s ∈ J) is ξs = ζ1, and tth element (t ∈ Nq \ J) is ξt = ζt. Then, noting that

ξ ∈ A(q) we obtain

H(ζ∗;x) =
∑
s∈J

Ns(xs − ζ1)
2 +

∑
t∈Nq\J

Nt(xt − ζt)
2

=
∑
s∈J

Ns(xs − ξs)
2 +

∑
t∈Nq\J

Nt(xt − ξt)
2

≥ min
δ∈A(q)

q∑
i=1

Ni(xi − δi)
2

=
∑
s∈J

Ns(xs − α1)
2 +

∑
t∈Nq\J

Nt(xt − αt)
2 = H(α∗;x).

Thus, α∗ is a local minimizer of H(γ∗;x). In addition, since H(γ∗;x) is a
strictly convex function on Rq−#J+1 w.r.t. γ∗, the local minimizer α∗ is the
unique global minimizer of H(γ∗;x). Moreover, the global minimizer can be
obtained by differentiating H(γ∗;x) w.r.t. γ∗ as

α1 = x̄J , αt = xt (t ∈ Nq \ J).

Therefore, noting that α1 < αt, we have x̄J < xt.

Next, we prove D
(N)
J xJ ≥ 0. We replace xJ and NJ with y = (y1, . . . , yi)

′

and n = (n1, . . . , ni)
′, respectively. In addition, we put J∗ = Ni. Note that

xJ = y = yJ∗ . Also note that y is an i-dimensional vector and 2 ≤ i ≤ q − 1.
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Recall that from (1) of Lemma 1, it holds that

Ri =
i∪

s=1

∪
J∈J (i)

s

η−1
i

(
A(i)(J)

)
,

η−1
i

(
A(i)(J)

)
∩ η−1

i

(
A(i)(J∗)

)
= ∅ (J ̸= J∗).

In order to prove D
(N)
J xJ ≥ 0, we show y ∈ η−1

i

(
A(i)(Ni)

)
using proof by

contradiction. Thus, we assume that there exists an integer s with 1 ≤ s ≤ i− 1

and a set J∗∗ of J (i)
s such that y ∈ η−1

i

(
A(i)(J∗∗)

)
. Recall that from the

assumption of mathematical induction, Lemma 1 is true when l = 2, . . . , q − 1.
Furthermore, since i ≤ q − 1, from (2) of Lemma 1, y ∈ η−1

i

(
A(i)(J∗∗)

)
is

equivalent to

D
(n)
J∗∗yJ∗∗ ≥ 0, ȳJ∗∗ < yt (t ∈ Ni \ J∗∗).

Here, by using (2) of Lemma A, we get ȳJ∗∗ < ȳNi\J∗∗ . Moreover, using (1) of
Lemma A we have ȳJ∗∗ < ȳNi = x̄J . Therefore, combining x̄J < xt (t ∈ Nq \ J),
we get

ȳJ∗∗ < xr (r ∈ Nq \ J). (A.8)

Note that there exists a set J∗∗∗ with J∗∗∗ ⫋ J satisfies ȳJ∗∗ = x̄J∗∗∗ and

D
(n)
J∗∗yJ∗∗ = D

(N)
J∗∗∗xJ∗∗∗ ≥ 0, x̄J∗∗∗ < xv (v ∈ J \ J∗∗∗). (A.9)

Hence, for the set J∗∗∗, from (A.8) and (A.9) it holds that

D
(N)
J∗∗∗xJ∗∗∗ ≥ 0, x̄J∗∗∗ < xu (u ∈ Nq \ J∗∗∗).

As we proved before, this implies that x ∈ η−1
q

(
A(q)(J∗∗∗)

)
. However, this result

is a contradiction because J ̸= J∗∗∗, x ∈ η−1
q

(
A(q)(J)

)
and η−1

q

(
A(q)(J)

)
∩

η−1
q

(
A(q)(J∗∗∗)

)
= ∅. Therefore, we obtain y ∈ η−1

i

(
A(i)(Ni)

)
. From (2) of

Lemma 1, this result is equivalent to D
(n)
Ni

y ≥ 0. This inequality can be written

by using N , J and xJ as D
(N)
J xJ ≥ 0. Thus, for any i with 2 ≤ i ≤ q − 1, the

inclusion relation ⊂ of (7) is proved.

Finally, in the case of i = q, i.e., J = Nq ∈ J (q)
q , we prove (7). First,

we prove the inclusion relation ⊃ of (7). Let x = (x1, . . . , xq)
′ ∈ Rq, and let

DJxJ ≥ 0. Recall that the following relation holds:

Rq =

q∪
s=1

∪
J∈J (q)

s

η−1
q

(
A(q)(J)

)
,

η−1
q

(
A(q)(J)

)
∩ η−1

q

(
A(q)(J∗)

)
= ∅ (J ̸= J∗).

Again, we consider proof by contradiction. Hence, we assume that there exists

an integer s with 1 ≤ s ≤ q−1 and a set J∗ of J (q)
s satisfying x ∈ η−1

q

(
A(q)(J∗)

)
.

Thus, as we mentioned before, it holds that

DJ∗xJ∗ ≥ 0, x̄J∗ < xt (t ∈ Nq \ J∗).
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We would like to recall that 1 ∈ J∗ and the number of elements in J∗ is s. Here,
if s = q − 1, then Nq \ J∗ has only one element a satisfying a > 1. Therefore, it
holds that

x̄Nq\{a} < xa.

However, this inequality is a contradiction because DJxJ ≥ 0. Hence, s satisfies
1 ≤ s ≤ q − 2. Incidentally, there exists an element t∗ of Nq \ J∗ which satisfies

∀t ∈ Nq \ (J∗ ∪ {t∗}), xt ≤ xt∗

Therefore, form (2) of Lemma A we get

x̄Nq\(J∗∪{t∗}) ≤ xt∗

In addition, since x̄J < xt∗ , from (3) of Lemma A we obtain

x̄Nq\{t∗} < xt∗

However, this inequality is also contradiction because DJxJ ≥ 0. Thus, we get

s = q. This implies that J∗ = Nq ∈ J (q)
q and x ∈ η−1

q

(
A(q)(Nq)

)
. Therefore,

the inclusion relation ⊃ of (7) in the case of i = q is proved. Next, we prove ⊂.
Assume that x ∈ η−1

q

(
A(q)(Nq)

)
. In other words, it holds that

ηq(x) ≡ α ∈ A(q)(Nq).

From the definition of A(q)(Nq), we get α = 1qα, where 1q is a q-dimensional
vector and every element of 1q is equal to one. Here, again we consider proof by
contradiction. Therefore, we assume that there exists an integer s with 2 ≤ s ≤ q
which satisfies

x̄Nq\{s} < xs. (A.10)

Meanwhile, for the function Hq(δ;x) given by

Hq(δ;x) =

q∑
a=1

Na(xa − δa)
2,

it is easily checked that

min
δ∈A(q)

Hq(δ;x) = Hq(α;x) =

q∑
a=1

Na(xa − α)2, (A.11)

because x ∈ η−1
q

(
A(q)(Nq)

)
is true. Here, it is clear that the following inequality

holds:
q∑

a=1

Na(xa − α)2 ≥ min
β∈R

q∑
a=1, a ̸=s

Na(xa − β)2 =

q∑
a=1, a ̸=s

Na(xa − x̄Nq\{s})
2.

(A.12)
Hence, combining (A.11) and (A.12) we get

min
δ∈A(q)

Hq(δ;x) ≥
q∑

a=1, a ̸=s

Na(xa − x̄Nq\{s})
2. (A.13)
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Let β be a q-dimensional vector whose sth and tth (t ∈ Nq \{s}) elements are xs

and x̄Nq\{s}, respectively. Then, the inequality (A.13) can be written by using
β as

min
δ∈A(q)

Hq(δ;x) ≥ Hq(β;x).

On the other hand, from the assumption (A.10), we obtain

min
δ∈A(q)

Hq(δ;x) ≤ Hq(β;x),

because β ∈ A(q). Thus, we have

min
δ∈A(q)

Hq(δ;x) = Hq(β;x),

and this means that ηq(x) = β. However, this result is a contradiction because
ηq(x) = α and α ̸= β. Hence, for any integer s with 2 ≤ s ≤ q, it holds that
x̄Nq\{s} ≥ xs. This inequality is equivalent to DNqxNq ≥ 0. Therefore, the
inclusion relation ⊂ of (7) in the case of i = q is proved. Consequently, (2) of
Lemma 1 is proved.

Finally, we prove (3) of Lemma 1. When J ̸= Nq, we have already proved
in the proof of (2) of Lemma 1. Thus, we prove the case of J = Nq. Let

x ∈ η−1
q

(
A(q)(Nq)

)
. Then, it holds that ηq(x) ≡ α ∈ A(q)(Nq) and α can be

written as α = α1q. Here, for the function Hq(δ;x) defined by

Hq(δ;x) =

q∑
a=1

Na(xa − δa)
2,

we obtain

min
δ∈A(q)

Hq(δ;x) = Hq(α;x) =

q∑
a=1

Na(xa − α)2

≥ min
β∈R

q∑
a=1

Na(xa − β)2 =

q∑
a=1

Na(xa − x̄Nq )
2 = Hq(x̄Nq1q;x), (A.14)

because x ∈ η−1
q

(
A(q)(Nq)

)
holds. On the other hand, since x̄Nq1q ∈ A(q), we

get

min
δ∈A(q)

Hq(δ;x) ≤ Hq(x̄Nq1q;x).

By combining this inequality and (A.14), we have

min
δ∈A(q)

Hq(δ;x) = Hq(x̄Nq1q;x).

This implies ηq(x) = α = x̄Nq
1q. Therefore, (3) of Lemma 1 is proved. □
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Appendix 2: Technical lemma

In this section, we provide two technical lemmas. Using Lemma 1 and
provided two lemmas, we prove Theorem 1 in Appendix 3.

Lemma B. Let v1, . . . , vl be independent random variables, and let vs ∼
N(ξs, τ

2/Ns) where 1 ≤ s ≤ l, τ2 > 0, ξ1, . . . , ξl ∈ R and N1, . . . , Nl ∈ R>0. Let
N = (N1, . . . , Nl)

′, v = (v1, . . . , vl)
′ and ξ = (ξ1, . . . , ξl)

′. In addition, for any

integer i with 1 ≤ i ≤ l and for any set J with J ∈ J (l)
i , define

S(J) =
∑
s∈J

Ns(vs − ξs)(vs − v̄J ).

Then, the following two propositions hold:

(1) If J ̸= Nl, then vNl\J , ((DJvJ )
′, S(J))′ and v̄J are mutually indepen-

dent.
(2) If J = Nl, then ((DJvJ)

′, S(J))′ and v̄J are mutually independent.

Proof. First, we prove (1). From the assumption, v is distributed as the
multivariate normal distribution with a diagonal covariance matrix. Therefore,
noting that the two sets J and Nl \ J are disjoint sets, it can be shown that
the two subvectors vJ and vNl\J are also distributed as (multivariate) normal
distributions and these are mutually independent.

Next, we prove that ((DJvJ)
′, S(J))′ and v̄J are functions of vJ , and

these are mutually independent. Here, the case of J = {1} is clear because
((DJvJ )

′, S(J))′ = (0, 0)′. Thus, we consider the case of J ̸= {1}. Since∑
s∈J

Nsv̄J(vs − v̄J ) = 0,

it holds that

S(J) =
∑
s∈J

Ns(vs − ξs)(vs − v̄J) =
∑
s∈J

Ns(vs − v̄J − ξs)(vs − v̄J)

=
∑
s∈J

Ns(vs − v̄J)
2 −

∑
s∈J

Nsξs(vs − v̄J ).

Here, let

A = (diag(NJ))
1/2

{
I#J − 1#J

ÑJ

N ′
J

}
, (B.1)

where diag(NJ) means the diagonal matrix whose (a, a) element is the ath ele-
ment of the vector NJ . Then, S(J) can be expressed as

S(J) = (AvJ)
′(AvJ )− (ξ′J(diag(NJ ))

1/2)AvJ .

Hence, ((DJvJ)
′, S(J))′ is the function of ((DJvJ )

′, (AvJ)
′)′. Therefore, it is

sufficient to prove that ((DJvJ )
′, (AvJ)

′)′ and v̄J are independent. Note that
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the vector ((DJvJ)
′, (AvJ)

′, v̄J)
′ can be written asDJvJ

AvJ

v̄J

 =

 DJ

A

N ′
J/ÑJ

vJ ,

and vJ are distributed as multivariate normal distribution. Thus, it holds that
((DJvJ )

′, (AvJ)
′)′ and v̄J are distributed as (multivariate) normal distributions.

Hence, in order to prove its independence, it is sufficient to prove that the
covariance of ((DJvJ )

′, (AvJ)
′)′ and v̄J is the zero vector. Here, the covariance

of DJvJ and v̄J can be expressed as

Cov[DJvJ , v̄J ] = DJVar[vJ ]NJ/ÑJ . (B.2)

Furthermore, noting that Var[vJ ] = τ2(diag(NJ))
−1, (B.2) can be written as

Cov[DJvJ , v̄J ] = (τ2/ÑJ)DJ(diag(NJ ))
−1NJ = (τ2/ÑJ)DJ1#J .

In addition, from the definition of the matrix DJ , it holds that DJ1#J = 0.
Therefore, we get Cov[DJvJ , v̄J ] = 0. Similarly, the covariance of AvJ and v̄J
is given by

Cov[AvJ , v̄J ] = (τ2/ÑJ)A1#J ,

and it holds that A1#J = 0 from (B.1). Thus, we have Cov[AvJ , v̄J ] =
0. Therefore, ((DJvJ )

′, (AvJ )
′)′ and v̄J are independent. This implies that

((DJvJ )
′, S(J))′ and v̄J are independent. Hence, (1) is proved. On the other

hand, by using the same argument, we can also prove (2). □

Lemma C. Let v1, . . . , vl be independent random variables defined as in
Lemma B, and let

A(l)({1}) = {(x1, . . . , xl)
′ ∈ Rl | x1 < x2, . . . , x1 < xl}.

Then, it holds that

E

[
1{v∈η−1

l (A(l)({1}))} ×
1

τ2

l∑
s=1

Nsvs(vs − ξs)

]

= E

[
1{v∈A(l)({1})} ×

1

τ2

l∑
s=1

Nsvs(vs − ξs)

]
= lE[1{v∈A(l)({1})}] = lE[1{v∈η−1

l (A(l)({1}))}]

= lP(v ∈ η−1
l (A(l)({1}))). (C.1)

Proof. From the definition of the indicator function, it is clear that the
fourth equality holds. On the other hand, for the first and third equalities, we
must prove

v ∈ η−1
l (A(l)({1})) ⇔ v ∈ A(l)({1}).
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However, we have already proved this relation in (7). Therefore, we prove the
second equality. For any integer s with 1 ≤ s ≤ l, we define

√
Ns(vs − ξs)

τ
= zs, bs =

ξs
√
Ns

τ
.

Note that z1, . . . , zl are independent and identically distributed as N(0, 1). Fur-
thermore, it holds that

1

τ2

l∑
s=1

Nsvs(vs − ξs) =

l∑
s=1

zs(zs + bs). (C.2)

In addition, for any integer t with 2 ≤ t ≤ l, putting
√
Nt√
N1

= at,

the following relation holds:

v ∈ A(l)({1}) ⇔ 2 ≤ t ≤ l, v1 < vt ⇔ 2 ≤ t ≤ l, at(z1 + b1)− bt < zt.

Here, define

El = {(c1, . . . , cl) ∈ Rl | 2 ≤ t ≤ l, at(c1 + b1)− bt < ct}.

Then, for the vector z = (z1, . . . , zl)
′, it holds that v ∈ A(l)({1}) ⇔ z ∈ El.

Using this result and (C.2), we obtain

E

[
1{v∈A(l)({1})} ×

1

τ2

l∑
s=1

Nsvs(vs − ξs)

]
= E

[
1{z∈El} ×

l∑
s=1

zs(zs + bs)

]

=

∫
· · ·
∫
El

{
l∑

s=1

zs(zs + bs)

}
l∏

s=1

ϕ(zs)dz1 · · · dzl, (C.3)

where ϕ(x) is the probability density function of standard normal distribution.
Here, when l = 2, Inatsu [8] proved that (C.3) is equal to lE[1{v∈A(l)({1})}].
Hence, we prove the case of l ≥ 3.

First, for any integer s with 2 ≤ s ≤ l we define

Fs(x) =

∫ ∞

as(x+b1)−bs

ϕ(y)dy.

In addition, let

G1 =

∫ ∞

−∞
z1(z1 + b1)

(
l∏

s=2

Fs(z1)

)
ϕ(z1)dz1,

and let

Gs =

∫ ∞

−∞

(∫ ∞

as(z1+b1)−bs

zs(zs + bs)ϕ(zs)dzs

) ∏
2≤t≤l, t̸=s

Ft(z1)

ϕ(z1)dz1,

(C.4)
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where s = 2, . . . , l. Then, (C.3) can be written as∫
· · ·
∫
El

{
l∑

s=1

zs(zs + bs)

}
l∏

s=1

ϕ(zs)dz1 · · · dzl =
l∑

s=1

Gs. (C.5)

Next, we calculate G1 and Gs. Using the integration by parts, G1 can be ex-
pressed as

G1 =

[
−ϕ(z1)(z1 + b1)

(
l∏

s=2

Fs(z1)

)]∞
−∞

+

∫ ∞

−∞
ϕ(z1)

(
l∏

s=2

Fs(z1)

)
dz1

+

∫ ∞

−∞
ϕ(z1)(z1 + b1)

d

dz1

(
l∏

s=2

Fs(z1)

)
dz1. (C.6)

Here, noting that

d

dz1
Fs(z1) = −asϕ(as(z1 + b1)− bs)

and the first term of the right hand side of (C.6) is zero, (C.6) can be written as

G1 =

∫ ∞

−∞
ϕ(z1)

(
l∏

s=2

Fs(z1)

)
dz1

+

∫ ∞

−∞
ϕ(z1)(z1 + b1)

{
l∑

s=2

{−asϕ(as(z1 + b1)− bs)} ∏
2≤t≤l, t̸=s

Ft(z1)

 dz1. (C.7)

Next, we calculate Gs. Here, note that∫ ∞

as(z1+b1)−bs

zs(zs + bs)ϕ(zs)dzs

= [−ϕ(zs)(zs + bs)]
∞
as(z1+b1)−bs

+

∫ ∞

as(z1+b1)−bs

ϕ(zs)dzs

= as(z1 + b1)ϕ{as(z1 + b1)− bs}+ Fs(z1). (C.8)

Hence, substituting (C.8) into (C.4) yields

Gs

=

∫ ∞

−∞
ϕ(z1)

(
l∏

s=2

Fs(z1)

)
dz1

+

∫ ∞

−∞
ϕ(z1)(z1 + b1){asϕ(as(z1 + b1)− bs)}

 ∏
2≤t≤l, t ̸=s

Ft(z1)

 dz1.

(C.9)
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Therefore, using (C.7) and (C.9) we get

l∑
s=1

Gs = l

∫ ∞

−∞
ϕ(z1)

(
l∏

s=2

Fs(z1)

)
dz1 = l

∫
· · ·
∫
El

l∏
s=1

ϕ(zs)dz1 · · · dzl

= lE[1{z∈El}] = lE[1{v∈A(l)({1})}].

(C.10)

Thus, by substituting (C.10) into (C.5), we obtain (C.1). □

Appendix 3: Proof of Theorem 1

In this section, we prove Theorem 1. First, we provide the following lemma.

Lemma D. Let n1, n2 and τ2 be positive numbers, and let ξ1, and ξ2 be
real numbers. Put n = (n1, n2)

′. Let x1 and x2 be independent random variables
distributed as xs ∼ N(ξs, τ

2/ns), (s = 1, 2), and let x = (x1, x2)
′. Then, the

following two propositions hold:

(P1) For any integer i with 1 ≤ i ≤ 2, and for any set J with J ∈ J (2)
i , it

holds that

E

[
1{D(n)

J xJ≥0}
1

τ2

∑
s∈J

ns(xs − ξs)(xs − x̄
(n)
J )

]
= (i− 1)P(D

(n)
J xJ ≥ 0). (D.1)

(P2) The following equality holds:

E

[
1

τ2

2∑
s=1

ns(xs − ξs)(xs − η
(n)
2 (x)[s])

]
= P

(
η
(n)
2 (x) ∈ A(2)(N2)

)
. (D.2)

Proof. First, we prove (D.1). When i = 1, i.e., J = {1}, noting that
x̄J = x1, the equality (D.1) is clear. On the other hand, when i = 2, i.e.,
J = N2, the equality (D.1) is equivalent to (P1) of Lemma F given by Inatsu [8],
and it is already proved. Similarly, the proof of (D.2) is equivalent to the proof
of (P2) of Lemma F given by Inatsu [8]. Therefore, lemma D is proved. □

Next, we consider the following lemma:

Lemma E. Let l be an integer with l ≥ 2. Assume that the following
proposition (P) is true:

(P) Let N1, . . . , Nl and ς2 be positive numbers, and let ζ1, . . . , ζl be real
numbers. Let y1, . . . , yl be independent random variables, and let ys ∼
N(ζs, ς

2/Ns) where s = 1, . . . , l. Put N = (N1, . . . , Nl)
′, ζ = (ζ1, . . . , ζl)

′

and y = (y1, . . . , yl)
′. Then, for any integer i with 1 ≤ i ≤ l and for
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any set J with J ∈ J (l)
i , it holds that

E

[
1{D(N)

J yJ≥0}
1

ς2

∑
s∈J

Ns(ys − ζs)(ys − ȳ
(N)
J )

]
= (i− 1)P(D

(N)
J yJ ≥ 0). (E.1)

Under the assumption (P), the following proposition (P∗) holds:

(P∗) Let n1, . . . , nl+1 and τ2 be positive numbers, and let ξ1, . . . , ξl+1 be
real numbers. Let x1, . . . , xl+1 be independent random variables, and
let xs ∼ N(ξs, τ

2/ns) where s = 1, . . . , l + 1. Put n = (n1, . . . , nl+1)
′,

ξ = (ξ1, . . . , ξl+1)
′ and x = (x1, . . . , xl+1)

′. Then, for any integer i

with 1 ≤ i ≤ l + 1 and for any set J with J ∈ J (l+1)
i , it holds that

E

[
1{D(n)

J xJ≥0}
1

τ2

∑
s∈J

ns(xs − ξs)(xs − x̄
(n)
J )

]
= (i− 1)P(D

(n)
J xJ ≥ 0). (E.2)

Moreover, the following equality holds:

E

[
1

τ2

l+1∑
s=1

ns(xs − ξs)(xs − η
(n)
l+1(x)[s])

]

=

l+1∑
i=2

(i− 1)P

ηl+1(x) ∈
∪

J∈J l+1
i

A(l+1)(J)

 . (E.3)

Note that Lemma D and Lemma E yield Theorem 1. Hence, we prove
Lemma E.

Proof. First, we prove (E.2). Suppose that i is an integer satisfying

1 ≤ i ≤ l and suppose also that J is a set satisfying J ∈ J (l+1)
i . In this

case, we replace nJ , xJ and ξJ with N = (N1, . . . , Ni)
′, y = (y1, . . . , yi)

′ and
ζ = (ζ1, . . . , ζi)

′, respectively. We put J∗ = Ni. Then, from the assumption
(E.1), the left hand side of (E.2) can be expressed as

E

[
1{D(n)

J xJ≥0}
1

τ2

∑
s∈J

ns(xs − ξs)(xs − x̄
(n)
J )

]

= E

[
1{D(N)

J∗ yJ∗≥0}
1

τ2

∑
t∈J∗

Nt(yt − ζt)(yt − ȳ
(N)
J∗ )

]
= (i− 1)P(D

(N)
J∗ yJ∗ ≥ 0) = (i− 1)P(D

(n)
J xJ ≥ 0). (E.4)
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Hence, we get (E.2). Therefore, it is sufficient to prove the case of i = l+1, i.e.,

J = Nl+1 ∈ J (l+1)
i . Here, the left hand side of (E.2) can be rewritten as

E

[
1{D(n)

J xJ≥0}
1

τ2

∑
s∈J

ns(xs − ξs)(xs − x̄
(n)
J )

]
= X − Y, (E.5)

where X and Y are given by

X = E

[
1{D(n)

J xJ≥0}
1

τ2

l+1∑
s=1

ns(xs − ξs)xs

]
,

Y = E

[
1{D(n)

J xJ≥0}
1

τ2

l+1∑
s=1

ns(xs − ξs)x̄
(n)
J

]
.

First, we calculate Y . Noting that

1

τ2

l+1∑
s=1

ns(xs − ξs)x̄
(n)
J =

ñJ

τ2
(x̄

(n)
J − ξ̄

(n)
J )x̄

(n)
J

and x̄
(n)
J ∼ N(ξ̄

(n)
J , τ2/ñJ ), from (2) of Lemma B we obtain

Y = E

[
1{D(n)

J xJ≥0}
1

τ2

l+1∑
s=1

ns(xs − ξs)x̄
(n)
J

]

= E
[
1{D(n)

J xJ≥0}

]
E

[
ñJ

τ2
(x̄

(n)
J − ξ̄

(n)
J )x̄

(n)
J

]
= E

[
1{D(n)

J xJ≥0}

]
× 1 = P(D

(n)
J xJ ≥ 0). (E.6)

Next, we calculate X. From (1) of Lemma 1, it is easily checked that the
following equality holds:

1{D(n)
J xJ≥0} = 1−

l∑
u=1

∑
J∗∈J (l+1)

u

1{x∈η−1
l+1(A

(l+1)(J∗))}. (E.7)

Therefore, X can be expressed by using (E.7) as

X = E

[
1

τ2

l+1∑
s=1

ns(xs − ξs)xs

]

−
l∑

u=1

∑
J∗∈J l+1

u

E

[
1{x∈η−1

l+1(A
(l+1)(J∗))}

1

τ2

l+1∑
s=1

ns(xs − ξs)xs

]
= (l + 1)

−
l∑

u=1

∑
J∗∈J l+1

u

E

[
1{x∈η−1

l+1(A
(l+1)(J∗))}

1

τ2

l+1∑
s=1

ns(xs − ξs)xs

]
, (E.8)
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where the first term of the last equality in (E.8) is derived by xs ∼ N(ξs, τ
2/ns).

Next, for any integer u with 1 ≤ u ≤ l and for any set J∗ with J∗ ∈ J l+1
u , we

calculate

E

[
1{x∈η−1

l+1(A
(l+1)(J∗))}

1

τ2

l+1∑
s=1

ns(xs − ξs)xs

]
. (E.9)

Here, recall that from (2) of Lemma 1, the following relation holds:

x ∈ η−1
l+1(A

(l+1)(J∗)) ⇔ DJ∗xJ∗ ≥ 0, ∀t ∈ Nl+1 \ J∗, x̄J∗ < xt. (E.10)

Thus, noting that

1

τ2

l+1∑
s=1

ns(xs − ξs)xs

=
1

τ2

∑
s∈J∗

ns(xs − ξs)xs +
1

τ2

∑
t∈Nl+1\J∗

nt(xt − ξt)xt

=
1

τ2

∑
s∈J∗

ns(xs − ξs)(xs − x̄J∗ + x̄J∗) +
1

τ2

∑
t∈Nl+1\J∗

nt(xt − ξt)xt

=
1

τ2

∑
s∈J∗

ns(xs − ξs)(xs − x̄J∗) +
ñJ∗

τ2
(x̄J∗ − ξ̄J∗)x̄J∗

+
1

τ2

∑
t∈Nl+1\J∗

nt(xt − ξt)xt,

the expectation (E.9) can be rewritten as

E

[
1{x∈η−1

l+1(A
(l+1)(J∗))}

1

τ2

l+1∑
s=1

ns(xs − ξs)xs

]
= G+H, (E.11)

where G and H are given by

G = E

[
1{x∈η−1

l+1(A
(l+1)(J∗))}

1

τ2

∑
s∈J∗

ns(xs − ξs)(xs − x̄J∗)

]
,

H = E
[
1{x∈η−1

l+1(A
(l+1)(J∗))} ñJ∗

τ2
(x̄J∗ − ξ̄J∗)x̄J∗ +

1

τ2

∑
t∈Nl+1\J∗

nt(xt − ξt)xt

 .
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By using (E.10), Lemma B and (E.4), G can be expressed as

G = E[1{∀t∈Nl+1\J∗, x̄J∗<xt}]

×E

[
1{DJ∗xJ∗≥0}

1

τ2

∑
s∈J∗

ns(xs − ξs)(xs − x̄J∗)

]
= E[1{∀t∈Nl+1\J∗, x̄J∗<xt}]× (u− 1)E[1{DJ∗xJ∗≥0}]

= (u− 1)× E[1{DJ∗xJ∗≥0, ∀t∈Nl+1\J∗, x̄J∗<xt}]

= (u− 1)× E[1{x∈η−1
l+1(A

(l+1)(J∗))}].

On the other hand, using (E.10), Lemma B and Lemma C, H can be written as

H = E[1{DJ∗xJ∗≥0}]

×E
[
1{∀t∈Nl+1\J∗, x̄J∗<xt} ñJ∗

τ2
(x̄J∗ − ξ̄J∗)x̄J∗ +

1

τ2

∑
t∈Nl+1\J∗

nt(xt − ξt)xt


= E[1{DJ∗xJ∗≥0}]× (l + 1− u+ 1)E

[
1{∀t∈Nl+1\J∗, x̄J∗<xt}

]
= (l + 1− u+ 1)× E[1{x∈η−1

l+1(A
(l+1)(J∗))}].

Hence, substituting G and H into (E.11) yields

E

[
1{x∈η−1

l+1(A
(l+1)(J∗))}

1

τ2

l+1∑
s=1

ns(xs − ξs)xs

]
= (l + 1)× E[1{x∈η−1

l+1(A
(l+1)(J∗))}]. (E.12)

Furthermore, combining (E.12) and (E.8) we get

X = (l + 1)−
l∑

u=1

∑
J∗∈J l+1

u

(l + 1)× E[1{x∈η−1
l+1(A

(l+1)(J∗))}]

= (l + 1)E

1− l∑
u=1

∑
J∗∈J l+1

u

1{x∈η−1
l+1(A

(l+1)(J∗))}


= (l + 1)E[1{x∈η−1

l+1(A
(l+1)(J))}] = (l + 1)E[1{DJxJ≥0}]

= (l + 1)P(DJxJ ≥ 0). (E.13)

Thus, substituting (E.6) and (E.13) into (E.5) yields

E

[
1{D(n)

J xJ≥0}
1

τ2

∑
s∈J

ns(xs − ξs)(xs − x̄
(n)
J )

]
= lP(DJxJ ≥ 0).

Hence, the expectation (E.2) for the case of i = l+1 (i.e., J = Nl+1), is proved.
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Finally, we prove (E.3). By using (1) and (3) of Lemma 1, the left hand
side of (E.3) can be expressed as

E

[
1

τ2

l+1∑
s=1

ns(xs − ξs)(xs − η
(n)
l+1(x)[s])

]

= E

 l+1∑
i=1

∑
J∈J (l+1)

i(
1{x∈η−1

l+1(A
(l+1)(J))}

1

τ2

l+1∑
s=1

ns(xs − ξs)(xs − η
(n)
l+1(x)[s])

)]

=

l+1∑
i=2

∑
J∈J (l+1)

i

E

[(
1{x∈η−1

l+1(A
(l+1)(J))}

1

τ2

∑
r∈J

nr(xr − ξr)(xr − x̄J)

)]
.

(E.14)

Here, using (E.2), Lemma B and (2) of Lemma 1, we obtain

E

[(
1{x∈η−1

l+1(A
(l+1)(J))}

1

τ2

∑
r∈J

nr(xr − ξr)(xr − x̄J)

)]

= E[1{∀u∈Nl+1\J, x̄J<xu}]× E

[
1{DJxJ≥0}

1

τ2

∑
r∈J

nr(xr − ξr)(xr − x̄J)

]
= E[1{∀u∈Nl+1\J, x̄J<xu}]× (i− 1)E[1{DJxJ≥0}]

= (i− 1)P(ηl+1(x) ∈ A(l+1)(J)). (E.15)

Thus, substituting (E.15) into (E.14) yields

E

[
1

τ2

l+1∑
s=1

ns(xs − ξs)(xs − η
(n)
l+1(x)[s])

]

=

l+1∑
i=2

(i− 1)
∑

J∈J (l+1)
i

P(ηl+1(x) ∈ A(l+1)(J))

=
l+1∑
i=2

(i− 1)P

ηl+1(x) ∈
∪

J∈J l+1
i

A(l+1)(J)

 ,

because A(l+1)(J)∩A(l+1)(J∗) = ∅ when J ̸= J∗. Therefore, (E.3) is proved. □
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