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Abstract. In this paper, we define a new class of Riemannian submanifolds which we
call arid submanifolds. A Riemannian submanifold is called an arid submanifold if no
nonzero normal vectors are invariant under the full slice representation. We see that arid
submanifolds are a generalization of weakly reflective submanifolds, and arid submani-
folds are minimal submanifolds. We also introduce an application of arid submanifolds
to the study of left-invariant metrics on Lie groups. We give a sufficient condition for a
left-invariant metric on an arbitrary Lie group to be a Ricci soliton.

1. Introduction

Let X be a Riemannian manifold, and Y be a Riemannian submanifold in X.
Denote by Isom(X) the group of isometries of X, and let N(Y ) ⊂ Isom(X) be the
subgroup which normalizes the Riemannian submanifold Y . That is,

N(Y ) := {φ ∈ Isom(X) | φ(Y ) = Y }.

The group N(Y ) is sometimes called the extrinsic isometry group of Y , and an
element of N(Y ) is called an extrinsic isometry of Y .

Definition 1.1. Take any subgroupH ofN(Y ), and fix a point p ∈ Y . Denote
by T⊥

p Y the normal space of Y at p. The action of the stabilizer Hp := {φ ∈ H |
φ(p) = p} on T⊥

p Y by differential

g.ξ := (dg)pξ (g ∈ Hp, ξ ∈ T⊥
p Y )

is called the H-slice representation of Y at p ∈ Y . We also call the N(Y )-slice
representation the full slice representation.

Remark 1.2. The above definition of slice representations seems to be slightly
different from the usual one; the notion of slice representations is usually defined for
an isometric action on a Riemannian manifold. Recall that the slice representation
of an isometric G-action at a point p is the action of the stabilizer Gp on the normal
space of the orbit G.p at p by differential. We remark that the notion of usual
slice representations is contained in our H-slice representations. In fact, the slice
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representation of a G-action at a point p is nothing but the G-slice representation
of the Riemannian submanifold G.p at p.

The following Riemannian submanifold is the one which we consider in this
paper.

Definition 1.3. Take any subgroup H ⊂ N(Y ). A Riemannian submanifold
Y is called an H-arid submanifold if the H-slice representation of Y at any point has
no nonzero fixed points. We call anN(Y )-arid submanifold just an arid submanifold.

Remark 1.4. A Riemannian submanifold Y is an H-arid submanifold for H ⊂
N(Y ) if and only if Y satisfies the following condition: for all p ∈ Y and for all
0 ̸= ξ ∈ T⊥

p Y , there exists φ ∈ Hp such that φ.ξ ̸= ξ.

An arid submanifold holds an interesting position in the theory of Riemannian
submanifolds. One can see that the notion of arid submanifolds is a generalization
of weakly reflective submanifolds. On the other hand, any arid submanifold is a
minimal submanifold. For more details on the positioning of arid submanifolds in
the submanifold theory, see Section 2. For simple examples of arid submanifolds,
see Section 3.

In general, a homogeneous arid submanifold can be characterized as follows:

Theorem 1.5. Let Y be a closed homogeneous submanifold in X. Then the
followings are equivalent:

(1) Y is an arid submanifold.
(2) There exists some closed subgroup G ⊂ Isom(X) such that Y is an isolated orbit

of the G-action.

In Section 4, we prove this theorem. In particular, Theorem 1.5 says that any
isolated orbit of any isometric proper action is an arid submanifold. Hence, isolated
orbits provide many examples of arid submanifolds.

In Section 5, we introduce an application of the notion of arid submanifolds.
Namely, we give a sufficient condition for a left-invariant metric on a Lie group to
be a Ricci soliton. This sufficient condition comes from a framework to study left-
invariant metrics via the action of the group of automorphisms and scalings on the
set of all left-invariant metrics. Now we describe the framework. Let G be a simply
connected Lie group with Lie algebra g. Denote by M(g) the set of all positive
definite inner products on g. Recall that a left-invariant metric on G is canonically
identified with an inner product on g. Hence, we can regard M(g) as the set of all
left-invariant metrics on G. Also, GL(g) acts on M(g) by base changing:

g.⟨, ⟩ := ⟨g−1, g−1⟩ (g ∈ GL(g)). (1.1)

We also note that the GL(g)-action on M(g) is transitive, and M(g) endows with
a GL(g)-homogeneous Riemannian structure. In fact, by choosing a basis of g, one
can identify M(g) with the Riemannian symmetric space GL(n,R)/O(n). Denote
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by Aut(g) the group of automorphisms of g. Let R×Aut(g) be the subgroup of
GL(g) given by

R×Aut(g) := {cφ ∈ GL(g) | c ∈ R \ {0}, φ ∈ Aut(g)},

and consider the isometric action of R×Aut(g) on M(g) given in (1.1). We note
that, for any left-invariant metric ⟨, ⟩, the orbit R×Aut(g).⟨, ⟩ is a submanifold in
M(g). Now we state a sufficient condition for obtaining left-invariant Ricci solitons
as follows:

Theorem 1.6. Let ⟨, ⟩ ∈ M(g) be a left-invariant metric on G. If the orbit
R×Aut(g).⟨, ⟩ is an Aut(g)-arid submanifold in M(g), then the left-invariant metric
⟨, ⟩ is a Ricci soliton.

Left-invariant Ricci solitons on Lie groups have been studied actively by many
geometers (e.g. [14, 15, 24]). In particular, left-invariant Ricci solitons on solvable
Lie groups have been deeply studied. On the other hand, it seems that little result
is known for left-invariant Ricci solitons on general Lie groups. We note that one
can apply Theorem 1.6 for any Lie group.

Theorem 1.6 gives a kind of extension of works by Hashinaga and Tamaru in [7].
They have been studying left-invariant Ricci solitons via studying the minimality of
the orbits of R×Aut(g)-actions. They have proved that

Theorem 1.7 ([7]). Let G be a three-dimensional simply connected solvable Lie
group, and g be the Lie algebra of G. Then for any left-invariant metric ⟨, ⟩ ∈ M(g),
the followings are equivalent:

(1) the metric ⟨, ⟩ is a solvsoliton. That is, there exists some λ ∈ R and some
D ∈ Der(g) such that

Ric⟨,⟩(, ) = λ · ⟨, ⟩+ ⟨D, ⟩.

(2) the orbit R×Aut(g).⟨, ⟩ is a minimal submanifold in M(g).

Note that a solvsoliton is in fact a left-invariant Ricci soliton ([15]). The above
theorem makes us expected that left-invariant Ricci solitons can be characterized
by the minimality of the R×Aut(g)-orbits. Unfortunately, it has shown that the ex-
pectation is wrong: both “minimal ⇒ Ricci soliton” and “minimal ⇐ Ricci soliton”
fail in general cases ([6]). Theorem 1.6 asserts that if one strengthen the assumption
from “minimal” to “Aut(g)-arid”, then the implication “⇒” holds for general Lie
groups at least.
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2. The positioning of arid submanifolds in the theory of submanifolds

The positioning of arid submanifolds in the theory of Riemannian submanifolds
is organized as follows.

reflective submanifold ⇒ totally geodesic submanifold

⇓ ⇓
weakly reflective submanifold ⇒ austere submanifold

⇓ ⇓
arid submanifold ⇒ minimal submanifold

(2.1)

A Riemannian submanifold Y in X is called a reflective submanifold if there
exists some σ ∈ Isom(X) with σ ◦ σ = id such that Y is the connected component
of the set of fixed points of σ. The isometry σ is called a reflection of Y . The
notion of reflective submanifolds has been introduced in [16]. Note that a reflective
submanifold is totally geodesic.

A Riemannian submanifold Y is called an austere submanifold if Y satisfies
the following property; for all p ∈ Y and for all v ∈ T⊥

p Y , the set of eigenvalues
with multiplicities of the shape operator Av is invariant under the multiplication
by −1. The notion of austere submanifolds is motivated by the study of special
Lagrangian submanifolds ([5]). Clearly, a totally geodesic submanifold is an austere
submanifold.

Next, we recall the notion of weakly reflective submanifolds.

Definition 2.1 ([9]). A Riemannian submanifold Y is called a weakly reflec-
tive submanifold if Y satisfies the following property; for all p ∈ Y and ξ ∈ T⊥

p Y ,
there exists some isometry φ ∈ Isom(X) such that

φ(p) = p, φ(Y ) = Y, (dφ)p(ξ) = −ξ.

In other words, a weakly reflective submanifold is a submanifold whose full slice
representation can invert any normal vector. Also, a reflective submanifold with a
reflection σ is a weakly reflective submanifold, since any normal vectors are inverted
by σ at the same time. It has been shown in [9] that a weakly reflective submanifold
is an austere submanifold.

Recall that a minimal submanifold is a Riemannian submanifold whose mean
curvature vector vanishes identically. One can easily see that austere submanifolds
are minimal submanifolds.

We now prove the parts in (2.1) relating to arid submanifolds:

Proposition 2.2. One has

(1) A weakly reflective submanifold is an arid submanifold.
(2) An arid submanifold is a minimal submanifold.
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Proof. By the definition of weakly reflective submanifolds, the first assertion
is obvious. The second assertion follows from the fact that the mean curvature
vector is invariant under the full slice representation. □

Remark 2.3. It is easy to see that any codimension one arid submanifold is
weakly reflective. However, there exist arid submanifolds which are not weak reflec-
tive. We see an example in Section 3. Also, there exist minimal submanifolds which
are not arid. For examples, one can see that the catenoid surface in R3 is not arid.

The right three submanifolds appeared in (2.1) are defined by curvature prop-
erties. Reflective submanifolds are the special case of totally geodesic submanifolds,
which are defined by extrinsic symmetry. Also, weakly reflective submanifolds are
“extrinsic symmetry version” of austere submanifolds. In this paper, we defined a
class of submanifold which is corresponding to minimal submanifolds.

3. Simple examples of arid submanifolds

In this section, we introduce simple examples of arid submanifolds which are
not weakly reflective. Denote by Sk(r) ⊂ Rk+1 the k-dimensional sphere with radius
r. Fix two integers m,n ≥ 2. Let us denote by X := Smn−1(

√
m). Set Y ⊂ X be

the m-times direct product of Sn−1(1). That is,

Y := {(x1, . . . , xm) ∈ Rmn | ∀i ∈ {1, . . . ,m}, xi ∈ Sn−1(1)}.

Remark that, in this section, we always regard an element of Rmn as an m-tuple of
elements of Rn. Note that Y is a submanifold of X with codimension (m− 1). We
claim that

Proposition 3.1. One has

(1) Y is an arid submanifold in X,
(2) Y is not austere if m ≥ 3. In particular, Y is not weakly reflective if m ≥ 3.

Now we introduce some extrinsic isometries of Y ⊂ X which play key roles to
prove Proposition 3.1. Firstly, denote by H := O(n)×· · ·×O(n) the m-times direct
product of O(n). Then H acts on Rmn by

g.x := (g1x1, . . . , gmxm) (g := (g1, . . . , gm) ∈ H, x := (x1, . . . , xm) ∈ Rmn).

Then one has H ⊂ N(Y ). Secondly, denote by Sm the symmetric group on
{1, . . . ,m}. Then Sm acts on Rmn by

σ.x := (xσ(1), . . . , xσ(m)) (σ ∈ Sm, x := (x1, . . . , xm) ∈ Rmn).

Hence, Sm is also a subgroup ofN(Y ). Among the elements ofSm, we especially use
transpositions. For i, j ∈ {1, . . . ,m}, let us denote by σij ∈ Sm the transposition
with respect to i and j. That is,

σij(i) = j, σij(j) = i, σij(k) = k (k ̸= i, j).
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Denote by e1 := t(1, 0, . . . , 0) ∈ Rn, and put p := (e1, . . . , e1) ∈ Rmn. Note that
the stabilizers Hp and (Sm)p act on TpY and T⊥

p Y by differential. Our strategy to
prove Proposition 3.1 is to analyse these actions. One can see that

TpX = {v ∈ Rmn | ⟨v, p⟩ = 0} = {(v1, . . . , vm) ∈ Rmn |
∑
i

⟨vi, e1⟩ = 0}.

Here, ⟨, ⟩ is the canonical inner product on the Euclidean space. The tangent space
TpY is given by

TpY = {(w1, . . . , wm) ∈ Rmn | ∀i ∈ {1, . . . ,m}, ⟨wi, e1⟩ = 0}.
Also, the normal space T⊥

p Y is obtained as follows:

T⊥
p Y = {(ξ1e1, . . . , ξme1) ∈ Rmn | ξ1 + · · ·+ ξm = 0}.

Next, we determine the stabilizers of the actions of H and Sm, and describe the
actions. One can see that

Hp = {(g1, . . . , gm) ∈ H | gie1 = e1} ∼= O(n− 1)× · · · ×O(n− 1),

and the actions on TpY and T⊥
p Y by differential are given by

g.v = (g1v1, . . . , gmvm) (v := (v1, . . . , vm) ∈ TpX), (3.1)

where g := (g1, . . . , gm) ∈ Hp. On the other hand, the actions of (Sm)p = Sm on
TpY and T⊥

p Y by differential are

σ.v = (vσ(1), . . . , vσ(m)) (v := (v1, . . . , vm) ∈ TpX), (3.2)

where σ ∈ Sm. Now, we are in the position to prove the first assertion of Proposi-
tion 3.1.

Proof (of (1) of Proposition 3.1). Since H acts on Y transitively, the full
slice representation at each x ∈ Y is H-equivalent to the full slice representation
at p = (e1, . . . , e1). Hence, one has only to prove that for all ξ ∈ T⊥

p Y \ {0} there
exists g ∈ N(Y )p such that g.ξ ̸= ξ.

Take any ξ = (ξ1e1, . . . , ξme1) ∈ T⊥
p Y \ {0}. Since ξ ̸= 0 and ξ1 + · · ·+ ξm = 0,

there exist i, j ∈ {1, . . . ,m} such that ξi ̸= ξj . Let us put g := σij ∈ N(Y )p. By
Equation (3.2), one has

g.ξ = (ξ1e1, . . . , ξje1, . . . , ξie1, . . . , ξme1) ̸= ξ,

which completes the proof. □
Next, we prove the second assertion of Proposition 3.1. For all i ∈ {1, . . . ,m},

let us define

T i
p := {(x1, . . . , xm) ∈ TpY | ∀j ̸= i, xj = 0} ⊂ TpY.

Then one has an orthogonal decomposition TpY = T 1
p ⊕ · · · ⊕ Tm

p . Denote by

πi : TpY → T i
p the natural projection

πi(x1, . . . , xm) = (0, . . . , 0, xi, 0, . . . , 0) ((x1, . . . , xm) ∈ TpY ).



On a Riemannian submanifold whose slice representation has no nonzero fixed points 7

Also, for all i ∈ {1, . . . ,m}, we define ηi ∈ T⊥
p Y by

ηi := (e1, . . . , e1,−(m− 1)e1, e1, . . . , e1).

Here, the i-th component of ηi is −(m − 1)e1, and the other components are e1.
Firstly, we claim that

Lemma 3.2. Let α : TpY ×TpY → T⊥
p Y be a symmetric bilinear map. Assume

that α is equivariant under the Hp-action and Sm-action. Then there exists some
λ ∈ R such that

α(x, y) = λ

m∑
i=1

⟨πi(x), πi(y)⟩ηi (x, y ∈ TpY ).

Proof. Take any symmetric bilinear map α : TpY × TpY → T⊥
p Y which is

equivariant under the actions of Hp and Sm. This proof consists of four steps.
Firstly, we claim that

Step 1. For all i, j ∈ {1, . . . ,m} with i ̸= j, α(T i
p, T

j
p ) = {0}.

Take any i, j ∈ {1, . . . ,m} with i ̸= j. Also, take any Xi ∈ T i
p and Xj ∈ T j

p .
We show that α(Xi, Xj) = 0. Denote by g = diag(1,−1, . . . ,−1) ∈ O(n). Let us
define ĝ ∈ H by

ĝ := (id, . . . , id, g, id, . . . , id),

where the i-th component of ĝ is g, and the other components are id. Since ge1 = e1,
one has ĝ ∈ Hp. Then Equation (3.1) and Hp-equivariancy of α yield that

α(Xi, Xj) = ĝ.α(Xi, Xj) = α(ĝ.Xi, ĝ.Xj) = α(−Xi, Xj).

This concludes that α(Xi, Xj) = 0.
By the assertion of Step 1, one has α(, ) =

∑
i α(πi, πi). Now we study each

αi := α|T i
p×T i

p
. Next, we prove

Step 2. αi(T
i
p, T

i
p) ⊂ spanR{ηi} for all i ∈ {1, . . . ,m}.

Take any i ∈ {1, . . . ,m}. By Equation (3.2), one can see that

σjk.v = v (v ∈ T i
p, j, k ∈ {1, . . . ,m} \ {i}).

This and Sm-equivariancy of α yield that

σjk.αi(x, y) = α(σjk.x, σjk.y) = αi(x, y)

for all x, y ∈ T i
p and j, k ∈ {1, . . . ,m} \ {i}. Hence one has

αi(T
i
p, T

i
p) ⊂

∩
j ̸=i,k ̸=i

{ξ ∈ T⊥
p Y | σjk.ξ = ξ} = spanR{ηi}.

Then one can obtain a simple expression of αi as follows:

Step 3. For all i ∈ {1, . . . ,m}, there exists λi ∈ R such that αi(, ) = λi⟨, ⟩ηi.
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Take any i ∈ {1, . . . ,m}. Let us put θi(, ) := (1/⟨ηi, ηi⟩)⟨αi(, ), ηi⟩. By the
assertion of Step 2, one can see that αi(, ) = θi(, )ηi. To prove Step 3, we have only
to show that there exists some λi ∈ R such that θi(, ) = λi⟨, ⟩. Now let us put

Hi := {(g1, . . . , gm) ∈ H | gie1 = e1,∀j ̸= i, gj = id} ∼= O(n− 1).

Then Hi ⊂ Hp acts on T i
p
∼= Rn−1 irreducibly. On the other hand, Hi ⊂ Hp acts

on T⊥
p Y trivially. Hence one has

θi(g.x, g.y) = (1/⟨ηi, ηi⟩)⟨αi(g.x, g.y), ηi⟩ = (1/⟨ηi, ηi⟩)⟨g.αi(x, y), ηi⟩ = θi(x, y)

for all g ∈ Hi and x, y ∈ T i
p. This concludes that θi is a symmetric bilinear form

on T i
p which is invariant under the irreducible representation of Hi. Hence, by the

Schur’s lemma, there exists some λi ∈ R such that θi(, ) = λi⟨, ⟩.
Finally we study each constant λi. We show that

Step 4. λ1 = · · · = λm.

Take any i, j ∈ {1, . . . ,m}. We prove that λi = λj . Take any x ∈ T i
p with

⟨x, x⟩ = 1. By the Sm-equivariancy of α, one has

σij .α(x, x) = α(σij .x, σij .x). (3.3)

We firstly study the right hand side of (3.3). From (3.2), one has σij .x ∈ T j
p and

⟨σij .x, σij .x⟩ = 1. This yields that

α(σij .x, σij .x) = αj(σij .x, σij .x) = λj⟨σij .x, σij .x⟩ηj = λjηj .

Next we study the left hand side of (3.3). Equation (3.2) yields that σij .ηi = ηj .
Then one has

σij .α(x, x) = σij .αi(x, x) = λi⟨x, x⟩σij .ηi = λi⟨x, x⟩ηj = λiηj .

Since ηj ̸= 0, one has λj = λi.
By the assertions of Step 1 to Step 4, one has

α(x, y) =

m∑
i=1

αi(πi(x), πi(y)) =

m∑
i=1

λ⟨πi(x), πi(y)⟩ηi,

which completes the proof. □

Since Hp and Sm are the subgroups of N(Y )p, the second fundamental form
Sp : TpY × TpY → T⊥

p Y is equivariant under the actions of Hp and Sm. Hence
Lemma 3.2 determines the second fundamental form of Y up to scaling. In partic-
ular, we obtain an explicit representation of the shape operator of Y as follows:

Proposition 3.3. There exists some λ ∈ R \ {0} such that for all ξ ∈ T⊥
p Y ,

the shape operator Aξ : TpY → TpY is given by

Aξx = λ

m∑
i=1

⟨ηi, ξ⟩πi(x) (x ∈ TpY ).
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In particular, the eigenvalues of Aξ are given by

λ⟨η1, ξ⟩, . . . , λ⟨η1, ξ⟩︸ ︷︷ ︸
(n−1)-times

, . . . , λ⟨ηk, ξ⟩, . . . , λ⟨ηk, ξ⟩︸ ︷︷ ︸
(n−1)-times

, . . . , λ⟨ηm, ξ⟩, . . . , λ⟨ηm, ξ⟩︸ ︷︷ ︸
(n−1)-times

.

Proof. By the assertion of Lemma 3.2, there exists some λ ∈ R such that the
second fundamental form S : TpY × TpY → T⊥

p Y is given by S(, ) = λ
∑

i⟨πi, πi⟩ηi.
Since Y is not totally geodesic, and is H-homogeneous, one has λ ̸= 0. Then by the
definition of the shape operator, one has

⟨Aξx, y⟩ = ⟨λ
∑
i

⟨πi(x), πi(y)⟩ηi, ξ⟩ = λ
∑
i

⟨πi(x), y⟩⟨ηi, ξ⟩ = ⟨λ
∑
i

⟨ηi, ξ⟩πi(x), y⟩

for all x, y ∈ TpY . Thus we obtain that Aξ = λ
∑

i⟨ηi, ξ⟩πi. Our claim for the
eigenvalues easily follows from Aξ|T i

p
= λ⟨ηi, ξ⟩idT i

p
, and dimT i

p = n − 1 for all

i ∈ {1, . . . ,m}. □

Now we are in the position to prove the remaining assertion of Proposition 3.1.

Proof (of (2) of Proposition 3.1). Assume that m ≥ 3. We have only
to prove that there exists some ξ ∈ T⊥

p Y such that the set of eigenvalues of the
shape operator Aξ is not invariant under the multiplication by −1. Let us put
ξ := ηm ∈ T⊥

p Y . By the assertion of Proposition 3.3, there exists some λ ∈ R \ {0}
such that the eigenvalues of Aξ are given by

λ⟨η1, ηm⟩, . . . , λ⟨η1, ηm⟩︸ ︷︷ ︸
(n−1)-times

, . . . , λ⟨ηm, ηm⟩, . . . , λ⟨ηm, ηm⟩︸ ︷︷ ︸
(n−1)-times

.

On the other hand, one has

⟨η1, ηm⟩ = · · · = ⟨ηm−1, ηm⟩ = −m, ⟨ηm, ηm⟩ = m(m− 1).

Thus we obtain that the eigenvalues of Aξ are

−λm, . . . ,−λm︸ ︷︷ ︸
(n−1)(m−1)-times

, λm(m− 1), . . . , λm(m− 1)︸ ︷︷ ︸
(n−1)-times

.

Since λ ̸= 0, and m ≥ 3, one can see that the set of eigenvalues is not invariant
under the multiplication by −1. □

Remark 3.4. If m = 2, then it has been shown that Y := Sn−1(1) × Sn−1(1)
is weakly reflective ([9]). In fact, the first assertion of Proposition 3.1 claims that
Y is an arid submanifold of codimension m− 1, and as mentioned in Remark 2.3, a
codimension one arid submanifold is weakly reflective.
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4. A characterization of homogeneous arid submanifolds

In this section, we prove Theorem 1.5. We here recall the notion of isolated
orbits. Let G be a Lie group, acting on a manifold X. Denote by G\X the orbit
space of the G-action. For two G-orbits G.p,G.q ∈ G\X, we denote by G.p ∼ G.q
if Gp and Gq are G-conjugate. Then “∼” is an equivalence relation on G\M . The
equivalence class [G.p] is called the orbit type of G.p. Here, we make the orbit space
G\X a topological space by endowing G\X with the natural quotient topology. An
orbit G.p is called an isolated orbit if there exists some open subset U ⊂ G\X such
that U ∩ [G.p] = {G.p} (i.e. G.p is an isolated point of [G.p] ⊂ G\X).

4.1. Preliminary on proper actions. In order to prove Theorem 1.5, we use
some general theory of proper actions. We here give a review of them. Recall that
a G-action on M is called a proper action if the map

G×M → M ×M, (g, p) 7→ (g.p, p)

is proper. That is, the inverse image of any compact subset in M × M is also
compact. It has been proved that an isometric G-action on a connected complete
Riemannian manifold X is proper if and only if G is a closed subgroup of Isom(X)
([3, 19]). In the following arguments, we fix a closed subgroup G of Isom(X), and
consider isometric proper G-action on a connected complete Riemannian manifold
X.

An important consequence of a G-action being proper is the “G-equivariant
tubular neighborhood theorem”, which we described below. For each p ∈ X, let
N(G.p) be the total space of the normal bundle of G.p. That is,

N(G.p) := {(q, ξ) | q ∈ G.p, ξ ∈ T⊥
q G.p}.

Also, for λ > 0 and p ∈ X, let Nλ(G.p) be the total space of the normal disk bundle
of G.p with radius λ, and denote by Nλ

p(G.p) the fiber at p:

Nλ(G.p) := {(q, η) ∈ N(G.p) | ⟨η, η⟩q < λ},

Nλ
p(G.p) := {(p, η) | η ∈ T⊥

p G.p, ⟨η, η⟩p < λ}.

Note that G acts on N(G.p) by g.(q, η) := (g.q, (dg)qη), and Nλ(G.p) = G.Nλ
p(G.p).

Let us define a map

Exp : N(G.p) → X, (p, ξ) 7→ exppξ.

One can see that this map is G-equivariant. The assertion of the equivariant tubular
neighborhood theorem ([4, Theorem B.24, and Remark B.27]) is given as follows:

Proposition 4.1. For all p ∈ X, there exists some λ > 0 such that the map
Exp : Nλ(G.p) → X is a G-equivariant embedding, and the image Exp(Nλ(G.p)) is
an open neighborhood of G.p.
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Proposition 4.1 provides nice tools to study the geometry of orbits. For exam-
ples, the following lemma implies that aG-orbit passing through p ∈ X cannot“come
back” to near p, unlike the irrational winding of a torus. Namely,

Lemma 4.2. Fix p ∈ X. Let us take λ > 0 as in Proposition 4.1, and (p, ξ) ∈
Nλ

p(G.p). Then the orbit G.p coincides with G.Exp(p, ξ) if and only if ξ = 0.

Proof. It is obvious that ξ = 0 implies G.p = G.Exp(p, ξ). We prove the
“only if” part. Take any (p, ξ) ∈ Nλ

p(G.p). Assume that G.Exp(p, ξ) = G.p. We
prove that ξ = 0. Let us denote by r := Exp(p, ξ). Then one has

Exp(r, 0) = r = Exp(p, ξ).

Also, one knows that (p, ξ) ∈ Nλ
p(G.p) ⊂ Nλ(G.p), and (r, 0) ∈ Nλ(G.p). By

Proposition 4.1, the map Exp : Nλ(G.p) → X is injective. This concludes that
(p, ξ) = (r, 0), and hence ξ = 0. □

Also, Proposition 4.1 provides the tools to study orbit types of G-actions via
the slice representations of G-actions (see Remark 1.2) as follows:

Lemma 4.3. Fix p ∈ X, and let us take λ > 0 as in Proposition 4.1. Take
any (p, ξ) ∈ Nλ

p(G.p). Then one has GExp(p,ξ) ⊂ Gp. Moreover, the followings are
equivalent:

(1) Gp and GExp(p,ξ) are G-conjugate. In other words, G.Exp(p, ξ) ∈ [G.p].
(2) GExp(p,ξ) = Gp,
(3) ξ is invariant under the slice representation of the G-action at p.

Proof. Firstly we prove that GExp(p,ξ) ⊂ Gp. Take any g ∈ GExp(p,ξ). Then
one has

Exp(p, ξ) = g.Exp(p, ξ) = Exp(g.p, g.ξ).

Since the map Exp : Nλ(G.p) → X is injective by Proposition 4.1, we have (p, ξ) =
(g.p, g.ξ). This concludes that g ∈ Gp.

Next, we prove the equivalence of (1) and (2). The assertion (2) ⇒ (1) is
obvious. We prove (1) ⇒ (2). Let us put r := Exp(p, ξ). Assume that Gr

∼= Gp.
Let us denote by gr and gp the Lie algebras of Gr and Gp, respectively. Since
Gr ⊂ Gp, one has gr ⊂ gp. On the other hand, the assumption Gr

∼= Gp yields that
dim(gr) = dim(gr). Thus we obtain that gr = gp, and hence one has

(Gr)0 = (Gp)0. (4.1)

Here, (Gr)0 and (Gp)0 are the connected components of Gr and Gp containing the
unit element e, respectively. Let Cp and Cr be the set of connected components of
Gp and Gr, respectively. We have shown that Gr = GExp(p,ξ) ⊂ Gp. This and (4.1)
yield that

Cr ⊂ Cp. (4.2)
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On the other hand, it is well known that stabilizers of proper actions are always
compact. This implies that both Gr and Gp are compact, and hence #Cp and #Cr
are finite. This and the assumption Gr

∼= Gp yield that

#Cr = #Cp < ∞. (4.3)

By (4.2) and (4.3), one has Cr = Cp. This concludes that Gr = Gp.
We now prove the equivalence of (2) and (3). We show that (2) implies (3).

Assume that Gp = GExp(p,ξ). Take any g ∈ Gp. We prove that g.ξ = ξ. Since
g ∈ GExp(p,ξ) = Gp, one has

Exp(p, ξ) = g.Exp(p, ξ) = Exp(g.p, g.ξ) = Exp(p, g.ξ).

The map Exp : Nλ(G.p) → X is injective by Proposition 4.1. These conclude that
g.ξ = ξ.

Lastly, we show the assertion (3) ⇒ (2). Assume that ξ is a fixed normal vector.
We prove that GExp(p,ξ) = Gp. Recall that GExp(p,ξ) ⊂ Gp always holds, and hence
we have only to show that Gp ⊂ GExp(p,ξ). Take any g ∈ Gp. Since g fixes p and ξ,
it also fixes Exp(p, ξ). This completes the proof. □
4.2. Isolated orbits and slice representations. In this subsection, we study
isolated orbits of proper isometric actions via the arguments in the previous sub-
section, and prove Theorem 1.5. Continuing from the previous subsection, we fix
a closed subgroup G of Isom(X), and consider isometric proper G-action on a Rie-
mannian manifold X.

Firstly, we give a simple characterization of isolated orbits by the notion of slice
representations.

Proposition 4.4. For all p ∈ X, the followings are equivalent:

(1) the orbit G.p is an isolated orbit of the G-action.
(2) the slice representation of the G-action at p has no nonzero fixed normal vector.
(3) the orbit G.p is a G-arid submanifold.

Proof. As seen in Remark 1.2, the slice representation of the G-action at
p coincides with the G-slice representation of G.p at p. Hence, the equivalence of
(2) and (3) easily follows from the definition of G-arid submanifolds. Therefore, we
prove the equivalence of (1) and (2) only.

We prove (1) ⇒ (2). Assume that G.p is isolated. Take any ξ ∈ T⊥
p G.p \ {0}.

We prove that there exists some g ∈ Gp such that g.ξ ̸= ξ.
We firstly construct a proper neighborhood V of G.p. Take λ > 0 as in Propo-

sition 4.1. Since G.p is an isolated orbit, there exists some open subset U ⊂ G\X
such that U ∩ [G.p] = {G.p}. Let us denote by π : X → G\X the natural projection.
Then π−1(U) is an open subset of X. Let us define an open subset V ⊂ X by

V := π−1(U) ∩ Exp(Nλ(G.p)).

By choosing t > 0 small enough, we may assume that Exp(p, tξ) ∈ V . Next, we
claim that G.Exp(p, tξ) /∈ [G.p]. Assume that G.Exp(p, tξ) ∈ [G.p]. One knows that
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Exp(p, tξ) ∈ V ⊂ π−1(U). Hence one has G.Exp(p, tξ) ∈ U . On the other hand,
one knows that U ∩ [G.p] = {G.p}. Since G.Exp(p, tξ) ∈ [G.p], one has

G.Exp(p, tξ) ∈ U ∩ [G.p] = {G.p}.
This yields that G.Exp(p, tξ) = G.p. Hence, by Lemma 4.2, one has tξ = 0. One
knows that ξ ̸= 0, and hence we have t = 0. This contradicts that t > 0. This
concludes that G.Exp(p, tξ) /∈ [G.p].

Now we are in the position to give g ∈ Gp, and show that g.ξ ̸= ξ. By Lemma 4.3
and the previous claim G.Exp(p, tξ) /∈ [G.p], one has GExp(p,tξ) ⊊ Gp. Hence there
exists some g ∈ Gp such that g /∈ GExp(p,tξ). Then one has

Exp(p, g.tξ) = Exp(g.p, g.tξ) = g.Exp(p, tξ) ̸= Exp(p, tξ).

This concludes that g.tξ ̸= tξ, and hence g.ξ ̸= ξ.
It remains to prove (2) ⇒ (1). Assume that the slice representation at p has

no nonzero fixed normal vector. We prove that there exists some open subset U of
G\X such that U ∩ [G.p] = {G.p}. Let us put

U := π(Exp(Nλ(G.p))).

Note that U is an open subset of G\X since π is an open map. We show that
U ∩ [G.p] = {G.p}. By the definition of U , it is obvious that {G.p} ⊂ U ∩ [G.p]. We
prove U ∩ [G.p] ⊂ {G.p}. Take any G.q ∈ U ∩ [G.p]. By the definition of U , there
exists some (p, ξ) ∈ Nλ

p(G.p) such that G.q = G.Exp(p, ξ). Since G.Exp(p, ξ) ∈
[G.p], Lemma 4.3 yields that ξ is a fixed point of the slice representation. On the
other hand, by the assumption, there are no nonzero fixed normal vector under the
slice representation. This yields that ξ = 0. Hence one has

G.q = G.Exp(p, 0) = G.p ∈ {G.p}.
This completes the proof. □

Now we are in the position to prove Theorem 1.5.

Proof (of Theorem 1.5). We prove (2) ⇒ (1). Assume that Y is an isolated
orbit of the action of a closed subgroup G ⊂ Isom(X). By Proposition 4.4, one has
that Y is a G-arid submanifold, and hence is an arid submanifold.

We prove (1) ⇒ (2). Assume that Y is a closed homogeneous arid submanifold.
Let us put G = N(Y ). Since Y is homogeneous, Y is precisely a G-orbit. Also,
one can see that G is a closed subgroup of Isom(X) since Y is closed. On the
other hand, since Y is an arid submanifold, Y is an N(Y )-arid submanifold. Hence
Proposition 4.4 yields that Y is an isolated orbit of the action of G. This completes
the proof. □

5. An application to the study of left-invariant Ricci solitons

Let G be a simply connected Lie group with Lie algebra g. In this section, we
prove Theorem 1.6, and show an example of a Lie algebra to which one can apply
Theorem 1.6.
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Firstly, we give some review for Ricci solitons. Let ⟨, ⟩ be a Riemannian metric
on a manifold M . Then ⟨, ⟩ is called a Ricci soliton if there exist some λ ∈ R and
some vector field X such that the Ricci tensor Ric⟨,⟩ is given by

Ric⟨,⟩ = λ · ⟨, ⟩+ LX⟨, ⟩.

This condition is equivalent to the condition that the metric evolves along scalings
and diffeomorphisms under the Ricci flow. Namely, there exist some one parameter
families ct ∈ R and Φt ∈ Diff(M) such that the solution ⟨, ⟩t of the Ricci flow

∂

∂t
⟨, ⟩t = −2Ric⟨,⟩t

starting at ⟨, ⟩ is given by

⟨, ⟩t = (1/ct)
2 · ⟨(dΦt)

−1, (dΦt)
−1⟩, ⟨, ⟩ = ⟨, ⟩0.

Hence, a Ricci soliton is a fixed point of the Ricci flow (up to isometry and scaling),
and have been considered as a distinguished metric from the view point of the theory
of Ricci flow.

Our strategy to prove Theorem 1.6 is to observe the relationship between the
R×Aut(g)-action and the Ricci flow for left-invariant metrics. Recall that the Ricci
tensor Ric⟨,⟩ for a left-invariant metric ⟨, ⟩ is naturally identified with the tangent
vector of M(g) at ⟨, ⟩. Hence, the Ricci flow for left-invariant metrics on G is just
an ODE on M(g) given by the vector field ⟨, ⟩ 7→ Ric⟨,⟩ ∈ T⟨,⟩M(g). We note that
the vector field Ric is invariant under the action of Aut(g) on M(g) by (1.1). We
are in the position to prove Theorem 1.6.

Proof (of Theorem 1.6). Take any left-invariant metric ⟨, ⟩ ∈ M(g). As-
sume that the orbit R×Aut(g).⟨, ⟩ is an Aut(g)-arid submanifold in M(g).

We firstly claim that, for all p ∈ R×Aut(g).⟨, ⟩, the tangent vector Ricp ∈
TpM(g) is tangent to the orbit R×Aut(g).⟨, ⟩, that is, Ric⟨,⟩ ∈ T⟨,⟩R×Aut(g).⟨, ⟩.
Take any p ∈ R×Aut(g).⟨, ⟩. Let us denote by Ric⊥p ∈ T⊥

p R×Aut(g).⟨, ⟩ the normal
component of Ricp. Since the vector field Ric is invariant under the Aut(g)-action

on M(g), so is the normal vector field Ric⊥. This yields that the normal vector

Ric⊥p is invariant under the Aut(g)-slice representation of the orbit R×Aut(g).⟨, ⟩ at
p. Since the orbit R×Aut(g).⟨, ⟩ is an Aut(g)-arid submanifold, one has Ric⊥p = 0,

and hence Ricp ∈ TpR×Aut(g).⟨, ⟩.
Since the vector field Ric is tangent to the orbit R×Aut(g).⟨, ⟩, there exists

some ctφt ∈ R×Aut(g) such that the solution ⟨, ⟩t of the Ricci flow starting at ⟨, ⟩
is given by

⟨, ⟩t = (ctφt).⟨, ⟩ = (1/ct)
2 · ⟨φ−1

t , φ−1
t ⟩.

On the other hand, since G is simply connected, there exists some Φt ∈ Aut(G)
such that (dΦt)e = φt. These imply that the initial metric ⟨, ⟩ evolves along scalings
and automorphisms of G under the Ricci flow. This completes the proof. □



On a Riemannian submanifold whose slice representation has no nonzero fixed points 15

Remark 5.1. A G-invariant metric on a homogeneous manifold G/K that
evolves along scalings and (K-normalizing) automorphisms of G under the Ricci
flow is called a G-semi-algebraic Ricci soliton. Theorem 1.6 asserts that if the orbit
R×Aut(g).⟨, ⟩ is an Aut(g)-arid submanifold then the left-invariant metric ⟨, ⟩ on G
is a G-semi-algebraic Ricci soliton. It has been shown that any homogeneous Ricci
soliton on X is G-semi-algebraic for some G ⊂ Isom(X), and any G-semi-algebraic
Ricci soliton is a G-algebraic Ricci soliton. For more details on (semi-)algebraic
Ricci solitons, we refer to [10, 11].

We now show an example of Lie group that one can apply Theorem 1.6. Let us
denote by h2n+1 := span{x1, . . . , xn, y1, . . . , yn, z} the (2n+ 1)-dimensional Heisen-
berg Lie algebra. Here, the nonzero bracket relations of h2n+1 are given as follows:

[xi, yi] = z (i ∈ {1, . . . , n}).

Then one has

Proposition 5.2. Let p be an inner product of h2n+1 such that the basis
{x1, . . . , xn, y1, . . . , yn, z} is an orthonormal basis with respect to p. Then the orbit
R×Aut(h2n+1).p is an Aut(h2n+1)-arid submanifold.

Proof. It has been known that the R×Aut(h2n+1)-action is transitive for the
case n = 1 ([12], [13]), and hence Proposition 5.2 trivially follows for this case.

Now we assume that n ≥ 2. We prove that the Aut(h2n+1)-slice representation
at p ∈ M(h2n+1) has no nonzero fixed points. Recall that the Aut(h2n+1)-slice
representation is the action of Aut(h2n+1)p := {φ ∈ Aut(h2n+1) | φ.p = p} on the
normal space T⊥

p := T⊥
p R×Aut(h2n+1).p. Let K be the connected component of

Aut(h2n+1)p ∼= Aut(h2n+1) ∩ O(2n + 1) with e ∈ K. To prove that the action has
no nonzero fixed points, it suffices to show that K acts on T⊥

p irreducibly.

To study the K-action, we determine the normal space T⊥
p . By a direct calcu-

lation, the matrix representation of Der(h2n+1) with respect to the basis {xi, yi, z}
is given by

Der(h2n+1) = {
(
c · I2n +A 0

∗ 2c

)
∈ gl(2n+ 1,R) | c ∈ R, A ∈ sp(2n,R)}.

Here sp(2n,R) ⊂ gl(2n,R) is given as follows:

sp(2n,R) := {
(

X P
Q −tX

)
∈ gl(2n,R) | X ∈ gl(n,R), P,Q ∈ sym(n,R)}.

Also, let us denote by R⊕Der(h2n+1) the Lie algebra of R×Aut(h2n+1). Then the
matrix representation of R⊕Der(h2n+1) is given by

R⊕Der(h2n+1) = {
(
c · I2n +R 0

∗ ∗

)
∈ gl(2n+ 1,R) | c ∈ R, R ∈ sp(2n,R)}.

One can see that the tangent space Tp := TpR×Aut(h2n+1).p is given by
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Tp = {X + tX ∈ sym(2n+ 1,R) | X ∈ R⊕Der(h2n+1)}

= {

 A+ cIn B ∗
B −A+ cIn ∗
∗ ∗ ∗

 ∈ sym(2n+ 1,R) | A ∈ gl(n,R), c ∈ R}.

Hence, the normal space T⊥
p is obtained by

T⊥
p = {A ∈ sym(2n+ 1,R) | ∀X ∈ Tp, tr(AX) = 0}

= {

 A −B 0
B A 0
0 0 0

 ∈ sym(2n+ 1,R) | A ∈ sl(n,R)}.

Note that the K-action on T⊥
p is given by the conjugate action of K ⊂ Aut(h2n+1)∩

O(2n+ 1) on T⊥
p ⊂ sym(2n+ 1,R).

Denote by herm0(n) ⊂ gl(n,C) the set of all trace free hermitian symmetric
matrices of degree n. We claim that our K-action on T⊥

p is equivariant to the
conjugacy action of SU(n) on herm0(n), and hence irreducible. The identification
between the K-action and the SU(n)-action is given as follows. Let us define ρ the
natural embedding of gl(n,C) to gl(2n+ 1,R) by

gl(n,C) ∋ A+ iB 7→

 A −B 0
B A 0
0 0 0

 ∈ gl(2n+ 1,R).

We note that the Lie algebra k of K is given by

k = Der(h2n+1) ∩ (o(2n+ 1)) = {

 A −B 0
B A 0
0 0 0

 ∈ o(2n+ 1)},

and k ⊂ gl(2n+1,R) is identified with su(n) ⊂ gl(n,C) by ρ. This implies that K ∼=
SU(n). On the other hand, T⊥

p ⊂ gl(2n+1,R) is identified with herm0(n) ⊂ gl(n,C)
by ρ. One can see that ρ : herm0(n) → T⊥

p is an SU(n)-equivariant isomorphism,
and hence the K-action is equivariant to the SU(n)-action. □

Remark 5.3. By Theorem 1.6, the left-invariant metric p on the (2n + 1)-
dimensional Heisenberg Lie group H2n+1 is a Ricci soliton. We note that it is well
known that (H2n+1, p) is a Ricci soliton nilmanifold. For examples, we refer to [14].
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