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We give an answer to the multifractal rigidity problem presented by Barreira, Pesin and

Schmeling for the dimension spectra of Markov measures on the repellers of piecewise
linear Markov maps with two branches. Thermodynamic formalism provides us with a
one-parameter family of measures. Zero-temperature limit measures of this family and
the concept of nondegeneracy of spectra play important roles.
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1. Introduction

Let X be a compact metric space and f : X → X a continuous mapping. Once an

invariant local quantity g and a positive set function G are given, we can define the

function

α 7→ G({x ∈ X | g(x) = α}),

as a quantification of the complexity of the dynamical system (X, f). This function

is called the multifractal spectrum with respect to g and G, and it provides us with

a practical tool for the numerical study of the system.

We can take Birkhoff averages, Lyapunov exponents, pointwise dimensions, or

local entropies as g and the Hausdorff dimension or the topological entropy as G,

for example. In this paper, we consider the dimension spectra for invariant mea-

sures, which are the multifractal spectra with respect to pointwise dimensions and

the Hausdorff dimension. Dimension spectra for conformal hyperbolic dynamical

systems are well understood via thermodynamic formalism. In particular, [4, 10]

established the multifractal formalism of dimension spectra via thermodynamical

approach for the repellers of one-dimensional Markov maps. Refer to [1, 9] for re-

lated topics.
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Let µ an f -invariant Borel probability measure on X. Fix x ∈ X. We write

dµ(x) = lim
r→0

logµ(B(x; r))

log r

whenever the limit exists, where B(x; r) denotes the closed ball of radius r center

x. dµ(x) is called the pointwise dimension or local dimension of µ at x. We set

Xα = X(µ)
α = {x ∈ X | dµ(x) = α} (1.1)

and

α
(µ)
min = inf{α |Xα ̸= ∅}, α(µ)

max = sup{α |Xα ̸= ∅}.

We define the function D(µ) : [α
(µ)
min, α

(µ)
min] → R by

D(µ)(α) = dimH Xα,

where dimH Z denotes the Hausdorff dimension of Z ⊂ X. We call D(µ) the dimen-

sion spectrum of µ. The interval [α
(µ)
min, α

(µ)
max] is called the domain of the spectrum.

D(µ) has much information about (X, f, µ) and we say that a multifractal rigidity

holds if the spectrum restores the dynamical system.

In this paper, we consider the multifractal rigidity problem when (X, f) is the

repeller of a one-dimensional piecewise linear Markov map and µ is a Markov mea-

sure.

Fix an aperiodic 0-1 matrix A. We define

H(A) = {(f, µ) | f is a piecewise linear Markov map whose

structure matrix is A and µ is a Markov

measure on the repeller of f satisfying α
(µ)
min < α(µ)

max}

and

X (A) = {D(µ) | (f, µ) ∈ H(A)}.

For D ∈ X (A), we set

C(D) = {(f, µ) ∈ H(A) | D(µ) = D}.

Definition 1.1. We say that D ∈ X (A) has the rigidity if the following condition

holds for any (f, µ), (f̂ , µ̂) ∈ C(D):

(D). There exists a homeomorphism ζ : K̂ → K such that

f ◦ ζ = ζ ◦ f̂ , µ̂ = µ ◦ ζ and |f̂ ′| = |f ′| ◦ ζ,

where K and K̂ are the repellers of f and f̂ , respectively.

In this paper, we treat the multifractal rigidity problem when A has dimension

2. Thus, A is one of the following three:(
1 1

1 1

)
,

(
1 1

1 0

)
,

(
0 1

1 1

)
. (1.2)
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This rigidity was considered in some special cases, in [2] and [3]. We explain

their results in Chapter 3.

The main results of this paper are the following two theorems, which give a

complete characterization of spectra with the rigidity when A has dimension 2:

Theorem 1.1. Assume that A = ( 1 1
1 1 ). D ∈ X (A) has the rigidity if and only if

D dose not coincide with the Legendre transform of the function

R ∋ q 7→ logr(λ
q + (1− λ)q) ∈ R

for any λ ∈ (0, 1/2) and r ∈ (0, 1).

Theorem 1.2. Assume that A = ( 1 1
1 0 ) or ( 0 1

1 1 ). Any D ∈ X (A) has the rigidity.

These theorems are proved in Chapter 5. Theorem 1.1 is a corollary of a the-

orem which contains the determination of the Markov measures corresponding to

exceptional spectra.

Thermodynamic formalism tells us that both of α
(µ)
min, α

(µ)
max are finite and there

exists a function β : R → R and a one-parameter family of measures {µq}q∈R such

that β′ : R → (α
(µ)
min, α

(µ)
max) is a decreasing diffeomorphism and dimH µq = D(µ)(α)

for each q ∈ R with α = β′(q), where dimH ν denotes the Hausdorff dimension

of the measure ν. The parameter q is an analogue of the inverse temperature in

statistical physics, and a zero-temperature limit problem appears when we discuss

the dimension spectrum at α
(µ)
min = limq→+∞ β′(q) or α

(µ)
max = limq→−∞ β′(q). In

particular the problem whether D(µ)(α
(µ)
min) = D(µ)(α

(µ)
max) = 0 holds or not is a key

problem.

This paper consists of five chapters. Chapter 2 is devoted to the definitions of

some terms in this introduction and the description of the multifractal formalism

for equilibrium measures via thermodynamic formalism. In Chapter 3 we introduce

the results in [2] and [3]. An analysis at temperature zero is carried out in Chapter

4. We establish the multifractal formalism at temperature zero and give a simple

condition for D(µ)(α
(µ)
min) = D(µ)(α

(µ)
max) = 0 in this chapter. Our main results are

proved in Chapter 5.

2. Preliminaries

2.1. One-dimensional Markov maps

Let N ≥ 2 be an integer and f :
∪N

i=1 ∆i → [0, 1] a C1+α map, where ∆1, ...,∆N ⊂
[0, 1] are nondegenerate and disjoint closed intervals. The N×N matrixA = (A(ij))

defined by

A(ij) =

{
1 (∆i ∩ f−1∆j ̸= ∅),
0 (∆i ∩ f−1∆j = ∅)

is called the structure matrix of f .
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Definition 2.1. (i) f is called a one-dimensional Markov map (with N branches)

if the following three hold:

(a) If ∆i ∩ f−1∆j ̸= ∅ then f(∆i) ⊃ ∆j for all i, j = 1, ..., N .

(b) At least one entry in each row and column of A is equal to 1.

(c) |f ′| > 1 on
∪N

i=1 ∆i.

(ii) A one-dimensional Markov map f is said to be piecewise linear if f ′ is

constant on each ∆i.

For a one-dimensional Markov map f , the set

K =
∞∩

n=0

f−n

( N∪
i=1

∆i

)
is called the repeller of f . We can define the coding map χ : Σ+

A → K by

ω →
∞∩

n=0

f−n∆ωn+1 ,

where

Σ+
A = {ω = (ωn)

∞
n=1 ∈ {1, ..., N}N |A(ωnωn+1) = 1 for all n ≥ 1}.

We equip Σ+
A with the product topology and define the shift map Σ+

A → Σ+
A by

σA(ω1ω2 · · · ) = ω2ω3 · · · .

Then σA is a continuous mapping and the dynamical system (Σ+
A, σA) is topologi-

cally conjugate to (K, f) by χ, i.e. χ is a homeomorphism such that

f ◦ χ = χ ◦ σA.

2.2. Multifractal formalism for equilibrium measures

Let f :
∪N

i=1 ∆i → [0, 1] be a one-dimensional Markov map with repeller K. We

assume that the structure matrix A of f is aperiodic, i.e. all entries of Ak are

positive for some positive integer k. For a continuous function ϕ : K → R, we set

P (ϕ) = sup
µ

(
hµ(f) +

∫
K

ϕdµ

)
, (2.1)

where the supµ is taken over all f -invariant Borel probability measures µ on K and

hµ(f) is the Kolmogorov-Sinai entropy of the measure µ. We call P (ϕ) the pressure

of ϕ.

Definition 2.2. An f -invariant Borel probability measure µ on K is called an

equilibrium measure for ϕ if µ attains the sup in (2.1), that is, P (ϕ) = hµ(f) +∫
K
ϕdµ.

Let ϕ : K → R be a Hölder continuous function with P (ϕ) = 0. There exists

exactly one equilibrium measure µ for ϕ and we shall describe the dimension spectra

of µ. To this end, we need the concept of Legendre transformation.
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Definition 2.3. For a function β : R → R, we define the function β∗ : R →
[−∞,+∞) by

β∗(α) = inf
q∈R

{qα− β(q)}.

β∗ is called the Legendre transform of β.

We can define the function β : R → R by

P (qϕ+ β(q) log |f ′|) = 0. (2.2)

Theorem 2.1 ([4, 10, 11]). Set Kα = {x ∈ K | dµ(x) = α} and

αmin = inf
ν
−

∫
ϕdν∫

log |f ′| dν
, αmax = sup

ν
−

∫
ϕdν∫

log |f ′| dν
, (2.3)

where both infν and supν are taken over all f -invariant Borel probability measures

ν on K. We have the following:

(i) β is strictly increasing, concave and real analytic.

(ii) β′(q) → αmin (q → +∞), β′(q) → αmax (q → −∞).

(iii) Kα ̸= ∅ if and only if α ∈ [αmin, αmax].

(iv) αmin = αmax if and only if µ is the equilibrium measure for the function

(− dimH K) log |f ′|, in which case

D(µ)(αmin) = dimH K.

(v) If αmin < αmax then

D(µ)(α) = β∗(α) for all α ∈ (αmin, αmax).

In particular, D(µ) is strictly concave in (αmin, αmax). Furthermore we have

max
α∈(αmin, αmax)

D(µ)(α) = −β(0) = dimH K.

2.3. Markov measures

Let f :
∪N

i=1 ∆i → [0, 1] be a one-dimensional Markov map with repeller K and

aperiodic structure matrix A. An element of
∪∞

n=1{1, ..., N}n is called a word and

we write |w| = n for each word w ∈ {1, ..., N}n. For an N ×N matrix B = (B(ij))

and a word w = w1 · · ·w|w| with |w| ≥ 2, we write

B(w) = B(w1w2)B(w2w3) · · ·B(w|w|−1w|w|).

A word w is said to be A-admissible if |w| ≥ 2 and A(wkwk+1) = 1 for each

k = 1, ..., |w| − 1. For each A-admissible word w, we set

∆w =

|w|−1∩
k=0

f−k∆wk+1
.

We define a natural class of equilibrium measures. Let µ be a Borel probability

measure on K.



January 27, 2017 0:25 WSPC/INSTRUCTION FILE SD-DoctoralThesis

6 Authors’ Names

Definition 2.4. (i) µ is called a Markov measure if there exists an N × N real

matrix P = (P (ij)) satisfies the following properties:

(a) P is a stochastic matrix, i.e. all entries of P are nonnegative and∑N
j=1 P (ij) = 1 for each i = 1, ..., N .

(b) P (ij) > 0 if and only if A(ij) = 1 for each i, j = 1, ..., N .

(c) For each A-admissible word w, we have

µ(∆w ∩K) = pw1P (w), (2.4)

where p = (p1, ..., pN ) ∈ RN is the normalized left Perron-Frobenius eigenvector for

P.

(ii) A Markov measure µ is called a Bernoulli measure if all entries of A are

equal to 1 and P is a matrix of the form
(

b1 ··· bN
···

b1 ··· bN

)
called a Bernoulli matrix,

where bi > 0 and b1 + · · ·+ bN = 1.

(iii) We define a Markov measure on Σ+
A by replacing ∆w∩K with [w]A in (2.4),

where

[w]A = {ω ∈ Σ+
A | ωk = wk for all 1 ≤ k ≤ |w|}.

If µ is the Markov measure corresponding to a stochastic matrix P = (P (ij)),

then µ is the unique equilibrium measure for ϕ : K → R defined by ϕ|∆ij∩K =

logP (ij). Moreover we have

hµ(f) =
∑
i,j

−piP (ij) logP (ij),

where we put 0 log 0 = 0.

Assume that f is a piecewise linear Markov map with derivatives ri =

1/|f ′|∆i (i = 1, ..., N) and µ is the Markov measure corresponding to P =

(P (ij))1≤i,j≤N . We can describe the multifractal formalism by using matrices. In-

deed, we can easily check that β(q) in (2.2) is the unique real number β such that

the spectral radius of the matrix (P (ij)qr−β
j ) is equal to 1.

In particular, if all entries of A are equal to 1 and P is the Bernoulli matrix(
b1 ... bN

...
b1 ... bN

)
then β(q) is the unique real number β such that

bq1r
−β
1 + · · ·+ bqNr

−β
N = 1.

In addition, we can obtain the following simpler representation of αmin, αmax.

We need this representation in Chapter 4. For a word w with |w| ≥ 2, we write

r(w) = rw2 · · · rw|w| .

A word w with |w| ≥ 2 is called a cycle if w1 = w|w|. A cycle w is said to be simple

if wi ̸= wj for any 1 ≤ i ̸= j ≤ |w| − 1. We set

S = {w | w is an A-admissible simple cycle}.
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By Theorem 2.1 (iii), we can easily show that

αmin = min
w∈S

logP (w)

log r(w)
, αmax = max

w∈S

logP (w)

log r(w)
. (2.5)

In particular, if all entries of A are equal to 1 and P is the Bernoulli matrix(
b1 ··· bN

···
b1 ··· bN

)
then

αmin = min
1≤i≤N

log bi
log ri

, αmax = max
1≤i≤N

log bi
log ri

.

3. Known Results on Multifractal Rigidity

We mention the result of Barreira, Pesin and Schmeling, in [2]. Assume that A =(
1 ··· 1
···

1 ··· 1

)
. We define

HB(A) = {(f, µ) ∈ H(A) | µ is a Bernoulli measure}

and

XB(A) = {D(µ) | (f, µ) ∈ HB(A)}.

For D ∈ XB(A), we set

CB(D) = {(f, µ) ∈ HB(A) | D(µ) = D}.

Definition 3.1. We say that D ∈ XB(A) has B-rigidity if the condition (D) in the

introduction holds for any (f, µ), (f̂ , µ̂) ∈ CB(D).

Theorem 3.1 ([2]). Assume that A = ( 1 1
1 1 ). Any D ∈ XB(A) has B-rigidity.

Next we mention the results of Barreira and Saravia, in [3]. Let A be an N ×N

aperiodic matrix such that each entry is 0 or 1 and µ a σA-invariant Borel probability

measure on Σ+
A. We set

Eα =

{
ω ∈ Σ+

A | lim
n→∞

− logµ([ω1 · · ·ωn]A)

n
= α

}
and

α
(µ)
min = inf{α | Eα ̸= ∅}, α(µ)

max = sup{α | Eα ̸= ∅}.

We define the function E(µ) : [α
(µ)
min, α

(µ)
max] → R by

E(µ)(α) = h(σA|Eα),

where h(σA|Z) denotes the topological entropy of Z ⊂ Σ+
A (Z need not be compact

nor σA-invariant). We call E(µ) the entropy spectrum of µ.

We define

XE(A) = {E(µ) | µ is a Markov measure on Σ+
A with α

(µ)
min < α(µ)

max}.
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A homeomorphism ρ : Σ+
A → Σ+

A is called an automorphism on Σ+
A if σA ◦ ρ =

ρ ◦ σA. We denote by Aut(Σ+
A) the set of all automorphisms on Σ+

A.

Definition 3.2. We say that E ∈ XE(A) has the rigidity if the following condition

holds for any Markov measures µ, µ̂ on Σ+
A with E(µ) = E(µ̂) = E :

(E). There exists ρ ∈ Aut(Σ+
A) such that

µ̂ = µ ◦ ρ.

We use Σ+
N instead of Σ+

A when all entries of A are equal to 1. Hedlund proved

the following theorem in [6]. This theorem is not displayed explicitly in [6], and we

recommend Kitchens’ book [8] to the readers for the proof.

Theorem 3.2 ([6]). Aut(Σ+
2 ) = {id, flip}. Where flip : Σ+

2 → Σ+
2 is defined by

ω 7→ ω, ωn =
{
1 (ωn = 2)

2 (ωn = 1)
.

The multifractal rigidities proved in [3] are the following:

Theorem 3.3 ([3]). Assume that A = ( 1 1
1 1 ). Let E ∈ XE(A). We have the follow-

ing:

(i) If E ̸= (− log(λq + (1− λ)q))∗ for any λ ∈ (0, 1/2) then E has the rigidity.

(ii) Assume that E = (− log(λq + (1 − λ)q))∗ for some λ ∈ (0, 1/2). Let µ, µ̂ be

Markov measures on Σ+
A such that E(µ) = E(µ̂) = E. Then the following hold:

(a) µ corresponds to the following four matrices:(
1− λ λ

1− λ λ

)
,

(
λ 1− λ

λ 1− λ

)
,

(
λ 1− λ

1− λ λ

)
,

(
1− λ λ

λ 1− λ

)
.

(b) (E) holds with ρ = id if and only if both µ and µ̂ correspond to the same

matrix in (a). (E) holds with ρ = flip if and only if either (µ, µ̂) or (µ̂, µ) corresponds

to (
(
1−λ λ
1−λ λ

)
,
(
λ 1−λ
λ 1−λ

)
).

Theorem 3.4 ([3]). Assume that A = ( 1 1
1 0 ) or ( 0 1

1 1 ). Any E ∈ XE(A) has the

rigidity.

We explain the relation between the results in [3] and ours. For θ ∈ (0, 1), we

define the distance dθ on Σ+
A by

dθ(ω, ω
′) = θ sup{n≥1 | ω1=ω′

1,...,ωn=ω′
n}.

The product topology of Σ+
A coincides with the topology induced by dθ.

[2] established the relation between the entropy spectra and the dimension spec-

tra for a shift-invariant measure.

Theorem 3.5 ([2]). For each α ∈ (−∞,+∞) and θ ∈ (0, 1), we have

E(µ)(α) = D(µ)(α/ log θ−1) · log θ−1,

where we equip Σ+
A with the distance dθ.
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Let f :
∪N

i=1 ∆i → [0, 1] be piecewise linear. If |f ′| is constant on
∪N

i=1 ∆i and

θ = 1/|f ′| then the coding map χ : Σ+
A → K is a bi-Lipschitz continuous mapping.

Thus, Theorem 3.5 provides us with a translation rule the multifractal rigidity

problem based on Definition 3.2 to ours, namely we replace H(A),X (A), C(D)

with

Hc(A) = {(f, µ) ∈ H(A) | |f ′| is constant on
∪N

i=1 ∆i},

X c(A) = {D(µ) | (f, µ) ∈ Hc(A)},

Cc(D) = {(f, µ) ∈ Hc(A) | D(µ) = D},

respectively. Theorem 3.3 and 3.4 give a complete answers to this problem.

4. Multifractal Analysis at Temperature Zero

4.1. Zero-temperature limit measures

Let f :
∪N

i=1 ∆i → [0, 1] be a one-dimensional Markov map with topologically

mixing repeller K and µ the equilibrium measures for a Hölder continuous function

ϕ : K → R with P (ϕ) = 0. In this chapter, we consider the multifractal formalism

at the endpoints αmin, αmax. Let β : R → R be the same as that in (2.2).

Fix q ∈ R. We denote by µq the equilibrium measure for qϕ+ β(q) log |f ′|.

Lemma 4.1 ([10]). Put α = β′(q).

(i) µq(Kα) = 1 and dµq (x) = β∗(α) for all x ∈ Kα.

(ii) We have

β∗(α) =
hµq (f)∫
log |f ′| dµq

.

The relation between D(µ) and β∗ in Theorem 2.1 follows from this lemma.

The parameter q is an analogue of the inverse temperature in statistical physics.

We call an accumulation point of the family of measures {µq}q∈R when q → +∞
or −∞ a zero-temperature limit measure (we equip the space of measures with the

weak* topology). We set

M+
∞ = {zero-temperature limit measures when q → +∞},

M−
∞ = {zero-temperature limit measures when q → −∞}.

Zero-temperature limit measures play an important role in the next two sections.

The following is an immediate consequence of the upper semicontinuity of β∗.

Proposition 4.1. Both of β∗(αmin) and β
∗(αmax) are finite and

β∗(αmin) = lim
q→+∞

{qαmin − β(q)} = lim
α↓αmin

β∗(α),

β∗(αmax) = lim
q→−∞

{qαmax − β(q)} = lim
α↑αmax

β∗(α).
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4.2. Multifractal formalism at temperature zero

We restrict ourselves to the case where f is piecewise linear and µ is the Markov

measure corresponding to a stochastic matrix P = (P (ij)). We write

ri = 1/|f ′|∆i (i = 1, ..., N).

The aim of this section is to show that the multifractal formalism in Theorem

2.1 holds at endpoints, or the following proposition holds:

Proposition 4.2. D(µ)(αmin) = β∗(αmin) and D(µ)(αmax) = β∗(αmax).

The following lemma, which is an analogue of Lemma 4.1, is essential for the

proof of Proposition 4.2.

Lemma 4.2. Take µ∞ ∈ M+
∞.

(i) suppµ∞ ⊂ Kαmin and dµ∞(x) = β∗(αmin) for all x ∈ suppµ∞.

(ii) We have

β∗(αmin) =
hµ∞(f)∫
log |f ′| dµ∞

.

An analogous result holds for αmax and µ∞ ∈ M−
∞.

Proof. Take q ∈ R. By the Perron-Frobenius theorem, we can find a right eigen-

vector aq = t(aq,1, ..., aq,N ) ∈ RN such that (P (ij)qr
−β(q)
j )aq = aq and all entries of

aq are positive. We define a stochastic matrix Bq by Bq(ij) = a−1
q,iP (ij)

qr
−β(q)
j aq,j .

Again by the Perron-Frobenius theorem, we can find the unique stochastic vector

bq = (bq,1, ..., bq,N ) ∈ RN such that bqBq = bq. Then µq is the Markov measure

corresponding to the stochastic matrix Bq.

Take µ∞ ∈ M+
∞. There exists a stochastic matrix B, a stochastic vector b and

a sequence {qn} ⊂ R such that qn → +∞, Bqn → B, bqn → b (n→ ∞) and µ∞ is

the Markov measure corresponding to B and b.

We prove (i). For any A-admissible cycle w, we obtain that logP (w)
log r(w) ≥ αmin by

(2.5). Moreover since Bq(w) = P (w)qr(w)−β(q) = r(w)q
log P (w)
log r(w)

−β(q), we observe by

Proposition 4.1 that

B(w) = lim
n→∞

Bqn(w) =

{
r(w)β

∗(αmin) > 0
( logP (w)
log r(w) = αmin

)
,

0
( logP (w)
log r(w) > αmin

)
.

(4.1)

Fix x ∈ suppµ∞ and put ω = χ−1(x). There exists a sequence of integers

1 ≤ n1 < n2 < · · · such that ωn1 = ωn2 = · · · . We have B(ωnk
· · ·ωnk+1

) > 0 since

x ∈ suppµ∞, and thus, by (4.1), we obtain
logP (ωnk

···ωnk+1
)

log r(ωnk
···ωnk+1

) = αmin for all k ≥ 1.

This implies that limn→∞
logP (ω1···ωn)
log r(ω1···ωn)

= αmin, that is, x ∈ Kαmin . Moreover we

obtain B(ωnk
· · ·ωnk+1

) = r(ωnk
· · ·ωnk+1

)β
∗(αmin) for all k ≥ 1. This implies that

limn→∞
logB(ω1···ωn)
log r(ω1···ωn)

= β∗(αmin), that is, dµ∞(x) = β∗(αmin).
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We prove (ii). Put αn = β′(qn). We have

hµqn
(f) =

∑
i,j

−bqn,iBqn(ij) logBqn(ij)

→
∑
i,j

−biB(ij) logB(ij) = hµ∞(f) (n→ ∞),

and hence, by Lemma 4.1 (ii), we have

β∗(αn) →
hµ∞(f)∫
log |f ′| dµ∞

(n→ ∞).

On the other hand, by Proposition 4.1, we have β∗(αn) → β∗(αmin) (n→ ∞).

Proof of Proposition 4.2. We only show that D(µ)(αmin) = β∗(αmin).

D(µ)(αmin) ≥ β∗(αmin) follows from Lemma 4.2 (i) and the mass distribution

principle. We will show that D(µ)(αmin) ≤ β∗(αmin).

Fix q ∈ R. It is easy to check that

Kαmin ⊂ {x ∈ K | dµq (x) = qαmin − β(q)},

and thus, we have D(µ)(αmin) ≤ qαmin − β(q). Since q ∈ R is arbitrary, we obtain

D(µ)(αmin) ≤ β∗(αmin). 2

It seems that many researchers on multifractal analysis believe that Proposition

4.2 holds for any one-dimensional Markov map (need not be piecewise linear) and

the equilibrium measure for a Hölder continuous function (need not be a Markov

measure). However the present author could not find the proof in literature.

4.3. Nondegeneracy of spectra

The concept of nondegeneracy first appeared in [11].

Definition 4.1. The spectrum D(µ) is said to be nondegenerate if D(µ)(αmin) =

D(µ)(αmax) = 0 holds.

We write ϕ ∼ ψ (q → +∞) for two functions ϕ, ψ : R → R with ϕ, ψ > 0 if

ϕ(q)/ψ(q) → 1(q → +∞) holds. The following is an easy but important consequence

from nondegeneracy and works essentially in the next chapter.

Lemma 4.3. Let a, b, r > 0, b ̸= 1 and β the same as that in (2.2).

(i) If D(µ)(αmin) = 0 then

lim
q→+∞

1− aqαmin−β(q)

1− bqαmin−β(q)
=

log a

log b

and

rqa−β(q) ∼ (ra−αmin)q (q → +∞).
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(ii) If D(µ)(αmax) = 0 then

lim
q→−∞

1− aqαmax−β(q)

1− bqαmax−β(q)
=

log a

log b
.

and

rqa−β(q) ∼ (ra−αmax)q (q → −∞).

Proof. We only discuss (i). We have limq→+∞(qαmin−β(q)) = 0 from Proposition

4.1. Thus, the first equation follows from l’Hôpital’s lemma and the second one

follows from rqa−β(q) = (ra−αmin)q × rqαmin−β(q), immediately.

Let B be an N ×N nonnegative matrix. B is said to be irreducible if for each

i, j = 1, ..., N there exists a positive integer k such that Bk(ij) > 0. B is called

a permutation matrix if exactly one entry is 1 and any other entry is 0 for each

row and column of B. σ 7→ (δσ(i)j)1≤i,j≤N is a one-to-one correspondence between

the symmetric group of N -words SN and the set of all N × N permutation ma-

trices. An N × N permutation matrix is said to be cyclic if it corresponds to a

cyclic permutation with length N . For two words w,w′ we write w ∩ w′ ̸= ∅ if

{w1, ..., w|w|} ∩ {w′
1, ..., w

′
|w′|} ≠ ∅. We define the cycle rot(w) for a cycle w by

rot(w) = w2w3 · · ·w|w|w2.

For two cycles w,w′ we write w ∼rot w
′ if

there exists an integer n ≥ 1 such that rotn(w) = w′.

Proposition 4.3. Let B be an irreducible stochastic matrix. Then the following

three are equivalent:

(i) Each entry of B is 0 or 1.

(ii) B is a cyclic permutation matrix.

(iii) w ∼rot w
′ holds for any two B-admissible simple cycles w,w′ with w∩w′ ̸=

∅.

Proof. It is easy to see that (i) implies (ii) and (ii) implies (iii). We show that (iii)

implies (i). If (i) does not hold then there exist i1, i2, i3 ∈ {1, ..., N} with i2 ̸= i3
such that B(i1i2) > 0 and B(i1i3) > 0. By irreducibility, we can take B-admissible

words w,w′ such that w1 = i2, w
′
1 = i3, w|w| = w′

|w′| = i1 and wi ̸= wj , w
′
i ̸= w′

j

if i ̸= j. Clearly, i1w, i1w
′ are B-admissible simple cycles with i1w ∩ i1w′ ̸= ∅ and

there exists no integer n ≥ 1 such that rotn(i1w) = i1w
′.

Recall that A is the structure matrix of f and S is the set consisting of all

A-admissible simple cycles. We set

Smin =

{
w ∈ S | logP (w)

log r(w)
= αmin

}
,

Smax =

{
w ∈ S | logP (w)

log r(w)
= αmax

}
.

(4.2)
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Note that if two A-admissible cycle w,w′ satisfy w ∼rot w
′ then logP (w)

log r(w) = logP (w′)
log r(w′) .

The following is the main result of this section.

Theorem 4.1. The following four are equivalent:

(i) D(µ)(αmin) = 0.

(ii) hµ∞(f) = 0 for all µ∞ ∈ M+
∞.

(iii) hµ∞(f) = 0 for some µ∞ ∈ M+
∞.

(iv) w ∼rot w
′ holds for any two w,w′ ∈ Smin with w ∩ w′ ̸= ∅.

We have an analogous result for αmax by replacing M+
∞ and Smin with M−

∞ and

Smax, respectively.

Proof. The equivalence of (i), (ii), (iii) follows from Lemma 4.2 (ii) immediately.

We show the equivalence of (i) and (iv). We use a technique in the study of

Markov chains (see for example [7] for the details).

Fix µ∞ ∈ M+
∞ and take a stochastic matrix B, a stochastic vector b and a

sequence {qn} ⊂ R such that qn → +∞, Bqn → B, bqn → b (n → ∞) and µ∞ is

the Markov measure corresponding to B and b. For i, j ∈ {1, ..., N} we write i↔ j

if i = j or there exists a B-admissible cycle w such that i, j ∈ {w1, ..., w|w|−1}. ↔ is

an equivalence relation on {1, ..., N} and for each equivalence class C the submatrix

of B corresponding to C is an irreducible matrix. An equivalence class C is called

an ergodic set if the corresponding submatrix is a stochastic matrix. We can show

that at least one ergodic set exists and we can write

B =



B(1)

. . . 0
0 . . .

B(e)

∗ Q


,

where each B(k) is the submatrix corresponding to an ergodic set and Q is the

submatrix corresponding to {1, ..., N} \
∪
{ergodic set}. Let µ(k)

∞ be the Markov

measure corresponding to the B(k). There exist nonnegative numbers λ(1), ..., λ(e)

such that
∑e

k=1 λ
(k) = 1 and µ∞ =

∑e
k=1 λ

(k)µ
(k)
∞ . We have by (4.1) that

e∪
k=1

{B(k)-admissible simple cycles} ⊂ Smin. (4.3)

Assume that (iv) holds. Then (4.3) shows that w ∼rot w
′ holds for each k =

1, ..., e and any two B(k)-admissible simple cycles w,w′ with w∩w′ ̸= ∅. Since B(k)

is an irreducible stochastic matrix, each entry of B(k) is 0 or 1 from Proposition 4.3.

This implies that h
µ
(k)
∞

(f) = 0 for each k = 1, ..., e, and thus, we have hµ∞(f) =∑
k λ

(k)h
µ
(k)
∞

(f) = 0, that is, D(µ)(αmin) = 0.

Assume that (i) holds. We will show that

B(w1w2) = · · · = B(w|w|−1w|w|) = 1 for any w ∈ Smin. (4.4)
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Take w ∈ Smin arbitrary. Then by (4.1) we have

|w|−1∏
l=1

B(wlwl+1) = B(w) = r(w)D
(µ)(αmin) = 1. (4.5)

Since B is a stochastic matrix, we observe that 0 ≤ B(ij) ≤ 1 for each 1 ≤ i, j ≤ N .

Thus, (4.5) implies that B(wlwl+1) = 1 for each l = 1, ..., |w| − 1.

Fix k ∈ {1, ..., e}. We observe that each entry of B(k) is 0 or 1 by (4.3), (4.4) and

the irreducibility of B(k). Thus, Proposition 4.3 tells us that w ∼rot w
′ holds for

any two B(k)-admissible simple cycles w,w′ with w∩w′ ̸= ∅. Therefore we complete

the proof if we show that the opposite inclusion holds in (4.3).

Take w ∈ Smin arbitrary. Since B is a stochastic matrix, (4.4) implies that

B(wlj) =

{
1 (j = wl+1),

0 (j ̸= wl+1)
(4.6)

for each l = 1, ..., |w| − 1.

Let C be the equivalence class which contains w1. We will show that C =

{w1, ..., w|w|−1}. C ⊃ {w1, ..., w|w|−1} is obvious. Take i ∈ C. There exists a B-

admissible word z such that z1 = w1 and z|z| = i. We observe that z2 = w2 by

(4.6). By induction we obtain z3 = w3, z4 = w4, ... and it implies that |z| ≤ |w| and
i = w|z|. Thus C ⊂ {w1, ..., w|w|−1}.

Let BC be the submatrix of B corresponding to C. We know by (4.6) and

C = {w1, ..., w|w|−1} that BC is a stochastic matrix, that is, C is an ergodic set.

Therefore we have w ∈
∪e

k=1{B(k)-admissible simple cycles}. Since w ∈ Smin is

arbitrary we obtain the opposite inclusion in (4.3).

Example 4.1. We determine whether D(µ)(αmin) = 0 or D(µ)(αmin) > 0 for some

µ in the case that A =
(

1 1 1
1 1 1
1 1 1

)
and r1 = r3 = 1/3, r2 = 1/9 = (1/3)2.

(i) If

P =


1
2

1
3

1
6

1
4

1
4

1
2

9
28

1
4

3
7

 .

then αmin = log 2
log 3 and Smin = {11, 22, 232, 323}. Since 22 ∩ 232 ̸= ∅ and 22 ̸∼rot 232

therefore D(µ)(αmin) > 0.

(ii) If

P =


1
2

1
3

1
6

1
4

1
4

1
2

2
7

2
7

3
7


then αmin = log 2

log 3 and Smin = {11, 22}. Since 11 ∩ 22 = ∅ therefore D(µ)(αmin) = 0.
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The following well-known corollary is derived from Theorem 4.1 immediately.

Corollary 4.1. Assume that all entries of A are equal to 1 and µ is the Bernoulli

measure corresponding to the Bernoulli matrix
(

b1 ... bN
...

b1 ... bN

)
. Then D(µ)(αmin) = 0 if

and only if #{1 ≤ i ≤ N | log bi
log ri

= αmin} = 1. Moreover if {1 ≤ i ≤ N | log bi
log ri

=

αmin} = {i0} then Smin = {i0i0}.

Second corollary shows that “typical” spectra are nondegenerate. M1 denotes

the space consisting of all Markov measures on K andM1 denotes the set consisting

of all N×N stochastic matrices P satisfying that P (ij) > 0 if and only if A(ij) = 1

for all i, j = 1, ..., N . M1 is equipped with the weak* topology and M1 is equipped

with the relative topology induced by the Euclid space RN2

. For P ∈ M1, we

denote by φ(P ) the Markov measure corresponding to P . The map φ : M1 → M1

is a homeomorphism. We set

G =

{
P ∈M1 |

logP (w)

log r(w)
̸= logP (w′)

log r(w′)
for any two w,w′ ∈ S with w ̸∼rot w

′
}
.

It is easy to see that G is an open and dense subset of M1. Theorem 4.1 tells us

that φ(G) ⊂ {µ ∈ M1 | D(µ)(αmin) = 0}, and hence, we obtain the following:

Corollary 4.2. {µ ∈ M1 | D(µ)(αmin) = 0} contains an open and dense subset of

M1.

Schmeling showed in [11] that the space of all Hölder continuous functions de-

fined on a common mixing subshift with nondegenerate spectra contains a residual

set.

5. Proof of Main Theorems

5.1. Aim and setting

The aim of this chapter is to prove Theorem 1.1 and 1.2. Let A be one of the three

matrices in (1.2). We actually work on the topological Markov shift Σ+
A.

Let µ and µ̂ be Markov measures on Σ+
A corresponding to stochastic matrices

P = (P (ij)) and P̂ = (P̂ (ij)), respectively. Fix r1, r2, r̂1, r̂2 ∈ (0, 1). We define two

functions β, β̂ : R → R by

both of (P (ij)q r
−β(q)
j ), (P̂ (ij)q r̂

−β̂(q)
j ) have spectral radius 1.

Recall that

lim
q→+∞

β′(q) = αmin, lim
q→−∞

β′(q) = αmax,

where αmin, αmax are defined by (2.5). In what follows, we always assume that

β = β̂ and αmin < αmax.
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We define the sets Ŝmin and Ŝmax for µ̂ and r̂1, r̂2 as (4.2). We set the following

condition:

(D)
′
. There exists ρ ∈ Aut(Σ+

A) such that

µ̂ = µ ◦ ρ and r̂ = r ◦ ρ,

where r, r̂ : Σ+
A → R are defined by r(ω) = rω1 , r̂(ω) = r̂ω1 .

In the next two sections, we prove the following two theorems. Theorem 1.1 and

1.2 immediately follow from Theorem 5.1 and 5.2, respectively. The exceptional

measures in 3.3 appears again.

Theorem 5.1. Assume that A = ( 1 1
1 1 ). We have the following:

(i) If β ̸= logr(λ
q +(1−λ)q) for any λ ∈ (0, 1/2) and r ∈ (0, 1) then (D)

′
holds.

(ii) If β = logr(λ
q + (1 − λ)q) for some λ ∈ (0, 1/2) and r ∈ (0, 1) then the

following hold:

(a) r1 = r2 = r and P coincides with one of the following four matrices:(
1− λ λ

1− λ λ

)
,

(
λ 1− λ

λ 1− λ

)
,

(
λ 1− λ

1− λ λ

)
,

(
1− λ λ

λ 1− λ

)
.

(b) (D)
′
holds with ρ = id if and only if both P and P̂ coincide with the same

matrix in (a). (D)
′
holds with ρ = flip if and only if either (P, P̂) or (P̂,P) coincides

with (
(
1−λ λ
1−λ λ

)
,
(
λ 1−λ
λ 1−λ

)
).

Theorem 5.2. Assume that A = ( 1 1
1 0 ) or ( 0 1

1 1 ). Then (D)
′
holds with ρ = id.

5.2. Proof of Theorem 5.1

Assume that A = ( 1 1
1 1 ). Then S = {11, 22, 121, 212}. We omit writing 212 since

212 ∼rot 121. (Smin, Smax) gives us a pair of two nonempty disjoint subsets of

{11, 22, 121}. The total number of such pairs is twelve, and by Theorem 4.1, we can

divide these pairs into the following three cases:

Case 1. β∗(αmin) > 0 and β∗(αmax) = 0. In this case, (Smin, Smax) coincides with

one of the following two:

(S1) ({11, 121}, {22}), (S2) ({22, 121}, {11}).

Case 2. β∗(αmin) = 0 and β∗(αmax) > 0. In this case, (Smin, Smax) coincides with

one of the following two:

(S3) ({11}, {22, 121}), (S4) ({22}, {11, 121}).

Case 3. β∗(αmin) = β∗(αmax) = 0. In this case, (Smin, Smax) coincides with one of
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the following eight:

(S5) ({11}, {22}), (S6) ({22}, {11}),
(S7) ({11}, {121}), (S8) ({22}, {121}),
(S9) ({121}, {11}), (S10) ({121}, {22}),
(S11) ({121}, {11, 22}), (S12) ({11, 22}, {121}).

For each ρ ∈ Aut(Σ+
2 ), we define ρ̃ : S → S by

if ρ = id then ρ̃ :


11 7→ 11,

22 7→ 22,

121 7→ 121,

212 7→ 212,

if ρ = flip then ρ̃ :


11 7→ 22,

22 7→ 11,

121 7→ 212,

212 7→ 121.

We define the equivalence relation ∼Aut on {(S1), ..., (S12)} by

(S1, S2) ∼Aut (S
′
1, S

′
2)

⇐⇒ there exists ρ ∈ Aut(Σ+
2 ) such that (S1, S2) = (ρ̃(S′

1), ρ̃(S
′
2)).

(S1), (S3), (S5), (S7), (S9), (S11), (S12) are not equivalent each other and we have

(S1) ∼Aut (S2), (S3) ∼Aut (S4), (S5) ∼Aut (S6),

(S7) ∼Aut (S8), (S9) ∼Aut (S10).

We tabulate the values of αmin and αmax of each representative element. See

Table 1.

Table 1. The values of αmin and αmax

αmin αmax

(S1) logP (11)
log r1

,
logP (121)
log r1r2

logP (22)
log r2

(S3) logP (11)
log r1

logP (22)
log r2

,
logP (121)
log r1r2

(S5) logP (11)
log r1

logP (22)
log r2

(S7) logP (11)
log r1

logP (121)
log r1r2

(S9) logP (121)
log r1r2

logP (11)
log r1

(S11) logP (121)
log r1r2

logP (11)
log r1

,
logP (22)
log r2

(S12) logP (11)
log r1

,
logP (22)
log r2

logP (121)
log r1r2

Since the matrices (P (ij)q r
−β(q)
j ) and (P̂ (ij)q r̂

−β(q)
j ) have eigenvalue 1, we have

(r1r2)
q

log P (121)
log r1r2

−β(q) =
(
1− r

q
log P (11)

log r1
−β(q)

1

)(
1− r

q
log P (22)

log r2
−β(q)

2

)
(5.1)

and

(r̂1r̂2)
q

log P̂ (121)
log r̂1r̂2

−β(q) =
(
1− r̂

q
log P̂ (11)

log r̂1
−β(q)

1

)(
1− r̂

q
log P̂ (22)

log r̂2
−β(q)

2

)
(5.2)
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for each q ∈ R. In particular, we have Moran’s formula

rs1 + rs2 = r̂s1 + r̂s2 = 1,

where s = −β(0).

Lemma 5.1. Assume that β∗(αmin) > 0 or β∗(αmax) > 0. Both P and (r1, r2) are

uniquely determined as follows:

(i) If (Smin, Smax) = (S1) then

(r1, r2) = (γa/s, (1− γa)1/s), P =

(
rαmin
1 1− rαmin

1

1− rαmax
2 rαmax

2

)
(5.3)

and if (Smin, Smax) = (S2) then

(r1, r2) = ((1− γa)1/s, γa/s), P =

(
rαmax
1 1− rαmax

1

1− rαmin
2 rαmin

2

)
, (5.4)

where we put a = s/β∗(αmin) and γ is a unique real number such that 0 < γ < 1

and γa + γ−a(1− γ)a = 1.

(ii) If (Smin, Smax) = (S3) or (S4) then we have (5.3) or (5.4), respectively, by

putting a = s/β∗(αmax).

Proof. (i). Assume that (Smin, Smax) = (S1). Table 1 and (5.1) tell us that

(r1r2)
qαmin−β(q) = (1− r

qαmin−β(q)
1 )(1− r

qαmax−β(q)
2 )

holds for each q ∈ R. By letting q → +∞ in this equation, we obtain

(r1r2)
β∗(αmin) = 1− r

β∗(αmin)
1 .

By combining this equation with Moran’s formula, we obtain(
r
β∗(αmin)
1

)a
+

(
1

r
β∗(αmin)
1

− 1

)a

= 1.

We can easily check that a > 1. The equation x−a + (x− 1)a = 1 has a unique

solution x > 1 for each a > 1. Hence, we obtain (5.3). By changing the roles of r1
and r2, we obtain (5.4).

(ii). We can use the same argument as (i) just by letting q → −∞ instead of

letting q → +∞.

Lemma 5.2. If (Smin, Smax) = (Ŝmin, Ŝmax) and (Smin, Smax) = (S5), (S7), (S9),

(S11) or (S12) then (D)′ holds.

Proof. Assume that (Smin, Smax) = (S5). Put α = logP (121)
log r1r2

and α̂ = log P̂ (121)
log r̂1r̂2

.

By Table 1, (5.1) and (5.2), we have

(1− r
qαmin−β(q)
1 )(1− r

qαmax−β(q)
2 )

(1− r̂
qαmin−β(q)
1 )(1− r̂

qαmax−β(q)
2 )

=
(r1r2)

qα−β(q)

(r̂1r̂2)qα̂−β(q)
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for each q ∈ R. Therefore, by Lemma 4.3, we have

log r1
log r̂1

= lim
q→+∞

1− r
qαmin−β(q)
1

1− r̂
qαmin−β(q)
1

= lim
q→+∞

(
(r1r2)

α−αmin

(r̂1r̂2)α̂−αmin

)q

.

Since limq→+∞

(
(r1r2)

α−αmin

(r̂1r̂2)α̂−αmin

)q

is equal to 0 or 1 or +∞, we have log r1
log r̂1

= 1, that

is, r1 = r̂1. Once we obtain r1 = r̂1, we show by Moran’s formula and Table 1 that

(r1, r2) = (r̂1, r̂2) and P = P̂. We conclude that (D)
′
holds with ρ = id.

Assume that (Smin, Smax) = (S7). Put α = logP (22)
log r2

and α̂ = log P̂ (22)
log r̂2

. By Table

1, (5.1) and (5.2), we have

(1− r
qαmin−β(q)
1 )(1− r

qα−β(q)
2 )

(1− r̂
qαmin−β(q)
1 )(1− r̂

qα̂−β(q)
2 )

=
(r1r2)

qαmax−β(q)

(r̂1r̂2)qαmax−β(q)

for each q ∈ R. Therefore, by Lemma 4.3, we have

log r1
log r̂1

= lim
q→+∞

1− r
qαmin−β(q)
1

1− r̂
qαmin−β(q)
1

= lim
q→+∞

((
r1r2
r̂1r̂2

)αmax−αmin
)q

,

and thus, we have log r1
log r̂1

= 1. Therefore we have (r1, r2) = (r̂1, r̂2) and P = P̂, and

we conclude that (D)
′
holds with ρ = id. If (Smin, Smax) = (S9), then we can use a

similar argument by letting q → −∞ instead of letting q → +∞, and we conclude

that (D)
′
holds with ρ = id.

Assume that (Smin, Smax) = (S11). By Table 1, (5.1) and (5.2), we have

(1− r
qαmax−β(q)
1 )(1− r

qαmax−β(q)
2 )

(1− r̂
qαmax−β(q)
1 )(1− r̂

qαmax−β(q)
2 )

=
(r1r2)

qαmin−β(q)

(r̂1r̂2)qαmin−β(q)

for each q ∈ R. By applying Lemma 4.3 to this equation with letting q → −∞, we

obtain r1r2
r̂1r̂2

= 1. Thus, by Moran’s formula, we have

rs1(1− rs1) = (r1r2)
s = (r̂1r̂2)

s = r̂s1(1− r̂s1).

This shows that both rs1 and r̂s1 are the roots of the same quadratic equation, and

hence, r1 = r̂1 or r1 = r̂2. In the former case, (D)
′
holds with ρ = id. In the latter

case, (D)
′
holds with ρ = flip. We can treat the case where (Smin, Smax) = (S12) in

a similar manner, by letting q → +∞ instead of letting q → −∞.

Lemma 5.3. Let a1, ..., am > 0. We write a = max1≤i≤m ai and M = #{1 ≤ i ≤
m | ai = a}. Then the following hold:

(i) If functions ϕ1, ..., ϕm : R → R satisfy ϕ1(q) ∼ aq1, ..., ϕm(q) ∼ aqm (q → +∞)

then ϕ1 + · · ·+ ϕm ∼ aq1 + · · ·+ aqm ∼M × aq (q → +∞).

(ii) Let b1, ..., bn > 0 and we write b = max1≤i≤n bi, N = #{1 ≤ i ≤ n | bi = b}.
When q → +∞, we have

aq1 + · · ·+ aqm
bq1 + · · ·+ bqn

→


0 (a < b),

+∞ (a > b),
M
N (a = b).
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Proof. Easy.

Lemma 5.4. If (Smin, Smax) = (S7) then (Ŝmin, Ŝmax) ̸= (S12).

Proof. Put α = logP (22)
log r2

. Assume that (Ŝmin, Ŝmax) = (S12). We observe by Table

1, (5.1) and (5.2) that

(
r1r2√
r̂1r̂2

)qαmax−β(q)

=

√√√√1− r
qαmin−β(q)
1

1− r̂
qαmin−β(q)
1

√√√√1− r
qαmin−β(q)
1

1− r̂
qαmin−β(q)
2

(1− r
qα−β(q)
2 ) (5.5)

and

1− (r1r2)
qαmax−β(q)

1− (r̂1r̂2)qαmax−β(q)
=

r
qαmin−β(q)
1 + r

qα−β(q)
2 (1− r

qαmin−β(q)
1 )

r̂
qαmin−β(q)
1 + r̂

qαmin−β(q)
2 (1− r̂

qαmin−β(q)
1 )

(5.6)

for each q ∈ R.
By applying Lemma 4.3 to (5.5) with q → +∞, we have

r1r2√
r̂1r̂2

=

√
log r1
log r̂1

√
log r1
log r̂2

= 1. (5.7)

(5.7) shows that log r1r2
log r̂1r̂2

= 1
2 . Therefore, by Lemma 4.3, we have

1

2
= lim

q→−∞

r
qαmin−β(q)
1 + r

qα−β(q)
2 (1− r

qαmin−β(q)
1 )

r̂
qαmin−β(q)
1 + r̂

qαmin−β(q)
2 (1− r̂

qαmin−β(q)
1 )

= lim
q→−∞

(rαmin−αmax
1 )q + (rα−αmax

2 )q

(r̂αmin−αmax
1 )q + (r̂αmin−αmax

2 )q
.

Thus, by Lemma 5.3 (ii), we have

r̂αmin−αmax
1 = r̂αmin−αmax

2 , that is, r̂1 = r̂2.

By combining r̂1 = r̂2 with (5.7), we obtain the contradiction r2 = 1, and we

conclude that (Ŝmin, Ŝmax) ̸= (S12).

Lemma 5.5. If (Smin, Smax) = (S7) then (Ŝmin, Ŝmax) ̸= (S9) and (S11).

Proof. Assume that (Ŝmin, Ŝmax) = (S9) or (S11). Put α = logP (22)
log r2

and α̂ =

log P̂ (22)
log r̂2

. By Table 1, (5.1) and (5.2), we have

1− (r̂1r̂2)
qαmin−β(q) = r̂

qαmax−β(q)
1 (1− r̂

qα̂−β(q)
2 ) + r̂

qα̂−β(q)
2 (5.8)

for each q ∈ R and

αmin < α̂. (5.9)
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By (5.8), we have

1− (r̂1r̂2)
qαmin−β(q)

1− r
qαmin−β(q)
1

=

(
r̂
qαmax−β(q)
1 (1− r̂

qα̂−β(q)
2 )

(r1r2)qαmax−β(q)
+

r̂
qα̂−β(q)
2

(r1r2)qαmax−β(q)

)
× (1− r

qα−β(q)
2 )

for each q ∈ R. We observe by (5.9) that both qα−β(q) and qα̂−β(q) tend to +∞
when q → +∞, therefore, both 1 − r

qα−β(q)
2 and 1 − r

qα̂−β(q)
2 are lager than 1/2

for sufficiently large q > 0. Moreover 0 < qα̂− β(q) ≤ qαmax − β(q) for each q > 0.

Thus, for sufficiently large q > 0, we have

1− (r̂1r̂2)
qαmin−β(q)

1− r
qαmin−β(q)
1

≥1

2
max

(
r̂
qαmax−β(q)
1 (1− r̂

qα̂−β(q)
2 )

(r1r2)qαmax−β(q)
,

r̂
qα̂−β(q)
2

(r1r2)qαmax−β(q)

)

≥1

4
max

(
r̂
qαmax−β(q)
1

(r1r2)qαmax−β(q)
,

r̂
qαmax−β(q)
2

(r1r2)qαmax−β(q)

)
=
1

4
max

((
r̂1
r1r2

)qαmax−β(q)

,

(
r̂2
r1r2

)qαmax−β(q))
.

If r1 ≤ r̂1, then r̂1
r1r2

≥ 1
r2

> 1, and thus, limq→+∞

(
r̂1

r1r2

)qαmax−β(q)

=

+∞. If r1 > r̂1, then rs2 = 1 − rs1 < 1 − r̂s1 = r̂s2, and hence, we have

r̂2
r1r2

> 1
r1

> 1 which implies limq→+∞

(
r̂2

r1r2

)qαmax−β(q)

= +∞. Therefore,

1−(r̂1r̂2)
qαmin−β(q)

1−r
qαmin−β(q)

1

tends to +∞ when q → +∞. However, by Lemma 4.3, we have

limq→+∞
1−(r̂1r̂2)

qαmin−β(q)

1−r
qαmin−β(q)

1

= log r̂1r̂2
log r1

< +∞. We obtain a contradiction, and hence,

we conclude that (Ŝmin, Ŝmax) ̸= (S9) and (S11).

Lemma 5.6. If (Smin, Smax) = (S7) then (Ŝmin, Ŝmax) ̸= (S5).

Proof. Assume that (Ŝmin, Ŝmax) = (S5). Put α = logP (22)
log r2

and α̂ = log P̂ (121)
log r̂1r̂2

. We

observe by Table 1, (5.1) and (5.2) that

1− r
qαmin−β(q)
1

1− r̂
qαmin−β(q)
1

· 1− r
qα−β(q)
2

1− r̂
qαmax−β(q)
2

=
(r1r2)

qαmax−β(q)

(r̂1r̂2)qα̂−β(q)

for each q ∈ R. Therefore, by Lemma 4.3, we have

log r1
log r̂1

= lim
q→+∞

1− r
qαmin−β(q)
1

1− r̂
qαmin−β(q)
1

= lim
q→+∞

(
(r1r2)

αmax−αmin

(r̂1r̂2)α̂−αmin

)q

,

and thus, we obtain

(r1r2)
αmax−αmin

(r̂1r̂2)α̂−αmin
=

log r1
log r̂1

= 1.
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This and Moran’s formula imply that r1 = r̂1 and r2 = r̂2. Therefore, we have

(r1r2)
αmax−α̂ =

(r1r2)
αmax−αmin

(r̂1r̂2)α̂−αmin
= 1,

which contradicts αmax − α̂ > 0. We conclude that (Ŝmin, Ŝmax) ̸= (S5).

Lemma 5.7. If (Smin, Smax) = (S9) then (Ŝmin, Ŝmax) ̸= (S5), (S7), (S11) and

(S12).

Proof. We can use the same arguments as that in the proofs of Lemma 5.4–5.6,

by letting q → −∞ instead of letting q → +∞.

Lemma 5.8. Assume that r̂1 ̸= r̂2. If (Smin, Smax) = (S5) then (Ŝmin, Ŝmax) ̸=
(S11) and (S12).

Proof. Put α = logP (121)
log r1r2

.

Assume that (Ŝmin, Ŝmax) = (S11). By Table 1, (5.1) and (5.2), we have

(r1r2)
qα−β(q)

(
√
r̂1r̂2)qαmin−β(q)

=

√√√√1− r
qαmax−β(q)
2

1− r̂
qαmax−β(q)
1

√√√√1− r
qαmax−β(q)
2

1− r̂
qαmax−β(q)
2

(1− r
qαmin−β(q)
1 )

(5.10)

and

1− (r̂1r̂2)
qαmin−β(q)

1− r
qαmin−β(q)
1

=
r̂
qαmax−β(q)
1 + r̂

qαmax−β(q)
2 − (r̂1r̂2)

qαmax−β(q)

(r1r2)qα−β(q)/(1− r
qαmax−β(q)
2 )

(5.11)

for each q ∈ R.
By letting q → −∞ in (5.10) we obtain

(r1r2)
α−αmax

(
√
r̂1r̂2)αmin−αmax

=

√
log r2
log r̂1

√
log r2
log r̂2

= 1. (5.12)

Assume that r̂1 < r̂2. We observe that

the right hand side of (5.11) ∼
(
r̂αmax−αmin
2

(r1r2)α−αmin

)q

when q → +∞, and thus, we obtain

log r̂1r̂2
log r1

=
r̂αmax−αmin
2

(r1r2)α−αmin
= 1. (5.13)

We have r̂αmax−αmin
2 = (r1r2)

α−αmin by (5.13). Thus, by (5.12), we have

(r1r2)
αmax−αmin = (r1r2)

αmax−α × (r1r2)
α−αmin = (r̂2

√
r̂1r̂2)

αmax−αmin , that is,

r1r2 = r̂2
√
r̂1r̂2.
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This equation and (5.13) give us the contradiction r2 =
√
r̂2/r̂1 > 1, therefore, we

conclude that (Ŝmin, Ŝmax) ̸= (S11). We can show that (Ŝmin, Ŝmax) ̸= (S12) by a

similar argument.

Lemma 5.9. Assume that r̂1 ̸= r̂2. The following hold:

(i) If (Smin, Smax) = (S11) then (Ŝmin, Ŝmax) ̸= (S5) and (S12).

(ii) If (Smin, Smax) = (S12) then (Ŝmin, Ŝmax) ̸= (S5) and (S11).

Proof. We only discuss (i). Assume that (Ŝmin, Ŝmax) = (S5). We must have r1 =

r2 by Lemma 5.8.

Put α̂ = log P̂ (121)
log r̂1r̂2

. By Table 1, (5.1) and (5.2), we have

(r̂1r̂2)
qα̂−β(q)

(
√
r1r2)qαmin−β(q)

=

√√√√1− r̂
qαmax−β(q)
2

1− r
qαmax−β(q)
1

√√√√1− r̂
qαmax−β(q)
2

1− r
qαmax−β(q)
2

(1− r̂
qαmin−β(q)
1 )

for each q ∈ R, and hence, by letting q → −∞, we obtain
√

log r̂2
log r1

√
log r̂2
log r2

= 1. This

and r1 = r2 lead us to the contradiction r1 = r2 = r̂1 = r̂2, therefore we conclude

that (Ŝmin, Ŝmax) ̸= (S5).

Assume that (Ŝmin, Ŝmax) = (S12). By Table 1, (5.1) and (5.2), we have√
1− (r̂1r̂2)qαmax−β(q)

1− r
qαmax−β(q)
1

√
1− (r̂1r̂2)qαmax−β(q)

1− r
qαmax−β(q)
2

=
r̂
qαmin−β(q)
1 + r̂

qαmin−β(q)
2 − (r̂1r̂2)

qαmin−β(q)

(
√
r1r2)qαmin−β(q)

(5.14)

and √
1− (r1r2)qαmin−β(q)

1− r̂
qαmin−β(q)
1

√
1− (r1r2)qαmin−β(q)

1− r̂
qαmin−β(q)
2

=
r
qαmax−β(q)
1 + r

qαmax−β(q)
2 − (r1r2)

qαmax−β(q)

(
√
r̂1r̂2)qαmax−β(q)

(5.15)

for each q ∈ R.
Assume that r̂1 < r̂2. Then we have

the right hand side of (5.14) ∼
((

r̂2√
r1r2

)αmin−αmax
)q

when q → −∞, and thus, we obtain√
log r̂1r̂2
log r1

√
log r̂1r̂2
log r2

=
r̂2√
r1r2

= 1. (5.16)

(5.16) implies that (log r̂1r̂2)
2 = log r1 log r2 and r̂2 =

√
r1r2. Thus, if r1 = r2,

then we obtain the contradiction r1 = r̂1r̂2 < r̂2 = r1. Moreover if r1r2 ≥ r̂1r̂2,
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then r1, r2 > r̂1r̂2, and hence, we have log r̂1r̂2
log r1

, log r̂1r̂2
log r2

> 1 which contradicts (5.16).

Therefore we have r1 ̸= r2 and r1r2 < r̂1r̂2.

Assume that r1 < r2. Then we have

the right hand side of (5.15) ∼
((

r2√
r̂1r̂2

)αmax−αmin
)q

when q → +∞, and hence, we obtain
√

log r1r2
log r̂1

√
log r1r2
log r̂2

= 1. However, r1r2 < r̂1r̂2

implies log r1r2
log r̂1

, log r1r2
log r̂2

> 1, which contradicts
√

log r1r2
log r̂1

√
log r1r2
log r̂2

= 1. Therefore we

conclude that (Ŝmin, Ŝmax) ̸= (S12).

Corollary 5.1. We have the following:

(i) (D)
′
holds if and only if (Smin, Smax) ∼Aut (Ŝmin, Ŝmax).

(ii) Each of the following three guarantees that (D)
′
holds:

(a) (Smin, Smax) ∼Aut (S1), (S3), (S7) or (S9).

(b) r1 ̸= r2 or r̂1 ̸= r̂2.

Proof. (i). ‘Only if’ part is clear. We will prove ‘if’ part. We may assume that

(Smin, Smax) = (Ŝmin, Ŝmax). Lemma 5.1 and 5.2 tell us that (D)
′
holds.

(ii). Assume that (a). By Lemma 5.1, we may assume that (Smin, Smax) ∼Aut

(S7) or (S9). We obtain (Smin, Smax) ∼Aut (Ŝmin, Ŝmax) by Lemma 5.4–5.7. We

conclude by (i) that (D)′ holds.

Assume that (b). We only consider the case that r̂1 ̸= r̂2. By (a), we may

assume that (Smin, Smax) = (S5), (S11) or (S12) and so does (Ŝmin, Ŝmax). We

obtain (Smin, Smax) ∼Aut (Ŝmin, Ŝmax) by Lemma 5.8 and 5.9. We conclude by (i)

that (D)′ holds.

Lemma 5.10. Assume that r1 = r2 = r. The following hold:

(i) If β = logr(λ
q + (1− λ)q) for some λ ∈ (0, 1/2) then (Smin, Smax) coincides

with one of (S5), (S6), (S11), (S12). Table 2 shows the possibilities for P.

Table 2. The possibilities for P

(Smin, Smax) (S5) (S6) (S11) (S12)

P
(
1− λ λ

1− λ λ

) (
λ 1− λ

λ 1− λ

) (
λ 1− λ

1− λ λ

) (
1− λ λ

λ 1− λ

)

(ii) If (Smin, Smax) = (S11) or (S12) then β = logr(λ
q + (1 − λ)q) for some

λ ∈ (0, 1/2).

Proof. (i) is just a paraphrase of Theorem 3.3 (ii).

(ii). By Table 1, we can write P =
(

b 1−b
1−b b

)
for some b ∈ (0, 1), b ̸= 1/2, and

hence, we have β(q) = logr(b
q + (1− b)q).
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Proof of Theorem 5.1. Note that Moran’s formula tells us that r1 = r2 = r̂1 = r̂2
holds if and only if both r1 = r2 and r̂1 = r̂2 hold.

(i). Thanks to Corollary 5.1 (ii), we may assume that

r1 = r2 = r̂1 = r̂2.

We see by Lemma 5.10 (ii) that (Smin, Smax) ̸= (S11) and (S12). Moreover, by

Corollary 5.1 (ii), we may assume that (Smin, Smax) ∼Aut (S5). This argument

works on (Ŝmin, Ŝmax) and we obtain

(Smin, Smax) ∼Aut (S5) ∼Aut (Ŝmin, Ŝmax).

(ii). We prove (a). Assume that r1 ̸= r2. From Lemma 5.10, there exists a Markov

measure µ̃ on Σ+
2 such that

(P̃ (ij)q r−β(q)) has spectral radius 1,

where P̃ = (P̃ (ij)) is the stochastic matrix corresponding to µ̃.

Corollary 5.1 (ii) tells us that (D)
′
holds for µ and µ̃. In particular we have

{r1, r2} = {r} which contradicts r1 ̸= r2. Thus, we conclude that r1 = r2. We

obtain r1 = r by 2rs1 = 1 and s = −β(0) = − logr 2. We obtain r̂1 = r̂2 = r

similarly. The possibilities for P follow from Lemma 5.10 (i) immediately.

(b) immediately follows from (a) and Corollary 5.1 (i). We complete the proof

of Theorem 5.1. 2

5.3. Proof of Theorem 1.2

We only consider the case where A = ( 1 1
1 0 ). We have (Smin, Smax) = ({11}, {121})

or ({121}, {11}) since S = {11, 121}, and hence, β∗ is nondegenerate. We obtain

(r1, r2) = (r̂1, r̂2) and P = P̂ by arguments similar to that in the proofs of Lemma

5.5 and 5.2. We conclude that (D)′ holds with ρ = id.
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