1	A novel repressor of the <i>ica</i> locus discovered from clinically isolated super bio-
2	film-elaborating <i>Staphylococcus aureus</i>
3	
4	
5	Liansheng Yu ^a , Junzo Hisatsune ^{a,b} , Ikue Hayashi ^c , Nobuyuki Tatsukawa ^a , Yusuke Sato'o ^a ,
6	Emiri Mizumachi ^a , Fuminori Kato ^{a,b} , Hideki Hirakawa ^d , Gerald B. Pier ^e , Motoyuki Sugai ^{a,b}
7	
8	^a Department of Bacteriology, Hiroshima University Graduate School of Biomedical & Health
9	Sciences, Hiroshima City, Hiroshima, Japan; ^b Project Research Center for Nosocomial Infectious
10	Diseases, Hiroshima University, Hiroshima, Japan; ^c Research Facility, Hiroshima University
11	Faculty of Dentistry, Hiroshima City, Hiroshima, Japan; ^d Genome Informatics Group, Depart-
12	ment of Technology Development, Kazusa DNA Research Institute; ^e Division of Infectious Dis-
13	eases, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School,
14	Boston, MA 02115
15	Running Head: Biofilm regulation by rob in S. aureus
16	
17	Address correspondence to Motoyuki Sugai, sugai@hiroshima-u.ac.jp
18	
19	

20 ABSTRACT

21 Staphylococcus aureus TF2758 is a clinical isolate from an atheroma and a super bio-

22	film-elaborating/PIA/PNAG-overproducing strain (S. Looniva et al. Microbiol. Immunol. 60,
23	148-159, 2016). A microarray analysis and DNA genome sequencing were performed to identify
24	the mechanism underlying biofilm overproduction by TF2758. We found high transcriptional
25	expression levels of a 7-gene cluster (satf2580 - satf2586) and the ica operon in TF2758. Within
26	the 7-gene cluster, a putative transcriptional regulator gene designated as rob had a nonsense
27	mutation that caused the truncation of the protein. The complementation of TF2758 with rob
28	from FK300, an <i>rsbU</i> -repaired <i>S. aureus</i> strain NCTC8325-4, significantly decreased biofilm
29	elaboration, suggesting a role for <i>rob</i> in this process. The deletion of <i>rob</i> in bio-
30	film-non-producing FK300 significantly increased biofilm elaboration and PIA/PNAG produc-
31	tion. In the search for gene(s) in the 7-gene cluster for biofilm elaboration controlled by <i>rob</i> , we
32	identified orf SAOUHSC_2898 (satf2584). Our results suggest that orf SAOUHSC_2898
33	(satf2584) and icaADBC are required for enhanced biofilm elaboration and PIA/PNAG produc-
34	tion in the <i>rob</i> deletion mutant. Rob bound to a palindromic sequence within its own promoter
35	region. Furthermore, Rob recognized the TATTT motif within the <i>icaR-icaA</i> intergenic region
36	and bound to a 25-bp DNA stretch containing this motif, which is a critically important short se-
37	quence regulating biofilm elaboration in S. aureus. Our results strongly suggest that Rob is a
38	long-sought repressor that recognizes and binds to the TATTT motif and is an important regula-

tor of biofilm elaboration through its control of SAOUHSC_2898 (SATF2584) and Ica protein
expression in *S. aureus*.

41

42 **Importance**

43 During the search for molecular mechanism underlying biofilm overproduction of *Staphylococ*cus aureus TF2758, we found a putative transcriptional regulator gene designated as rob within a 44 7-gene cluster showing high transcriptional expression level by microarray analysis. The deletion 45 of rob in biofilm-non-producing FK300, an rsbU-repaired NCTC8325-4, significantly increased 46 biofilm elaboration and PIA/PNAG production. Search for gene(s) in the 7-gene cluster for bio-47 film elaboration controlled by rob identified orf SAOUHSC 2898. Besides binding to its own 48 promoter region to control orf SAOUHSC 2898 expression, Rob recognized the TATTT motif 49 within the *icaR-icaA* intergenic region and bound to a 25-bp DNA stretch containing this motif, 50 51 which is a critically important short sequence regulating biofilm elaboration in S. aureus. Our 52 results strongly suggest that Rob is a long-sought repressor that recognizes and binds to the TATTT motif and is a new important regulator of biofilm elaboration through its control of 53 54 SAOUHSC 2898 and Ica protein expression in S. aureus. 55

56

57	Staphylococcus aureus is among the most common human pathogens, causing a wide range
58	of infections, from superficial skin and mucosal infections to bone or lung infections, as well as
59	serious systemic diseases. S. aureus colonization has been regarded as a risk factor for develop-
60	ing subsequent infections. Some chronic infections, such as endocarditis, osteomyelitis, and
61	those on implanted medical devices, are characteristically associated with biofilm elaboration
62	(1-3). Development of biofilms has been divided into at least three physiologically different
63	stages: initial attachment, biofilm maturation, and detachment (or dispersal), which involves
64	specific factors (4). The matrix of a staphylococcal biofilm is mainly composed of polysaccha-
65	rides, cell surface and secreted bacterial proteins, and extracellular DNA (5). Cells encased in the
66	matrix are protected from antibiotic therapy and host immune responses (3, 4, 6). Dispersal of
67	cells from a biofilm may be important for the dissemination of the bacteria (7).
68	The main exopolysaccharide of the S. aureus biofilm matrix is poly-N-acetylglucosamine
69	(PNAG), which is also known as polysaccharide intercellular adhesion (PIA) (8). The synthesis
70	and accumulation of PIA/PNAG on the cell surface is carried out by the products of four genes:
71	icaA, icaD, icaB, and icaC (9). These genes are located in one operon and were first identified by
72	Heilmann et al. (10). Recent studies have indicated that the expression of <i>icaADBC</i> is affected by
73	a number of regulatory and environmental factors (11-14). The <i>icaR</i> gene is located adjacent to
74	<i>icaADBC</i> , but is divergently transcribed from this operon (15). The protein encoded by <i>icaR</i> be-
75	longs to the TetR family of transcriptional regulators and represses <i>icaADBC</i> transcription by

76	binding to a region immediately upstream of the <i>icaA</i> start codon (16). Additionally, environ-
77	mental factors, including glucose, ethanol, high temperatures, and high osmolarity, have been
78	reported to affect biofilm elaboration (11-14). Ethanol increases the expression of <i>icaA</i> by re-
79	pressing <i>icaR</i> transcription (15). In contrast, enhancement of <i>icaA</i> expression by high glucose or
80	NaCl levels was found to occur independently of <i>icaR</i> .
81	A 5-nucleotide motif (TATTT) within the <i>icaR-icaA</i> intergenic region was previously shown
82	to play a key role in the transcription of the <i>ica</i> locus (16). This study also demonstrated that Ic-
83	aR binds to a 42-bp sequence within the <i>ica</i> promoter region, but not the TATTT sequence.
84	Hence, the effects of the TATTT motif on <i>icaADBC</i> expression have been suggested to be con-
85	trolled by other as yet unidentified repressor(s).
86	We evaluated the biofilm-elaborating ability of clinical isolates in Japan, and found that
87	TF2758, which was isolated from an atheroma, is an extremely high biofilm producer (17).
88	Whole-genome sequencing and a microarray analysis of TF2758 discovered a spontaneous mu-
89	tation in a putative transcriptional regulator gene, within a 7-gene cluster, which was expressed
90	at markedly higher levels than in a non-biofilm elaborating control strain. We designated this
91	gene as <i>rob</i> , regulator of biofilm. In the present study, we demonstrate that Rob is a long-sought
92	repressor that recognizes and binds to the TATTT motif and suggest that Rob is an important
93	regulator of biofilm elaboration through its control of the expression of an as yet uncharacterized
94	hypothetical protein SAOUHSC_2898 (SATF2584) and IcaADBC.

RESULTS

97	Identification of rob from a super biofilm-elaborating strain. As shown in Fig. 1, one of the
98	clinically isolated strains, TF2758, showed a strong biofilm-elaborating ability and hyperproduc-
99	tion of PIA/PNAG (17). In order to elucidate the mechanism underlying the overproduction of
100	biofilms in TF2758, a gene expression analysis using a custom microarray was performed. We
101	used ATCC49775 as a control because it was the strain most closely related to TF2758 by com-
102	parative genomic hybridization and a very low biofilm-elaborating strain (Fig. 1A, B). The re-
103	sults obtained showed that there were two strongly up-regulated gene clusters: $satf2580 - $
104	satf2586 (15-to-40-fold) and the ica operon (satf2686 - satf2689, 2-to-10-fold) (Fig. 1C, Table
105	S1). Sequencing of the TF2758 genome and comparisons with complete genomes of other S. au-
106	reus strains indicated that TF2758 possessed a nonsense mutation in the gene satf2583 (Fig. 2A)
107	and a missense mutation in the gene $icaR$, which resulted in the creation of a stop codon and an
108	alteration in a nucleotide (A to T), respectively (Fig. S1 in the supplemental material). SATF2583
109	possessed regions homologous to the TetR family and AcrR family of transcriptional regulators,
110	suggesting it acts as a DNA-binding protein (Fig. 2B). In order to clarify the impact of
111	SATF2583 on biofilm elaboration in <i>S. aureus</i> , we transformed TF2758 with the plasmid pC001,
112	pKAT carrying <i>orf</i> SAOUHSC_2897 with a 5'-flanking region cloned from FK300, the <i>rsbU</i> re-
113	paired derivative of NCTC8325-4. As shown in Figure 3A, TF2758 carrying pC001 significantly

114	lost its biofilm-elaborating ability, particularly in the absence of 1% glucose. PIA/PNAG detec-
115	tion by anti-PNAG revealed more clear-cut data (Fig. 3B). In the presence of 1% glucose,
116	TF2758 carrying pC001 still retained its PIA/PNAG-producing ability; however, the amount
117	produced was markedly less than that by the wild type. However, the production of PIA/PNAG
118	was almost completely inhibited in the absence of 1% glucose. These results suggest that
119	SATF2583 is a negative regulator of biofilm elaboration and also that the <i>satf2583</i> gene from
120	FK300 is functional.
121	The <i>icaR</i> gene, located adjacent to the <i>ica</i> operon, is a member of the TetR family of tran-
122	scriptional regulators (15, 18). IcaR was previously reported to repress <i>icaADBC</i> transcription by
123	binding to a 42-bp region within the <i>ica</i> promoter (16). The missense mutation that we identified
124	in <i>icaR</i> occurs in the HTH domain (Fig. S1 in the supplemental material) and may affect protein
125	function. Therefore, we complemented TF2758 with pC002, which is pKAT carrying <i>icaR</i> from
126	FK300. The resulting strain significantly decreased biofilm elaboration and PIA/PNAG produc-
127	tion was inhibited regardless of the presence or absence of glucose (Fig. 3A, B). These results
128	suggest that <i>icaR</i> from FK300 is functional and the <i>satf2583</i> -involved biofilm elaboration path-
129	way occurs through and upstream of the <i>ica</i> operon. We tentatively named this <i>orf</i> rob (regulator
130	of biofilm).
131	Effects of Rob on biofilm elaboration, PIA/PNAG production, and <i>ica</i> operon expression in

S. aureus FK300. TF2758 was resistant to transformation by the plasmid pKFT and pKOR1,

133	which are used for allelic exchange in <i>S. aureus</i> . Since the <i>rob</i> gene in FK300 is functional, we
134	selected strain FK300 for further studies on rob function. We introduced the same mutation
135	found in TF2758 into rob in FK300 by allelic replacement. As shown in Fig. 4A, this mutation in
136	rob resulted in a marked increase in biofilm elaboration in the presence or absence of 1% glucose.
137	The deletion of the <i>rob</i> gene also increased biofilm elaboration in FK300. We complemented the
138	rob deletion mutant with plasmids carrying the rob gene (SAOUHSC_2897) from FK300
139	(pC001) or the truncated <i>rob</i> gene (<i>satf2583</i>) from TF2758 (pC003). We found that the trans-
140	formant of the rob deletion mutant with pC001 exhibited repressed biofilm elaboration, similar
141	to the control, FK300. In contrast, pC003 was unable to complement the <i>rob</i> deletion phenotype,
142	which was similar to that of the <i>rob</i> deletion mutant carrying the mock vector pKAT (Fig. 4A).
143	In order to examine whether <i>rob</i> regulates biofilm elaboration through the <i>ica</i> operon, we
144	measured <i>icaR</i> and <i>icaADBC</i> expression by qRT-PCR and PIA/PNAG production in wild-type
145	and rob mutant strains of S. aureus FK300 (Fig. 4B). The results obtained indicated that the rob
146	deletion mutant decreased <i>icaR</i> expression and increased <i>icaADBC</i> expression with a concomi-
147	tant increase in PIA/PNAG production (Fig. 4C). The deletion of the <i>ica</i> operon in the FK300
148	rob deletion mutant abolished biofilm elaboration and PIA/PNAG production (Fig. 4A and C).
149	Taken together, these results suggest that biofilm elaboration in the rob deletion mutant is
150	ica-dependent and Rob, at least in part, represses icaADBC transcription.

151	SAOUHSC_2898 (SATF2584) is involved in biofilm elaboration, which is under the control
152	of Rob. The results of a preliminary microarray analysis suggested that Rob suppresses the ex-
153	pression of the surrounding 7-gene cluster (satf2580-satf2586) and the ica operon in TF2758
154	(Fig. 1C, Supple Table 1). Our RNA-seq data showed that these genes form operons (Fig. S2 in
155	the supplemental material). Therefore, we hypothesized that Rob affects biofilm elaboration by
156	repressing one or more genes in the (satf2580-satf2586) gene cluster. In order to test this possi-
157	bility, we deleted upstream genes (SAOUHSC_2894, SAOUHSC_2895) and downstream genes
158	(SAOUHSC_2898, SAOUHSC_2899 and SAOUHSC_2900) in the FK300 <i>rob</i> deletion mutant.
159	The results, shown in Figure 5, revealed that the deletion of the upstream genes had no signifi-
160	cant effect, whereas the deletion of the downstream genes significantly reduced biofilm elabora-
161	tion in the <i>rob</i> deletion mutant to a level similar to that of wild-type FK300.
162	As described above, there are three adjacent genes located immediately downstream of <i>rob</i>
163	that are under the control of one promoter forming an operon. We deleted each gene individually
164	in the FK300 rob deletion mutant (Fig. 6A). We found that only the SAOUHSC_2898 deletion
165	caused a marked reduction in biofilm elaboration. The SAOUHSC_2899 deletion had a slight
166	effect, whereas the SAOUHSC_2900 deletion had no effect on biofilm elaboration in the <i>rob</i>
167	deletion mutant. Additionally, biofilm elaboration could be restored through complementation of
168	rob, SAOUHSC_2898 double mutant with pC004, which carries the SAOUHSC_2898 gene

169 from FK300 (Fig. S3 in the supplemental material). These results suggest that SAOUHSC 2898

170 is a critical factor mediating biofilm elaboration regulated by Rob.

171 In order to further confirm the regulation of SAOUHSC_2898 by *rob*, qRT-PCR was per-

- 172 formed with RNA isolated from wild-type FK300 and the *rob* deletion mutant. The deletion of
- 173 rob resulted in the increased expression of SAOUHSC_2898 (Fig. 6B). SAOUHSC_2898 is pre-
- 174 dicted to encode a 2-deoxy-D-gluconate 3-dehydrogenase that belongs to the oxidoreductase
- 175 family (http://aureowiki.med.uni-greifswald.de/SAOUHSC_02898). Our results suggest that this
- 176 enzyme is involved in some unknown biosynthetic pathway impacting biofilm elaboration. Rob

177 may repress biofilm elaboration in FK300 by down-regulating the transcription of the SAOU-

178 HSC 2898 gene.

179 **Rob recognizes a palindromic motif in its own promoter.** A microarray analysis showed that

180 the inactivation of *rob* in TF2758 resulted in the increased expression of surrounding genes.

181 Therefore, using EMSA and DNase I footprint analyses, we investigated whether Rob directly

182 binds to its own promoter and regulates this gene cluster's transcription. We purified His-tagged

183 Rob from *E. coli* and its binding to an intergenic fragment between SAOUHSC 2896 and *rob*

184 (Fig. 7A). Rob induced significant dose-dependent shifts in the probe's mobility. A DNase I

- 185 footprint analysis clearly demonstrated that Rob bound to a 24-nucleotide DNA (Fig. 7B). We
- 186 then analyzed the secondary structure of the binding sequence. We found that it contained an al-
- 187 most perfect palindromic sequence (Fig. 7C). Interestingly, the transcription start site (TSS) of

188 rob was predicted to be within the binding region of Rob by RNA-sequencing (RNA-seq) analy-189 sis (Fig. S2 in the supplemental material). These results suggest that Rob represses SAOU-190 HSC 2898 transcription by recognizing the possible palindromic sequence present in the inter-191 genic region of SAOUHSC 2896 and rob. 192 Recombinant Rob binds to the ica promoter region. As shown in Figure 4, the transcription 193 levels of *icaADBC* were also significantly increased in the *rob* mutant. In order to investigate 194 whether Rob directly modulates *icaADBC* expression by binding to the *ica* promoter, we used 195 EMSA to analyze the Rob protein binding to a 198-bp probe (FULL) that contained the entire 196 *icaR-icaA* intergenic region (Fig. 8A). As shown in Figure 8B, the recombinant Rob protein in-197 duced several shifts, even with only 0.1 µg of FULL. Rob-DNA complex bands migrated in a 198 ladder-like pattern with increases in Rob protein concentrations. Rob-DNA complexes were out 199 competed with a 100-fold excess of unlabeled specific competitor DNA. These results suggest 200 that Rob binds to the *icaR-icaA* intergenic region in a dose-dependent manner. 201 Jefferson et al. previously identified a 5-bp (TATTT) motif within the *icaR-icaA* intergenic 202 region that controls the transcriptional regulation of the *ica* locus (16) (Fig. 8A). They suggested that an unknown repressor(s) utilize(s) the TATTT sequence in order to regulate *icaADBC* ex-203 204 pression. Since Rob represses the *ica* transcription of the *ica* locus, we investigated whether Rob 205 recognizes this 5-bp motif. We designed several additional probes for DNA binding assays (Fig. 206 8A). A 108-bp probe (SHORT-1), the shortest oligonucleotide containing the 5-bp sequence

207	lacking the 5' 90-bp sequence of FULL, was dose-dependently shifted by Rob (Fig. 8C). We then
208	generated an oligonucleotide (SHORT-2) with a 28-bp deletion from the 5' end of the SHORT-1
209	probe. As shown in Figure 8D, SHORT-2 had no significant shift in the presence of Rob. In order
210	to further investigate whether Rob recognizes the 5-bp motif, we made a 193-bp (FULL(- 5-bp))
211	probe lacking the 5-bp TATTT sequence of FULL. As shown in Figure 8E, FULL(- 5-bp) was
212	not shifted, as observed in FULL migration in Figure 8B, suggesting that Rob was unable to bind
213	to the 193-bp (FULL(- 5-bp)) probe. Taken together, these results suggest that Rob recognizes
214	and binds to the 5-bp motif within the <i>ica</i> promoter region.
215	We performed a DNase I footprint analysis to identify Rob-binding site(s). As shown in Fig-
216	ure 9, Rob protected a region of approximately 25 bp that included the 5-bp motif. In order to
217	further confirm that the 5-bp motif is necessary for the binding of Rob to the <i>icaR-icaA</i> intergen-
218	ic region, we attempted to screen for proteins bound to the <i>icaR-icaA</i> intergenic DNA fragment
219	with or without the 5-bp motif using cytosolic proteins of FK300. The cell extract of the
220	wild-type strain FK300 was mixed with magnetic beads conjugated with either the 198-bp
221	(FULL) probe or 193-bp (FULL(- 5-bp)) probe, and the bound proteins were then analyzed by
222	MALDI-TOF-MS. We found that Rob was present in proteins bound to the 198-bp probe, but
223	was absent in proteins bound to 193-bp (FULL(- 5-bp))(data not shown). Overall, these results
224	strongly suggest that Rob recognizes and binds to the 5-bp TATTT motif within the promoter re-
225	gion of the <i>ica</i> locus.

DISCUSSION

228	Biofilm elaboration is an important virulence determinant in certain types of S. aureus
229	infections, particularly those involving implanted medical devices. Biofilm growth is influenced
230	by a number of regulatory mechanisms. However, it is becoming increasingly apparent that the
231	transcriptional regulation of biofilm-associated genes, such as <i>icaADBC</i> , is complex. Staphylo-
232	coccal regulatory factors, including SarA, SigB, IcaR, TcaR, SrrAB, and Rbf, were previously
233	shown to regulate <i>icaADBC</i> expression (11, 15, 19-22). In the present study, we identified a nov-
234	el TetR/AcrR family regulator, Rob, which is a repressor of biofilm elaboration, by controlling
235	SAOUHSC_2898, within a 7-gene cluster under the control of Rob. Furthermore, we demon-
236	strated that Rob directly binds to the <i>icaR-icaA</i> intergenic region and represses <i>icaADBC</i> . The
237	binding site in the <i>icaR-icaA</i> intergenic region contained the 5-bp motif, which has been sug-
238	gested to control the transcriptional regulation of <i>icaADBC</i> (Fig. S4 in the supplemental materi-
239	al) (16).
240	The BLAST analysis showed that the satf2580-satf2586 gene cluster, which was
241	up-regulated in the super biofilm-elaborating strain TF2758, is also present in several other
242	staphylococcal strains, but not in S. epidermidis, which is among the most studied and clinically
243	relevant biofilm-elaborating organisms (see Fig. S5 in the supplemental material). Therefore, a
244	novel regulatory pathway appears to be involved in biofilm elaboration in S. aureus.

245	SAOUHSC_2898 is predicted to encode a 2-deoxy-D-gluconate 3-dehydrogenase, which
246	belongs to the oxidoreductase family. Oxidoreductases specifically act on the CH-OH group of
247	donors with NAD+ or NADP+ as an acceptor. This enzyme participates in pentose and glucu-
248	ronate interconversions, a metabolic pathway that has recently been shown to be significantly
249	enriched in biofilm elaboration (23). An increase in the expression of oxidoreductase was previ-
250	ously reported to induce staphylococcal biofilm elaboration (24). The detailed characterization of
251	SAOUHC_2898 will provide an insight into <i>ica</i> -dependent biofilm elaboration.
252	SAOUHSC_2897 and SAOUHSC_2898 were previously reported to be accessory genes of a
253	glucose-induced biofilm designated as gbaAB (25). However, in our assay, the complementation
254	of TF2758 with SAOUHSC_2897 (rob) completely canceled PIA/PNAG production in the ab-
255	sence of 1% glucose. Furthermore, the addition of glucose did not alter the amount of
256	PIA/PNAG produced by the FK300 rob deletion mutant (Fig. 4C). Thus, it is reasonable to as-
257	sume that an SAOUHSC_2898-catalized pathway controlled by SAOUHSC_2897 (rob) affects
258	biofilm elaboration in a glucose-independent manner (Fig. 10).
259	A number of regulators, including SigB, SarA, and SarX, and two-component signal trans-
260	duction systems (TCSs) have been shown to affect staphylococcal biofilm elaboration (26-29).
261	Our genetic analyses showed that the deletion of <i>ica</i> genes or SAOUHSC_2898 resulted in a loss
262	in the ability to elaborate biofilms in the FK300 rob mutant. The rob mutant showed decreased

263	<i>icaR</i> expression and increased <i>icaADBC</i> transcription, suggesting that <i>rob</i> regulates an
264	<i>ica</i> -dependent pathway for biofilm elaboration, at least in part by activating <i>icaR</i> expression.
265	Some factors regulate <i>icaADBC</i> expression by binding to the <i>icaR-icaA</i> intergenic region
266	(15, 16, 22, 28). Although Rob is one of the TetR/AcrR family regulators in S. aureus, its role in
267	the regulation of biofilms is not completely clear. Jefferson et al. previously reported that the
268	TATTT sequence has a functional role in the transcriptional regulation of the <i>ica</i> locus (16). The
269	simple deletion of the TATTT motif in S. aureus MN8m markedly increased biofilm elaboration
270	and the transcription of <i>icaADBC</i> . They hypothesized the presence of uncharacterized re-
271	pressor(s) recognizing and binding to the motif. Most recently, Schwartbeck et al. also showed
272	that the S. aureus isolates carrying the 5-bp deletion exhibited a mucoid phenotype and strong
273	biofilm formation (30). These mucoid isolates were protected against phagocytosis and survived
274	better under starvation conditions. The results of the present study demonstrated that Rob binds
275	to an <i>icaR-icaA</i> intergenic region of approximately 25 bp including the 5-bp TATTT motif,
276	strongly suggesting that Rob is the postulated repressor reported by Jefferson et al. and further
277	support rob regulating biofilm elaboration in an ica-dependent manner. A comparison of the
278	Rob-binding site in the <i>icaR-icaA</i> intergenic region with that in the <i>rob</i> promoter revealed that
279	the right half of the palindrome sequence was also present in the <i>icaR-icaA</i> intergenic region (Fig.
280	9). This palindrome-like sequence may be recognized by Rob. A previous study showed that the
281	TATTT motif has a functional role in the transcriptional regulation of the <i>ica</i> locus, but not <i>icaR</i>

283	pairings of <i>icaR</i> mRNA control its transcription in <i>S. aureus</i> . The 5-bp motif is located within the
284	5'-UTR of <i>icaR</i> (Fig. S4 in the supplemental material). The possibility of an interaction between
285	Rob and 5'-UTR to control base pairing remains elusive.
286	Taken together, the results of the present study suggest that Rob controls the two different
287	pathways of biofilm elaboration in S. aureus. The TetR-family transcriptional regulator Rob af-
288	fects biofilm elaboration through SAOUHSC_2898 and by recognizing/binding the TATTT motif
289	in an <i>ica</i> -dependent manner. These results provide additional insights into the transcriptional
290	regulation of the <i>ica</i> locus. Both Rob-mediated pathways will be investigated in more detail in
291	future studies.

transcription (16). Ruiz de los Mozos et al. recently demonstrated that the 5'- and 3'- UTR base

292

282

293 MATERIALS AND METHODS

Bacterial strains and growth media. The bacterial strains and plasmids used in the present
study are listed in Table 1. The *S. aureus* strain, designated TF2758, is a clinical isolate from an
atheroma in Japan. *S. aureus* ATCC49775 served as a negative control, non-biofilm producer. *S. aureus* FK300, a *rsbU*-repaired derivative of strain NCTC8325-4, was used in a functional study
of the role of *rob. S. aureus* RN4220 (31) was used as the initial recipient for the manipulation of
recombinant plasmids. *S. aureus* was routinely grown in tryptic soy broth (TSB, Becton Dickinson Microbiology Systems, Cockeysville, MD) or on tryptic soy agar (TSA) plates. Tetracycline

301 (Tc, 5 µg/ml) or chloramphenicol (Cp, 10 µg/ml) was added as necessary. Escherichia coli strain

302 DH5α was used for the construction and maintenance of plasmids. *E. coli* was grown in lysogeny

broth (LB) broth (5 g yeast extract, 10 g polypeptone, and 10 g NaCl per liter; pH 7.2) or on LB

- 304 agar. When required, ampicillin (Ap, 100 µg/ml), kanamycin (Kn, 30 µg/ml), Tc (10 µg/ml), or
- 305 Cp (10 μ g/ml) was added to the culture medium.

306 Plasmid and strain construction. Routine DNA manipulations were performed as previously

described (32). FK300 mutants were constructed by allele replacement using pKFT (33). PCR

308 was performed using KOD-Plus-Neo (Toyobo, Japan) under appropriate cycling conditions. The

309 oligonucleotides used in this study are listed in Table 2. Fragments were cloned into the plasmid

- 310 pKFT using restriction enzymes and transformed into *E. coli* DH5α. Recombinant plasmids were
- then introduced into DNA restriction system-deficient *S. aureus* RN4220 by electroporation (34).
- 312 Modified plasmids were electroporated into *S. aureus* FK300 for allele replacement. Markerless
- 313 deletion mutants were screened by PCR from tetracycline-sensitive colonies. Fragments were
- 314 confirmed by DNA sequencing using the BigDye Terminator v3.1 Cycle Sequencing Kit (Ap-

315 plied Biosystems, USA).

In complementation experiments, genes were amplified by PCR using the corresponding primer pairs and then cloned into the HindIII site of pKAT (35). The plasmids pC001, pC002, and pC003 carrying *rob*-FK300, *icaR*-FK300, and *rob*-TF2758 genes, respectively, were constructed and transformed into the *S. aureus* strains listed in Table 1 by electroporation. The inserts in all
 plasmid constructs were verified by PCR and DNA sequencing.

321 Biofilm assay. A biofilm assay using polystyrene plates was performed as described previously (36) with a few modifications. In brief, overnight cultures were diluted 1:100 with TSB. Ten mi-322 croliters of this dilution was then transferred, in triplicate, into flat-bottom 96-well polystyrene 323 plates (TrueLine, Nippon Genetics Co., Ltd., Japan) containing TSB or TSB plus 1% glucose. 324 325 After incubation at 37°C for 24 h, the wells were gently washed three times with 300 µl of sterile phosphate-buffered saline (PBS) (137 mM NaCl, 2.7 mM KCl, 10 mM Na₂HPO₄12H₂O, and 1.8 326 327 mM KH₂PO₄, pH 7.4), and the biofilm was stained with 1% crystal violet for 15 min. Unbound 328 crystal violet was then removed by washing the plate in a container by immersing and agitating 329 gently 10 times in tap water. Biofilm-bound crystal violet was solubilized in 200 µl of 33% gla-330 cial acetic acid at room temperature for 15 min. The extracts were diluted 10-fold, and absorb-331 ance at 590 nm was measured with an Immuno-Mini NJ-2300 spectrophotometer (Nalge Nunc 332 International K.K., Tokyo, Japan). PIA/PNAG detection. The ability of S. aureus strains to produce PIA/PNAG was tested ac-333 334 cording to a previously described protocol (9). Briefly, S. aureus strains were grown at 37°C 335 overnight with shaking in 3 ml of TSB. Cultures were then diluted 1:1,000 in the appropriate 336 medium, and 4 ml of this cell suspension was used to inoculate sterile 12-well polystyrene plates (TrueLine, Nippon Genetics Co., Ltd., Japan). After a 24-h static incubation at 37°C, the cells 337

338	were resuspended in 50 μ l of 0.5 M EDTA (pH 8.0) and incubated for 5 min at 100°C. Cells
339	were removed by centrifugation, and 40 μl of the supernatant was incubated with 10 μl of pro-
340	teinase K (20 mg/ml; Nacalai Tesque, Inc., Kyoto, Japan) at 37°C for 30 min. After the addition
341	of 10 µl of Tris-buffer saline (20 mM Tris-HCl, 150 mM NaCl [pH 7.4]) containing 0.01% bro-
342	mophenol blue, 5 μ l was immobilized on a nitrocellulose membrane (Amersham Protran NC
343	0.45, GE Healthcare, Buckinghamshire, UK) and dried at room temperature. The membrane was
344	blocked with 5% skimmed milk in PBS with 0.1% Tween 20, and this was followed by a 2-h in-
345	cubation with rabbit anti-PNAG antiserum (37) diluted at 1:10,000. Bound antibodies were de-
346	tected with peroxidase-conjugated goat anti-rabbit immunoglobulin G (IgG) antibodies (MP
347	Biomedicals, LLC-Cappel Products, Ohio, USA) diluted 1:10,000 and developed with Pierce
348	ECL Western Blotting Substrate (Thermo Scientific, Rockford, IL, USA).
349	RNA isolation, reverse transcription (RT), and real-time PCR. Overnight S. aureus cultures
350	were diluted in fresh TSB containing 1% glucose to an initial optical density of 0.02 at 660 nm
351	and harvested after a 6-h incubation with shaking at 37°C. Total RNA was isolated using the
352	FastRNA Pro Blue Kit (MP Biomedicals, LLC, Santa Ana, CA, USA) according to the manu-
353	facturer's instructions. DNA was removed by a treatment with RQ1 RNase-free DNase (Promega,
354	Madison, WI) at 37°C for 30 min. After inactivation of DNase, PCR was performed to confirm
355	the absence of contaminating DNA. RNA was then reverse transcribed with a Transcriptor First
356	Strand cDNA Synthesis Kit (Roche, Mannheim, Germany). The resulting cDNA was diluted

357	10-fold with Tris-EDTA (TE) buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) and then used as a
358	template in the real-time PCR reaction. Quantitative real-time RT-PCR (qRT-PCR) was per-
359	formed with the SsoAdvanced Universal SYBR Green Supermix (Bio-Rad, Hercules, CA, USA)
360	using a CFX96 Real-Time PCR Detection System (Bio-Rad). The thermal cycling conditions
361	used were as follows: at 95°C for 1 min, followed by 40 cycles of 95°C for 15 s, 60°C (<i>icaR</i> and
362	<i>icaA</i>) or 62°C (<i>gyrB</i> and SAOUHSC_2898) for 15 s, and 72°C for 30 s. All PCR runs were per-
363	formed in triplicate and data were analyzed using the CFX Manager Software (version 3.0,
364	Bio-Rad) according to the manufacturer's instructions. The housekeeping gene, gyrase subunit B
365	(gyrB), was used as a reference gene to normalize the expression level of the target gene in each
366	reaction. Real-time PCR primers are listed in Table 2.
367	Microarray analysis. The design and preparation of probes, which cover more than 98% of the
368	open reading frames (ORFs) of S. aureus MW2, and their immobilization on the glass slide were
369	described elsewhere (38). RNA extraction (after a 2-h incubation) and cDNA synthesis were
370	performed as described above. cDNA was fluorescently labeled with Alexa Fluor 555 (Cy3) and
371	Alexa Fluor 647 (Cy5) (Thermo Fisher Scientific, Oregon, USA). Labeled cDNA samples were
372	mixed and hybridized to the slides. After washing, fluorescent signals were detected using a
373	GenePix 4000B Microarray Scanner (Axon Instruments). Data were then normalized and ana-
374	lyzed using Array Vision 8.0 software (Imaging Research Inc., CT, USA). The

- 375 non-biofilm-elaborating strain ATCC49775, the genotype of which is the most closely related to
- 376 TF2758 in our Japanese clinical isolate collection, was used as the reference strain.
- 377 Transcritomic analysis of *rob* operon via RNA-seq.
- 378 Overnight S. aureus FK300 (wild-type, Δrob) and TF2758 cultures were diluted in fresh TSB to
- an initial density of 0.02 at 660 nm and harvested after a 6-h incubation with shaking at 37° C.
- 380 Total RNA was isolated using the FastRNA Pro Blue Kit (MP Biomedicals, LLC, Santa Ana, CA,
- 381 USA) according to the manufacturer's instructions. To eliminate DNA contamination, 1µg total
- 382 RNA in each sample was treated with 3 µl (1 U/µl) of RQ1 RNase-free DNase (Promega, Madi-
- son, WI) at 37°C for 30 min. After digestion by DNase, PCR of the gyrB gene was performed to
- 384 confirm the absence of contaminating DNA. The concentration and quality of total RNA were
- 385 determined using a Qubit 2.0 Fluorometer (Thermo Fisher Scientific) and Agilent 2200 TapeSta-
- tion (Agilent Techonogies), respectively. rRNA was removed using the Ribo-Zero Bacteria Kit

387 (Epicentre). Removal of rRNA was confirmed by Agilent 2200 TapeStation.

388 Libraries were generated using the ScriptSeq v2 RNA-Seq (Epicentre) and purified using the

389 Minelute PCR purification kit (Quiagen) according to the manufacturer's instructions. Libraries

- 390 were sequenced using the index sequences of TruSeq v2 LT Sample Prep Kit on the Illumina
- 391 MiSeq platform. Sequence reads were preprocessed for quality, trimmed and mapped to S. aure-
- 392 *us* strain NCTC8325 (GenBank accession number NC_007795) as the reference genome using

393 CLC Genomics Workbench software platform ver.9 (Qiagen) and Integrative Genomics Viewer394 (IGV) ver.2.

395 Sequencing of the TF2758 genome. Genomic DNA was extracted using the lysostaphin and 396 QIAamp DNA Mini kit (QIAGEN, Germany) according to the manufacturer's instructions. Li-397 braries were prepared for sequencing with Nextera DNA kits (Illumina, USA) and were se-398 quenced with the Illumina GAIIx system according to Illumina protocols. The raw reads were 399 trimmed and assembled using a SOAPdenovo assembler. The draft genome sequence was auto-400 matically annotated using the Microbial Genome Annotation Pipeline (MiGAP) (39) and was 401 manually curated using IMC-GE software (In Silico Biology, Inc., Kanagawa, Japan). 402 Protein purification. To elucidate the DNA-binding properties of Rob, the full-length open 403 reading frame (ORF) of rob was amplified from FK300 genomic DNA using primers 404 pET-28a-Rob-F/pET-28a-Rob-R (Table 2) and cloned into the expression vector pET-28a(+) 405 (Novagen) to obtain pET28a-rob. The plasmid was then transformed into E. coli BL21 (DE3) 406 and bacteria were grown at 37°C in 300 ml LB containing 30 µg/ml kanamycin to an OD of 0.5 407 at 600 nm. Expression of Rob was induced with 0.5 mM IPTG (isopropyl-β-D-thiogalactopyranoside; Nacalai Tesque, Inc., Kyoto, Japan) and incubation at 37°C for 408 409 another 6 h. Cells were harvested by centrifugation and frozen at -80°C. Cell pellets were thawed 410 in lysis buffer (50 mM NaH₂PO₄ and 300 mM NaCl, pH 8.0) and lysed by sonication on ice. Cell 411 debris was removed by centrifugation $(10,000 \times g \text{ at } 4^{\circ}\text{C} \text{ for } 20 \text{ min})$ and the supernatant was

412	used for isolation of His ₆ -tagged Rob fusion protein by using TALON Metal Affinity Resins
413	(Clontech Laboratories, Inc.) according to the company's protocol. The expression and purity of
414	the protein were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis
415	(SDS-PAGE) using a 12% gel. Protein concentrations were measured using the Bio-Rad Protein
416	Assay (Bio-Rad, Hercules, CA) with bovine serum albumin (BSA) as the standard protein. The
417	recombinant His-tagged IcaR protein was purified as described elsewhere (18).
418	Electrophoretic mobility shift assays (EMSA). Gel shift assays were performed as described
419	previously (16) with the following modifications. DNA fragments corresponding to the <i>icaR</i> -
420	icaA intergenic region and promoter region of rob were amplified by PCR with the primers listed
421	in Table 2. PCR products were purified using the QIAquick Gel Extraction Kit (QIAGEN). A
422	20-µl binding reaction containing 0.1 to 2 µg of purified recombinant protein and 1 µg of soni-
423	cated salmon sperm DNA as well as 1 μ g of poly(dI-dC) in binding buffer (10 mM Hepes [pH
424	8.0], 60 mM KCl, 4 mM MgCl ₂ , 0.1 mM EDTA [pH 8.0], 0.1 mg/ml BSA, 0.25 mM dithio-
425	threitol [DTT], and 5% glycerol) was incubated at room temperature for 15 min before the addi-
426	tion of 2 μ g of the biotin-labeled probe. The reaction mixtures were incubated for an additional
427	20 min and then electrophoresed in 5% polyacrylamide gel in prechilled $1 \times$ Tris-borate-EDTA
428	(TBE) buffer. DNA was then transferred onto a nylon membrane (BioDyne B, PALL, USA) and
429	band shifts were detected by exposing dried membranes to X-ray films. In order to measure the

430 binding of Rob to its promoter region, a gel shift assay was performed using an alternative

431 method as described (40).

432 DNase I footprint analysis. Footprinting was performed according to a previously described 433 method (41). DNA fragments were generated by PCR with TaKaRa LA Taq (TaKaRa Bio Inc., 434 Shiga, Japan). PCR products were purified and ligated with pGEM-T Easy (Promega) using Ligation high Ver.2 (Toyobo, Osaka, Japan). The resulting plasmids were then used as a template 435 for the amplification of DNA probes using the primer pair Fp-M13-F and Fp-M13-R 436 (5'-6-FAM-labeled). DNA fragments (0.45 pmol) were mixed with purified proteins in 50 µl of a 437 438 reaction mixture containing the same buffer used for gel shift assays. After a 20-min incubation 439 at room temperature, the reaction mixtures were treated with 0.3 U of DNase I (Promega, Madison, WI) for 1 min and then purified by phenol/CIAA extraction and ethanol precipitation. After 440 purification, the samples were analyzed using an ABI 3130xl Genetic Analyzer equipped with 441 442 the Peak Scanner software (Applied Biosystems). 443 Isolation and identification of proteins binding to the *ica* promoter. A cell-free extract was 444 isolated from strain FK300 as previously described with some modifications (42). Briefly, cultured S. aureus cells were pelleted and then washed with buffer A (20 mM Tri-HCl, 5 mM MgCl₂, 445 446 0.1 M EDTA, and 5% glycerol, pH 7.8). Cell pellets were resuspended in 10 ml of buffer A and 447 treated with lysostaphin (0.1 mg/ml) at 4°C for 1 h. After freezing at -80°C and thawing at 4°C twice, 6 ml of buffer A (containing KCl at a final concentration of 1.3 M) was added and incu-448

449	bated on ice for 40 min. The cell lysate was treated with DNase I (10 $\mu g/ml$) and RNase A (10
450	μ g/ml) at room temperature for 30 min. After centrifugation for 30 min at 40,000 × g, the su-
451	pernatant was dialyzed against distilled water overnight and stored at -80°C.
452	Biotinylated DNA was prepared as described above. DNA was immobilized on 2 mg of
453	streptavidin-coated magnetic beads (Dynabeads M-280 Streptavidin; Life Technologies) accord-
454	ing to the manufacturer's protocol. After washing, 100 μ l of the cell-free extract was added and
455	incubated at room temperature for 30 min in gel shift binding buffer. The beads were washed
456	twice with buffer B (10 mM Hepes [pH 8.0], 60 mM KCl, 4 mM MgCl ₂ , 1 mM EDTA [pH 8.0],
457	1 mM DTT, and 5% glycerol) containing 0.5 μ g/ml of salmon sperm DNA, and then washed
458	twice with buffer B. The bound proteins were eluted from immobilized DNA with buffer B con-
459	taining 0.5 M NaCl. The eluates from two binding reactions were pooled and concentrated by
460	methanol/chloroform precipitation. Proteins were separated by SDS-PAGE, followed by Coo-
461	massie or silver staining. Prior to in-gel trypsin digestion, excised gel pieces were destained
462	and submitted to reduction with DTT and alkylation with iodoacetamide as described previously
463	(43). After being dried, the gel pieces were subjected to trypsin digestion at 35°C overnight with
464	XL-TrypKit (APRO Sci, Japan). Digested peptides were transferred to new tubes and evaporated
465	to $< 10 \ \mu$ l in a vacuum centrifuge evaporator, and this was followed by LC-MS/MS analyses for
466	protein identification. LC-MS/MS analyses were performed on nanoflow liquid chromatography
467	coupled with nanoelectrospray MS, a Triple TOF 5600 system (AB SCIEX, CONCORD, ON)

468	equipped with an Eksigent cHiPLC-nanoflex System (AB SCIEX). The nano HPLC columns
469	used were the cHiPLC trap column (200 $\mu m~x$ 0.5 mm ChromXP C18-CL, 3 $\mu m)$ and nano
470	cHiPLC analytical capillary column (75 μm x 15 cm ChromXP C18-CL, 3 $\mu m,$ 120Å). Tryptic
471	peptides (2 μ l) were loaded, and trapping and desalting were performed at 2 μ l/min for 10 min
472	with 0.1% formic acid. The trapped peptides were separated by a linear gradient at a flow rate of
473	$0.3 \ \mu$ l/min, followed by their introduction into the source of the mass spectrometer online. Mo-
474	bile phase A (0.1% formic acid in H_2O) and mobile phase B (0.1% formic acid in acetonitrile)
475	were used to establish a 45-min gradient comprising 25 min of 2-32% B, 1 min of 32-90% B, 4
476	min of 90% B, and finally decreasing to 2% B, which was followed by re-equilibrating at 2% B
477	for 15 min. Eluted peptides from the column were analyzed with a Triple TOF 5600 using an ion
478	spray voltage of 2.2kV. Product ions were scanned in a mass range from 230m/z up to 1500 m/z.
479	MS/MS data acquisition was performed using Analyst 1.5.2 (AB Sciex) and proteins were iden-
480	tified by means of an automated database search using ProteinPilot Software (AS Sciex).
481	
482	SUPPLEMENTAL MATERIAL
483	Supplemental material for this article may be found at:

484 Table S1

485 Figure S1

- 487 Figure S3
- 488 Figure S4
- 489 Figure S5

490 ACKNOWLEDGMENTS

- 491 We thank Dr. Hidetada Hirakawa, Gunma Univ. for his skillful suggestion on DNase I footprint
- 492 analysis. This work is supported in part by a grant from the Health and Labor Sciences Research
- 493 Grants for Research on Allergic Disease and Immunology from the Ministry of Health, Labor,
- 494 and Welfare of Japan (201322025A), and a grant from the Japan Agency for Medical Research
- 495 and Development (AMED) (924711).
- 496

497 **REFERENCES**

- 498 1. Donlan, R. M., and J. W. Costerton. 2002. Biofilms: survival mechanisms of clinically
- 499 relevant microorganisms. Clin Microbiol Rev **15**:167–193.
- 500 2. Mayberry-Carson, K. J., B. Tober-Meyer, J. K. Smith, D. W. Lambe, Jr., and J. W.
- 501 **Costerton.** 1984. Bacterial adherence and glycocalyx formation in osteomyelitis experimen-
- tally induced with *Staphylococcus aureus*. Infect Immun **43**:825–833.
- 503 3. Götz, F. 2002. *Staphylococcus* and biofilms. Mol Microbiol 43:1367–1378.
- 4. Otto, M. 2008. Staphylococcal biofilms. Curr Top Microbiol Immunol **322:**207–228.

505 5. Lister J, Horswill A. 2014. *Staphylococcus aureus* biofilms: recent developments in biofilm

- 506 dispersal. Front Cell Infect Microbiol **4:**178.
- 507 6. Jones SM, Morgan M, Humphrey TJ, Lappin-Scott H. 2001. Effect of vancomycin and
- 508 rifampicin on meticillin-resistant *Staphylococcus aureus* biofilms. Lancet **357:**40–41.
- 509 7. Otto M. 2013. Staphylococcal infections: mechanisms of biofilm maturation and detachment
- as critical determinants of pathogenicity. Annu Rev Med **64:**175–188.
- 511 8. Mack, D., Fischer, W., Krokotsch, A., Leopold, K., Hartmann, R., Egge, H., and Laufs,
- 512 **R.** 1996. The intercellular adhesin involved in biofilm accumulation of *Staphylococcus epi*-
- 513 *dermidis* is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis. J
- 514 Bacteriol **178:**175–183.
- 515 9. Cramton, S. E., C. Gerke, N. F. Schnell, W. W. Nichols, and F. Götz. 1999. The intercel-
- 516 lular adhesion (*ica*) locus is present in *Staphylococcus aureus* and is required for biofilm
- 517 formation. Infect Immun **67:**5427–5433.
- 518 10. Heilmann C., Schweitzer O., Gerke C., Vanittanakom N., Mack D., Götz F.
- 519 1996. Molecular basis of intercellular adhesion in the biofilm-formation *Staphylococcus epi*-
- 520 *dermidis*. Mol Microbiol **20**:1083–1091.
- 521 11. Lim Y, Jana M, Luong TT, Lee CY. 2004. Control of glucose- and NaCl-induced biofilm
- formation by *rbf* in *Staphylococcus aureus*. J Bacteriol **186**:722–729.

523	12. Dobinsk	y S. Ki	el K. Rohde	e H, Bartsc	ht K, Knob	loch JK, Horstk	kotte MA, Mack D	. 2003.
		•/ /	,	,	,	,	,	

- 524 Glucose-related dissociation between *icaADBC* transcription and biofilm expression
- 525 by *Staphylococcus epidermidis*: evidence for an additional factor required for polysaccharide
- 526 intercellular adhesin synthesis. J Bacteriol **185**:2879–2886.
- 527 13. Knobloch JK, Bartscht K, Sabottke A, Rohde H, Feucht HH, Mack D. 2001. Biofilm
- 528 formation by *Staphylococcus epidermidis* depends on functional RsbU, an activator of the
- *sigB* operon: differential activation mechanisms due to ethanol and salt stress. J Bacteriol
- **183:**2624–2633.
- 531 14. Cramton SE, Ulrich M, Götz F, Doring G. 2001. Anaerobic conditions induce expression
- 532 of polysaccharide intercellular adhesin in *Staphylococcus aureus* and *Staphylococcus epi*-
- 533 *dermidis*. Infect Immun **69:**4079–4085.
- 534 15. Conlon, K. M., Humphreys, H., and O'Gara, J. P. 2002. *icaR* encodes a transcriptional
- 535 repressor involved in environmental regulation of *ica* operon expression and biofilm for-
- 536 mation in *Staphylococcus epidermidis*. J Bacteriol **184:**4400–4408.
- 537 16. Jefferson, K. K., S. E. Cramton, F. Götz, and G. B. Pier. 2003. Identification of a
- 538 5-nucleotide sequence that controls expression of the *ica* locus in *Staphylococcus aureus* and
- 539 characterization of the DNA-binding properties of IcaR. Mol Microbiol **48**:889–899.

540	17. Shrestha, L., Kayama, S., Sasaki, M., Kato, F., Hisatsune, J., Tsuruda, K., Koizumi, K.,
541	Tatsukawa, N., Yu, L., Takeda, K. and Sugai, M. 2016. Inhibitory effects of antibiofilm
542	compound 1 against <i>Staphylococcus aureus</i> biofilms. Microbiol and Immunol 60: 148–159.
543	18. Jeng WY, Ko TP, Liu CI, Guo RT, Liu CL, Shr HL, Wang AH. 2008. Crystal structure of
544	IcaR, a repressor of the TetR family implicated in biofilm formation in Staphylococcus epi-
545	dermidis. Nucleic Acids Res 36:1567–1577.
546	19. Ulrich, M., M. Bastian, S. E. Cramton, K. Ziegler, A. A. Pragman, A. Bragonzi, G.
547	Memmi, C. Wolz, P. M. Schlievert, A. Cheung, and G. Doring. 2007. The staphylococcal
548	respiratory response regulator SrrAB induces ica gene transcription and polysaccharide in-
549	tercellular adhesin expression, protecting Staphylococcus aureus from neutrophil killing un-
550	der anaerobic growth conditions. Mol Microbiol 65:1276–1287.
551	20. Valle, J., A. Toledo-Arana, C. Berasain, J. M. Ghigo, B. Amorena, J. R. Penades, and I.
552	Lasa. 2003. SarA and not sigmaB is essential for biofilm development by Staphylococcus
553	aureus. Mol Microbiol 48:1075–1087.
554	21. Cue D, Lei MG, Luong TT, Kuechenmeister L, Dunman PM, O'Donnell S, Rowe S,
555	O'Gara JP, Lee CY. 2009. Rbf promotes biofilm formation by Staphylococcus aureus via
556	repression of <i>icaR</i> , a negative regulator of <i>icaADBC</i> . J Bacteriol 191: 6363–6373.
557	22. Jefferson, K. K., D. B. Pier, D. A. Goldmann, and G. B. Pier. 2004. The
558	teicoplanin-associated locus regulator (TcaR) and the intercellular adhesin locus regulator

- 559 (IcaR) are transcriptional inhibitors of the *ica* locus in *Staphylococcus aureus*. J Bacteri-
- ol **186:**2449–2456.

561 23. Li Z, Chen Y, Liu D, Zhao N, Cheng H, Ren H, Guo T, Niu H, Zhuang W, Wu J, Ying H.

- 562 2015. Involvement of glycolysis/gluconeogenesis and signaling regulatory pathways in Sac-
- *charomyces cerevisiae* biofilms during fermentation. Front Microbiol **6**:139.

564 24. Kulkarni R, Antala S, Wang A, Amaral FE, Rampersaud R, Larussa SJ, Planet PJ,

- 565 **Ratner AJ.** 2012. Cigarette smoke increases *Staphylococcus aureus* biofilm formation via
- oxidative stress. Infect Immun **80:**3804–3811.
- 567 25. You Y, Xue T, Cao L, Zhao L, Sun H, Sun B. 2014. Staphylococcus aureus glu-
- 568 cose-induced biofilm accessory proteins, GbaAB, influence biofilm formation in a
- 569 PIA-dependent manner. Int J Med Microbiol **304:**603-612.
- 570 26. Lauderdale KJ, Boles BR, Cheung AL, Horswill AR. 2009. Interconnections between
- 571 Sigma B, *agr*, and proteolytic activity in *Staphylococcus aureus* biofilm maturation. Infect
- 572 Immun **77:**1623–1635.
- 573 27. Tormo MA, Marti M, Valle J, Manna AC, Cheung AL, Lasa I, Penades JR. 2005. SarA
- 574 is an essential positive regulator of *Staphylococcus epidermidis* biofilm development. J Bac-
- 575 teriol **187:**2348–2356.
- 576 28. Cue D, Lei MG, Lee CY. 2013. Activation of *sarX* by Rbf is required for biofilm formation
- and *icaADBC* expression in *Staphylococcus aureus*. J Bacteriol **195**:1515–1524.

578	29. Sharma-Kuinkel BK, Mann EE, Ahn JS, Kuechenmeister LJ, Dunman PM, Bayles KW.
579	2009. The Staphylococcus aureus LytSR two-component regulatory system affects biofilm
580	formation. J Bacteriol 191:4767-4775.
581	30. Schwartbeck B, Birtel J, Treffon J, Langhanki L, Mellmann A, Kale D, et al. 2016. Dy-
582	namic in vivo mutations within the <i>ica</i> operon during persistence of <i>Staphylococcus aureus</i>
583	in the airways of cystic fibrosis patients. PLoS Pathog 12 (11):e1006024.
584	31. Kreiswirth, B. N., S. Lofdahl, M. J. Betley, M. O'Reilly, P. M. Shlievert, M. S. Bergdoll,
585	and R. P. Novick. 1983. The toxic shock syndrome exotoxin structural gene is not detectably
586	transmitted by a prophage. Nature 305: 709–712.
587	32. Sambrook, J., Fritsch, E.F., Maniatis, T. 1989. Molecular cloning: a laboratory manual.
588	Cold Spring Harbor Laboratory Press, Plain View, NY.
589	33. Kato F, Sugai M. 2011. A simple method of markerless gene deletion in <i>Staphylococcus au</i> -
590	reus. J Microbiol Methods 87:76–81.
591	34. Kraemer, G. R., and J. J. Iandolo. 1990. High-frequency transformation of Staphylococcus
592	aureus by electroporations. Curr Microbiol 21:373–376.
593	35. Kato, F. 2004. Ph.D. thesis, University of Tohoku, Sendai, Japan. NDLC:UT51-2004-P732.
594	36. Heilmann, C., Gerke, C., Perdreau-Remington, F., and Götz, F. 1996. Characterization of
595	Tn917 insertion mutants of Staphylococcus epidermidis affected in biofilm formation. Infect

596 Immun **64:**277–282.

597	37. Skurnik D, Merighi M, Grout M, Gadjeva M, Maira-Litran T, Ericsson M, Goldmann
598	DA, Huang SS, Datta R, Lee JC, Pier GB. 2010. Animal and human antibodies to distinct
599	Staphylococcus aureus antigens mutually neutralize opsonic killing and protection in mice. J
600	Clin Invest 120: 3220–3233.
601	38. Aburatani S, Tashiro K, Savoie CJ, Nishizawa M, Hayashi K, Ito Y, Muta S, Yamamoto
602	K, Ogawa M, Enomoto A, Masaki M, Watanabe S, Maki Y, Takahashi Y, Eguchi Y, Sa-
603	kaki Y, Kuhara S. 2003. Discovery of novel transcription control relationships with gene
604	regulatory networks generated from multiple-disruption full genome expression libraries.
605	DNA Res 10:1-8.
606	39. Sugawara H, Ohyama A, Mori H and Kurokawa K. 2009. "Microbial Genome Annota-
607	tion Pipeline (MiGAP) for diverse users" The 20th International Conference on Genome In-
608	formatics (GIW2009) Poster and Software Demonstrations (Yokohama), S001-1-2.
609	40. Sato'o Y, Hisatsune J, Nagasako Y, Ono HK, Omoe K, Sugai M. 2015. Positive regulation
610	of staphylococcal enterotoxin H by Rot (repressor of toxin) protein and its importance in
611	clonal complex 81 subtype 1 lineage-related food poisoning. Appl Environ Microbiol
612	81: 7782–7790.
613	41. Hirakawa H, Y. Oda, S. Phattarasukol, C. D. Armour, J. C. Castle, C.K. Raymond, C. R.
614	Lappala, A. L. Schaefer, C. S. Harwood and E. P. Greenberg. 2011. Activity of the Rho-

- 615 dopseudomonas palustris p-coumaroyl-homoserine lactone responsive transcription factor
- 616 RpaR. J Bacteriol **193:**2598–2607.
- 617 42. Oscarsson, J., C. Harlos, and S. Arvidson. 2005. Regulatory role of proteins binding to the
- 618 *spa* (protein A) and *sarS* (staphylococcal accessory regulator) promoter regions in *Staphylo*-
- 619 *coccus aureus* NTCC 8325-4. Int. J. Med. Microbiol. **295**:253-266.
- 620 43. Hara K, Ohara M, Hayashi I, Hino T, Nishimura R, Iwasaki Y, Ogawa T, Ohyama Y,
- 621 Sugiyama M, Amano H. 2012. The green tea polyphenol (-)-epigallocatechin gallate precip-
- 622 itates salivary proteins including alpha-amylase: biochemical implications for oral health.
- 623 Eur J Oral Sci **120**:132-139.
- 624 44. Ruiz de los Mozos I, Vergara-Irigaray M, Segura V, Villanueva M, Bitarte N, Saramago
- 625 M, Domingues S, Arraiano CM, Fechter P, Romby P, Valle J, Solano C, Lasa I, Tole-
- do-Arana A. 2013. Base pairing interaction between 5'- and 3'-UTRs controls *icaR* mRNA
- translation in *Staphylococcus aureus*. PLoS Genet **9(12)**:e1004001.
- 45. Cue D, Lei MG, Lee CY. 2012. Genetic regulation of the intercellular adhesion locus in
- 629 staphylococci. Front Cell Infect Microbiol **2:**38.
- 630
- 631 Figure legends
- 632 FIG. 1 Biofilm elaboration and PIA/PNAG production by *Staphylococcus aureus* TF2758.
- 633 (A) Biofilm elaboration. Bacteria were grown in trypticase soy broth (TSB) in the presence

634	(Glc+) or absence (Glc-) of 1% glucose. Biofilm elaboration was measured using the polystyrene
635	microtiter plate assay described in the Materials and Methods section. The averages and standard
636	errors from each sample are shown. (B) PIA/PNAG production. Extracts from overnight cultures
637	were spotted on a membrane, and PIA/PNAG was detected by rabbit anti-PNAG, as described in
638	the Materials and Methods section. Non-biofilm-elaborating strain ATCC49775 was used as a
639	control in the comparative microarray analysis. (C) A comparative gene expression analysis of
640	TF2758 and ATCC49775. TF2758 gene expression was represented as fold changes from that of
641	ATCC49775. Two gene clusters exhibiting marked increases in gene expression were colored
642	(red and blue), and these gene clusters were depicted (a, b).
643	
644	FIG. 2 Identification of a nonsense mutation in the <i>satf2583</i> (<i>rob</i>) gene of TF2758 and the
645	predicted domain structure of its transcript. (A) Comparison of the satf2580-satf2586 region
646	with those of MW2, 8325-4, ATCC49775, and TF2758. A part of the nucleotide sequence of each
647	strain and amino acid sequences are shown. The numbers shown on both sides mean the nucleo-
648	tide sequence and amino acid sequence positions in the ORF of rob. The nonsense codon created
649	by the mutation (A to T) was indicated by an asterisk. (B) Structural characteristics of Rob. It
650	
	contained a letR_N superfamily domain within an AcrR domain.

652	FIG. 3 Rob and IcaR from FK300 reduce biofilm elaboration and PIA/PNAG synthesis in
653	strain TF2758. (A) Biofilm elaboration and (B) PIA/PNAG production of TF2758 and TF2758
654	carrying pC001 (pKAT-rob (FK300)), pC002 (pKAT-icaR (FK300)), or pKAT. Bacteria were
655	grown TSB in the presence (Glc+) or absence (Glc-) of 1% glucose. Biofilm elaboration was
656	measured using the polystyrene microtiter plate assay described in the Materials and Methods
657	section. The averages and standard errors from each sample are shown. Extracts from overnight
658	cultures were spotted on a membrane, and PIA/PNAG was detected by rabbit anti-PIA, as de-
659	scribed in the Materials and Methods section.
660	
661	FIG. 4 Effects of the <i>rob</i> deletion on biofilm elaboration and <i>ica</i> operon expression in
662	FK300. (A) Biofilm elaboration in wild-type FK300 and its derivatives were assessed using the
662 663	FK300. (A) Biofilm elaboration in wild-type FK300 and its derivatives were assessed using the polystyrene microtiter plate assay described in the Materials and Methods section. The averages
662 663 664	FK300. (A) Biofilm elaboration in wild-type FK300 and its derivatives were assessed using the polystyrene microtiter plate assay described in the Materials and Methods section. The averages and standard errors from each sample are shown. sm, FK300 carrying a stop mutation at adenine
662 663 664 665	FK300. (A) Biofilm elaboration in wild-type FK300 and its derivatives were assessed using the polystyrene microtiter plate assay described in the Materials and Methods section. The averages and standard errors from each sample are shown. sm, FK300 carrying a stop mutation at adenine nucleotide position 331(A ₃₃₁ to T ₃₃₁); pC001, pKAT with <i>rob</i> (FK300); pC003, pKAT with <i>rob</i>
662 663 664 665 666	FK300. (A) Biofilm elaboration in wild-type FK300 and its derivatives were assessed using the polystyrene microtiter plate assay described in the Materials and Methods section. The averages and standard errors from each sample are shown. sm, FK300 carrying a stop mutation at adenine nucleotide position 331(A ₃₃₁ to T ₃₃₁); pC001, pKAT with <i>rob</i> (FK300); pC003, pKAT with <i>rob</i> (TF2758). (B) Quantitative measurements of <i>icaR</i> and <i>icaADBC</i> transcription by qPCR. Total
662 663 664 665 666	 FK300. (A) Biofilm elaboration in wild-type FK300 and its derivatives were assessed using the polystyrene microtiter plate assay described in the Materials and Methods section. The averages and standard errors from each sample are shown. sm, FK300 carrying a stop mutation at adenine nucleotide position 331(A₃₃₁ to T₃₃₁); pC001, pKAT with <i>rob</i> (FK300); pC003, pKAT with <i>rob</i> (TF2758). (B) Quantitative measurements of <i>icaR</i> and <i>icaADBC</i> transcription by qPCR. Total RNA preparation, cDNA synthesis, and then qPCR were performed as described in the Materials
 662 663 664 665 666 667 668 	FK300. (A) Biofilm elaboration in wild-type FK300 and its derivatives were assessed using the polystyrene microtiter plate assay described in the Materials and Methods section. The averages and standard errors from each sample are shown. sm, FK300 carrying a stop mutation at adenine nucleotide position 331(A ₃₃₁ to T ₃₃₁); pC001, pKAT with <i>rob</i> (FK300); pC003, pKAT with <i>rob</i> (TF2758). (B) Quantitative measurements of <i>icaR</i> and <i>icaADBC</i> transcription by qPCR. Total RNA preparation, cDNA synthesis, and then qPCR were performed as described in the Materials and Methods section. Transcript levels in the <i>rob</i> deletion mutant compared to those in wild-type

670	Error bars indicate standard errors.	(\mathbf{C})) PIA/PNAG	production.	PIA	/PNAG	production	was
010	Enter ouro mareuro stantama enters.	(\sim)	/ I II I I I I I I I I I I I I I I I I	p1044			p100000000000	

671 measured as described in the legend of Figure 1.

672

673 FIG. 5 Biofilm elaboration in the *rob* deletion mutant requires downstream gene(s), but not

- 674 upstream genes. Bacteria were grown in TSB in the presence (Glc+) or absence (Glc-) of 1%
- 675 glucose. Biofilm elaboration was measured using the polystyrene microtiter plate assay de-
- 676 scribed in the Materials and Methods section. The averages and standard errors from each sam-
- 677 ple are shown. Δrob , FK300 rob deletion mutant; $\Delta rob\Delta Upstream$, FK300 with deletions of rob
- and its upstream genes, SAOUHC_2894, SAOUHC_2895, and SAOUHSC_2896;
- $\Delta rob\Delta Downstream$, FK300 with the deletion of *rob* and its downstream genes SAOUHSC 2898,
- 680 SAOUHSC 2899, and SAOUHSC 2900.
- 681

682 FIG. 6 Contribution of SAOUHSC_2898 to biofilm elaboration by the *rob* deletion mutant

683 and regulation of SAOUHSC_2898 expression by rob in FK300. Bacteria were grown in TSB

684 in the presence (Glc+) or absence (Glc-) of 1% glucose. Biofilm elaboration was measured using

- 685 the polystyrene microtiter plate assay described in the Materials and Methods section. (A) Ef-
- fects of SAOUHSC_2898, SAOUHSC_2899, and SAOUHSC_2900 deletions on biofilm elabo-
- ration in the FK300 rob deletion mutant. The averages and standard errors from each sample are
- 688 shown. (B) Transcription of SAOUHSC_2898 in the FK300 wild-type strain and its *rob* deletion

689	mutant. Transcript levels in the rob deletion mutant compared to those in the wild-type strain
690	were assigned. The expression of the $gyrB$ gene was used for sample normalization. Error bars
691	indicate standard errors.
692	
693	FIG. 7 Rob binds to a palindromic motif in its own promoter. (A) EMSA for the
694	DNA-binding activity of Rob to the intergenic region between SAOUHSC_2896 and rob. EMSA
695	was performed in the absence (lane 1) or presence (lanes 2 to 5) of the Rob protein. The primers
696	used to amplify the intergenic region for Rob binding are indicated by black arrows. (B) DNase I
697	footprinting assay. The 6-FAM-labeled DNA probe was incubated with or without recombinant
698	Rob (12 pmol) and then subjected to DNase I digestion. The rectangle indicates the region pro-
699	tected by Rob. The palindromic motif is shown in bold. (C) Schematic representation of the sec-
700	ondary structure of the binding region by Rob. The sequence bound by Rob is highlighted by a
701	red frame.
702	
703	FIG. 8 Rob binds to the <i>ica</i> promoter region and its binding is TATTT motif-dependent.
704	(A) Schematic representation of the design of DNA probes used in EMSAs. (B-E) EMSAs of
705	Rob. Recombinant Rob was incubated with (B) FULL, (C) SHORT-1, (D) SHORT-2, or (E)
706	FULL (-5-bp) (2 ng/reaction). The amounts (µg/reaction) of Rob were as follows: (B-E) lane 1,

708	unlabeled specific competitor). (C-E) lane 6, 2.0.
709	
710	FIG. 9 DNase I footprinting assay of Rob binding to the <i>ica</i> promoter region. (A) A footprint
711	analysis of Rob binding to the <i>ica</i> promoter region. The sequence of the protected region is
712	shown. (B) Comparison of the binding sites of Rob to the <i>rob</i> promoter region and <i>ica</i> promoter
713	region. The palindromic sequence within the Rob binding region is shaded. The bold letters (A)
714	and rectangle (B) indicate the 5-bp TATTT motif.
715	
716	Fig. 10 Proposed model for the regulation of PIA/PNAG synthesis by Rob in S. aureus
717	FK300. The <i>rob</i> gene product represses the expression of the surrounding 7-gene cluster includ-
718	ing rob and SAOUHSC_2988. The gene product of SAOUHSC_2988 may function as an oxi-
719	doreductase in a hypothetical pathway through which glucose-independent <i>icaADBC</i> -dependent
720	polysaccharide accumulation occurs. rob also recognizes the TATTT motif in the ica promoter
721	region and binds to this region. The binding of Rob to the <i>ica</i> promoter region may suppress the
722	expression of the <i>icaADBC</i> locus. 5-bp, the TATTT motif important for the expression of <i>ica</i> lo-
723	cus. 42-bp, the IcaR-binding region. Arrows correspond to activation and bars to repression.
724	

0; lanes 2 to 5 were 0.1, 0.5, 1.0, and 1.5, respectively. (B) lane 6, 1.5 (with 100-fold excess of

725	FIG. S1 Identification of a missense mutation in the <i>icaR</i> gene of TF2758 and the domain
726	structure of its transcript. (A) Comparison of the nucleotide sequence and amino acid se-
727	quence of the <i>icaR</i> gene among MW2, 8325-4, ATCC49775, and TF2758. The numbers shown
728	on both sides mean the nucleotide sequence and amino acid sequence positions in the ORF of
729	<i>icaR</i> . Altered amino acids (A to T) by the mutation at nucleotide position 103 (G to A) were in-
730	dicated in red. (B) Structural characteristics of IcaR. It contained a TetR_N superfamily domain
731	within an AcrR domain.
732	
733	FIG. S2 Identification of <i>rob</i> operon and transcription start site of <i>rob</i> using RNA-seq
734	analysis. (A) Visualization of RNA transcript identified by RNA-seq. Total RNA of FK300,
735	FK300 Δrob , and TF2758 were prepared from cultures grown for 6 h at 37°C. After removal of
736	DNA contaminants and rRNA, libraries were generated and purified as described in the Materi-
737	als and Methods. RNA-seq reads were mapped to S. aureus NCTC8325. Genes with continuous
738	coverage were considered to belong to the same operon. The ORFs of NCTC8325 are shown at
739	the top of the figure. Transcripts identified by RNA-seq are represented as dashed arrows. The
740	sequence from predicted transcription start site (TSS) to the start codon of <i>rob</i> was shown at the
741	bottom of the figure. (B) Diagrammatic representation of the <i>rob</i> promoter region.
742	GENETYXMAC v.15 (Software Development Co., Ltd., Tokyo, Japan) was used for prediction
743	of the -35, -10 sequence. The start codons of genes are indicated by arrows. The Rob-binding site

row.row.

747	FIG. S3 Reduced biofilm elaboration in <i>rob</i> SAOUHSC_2898 double mutant was restored
748	through complementation with the SAOUHSC_2898 gene. Bacteria were grown in TSB in
749	the presence (Glc+) or absence (Glc-) of 1% glucose. Biofilm elaboration was measured using
750	the polystyrene microtiter plate assay described in the Materials and Methods section. The aver-
751	ages and standard errors from each sample are shown. pC004, pKAT with SAOUHSC_2898
752	(FK300).
753	
754	FIG. S4 Diagrammatic representation of the icaR-icaA intergenic region. The start sites of
755	<i>icaR</i> and <i>icaA</i> are indicated by arrows. The Rob-binding site is indicated by the open rectangle.
756	The grey shaded rectangle indicates the IcaR-binding site (16). The 5-bp TATTT motif, which
757	has a functional role in the transcriptional regulation of the <i>ica</i> locus, is highlighted by a red
758	frame (16). The Shine-Dalgarno sequence of $icaR$ is underlined. The 5'-UTR of $icaR$ is boxed
759	(dashed line) in the sequence (44). The bent arrow indicates the transcriptional start site of <i>icaA</i>
760	(45).

762 FIG. S5 Comparison of the *satf2580-satf2586* region among different staphylococcus spe-

cies. The red frame represents the 7-gene cluster highlighted in this study.

Strain or plasmid	Relevant characteristic(s)	Source or reference
Strains		
S. aureus		
TF2758	Wild-type clinical isolate, biofilm-positive	This study
ATCC49775	Wild-type clinical isolate, biofilm-negative	ATCC
FK300	Derivative of NCTC8325-4 (rsbU repaired)	Laboratory stock
RN4220	Restriction-negative strain, NCTC8325-4 de- rivative	31
TF2758 pC001	TF2758 complemented with pC001	This study
TF2758 pC002	TF2758 complemented with pC002	This study
rob_{sm}	FK300 with a stop mutation in rob	This study
$\triangle rob$	FK300 <i>△rob</i>	This study
∆ <i>rob</i> pC001	FK300 △ <i>rob</i> complemented with pC001	This study
∆ <i>rob</i> pC003	FK300 \triangle <i>rob</i> complemented with pC003	This study
∆ <i>rob</i> pKAT	FK300 \triangle <i>rob</i> complemented with pKAT	This study
$\triangle rob \ \triangle icaADB$	FK300 $\triangle rob \triangle icaADB$	This study
∆ <i>rob</i> ∆Upstream	FK300 \triangle rob \triangle SAOUHSC_2894	This study
∆ <i>rob</i> ∆Downstream	$FK300 \Delta rob \Delta SAOUHSC_2898$ $\Delta SAOUHSC_2899 \Delta SAOUHSC_2900$	This study
Δrob	FK300 \$\Delta rob \$\Delta SAOUHSC_2898	This study
∆SAOUHSC_2898		
$\triangle rob$	FK300 $\triangle rob \triangle SAOUHSC_2899$	This study
\triangle SAOUHSC_2899		
Δrob	FK300 $\triangle rob \triangle SAOUHSC_2900$	This study
Δ SAOUHSC_2900		
E. coli		
DH5a	Cloning strain	TaKaRa
BL21(DE3)	Host for recombinant protein production	Novagen
Plasmids		
pGEM-T Easy	Cloning vector	Promega
pKAT	E. coli-S. aureus shuttle vector	35
pC001	Vector for complementation experiments; containing <i>rob</i> from FK300 cloned in pKAT	This study

TABLE 1 Strains and plasmids used in the present study

pC002	Vector for complementation experiments;	This study
	containing <i>icaR</i> from FK300 cloned in	
	pKAT	
pC003	Vector for complementation experiments;	This study
	containing rob from TF2758 cloned in	
	pKAT	
pC004	Vector for complementation experiments;	This study
	containing SAOUHSC_2898 from FK300	
	cloned in pKAT	
pKFT	Vector for allele replacement	33
pET-28a(+)	E. coli expression plasmid	Novagen
pET-22b(+)	E. coli expression plasmid	Novagen
pET28a- <i>rob</i>	His-Rob expression plasmid	This study
pET22b-icaR	His-IcaR expression plasmid	This study

TABLE 2 Primers used in the present study

Primer	Sequence (5'-3')
Plasmid and strain construction	
rob_{sm} -1	ACAACGCCCTTAATTGTTGCC
rob _{sm} -2	GCAACAATTAAGGGCGTTGTTACCAAAG
rob-1	TACCAAGCTTCCTCTAACAACTGTTTTAC
rob-2	CATCAACTAGTTTGTGCGCTATTTCTTC
rob-3	GCTGTTGCAATCATTATCAACTAGTG
rob-4	AGGTAAAGCTTTAGCGTATTGTAGCG
robUp-1	AACTAAGCTTTGCCATCGTACTACTAG
robUp-2	GAGCAAAGACGCATCACAGCGGTCTGCTAAAATGAAATTC
robUp-3	GAATTTCATTTTAGCAGACCGCTGTGATGCGTCTTTGCTC
robUp-4	CGGCAAGCTTAATGAGGATATCAAGACG
robDown-1	AACTAAGCTTATCACTCAGATCACCTTC
robDown-2	GCGGAATCAGGGAGTGGTTCGTGCGCTATTTCTTCAATTC
robDown-3	GAATTGAAGAAATAGCGCACGAACCACTCCCTGATTCCGC
robDown-4	GTAAACAAAAATAAGCTTGGTCAGCC
SAOUHSC_2898-1	AACTAAGCTTATCACTCAGATCACCTTC
SAOUHSC_2898-2	GGCTTGATTCCTTCAGAAACGTGCGCTATTTCTTCAATTC
SAOUHSC_2898-3	GAATTGAAGAAATAGCGCACGTTTCTGAAGGAATCAAGCC

SAOUHSC_2898-4	GCGAATAAAGCTTCATCCATACG
SAOUHSC_2899-1	GCCGTCTTGGGATCCTCATTAAC
SAOUHSC_2899-2	GGATAATCAGCAGCATAAAGCGGTACACCTTTAGGATCTG
SAOUHSC_2899-3	CAGATCCTAAAGGTGTACCGCTTTATGCTGCTGATTATCC
SAOUHSC_2899-4	CTATGGATCCTTCTTCAGTATC
SAOUHSC_2900-1	TTAGGATCCAAAGGTGCGCTCATTATG
SAOUHSC_2900-2	GAATATAACCTAAGTGACCGCCAGGAATAAAGATGAGCAC
SAOUHSC_2900-3	GTGCTCATCTTTATTCCTGGCGGTCACTTAGGTTATATTC
SAOUHSC_2900-4	CTATTTTGGATCCGTTTACAAC
icaR-1	TGGTGAAGCTTGATCAACGATAGTATC
icaR-4	TAATAAAGCTTGATACCATCGTACTC
ica-1	AATTGGATCCTCATTGAACAAGAAGCC
ica-2	TAATACTAGTTGTCCCCCTTGAGCCCATC
ica-3	GATGAAACTAGTTATGAAAATGCTTATCC
ica-4	AATTGTAACACTAAGGATCCACCCTCC

qPCR

AGGTCTTGGAGAAATGAATG
CAAATGTTTGGTCCGCTT
CGCCTGAGGAATTTTCTG
GGATGCTTTCAAATACCAAC
AGTTGTCGACGTTGGCTAC
CCAAAGACCTCCCAATGT
ACCCAACGCTAAAATCATCG
GCGAAAATGCCCATAGTTTC
ATACCGGCAACTGGGTTTAT
TGCAAATCGTGGGTATGTGT
CTTGGGTATTTGCACGCATT
GCAATATCATGCCGACACCT
ATTGACACCTCGTGACGTTG
CCACTTGATACGTTGACGAC

EMSA and DNase I footprint analysis

<i>ica</i> -p-F	ATTGCGTTATCAATAATCTTATCCTTC
ica-p-R (5-Biotin)	TTGCAATTCCTTTACCTACCTTTC
ica-p-R'	TTGCAATTCCTTTACCTACCTTTC
ica-p-F-s1	ACAAATATTTCCGTTTAATTATAACAAC

<i>ica</i> -p-F-s2	AATCTATTGCAAATTAAAATACTATC
5bp-deletion-2	TTGTTGTTATAATTAAACGGTTTGTAATTGCAACTTAATT
5bp-deletion-3	AATTAAGTTGCAATTACAAACCGTTTAATTATAACAACAA
<i>rob-</i> p-F	CGTCTTTGCTCTCTAGTTAAAGAC
<i>rob-</i> p-R	CTATTCTCTTTTGCATCTTTTCGC
T7 promoter-1 $cy3^a$	TAATACGACTCACTATAGGG
Fp-M13-F	GTTTTCCCAGTCACGAC
Fp-M13-R 6-FAM ^b	CAGGAAACAGCTATGAC
pET-28a-Rob-F	AGGTGGATCCATGCGAAAAGATGC
pET-28a-Rob-R	TAACAAGCTTTTAGTCATTACGTCCCACC
pET-22b-IcaR-F	GGAATTCCATATGCACCACCACCACCACCACTTGAAGGAT
	AAGATTATTGATAACGC
pET-22b-IcaR-R	CCCAAGCTTTTATTTCTTCAAAAATATATTTAGTAGCG

a cy3 labeled at the 5' end.

b 6-FAM labeled at the 5' end.

TABLE S1 List of genes up-regulated in microarray experiments

MW2 (TF2758)	Name	Product	Fold^a		
open reading frame					
MW2495 (satf2580)		Glyoxalase protein	40.83	16.41	25.94
MW2496 (satf2581)		NmrA-like family protein	36.14	34.99	40.18
MW2497 (satf2582)		Conserved hypothetical protein	34.04	18.41	28.12
MW2498 (satf2583)	rob	Transcriptional regulator	47.86	29.38	20.46
MW2499 (satf2584)		2-deoxy-D-gluconate 3-dehydrogenase	41.21	32.51	24.43
MW2500(satf2585)		Amidohydrolase family protein	22.13	34.51	18.32
MW2501 (satf2586)		Putative hydrolase	10.89	5.27	4.29
MW2586 (satf2686)	icaA	intercellular adhesion protein A	6.01	2.76	1.75
MW2587 (satf2687)	icaD	intercellular adhesion protein D	5.59	3.72	5.36
MW2588 (satf2688)	icaB	intercellular adhesion protein B	8.05	6.35	6.25
MW2589 (satf2689)	icaC	intercellular adhesion protein C	7.82	1.92	6.12

^a Fold changes indicate increases in expression levels in TF2758 from ATCC49775. Experiments

774 were repeated three times.

Α

В

С

Α

в

1

Binding site of Rob to rob promoter Binding site of Rob to ica promoter

AAACGGAGAGTTATCCGTTTGTCA 24 1 GTTGCAATTACAAATATTTC 25 G * *

Β

IcaR conserved domains

Β

