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Therulefilesand the pattern files given here are for emulating the reversible elementary triangular
partitioned cellular automaton No. 0347 (ETPCA 0347) proposed by Morita[4, 6]. The rule (i.e.,
local transition function) of ETPCA 0347 is quite simple, but it exhibits complex behavior, and thus
presents an interesting Reversible World.

A three-neighbor triangular partitioned cellular automaton (TPCA) isaCA whose cell istriangular-
shaped and divided into three parts, each of which has its own state-set (Fig. 1 (a)). The next state
[X,y,2] of acell isdetermined by the states u, v and w of the three adjacent parts of its neighbor cells
asshowninFig. 1 (b) (not by the whole states of the three neighbor cells).

(b)
Figure 1: A three-neighbor TPCA. (a) Its cellular space, and (b) alocal rule [u,v,w] — [X,y,Z].

The framework of TPCA makes it easy to design reversible triangular CAs. This is because the
global transition function is injective iff the local transition function is injective. Among TPCAS,
Isotropic (i.e., rotation-symmetric) and 8-state (i.e., each part has only two states) TPCAs are called
elementary TPCAs (ETPCAS) [4]. They are extremely simple, since each of their local functions is
described by only four transitions.

Here, we consider a specific reversible ETPCA 0347, where 0347 is its identification number in
the class of 256 ETPCAS. Its local function is described by the four isotropic transitions shown in
Fig. 2. It isreversible, since thereis no pair of transitions that have the same right-hand sides.
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Figure 2: Local function of the reversible ETPCA 0347




Here, apair of adjacent triangular cells (consisting of an up-triangle A and a down-triangle V) of
ETPCA 0347 is simulated in one square cell of Golly asin Fig. 3. A square cell has thus 64 states,
and each state isindicated by a6-bit number a'b’'c’d’e f/, where &' isthe most significant bit. In Golly,
a particle (i.e., state 1) in an up-triangle is colored in yellow, while a particle in a down-triangle is
light-green, though they are the same states.

Figure 3: Emulating the transitions [f,e,d] — [&,b’,c] and [a,b,c] — [f’,€,d'] of two triangular
cells of ETPCA 0347 by one square cell of Golly. Here, “?’ shows a don’t-care state.

Note that there will be some difficulty in setting a pattern in the Golly simulator, since each cell
has 64 states in this emulator. Also note that, since the emulated triangle in the square cell is not an
equilateral triangle, patterns are slanted.

In spite of the extreme simplicity of thelocal function and the constraint of reversibility, evolutions
of configurations in ETPCA 0347 have very rich varieties, and look like those in the Game-of-Life
CA to someextent. In particular, a“glider” and “glider guns’ exist init. Furthermore, using glidersto
represent signals, we can implement universal reversible logic gates and a 2-state reversible logic ele-
ment with memory (RLEM) init. Using the RLEM, patterns of ETPCA 0347 that simulate reversible
Turing machines are constructed. Hence, reversible ETPCA 0347 is computationally universal.

The reversible ETPCA 0347 is not a conservative one, since the total number of particles is not
conserved by the application of local rules (see Fig. 2). If otherwise, aglider gun cannot exist in this
cellular space. Reversible and conservative ETPCASs and their computational universality have been
studiedin[2, 5, 7].

Pattern files

Sample pattern files are as bel ow.

1. basic_objects.rle

In this configuration, several basic objects and turn modules are shown. A glider is amoving
object consisting of 6 particles with period 6 (Fig. 4). It isthe most useful object, and will be
used as asignal to implement reversible logic circuits. A block is a stable object consisting of
9 particles. Right-, left-, backward-, and U-turn modules are for changing the move direction
of aglider, which are composed of several blocks (see[4, 6] for their details). At the bottom of
this configuration, some small periodic patterns are shown. They are afin (period: 6, Fig. 5), a
rotator (period: 42), afan (period: 2), a pinwheel (period: 8), and a blinking block (period: 2)
(from the l€eft to the right). Note that, if aglider collides with aturn module, it isfirst split into
afin and arotator, and finally they are combined to form a glider again.

t=0 t=1 t=2 t=3 t=4 t=5 t=6

Figure 4: Glider in ETPCA 0347
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Figure 5: Finin ETPCA 0347. It rotates around the point indicated by o.

2. fredkin_gate.rle

A Fredkin gate is a 3-input 3-output reversible logic gate with the logical function (c, p,q) —
(c,cp+tq,cq-+cp) proposed by Fredkin and Toffoli [1]. Figure 6 shows an implementation
of a Fredkin gate in ETPCA 0347. It is constructed from two switch gate modules (left) and
two inverse switch gate modules (right). It is known that any reversible Turing machine can
be realized by a garbage-less circuit composed of Fredkin gates and delay elements (see e.g.,
[6]). Inthis sense, it isauniversal reversible gate. Thisfile contains a pattern of a Fredkin gate
module, and a module for giving gliders to the gate as inputs. In this configuration, all the 7
kinds of inputs (except (0,0,0)) are given one by one to show correctness of the pattern.

t=9174

Figure 6: Fredkin gate in ETPCA 0347. Here, x = cp+Cq, and y = cq+ Cp.

3. glider_gun_1w_and_absorber.rle

A glider gun is a pattern that generates gliders periodically. A glider absorber is a pattern that
absorbs (i.e., erases) gliders periodically. Note that a glider absorber can be considered as a
glider gun to the " negative time direction”. In this configuration (see also Fig. 7), the left-hand
pattern is a 1-way glider gun that generates a glider every 1422 steps, while the right-hand one
is a 1-way glider absorber that absorbs the generated gliders. Note that, since ETPCA 0347
isreversible, simple annihilation of a glider isimpossible. Hence, such a“reversible erasure”
mechanism is required to erase it. The design of a 1-way glider gun is based on the property
that three gliders are obtained by a head-on collision of two gliders. Here, two gliders among
the generated three are re-used to generate the next three, and so on. Likewise, a 1-way glider
absorber is constructed based on the mechanism that two gliders are obtained by a collision of
three gliders. Thus, the glider absorber has a symmetric structure to the glider gun.

4. glider_gun_3w.rle
To give aglider gun that emits glidersin three directionsis rather easy. Colliding a glider with
afin, a3-way glider gun isobtained. It generates three gliders every 24 steps.

5. glider_gun_3w_in_both_time directions.rle
This pattern generates gliders to the “negative time direction” in addition to the positive time
direction. In this sense, its behavior is symmetric with respect to the time axis. In other words,
there are two integersty and t; such that ty < t1, and the pattern acts as a glider absorber when
thetimet satisfiest < tp, and it actsas aglider gun whent > t;.
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Figure 7: A 1-way glider gun (left), and a glider absorber (right)

glider_gun_6w_from_disordered_pattern.rie

It is also possible to construct a 6-way glider gun. It consists of three 3-way glider guns, and
one 3-way glider absorber. The given patternin thisfileisa*“disordered” one. But, it gradually
shrinks, and finally becomes a 6-way glider gun that generates six gliders every 24 steps.

interaction_gate and_its_.inverserle

An interaction gate is a 2-input 4-output reversible logic gate with the logical function (x,y) —
(Xy,Xy,Xy,xy). An inverse interaction gate realizes its inverse function. It is known that a
Fredkin gate, a universal reversible logic gate, can be realized by three interaction gates and
three inverse interaction gates [1]. Thisfile contains an interaction gate module and an inverse
interaction gate module, which are serially connected. Hence, the whole circuit computes the
2-input 2-output identity function. To this circuit, all the 3 kinds of inputs (except (0,0)) are
given one by oneto verify correctness of their functions.

one_particlerle

Thisfile contains a pattern consisting only of one particle. From this configuration, a disordered
pattern emerges, and it grows bigger and bigger indefinitely. Also, many gliders appear around
the disordered pattern. Such evolution processes are often observed in ETPCA 0347. Therefore,
if we want to give a pattern that performs some intended task, such as logical operation or
computing, we should design a pattern so that it never produces a disordered one.

one_particle_from_disordered_pattern.rle

Asseenin “one_particle.rle’, adisordered pattern grows indefinitely from the one-particle pat-
tern. Since ETPCA 0347 is reversible, the size (or diameter) of the pattern must grow indefi-
nitely also to the “negative time direction” (note that its popul ation need not grow indefinitely).
In fact, from the one-particle pattern, a disordered pattern expands also to the negative time
direction. This file shows such a process, i.e., the given disordered pattern first shrinks to a
single particle, and then a disordered pattern appears and grows again.

switch_gate and_its_inverse.rle

A switch gate is a 2-input 3-output reversible logic gate with the logical function (c,Xx) —
(c,cx,tx). Aninverse switch gate realizesits inverse function. It is known that a Fredkin gate,
a universal reversible logic gate, can be realized by two switch gates and two inverse switch
gates [1] (see aso “fredkin_gate.rle”). This file contains patterns of a switch gate module and
an inverse switch gate module, which are serially connected. Hence, the whole circuit computes
the 2-input 2-output identity function. To this circuit, al the 3 kinds of inputs (except (0,0)) are
given one by one to verify correctness of their functions.



11. three particles.rle
Thisfile contains a pattern with three particles. From this configuration, many glidersaswell as
a disordered pattern are generated, as in the case of “one_particlerle”. Since theinitia pattern
is symmetric under the rotation of 120 degrees, any of its descendent patterns is also so (but,
there may be some difficulty to recognize it, because patterns are distorted in this emul ator).

12. fin_shifting.rle
This configuration shows how the position of afinisshifted by colliding aglider with it. When
a 2-state reversible logic element with memory (RLEM) is realized in ETPCA 0347 (see also
“rlem_4-31.rle”), afinis used to keep its state. Thus, the state of the RLEM can be changed by
the shifting operations.

13. rlem_4-31.rle
In this file, a pattern that simulates a specific reversible logic element with memory No. 4-31
(RLEM 4-31) isgiven. It isauseful 2-state RLEM with 4 input ports and 4 output ports, from
which any reversible Turing machine can be constructed concisely [9]. The operation of RLEM
4-31 is represented in a pictorial form as shown in Fig. 8 (a). Two rectangles in the figure
correspond to the two states 0 and 1. For each input symbol (output symbol, respectively)
of RLEM 4-31, there is a unique input (output) port, to (from) which a signal is given (goes
out). Solid and dotted lines show the input-output relation in each state. If an input signal goes
through a dotted line, then the state does not change (Fig. 8 (b)). On the other hand, if asignal
goes through a solid line, then the state changes (Fig. 8 (c)). Figure 9 shows the pattern of
RLEM 4-31 implemented in the cellular space of ETPCA 0347.

t t+1

a—f L-w a-[. |-w N |,
[ 4 . x

c s Ly
d — A

State 0
(@ (b)

Figure 8: RLEM 4-31, and its operation examples. (a) Two states of RLEM 4-31. (b) The case that
the state does not change, and (c) the case that the state changes.

Figure 9: Realization of RLEM 4-31 in ETPCA 0347. Two circles in the middle of the pattern show
possible positions of afin. In this case, it is at the lower position, which indicates the state of the
RLEM 4-31is 0. Here, aglider is given at the input port d. The path from d to the output port w
shows the trgjectory of the glider. By this, the state changes from 0 to 1.



14. rtm_parity_n.rle (n=2,3)

They are configurations that simulate a reversible Turing machine (RTM) Toarity that has the set
of qUintUpleS { [q07 0, 17 R7 Q1]7 [q17 07 17 LJ Qacc]a [CIL 17 07 Ra QZ]; [QZa 07 17 L7 Qrej], [q27 17 07 Ra Q1]}
For example, [go,0,1, R, 01] meansthat if Toaity reads the symbol 0 in the state o, then rewrite
the symbol to 1, shift the head to the right, and go to the state q;. Assume a symbol string
01"0 (n=0,1,...) isgiven as an input. Then, Tpaity halts in the accepting state Qacc iff N is
even, and all the read symbols are complemented. Figure 10 shows the computing process for
the input string 0110.

It has been shown that any RTM can be constructed out of RLEM 4-31 concisely [9]. Figure 11
gives the whole circuit for simulating Tyaity for the input 1. The circuit consists of two com-
ponents. They are afinite control unit (left), and atape unit (right). The tape unit is composed
of an infinite copies of amemory cell module, which is a vertical array of nine RLEMs. Each
memory cell simulates one square of the tape. The top RLEM of a memory cell keeps a tape
symbol. The remaining eight RLEMs execute read/write and head-shift commands sent from
the finite control. They also keep the head position. If the states of the eight RLEMs are all 1,
then the head position is at this memory cell. If they areall 0, the head is not here. If aparticle
is given to the “Begin” port, it starts to compute. Its answer will be obtained at “Accept” or
“Reject” port.

t=0 t=1 t=2 t=3 t=4
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Figure 10: A computing process of the RTM Tpaity for the given unary number 2
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Figure 11: A circuit composed of RLEM 4-31 that simulates the RTM Tpaity [9]
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Figure 12: A configuration of ETPCA 0347 in Golly that simulates the circuit of Fig. 11
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The configuration of ETPCA 0347 that simulates Tpaity is obtained by putting copies of the
pattern of Fig. 9 at the positions of RLEM 4-31 in the Fig. 11. The resulting configuration is
showninFig. 12. Thefile “rtm_parity_n.rle” (n = 2,3) givesthe configuration of Tpaity for the
input n constructed in thisway. Giving aglider to “Begin” port, its computation starts. Finally,
aglider will appear at “Accept” or “Reject” port.

Since it takes a large number of steps to have an answer as shown in Table 1, the simulation
speed of Golly should be increased by the key “+” or by the hyper-speed mode. However, if we
do so, the glider moves very fast, and is aimost invisible. Hence, it is very hard to distinguish
which port “Accept” or “Reject” the glider passed. To magnify the answer, two small “bomb
patterns’ are put to the left of the finite control unit. If the glider passes the Accept port, then it
hits the bomb for acceptance, and an explosion occurs. Likewise, if the glider passes the Reject
port, then it hits the bomb for rejection. Note that the number of steps shown in Table 1 gives
the time when the glider reaches a bomb.

Table 1: The number of steps for Tty in ETPCA 0347 to give an answer

Number of steps Answer
rtm_parity_2.rle 5,342,077 Accept
rtm_parity_3.rle 6,876,940 Reect

rtm_power_of _two_n.rle (n=2,3,4,6,8)
They are configurations that simulate an RTM Tpower that has the following set of quintuples.

{ [00,0,0,R,q1), [01,0,0,R, 2], [42,0,0,L,06], [Gp,1,0,R,qg],
[q37 07 l; L7 q4]7 [Q37 l; 17 Ra q3]7 [Q47 Oa 07 L7 Q7]7 [Q47 la 07 L7 q5]7
[q5707 1; R7 CIZ]> [q571> 1,|—7QS]» [q670; 07|—>Qrej]> [q671> 17 R; ql]7
[q77 07 07 L7 qacc]a [q77 17 17 La Qrej] }
Assume a symbol string 001"0 (n=0,1,...) is given as an input. Then, Tpower halts in the
accepting state gacc iff N = 2% holds for somek € {0,1,2,...}. Figure 13 shows the computing
process for the input string 00180. Table 2 shows the time when Tpower in ETPCA 0347 gives
an answer. The file “rtm_power_of two_n.rle” (n = 2,3,4, 6, 8) gives the configuration of Tpower
for the input n.
t=0 t=78
lolo[1[1]1[1]a]1[1]1][0l0]ofolo] = [o]ol1]1]1]1[0[1[1]0[1]0]O[1]O]

Figure 13: A computing process of the RTM Tpower for the given unary number 8

Table 2: The number of steps for Tpower in ETPCA 0347 to give an answer
Number of steps Answer

rtm_power_of _two_2.rle 23,391,049 Accept
rtm_power_of _two_3.rle 21,703,216 Reect
rtm_power_of _two_4.rle 55,607,635 Accept
rtm_power_of two_6.rle 79,288,612 Reject

rtm_power_of _two_8.rle 154,678,141 Accept




Open problems

Some problems on ETPCA 0347 that have not been solved are listed below.

1.

2.

3.

t=0

Are there moving objects other than the standard glider?

So far, it is not known whether there exist moving objects that are essentially different from the
standard glider. Here, “essentially different” means that the objects are not composed only of
two or more standard gliders.

Are there patterns other than those in “basic_objects.rle’ that are stable or of short period, and
show interesting behavior?

Isthere a 1-way glider gun with a shorter period?
The gun in “glider_gun_1w_and_absorber.rle”’ is of period 1422. It is not known whether there
isasimpler 1-way glider gun.

Isit possible to create two gliders from one glider and a stable or periodic pattern?

Three gliders can be created by a head-on collision of two gliders. This mechanism is used to
compose a 1-way glider gun in “glider_gun_1w_and_absorber.rle”. However, it is not known
whether two gliders are obtained by colliding a glider with another (relatively simple) pattern.

Is there a Fredkin gate module with a shorter input-output delay?
The Fredkin gate module given in “fredkin_gate.rle’ is rather complex, and the delay between
the input and the output is more than 9000 steps. How can we design much simpler one?

Can areversible sequential machine be implemented directly and simply?

A sequential machine (SM) isakind of afinite automaton with an output port aswell asan input
port. It is known that every two-state reversible SMs with three or more input/output symbols
are universal, i.e., any reversible SM and any reversible Turing machine can be constructed out
of it rather smply [8, 9]. Although any reversible SM can be implemented as a garbage-less
circuit composed of Fredkin gates and delay elements, the resulting circuit will become huge.
Thus, it will be very useful if some two-state reversible SM isrealized simply.

Note: This problem was solved affirmatively in March 2017 (i.e.,, in Version 2), since RLEM
4-31 isrealized directly without using reversible gates (see the pattern “rlem_4-31.rle”).

Is ETPCA 0347 construction-universal?
Isit possible to give a universal constructor that creates any pattern in some specified class of
patterns (e.g., the class of patterns consisting of blocks), if adescription of the pattern is given.

Isit possible to simulate universal systemsin finite configurations?

If we construct a reversible Turing machine out of Fredkin gates and delay elements, then
the circuit becomes infinite (but ultimately periodic). Can we design finite configurations that
simulate universal systemsasin [3, 10]?

Is there a periodic pattern whose ratio of the maximum number and the minimum number of
particlesin one cycleislarger than 3:1?

This problem is to see what extent a periodic pattern can expand and shrink in a reversible
space. Theratio of the pattern pinwheel given in “basic_objects.rle” (seeadso Fig. 14) is3:1. So
far, it is not known whether there is a periodic pattern with the ratio larger than this.

t=1 t=2 t=3 t=4 t=5 t=6 t=7 t
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Figure 14: The maximum and the minimum numbers of particlesin apinwheel are 9 and 3.



Version history

e Reversible World (Version 1) June 2016

A rulefile for ETPCA 0347 and eleven pattern files Nos. 1-11 are given. Nine open problems
are presented.

e Reversible World_v2 (Version 2) March 2017

The rule file and the eleven pattern files Nos. 1-11 are exactly the same asin Version 1. Pattern
filesNos. 12-15 are newly added. The open problem No. 6 is affirmatively solved here.
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