Efficient Hardware Algorithms for the FPGA
(FPGARIIF DKM L N—F T ZT 70V TY XL

by

Xin Zhou

A dissertation submitted
in partial fulfilment of the requirements for the degree of
Doctor of Philosophy

in Information Engineering

Under Supervision of

Professor Koji Nakano

Department of Information Engineering,
Graduate School of Engineering,
Hiroshima University

September, 2016



Summary

Field-Programmable Gate Array (FPGA) is a programmable silicon device designed to
be configured by the customer using hardware description language after manufactur-
ing. In the past, FPGAs are used for lower speed and complexity designs due to the
lack of internal logic resources and low frequency of the FPGA. Today’s FPGAS can
easily run at high frequency and have unprecedented logic density. Furthermore, em-
bedded processors, DSP slices, block RAMs are embedded in the FPGA. Also, ability
of parallel processing is one of the most important features that separate FPGA from the
conventional microprocessor.

In order to improve the processing speed, multicore processors are widely used in
many application domains such as general purpose computation, digital signal process-
ing, and image processing. Embedded multicore processors represented by FPGA has
lately attracted considerable attention for their potential computation ability and power
consumption. By partitioning the algorithm into servel independent parts, multicore
processors can perform all parts concurrently. If the algorithm is hard to be parallelized,
we can also improve the processing speed considerably by employing multicore proces-
sor to perform the same algorithm foffidirent data sets.

Hough transform is a technique to find shapes in images such as lines, circles, el-
lipses, etc. In this dissertation, we have presented implementations of the Hough trans-
form on the FPGA for extracting lines and circles. The Hough transform defines a
mapping from an image into a parameter space represented by an accumulate array. For
each edge point of the image, the mapping adds a vote to corresponding elements in
the accumulate array. Therefore, the elements that are voted intensively represent as-

sociated parameters of detected shapes. The first contribution of this dissertation is to



present an féicient implementation of the Hough transform on the FPGA. In our im-
plementation, we partition the parameter space and the voting operation is performed in
parallel by an icient usage of DSP slices and block RAMs. As far as we know, there
is no previously published work that fully utilizes DSP slices and block RAMs for the
Hough transform. The experimental results show that our FPGA implementation attains
a speed-up factor of more than 300 over the sequential implementation on the CPU by
using 178 DSP slices and 180 block RAMs. However, this implementation needs to
accept the coordinates of edge points as input. Also, since identified lines are obtained
just by thresholding after voting, incorrect lines are also detected. Hence, the second
contribution of this dissertation is to present an improved FPGA implementation of the
Hough transform. The improved FPGA implementation processes all pixel data given in
raster scan order, and the usage of DSP slices reduces. Also, maximum filters are used
to obtain the correct lines after voting operation. The improved implementation uses
only 90 DSP slices and 181 block RAMs and attains a speed-up factor of more than 38
over the sequential implementation on the CPU. Next, gradient-based Hough transform
is one of the #icient improvements to the Hough transform for line detection, where
the gradient direction and magnitude of each pixel are used to reduce the number of
useless votes for obtaining more precise lines. The third contribution of this dissertation
is to present anficient implementation of the gradient-based Hough transform on the
FPGA. This implementation uses only 13 DSP slices and runs 309 times faster over
the sequential implementation on the CPU. Furthermore, comparing with other FPGA
implementations, the performance of our FPGA implementations is better. On the other
hand, the Hough transform can be also used to extract circles. The fourth contribution

of this dissertation is to present afiieient implementation of the Hough transform for



circles detection on the FPGA, that uses only one-dimensional parameter spaces. Our
implementation uses 398 DSP slices and 309 block RAMs and runs in 181.812MHz.
According to the experimental results, our implementation attains a speed-up factor of
approximately 189 over the sequential implementation on the CPU.

FPGA is also desired hardware device for general purpose computation. The Great-
est Common Divisor (GCD) computation is widely used in computer systems for cryp-
tography, data security and other important algorithms. Most of the time of these com-
puter systems is consumed for computing the GCDs of very large integers. In this
dissertation, the fifth contribution is to propose diicgent processor core that executes
the Euclidean algorithm computing the GCD of two large numbers in an FPGA by using
only one DSP slice and one block RAM. Since the proposed processor core is compactly
designed and uses very few resources, we have succeeded in implementing more than
one thousand processor cores in an FPGA. The experimental results have shown that our
implementation of 1280 GCD processor cores runs 3.8 times faster than the best GPU
implementation and 316 times faster than a sequential implementation on the CPU.

Data compression is one of the most important task in the area of computer engi-
neering. LZW algorithm is one of the most famous dictionary-based compression and
decompression algorithms. Since dictionary tables are created by reading input data one
by one, LZW compression and decompression are hard to parallelize. The sixth con-
tribution of this dissertation is to present a hardware architecture of LZW compression
and decompression, respectively. Since the proposed modules of LZW compression
and decompression use very few FPGA resources, we have succeeded in implement-
ing 24 modules of LZW compression and 34 modules of LZW decompression in an

FPGA, respectively. The experimental results show that, our implementation of 24 LZW



compression modules attains a speed-up factor of 23.51 times faster than a sequential
implementation on a single CPU, while our implementation of 34 LZW decompression

modules attains a speed-up factor of 64.39 times faster than a sequential implementation

on the CPU.
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Chapter 1

Introduction

1.1 Background and Motivation

Recently, the improvements in speed of the microprocessor is slowing down since the
heat generation and size constraints of transistor become significant problems. On the
other hand, the Field-Programmable Gate Array has been widely used in various fields
for the high performance, ability of parallel processing, programmable features and low
price of it.

The FPGA is an integrated circuit designed to be configured by a designer after
manufacturing, that dliers from Application Specific Integrated Circuits (ASCIs) which
are designed for specific applications. It contains an array of programmable logic blocks
called CLB (Configurable Logic Block), and the reconfigurable interconnects allow the
blocks to be inter-wired in dlierent configurations. In the past, FPGAs are used for
lower speed and complexity designs due to the lack of internal logic resources and
low frequency of the FPGA. Recent FPGAs can easily run at high frequency and have

unprecedented logic density. Furthermore, embedded processors, DSP slices, block



RAMs are embedded in the FPGA that are make a higher performance and a broader
application. Since any logic circuits can be embedded in an FPGA, it can be used for
parallel computing which is one of the most important features that separate FPGA from
the conventional microprocessor.

In order to improve the processing speed, multicore processors are widely used in
many application domains such as general purpose computation, digital signal process-
ing, and image processing. Especially Embedded multicore processors represented by
FPGA has lately attracted considerable attention for their potential computation ability
and power consumption. By partitioning the algorithm into several independent parts,
multicore processors can perform all parts concurrently. If the algorithm is hard to be
parallelized, we can also improve the processing speed considerably by employing mul-

ticore processor to perform the same algorithm féifedent data sets.

1.2 Contributions

1.2.1 Implementations of the Hough transform algorithm on the

FPGA

Hough transform is a technique to find shapes in images. In particular, it has been uti-
lized to extract lines, circles, ellipses and arbitrary shapes. In this dissertation, we have
presented implementations of the Hough transform on the FPGA for extracting lines and
circles. The Hough transform defines a mapping from an image into a parameter space
represented by an accumulate array. For each edge point of the image, the mapping adds
a vote to corresponding elements in the accumulate array. Therefore, the elements that

are voted intensively represent associated parameters of detected shapes.



In the implementation of the Hough transform algorithm for extracting lines, we
partition the parameter space and the voting operation is performed in parallel by us-
ing the DSP slices and block RAMs of the FPGA. The same architecture can also be
easily implemented in other hardware device to obtain high performance of the Hough
transform. First, for the voting operation of the Hough transform, our FPGA implemen-
tation attains a speed-up factor of more than 300 over the sequential implementation on
the CPU by using 178 DSP slices and 180 block RAMs. However, the implementation
needs to accept the coordinates of edge points as input. Also, since identified lines are
obtained just by thresholding after voting, similar to lines in the input image but in-
correct lines are also detected. Then, we improve the implementation to process pixel
data given in raster scan order, and the number of used DSP slices becomes approxi-
mately half. Also, 3x 3 maximum filters are used to obtain more precise lines after
voting operation. The experimental result show that this implementation uses only 90
DSP slices and 181 block RAMs and attains a speed-up factor of more than 38 over the
sequential implementation on the CPU. Next, as one of flieient improvements to
the Hough transform for line detection, we present ficient architecture of gradient-
based Hough transform, where the gradient direction and magnitude of each pixel are
used to simplify the voting operation and reduce the usage of the FPGA resources. This
implementation uses only 13 DSP slices and runs 309 times faster over the sequential
implementation on the CPU. Furthermore, comparing with other FPGA implementa-
tions, the performance of our FPGA implementations is better. On the other hand, we
present an féicient implementation of the Hough transform algorithm that uses only
one-dimensional parameter spaces for circles detection on the FPGA. Our implementa-

tion uses 398 DSP slices and 309 block RAMs and runs in 181.812MHz. According to



the experimental results, our implementation attains a speed-up factor of approximately

189 over the sequential implementation on the CPU.

1.2.2 Implementation of the Euclidean algorithm on the FPGA

FPGA is also desired hardware device for general purpose computation. The Greatest
Common Divisor (GCD) computation is widely used in computer systems for cryptog-
raphy, data security and other important algorithms. Most of the time of these computer
systems is consumed for computing the GCDs of very large integers. In this disserta-
tion, we have proposed affieient processor core that executes the Euclidean algorithm
computing the GCD of two large numbers in an FPGA by using only one DSP slice
and one block RAM. Since the proposed processor core is compactly designed and uses
very few resources, we have succeeded in implementing more than one thousand pro-
cessor cores in an FPGA. The experimental results have shown that our implementation
of 1280 GCD processor cores runs 3.8 times faster than the best GPU implementation

and 316 times faster than a sequential implementation on the CPU.

1.2.3 Implementations of the LZW compression and decompres-

sion algorithms on the FPGA

Data compression is one of the most important task in the area of computer engineering.
It is always used to improve thdfiency of data transmission and save the storage of
data. Data compression includes two basic methods, lossy compression and lossless
compression. LZW algorithm is one of the most famous dictionary-based lossless com-
pression and decompression algorithms. Since dictionary tables are created by reading

input data one by one, LZW compression and decompression are hard to parallelize. In
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this dissertation, we present a hardware architecture of LZW compression and decom-
pression, respectively. Since the proposed modules of LZW compression and decom-
pression use very few FPGA resources, we have succeeded in implementing 24 modules
of LZW compression and 34 modules of LZW compression in an FPGA, respectively.
The experimental results show that, our implementation of LZW compression attains a
speed-up factor of 23.51 times faster than a sequential implementation on a single CPU,
while our implementation of LZW decompression attains a speed-up factor of 64.39

times faster than a sequential implementation on the CPU.

1.3 Dissertation Organization

The doctoral dissertation is organized as follows. In Chaptare show the details of

the FPGA and the embedded resources of it. We shbaient implementations of the
Hough transform for extracting lines and circles in Chaptdn Chapte#d, we propose

a hardware binary Euclidean algorithm for computing GCD of two very large numbers
and implement it on the FPGA. Chaptepresents anf&cient implementation of LZW
compression and decompression algorithms, respectively. Finally, Cléagiacludes

this dissertation.



Chapter 2

FPGA

We show the architecture and the embedded resources of the FPGA in this chapter.
Since Xilinx Virtex-6 and Virtex-7 FPGAs are used to evaluate the performance of our
implementations in this dissertation, we also show the main resources of them such as

the embedded DSP48E1 slices and block RAMs which are used in our implementations.

2.1 Architecture of FPGA

Field-Programmable Gate Arrays (FPGAs) are programmable semiconductor devices
that contains an array of Configurable Logic Blocks (CLE®), [59] that can be inter-

wired by reconfigurable interconnects. Slice Registers and Slice LUTs (Look-Up-Tables)
are the main hardware resources in CLB, that are used to implement sequential and
combinatorial logics. Recent FPGA architecture consists of an array of CIBpads,

DSP slices$1, 58], block RAMs [52, 60], and routing channels as shown in Figaré,

where the embedded block RAMs and DSP slices make a higher performance and a

broader application. Since most of recent FPGAs produced by principal vendors equip
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Figure 2.1: The architecture of FPGA

embedded DSP slices and block RAMs, one of the most important key techniques for
accelerating computation using FPGAs is diiceent usage of DSP slices and block
RAMs. In this dissertation, all of our FPGA implementations are proposed by using the
DSP slices and block RAMsfigciently to obtain high performance. Hence, we show

the details of the DSP slice and block RAM in the following.

2.2 DSP48E1 slice

DSP48EL1 slices are the embedded DSP slices of Virtex-6 and Virtex-7 family FPGAs.
The basic architecture of DSP48EL1 slice is illustrated in Figqu2&). DSP48EL1 slices

are equipped with a 25-bit pre-adder, a 25-bit by 18-bit two’s complement multiplier,
48-bit multiplexers, an optional logic unit, a pattern detector, etc. We show some details
of the embedded resource of DSP48EL1 slice as follows.

Pre-adder. Port A and D feed pre-adder. By controlling the behavior of the pre-adder,
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(a) The DSP48EL1 slice (b) The dual-port block RAM

Figure 2.2: The DSP slice and block RAM in Xilinx FPGAs

it can dynamically compute the values of D-A, A, D;+B, etc. The A and D data
inputs can optionally be registered one or two times to highly pipelined architecture for
different applications.
Multiplier : The embedded multiplier of DSP slice has two input ports. The output of
the pre-adder and Port B feed to the multiplier, where the B data input and the output of
the pre-adder can optionally be registered up to two times and one time, respectively.
ALU : The Arithmetic Logic Unit (ALU) can be configured as three-input agsldstractor
or two-input logic unit. The output of the multiplier and port C are connected to inputs
of the ALU. By controlling the behavior of the ALU, we can dynamically perform dif-
ferent additiofsubtraction computations and logic operations between the inputs of the
ALU. The obtained result of the ALU is then connected to the register P.
Pattern detector. The pattern detector at the output of the DSP48EL1 slice provides
support for convergent rounding, overflawderflow, block floating point, and support
for accumulator terminal count. More specifically, the pattern detector can detect if the
output of the DSP48EL1 slice matches a pattern as qualified by a predefined mask.

The DSP slice includes dedicated buses for cascading. Hence, the DSP slice also

supports cascading multiple DSP48E1 slices for applications requiring wide math func-
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tions and complex arithmetic without the use of general FPGA logic resources. By em-
ploying the functionality of the DSP slice, we can implement complex applications on
the FPGA with better performance and reduce the usage of FPGA resources, comparing

with the implementation using general FPGA logic resources.

2.3 Block RAM

The block RAM is an embedded dual-port memory supporting synchronized read and
write operations as illustrated in FiguPe(b). The block RAM can be configured as
36kbit dual-port block RAMs, FIFOs, or two 18kbit dual port RAMs. The dual port
block RAMs have two sets of ports operated independently. Two sets of ports are:
Port Set A: ADDRA(ADDRess A) DOA (Data Output A)DIA (Data Input A)
Port Set B: ADDRB(ADDRess B) DOB (Data Output B)DIB (Data Input B)

In read operation of Port Set A, the element in addAd3®RAIs output fromDOA
after the rising clock edge. In write operation of Port Set A, the data givé £ois
written to the element in addre#DDRA of the block RAM at the rising clock edge.
Readwrite operations of Port Set B are the same as Port Set A. Port Set A and Port
Set B work independently. In the block RAMSs in the target devices of this dissertation,
reagwrite operations can be configured as either RF (Read First) mode or WF (Write
First) mode. In the RF mode, if reading and writing operations are performed to the
same address, reading operation is performed before the writing operation. Hence the
reading data is the data before writing data. On the other hand, in the WF mode, since
the writing performed before the reading, the reading data is the updated data. However,
when a dual port is used, there is a restriction that if read and write operation to the same

address are performed for each port, the setting of block RAMs must bBZR€(.
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Chapter 3

Implementations of the Hough

transform algorithm on the FPGA

In this chapter, we showfigcient implementations of the Hough transform for extracting
lines and circles, respectively. In the implementation of the Hough transform algorithm
for extracting lines, the parameter space is partitioned, and the voting operation is per-
formed in parallel by using the DSP slices and block RAMs of the FPGA. First, we
present an architecture for the voting operation of the Hough transform algorithm and
implement it on the FPGA. Our FPGA implementation uses 178 DSP slices and 180
block RAMs and attains runs over 300 faster than the sequential implementation on the
CPU. However, the implementation needs to accept the coordinates of edge points as
input. Also, since identified lines are obtained just by thresholding after voting, simi-
lar to lines in the input image but incorrect lines are also detected. Then, we improve
the implementation to process pixel data given in raster scan order, and the number
of used DSP slices reduces approximately half. The revised implementation uses only

90 DSP slices and 181 block RAMs, and runs over 38 times faster than the sequential
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implementation on the CPU.

Next, as one of thefBicient improvements to the Hough transform for line detection,
we present anf@cient architecture of gradient-based Hough transform, where the gradi-
ent direction and magnitude of each pixel are used to reduce the useless votes for obtain-
ing more precise straight lines. The experimental results show that this implementation
use only 13 DSP slices and runs 309 times faster over the sequential implementation on
the CPU.

On the other hand, we present dti@ent implementation of the Hough transform
algorithm that uses only one-dimensional parameter spaces for circles detection on the
FPGA. Our implementation runs 189 times faster than the sequential implementation

on the CPU.

3.1 Hficient implementations of the Hough transform
algorithm for extracting lines

Hough transform is a technique to find shapes in imag@é guch as lines, circles,

ellipses. The Hough transform defines a mapping from an image into a parameter space
represented by an accumulate array. The parameter space is defined by parameterizing
detected shapes. Based on each edge point of the image, the mapping adds a vote
to corresponding elements in the accumulate array. The elements that are increased
represent associated parameters based on detected shapes. Therefore, the elements that
are voted intensively correspond to the parameters of shapes in the image space. In this
section, we show two implementations of the Hough transform using DSP slices and

block RAMs on the FPGA.
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3.1.1 Introduction

The Hough transform can be used to extract straight lines in a binary inhdpeThe

idea of this method is to exploit the duality between points of a line and parameters of
that line. A point in the image is represented by a curve in the parameter space and lines
of collinear points intersect in the parameter space at one point. These intersections are
counted in an array of accumulators that quantizes the parameter space appropriately.
In the followings, we call this counting to the accumulateosing More specifically,

for each edge pointx(y) in a 2-dimensional image, the voting is performed along a
curvep = xcost + ysing (0 < 6 < 180). Possible lines can be detected by searching
points that are voted intensively. Figu3el shows an example of straight line detection
using the Hough transform. For an input image (FigBuKa)), the binary edge image
(Figure3.1(b)) is obtained by the edge detector such as Sobel filter. The result of voting
to the parameter space is shown in Fig8r&d). In this figure, darker points show
points that are voted intensively, that is, represent probable lines. According to the
result of voting, the principal lines are detected (FigBirEc)).

The first contribution of this chapter is to present an implementation of the Hough
transform on the FPGA. The firstidea of the implementation is&cient usage of DSP
slices and block RAMs for FPGAs. The second idea is to partition the voting space in
the Hough transform and the voting operation is performed in parallel. We describe the
ideas of our FPGA implementation as follows.

Voting Space Partitioning: Polar coordinate voting space, p) is partitioned and ar-
ranged into block RAMs. This enables us to perform voting operations in parallel. Also,
the function of dual-port of block RAMs are fully used to accumulate the voting value

instantly.
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(a) Input image

|

[ \

(c) Line detection using the Hough transform  (d) Hough parameter space

Figure 3.1: Example of straight line detection using the Hough transform

Efficient Usage of DSP slicesDSP slices are used to compueosd andysing in
parallel for each edge pixek(y). We computexcost andysiné for § such that 0<

0 < 90 instead of computing them férsuch that 0O< 6 < 180. Also, we avoid the
computation of the values of c6sand sirg by pre-loading them in the DSP slices.

Fully Pipelined Architecture: We take into account a layout of DSP slices and block
RAMs in Virtex-6 FPGA architecture, and design our Hough transform architecture
as a fully pipelined one. For example, in the Virtex-6 FPGA XC6VLX240T has 768
DSP48EL1 slices arranged in 8 columns of 96 adjacent DSP48E1 slices. Neighboring

DSP48E1 slices are connected directly through pipeline registers. Our Hough transform
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architecture uses 2 columns to compuieosd andysind each, and uses a pipeline
technique to maximize the clock frequency.

Using these ideas, our architecture for the Hough transform uses 178 DSP48E1
slices and 180 block RAMs with 18kbits that work in parallel. As far as we know,
there is no previously published work that full utilizes DSP slices and block RAMs
for the Hough transform. Roughly speaking, a conventional sequential implementation
performs 18 voting operations fom edge points. Our architecture performs voting
operations in parallel, and outputs identified linesnr 97 clock cycles. Since 180
voting operations are performed using 178 DSP48EL1 slices, the lower bound of the
computing time isn clock cycles. Hence, our implementation is close to optimal. We
have implemented our architecture on a Virtex-6 family FPGA XC6VLX240T-1, that
runs in 245.519MHz. For example, FiguBel(b) includes 33232 edge points. The
circuit can perform the Hough transform in 135us and the software implementation
on the CPU performs in 3Z0ms Also, if all the points of an image of size 5812 are
edge points, it takes 1068us to output the results, where the software implementation
takes 3527msto output the results. In other words, our FPGA implementation runs
over 300 times faster than the sequential implementation on the CPU.

However, the implementation needs to accept the coordinates of edge points as in-
put. Since pixel data of input images from digital video cameras are generally input in
raster scan order, the requirement might not to be versatile. Also, since identified lines
are obtained just by thresholding after voting, similar to lines in the input image but in-
correct lines are also detected. Then, the second contribution of this chapter is to present
an improved FPGA implementation of the Hough transform. One of the mereit

points from the previous implementation is that the improved FPGA implementation
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processes pixel data in raster scan order and outputs the identified lines. Therefore,
the voting time is a fixed clock cycles corresponding to the size of the image. Com-
pared to the previous implementation above, the number of used DSP slices becomes
approximately half. Our new idea thatfi@irs from the previous implementation above
includes:

(i) More Efficient Usage of DSP slicedDSP slices are useato¥ andysind in parallel

for each edge pixelqy). We computexcosd andysing for 6 such that 0< 6 < 90
instead of computing them far such that 0< ¢ < 180. In addition, since pixel data

are input in raster scan order, we use the fact that the valyeno& certain row is not
change. When pixels in a certain rguare processed, we pre-compuger(1) siné for

6 such that 0< 6 < 90 in the next row. According to the above, compared with the
previous implementation, the number of used DSP slices is reduced to approximately
half. More specifically, the improved implementation uses only 1 DSP slice to compute
ysing, and uses 1 columns to computeoss.

(i) More precise line detection: In previous implementation, the straight lines are
output such that the number of votes exceeds a certain threshold value. However, the
output includes many mistaken lines due to the discretization error in voting. Therefore,
after voting operation, to obtain more precise straight lines, we apgly 3naximum

filters for the voted results.

For the image shown in FiguB1(b) of size 51% 512, the software implementation
performs the Hough transform in 4D8ns On the other hand, the improved FPGA im-
plementation performs in.Q65ms Hence, the improved FPGA implementation attains
a speed-up factor of more than 38 over the sequential implementation on the CPU.

Many hardware algorithms for FPGA implementation of the Hough transform for
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lines have been proposed in past. In the existing researches, they introduced incremen-
tal Hough transform45, 5, 10], CORDIC [24, 8], and hybrid-log arithmetic30] to the
computation of Hough transform. Since most of recent FPGAs produced by principal
vendors equip embedded DSP slicdS, [50, 4], one of the most important key tech-
niques for accelerating computation using FPGAs is féicient usage of DSP slices

and block RAMSs.

3.1.2 Hough transform algorithm

The main purpose of this section is to review Hough transform algorithms for straight
lines. Suppose that we have an image of sizen. We assume that x n pixels are
arranged in two dimensional-space such that the origin is in the center of the image
as illustrated in Figur&.2 Hence, both coordinatesandy take integers in the range

n

Sk

(z,y)

—5+1 5| 0 180 | ¢

Sk

Figure 3.2: Two dimensional Spaceganddp used in the Hough transform

[-5 +1,5]. Apixel (x,y) (-5 +1 < x,y < 3) in thexy-space is converted to a curve in
thefp-space by the following formula: = xcosf+ysind (0 < 6 < 180) Clearly, the

double inequality—% < p < -k is satisfied. The values éfandp can also be obtained

n
V2
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geometrically. Suppose that we draw a line going through the origin with a@hate
illustrated in Figure3.2 For such lines, we can draw the orthogonal line going through
a pixel (x,y). The value ofo corresponds to the distance to the line. In other words, a
point @, p) of p-space corresponds to a linexgkspace.

The key idea of the Hough transform is to voteirspace only for every edge pixel
in thexy-space. LetXo, Yo), (X1, Y1), - - ., (X1, Yk_1) b€ thek pixels inxy-space. Suppose
that the coordinates of edge points edge points are given, the Hough transform is spelled

out as follows:

[Straight Forward Hough Transform]
fori < 0tok-1
for6 < 0to 179
begin
0 < X COSH + Yk Sing

Vllp] < Vb][p] + 1
output @, p) if V[0][p] = threshold

end

For simplicity, we assume that the valueca automatically rounded to an integer.
In the Straight Forward Hough Transform, for each powty), the values ofxcosé
andysing are computed fof = 0,1,...,179. If v[0][p] is storing a large value, many
edge pixels in the input pixels lie in the line xy-space corresponds to a poifid) in
fp-space.

We will show that, it is sfficient to compute these values fboe 0,1, ...,90. From

the addition theorem of trigonometric functions, we have
p = Xcos(180- 6) + ysin(180- 6)
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= —xcosf) + ysin(). (3.1)

Using Formula 8.1), the Hough transform can also be done by partitioning the range
[0,179] of @ into two ranges [(89] and [90179]. Also, we avoid going through array
for finding elements larger than a threshold. Thus, our new Hough transform, called the

Circuit-oriented Hough Transform, is spelled out as follows:

[Circuit-oriented Hough Transform]
fori <« Otok—-1
begin
for < 0to 89 do
begin
0 < Xk COSH + Yk Sing
V][p] < VI6][p] +1
output @, p) if V[8][p] = threshold
end
for 6 < 1to 90 do
begin
0 «— —Xx cosP) + yk sin(@)
v[180- 6][p] < V[180-0][p] + 1
output @, p) if v[6][p] = threshold
end

end

Recall that the FPGA implementation of the Circuit-oriented Hough transform is
improved to process all pixels of the image in raster scan order, and maximum filters
are applied to obtained more precise straight lines. kef) (be the pixel inxy-space,

and letp[X][y] be the value of the pixel such thpix][y] = 1 if a pixel (X,y) is an edge
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pixel andp[X][y] = O if a pixel (x,y) is a non-edge pixel. The Circuit-oriented Hough

Transform for the improved FPGA implementation, is spelled out as follows:

[Circuit-oriented Hough Transform for the improved implementation]
fory«— -S+1to3
forxe—-5+1to}
if p[X][y] =1
begin
for 6 < 0to 89 do
begin
p < XcosH +ysing
VIdl[p] < VI6l[p] + 1
end
for 6 < 1to 90 do
begin
p «— —xcosp) + ysin@)
v[180-d][p] < V[180-d][p] + 1
end

end

In the following sections, we show the FPGA implementation of the Circuit-oriented

Hough transform and the improved FPGA implementation, respectively.

3.1.3 FPGA architecture for the Hough transform

This section describes our FPGA architecture for the Hough transform using DSP slices
and block RAMs in Xilinx Virtex-6 Family FPGA XC6VLX240T-193].

Figure 3.3 illustrates our architecture for the Hough transform. We use 178 DSP
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blocks Xy, Xo, ... Xgg @andYi, Y, ..., Yge. For eachy (0 < 6 < 90) X, andY, compute
X oSO andyy cosé for given x, andyy, respectively. Since cos 0= X, X, cos 90= 0,
Vksin0 = 0, andy,cos 90 = yx, DSP blocksXy, Xeo, Yo, and Yy are not necessary.
Using an adder and a subtractor for each pgiand Yy, py = X C0S + y, cosd and
01806 = —Xx COSH + Y, cosh are computed. We also use 180 block RAMiSV, . .. Vi7g

to store the voting value. Addrepf eachV, (0 < 6 < 179) is used to store the value

of V6] [].

Xk ] X1 X2 Xg9
Yk — ] Y1 Y2 Yg9
Voo | Vo |Vi7e| V1 [Vi7s Vo1 | Vg9

o S

(6,p)

*
!

Figure 3.3: The outline of our FPGA architecture for the Hough transform

Hﬁ
L

To minimize the delay between registers, DSP blo€ks. ., Xgg are connected in a
pipeline fashion as illustrated in FiguBe3. EachX, has a register to store the value of
X¢. In every clock cycle, the value is transferred fré@to Xq,1. Similarly, DSP blocks
Yo, Y1,. .., Yoo @re connected in a pipeline fashion.

Figure 3.4 illustrates two DSP block¥X, and Y, with an adder and subtractor to
computep. In Xy, the value ofx is loaded in an internal register. Also, the value of

cosh is pre-computed. Note that the value of 6assed inX, is a fixed value. The
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Figure 3.4: Two DSP blockX, andY, with an adder and subtractor to comppte

product ofx, and co® is computed in a multiplier of the DSP bloel. Similarly, the
value of sirg used inY; is a fixed value and the productyfand sirg is computed in a
multiplier of the DSP blockY,.

In the Virtex-6 FPGA XC6VLX240T, that is our target device, has DSP48E1 blocks
are arranged in 8 columns of 96 adjacent DSP48E1 blocks. Neighboring DSP48E1
blocks are connected directly through pipeline registers. Our Hough transform architec-
ture uses 2 columns to compugecoss andyy sind each, and uses a pipeline technique
to maximize the clock frequency (FiguBeb).

Figure 3.6 illustrates the architecture & using a block RAM. A block RAM in
the FPGA is dual port architecture. Xilinx Virtex-6 Family has 18Kbit dual-port block
RAMs, which have two sets of ports operated independently. Two sets of ports are:

Port Set A: ADDRA(ADDRess A),DOA (Data Output A)DIA (Data Input A)
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89 DSP blocks
|

I Rl I -
cosl cos2 cos89
X (=X, cos0) %, cosl %, COS2 %, C0s89
89 DSPblocks
A
f \
Yi—| —>| —> —— - - —_>
sinl sin2 sing89
Y (ZY,Sin90) Y sinl Y, Sin2 Y, Sin89

Figure 3.5: Pipeline architecture to compuiteosd andyy sind with DSP blocks

Port Set B: ADDRB(ADDRess B),DOB (Data Output B)DIB (Data Input B).

Let M[i] denote a data of addressf the block RAM. In read operation of Port Set A,
M[ADDRA is output fromDOA after the rising clock edge. In write operation of
Port Set A, the data given IA is written in M[ADDRA at the rising clock edge.
Readwrite operations of Port Set B are the same as Port Set A. Port Set A and Port Set B
work independently. In the block RAMs in the target device of this work, vtk op-
erations can be configured as either RF (Read First) mode or WF (Write First) mode.
In the RF mode, if reading and writing operations are performed to the same address,
reading operation is performed before the reading operation. Hence the reading data is
the data before writing data. On the other hand, in the WF mode, since the writing per-
formed before the reading, the reading data is the updated data. However, when a dual

port is used, there is a restriction that if read and write operation to the same address
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are performed for each port, the setting of block RAMs must be RF as mentioned in
Chapter2.

We use the block RAM to store the valuesvpf][ o] (—% <p < %). Let vyi]
denote the data of addresé block RAM V,. Sincep is given to it ADDRA, vy[p]
is output fromDOA after the rising clock edge as illustrated in Figdé. After that,
Vy[p] + 1 is computed and it is given tDbOB. Sincep is given toADDB, vy[p] + 1
is written invy[p]. In other words,vs[p] « Vy[p] + 1 is performed. At that time,
according to the restriction stated in the above, since the same valuaay be input
continuously, the setting of block RAMs must be RF. Namely, when the same value of
is input continuously, the former voted value is not read from the block RAM. To avoid
this situation, we use an additional register to store the latest voted value and if the same
value ofp is input continuously, the stored value is used instead of the value read from
the block RAM.

In the same time, a comparator is used to determing[ff + 1 = threshold If
so, the value op is written in a register. After that, a paif,) is written into a next
register. The paird p) represents a probable line. It moves toward the output of the
circuit using series of shift registers one by one shown in Fi§ueln order to reduce
the number of clock cycles necessary to move data to the output, we use two series of
shift registers. One is used for output datavgf. .., Vge. The other is used for output
data ofVq, ..., Vi7e. Therefore, the number of clock cycles necessary to move data to
the output is reduced to at most 90 clock cycles.

The choice of data precision is guided by the implementation cost in terms of area,
simplicity of design, speed and power consumption. Higher precision will lead to less

guantization error in the final implementation. On the other hand, lower precision will
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L p ADDRB
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Figure 3.6: A block RAMV, to storev[6][p]

produce more compaction and faster designs with less power consumption. A trade-
off choice needs to be made depending on the given application and available FPGA
resources.

In our work, in order to minimize chip space and computation time, short fixed
point representation of numbers are used. Considering the structure of DSP blocks and
block RAMs, we choose the data presentation in our implementation, as follows. The
data format of inputs that are pairs of coordinatgandyy are 10bit two’s complement
integer each. Also, the data format of @nd sirg is 16bit fixed point number, which
consists of 1bit sign, 1bit integer and 14bit fraction based on two’s complement. On the
other hand, the data format pfis 10bit two’s complement integer. The data format of
the voted value is 18bit integer. Namely, the number of the vote is at ifostl2 Since

the range of the value @fis O to 180, the data format éfis 8bit integer.

3.1.4 Improved FPGA architecture for the Hough transform

This section describes the improved FPGA architecture for the Hough transform that

uses approximately half of DSP slices and processes all pixels in raster scan order.
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Counter Computation of ysin (1 < 0 < 90)
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Figure 3.7: The outline of the improved FPGA architecture for the Hough transform

Figure3.7illustrates the outline of our FPGA architecture for the Hough transform.
Whenever each input pixel is given, the two countersX@ndy increment appropri-
ately. We use 89 DSP slice§, X,, ... Xge. For eachy (0 < 6 < 90), X, computes
xcosf. Sincexcos0= x andxcos90= 0, DSP slicesX, and Xgg are not necessary.
Also, we use a module to computsiné (1 < 6 < 90). Using an adder and a subtractor
for xcosf andysing, p, = Xcosh + ysing andpigp ¢ = —XCOSH + ySing are computed.
We also use 180 block RAME,, V4, ..., V179 to store the voting value. Addrepsof
eachV, (0 < 0 < 179) is used to store the value\yb][p]. After voting, to obtain iden-
tified straight lines, we use 8 3 maximum filters. These filters simultaneously work
row by row.

As the same as the implementation of previous section, to minimize the delay be-
tween registers, DSP slices, ..., Xgo are connected in a pipeline fashion as illustrated
in Figure3.7. EachX, has a register to store the value»ofin every clock cycle, the

value is transferred frorX, to Xy,1. The DSP sliceX is the same as illustrated in Fig-
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ure 3.4. In Xy, the value ofx is loaded in an internal register. Note that the value of
cos6 used inXy is a fixed value. The product ofand co9 is computed in a multiplier
of the DSP sliceXy. Also, the improved Hough transform architecture uses 1 column
to computexcosd, and uses a pipeline technique to maximize the clock frequency as
show in Figure3.5.

On the other hand, to compugsing (1 < 6 < 90) we use the fact that the valueyof
in a certain row is not change since pixel data are input in raster scan order. Therefore,
when pixels in a certain row are processed, we pre-compuye+(1) sind for 6 such
that 0< 6 < 90 in the next row and store them into the registers. In the nexyrew,
the computed values oy & 1) sind are used. Figur8.8illustrates our architecture to
computeysing. We use a look-up-table using a block RAM to computedsiand a
DSP slice to compute a product yaind sirg. Also, we utilize two series of registers,
called banks. One is used to pre-compute the valugssiofd for the next row. The
other is used to output the already compuwathé for the current processing row. To
compute the values of séhwe successively generate the valug ef 90,89,88,...,2,1
by a counter. By inputting them to the look-up-table, the values of aire obtained.
Using the DSP slice, the productsysing are computed. Note that the values/sing
is for the next row. Therefore, the value pfs incremented in advance. The obtained
values are successively input to a bank. In each bank, registers are cascaded shown in
the figure. The values shift one by one until all the values are input to the bank. When
pixels in a row are finished, the banks are switched.

Let v[i] denote the data of addressn block RAM V,. Sincep is given to it
ADDRA, vy[p] is output fromDOA after the rising clock edge as illustrated in Fig-

ure 3.6, that is the same with the implementation of the previous section. After that,
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Figure 3.8: Architecture of computingsing with one DSP slice

Volp] <« wo[p] + 1 is performed. Also, we use an additional register to store the latest
voted value and if the same valuegis input continuously, the stored value is used in-
stead of the value read from the block RAM. Recall that the improved implementation
processes all pixels in raster scan order. Note that the above voting process is performed
when the input value is an edge pixel. Namely, when it is a non-edge pixel, the voting
process is not performed.

In the following, when all the voting operations are completed, we utilize 3
maximum filters to output the final correct identified straight lines. The maximum filter
is defined as the maximum of all pixels within a local region of an image. In here, for
each value in the voting space, this filter copies the largest value fromarggion to
it. In the voting process, the vote concentrates to each p&inj corresponding to a
line in the original image. However, it also concentrates to around the point.

Figure3.9illustrates our architecture to perform &3 maximum filter to the voted
results. Since the voted values in the sgnoan be obtained froy, V4, .. ., Vi7g, this
architecture works row by row in a pipeline fashion. To performa3l3maximum filter
to each value in a certain row, it is concurrently read figgVy, .. ., Vi7o. After that,

using comparators, local maxima of each 3 neighboring votes in the row are obtained.
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Figure 3.9: Pipeline architecture o833 maximum filters

These local maxima are input shift registers. After local maxima in the 3 rows are
computed, local maxima of each<33 votes are obtained by computing maxima from
corresponding 3 values. If the maximum equals to the original value of the center in the
corresponding X 3 votes, its 4, p) that represents a probable line is input to the shift
registers and output through the registers.

In the improved implementation of the Hough transform, the data format of inputs
are values (0 or 1) of all pixels in the image, these values are input in raster scan order.
The coordinatesx y) which are necessary to computare generated by the counter
as shown in Figur&.7. In order to minimize chip space and computation time, short
fixed point representation of numbers are used. Considering the structure of DSP slices
and block RAMs, we choose the data presentation in our implementation, as follows.

The data format of inputs that are values of pixgllg][y] are 1bit binary number. The
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data format of co8 and sirg is 16bit fixed point number, which consists of 1bit sign,
1bit integer and 14bit fraction based on two’s complement. On the other hand, the data
format of p is 10bit two's complement integer. The data format of the voted value is
18bit integer. Namely, the number of the vote is at md&t-21. Since the range of the

value of6 is 0 to 180, the data format éfis 8bit integer.

3.1.5 Experimental Results

We have implemented and evaluated our proposed architectures of the Hough transform
on the Xilinx Virtex-6 FPGA XC6VLX240T-1. For the purpose of estimating the speed
up of our implementations, we have also implemented a conventional software approach
of the Hough transform using GUN C. We have used Intel Xeon X7460 (2.66GHz) and
128GB memory to run the sequential algorithm for the Hough transform.

In the evaluation of our original implementation that processes only edge points
and outputs lines by only thresholding, TaBld shows the experimental results using
Xilinx ISE 13.1. In this implementation, to reduce the delay of the circuit, some pipeline
registers are inserted into between circuit elements. It takes 3 clock cycles to compute
the values op for given coordinates, andyi. Also, 4 clock cycles are necessary to
output a paird, p) that represents a probable line. Moreover, the number of clock cycles
necessary to move data to the output is reduced to at most 90 clock cycles. Hence,

this circuit can output identified lines represented @y) in m+ 97 clock cycles, i.e.,

m+97
2455191

s. For example, Figurd.1(b) includes 33232 edge points. The circuit performs
the Hough transform in 13B5us, where the software implementation on the CPU takes
37.10ms Also, if all the points of an image of size 5k512 = 262144 are edge points,

it takes 1068msto complete to output the results, and the software implementation
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takes 3527ms Of course, it is not possible that all points are edge points, however,
this fact guarantees that this implementation for any:6522 image terminates in less
than 1068ns Therefore, our original implementation attains a speed-up factor of more

than 300 over the sequential implementation on the CPU.

Table 3.1: Performance evaluation of the proposed architectures for Hough transform

original work | improved work

DSP48E1 slices (out of 768) 178 (23.1%) 90 (11.1%)

18Kbit block RAMs (out of 832) 180 (21.6%) 181 (21.7%)

Slices (out of 301440) 14493 (4.81%)| 40487 (13%)

Clock frequency [MHz] 245.519 247.525

On the other hand, in the evaluation of the improved implementation that processes
all pixels in raster scan order and outputs lines using33maximum filters, Tabl&.1
shows the experimental results. To compygind for (1 < 6 < 90) in the first row,
94 clock cycles are necessary. It takes 3 clock cycles to compute the valpdsrof
given x and the precomputeygising. Also, 4 clock cycles are necessary to vote to the
Hough space. Furthermore, to perform vote for edghthe number of clock cycles
necessary to move data from the leftmost register to the rightmost register as shown in
Figure3.7is 91. Since all of the points in the binary image are input into the improved
implementation, the voting operations are performed faranimage inn?+ 192 clock
cycles. After voting,v2n + 187 clock cycles are necessary to output identified straight
lines with 3x 3 maximum filters. Hence, in totah? + v2n + 379 clock cycles, i.e.,
%gggmys are necessary to perform the Hough transform for-animage. Thus, our

circuit completes the Hough transform for an %642 image in 1065ms For the image

shown in Figure3.1(b) of size 512x 512, the software implementation performs the
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Hough transform in 408ms Therefore, our improved FPGA implementation attains a
speed-up factor of more than 38 over the sequential implementation on the CPU. If all
points of the image are edge points, the improved FPGA implementation runs over 300

times faster than the sequential implementation on the CPU.

Table 3.2: Comparison with related works for Hough transform

Karabernou24] | Deng B] Lee [30] original work improved work
Device XC4010EPC84 | XC4010XL Virtex 4 XC6VLX240T-1 | XC6VLX240T-1
Logic blocks | 205 CLBs 333 CLBs 314 CLBs 14493 Slices 40487 Slices
DSP slices — — — 178 DSP48E1ls | 90 DSP48E1ls
Frequency 23.166MHz 40MHz 132MHz 245.519MHz 247.525MHz
Throughput | 10.368Mpixels | 0.623Mpixels | 32.768Mpixels | 245.428Mpixels | 246.219Mpixels

There are a number of literatures reported to implement Hough transform for lines
using the FPGA shown in Secti@il.1 Performances such as device, logic blocks, DSP
slices, frequency and throughput are compared in Tale It is difficult to directly
compare to other works because utilized FPGAs and supported size of iméges di
Considering the throughput, however, it is clear that the performance of our FPGA
implementations are better than that of other works. In addition, although the improved
implementation takes more time than our previous work to perform Hough transform,
the number of DSP slices are less than the original implementation, and the result is

filtered.

3.1.6 Concluding remarks

We have presented two architectures of the Hough transform for the straight lines using

DSP slices and block RAMs in the Virtex-6 Family FPGA. The original FPGA im-
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plementation of the Hough transform uses 178 DSP48EL1 slices and 180 18kbit block
RAMs. The implementation results show that the our original implementation runs at
245.519MHz, and performs the Hough transform for a image witadge points in

m + 97 clock cycles. On the other hand, we improved the original implementation to
process all pixels of image in raster scan order and reduce the usage of DSP slices. Also,
maximum filters are applied to obtain more precise lines after the voting operation. The
experimental results show that the improved implementation uses 91 DSP48EL1 slices
and 181 18kbit block RAMs. The improved implementation runs at 247.525MHz, and
performs the Hough transform for a binary image of sizen in n? + v2n + 379 clock

cycles. Compared to the conventional CPU implementation of the Hough transform,

our implementations achieve af8aient speed-up.

3.2 Hificientimplementation of the Gradient-based Hough
transform algorithm for extracting lines

The gradient-based hough transform is an improvement of the original Hough trans-
form. Itis utilized to reduce substantially the computation quantity and make the detec-
tion more accurate using gradient information. We showfoient implementation of

the gradient-based Hough transform for straight lines detection using a Xilinx Virtex-7

FPGA in this section.

3.2.1 Introduction

The Hough transform can be used to extract straight lines in a binary imidgeAs

mentioned in the previous section, the idea of this method is to exploit the duality be-
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tween points of a line and parameters of that line. More specifically, for each edge point
(%, y) in a 2-dimensional image, the voting is performed along a coirvex cosf+y sind
(0 < 6 < 180). Possible lines can be detected by searching points that are voted inten-
sively. For an input image (Figut1Q@a)), the binary edge image (FigugelQb)) is
obtained by the edge detector such as Sobel filter. We can see that the normal Hough
transform performs well basing on the pure edge image. The result of voting to the pa-
rameter space is shown in Figuel1(a). In this figure, darker points show points that
are voted intensively, that is, represent probable lines. According to the result of voting,
the principal lines are detected (Figl8d.(c)).

There are many improvements to the Hough transform for line dete@idn@ne
of the dficient improvements is using gradient informati@8][ The idea of the method
is to utilize gradient direction and magnitude. It is based on the fact that if a given point
happens to indeed be on a lin@®, The local direction of the gradient gives approxi-
mately the same direction of the actual lin@) The gradient magnitude at the pixel
is higher than that of other points not lying on lines. Using these ideas, we reduce the
number of useless votes by limiting the range of votes with the local gradient direction,
and weight voted values proportional to the local gradient magnitude to enhance the
votes of pixels on lines. In the following, the straight forward Hough transform shown
in Section3.1.2 is calledconventional Hough transfornand the Hough transform us-
ing gradient information is callegradient-based Hough transforta distinguish them
easily. In our implementation, we use the Sobel filter, which is used in edge detection
algorithms B§] to obtain the gradient information. FiguBell (b) shows the resulting
Hough space based on the above ideas. Compared with that of the conventional Hough

transform, we can see that votes are limited to the several parts that are darker points in
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the figure. Actually, these correspond to real lines in the image and it is easy to find that
useless votes are reduced.

The third contribution of this chapter is to present dinceent architecture for the
gradient-based Hough transform. Our implementation uses 13 DSP48E1 slices, 180
block RAMs with 36kbits and 8 block RAMs with 18kbits. We have implemented our
architecture on a Virtex-7 XC7VX485T-2. Our proposed circuit runs at 260.061MHz,
and the voting operations are performed fonam gray-scale image in’+2n+44 clock
cycles. After the voting operation, our circuit outputs the identified lines2m + 188

clock cycles. Therefore, our circuit can perform the gradient-based Hough transform in

n? + (V2 + 2)n + 232 clock cycles.

(a) Input image (b) Binary edge image by Sobel (c) Line detection using the

filter Hough transform

Figure 3.10: Example of straight lines detection using Hough transform

3.2.2 Gadient-based Hough transform algorithm

In the gradient-based Hough transform, lines detection is performed for a gray-scale
image, not a binary image. To obtain the gradient information for a gray-scale image,

we use the Sobel filter. The Sobel filter is applied on the image for approximating the
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(a) Conventional (b) Gradient-based

Figure 3.11: Hough parameter spaces of the conventional Hough transform and

gradient-based Hough transform

vertical and horizontal derivatives using a couple of 3 convolutionss, andG,:

1 0 -1 1 2 1
Gx=|2 0 2|®,Gy=| 0 0o o0 |®I (3.2)
1 0 -1 1 -2 -1

wherel represents the input image aedlenotes the 2-dimensional convolution oper-
ation. The two results convolved Iy, andGy are approximations of the gradient for
horizontal and vertical of the image, respectively. At each pixel in the image, the result-
ing gradient approximations can be combined to obtain the gradient magnitude using

the formula:

G=+/G2+Gz (3.3)

We can also compute the gradient directibising

G

’ =1y
— 2y 4
0 tan (GX) (3 )

Based on the gradient direction obtained by the above, we vote to the parameter space.

However, there is an error between local gradient direction and the direction of actual
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lines due to the quantization error. Therefore, voting operation is performed not only to
the angle obtained by the gradient direction, but also angles in the vicinity of it. In our

implementation, we introduce weighted valwethat depends on the angle as follows:

2U10-01T 19— ¢'| < A
W -¢) = (3.5)
0 otherwise
To be suitable for the compact FPGA implementation, we use the weights as power-of-
two numbers. Also, the voting range is limited tal +1] instead of the range [A79]

in the conventional Hough transform. The gradient-based Hough transform is spelled

out as follows:

[Gradient-based Hough Transform]
fory e -0+1to3
forx—-5+1to}
ComputeG and@’ for p[X][y]
for < ¢ —Atod + Ado
begin
if 8 < 0thend « 6+ 180
0 < XCO0SH + ysind
Vllp] — VI6][p] + G - W(6 - )

end

Simply speaking, the gradient-based Hough transform votes for each pixel of the gray-
scale image with a weighted val@- w(6 — ¢’) which is proportional to the gradient
magnitude. The parameter space will be sharpened by such voting operations that make
the accuracy higher. Our implementation for the computation of the gradient direction
and magnitude is a pipelined architecture. In the following section, we shouwfitie et

implementations of the gradient-based Hough Transform on the FPGA.
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3.2.3 FPGA architecture for the gradient-based Hough transform

This section describes our FPGA architecture for the gradient-based Hough transform
using DSP slices and block RAMs in Xilinx Virtex-7 Family FPGA XC7VX485T-2 as
the target deviced6]. Figure3.12illustrates the outline of our architecture. The details

are described as follows.

Counter Computation for ysinf(1 < 6 < 179)
ysinl,ysin2,...,ysin179
N
'
>\ ysin(@’ —4) ysin(0’' —3) ysin(0’ —2) ysin(0' —1) ysin @’ ysin(0' +1) ysin(0'
fnput pixels Counf ter
=]

2w

Noy
Moy
NoN
<
og
og

Figure 3.12: The outline of our FPGA architecture for the gradient-based Hough trans-

form (1 = 4)

[Structure for the computation of gradient information]

In our architecture, we use ax33 Sobel filter to obtain gradient information. Since

we assume that input pixels are given to the circuit in the raster scan order, we use
a two-lines bifer with block RAMs to provide pixels in each>33 subimage to the
filter. Our circuit computes the horizontal and vertical derivative approximations using

combinational circuits as shown in FiguBel3 wheredout2 doutlanddin represent
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pixel values in the three lines of the input image, respectively.

dout?2 )

dout2
0

x1

doutl
x(—2) doutl
0
x2 G

din
0 x(=1)
X1
v

(a) Gx (b) Gy

Gy

/
/ x(=2)
x(=1)

Figure 3.13: Structure for the computation®f andG,

As mentioned before, the algorithm needs the gradient direction and magnitude as
shown in Sectior8.2.2 The formula includes the computation of the square root and
the inverse tangent. Since it isfiitult to compute them directly on the circuit, we use
the CORDIC IP provided by Xilinx§7]. The CORDIC IP provides a hardware module
that is fully pipelined architecture and available easily on the FPGA.

[Structure for the computation of p and voting operation]

Given the gradient directio’ and magnitudes of each pixel are obtained with a
pipelined architecture, the circuit compujesnd performs voting operation. When-
ever the gradient magnitud& and the gradient directiofi of each pixel are given, the
two counters fox andy increment appropriately.

We use DSP slices and block RAMs to compxt®s@’ — 1),...,xcos@’ + 1). The
detail of each circuit that computesosd is shown in Figure8.14 The circuit consists
of one DSP slice and one block RAM. Using the block RAM as a look-up-tablej cos

is computed and the DSP slice computes the produgtarid co®. We note that in

38



our implementation, since two circuits can share the two block RAMs for the look-up-
table with the dual port, we uset2 1 DSP slices anﬂ”—;l] block RAMs to compute
xcos@ — 1),...,xcos@ + 2). For simplicity, the sharing is omitted in FiguB12

though it seems that every circuit that computesst has one block RAM.

xcosf

Block RAM DSP slice

Figure 3.14: A DSP slice and a block RAM to computeoss

Also, to computeysing (1 < 6 < 179), we use the same architecture as illustrated
in Figure3.8of Section3.1.4 We use the fact that the valueypfioes not change while
processing pixels are in a certain row. Therefore, when pixels in a/ta&@ processed,
we pre-compute the values of € 1) sind for (1 < § < 179) in the next row and store
them into the registers, thatffBrs from the value of (X 6 < 90) as shown in Figurg.8.
When pixels in the next row + 1 are processed, the values are used. We utilize a block
RAM as a look-up-table to compute ginand one DSP slice to compute a producy of
and sirg. Also, we use two series of registers, called banks. One is used to pre-compute
the values o¥/sing for the next row. The other is used to output the already computed
ysing for the current processing row. To compute the values of,sive successively
generate the value &f= 179 178 ...2,1 by a counter. By inputting them to the look-
up-table, the values of sihare obtained. The products p§ing are computed using a

DSP slice. Note that the values p$§ing are for the next row. Therefore, the value of
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y is incremented in advance. The obtained values are successively input to a bank of
registers. In each bank, registers are connected in cascade. The values shift one by one
until all the values are input to the bank. When pixels in a row are finished, the banks
are switched.

Figure 3.15llustrates the architecture &f, using a block RAM. Given gradient
direction® and magnitudés, the voted valués - w(@ — 6’) is computed, wheré is a
constant value in eac¥l. Since in our implementation the valuewd — ") is power
of two shown in Sectio3.2.2 it can be computed with a subtractor and a bit shifter. A
block RAM in Xilinx Virtex-7 Family FPGA is dual port architecture, has two sets of

ports operated independently.

ADDRA
DOA

o [p]

»/ADDRB

DIB

}

o—

Figure 3.15: A block RAMV, to storev[d][ o]

We use the block RAM to store the values\gf][ o] (—Vli <p < \/Lz)' Let vy[i]
denote a data of addressf the block RAMV,. Sincep is given to itsADDRA vy[p]
is output fromDOA after the rising clock edge as illustrated in FigGré5 After that,
Vg[p] + G - w(@ — ') is computed and it is given tDIB. Sincep is given toADDB,

Vylp] + G - w(@ — &) is written invy[p]. In other wordsyv,[p] « Vy[p] + G- wW(@ — &)

40



is performed. At that time, according to the restriction stated in Seéti@rsince the
same value op may be input continuously, the setting of block RAMs must be RF.
Namely, when the same value @is input continuously, the former voted value is not
read from the block RAM. To avoid this situation, we use an additional register to store
the latest voted value and if the same valug o input continuously, the stored value

is used instead of the value read from the block RAM.

After all the voting operations are completed, we utilize the maximum filters as
shown in Figure3.9, to output the correct identified straight lines. In here, for each
value in the voting space, the filter copies the largest value fromxa33egion to
it. Since the voted values in the samean be obtained frovy, Vi,..., Vi7g, this
architecture works row by row in a pipeline fashion. All values in a certain row is
concurrently read frorvy, Vi, ..., Vi7e. After that using comparators, local maxima of
each 3 neighboring votes in the row are obtained. These local maxima are input to shift
registers. After local maxima in the 3 rows are computed, local maxima of each 3
votes are obtained by computing maxima from corresponding 3 values. If the maximum
equals to the original value of the center in the correspondir@ ¥otes, its ¢, p) that
represents a probable line is input to the shift registers and output through the registers.

In this implementation, the data format of inputs are 8-bit integer of all pixels in the
gray-scale image and these values are input in raster scan order. The coordinates (
which are used to compugeare appropriately generated by the counters. In order to
minimize chip space and computation time, short fixed point representation of numbers
is used. The data format of inputs that are values of piget}{ y] is 8-bit integer. The
data format of co8 and sirg is 16-bit fixed point number, which consists of 1-bit sign,

1-bitinteger and 14-bit fraction based on two’s complement. On the other hand, the data
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formats of gradient magnitude and gradient directios’ are 12-bit and 8-bit integers,
respectively. The data format pfis 10-bit two’s complement integer. Since the range
of the value o® is 0 to 179, the data format éfis 8-bit integer. The data format of the

voted value is 24-bit integer.

3.2.4 Experimental Results

We have implemented the proposed architecture for the gradient-based Hough transform
and evaluated it on the Xilinx Virtex-7 FPGA XC7VX485T-2. Tal8e3 shows the

experimental results using Xilinx ISE 14.1.

Table 3.3: Performance evaluation of the proposed architecture for the gradient-based

Hough transform

DSP48E1 slices (out of 2800) 13 (1%)

36Kbit block RAMs (out of 1030) 180 (17%)

18Kbit block RAMs (out of 2060) 8 (1%)
Slices (out of 607200) 80181 (13%)
Clock frequency [MHZz] 260.061

In our implementation, the voted range of the gradient-based Hough transform shown
in Section3.2.2is set tod = 4, that is for local gradient directiofi, we perform the
voting operation to the rangeé—4 < 6 < ¢ + 4. The range was obtained by our experi-
ments. The range is enough to extract lines because the error between the angle of lines
obtained by the Sobel filter and the actual angle is sngll [

Figure3.16shows the result of lines detection for the conventional Hough transform

and the gradient-based Hough transform. Compared with the result of the conventional
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Hough transform, we can see that the gradient-based Hough transform obtained more

correct lines and exclude the inexistent lines.

[ 1

Original gray-scale Lines detection Lines detection
image by the conventional by the gradient-based

Hough transform Hough transform

Figure 3.16: Comparison between conventional and gradient-based Hough transform

algorithms

In our implementation, the circuit can work in fully pipelined fashion. Namely, input
pixels can be provided to the circuit clock by clock in raster scan order. To reduce the
delay of the circuit, some pipeline registers are inserted into between circuit elements.
It takes 21 + 44 clock cycles to complete voting from the first input pixel is given to
its voting is finished. Since the input image consists@pixels, the voting operations
are performed im? + 2n + 44 clock cycles. After voting;V2n + 188 clock cycles are
necessary to output identified straight lines witk 3 maximum filters. Therefore, in

n?+(V2+2)n+232

total, n? + (V2 + 2)n + 232 clock cycles, i.e X >s00eL—MS are necessary to perform
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the gradient-based Hough transform. If an input image of size Q00O is given, our
circuit can detect straight lines in869ns

We have also implemented a software approach of the gradient-based Hough trans-
form using GNU C. We have used Intel Xeon X7460 running in 2.66GHz and 128GB
memory to run the sequential algorithm for the gradient-based Hough transform. For
the image shown in Figurg.1(a) whose size is 338 333, the software implementa-
tion can perform the gradient-based Hough transform in3138ns On the other hand,
our circuit can perform it in 4366Qus. Therefore, our FPGA implementation attains a

speed-up factor of more than 309 over the sequential implementation on the CPU.

Table 3.4: Comparison with related works for Hough transform

Deng B] Lee [30] Karabernou24] | Our work
Hough transform| Conventional | Conventional Gradient-based | Gradient-based
Device XC4010XL Virtex 4 XC4010EPC84 | XC7VX485T-2
Logic blocks 333 CLBs 314 CLBs 205 CLBs 80181 Slices
DSP slices — — — 13 DSP48E1s
Frequency 40MHz 132MHz 23.166MHz 260.061MHz
Throughput 0.623Mpixels | 32.768Mpixels | 10.368Mpixels | 263.979Mpixels

There are a number of literatures reported to implement Hough transform for lines
using the FPGA shown in Sectidhl.1 Algorithms, that is conventional or gradient-
based, and performances such as device, logic blocks, DSP slices, frequency and through-
put are compared in Tab&4. It is clear that the performance of our FPGA implemen-

tation is better than that of other works.
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3.2.5 Concluding remraks

We have presented afffieient implementation of the gradient-based Hough transform
for gray-scale images using DSP slices and block RAMs in the Virtex-7 Family FPGA.
We have implemented the circuit using 13 DSP48EL1 slices, 180 block RAMs with
36Kbits and 8 block RAMs with 18Kbits on the Virtex-7 Family FPGA XC7VX485T-

2. The experimental results show that the architecture runs in 260.061MHz and for an

n x n gray-scale image, our circuit can performrih+ (V2 + 2)n + 232 clock cycles,

n2+(V2+2)n+232

I.€., —2ga061 M

s, including the computation of gradient information.

3.3 Hficientimplementation of the one-dimensional Hough
transform algorithm for extracting circles

The Hough transform can be used to find circles in images. The conventional Hough
transform for extracting circles needs three-dimension space, that is too costly. In this
section, we show anfigcient FPGA implementation of the Hough transform algorithm
that uses only one-dimensional parameter spaces for circles detection on a Xilinx Virtex-
7 FPGA. Our implementation uses 398 DSP48E1 slices and 309 block RAMs with
18kbits. The experimental results show that our implementation runs at 181.812MHz.
For an edge image of size 480400, our implementation attains a speed-up factor of

approximately 189 over the sequential implementation on the CPU.

3.3.1 Introduction

The Hough transform defines a mapping from an image into a parameter space repre-

sented by an accumulate array. Let us consider circle detection using the Hough trans-
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form. A circle can be defined by the three parameters, its center coordigate aénd

the radiusr. Therefore,O(N®) space is necessary to store the parameter space, where
nis the size of each dimension of the parameter space. Moreover, it@gkEstime

to vote for each edge point and search intensive elements in the accumulate array. Re-
cent FPGAs (Field Programmable Gate Arrays) have embedded DSP48E1 slices and
block RAMs. The DSP slices are equipped with a multiplier, adders, logic operators,
etc 8. The block RAM is an embedded memory supporting synchronized read and
write operations, and can be configured as a 36Kbit or two 18Kbit dual port RB@ls [

The key technique for accelerating the algorithm is fiicient usage of DSP slices and
block RAMs. However, in the conventional Hough transform algorithm for circles de-
tection, even the state-of-the-art FPGA such as the Xilinx Virtex-7 series FPGAs can
not handle theD(N3) space without fi-chip memories. The parameter space decom-
position is used to reduce the parameter space. Many of methods based on the Hough
transform that use two-dimensional parameter sp2<2p|] and one-dimensional pa-
rameter spacedf] have been proposed. Specifically, in the one-dimensional Hough
transform algorithm17], the x-coordinate of centeg-coordinate of center, and radius

are detected in series. In each detection, one-dimensional parameter spaces is used
in the same way as the Hough transform. Moreover, various hardware algorithms for
circle detection have been proposed. These existing researches use the template match-
ing [43, 46] and the Hough transform algorithm23, 16, 12]. Shaferet al. proposed

an FPGA implementation to detect the iris positid3][ However, it detects only one

circle in an image. Jeat al. proposed an FPGA implementation to detect circles us-

ing any three nonlinear pixels to form a circ23]. However, because of the huge size

of parameter spaces, this method usé&scbip memories. Elhossirgt al. proposed a
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pipelined FPGA architecture for circles detectid2]] Four specific radii are fixed due
to the limitations of on-chip memories on the FPGA.

The fourth contribution of this chapter is to present &iceent FPGA implementa-
tion of the one-dimensional Hough transform algorithm for circles detectidn Pur
ideas include:

One-Dimensional Parameter Spacedn the algorithm 7], since only one-dimensional
parameter spaces are used, this algorithm is implemented using the block RAMs on the
FPGA. Additional d¢f-chip memories are not necessary.

Voting Space Partitioning: The parameter spaces fer andy-coordinates of center
candidates are partitioned into multiple block RAMs that are voted in parallel. The
voting operations of radius for each center candidate is also concurrently performed
using multiple block RAMSs.

Efficient Usage of DSP slicesDSP slices are used to merge the partitioned voting
spaces fok- andy-coordinates of center candidates in a pipelined fashion. Furthermore,
DSP slices are used to compute the Euclidean distance between each center candidate
and edge points.

The one-dimensional Hough transform algorithm consists of the following four
steps: (1)x-coordinates of center candidates of circles are detected by voting midpoints
of every two edge points in each row. (2roordinates of center candidates of circles
are detected by voting midpoints of every two edge points in each column. (3) Center
candidates are listed from andy-coordinates of center candidates. (4) For each center
candidate, radii of the circles are detected. Also, detected circle candidates are checked
whether the candidate is a true circle by voting the Euclidean distances between each

center candidate and every edge point.
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(a) Inputimage (b) Binary edge image (C) Detected circles

Figure 3.17: Example of circles detection using the one-dimensional Hough transform

algorithm

Figure3.17shows an example of circles detection using this method. For an input
image (Figure3.17a)), its edge image (Figui217b)) is obtained using the edge de-
tector such as Canny edge detecjr Figure3.17c) draws detected circles using the
one-dimensional Hough transform algorithm.

We have implemented the one-dimensional Hough transform algorithm on a Xilinx
Virtex-7 XC7VX485T-2. Our new architecture uses 398 DSP48E1 slices and 309 block
RAMs with 18Kbits. Our proposed circuit runs in 181.812MHz. For a binary image of
size 400< 400, our circuit performs the circles detection in at most 970434 clock cycles,
i.e., 5337.568s. Our implementation attains a speed-up factor of approximately 189

over the sequential implementation on the CPU.
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Figure 3.18: The outline of the one-dimensional Hough transform algorithm for circle

detection

3.3.2 One-dimensional Hough transform algorithm for circles de-

tection

The main purpose of this section is to show the one-dimensional Hough transform al-
gorithm for circles detection. Figui218illustrates an outline of this algorithm. The
detail of this algorithm is shown as follows.

Step I We compute midpoints of every two edge points on each row. After that, the
x-coordinates are voted to a one-dimensional accumulate array. Namely, the element
that corresponds to the-coordinate of each midpoint is incremented by one. This
operation is performed for every row in the input image. If there is a circle, the voting
to the x-coordinate of its center is concentrated since a circle is symmetrical to the
vertical bisector through its center. To cope with quantization error, after voting, we use

a maximum filter for the voted values. In here, for each value in the accumulate array,
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this filter copies the value if it is the maximum within a local range, otherwise, the filter
outputs zero. After that, the tap largest elements are extractedxasoordinates of
center candidates of circles to detect multiple circles.

Step 2 In the same way as Step 1, we compute midpoints of every two edge points
on each column. After that, thyecoordinates are voted to a one-dimensional accumulate
array for every column. If there is a circle, the voting to yheoordinate of its center is
concentrated since a circle is symmetrical to the horizontal bisector through its center.
The voted values are filtered by the maximum filter. After filtering, the tdargest
elements are obtained gxoordinates of center candidates of circles.

In the following FPGA implementation, we perform Steps 1 and 2 in parallel since
these steps can be executed independently.

Step 3 We list center candidates that are all combinations freandy-coordinates
obtained in the above steps. Since each step obtainsrdinatesl? center candidates
are listed in total.

Step 4 For each center candidate, the Euclidean distances between the center candi-
date and all edge points are computed and the distances are voted to a one-dimensional
accumulate array as radii of circles. If a center candidate is a center of true circle in the
image, an element that corresponds to the radius is intensely voted. Therefore, we ver-
ify whether the center candidate and each radius represent a true circle using the voted
value. In digital images, it is known that the number of pixels on the circumference of
circles with radiusr is 4v2r [29]. However, practical circles may be broken or dis-
turbed. Therefore, for each radius, we determine whether the center candidate and its
radius represent a true circle using the thresHold v2r, wheref is a threshold factor

that is a constant value within the rangeX] If the voted value of radius is larger than
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the threshold, the circle is verified as a true circle. The validation for each radius, circles
with the center candidate are extracted.
For each center candidate, the above operation is performed. In our FPGA imple-

mentation, this operation is performed in parallel and circles are detected.

3.3.3 FPGA architecture for the one-dimensional Hough transform

This section describes our FPGA architecture of the one-dimensional Hough transform
algorithm. The input data for our implementation is given as two edge lists consisting
of coordinates of edge pixels in row- and column-major order, respectively. These edge

lists can be obtained by edge detection easily, and each list is stored into a block RAM.

Structure for voting operation of center candidates

Figure3.19shows our architecture for the voting operatiorxafoordinates of cen-
ter candidates, whengis the number of voting modules. Namely, upgooting opera-
tions are concurrently performed. We utilize one seriep shift-registers that transfer
data in the left-to-right direction. In order to compute the midpoints of any two edge
points on each row, we read them from the block RAM that stores the edge list in row-
major order. To give all pairs of-coordinates of whicly-coordinates are identical for
each row, we inpuk-coordinates which have the sameoordinate to the register and
transferred them with shift-registers one by one. If allpox-coordinates which have
the same/-coordinate are transferred to the registers, ther-atiordinates which have
the samey-coordinate are continuously read out from the block RAM and broadcast
to pair with thex-coordinates in the registers. If the number of edge points witose

coordinates are identical is larger thaythe above operation is repeated. For each given
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pair of x-coordinates, the coordinate of the midpoint is computed using an adder and a

1-bit right-shifter that divides by two.

edge list
(row-major)

i voted values

p — 1 DSP slices

Figure 3.19: Architecture of voting for-coordinates of center candidates

After that, thex-coordinates of midpoints are voted to the block RAM. Namely, an
element that corresponds to tkeoordinate in the block RAM is incremented by one.
We usep block RAMs V, (0 < k < p - 1) to store the voted values and at m@st
midpoints are concurrently voted. Figuse20illustrates the architecture & using a
block RAM, that is the same with the architecture shown in Fi@uéeThe block RAM
is utilized in dual port mode, where port set A and B are operated for read and write
operation, respectively.

In the block RAMs on the target device of this work, réaute operations can be
configured as either RF (Read First) mode or WF (Write First) mode. As mentioned in
Section2.3, in the dual port mode, there is a restriction that if read and write operation
to the same address are performed for each port, the setting of block RAMs must be
RF [60].

We use the block RAM to store the valueswgfx] (0 < x < n), where the size of
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Figure 3.20: A block RAM to store the voted values

image isn x n andx is anx-coordinate of midpoints. Let[X] denote a data of address
x in the block RAMV,. Sincex is given to itsSADDRA vi[X] is output fromDOA after
the rising clock edge as illustrated before. After thafx] + 1 is computed and it is
given toDOB. Sincex is given toADDRB v,[X] + 1 is written inv[Xx]. According to
the restriction stated in the above, since the same valuerafy be input continuously,
we used an additional register to store the latest voted value and if the same value of
is input continuously, the stored value is used instead of the value read from the block
RAM.

After the voting operations, we combine the voted values storgrhiock RAMSs.
We read every element in each block RAM one by one. These values are added and
transferred left-to-right for each clock cycle to compute the sum of each element with
p — 1 registers angb — 1 adders. To optimize the circuit resources, we use a cascaded

DSP slice for each pair of register and adder.

Structure for finding the center candidates of circles

A maximum filter is used to cope with the quantization error for the voted values
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above. After filtering, thex-coordinates to which thg largest values correspond are
obtained ax-coordinates of center candidates of circles. Each voted value is input to
maximum filter for each clock cycle. For each value, the filter verifies whether it is the
maximum comparing with its neighboring 2 values. If it is the maximum in the local
range, the filter copies the largest value, otherwise, the filter outputs it as zero. There-
fore, the largest value in the local range and zero are alternately output after filtering.

Figure3.21lillustrates the structure that finds tReoordinates of center candidates.

An array of registers and comparators are used to obtain the latgedties. Every
register is initialized to zero. The filtered values are continuously input to the left-most
register for each clock cycle. Each registercofO < i < 1) compares the value with

its left register. If this register has smaller value, the value of its left register is then
transferred to it. If this register has larger value, it will compare the value with its
right register, and if the register has larger value, this value is transferred to its right
neighboring register. All the values of registers are transferred in parallel. Since input
values are obtained through the maximum filter, the input values are given at more
than one clock cycle intervals. Hence, the larger values will be gradually transferred
to the right side through the registers. Finally, the idargest values are stored in the
registers. Namely, the-coordinates that have the tadargest values are chosen to be
the x-coordinates of center candidates of circles.

Similarly, using another circuit whose structure is the same as the above, the voting
operation fory-coordinates of center candidates are performed with edge lists stored
in column-major order as input. Alsg;coordinates with the top largest values are
obtained as thg-coordinates of center candidates. Evergndy-coordinates of centers

candidates are combined to constritctenter candidates.
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filtered
values

Figure 3.21: Architecture for finding x-coordinates of center candidates

Structure for the voting operation of radius

The voting operation of radius is performed for each center candidate in paral-
lel (Figure3.22. Since? center candidates are obtained, we uavoting spaces
to store the voted values. For each center candidate, the Euclidean distances between
the center candidate and all edge points are computed. The circuit runs in a pipeline
fashion for coordinates of edge points that are given for each clock cycle. The compu-
tation of the Euclidean distances include the computation of the square root. Since it is
difficult to compute them directly on the circuit, we use the CORDIC IP provided by
Xilinx that provides a hardware module that is fully pipelined architect&i® [Since
the computed distances are voted to a block RAM for each center candidate, ftally,
block RAMs My (0 < k < 1?) are used. The architecture B is the same as shown in

Figure3.20

Structure for verifying true circles

Finally, we verify whether the center candidates are true circles. If a center candidate
is that of true circle in the image, an element of the block RAM that corresponds to the
radius is intensely voted. A maximum filter is also used to cope with the quantization

error for the voted values. If the value is the maximum in a local range, the filter copies

95



A2 center candidates
edge list A
(row=major)

000000 - OO
F{gl’% v lv X lv +; lv X : _iv +v
block RAM
YO o ¢ O

EENNCEENCEING ©
M M Mo My2_,4
v v Y v

maﬁclimum mai_ﬁimum maximum| , .., |maximum
ter ter er

ter t
.. ‘Ag-(m,y,'r)

Figure 3.22: Architecture of voting for radius

the largest value, otherwise, the filter output it as zero. After filtering, each radius is
verified whether it is the radius of a true circle by comparing its voted value with the
thresholdf x 4 v2r (Section3.3.2. All the values off x4 V2r are precomputed to store

in a block RAM that is used as a Look-up-table. If it is larger than the threshold, the
center candidate and the radius that represent a circle is input to the shift registers and

output through the registers.

3.3.4 Experimental results

We have implemented the proposed architecture for circles detection and evaluated it on
the Xilinx Virtex-7 FPGA XC7VX485T-2 §5]. For our implementation, 398 DSP48E1

slices, 309 block RAMs with 18Kbit and 20452 slices of the FPGA are used. The FPGA
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with the architecture proposed in this paper works in 181.812MHz.

In our implementation, thg- andy-coordinates of edge list stored in row- or column-
major are 9-bit integer. The voted valuesefindy-coordinate of center candidates are
set to be 17-bit integer. The numbgrof voting modules forx- andy-coordinates of
center candidates is set to be 100. The numisrx- or y-coordinates of center candi-
dates is set to be 10, therefore, 100 center candidates are constructed. The data format
of the voted values for radius is 13-bit integer.

Since the latency of our architecture depends on the input image, we suppose that
all pixels of input image of sizexn are edge points. Legb be the number of voting
modules forx- or y-coordinates of center candidates ahtle the number ok- or y-
coordinates of center candidates. For simplicity, we assumentisad multiple ofp.

For a certain row or column it takesg(p + n + 6) clock cycles to complete the voting
operations of row or column Therefore, it take%z(p +n+ 6) clock cycles to complete

the voting operations for all rows or columns. After that, it takes n + 1 + 4 clock
cycles to findx- or y-coordinate of center candidates. The combination of exeand
y-coordinates of center candidates takes 1 clock cycle. The voting operation for radius
takesn? + 11 clock cycles, and it takes+ 1% + 8 clock cycles to output all detected true

(2p+6)n +3n+ p+ A%+ 1+ 24 clock cycles

circles. Finally, our circuit totally take% + =
to implement the one-dimensional Hough transform.

For estimating the speed up of our FPGA implementation, we have also imple-
mented a software approach of the one-dimensional Hough transform using GNU C.
We have used Intel Xeon X7460 running in 2.66GHz and 128GB memory to run the

sequential one-dimensional Hough transform algorithm. For the image above, the soft-

ware implementation can perform the one-dimensional Hough transform for circles de-
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tection in 1008658ns On the other hand, our circuit can perform it in 970434 clock
cycles, i.e., 5337.568. Therefore, our FPGA implementation attains a speed-up factor

of approximately 189 over the sequential implementation on the CPU.

Table 3.5: Comparison with related works for Hough transform

Shafer 43 Tokunaga 46] Jen R3]
Base Template Template Hough
algorithm matching matching transform
Device Altera Xilinx Altera
EP4SGX530 XC4025E Stratix 1S25
Memory Int. 6.75Mbit — Int. 1.6Mbit & Ext
Frequency 159MHz — —
Throughput | 9.362Mpixels | 0.0512Mpixels | 0.01524Mpixels
Geninatti [L6] Elhossini [L2] Our work
Base Hough Template Hough
algorithm transform matching transform
Xilinx Xilinx Xlinix
Device
Spartan 3 Virtex-4 XC7VX485T-2
Memory Ext. 1Mbit Int. 256Kbit Int. 5.4Mbit
Frequency — 27MHz 181.812MHz
Throughput | 12.32Mpixels 14.4Mpixefs 29.976Mpixels

There are a number of literatures reported to implement circles detection using the
FPGA shown in Tabl&.5, where Int. means internal (on-chip) and Ext. means external
(off-chip). It is difficult to directly compare to other works because utilized FPGAs
and supported size of imagedfdr. Considering the throughput, our implementation
compares favorably with other works. The deficiencies of these existing researches
such as detecting only one circle or usin@-chip memories are not existing in our

implementation. Our implementation detects multiple circles with variable radii using
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only the block RAMs on the FPGA.

3.3.5 Concluding remarks

We have presented arfieient implementation of the one-dimensional Hough trans-
form using 398 DSP slices, 309 block RAMs with 18Kbits on the Virtex-7 Family
FPGA XC7VX485T-2. The architecture runs in 181.812MHz and for an image of size
400%x400 that all pixels are edge points, our circuit performs the one-dimensional Hough
transform in 970434 clock cycles, i.e., 5337.a68vhich theoretically attains a speed-

up factor of approximately 189 over the sequential implementation on the CPU.
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Chapter 4

Implementation of the Euclidean

algorithm on the FPGA

In this chapter, we show a processor core that executes Euclidean algorithm computing
the GCD (Greatest Common Divisor) of two large numbers in an FPGA. The proposed
processor core uses only one DSP slice and one block RAM, that is called GCD pro-
cessor core. Since the proposed GCD processor core is compactly designed based on
FDFM approach (Few DSP slices and Few block Memories) and uses very few re-
sources, we have succeeded in implementing 1280 GCD processor cores in a Xilinx
Virtex-7 family FPGA XC7VX485T-2. The experimental results show that the perfor-
mance of this FPGA implementation using 1280 GCD processor core3964s per

one GCD computation for two 1024-bit integers. Quite surprisingly, itis 3.8 times faster
than the best GPU implementation and 316 times faster than a sequential implementa-

tion on the Intel Xeon CPU.
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4.1 Introduction

The GCD (Greatest Common Divisor) computation is widely used in computer systems
for cryptography, data security and other important algorithms. Most of the time of
these computer systems is consumed for computing the GCDs of very large integers.
Therefore, it is an important task of accelerating the GCD computation. However, arith-
metic operations on integers numbers exceeding 64 bits cannot be performed directly
by a conventional 64-bit CPUs as its instruction set support integers of at most 64-bit
in length. It is an icient way to implement the arithmetic operations on large integers
using hardware device such as FPGA, VLSI or GPU.

Recent FPGAs have embedded DSP48E1 slices and block RAMs. The Xilinx Virtex-
7 series FPGAs have DSP slices equipped with a multiplier, adders, logic operators,
etc [68]. The DSP slice also has pipeline registers between operators to reduce the
propagation time. The block RAM is an embedded memory supporting synchronized
read and write operations, and can be configured as a 36Kbit or two 18Kbit dual port
RAMs [60]. They are widely used in consumer and industrial products for accelerat-
ing processor intensive algorithm3g 36, 3, 18]. Since the continuing decline in the
ratio of FPGA price to performance and its programmable features, FPGA is suitable
for a hardware implementation of general purpose computing. The main contribution
of this chapter is to present affieient processor core that executes the Euclidean algo-
rithm computing the GCD of two large integers using an FPGA. The proposed processor
core is designed based on tAhBFM (Few DSP slices and Few block Memories) ap-
proach[2]. The key idea of the FDFM approach is to use few DSP slices and few block
RAMs for constituting a processor core. We must note that the FDFM approach has

some advantages. First, despite the main circuit occupies most of hardware resources
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of the FPGA, we can also implement the necessary hardware algorithm in the FPGA
using remaining few resources as shown in Figude(1). On the other hand, we can
implement multiple FDFM processors working in parallel if enough hardware resources
are available as illustrated in Figudel (2). In this paper, we also employ the FDFM
approach to implement parallel GCD computation in the FPGA. For example, in this pa-
per, we propose a processor core for GCD computation of 1024-bit, 2048-bit, 4096-bit,
and 8192-bit integers, that uses only one DSP slice and one block RAM. We implement
one processor core in the FPGA, and the frequency of the FPGA is over 380MHz, that is
extremely high. If only one proposed GCD processor core is implemented in the FPGA
for computing one GCD of 1024-bit, 2048-bit, 4096-bit, and 8192-bit integers, it takes
73.12us, 25335us, 91578us, and 36181us, respectively. In other words, single GCD
processor core has competitive performance. Since the proposed GCD processor core
uses very few resources of FPGA, we can implement more than one thousand identical
processor cores in an FPGA, that all processor core work are paralleled to execute bulk
GCD computation. The pairwise GCD computation that computes all pairs of integers
in a set, can be used to evaluate the performance of the implementation of thousand

Processor cores.

block block block block block
RAM [ RAM RAM RAM RAM
main
circuit
DSP DSP DSP DSP DSP

(1) Minimum implementation (2) Parallel implementation

Figure 4.1: Advantages of our FDFM approach

One of the applications for benchmarking pairwise GCD computation is breaking
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weak RSA keys. RSA4]] is one of the most well-known public-key cryptosystems
widely used for secure data transfer. RSA cryptosystem has an encryption key open
to the public. An encryption key includes a modulusalledan RSA modulusuch

thatn = pq for two distinct large prime numbens andqg. If the values ofp andq

are available, the encrypted message can be easily converted to the original message.
Thus, the safety of RSA cryptosystem relies on thalilty of factoring RSA modulus

n of two large prime numberp andg. Suppose that we have a set of many RSA
encryption keys collected from the Web. If some of RSA moduli in encryption keys
are generated by inappropriate implementation of a random prime number generator,
they may reuse the same prime number. We call the keys sharing a prime number as
weak RSA keysIf two RSA moduli share a prime number, they can be decomposed
by computing the GCD of these two moduli. It is well known that the GCD can be
computed very easily by Euclidean algorithr@g][ Hence, we can compute the GCDs

of all pairs of RSA moduli in the Web to find the RSA keys that sharing the same prime
number. In this paper, pairwise GCD computation for RSA moduli is used to measure
the performance of the proposed GCD processor core based on FDFM approach. We
have succeeded in implementing 1792 GCD processor cores in a Xilinx Virtex-7 family
FPGA XC7VX485T-2. However, when the circuit of 1792 GCD processor cores is
operated on the FPGA device, this circuit becomes unstable because the number of
used resources of FPGA is too close to the maximum available resourses. Finally, we
implement 1280 GCD processor cores in the FPGA, that compute the GCDs of all pairs
of RSA moduli that are stored in affechip DDR3 memory MT8JTF12864HZ-1G6GL1.

Our implementation of 1280 GCD processor cores computes one GCD of two 1024-bit

RSA moduli in expected 0.0904.
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Several hardware implementations for computing the GCD on FPGAs have been
presentedq, 28]. However, they just implemented Binary Euclidean algorithm to com-
pute the GCD using programmable logic blocks as it is. Hence, they can support the
GCD computation for numbers with very few bits. On the other hand, several previ-
ously published papers have presented GPU implementations of Binary Euclidean al-
gorithm in CUDA-enabled GPUs. Fujimotd3J] has implemented Binary Euclidean
algorithm using CUDA and evaluated the performance on GeForce GTX285 GPU. The
experimental results show that the GCDs for 131072 pairs of 1024-bit numbers can be
computed in 1.431932 seconds. Hence, his implementation runsslie® one 1024-
bit GCD computation. Scharfglags al. [42] have presented a GPU implementation
of Binary Euclidean algorithm. It performs the GCD computation of all 199990000
pairs of 20000 RSA moduli with 1024 bits in 2005.09 seconds using GeForce GTX 480
GPU. Thus, theirimplementation performs each 1024-bit GCD computation ing<.02
Later, White B8] has showed that the same computation can be performed in 63.0
seconds on Tesla K20Xm. It follows that it computes each 1024-bit GCD in8.15
Quite recently, Fujiteet al. have presented new Euclidean algorithm called Approxi-
mate Euclidean algorithm and implemented it in the GR4).[Approximate Euclidean
algorithm performs perform each 1024-bit GCD computation in Q34 GeForce
GTX 780Ti and 28.fis on Intel Xeon X7460 (2.66GHz) CPU. Our implementation
of 1280 GCD processor cores in Xilinx VC707 evaluation bo&d pquipped with
FPGA XC7VX485T-2 performs one 1024-bit GCD computation in 0.Q&04hich is

3.8 times faster than the GPU and 316 times faster than the CPU.
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4.2 Euclidean algorithms for computing GCD

This section review classical Euclidean algorithm and Fast Binary Euclidean algorithm
for computing the GCD of two numbeps andY. We then show Hardware Binary
Euclidean algorithm by modifying Fast Binary Euclidean algorithm, that is implemented
in an FPGA.

Let GCD(X,Y) denote the GCD oK andY. For any odd integeX and even integer
Y, GCD(X,Y) = GCD(X, ¥) holds. Also, for any even integed$ andY, GCD(X,Y) =
2 x GCD(3, ) holds, and so we can obtain a factor of 2 in the GCDXadnd Y very
easily.

For simplicity, we assume that both inpisandY are odd anK > Y holds. Based
on the fact, it should have nofticulty to modify all GCD algorithms shown in this
paper to handle even input numbers. keap(X, Y) denote a function to exchange the

values ofX andY. We can write a standard Euclidean algorithm for computing the GCD

of X andY as follows:

[Original Euclidean algorithm]
ged(X,Y){
dof{
X « XmodY; //X < Y always holds
swap(X,Y); //X > Y always holds
} while(Y # 0)

returnX);

SinceX > Y holds, modulo computation is performed aXdwill store the value of

X'modY, which is less thary. After that, swap(X,Y) is executed an& > Y always
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holds. The same operation is repeated uviti= 0 and X stores the GCD of input
integersX andY. However, modulo computation used in Original Euclidean algorithm
is costly. So, Binary Euclidean algorithm which does not execute it, is often used to

compute the GCDf&ciently:

[Binary Euclidean algorithm]
gedX,Y){
do{
if(X is even)X « %;
else if(Y is even)Y « %;
elseX « XY;
if(X < Y) swap(X,Y);
} while(Y # 0)

return(X);

If X (orY) is even, therX (or Y) is halved to remove the least significant bitX{or

Y) which is 0. If bothX andY are odd X-Y is computed. Since result of subtraction of
two odd numbers is ever5Y is performed to remove the least significant bidof Y,
thenX will store the value o@. If X <Y holds,swap(X,Y) is performed, theiX > Y
always holds. Note that the Binary Euclidean algorithm removes one 0 bit from the
least significant bit oiX (or Y) and%5* in each iteration of the do-while loop. We can
reduce the number of iterations of the do-while loop by removing consecutive 0 bits.
Let rshift(X) be a function returning the number obtained by removing consecutive 0
bits from the least significant bit f. For example, iiX = 11010100 in binary system,
thenrshift(X) = 110101 in binary notation. Using swap and rshift functions, we can

write the Fast Binary Euclidean algorithm as follows:
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[Fast Binary Euclidean algorithm]
gedX, )i
do{
X « rshift(X -Y);
if(X < Y) swap(X,Y);
} while (Y # 0)

return(X);

In each iteration of the do-while loop, at least one 0 bit is removed &ofar Y).
Hence, for any input numbers, the number of iteration of the do-while loop in Fast Bi-
nary Euclidean algorithm is no larger than that in the Binary Euclidean algorithm. How-
ever, we need to read all bits of andY to exchange them if we implement function
swap as itis. Also,rshift function needs a large barrel shifter. Hence, we should avoid
direct implementations of these functions in the FPGA. Instead of funeshmnft(X),
we implement functiorrshift,(X), which removes at mostconsecutive 0 bits from
the least significant bit oX. In other words, ifX has at mosk consecutive 0 bits from
the least significant bit, all of them can be removed in one iteration of do-while loop
by executingrshifty(X). If X has more thak consecutive 0 bits, thek O bits from
the least significant bit are removed, arghi fty(X) is repeated untiK is odd. For ex-
ample,rshift,(1101,1000»11,0110 anashift,(1101,10103110,1101 hold. Using

rshifty, we can describe the Hardware Euclidean-based GCD algorithm as follows:

[Hardware Binary Euclidean algorithm]
ged(X,Y){
do{

if(X is even)X «rshifty(X);
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else if (Y is even)Y «rshifty(Y);
else ifX > Y) X «rshifty (X -Y);
elseY «rshifty (Y- X);// X <Y
} while(X # 0 andY # 0)
if(X # 0) returni);

else returnY);

Note that operationshift, may return an even number. Hence, onX @i Y can be an
even number. If this is the case, either—rshifty(X) or Y «rshift,(Y) is executed
until both of them are odd. Hence, bathandY are odd, whenevershift (X — Y) is
executed. Thus, the argumentmafhi ft is always even and the least significant bit is
0 when it is executed.

Table4.1shows the average number of iterations of the do-while loop 1024-bit RSA
moduli for each values df of rshifty. Note thatk = o corresponds to Fast Binary
Euclidean algorithm, which performsshift function that removes all consecutive 0
bits. Clearly, the number of iterations is smaller for lakgeln our implementation,
we use a multiplier embedded in DSP slice to compstki ft, for k = 17 instead
of using logic resources of the FPGA. Hence, we can reduce the number of CLBs and
implement more GCD processor cores in an FPGA. Since the subtraction of two very
large numberX andY returning a result which has more than 17 consecutive 0 bits from
the least significant bit is a very rare casshift;; of our implementation and ideal
rshifty(k = o) of the Fast Binary Euclidean algorithm has almost the same number

of iterations as shown in the table.
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Table 4.1: The average number of iterations of the do-while loop for 1024-bit RSA

moduli

Hardware Binary Euclidean Fast Binary

k 1 2 3 4 5 6 7 8 17 Euclidean

number of iterations| 1445.8 964.3 827.0 7720 747.1 7353 729.7 726.8 724.0723.9

4.3 A GCD processor core for large integers

This section shows &CD processor corewvhich computes the GCD of two very large
numbers based on the Hardware Binary Euclidean algorithm. Our GCD processor uses
only one 18k-bit block RAM and one DSP slice in the FPGA. The 18k-bit block RAM
is configured as a simple dual-port memas@][with ports A andB of width 36 bits and

18 bits, respectively. Figuré.2 illustrate the configuration of the 18k-bit block RAM
used in our GCD processor core. Two large numbémnd Y of Hardware Binary
Euclidean algorithm are stored as 18-bit words. If each of them has 1024 bits, it is
stored in[%‘] = 57 words. LetXsgXss--- Xo denote 57 words representigsuch
thatX = 375 X x 218 holds. Similarly, letYssYss - - - Yo denote the words representing

Y. Since the operationsshift;7(X — Y) andrshift;,(Y — X) of Hardware Binary
Euclidean algorithm are executed for computing the GCX ahdY, we want to read

X andY simultaneously. Hence, po# of the block RAM is configured as read-only
36-bit mode. On the other hand, since the result of operati&ini ft,7(X — Y) (or
rshift,7(Y — X)) is overwritten to one oK or Y, the portB is configured as write-only
18-bit mode.

Reading: Since portA of the block RAM is configured as read-only 36-bit mode, the

block RAM is a 51%36-bit memory for portA. We can read 36-bit datgY;(0 <
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36 bits 18 bits

DIA —\—»36
9 0 Yo Xo 0 XU
ADDRA — |
A 36 poa I X 1] v
CLKA ——» ’
18 2 Ys Xo 2 X,
DIB ——»| . .
ADDRB 10 B ’ - - ’ 2
—_—p
WEB —» 4| Y X4 4] x,
CLKB — |
18k-bit block RAM address of port A address of port B

Figure 4.2: A 18k-bit block RAM and the memory configuration

I < 56) from address using portA for performing the operationshift,;(X —Y) (or
rshifty7(Y — X)).

Writing:  Since portB is configured as write-only 18-bit mode, the block RAM is a
1024x18-bit memory for porB. We can write 18-bit datX; in address Ror andY; in
address 2+ 1 (0 < i < 56) using porB. In other words, the result afshift;7(X - Y)

(orrshifty;(Y — X)) can be overwitten tX (orY).

__ CARRYIN: Lor0 P[47]

B E 2 17—n
B : N\
in X D E @ I
: ‘C D A M
: Multiplier
Y A A
+ Pre-adder

C —1

PATTERN': 0

18k-bit block RAM

DSP slice

Figure 4.3: The architecture of a GCD processor

The DSP slice in our GCD processor core uses a pre-adder, a multiplier and a
three input ALU (Arithmetic Logic Unit) as illustrated in Figu#e3. Suppose that

X > Y holds. We briefly show how to use the DSP slice for executing the operation
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rshift;7(X — Y) of Hardware Binary Euclidean algorithm. The 36-bit dx{a;(0 <

i < 56) is read from the block RAM one by one, and is connected to the pre-adder of
DSP slice. The operatiok — Y needs to be executed from the least significant bit of
large numberx andY. Thus, the pre-adder is used to compXte- Y; for each 36-bit
dataX;Y; one by one fronXyYy. SinceX; — Y, is computed one by one, X — Yo < 0
holds, we need to borrow from the higher bit which is in the next w&rd Y. In other
words, X; — Y1 — 1 needs to be computed for 36-bit datgy;, and we call-1 borrow.

Let by denote the borrow fronXg — Yy, and lethj(1 < i < 55) denote the borrow from
Xi—Y;—Dbi_;. We note thaX, - Y, needs to be computed Yy, andX; —Y; —b;_; needs

to be computed foX;Y;(1 < i < 56). However, we can not compute the borrow using the
pre-adder because it has only two input ports. Thus, we first perform the shift operation
to remove the consecutive O bits from the least significant bit using the multiplier. The
multiplier performs the operatioX( - Y;) x 21" for eachX; — Y;(0 < i < 56) one by

one, wheren(1 < n < 17) is the number of consecutive 0 bits from the least significant
bit of X — Y. If X =Y has more than 17 consecutive 0 bits from the least significant

bit, n has the value 17. For example X§ — Y, = (11,001Q 100Q 000Q 0000, that is,

X =Y has 11 consecutive 0 bits from the least significant bit. The multiplier computes
(Xo — Yo) x 217711 = (110Q 101Q 000Q 000Q 0000, 0000). We note that the 11 bits con-
secutive 0 bits are on the right of the 17-th bit ¥ ¢ Yy) x 2°. For othem(1 < n < 17),

the n bits consecutive 0 bits are also on the right of the 17-th bitgf«{ Yo) x 21",

We use this feature to remove the consecutive 0 bits in the following. Next, since we
suppose thaX > Y holds, ALU computesX; — Y;) x 217" — b,_;. Otherwise, ifX < Y
holds, ALU can also compute(X; — Y;) x 2" —bi_; = (Y; = X)) x 21" — b;_3.

In other words, the computation oK(— Y) and (¢ — X) can be switched dynami-
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cally by controlling the behavior of ALU, and the borrow is computed after the shift
operation using the ALU. For example, suppose tKat Y and X, < Yy hold, and

Xo — Yo = (11,0010 100Q 0000 0000. The multiplier computesX, — Yp) x 21711 =

(1100 1010 000Q 000Q 0000, 0000), where the 11 consecutive 0 bits are all on the right
of the 17-th bit of Ky — Yp) x 26 as we shown above. Then, ALU outpul§ & Yo) x 28
asitis. Toremove 11 consecutive 0 bits from the least significant bit-oY, we retain

the higher 18- 11 = 7 bits from the 17-th bit ofX, — Yp) x 28, which is (110,0101). On
the other hand, suppose that— Y; = (01, 1011,010Q 1011 0100), the multiplier also
computesX; — Y1) x 26 = (0110 1101 001Q 1101, 0000, 0000). Since there is a borrow
from Xy — Yo, ALU computes K; — Y;) x 26— 1 = (01101101 001011001111, 1111).

We note that the higher 18 bits ok{ - Y;) x 2° — 1 is equal toX; — Y; — 1. Since
only 7 bits of Xy — Y, are retained, we need to pick up 11 bits from the least significant
bit of X; — Y; — 1 to restructure the first 18-bit word eshift;7(X — Y). Hence, we
pick up 11 consecutive bits on the right of the 17-th bit ¥f ¢ Y1) x 26 — 1, which

is (100,1011,0011). Then, we concatenate 11 bits data (100,1011,0041}-0of; — 1

with 7 bits data (110,0101) of, — Y, to restructure the first word afshift,7(X - ),
which is (10,0101,1001,1110,0101). Also, the other wordsshfi ft,;(X — Y) can be
obtained in the same way. The configuration of DSP slice is described as follows:
Pre-adder: The pre-adder of DSP slice has 25-bit pprand 30-bit portA. The 36-bit
output of the block RAM are connected to the pre-adder via a pipeline registisr.
given to portD, andY is given to portA. The remaining bits of the ports are padded
with 0. The pre-adder of DSP slice can complte- A, A andD by controlling its
behavior, in other words, the pre-adder outpXits Y, Y or X optionally. For example,

to perform the operatioX — Y, the subtractiorX; — Y; is performed for each 36-bit data
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XiY; one by one, and the output of pre-adder is connected to the multiplier.

Multiplier: The embedded multiplier has two input ports, where one accepts an 18-bit
two’s complement operand from pdBtvia a pipeline register, the other one accepts an
25-bit two’s complement operand from the pre-adder via a pipeline register. We use the
multiplier to perform the multiplication between the result of pre-adder and value of port
B, whereB has the value*Z0 < k < 17) in our implementation. Thus, the operations
(X =) x B, X; x B, andY; x B can be executed using multiplier. In other words, shift
operation can be executed f6r— Y, X, andY. The output of multiplier is connected to
ALU(Arithmetic logic unit) via a pipeline registdvl as shown in the Figuré.3.

ALU: The ALU (Arithmetic Logic Unit) has three input ports, that are connected to
registerM, input portC of DSP slice, and po€IN, respectively. The most significant

bit of registerP, the negation of the most significant bit of regideeaind portCARRY IN

are connected to po@IN of ALU. Port CIN can select one of the three values by
controlling its behavior. The ALU can performs several operations suth&a8+CIN
and—M - C - CIN — 1. In our implementatiorC is configured as the valuel. Since

M is connected to the output of multiplier, we can control the behavior of the ALU
dynamically for computingX; — Y;) x B+ CIN — 1 if X > Y holds, and computing
—(Xi - Y)) x B=CIN = (Y; - X;) x B=CIN if X < Y holds, whereCIN is used as

the borrow corresponding to the subtraction of previous 36-bit ¥at¥;_;. The value
computed by ALU is then connected to regidter

Pattern detector: The pattern detector can determine that the value of registeatches

a pattern or not, as qualified by a mask. The mask is used as enable signals for pattern
detector. More specifically, if a certain bit of mask is set to “0”, the corresponding bit

of PATTERNandP is compared. Otherwise, the comparison of the corresponding bits

73



is not performed. The value of pd®AT T ERNis configured as 0.

Using the block RAM and the functionality of DSP slice, we can perform Hardware
Binary Euclidean algorithm without fabric barrel shifter and multiplexers that are used
in the preliminary verison of this paper. We show how each operation in Hardware
Binary Euclidean algorithm can be performed. D&fy3X1022- - - Xo denote 1024 bits
representing such thatx;7x;6- - - Xo representq. Similarly, lety;goay1022 - - Yo denote
1024 bits representing such thaty;7y:s- - - Yo representyy.

Xis even: The numbeiX is write to the block RAM word by word. Thus, the condition
can be determined by reading the least significant biXgpWhen X is input into the

block RAM.

DSP slice

18-bit

Figure 4.4: The outline of rshift(X)

X « rshift;7(X): If X is even, functionrshift,;(X) is executed to remove the
consecutive 0 bits from the least significant bitXf Suppose that we need to com-

puteZ=rshift,;(X). Let ZseZss - - - Zg denote 57 words representidgand show how
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rshifty7(X) is computed as the flow shown in Figuded. All words of X are se-
guentially read from the block RAM beginning wib, and then processed one by one
in a pipelined order. X{(0 < i < 56) is given to the pre-adder of DSP slice. The
pre-adder outputX; as it is. Also, we must obtain the number of consecutive 0 bits
from the least significant bit oK, to execute shift operation using the multiplier. Let
0 = 017016 - - 0o denote the result of logic prefix-or operation X§. The operation

6 «— X% Vi_1(1 < i < 17) is performed, wheréy, = X, = 0 sinceX is even. For
example, suppose thah = (11,001Q01011 1012, 0000), where the numberof con-
secutive 0 bits oX is 4. We haves = (11,1111,1111 1111 0000). Note that except
the consecutive 0 bits from the least significant bit, the other bits all have the value 1.
Let 1 = A37416- - - Ao denote the result of exclusive-or operationsof The operation

Ai < 6i®6i_1(1 < i < 17) is performed, whergy, = 6o = 0 holds. For they shown
above,1 = (00,000Q 000Q 0001,0000) holds. The only one bit that has the value 1
indicates that there are 4 consecutive 0 bits from the least significant Kg ofhen,
the inverse oft which has the value (Q001Q 000Q 000Q 0000), is configured as the
value of portB to perform shift operation using the multiplier of DSP slice. We note
that if X hasn(0 < n < 17) consecutive 0 bits, the value Bfwill be 21", Other-
wise, B = 2° holds. In the case of executing operatdn— rshift;;(X), pre-adder
directly outputsX, to the multiplier. The product oX, x 21" is then computed by the
multiplier. Similarly, for other words oK, X; x 2'""(1 < i < 56) are also computed
one by one in the same way. We note that the consecutive 0 bXg afe always on
the right of 17-th bit from the least significant bit & x 2'"". In the example above,
sincen = 4 holds, X, x 21"~ = (110 0101 0111 0110 0000, 000Q 000Q 0000), where

the 4 consecutive 0 bits from the least significant biXgfare all on the right of 17-th
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bit of X x 2'3. The resulting value oK, x 2'2 is then transferred to ALU via reg-
ister M. The ALU outputsM + C + CIN, where portC is configured as a constant
-1. CIN is used as borrow of subtraction &f - Y which is not needed for execut-
ing rshift;7(X), thusCIN is set to 1. Therefore, ALU outputs the resulting value
Xo X 2'3 to registerP. We then retain higher 184 = 14 bits from 17-th bit o, that is
(11,0010,1011,1011). In other words, the 4 consecutive O bits from the least significant
bit of X, are removed. Since 4 consecutive 0 bits are removed ¥gnwve must pick

n bits from its next wordX; of X to restructure the new word, of Z = rshift;;(X).
Suppose thakX; = (01,1101,001Q00011,1011), the same operation is performed for
X1, andX; x 21~ = (011,101Q 010Q 0111 0110,000Q 000Q 0000) will be stored in
registerP in the next clock cycle since the architecture is pipelined. Similarly, 4 bits
from the least significant bit oX; are also on the right of 17-th bit &. Thus, we can
easily pick 4 bits from the least significant bit ¥f that are store on the right of 17-th
bit of P, and then concatenate with retained 14 bits<gto restructure the new word
Zy =(10,1111,001Q01011,1011) ofZ = rshift;7(X). As shown in Figurel.4, since
XseXs5- + - Xo @re input one by onesgZss - - - Zo can be computed one by one and then
transferred to the block RAM to overwrite the okd We say thaX « rshift;+(X) is
executed such that consecutive 0 bits from the least significant bibo&re removed.

If input X has more than 17 consecutive 0 bits from the least significant bit, the function
rshift,7(X) is repeated untiX is odd. Also, if inputY is even, the same operation is
performed forY.

X > Y: The conditionX > Y can be determined by compariXgandY from the most
significant bit. More specificallyX andY are compared from the word&gs and Ysg.

The wordsXseYse are read from the block RAM concurrently, then are connected to port
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D andA of DSP slice, respectively. We always assume ¥at Y holds, thus, the pre-
adder computeXss — Ys6 , and the resulting value is input to multiplier. The pBris
configured as¥ in this case. Thus, multiplier compute&—Yse)x2’. However, since
Bis 18-bit two’s complement, the most significant bitis sign bit. Hence, iB = 217,

the operationXss— Yse)x(—21") is computed by multiplier, and the resulting value is then
transferred to ALU. The ALU outputs the value to regideeas it is. Clearly, the value
of Xs6— Ysg is left shifted by 17 bits, and is stored in regisigfirom 34-th bit to 17-th bit.

If Xs6 > Ys6 holds, the most significant bit &f have the value 1 sincéés— Yse) x (—217)

is computed by the multiplier. We determine the condifior Y if the most significant
bit P[47] of P has the value 0. However, the val¥g — Ys¢ may be 0 ifXss = Ys6 holds.
Thus, we use the pattern detector to determine that 18 bRE3t17] of registerP are

all 0 or not. If Xsg = Ysg, P[34 : 17] = 0 holds and the detector outputs the value 1.
We need to compare the next words;Yss to determine the conditioX > Y. It takes

3 clock cycles to determine the conditidgs = Ysg from the wordsXsgYsg are input to
the DSP slice, because three-stage pipeline registers are used as shown i Bigure
And in most of cases, we can determine the condifon Y by comparing the words
Xs6Ys6. Hence, we start to execute the operatishift;7(X — Y) one clock cycle after
the wordsXseYse are input to DSP slice. More specifically, we start the execution of
rshift;7(X —Y) from wordsXyYy without waiting the determination of the condition
X > Y, which we will show in operatiorK « rshift;72(X —Y). If Xs¢ = Y56 iS
determined after 3 clock cycles, we terminate the executiarsbi ft;7(X — Y), and
restart to compare the next words;Yss to determine the conditioX > Y.

X «rshift;7(X —Y): Suppose that we need to compite- rshift,(X —Y). Let

ZseZss - - - Zo denote 57 words representidg As mentioned above, if we execute the
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DSP slice
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18-bit 18-bit

X Y

Figure 4.5: The outline afshift;7(X —Y)

functionrshift,;7(X - Y) after the conditiorX > Y is determined which takes 3 clock
cycles, that is, any operation can be performed in 3 clock cycles for each iteration of
do-while loop of the Hardware Binary Euclidean algorithm. Fortunately, we do not
need to wait for the determination of the conditign> Y. In our implementation, all
words of X andY are read from the block RAM one by one beginning wWiiY,, one
clock cycle afterXsgYss are read from the block RAM to determine the condition of
X > Y. Thus, X, — Yo is computed by pre-adder since we assume Xhat Y always
holds. The resulting value ofy — Y, is input to the multiplier, thenXy — Yg)x21""

is computed by the multiplier, whemeis the number of consecutive 0 bits from the
least significant bit oX — Y. Since determination of the conditiof > Y is executed
one clock cycle earlier than functiarshift;7(X — Y), we can dynamically control
the behavior of the ALU depending on the determination of the condKienY. More

specifically, the result okse— Ysg is obtained one clock cycle earlier thaxy ¢ Yg) x 21"
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is accepted by ALU. Hence, Xss > Ys6 holds, we control the behavior of ALU to
compute Ko— Yo) x 2"+ CIN-1. If Xs6 < Ysg is determineds-(Xo— Yo) x 21"~ CIN

is computed by the ALU. The selection GiN depends on the borrow of subtraction
of words X;Y;(0 < i < 56), and we can also dynamically select the valu€tfl by
controlling its behavior. For example, X > Y holds, we selecCIN as 1 to compute
Xo—Yo) x 2 M4+ 1-1= (X — Yo) x 21" If X < Y holds, we selec€IN as 0 to
compute—(Xy — Yp) x 27", Then, the result of the ALU is stored to regiskerHence,
by checking the most significant B447] of registerP, we can obtain the borrow of the
subtractionX; — Yo. Suppose thaX > Y is determined. 1iXy > Yy, P[47] = 0 holds,
otherwise P[47] = 1 holds. In the same wayX{ — Y;) x 21" + CIN - 1 is computed
by ALU in the next clock cycle, We select the value®ifN as the negation d?[47] as
the borrow fromXy — Yo. Thus, ifXg > Yo, (Xs = Y1) x 21 "+ 1 -1 = (X; - Y) x 2

is computed. OtherwiseX{ — Y1) x 2"" — 1 is computed. Next, we briefly show how
to obtain the wordZ, of Z = rshift,7(X - Y) is computed as shown in Figu#e5.
Suppose thakKy > Yp holds. Since the result ofy — Y is shifted by 17- n bits and
stored inP, then consecutive 0 bits from the least significant bitf— Yy are on the
right of 17-th bit ofP. Hence, we retain 18 n bits on the left of 17-th bit oP to store

in a register. In other words, theconsecutive 0 bits from the least significant bit of
Xo — Yo stored on the right of 17-th bit d® are removed. AlsoX; — VY; is shifted by
17— nbits and stored i?. Similarly, then bits from the least significant bit of; — Y;
are stored on the right of 17-th bit 8 Then, we can easily pick upbits from the least
significant bit ofX; — Y; to concatenate with higher 18n bits of X, — Y, to restructure
the new wordZ, as shown in Figurd.5. The same operation is executed for all words

XiYi(0O < i < 56) in a pipelined order. Hence, the wordlsZss - - - Zo can be obtained
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one by one and are then written back to the block RAM to overwrite th&Xold

X # 0: We use a register to store the current number of bitX.off operationX «
rshift;#(X) or X « rshift;7(X-Y) is executed, we rewrite the value of this register.
We determine the conditioX # O if the number of bits oK is not 0.

Let us briefly confirm that the GCD processor core can execute Hardware Binary
Euclidean algorithm. By controlling the behavior of pre-adder, multiplier and ALU
of DSP slice, we can computeshifti7(X —Y), rshifty;(Y — X), rshift;+(X) and
rshift,7(Y) without multiplexers and barrel shifter that use resources of FPGA. The
resulting value can be written to the block RAM to overwiteor Y. The conditions
“Xis even” and Y is even” can be determined whe&g andY;, are written in the block
RAM. The condition X > Y” can be determined by checkingandY from the MSB
(Most Significant Bit). More specifically, iKse > Ysg holds, X > Y” is determined.

We execute thershift7(X — Y) without waiting the determination of the condition
“X > Y”, because the conditionX' > Y” can be determined by comparing the words
Xs56 and Ysg in most of the cases. However, X = Ys6, We terminate the execution
of rshift;7(X —Y), and then read and compaXg; with Yss5. During the computation

of Hardware Binary Euclidean algorithm, the number of bitXadndY is decreased.
For example, ifXss and Ysg both decrease to 0, the next iteration of the do-while loop
of Hardware Binary Euclidean algorithm is only performed for waxgé(0 < i < 56).

We use registers to store the current numbers of bi¥afidY. If the number of bits is

0, we terminate the algorithm.
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4.4 Implementation of Hierarchical GCD cluster with

DDR3 Memory

This section presents a hierarchical parallel architecture that we call hierarchical GCD
cluster using anfé-chip DDR3 memory equipped in Xilinx VC707 evaluation bozédi][

The proposed GCD processor core is compactly designed based on the FDFM approach.
We use only one DSP slice, one block RAM and a few CLBs to implement the proces-
sor core. Therefore, single proposed FDFM GCD processor core is clocked at high
frequency and provides high performance that we show in the next section. On the
other hand, by employing multiple proposed FDFM GCD processors, the computing
time reduces considerably. Since the proposed GCD processor is designed based on
the FDFM approach and uses very few FPGA resources, we have succeeded in imple-
menting more than one thousand proposed GCD processor cores working in parallel in
the FPGA, thus, it makes sense to use multiple servers. Each server controls more than
one hundred GCD processor cores. The hierarchical GCD cluster consists of multiple
GCD clusters, each of which involves multiple GCD processor cores as illustrated in
Figure4.6. A single central server controls local servers, each of which maintains GCD
processor cores in the same GCD cluster.

We show how the hierarchical GCD cluster is used to execute pairwise GCD compu-
tation for RSA moduli. The DDR3 memory consists of 8 banks. Each bank has a mem-
ory array that can be used to store lots of moduli. Suppose that we have a lot of moduli
collected from the Web and all moduli are divided into two sets. We store two sets
of moduli to two diferent banks of DDR3 memory for simplifying the addyesstrol

circuit. Our goal is to compute all pairs of moduli using the hierarchical GCD cluster
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in an FPGA. For this purpose, we partition all moduli of each set into groupsmwith
moduli each. FPGA picks one group from each set and sends them to the central server,
respectively. LeN = {ng,ny,...Ny1} andN” = {ng, n},...n _,} denote two groups of
m moduli each that the central server in the FPGA has received. The hierarchical GCD
cluster computes ger( ;) for all pairs ofi andj (0 < i, j < m- 1), and reports the
GCDs larger than 1.

Next, we will show how the hierarchical GCD cluster computes the GCD$arid
N’ using GCD clusters. Each groupmfmoduli is partitioned intd blocks ofk moduli
each, wheren = bk Let N = {ni, M1, - .., Nrpk-1) andN/ = {ni,k’ni/k+1""’nEi+1)k—1}
(0 <i < b-1) be two sets ok moduli in thei-th groups of set® andN’, respectively.
Each cluster is assigned a task to compute the GCDs of all ¥gksN;) andY (e Njf)
for a pairi andj (0 < i, j < b-1). For this purpose, all moduli i and inN; are
copied from the block RAM in the central server to that in the local server of a GCD
cluster. After the local server receives all moduli, the cluster starts computing the GCDs
of all pairsX (€ Ni) andY (€ N;). The local server then picks a pairandY and copies
them to the block RAM of a GCD processor. Upon completion of the copy, the GCD
processor starts computing the GCD XfandY by the Hardware Binary Euclidean
algorithm. This procedure is repeated for all GCD processors. If a GCD processor
terminates the GCD computation, the local server sends a new pair to it. In this way, the
GCDs of all pairs inN; and N; are computed by a GCD cluster. When a GCD cluster
completes the computation of all GCDs of a given pair of two groups, the central server
picks a new paif and j and sends all moduli if\; and inN; to the local server. The

same operation is repeated until the GCDs of all piemndN’ are computed.
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Figure 4.6: The architecture of the Hierarchical GCD cluster

4.5 Experimental results

We have implemented a GCD processor core for computing the GCD of 1024-bit, 2048-
bit, 4096-bit, and 8192-bit integers in Xilinx Virtex-7 XC7VX485T-2. Taldl& shows

the implementation results. Slice Registers and Slice LUTs (Look-Up-Tables) are hard-
ware resources in CLB (Configurable Logic Blockpg], which are used to implement
sequential logics. The proposed GCD processor is compactly designed based on FDFM
approach. More specifically, we use only one DSP slice to perform subtraction and
shift operation for very large numbers and use one block RAM to store the computed
result instead of using lots of CLBs. Therefore, the proposed FDFM GCD processor is
clocked at over 380MHz and provides a high performance. Calculated simply, single

proposed FDFM GCD processor core computes one GCD of two 1024-bit, 2048-bit,
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4096-bit and 8192-bit moduli in expected 73u$2253.3ms, 915.7@&s and 3614.91s.

We control the behavior of the embedded ALU of the DSP slice to per¥sY or
Y — X dynamically instead of using multiplexers. Also, we use the embedded multiplier
of the DSP slice to perform the shift operation instead of the barrel shifter that uses a lot
of FPGA logic resources. Since these mechanisms simplify the circuit of the proposed

processor, the frequency of the proposed FDFM processor is over 380MHz that is very

high.

Table 4.2: Implementation results of one GCD processor for 1024-bit, 2048-bit, 4096-

bit, and 8192-bit moduli

Slice Slice DSP  18k-bit block Clock cycles Clock
Registers LUTs slices RAMs for computing | Frequency
Available 607200 303600 2800 2060 one GCD (MHz)
1024-bit 179 163 1 1 28006.1 383.00
2048-bit 185 174 1 1 98198.5 387.60
4096-bit 191 178 1 1 359131.4 392.16
8192-hit 197 188 1 1 1381328.5 382.12

First, the simulation of pairwise GCD computation for 1024-bit RSA moduli without
DDR3 memory is performed. In our implementation, a GCD cluster with a local cluster
with eight 18k-bit block RAMs and 128 GCD processor cores are used. Since four
18k-bit block RAMs can stor@%?zﬂ = 71 moduli with 1024 bits, each GCD cluster
computes the GCDs of 771 = 5041 pairs of blocks stored in block RAMs. Hence,
each GCD processor computes the GCDs for expe%d: 39.4 pairs of 1024-bit
moduli. Also we arranged 64 block RAMs to the central server. Since a block of moduli
is stored in four block RAMs, we can think that the central server ha8 8 64 pairs

of blocks. Thus, each cluster computes the GCDs for moduli in exp%tedl.S pairs
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of blocks since we have succeeded in implementing 14 clusters in an FPGA4Table
shows the implementation results of clusters of our work. Since a cluster server uses
eight 18k-bit block RAMs, each GCD cluster with 128 GCD processors involves-128

8 = 136 block RAMSs. In this paper, the implementation of the hierarchical GCD cluster
with 14 GCD clusters and the central server, usex 1128 = 1792 DSP slices and

14 x 136+ 64 = 1968 block RAMs. Due to the overhead for the connection between
the central server and GCD clusters, the clock frequency is decreased to 207.04MHz.
The used block RAMs of the implementation with 14 clusters are close to the available

number.

Table 4.3: Implementation results of the GCD cluster and the hierarchical GCD cluster

for 1024-bit moduli

Slice Slice DSP 18kb block  Clock

Registers LUTs slices RAMs | Frequency

Available 607200 303600 2800 2060 (MHz)
one cluster 23414 20598 128 136 327.87
hierarchical clusters, 325987 272127 1792 1968 207.04

We have evaluated the number of clock cycles to compute all GCDs wf71=
5041 pairs of 1024-bit moduli by one GCD cluster. For this purpose, we have used RSA
moduli generated by OpenSSL Toolkit. By performing the simulation, one cluster with
128 processors takes 1157789 clock cycles to compute the GCDs of 5041 pairs. If a
GCD cluster is clocked at 207.04MHz as shown in Tab& the expected computing
time is 115778%207.04MHz = 5.592ms. Also, it takes about &2 x 57 = 8094 clock
cycles to transfer a pair of two blocks involving 71 moduli each and this overhead is

negligible. Since up to 14 clusters can be implemented theoretically, we can expect that
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the GCDs of 504Xk 14 = 70574 pairs can be computed in the same time. Therefore,

we say that one GCD can be computed in expect88dZng70574= 0.0792us.

Table 4.4: Implementation results of hierarchical GCD clusters for 1024-bit, 2048-bit,

4096-bit, and 8192-bit moduli

Slice Slice DSP  18kb block Clock | Average | Number
Registers LUTs slices RAMs Frequengy Time of
Available | 607200 303600 2800 2060 (MHz) (us) clusters
1024-bit 235486 206955 1280 1424 250.00 0.0904 10
2048-bit 220697 204460 1152 1424 250.00 0.3422 9
4096-bit 230636 213670 1152 1568 250.00 1.2537 9
8192-bit 244621 226521 1152 1568 250.00 4.7895 9

Next, for measuring the performance of GCD computation accurately, we implement
the hierarchical GCD cluster to compute all pairs of moduli stored inflaolop DDR3
memory MT8JTF12864HZ-1G6G B equipped in VC707 evaluation boar@ll]. Un-
fortunately, if the used resources of FPGA is close to the available number, the circuit
of FPGA becomes unstable and can not compute the results correctly when it is actually
operated in the evaluation board. According to the experimental results, 10 clusters can
be implemented in the FPGA clocked at 250MHz for pairwise GCD computation of
1024-bit RSA moduli. In other words, 1280 GCD processor cores can be implemented
in FPGA XC7VX485T-2 equipped in VC707 evaluation board, and works in parallel
to compute GCDs of all pairs of 1024-bit RSA moduli stored in tliechip DDR3
memory.

We use the built-in CORE Generator software of Xilinx Vivado design suite 2015.1
to generate a DDR3 memory interface core in the FPGA to control the write and read

operations of the DDR3 memory. The DDR3 memory consists of 8 banks. Each bank
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has a 2* x 2! memory array, of which each element has 64-bit. In other words, each
bank of the DDR3 memory can store up td4{& 2%° x 64bitsy1024bits= 1048576
1024-bit RSA moduli. The DDR3 memory runs in 500MHz that is 2 times faster
than the FPGA. Moreover, the DDR3 memonjers high-speed data transfers on the
rising and falling edges of the clock of it. Hence, the DDR3 memory can perform
500MHz/250MHz x 2 = 4 times write or read operations in one clock cycle of the
FPGA. Hence, we can read64bits= 256bits data from DDR3 memory in one clock
cycle of the FPGA. Suppose that we have a lot of 1024-bit RSA moduli collected from
the Web, we divide all moduli into two sets and store them to tvii@dknt banks of the
DDR3 memory. We patrtition all moduli of each set into groups witlk&E 568 moduli

each. FPGA picks one group from each set and sends them to the central server, respec-
tively. More specifically, we send read commands to the DDR3 memory interface core
for reading a 1024-bit modulus. Then, the interface core performs the read operation
of the DDR3 memory and the modulus is transferred to FPGA after a few clock cycles.
The obtained 1024-bit modulus is then stored to the block RAMs of central server as
18-bit words in 57 clock cycles, and we read the next 1024-bit modulus at the same time.
The same operation is repeated until two groups of 568 moduli are stored in the central
server. Moreover, the interface core processes a refresh operation to maintain the data of
the DDR3 memory in refresh interval, and other operations of DDR3 memory must wait
for the refresh operation. By implementing the hierarchical GCD cluster with 1280 pro-
cessor cores in the FPGA, we have that it takes 7294417 clock cycles compute the GCDs
of 568x 568 = 322624 pairs, where 71646 clock cycles for transferring&58024-bit

moduli from DDR3 memory to the central server of the FPGA is included. Comparing

with the total clock cycles for computing the GCDs of 322624 pairs of 1024-bit moduli,
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the clock cycles for transferring moduli from DDR3 memory to central server is negli-
gible. Moreover, after all moduli of central server are transferred to the clusters, we can
read the next two groups with 568 moduli each from DDR3 memory while the GCD
computation of the clusters is still being performed. In other words, the operation of
transferring moduli from DDR3 memory to central server can be overlapped. Hence,
we note that the transfer time is not significant. Since the hierarchical GCD cluster runs
in 250MHz, the computing time is 72944/12650MHz = 29.178ms. Therefore, we say

that one GCD can be computed in.2B8mg322624= 0.0904us. For performing pair-

wise GCD computation of 2048-bit, 4096-bit, and 8192-bit moduli, we have succeeded
in implementing the hierarchical GCD cluster that has 9 clusters in the FPGA, where
the frequency of FPGA is also 250MHz. The implementation results of hierarchical
clusters and computing time for one GCD of 1024-bit, 2048-bit, 4096-bit, and 8192-bit
moduli is also shown in Tablé.4. The hierarchical GCD cluster is designed based on
FDFM GCD processors that are compact and use very few FPGA resources. One of
the advantage of the FDFM approach is that we can implement multiple FDFM pro-
cessors working in parallel to reduce the computing time if enough hardware resources
are available. Comparing with single FDFM GCD processor core, the computing time
of the hierarchical GCD cluster for one GCD reduces considerably by employing more
than one thousand FDFM GCD processor cores.

According to the implementation results as shown in Tdbdethe hierarchical GCD
cluster computes one GCD of two 8192-bit moduli in 4.7895that is 52.98 times
slower than the time for computing one GCD of two 1024-bit moduli. We show the
reason of the large flerence. Since the large input numbers are stored in the block

RAM as 18-bit words and processed word by word, if the width of the input numbers
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increases, the number of iterations of the do-while loop of the Hardware Binary Eu-
clidean algorithm will increase. Also, the clock cycles for performing each iteration of
the do-while loop will increase. Hence, the proposed GCD processor takes more clock
cycles for computing one GCD of larger numbers. For example, as shown in&iable
single proposed processor takes 1381328.5 clock cycles for computing one GCD of two
8192-bit moduli, that is 49.32 times more than that for computing one GCD of two
1024-bit moduli. This is the main reason for the larg@etence of the computing time

for 1024-bit and 8192-bit moduli. Recall that each 1024-bit and 8192-bit modulus is
stored in the block RAM as 57 and 456 18-bit words, respectively. Hence, the cen-
tral server and cluster server take more time for transferring the 8192-bit moduli than
that for 1024-bit moduli. However, since the data transfer is overlapped with the GCD
computation, the transfer time does not significantlget the large dierence of the
computing time for 1024-bit and 8192-bit moduli. Moreover, the number of clusters for
8192-bit moduli is 9, that is less than that for 1024-bit moduli. Based on the reasons
above, one GCD of two 8192-bit moduli is computed 52.98 times slower than one GCD

of two 1024-bit moduli in the implementation of hierarchical GCD cluster.

4.6 Concluding remarks

We have presented affieient processor core for computing GCDs of very large num-
bers. Since the processor is designed based on the FDFM approach, each processor core
uses only one DSP slice and one 18k-bit block RAM. We implement the hierarchical
GCD cluster with 1280 processor cores in Xilinx FPGA XC7VX485T-2. The imple-
mentation with 1280 processor cores executes pairwise GCD computation for 1024-bit

RSA moduli stored in anfé-chip DDR3 memory on Xilinx VC707 evaluation board.
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The experimental results shows that our implementation of 1280 GCD processor cores
computes one GCD of two 1024-bit RSA moduli in 0.0884ncluding the time of data
transferring from €-chip DDR3 memory to FPGA. It is 3.8 times faster than the best
GPU implementation and 316 times faster than a sequential implementation on the Intel

Xeon CPU.
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Chapter 5

Implementations of the LZW
compression and decompression

algorithms on the FPGA

LZW compression algorithm is one of the most famous compression algorithms. In this
chapter, we first show arffecient hardware architecture for accelerating LZW compres-
sion using an FPGA. Since the proposed module of LZW compression is compactly
designed, we have succeeded in implementing 24 identical modules in an FPGA. On
the other hand, we present a hardware LZW decompression algorithm and implement it
in the FPGA. Also, we have succeeded in implementing 34 LZW decompression mod-
ules which works in parallel on the FPGA. According to the experimental results, the
implementation of 24 modules of LZW compression attains a speed-up factor of 23.51
times faster than a sequential software implementation on a single CPU. The imple-
mentation of 34 LZW decompression runs up to 64.39 times faster than a sequential

implementation on the CPU.
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5.1 Introduction

Data compression is one of the most important tasks in the area of computer engineering.
It is always used to improve thdfiency of data transmission and save the storage of
data. Data compression includes two basic methods, lossy compression and lossless
compression. Lossy compression uses the fact that human are not sensitive to some
frequency ingredients of image or sound. Some information of the original data are
discarded in lossy compression. Thus, the decompressed data are not identical to the
original data. On the other hand, lossless compression preserves all information of the
original data. In other words, the decompression of lossless compression creates exactly
the same data with the original data.

Some famous compression algorithm are proposed such as I62]1.¢78 [63]
and LZW [7]. LZ77 algorithm uses two Wiers such as dictionary Her and pre-
view bufer. Dictionary btfer includes the processed data and previeftelstores the
pending data. In LZ77 algorithm, the longest string of previeffdsumatching to the
string of dictionary bffer is converted to a code that corresponds to the index of dic-
tionary bufer. However, it is not suitable to hardware implementation since it needs a
large dictionary bffer and preview bflier. LZ78 algorithm creates a dictionary table
and finds the longest matched string in the dictionary table. If there is no matched string
in the dictionary table, it outputs the index of dictionary table and the last character of
the unmatched string. LZW algorithm is a variant of LZ78 algorithm that outputs only
the index of matched string of dictionary table. In our implementation, we focus on
LZW compression which is used in Unix utility “compress” and in GIF image format.
LZW compression is included in TIFF standadd, [which is widely used in the area of

commercial digital printing. The LZW compression algorithm converts an input string
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of characters into a series of codes using a dictionary that maps strings into codes. In
LZW compression in TIFF standard, characters are 8-bit unsigned integers represent-
ing intensity levels of gray-scale image, and codes are 12-bit unsigned integers. Since
dictionary tables are created by reading input data one by one, LZW compression and
decompression are hard to parallelize. One of the main goals of this chapter is to develop
an dficient hardware architecture of LZW compression and implement it in an FPGA.
Furthermore, suppose that a high-definition image or video is compressed to a file once,
and stored to the server of a commercial organization to be accessed by usgesemtdi
regions or countries. The compressed file is transferred to users through the network,
and then is decompressed locally. Hence, decompression is performed more frequently
than compression. Also, the other goal of this chapter is to presefficier® hardware
architecture of LZW decompression in the FPGA.

Recent FPGAs have embedded block RAMs. As illustrated in Figuehe Xilinx
Virtex-7 family FPGAs have block RAMs, each of which is an embedded dual-port
memory supporting synchronized read and write operations, and can be configured as
a 36k-bit or two 18k-bit dual port RAMs5[0]. Since FPGA chips maintain relatively
low price and its programmable features, it is suitable for a hardware implementation
of image processing method to a great extent. They are widely used in consumer and
industrial products for accelerating processor intensive algorithm.

Numerous implementations of variety of LZW compression and decompression on
FPGAs or VLSIs have been proposed to accelerate the computation. LZRW3 data com-
pression corel9] is designed by Helion technology. This data compression core uses
LZRWa3 algorithm that is a variant of LZ77 algorithm. This core provides a maximum

compression throughput of 172MBytesand a maximum decompression throughput
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of 180.75MBytess in Xilinx Virtex-5 FPGA. Navgqiet al. [37] implemented a variant
of LZW algorithm in Xilinx Virtex-2 FPGA, where only one fixed-length dictionary
table is used. This implementation provides the maximum compression and decom-
pression throughputs of 87.5MBytssand 160MBytess in Xilinx Virtex-2 FPGA. Sev-
eral implementations of data compression are proposed based on PDLZW(Parallel Dic-
tionary LZW) algorithm that is a variant of LZW algorithn3], 32, 40]. Instead of
one variable-length table used in LZW algorithm, multiple fixed-length tables are used
in PDLZW algorithm to accelerate the speed of data compression. Lin implemented
the PDLZW algorithm in a VLSI that provides a maximum compression throughput
of 33.33MBytegs and a maximum decompression throughput of 45.5MBytd].
Lin et al. also proposed a two stage hardware architecture that combines PDLZW and
AH(Adaptive Hutman) algorithm and implement it in a VLSB]. By decreasing the
number of parallel dictionaries, this implementation provides a maximum compression
throughput of 125MByte's and a maximum decompression throughput of 83MBgtes
In these hardware implementations, the LZW compression algorithms is modified to
be suitable for hardware implementation. However, these modified algorithms sacrifice
compression ratio and provide worse performance than the original LZW compression
algorithm. On the other hand, there is some research for accelerating the computation
of LZW compression using GPUs (Graphics Processing Units)44], multiproces-
sor [26] and cluster systems3fll. However, as far as we know, there is no hardware
implementation of the original LZW compression and decompression algorithms since
it is not easy to implement them.

The first contribution of this chapter is to present #iceent hardware LZW com-

pression algorithm and to implement it in an FPGA. In general, the original LZW
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compression uses a dictionary table which stores variable-length strings. On the other
hand, in our implementation, we use a pointer-character tdhteatly. Each pair of
pointer and character corresponds to a string. Characters are 8-bit unsigned integers
and pointers are 12-bit unsigned integers. Since the creation of dictionary depends on
input string of characters, there ar& % 22 = 220 possible combinations of pointer

and character. Moreover, each pair of pointer and character corresponds to an index of
the dictionary, where the index is 12-bit unsigned integers if dictionary size is 4096.
If the pointer-character table is implemented in a straightforward way, the table needs
220 x 12bits= 1.5MBytes. Therefore, we have reduced the size of the pointer-character
table to 32KBytes using a hash table. In the proposed architectureffizsiergly use
dual-port block RAMs embedded in the FPGA to implement a hash table that is used
as the dictionary. Using independent two ports of the block RAM, reading and writ-
ing operations for the hash table are performed simultaneously. Additionally, we can
read eight values in the hash table in one clock cycle by partitioning the hash table into
eight tables. The proposed module of LZW compression in Virtex-7 family FPGA uses
104 slice registers, 346 slice LUTs and 18 block RAMs with 18k-bit each, where the
frequency of FPGA is 179.99MHz. Since the compression ratio is data dependent, the
throughput of our implementation for LZW compressioftelis for input data. When

the compression ratio of input file is lower, that means the size of compressed file is
larger, the throughput time is shorter. On the other hand, when the compression ratio
of input file is higher, the throughput time is longer. According to the experimental
results, the compression throughput of the proposed module is 118.73ViByfeite

the compression ratio (original image size : compressed image size) is 1.43:1. On the

other hand, the compression throughput is 86.79MBgteile the compression ratio

95



is 36.72:1. Furthermore, since the proposed module of LZW compression uses a few
FPGA resources, we have succeeded in implementing 24 identical modules in an FPGA,
where the frequency is 163.35MHz and each module has independenbutput ports

to work in parallel. Hence, the implementation of 24 proposed modules attains a speed
up factor that surpasses 23.51 times over a sequential algorithm on a single CPU. The
number of available inpgautput ports of the targeted FPGA is the bottleneck of our
FPGA implementation of multiple modules. In addition, assuming that the limitation of
the number of inpybutput ports is ignored, we show that at most 110 proposed mod-
ules can be arranged in the FPGA. It is a theoretical result, but the result shows the
compactness of the proposed architecture.

On the other hand, the second contribution of this chapter is to presefii@ant
hardware LZW decompression algorithm and to implement it in an FPGA. In general,
LZW decompression uses a dictionary table which stores variable-length strings. How-
ever, in our hardware algorithm we use two tables, pointer tpldad character table
Ct which store a single value in each entry. The algorithm consists of three steps and
these steps are concurrently executitiently using the dual-port block RAMs. The
proposed module of hardware LZW decompression algorithm in Virtex-7 family FPGA
uses 278 slice registers, 307 slice LUTs and 13 block RAMs with 18k-bit, where the
frequency of FPGA is 301.02MHz. The running time of proposed module attains a
speed up factor that surpasses 2.16 times over a sequential algorithm on a single CPU.
Since the decompression throughput is data dependent, according to the experimental
results, the decompression throughput of our module is about 280.17 Byibde
the compression ratio of input file is extremely high. Even in the worst condition, the

decompression throughput of proposed module is about 143.54MByi&ks0, since
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the proposed module uses very few resources, we have succeeded in implementing 34
modules in an FPGA, where all modules works in parallel clocked at 263.92MHz. The
implementation of 34 proposed LZW decompression modules attains a speed up fac-
tor that surpasses 64.39 times over a sequential algorithm on a single CPU. Similarly,
we implement multiple modules in the FPGA, where we assume that the limitation of
the number of inpybutput ports is ignored. We show that 150 LZW decompression

modules can be arranged to the FPGA.

5.2 LZW compression and decompression algorithms

The main purpose of this section is to review LZW compression and decompression
algorithms. For details of the algorithms, the interested reader may refer to Section 13
in [1].

The LZW (Lempei-Ziv-Welch) 47] lossless data compression algorithm converts
an input string of characters into a series of codes using a dictionary table that maps
strings into codes. If the input is an image, characters may be 8-bit unsigned integers.
It reads characters in an input image string one by one and adds an entry in a dictionary
table. In the same time, it writes an output series of codes by looking up the dictionary
table. LetX = XgX; - - - Xp_1 be an input string of characters aMd= yoy; - - - Ym-1 be an
output string of codes. For simplicity, we assume that an input string is a string of 4
characters, b, c andd. Let C be a dictionary table, which determines a mapping of a
code to a string, where codes are non-negative integers. Initi{lly,= a, C(1) = b,

C(2) = candC(3) = d. By operation AddTable, new code is assigned to a string. For
example, if AddTableagb) is executed after initialization &, we haveC(4) = ch.

The LZW compression algorithm finds the longest pré&figf the current input that
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is already added in the dictionary table, and outputs the co@e lbét x be the following
character of2. SinceQ - x is not in the dictionary table, it is added to the dictionary,
where “” denotes the concatenation of strioyaracter. The same procedure is repeated
from x. Let C-%(Q) denote the index of whereQ is stored. For example, &(3) = d,

thenC-1(d) = 3. The LZW compression algorithm is described as follows:

[LZW compression algorithm]
Q « Xo;
fori < 1ton-1do
if(Q - x;isinC)
Q— Q-X;
else
OutputC~1(Q)); AddTable@ - x); Q « x;

OutputC~(Q));

Table5.1 shows the compression flow of an input strirdptbcbcda First, Q «
Xo = Cis executed. Next, sinc@ - x; = cbis notinC, C™1(c) = 2 is output anctb is
added in the dictionary, then we ha@é4) = cb. Also, Q < x; = bis performed. It

should have no dicult to confirm that 214630 is output by this algorithm.

Table 5.1: LZW compression flow for input string= cbcbcbcda

i 0 1 2 3 4 5 6 7 8

Xi c b c b [ b c d a

Q| - c b c cb c cb cbc d a
S ch(4) bo5) - cbd6) - - ched7) da@8)

Y 2 1 - 4 - - 6 3 0
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Next, let us discuss implementations of dictionary t&hld he following operations
for a string® of characters and the following charactemust be supported for LZW
compression(i) determine if@ - x; is in C. (i) return the value o€=1(Q). (iii) perform
AddTableQ-x). A straightforward implementation of the dictionary taBBlevhich uses
an array such thatth (i > 0) element store€(i). However, since the lengths of strings
in C are variable, the straightforward implementation of dictior@ig not dficient. All
values ofC(i) may be accessed to comp@e'(£2), We can use an associative array with
keysC(i) and values, which can be implemented by a balanced binary tree or a hash
table. But, these operations take more tRg®|) time. If the compression ratio is high,
© may be a long string. Hence, it is not a good idea to use a conventional associative
array to implemenc.

In this section, we use a pointer-character table to implement the dictionary table
C as shown in Tabl®.2 In this table, a pointep(j) and a charactet(j) are stored
for each codg. Also, a back-pointeq(j, x) for every codej and charactek is used.
Back-pointer table can be implemented using an associative array which we will dis-
cuss later. We can obtain a stri@{j) by traversingp until we reach NULL. More

specifically,C(j) can be obtained from andc by the following definition:

i) = c(j) if p(j) = NULL 5.0)
C(p(})) - c()) otherwise
For example, in Tabl&.2, we haveC(6) = C(4) - ¢ = C(2) - bc = cbc A back-pointer
q(j, xX) takes valuk if p(k) = j andc(k) = x. If there exists n& such thatp(k) = |, then
q(j, k) = NULL. This is used to perform the three operations abdfieiently.
We implement operation AddTable( x) for dictionaryC by performing operation
AddTable(,x) for the pointer-character table. If AddTabje() is performed, a new

entry k with p(k) = j andc(k) = x is added to the pointer-character table. In other
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Table 5.2: A pointer-character table and a back-pointer table to implement dictionary

tableC
i 0 1 2 3 4 5 6 7 8 9
p(j) NULL NULL NULL NULL 2 1 4 6 3 0
c(j) a b c d b c c d a
q(j,a | NULL NULL NULL 8 NULL NULL NULL NULL NULL NULL

q(j,b) | NULL  NULL 4 NULL NULL NULL NULL NULL NULL NULL
q(j,c) | NULL 5 NULL  NULL 6 NULL NULL NULL NULL NULL
q(j,d) | NULL NULL NULL NULL NULL 7 NULL NULL NULL NULL

C()) a b c d cb bc cbe cbed da

words, the value is written inq(j, ) of back-pointer table. Using the back-pointer

table, we can rewrite LZW compression algorithm as follows:

[LZW compression algorithm with the back-pointer table]
j « cH(x0);
fori < 1ton-1do
if(q(j, i) # NULL)
j < alj, x);
else
Output(j); AddTable(, x); j « c(x);

Output(j);

We show how Tablé.2 is created. Firstj « c1(x) = 2 is executed. Next, since
d(j, X)) = q(2,b) is NULL, Output(2) and AddTable(B) are executed. Then, the
pointer-character table has new enp¢#) = 2 andc(4) = b. Also, the value 4 is stored

in g(2, b), and operation) < ¢ 1(b) = 1 is executed. In the next iteration of the for-loop,
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sinceq(1, c) is NULL, Output(1) and AddTable(t) are executed. The pointer-character
table has new entrg(5) = 1 andc(5) = ¢, and the value 5 is added @1, ¢). Similarly,

we can confirm that a series of codes 214630 is output by this algorithm. We will show
the implementation of this algorithm using the back-pointer tatdéerwards.

Next, let us show LZW decompression algorithm. Cdbethe code tablesuch that
C(0)=4a,C(1) = b,C(2) = ¢, andC(3) = d. Also, letC,(i) denote the first character of
codei. For exampleC;(4) = cif C(4) = ch. Similarly to LZW compression, the LZW
decompression algorithm reads a str@f codes one by one and adds an entry of a
code table. At the same time, it writes a striXof characters. The LZW decompression

algorithm is described as follows:

[LZW decompression algorithm]

OutputC(yo));

fori <~ 1ton-1do
if(y; isin C)
OutputC(y;)); AddTableC(yi-1) - C1(%i));

else

OutputC(yi-1) - Ca(Yi-1)); AddTableC(yi-1) - C1(Yi-1));

Table5.3 shows the decompression process for a code string 214630. {3t
c is output. Sincey; = 1is inC, C(1) = b is output and AddTablep) is per-
formed. HenceC(4) = cb holds. Next, sincg, = 4 is inC, C(4) = cbis output
and AddTabldgc) is performed. ThusC(5) = bc holds. Sincey; = 6 is not inC,
C(y2) - C1(y2) = cbcis output and AddTablebg is performed. The reader should have
no difficulty to confirm thatbcbcbcdas output by this algorithm.

Since the length of strings (@ are variable, it is dficult to implement this algorithm

on hardware as it is. Therefore, we propose a new LZW decompression algorithm for
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Table 5.3: Code tabl€ and the output string for 214630

i o 1 2 3 4 5
vi |2 1 4 6 3 0
C| - cb@d) boB) cbq6) cbed7) da@)
X |c b cb chc d a

hardware implementation without such dictionary table.
We assume that input characters are selected from an alphabet (or a sek) with
charactersy(0), a(1),...,a(k — 1). We usek = 4 charactersx(0) = a, a(1) = b,
a(2) = ¢, anda(3) = d, when we show examples as before. Yet ypy; - - - Ym_1 denote
the compressed string of codes obtained by the LZW compression algorithm.
Before showing the LZW decompression for hardware implementation, we define

several notations. We define pointer taplasing code tabl¥ as follows:

_ NULL ifO <i<k-1
p(i) = (5.2)
Yi-k fk<i<k+m-1
We can traverse pointer talgeuntil we reach NULL. Let®(i) = i andp!*(i) = p(p!(i))
for all j > 0. In other wordsp/(i) is the code where we reach from cdda j pointer
traversing operations. Léi(i) be an integer satisfying-®(i) = NULL and LetC; be
the character table defined as follows:
. a(i) foO<i<k-1
Ct(p(i)) fk<i<k+m-1
It should have no diiculty to confirm thatC;(i) represents the first character©fi),
and L(i) is the length ofC(i). Using C; and p, we can define the value @(i) in
following. If 0 <i < k-1, C(i) = C¢(i). On the other hand, ik <i < k+ m-1,
C(i) = Ce(p-O7(i)) - Ce(pO72(i) + 1) - C(p-O3() + 1) -- Ce(p°(i) + 1)
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Table 5.4: The values @d, L, Cs andC if Y = 214630

i 0

1

2

3

p() | NULL NULL NULL NULL 2 1 4 6 3 0
Ct(i) a b c d c b c [+ d a
L(i) 1 1 1 1 2 2 3 4 2

C(i) a b c d cb bc cbc cbed da -

Table 5.4 shows the value op, Cs, L, andC for Y = 214630. According to the

table, we can obtain the decompressed string. Figurshows an example of obtaining

the decompression string of coge= 6, that isC(6), from the table. For codg = 6,

we first readp(6) = 4 from tablep. Also, we readC;(6 + 1) = c from tableC; that

corresponds to the last characteGg6). Since the obtained pointer 4 is not NULL, we

continue the traversing of table. Nex{(4) = 2 andC¢(4 + 1) = b are read from tables

p andCs, respectively. Finally, pointep(2) is read out, and we stop the traversing

operation for code;s becausey(2) is NULL. Also, C¢(2) = cis read out as the first

character of the string corresponding to cggeWe note that each character of string

corresponding to a code is obtained in reverse order.

F>c

i [ p(i) [Cy(4) i [ p(i) |Cr(3) i | p(i) [Cy(3)
0 [NULL| a 0 [NULL| a 0 INULL| a
1 INULL| b 1 [NULL| 1 [NULL|
2 INULL| ¢ 2 INULL| ¢ 2—» 2 [NULL
3 [NULL| d 3 [NULL| d [ 3 INULL| d
4 2 c 4: 4 c 4 2 c
5 1 b [ 5 1 o 1»b 5 1 b
y3 = 6‘ 6 c 6 4 c 6 4 c
7 6 Cecdb»ec 7 6 c 7 6 c
8 3 d 8 3 d 8 3 d
9 0 a 9 0 a 9 0 a
Figure 5.1: An example of traversing tablesndCy

We are now in position to show hardware LZW decompression. This algorithm can
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be done in three steps as follows:
[Hardware LZW decompression algorithm]
Step 1. Update tablep andC;.
Step 2: Compute partially-reversal strings ¥fandL usingp andCs.
Step 3: Reorder decompression striXg
In Step 1, we initialize the values @fi), C(i) for eachi (0 <i < k— 1). After that,
we compute the values @f(i) andC;(i) for eachi (k < i < k+ m—1). The details of

Step 1 are spelled out as follows:

[Step 1 of hardware LZW decompression algorithm]
fori < Otok—-1do

p(i) < NULL; Ct(i) « a(i);
fori < ktok+m-1do

p(i) < Yik: Ct(i) < Ct(Yi-k);

In Step 2 of hardware LZW decompression algorithm, for each compressed;code
(0O<i<m-=1)ofY, C'(y) is read from tabl€; by traversing pointer tablp, where
C'(i) denotes a string obtained by revers{d). At the same time, the length of string
L(i) is also computed. By traversing talile with table p, the reversed string is read
and temporally stored to an outputfter for each character. Letdenote a table for
storing characters of concatenation of stri@jéy,) - C'(y1) - - - C"(ym-1). For example,
if C(7) = abg in Step 2, we hav€'(7) = cbaandL(7) = 2. The details of Step 2 of

hardware LZW decompression algorithm are shown as follows:

[Step 2 of hardware LZW decompression algorithm]

addr< 0
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fori < O0tom-1do
j <Y L(i) < O;
while(p(j) # NULL)
o(addr) « Cs(j +1); j < p(j);
L(i) « L(i) + 1; addr « addr+ 1,

o(addr) « Cs(j); L(i) « L(i) + 1; addr « addr+ 1,

In Step 3 of hardware LZW decompression algorithm, a concatenated string of
C'(yo) - C'(y1) - - - C'(ym-1) Stored in output bffier o is arranged in corrected order, that
is,C(Yo) - C(v1) - - - C(ym-1). Each ordered character is output one by one. The algorithm

code of Step 3 is shown as follows:

[Step 3 of hardware LZW decompression algorithm]
addr < O;
fori < O0Otom-1do
| L(i);
while(l > 0)
Outputp(addr+ 1 —1));1 « | - 1;

addr « addr+ L(i);

By sequentially executing Step 1, Step 2, and Step 3, LZW decompression can be
performed. In addition, the execution of these steps can be overlapped. More specifi-
cally, after an execution for an input code in each step is completed, the execution for
the code in the next step can be started. FiguBallustrates a process of the above
execution for an input compressed code ygy; - - - Ym-1. We will show the FPGA im-
plementation of the hardware LZW decompression algorithm after showing the imple-

mentation of LZW compression. In our FPGA implementation of LZW decompression,
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Figure 5.2: Process of our LZW decompression hardware for an input compressed code

Y =Yoy1-*Ym1

we use block RAMs of FPGA to implement the pointer tapJeharacter tabl€;, and
output bufero. In the utilized FPGA, the block RAMs can be configured as a dual-port
block RAM. Since dual-port block RAM has two set of ports that work independently,
the writing and reading operations of these tables can be performed concurrently. Using

the block RAMs diciently, we realizes the overlapped execution of the three steps.

5.3 TIFF image file

In our implementation, we focus on the compression of an image into a TIFF image file,
and the decompression of LZW compressed data in a TIFF image file. We assume that
a TIFF image file contains a gray-scale image with 8-bit depth, that is, each pixel has
intensity represented by an 8-bit unsigned integer. Since each of RGB or CMYK color
planes can be handled as a gray scale image, it is obvious to modify gray scale image
TIFF compression for color image compression. For further details on a TIFF image
file, the interested reader may refer .

We show how image data in a TIFF image file is compressed. Since every pixel
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has an 8-bit intensity level, we can think that an input string of an integer in the range
[0, 255]. Hence, codes from 0 to 255 are assigned to these integers. Code 256 (ClearCode)
is reserved to clear the code table. Code 257 (EndOfinformation) is used to specify the
end of the data. Thus, AddTable operations assign codes to strings from code 258.
While the entry of the code table is less than 512, codes are represented as 9-bit integer.
After adding code table entry 511, we switch to 10-bit codes. Similarly, after adding
code table entry 1023 and 2037, 11-bit codes and 12-bit codes are used, respectively. As
soon as code table entry 4094 is added, ClearCode is output. After that, the code table is
re-initialized and AddTable operations use codes from 258 again. The same procedure
is repeated until all pixels are converted into codes. After the code for the last pixel is
output, EndOfinformation is written out. We can think that a code string is separated
by ClearCode, We call each of theancode segmentExcept the last one, each code
segment has 4094257+ 1 = 3838 codes. The last code segment may have codes less

than that.

5.4 FPGA architecture for LZW compression

This section describes our FPGA architecture of the LZW compression algorithm with
back-pointer table using block RAMs in Xilinx Virtex-7 FPGA. We use Xilinx Virtex-7
Family FPGA XC7VX485T-2 as the target devids.

In this section, we show the implementation of the back-pointer tqlte TIFF
LZW compression. Recall that codes have 12 bits and characters have 8bits, thus, we
can implement) as a table that has'2x 28 = 220 entries. Also, the value of each
entryq(j, X) has 12 bits. Hence, the back-pointer table neéfis 22bits= 1.5MBytes.

However, the straightforward implementation has large overhead due to the cache miss.
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In other words, most entries of the table are not used. Thus, we use a hash table to
implement the back-pointer tabig

In the proposed FPGA implementation, we use a hash table that is suitable for FPGA
implementation. The hash table consists of 1024 budRg® < s < 1023) and each
bucketBs has 8 entriesegg, es1,...,657. To implement this hash table, we use two
tables,number tableand data table Let |Bg denote the number of values stored in
bucketBs. Each element of the number table stojeg. Also, the data table stores
values of back-pointers. The table is partitioned into 8 tables, each of which stores
one of the 8 entries. Each entry stores 12-bit pointeB-bit characterx and 12-bit
back-pointeiq(j, X). Figure5.3illustrates the structure of the hash table.

bucket

h(j, ) A
0 i IBol €0,0 eo,1 €0,2 0,3 0,4 €0,5 €0,6 €o,7
..............................................................................................................
1 (B1[ €10 er1 1,2 e1,3 er.4 e1s €16 e1r
2 | Bz | _ | e2,0 e21 e2,2 e2,3 e2,4 e2.5 €2.6 e2,7

|€1023,6 | F1023,7 |

1023 | [B1o23] | |€102310 | |€1023,1 ||€1023,2 ||€102313 | |€1023,4 | |€1023,5

number table data table

Figure 5.3: The arrangement of hash table

Let h(j, X) be a hash function returning a 10-bit number, where poipterl2 bits
and charactex is 8 bits. We can use the following hash functioto specify a 10-bit
number.

h(j, X) = ((j << 4)® (j >> 6)® (x << 1)) A OX3FF (5.4)

Using this hash funtion, we select a bucket in addhégs<) and store the value of back-
pointer in one of the eight entries in the bucket. However, when the bucket may be full,

that is, eight values are already stored in the bucket. If this is the case, cati@itt
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the current value of each addre$gj(x) + i) A OX3FF is read foi =

1,2, ... untl a

bucket that has unused entries is found. We can easily find whether the Byckéull

or not by referringBg| in the number table. Regarding the size of the hash table, since

the total size of the hash table is 8192 and at most 3837 elements are added, conflict

may occur, but it is clear that the hash table can store all data.

input

value of matched back-pointer

8 x 1 bit

J 1 output
.
counter T (wi,value)
D“ ] 32 bits
° PR
=0 =1 =7
h(j, )
P P I
number table data table data table data table
DINA[ ;e 4 bits = »| 1 [+—32 bits —»| N >
0 By DINJI €0,0 €0,1 €o,7
ADDRA[ 1 B DDRA
2 12 ﬁ]_} 1 €1,0 :D_> 1,1 j]_» €1,7
0>y pal o e 0 0
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0 2N BMo3] [Bioze] | pos i
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ADDRB ADDRB,
1022  €1022,0 €1022,1 €1022,7
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j T; ° PY
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%SX 12 bits

Figure 5.4: The outline of our FPGA architecture for LZW compression algorithm

Figure 5.4 shows the proposed architecture of LZW compression. In our imple-

mentation, characters in an input string are input one by one and the corresponding

compressed codes are output.
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In the LZW compression, it is necessary to find whether a value of back-pointer is
already stored or not. Since the data table is partitioned into 8 tables, we read 8 values
at the same time. Therefore, given an address of bucket from the hash function, we can
find whether a value that includes the back-pointer is stored or not without checking
eight entries in the bucket one by one.

On the other hand, the number table consists of 1024 entries with 4 bits that represent
the number of used entries in each bucket. For example, if an element in the number
table is 0, we can find that the corresponding bucket does not have any values. Using
the number table, we can simply determine an element whether it is already stored or
not. Recall that we need to initialize all entries in the hash table whenever compression
for each segment is finished, that is, ClearCode is output. Since each entry represents
the number of used entries in each bucket, we set each entry to zero without clearing the
data tables.

In the proposed architecture, we perform LZW compression algorithm shown in the
previous section. The main part of the architecture is the hash table as described in the
above. There are three operations for the hash tabl@itglize operation (ii) find
operation and (iii) add operation We not that in the LZW algorithm, delete operation
that removes a value stored in the table is not necessary. We show the details of these
operations, as follows.

Initialize operation: The initialize operation is to clear all entries in the hash table.
We need to initialize all entries in the hash table whenever compression for each segment
is finished, that is, ClearCode is output. As shown in the above, we clear only the
number table to initialize the hash table. However, the next characters cannot be input

during the initialization. Therefore, in the proposed architecture, we use two number

110



tables and switch them in turn whenever ClearCode is output. More specifically, one of
them is used to perform LZW compression, while the other is initialized. Since every
segment excluding the last segment has 3838 codes and the last code is ClearCode, it
takes at least 3838 clock cycles to process a segment. Since the number table has 1024
entries, the initialized operation can be performed while another segment is processed.
Find operation: Given pointerj and charactex, this operation is to find whether
an entry that includes a back-pointg(j, X) is stored in the hash table and if it is al-
ready stored, outputs the back-poing€j, X). This operation corresponds tq(], x) #
NULL", * j « q(J, )", and “Output()” in the algorithm shown in the previous section.
In the operation, first, we obtain the address of the hash table by comp(jing This
address shows buckBy; x that has 8 entries. After that, we find whether a back-pointer
q(J, x) is stored inByj 5. As shown in the above, we can simultaneously read eight val-
ues in a bucket and the number of values in a bucket is read from the number table to
read valid data. Since each entry in the hash table has the valyesndk, we can find
it by comparingj andx read from the hash table with input valupandx. Therefore,
we can check at most 8 entriesBy; , at the same time. After comparing,gj, X) is
found, output it. Otherwise, we check whetligy; ) is full or not. If By x| < 8, that s,
Br(jx is not full, we can findy(j, X) does not exist in the hash table and output NULL.
If not, we perform the above operation for bucBgaf; x+1)oxaeefori = 1,2, ... until we
find whether(j, X) is stored or not.
Add operation: This operation is to add pointgr characterx, and back-pointer
d(j, X) to the hash table. It is performed in AddTable operation as shown in the algo-
rithm of the previous section. Indeed, it is performed after the find operation. More

specifically, this operation is used whgy, X) does not exist in the hash table and we
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already know an entry in whicfyj, X) can be stored. The entry to be stored locates in
the bucket which was referred last in the find operation. Therefore, according to the
result of the find operation, we addx andq(j, X) to the hash table and increment the
corresponding number of stired values in the number table.

In order to implement the hash table, we use block RAMs configured as dual-port
mode BQ] as illustrated in Figur@.2 Each of the number table consists of one 18k-bit
block RAMs. Also, two 18k-bit block RAMs are assigned to one of the 8 tables in the
data table. Since we use two tables for the number table, eighteen 18Kk-bit block RAMs
are used in total. For the number table, its dual-port is used as reading port and writting
port. They are used to perform the find and add operations, respectively. The reading
port is to refer the number of stored values. The writing port is to clear all the values
to zero for the initialize operation and to increment the number of stored values located
in addres$(j, x) for the add operation. On the other hand, for the data table, we also
use the dual-port as reading port and writing port for each. The reading port is to refer
the number of stored values in the find operation. The writing port is to add a value of
back-pointer for the add operation. To reduce the clock cycles, we always suppose that
for input string of characters, xi, ..., X,_1, the conditionq(j, X)) = NULL is satisfied.

More specifically, ifq(j, x) = NULL, the next value ofj for x;,; is ¢"1(x)(= %), which
shows that the next value gfdepends only orx; when the condition is true. Using
this, we can continuously input characters unless the condifipr;) = NULL is not

satisfied. When the condition is not satisfied, we need to wait to input the next character.
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5.5 FPGA architecture for LZW decompression

This section describes our FPGA architecture of the hardware LZW decompression al-
gorithm using block RAMs in Xilinx Virtex-7 FPGA.

In thissection, we focus on the decompression of LZW-compressed data in a TIFF
image file. Figures.5shows the proposed architecture of LZW decompression. In our
implementation, the LZW-based module decompresses all codes in a segment that are
given one by one. In order to implement pointer tappleharacter tabl€;, code biter
and output bffer o, the block RAMs are used. The block RAMs are configured as
dual-port mode §0] as shown in Figur@.2 A dual-port block RAM has two sets of
ports which work independently. We use these two port to perform executions in three
steps described in Secti@®2in parallel. For table, as shown in the previous section,
since the values of(i) (0 < i < 255) are initialized to NULL and codes 256 and 257
are reserved codes, we do not actually use the block RAM in that range to reduce the
memory resources as illustrated in Figlré. Instead of use of the block RAM, the
module checks the value of the address. Namely, if the address i289]) NULL is
output. Otherwise the value @ii) is read from the block RAM. For the same reason,
tableC; do not use the block RAM in the range. Each valu€efi) (0 < i < 255) is
initialized to an alphabet(i). From the target application, we can assume &gt= i
(0 <'i < 255) since the alphabets correspond to pixel values. If the address j2 550
the value of the address is just output.

We can obtain a string of each code by traversing taplendC;. To store the
characters, an output fiar o is used. Output kiter o is also configured as dual-port
block RAMs. Since the characters of corresponding string of a code is reversely read out

from tableC; and then written to the output fiar for each character in reversed order,
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Figure 5.5: The outline of our FPGA architecture for hardware LZW algorithm

we use tablé to store the length of the string to reverse it in the following step. Finally,
we read the characters from outputfiem and reverse it with the length. Indeed, it is
not necessary to store all the valued.cdince the executions of three steps described in
Section5.2 Therefore, tablé is configured as a FIFO (First-In-First-Out). As the same
reason, we use a FIFO, which is also composed of the block RAMs, to temporally store
input codes called code fiar. For the reader’s benefit, the behavior of the proposed
architecture for each step is described next.

Step 1: In Step 1, for tablep andC;, one port set of the dual-port block RAMs
is used to perform the updating operation as described in the algorithm in S&&jon
respectively. The table update is executed for given compressedygdesi < m—1)
one by one. If an input codg < 257 holds, it is unnecessary to update both tables since
the elements ip andC; are constant values fo 257. Otherwise, if; > 258, tablep
is updated by writing; to p(i+258). The update for tablecan be easily done singgis

stored to an element at address the block RAM as illustrated in Figurg 6. Also, the
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Figure 5.6: Dual-port block RAM and memory configurations of talplesdCs

update operation for tab{@; is performed. It takes 2 clock cycles to read a value stored

atCs(y; — 258) and write it taC¢(i). The above operations are repeatedly executed for

each input code. Since the update operations for both tables can be executed at the same

time, it takes two clock cycles for each input code. Sinteodes are input, in total,

2mclock cycles are necessary to perform Step 1. Recall that all each code segment has

3838 codes except the last one. For each code segment that has 3838 codpsitdble

C; are full if the update operations for all codes of one code segment are performed. The

update operation is terminated until all codes of this segment are decompressed. For the

last code segment, if code 257 (EndOfinformation) is reached, the update operation is
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terminated until all codes of the last code segment are decompressed.

Step 2: We will show how to obtain partially-reversed strin@qy;) (0 <i <m-1)
with table p andCs updated in Step 1. In the following, we use another port set of
the dual-port block RAMs of tableg andCy, respectively. As shown in the algorithm
of Step 2 in the previous section. for each input cgdé < i < 3837), we traverse
tablesp and output characters @ (y;) in tableC¢. Since it takes one clock cycle to
read an element in tablgsandC'(y;), respectively, two clock cycles are necessary to
output a character i€'(y;). However, the access to tablpandC; can be performed
currently. We can overlap the access for an input gpelath that for the next codg, ;.
Therefore, when the length &' (y;) is L(i), we can output a strin@"(y;) in L(i) + 1
clock cycles. The characters Gf(y;) are stored into an output fiar o one by one.
Also, L(i) is counted at the same time. After outputting the characte@s(gf), andL(i)
is stored to tablé& which is composed of a dual-port block RAM. Since it tak€ig + 1
clock cycles to output for each input cogeStep 2 is performed iB™ (L (i) + 1) clock
cycles in total.

Step 3: In Step 3, partially-reversed strin@¥(yo), C'(Y1),. .., C"(Ym-1), Stored in
output bufer o in Step 2 is reordered to the uncompressed strid@s), C(y1),.. .,
C(ym-1)- Since the length of each string is known fraufi), each character can be read
reversely from output kiter o one by one. Each operation for an input cggean be
started afteC'(y;) is stored to output lier o, that is,L(i) is stored into tablé.. It takes
L(i) + 1 clock cycles to perform the operation for a coglesince one clock cycle for
readingL(i) and L(i) clock cycles for reversely readi{y;) are necessary.

Let us consider the overlapped execution among the three steps as illustrated in

Figure5.2 Recall that Step 1 can be performed in 2 clock cycles for each input code.
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Figure 5.7: Three gray scale images with 4698072 pixels used for experiments

The operation for an input code(0 <i < m- 1) in Step 2 can be performed after the
operation for the next codg,, in Step 1 is finished. Also, the execution time for each

y; is at least 2 clock cycles sindgi) + 1 > 2. Therefore, the execution of Step 2 can

be started 4 clock cycles later after the first cgglés given in Step 1 and performed
continuously. In Step 3, the operation for an input cgdean be performed after the
operation fory; in Step 2. Namely, the operation fgrin Step 3 can be executed when
the operation foy; (y; > i + 1) in Step 2. Therefore, in Step 3, the execution sometimes
walits for the execution in Step 2. Let us consider the longest case for computing time
that an input data obtained by compressing data whose elements are the same value
is given. For example, when a string = 0,0,0,... is compressed, the compressed
data isY = 0,258 259 .... The lengthL(i) of each uncompressed stri@fy;) can

be represented di) =i +1 (0 < i < m- 1) since the lengths are incremented by
one for each code. Sindgi + 1) = L(i) + 1 in this caseL(i) < L(i + 1) always
holds. Therefore, the execution fgrin Step 3 can be performed when that jor, is
performed concurrently. Moreover, the execution for egcim Step 3 waits for one
clock cycle. In such case, it tak&8"'(L(i) + 2) = m(m + 5)/2 clock cycles. Since the

execution of Step 2 can be started 4 clock cycles later after the firstygoslgiven in
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Step 1 and Step 3 can be started 2(0) + 1) clock cycles later after the execution of
Step 2 is started, Step 3 can be started 6 clock cycles later after the firgiygedgven
in Step 1. Therefore, in such case, it tak&s + 5)/2 + 6 clock cycles to perform the

LZW decompression in total.

5.6 Experimental results

This section shows the implementation results of the implementations of LZW com-
pression and decompression algorithms in the FPGA.

First, to evaluate the performance of the proposed architecture of LZW compression,
we have implemented it in VC707 boar@ll] equipped with the Xilinx Virtex-7 FPGA
XC7VX485T-2. The experimental results of the implementation is shown in Table
We also use Intel Core CPU i7-4790 (3.6GHz) to evaluate the running time of sequential
LZW compression. We have used three gray scale images withX4@962 pixels as
shown in Figureb.7, which are converted from JIS X 9204-2004 standard color image
data. Tablé.6 shows the time of compression on CPU and FPGA and the compression
ratio (original image size : compressed image size). The image “Graph” has high com-
pression ratio since it has large areas with similar intensity levels. The image “Crafts”
has small compression ratio since it has small details.

In the CPU implementation, we use the back-pointer tglé which size is 2° x
12bits= 1.5MBytes without a hash table. The table is composed of a two-dimensional
array of 22 x 28 elements. Each element has 32 bits that can be used to store the back-
pointerq(j, X). Since this table is not a hash table, no conflict occurs in the sequential
implementation on the CPU. After ClearCode is output, we need to initialize the table.

However, it is too costly to clear all elements in the table. Therefore, we use the time-
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stamp technique as follows. Since the value of ef{(¢x) has 12 bits, the remaining 20

bits are used as a time stamp. The time stamp takes value fron?®+d 2= 1048575.
Initially, the time stamp is 0 and incremented whenever ClearCode is output. When a
back-pointen(j, x) is added in the table, the current time stamp is written with it. Using
the time stamp, we can determine if the value stored in each entry is valid. When the
time stamp is incremented 1048575 times, it is set to 0 and all entries of the table has
to be reinitialized. However, in the compression for most images, the number of code
segments is less than 1048575. Hence, in the sequential implementation on the CPU,
for three images utilized in the experiment, we can perform the sequential algorithm
without reinitializing the table.

Table5.6 shows the time of compression on CPU and FPGA and the compression
ratio. In our implementation on FPGA, to save the usage of block RAMs of FPGA,
we use the hash table to implement the back-pointer table. Since we partition the data
table of the hash table into 8 tables, we can check 8 elements of back-pointer table
concurrently. For example, when “Crafts”, “Flowers” and “Graph” are compressed,
the average number per code segment of accessing the hash table, that is the average
number of performing the add operation, is 3853.7, 3848.2 and 3916.4, respectively.
Since the add operation is performed 3837 times per code segment excluding the last
segment, we note that the conflict occurs. On the other hand, in the CPU implemen-
tation, there is no conflict because the hash table is not used. As shown in5Tgble
for only one proposed module of LZW compression, the results show that implemen-
tation on FPGA is not faster than the implementation on the CPU. For example, in our
FPGA implementation of single proposed module, it takes 18191909 clock cycles to

compress image “Crafts”, i.e221%09 — 101.07ms It takes 19426610 clock cycles to

119



i.e 19426610 _
. I7999MHz —

takes 24886071 clock cycles, i.e5283072 = 13826ms However, since the proposed

compress image “Flowers”, 107.93ms To compress image “Graph”, it
module uses very few FPGA resources, we have succeeded in implementing 24 identical
LZW compression modules in an FPGA, where the frequency is 163.35MHz and each
module has independent inpauitput (JO) ports. Simply calculated, for image “Crafts”,

our implementation with 24 modules runs up to 23.51 times faster than sequential LZW
compression on a single CPU. As shown in Tablg the implementation of 24 pro-
posed modules uses 55®Iports, where more than one hundred of the remaining ports
are dedicated to perform other communication protocols and can not be used as general
I/O ports. Therefore, the number of availahl® ports of the FPGA is the bottleneck of

our implementation. For a theoretical interest, we implement much more modules in the
FPGA by assuming that the limitation of the number/@f ports is ignored. The experi-
mental results show that up to 110 proposed modules can be arranged in the FPGA. This
implementation may not be used actually, but according to the results, for example, our
proposed implementation with 110 modules for the image “Crafts” attains a speed-up

factor of 89.63 over the sequential LZW compression on the CPU.

Table 5.5: Implementation results of one module and multiple modules of LZW com-

pression algorithm

number of modules 1 24 110 Available

Slice Registers

104 (0.02%)

3120 (0.51%)

15977 (2.63%)

607200

Slice LUTs

346 (0.11%)

7782 (2.56%)

37249 (12.27%)

303600

18K-bit block RAMs

18 (0.87%)

432 (20.97%)

1980 (96.12%)

2060

1/0

26 (3.71%)

555 (79.29%)

700

Clock frequency [MHz]

179.99

163.35

135.87
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For gray scale image “Graph” which has high compression ratio with 408672
pixels, the proposed module of LZW compression compresses 43272 x 1Byte
original data in 13826ms that is, the compression throughput of the proposed module is
4096<3072<1Byte __

seoers = 86.79MBytegs. On the other hand, for gray scale image “Crafts” which

has low compression ratio, the compression throughpafEor2<8%e — 11873MBytegs.

Table 5.6: Computing time (milliseconds) of LZW compression for three images

images | compression| time of | time of | Speedup
ratio CPU FPGA ratio
“Crafts” 1.43:1 109.10 | 101.07 1.08:1
“Flowers” 1.72:1 93.60 | 107.93 0.87:1
“Graph” 36.72:1 46.79 | 138.26 | 0.34:1

Table 5.7: Implementation results of one module and multiple modules of hardware

LZW decompression algorithm

number of modules 1 34 150 Available
Slice Registers 278 (0.05%) | 9537 (1.57%) | 40642 (6.69%) | 607200
Slice LUTs 307 (0.1%) | 10361 (3.41%)| 45194 (14.89%)| 303600

18K-bit block RAMs | 13 (0.63%) | 442 (21.46%) | 1950 (94.66%) | 2060

/O 26 (3.71%) | 564 (80.57%) — 700

Clock frequency [MHz] 301.02 263.92 245.4 —

Next, we have also implemented the proposed architecture for hardware LZW de-
compression algorithm and evaluated it in VC707 bo&d].[The experimental results
of the implementation is shown in Tab%e7. We also use Intel Xeon CPU E5-2430
(2.2GHz) to evaluate the running time of sequential LZW decompression for the three

gray scale images above. Talde8 shows the time of decompression on CPU and
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FPGA. In LZW decompression on CPU, the operation of creating dictionary tables oc-
cupies most of the computing time. In our implementation on FPGA, the operation
of creating tables is performed independently, and writing characters to outgbet bu
and reading characters from outputfien are paralleled, hence, the operation of out-
putting characters occupies most of the time. As shown in Tal8efor only one
proposed module, the results show that implementation on FPGA is 2.16 times faster
than the implementation on the CPU. For example, in our FPGA implementation of
one proposed module, it takes 19674631 clock cycles to decompress image “Crafts”,

i.e., 20631 — 6536ms It takes 18339574 clock cycles to decompress image “Flow-

ers”, i.e., ;2214 = 60.924ms To decompress image “Graph”, it only takes 12892927

12892927

clock cycles, i.e.55705mm

= 42.83Ims Hence, for gray scale image “Graph” which
has high compression ratio with 4088072 pixels, the LZW decompression module
outputs 409&3072x1 Bytes of original data in 483ms Therefore, the decompression

throughput of module i§228397218ytes _ 58017MBytegs. Since the decompression

42.831ms
throughput depends on input data, the decompression throughput can be even better if
the compression throughput of input file is higher. Suppose that in the worst case for
computing time, 409& 3072 input codes are given, all of which corresponding strings

include 1 character. Since it takes 2 clock cycles to decompress each code that includes

only 1 character, all the codes can be decompressed inX4@2G2x 2 = 25165824

i 25165824 __ i ini i
clock cycles, i.e.5570omm; = 83.602ms More specifically, the minimum decompression

throughput of proposed module 483502CEYe — 14354MByte's. Since the proposed
FPGA module uses a few resources of the FPGA, we have succeeded in implementing
34 LZW decompression modules in a FPGA, where each module has indepei@ent |

port. Since input characters are transferred to the proposed module every two clock

122



cycles, two modules can share one set of input port. Our implementation with 34 mod-

ules runs up to 64.39 times faster than sequential LZW decompression on a single CPU.
Similarly, we also have succeeded in implementing 150 proposed modules, where we
assume that the limitation of the number ¢DIports is ignored. The experimental

results show that 150 proposed modules can be arranged in the FPGA.

Table 5.8: Computing time (milliseconds) of LZW decompression for three images

images | compression| timeof | time of | Speedup
ratio CPU FPGA ratio
“Crafts” 1.43:1 141.534 | 65.36 2.16:1
“Flowers” 1.72:1 127.136 | 60.924 2.08:1
“Graph” 36.72:1 75.901 | 42.831 1.77:1

5.7 Concluding remarks

We have presented hardware architectures of LZW compression and decompressing,
and implement them in a Virtex-7 family FPGA XC7VX485T-2, respectively. Accord-

ing to the implementation results, the implementation of 24 modules of LZW compres-
sion attains a speed-up factor of 23.51 times faster than a sequential software implemen-
tation on a single CPU. On the other hand, the implementation of 34 modules of LZW
decompression runs up to 64.39 times faster than the software implementation on the

CPU.
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Chapter 6

Conclusions

Ability of parallel processing is one of the most important features of FPGA. More-
over, recently, embedded multicore processors represented by FPGA has lately attracted
considerable attention for their potential computation ability and power consumption.
In this dissertation, we have presented seveitadient FPGA implementations on the
FPGA.

In Chapter3, we have presented afffieient FPGA implementation of the Hough
transform for lines detection on the Xilinx Virtex-6 FPGA XC6VLX240T-1. Our FPGA
implementation uses 178 DSP slices and 180 block RAMs, and runs over 300 times
faster than the sequential implementation on the CPU (Intel Xeon X7460 2.66GHz)
for processing an 512 512 binary image of which all points are edge points. Then,
we improved the proposed implementation to process pixel data given in raster scan
order, and the usage of DSP slices reduces. Also, maximum filters are used to obtain
the correct lines after voting operation. The improved implementation used only 90
DSP slices and 181 block RAMs and attains a speed-up factor of more than 38 over

the sequential implementation on the CPU for processing ank®12 binary image
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with 33232 edge points. If all the points of an 58512 = 262144 image are edge
pints, our improved implementation also runs over 300 times faster than the sequential
implementation on the CPU. Next, as one of tligceent improvements to the Hough
transform for line detection, we presented dficeent FPGA implementation of the
gradient-based Hough transform, where the gradient direction and magnitude of each
pixel are used to reduce the useless voting operation to obtain more precise straightlines.
The implementation of the gradient-based Hough transform uses only 13 DSP slices and
runs 309 times faster over the sequential implementation on the CPU for processing an
333%x333 gray scale image. On the other hand, we presentefticie®’t implementation
of the Hough transform for circles detection on the Xilinx Virtex-7 FPGA XC7VX485T-
2, that uses only one-dimensional parameter spaces. Our implementation for circles
detection uses 398 DSP slices and 309 block RAMs, and attains a speed-up factor of
189 over the sequential implementation on the CPU.

In Chapter, we proposed anficient processor core that executes the Euclidean al-
gorithm computing the GCD of two large numbers in Xilinx Virtex-7 FPGA XC7VX485T-
2, that uses only one DSP slice and one block RAM. Since the proposed GCD processor
core uses very few resources, we have succeeded in implementing 1280 GCD processor
cores in the FPGA. The implementation of 1280 GCD processor cores runs 3.8 times
faster than the best GPU implementation and 316 times faster than a sequential imple-
mentation on the CPU.

In Chaptef5, we proposed a hardware architecture of LZW compression and decom-
pression, respectively. We have succeeded in implementing 24 modules of LZW com-
pression and 34 modules of LZW decompression in an Xilinx Virtex-7 FPGA XC7VX485T-

2, respectively. According to the experimental results, our implementation of 24 LZW
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compression modules runs 23.51 times faster than a sequential implementation on the
CPU (Intel Core CPU i7-4790 3.6GHz). On the other hand, our implementation of 34

LZW decompression modules runs 64.39 times faster than a sequential implementation

on the same CPU.
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