
Efficient Hardware Algorithms for the FPGA

(FPGA向けの効率的なハードウエアアルゴリズム)

by

Xin Zhou

A dissertation submitted

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in Information Engineering

Under Supervision of

Professor Koji Nakano

Department of Information Engineering,

Graduate School of Engineering,

Hiroshima University

September, 2016

Summary

Field-Programmable Gate Array (FPGA) is a programmable silicon device designed to

be configured by the customer using hardware description language after manufactur-

ing. In the past, FPGAs are used for lower speed and complexity designs due to the

lack of internal logic resources and low frequency of the FPGA. Today’s FPGAs can

easily run at high frequency and have unprecedented logic density. Furthermore, em-

bedded processors, DSP slices, block RAMs are embedded in the FPGA. Also, ability

of parallel processing is one of the most important features that separate FPGA from the

conventional microprocessor.

In order to improve the processing speed, multicore processors are widely used in

many application domains such as general purpose computation, digital signal process-

ing, and image processing. Embedded multicore processors represented by FPGA has

lately attracted considerable attention for their potential computation ability and power

consumption. By partitioning the algorithm into servel independent parts, multicore

processors can perform all parts concurrently. If the algorithm is hard to be parallelized,

we can also improve the processing speed considerably by employing multicore proces-

sor to perform the same algorithm for different data sets.

Hough transform is a technique to find shapes in images such as lines, circles, el-

lipses, etc. In this dissertation, we have presented implementations of the Hough trans-

form on the FPGA for extracting lines and circles. The Hough transform defines a

mapping from an image into a parameter space represented by an accumulate array. For

each edge point of the image, the mapping adds a vote to corresponding elements in

the accumulate array. Therefore, the elements that are voted intensively represent as-

sociated parameters of detected shapes. The first contribution of this dissertation is to

present an efficient implementation of the Hough transform on the FPGA. In our im-

plementation, we partition the parameter space and the voting operation is performed in

parallel by an efficient usage of DSP slices and block RAMs. As far as we know, there

is no previously published work that fully utilizes DSP slices and block RAMs for the

Hough transform. The experimental results show that our FPGA implementation attains

a speed-up factor of more than 300 over the sequential implementation on the CPU by

using 178 DSP slices and 180 block RAMs. However, this implementation needs to

accept the coordinates of edge points as input. Also, since identified lines are obtained

just by thresholding after voting, incorrect lines are also detected. Hence, the second

contribution of this dissertation is to present an improved FPGA implementation of the

Hough transform. The improved FPGA implementation processes all pixel data given in

raster scan order, and the usage of DSP slices reduces. Also, maximum filters are used

to obtain the correct lines after voting operation. The improved implementation uses

only 90 DSP slices and 181 block RAMs and attains a speed-up factor of more than 38

over the sequential implementation on the CPU. Next, gradient-based Hough transform

is one of the efficient improvements to the Hough transform for line detection, where

the gradient direction and magnitude of each pixel are used to reduce the number of

useless votes for obtaining more precise lines. The third contribution of this dissertation

is to present an efficient implementation of the gradient-based Hough transform on the

FPGA. This implementation uses only 13 DSP slices and runs 309 times faster over

the sequential implementation on the CPU. Furthermore, comparing with other FPGA

implementations, the performance of our FPGA implementations is better. On the other

hand, the Hough transform can be also used to extract circles. The fourth contribution

of this dissertation is to present an efficient implementation of the Hough transform for

circles detection on the FPGA, that uses only one-dimensional parameter spaces. Our

implementation uses 398 DSP slices and 309 block RAMs and runs in 181.812MHz.

According to the experimental results, our implementation attains a speed-up factor of

approximately 189 over the sequential implementation on the CPU.

FPGA is also desired hardware device for general purpose computation. The Great-

est Common Divisor (GCD) computation is widely used in computer systems for cryp-

tography, data security and other important algorithms. Most of the time of these com-

puter systems is consumed for computing the GCDs of very large integers. In this

dissertation, the fifth contribution is to propose an efficient processor core that executes

the Euclidean algorithm computing the GCD of two large numbers in an FPGA by using

only one DSP slice and one block RAM. Since the proposed processor core is compactly

designed and uses very few resources, we have succeeded in implementing more than

one thousand processor cores in an FPGA. The experimental results have shown that our

implementation of 1280 GCD processor cores runs 3.8 times faster than the best GPU

implementation and 316 times faster than a sequential implementation on the CPU.

Data compression is one of the most important task in the area of computer engi-

neering. LZW algorithm is one of the most famous dictionary-based compression and

decompression algorithms. Since dictionary tables are created by reading input data one

by one, LZW compression and decompression are hard to parallelize. The sixth con-

tribution of this dissertation is to present a hardware architecture of LZW compression

and decompression, respectively. Since the proposed modules of LZW compression

and decompression use very few FPGA resources, we have succeeded in implement-

ing 24 modules of LZW compression and 34 modules of LZW decompression in an

FPGA, respectively. The experimental results show that, our implementation of 24 LZW

compression modules attains a speed-up factor of 23.51 times faster than a sequential

implementation on a single CPU, while our implementation of 34 LZW decompression

modules attains a speed-up factor of 64.39 times faster than a sequential implementation

on the CPU.

Contents

1 Introduction 1

1.1 Background and Motivation .1

1.2 Contributions . 2

1.2.1 Implementations of the Hough transform algorithm on the FPGA2

1.2.2 Implementation of the Euclidean algorithm on the FPGA4

1.2.3 Implementations of the LZW compression and decompression

algorithms on the FPGA . 4

1.3 Dissertation Organization .5

2 FPGA 6

2.1 Architecture of FPGA . 6

2.2 DSP48E1 slice .7

2.3 Block RAM . 9

3 Implementations of the Hough transform algorithm on the FPGA 10

3.1 Efficient implementations of the Hough transform algorithm for extract-

ing lines .11

3.1.1 Introduction .12

i

3.1.2 Hough transform algorithm .16

3.1.3 FPGA architecture for the Hough transform19

3.1.4 Improved FPGA architecture for the Hough transform24

3.1.5 Experimental Results .29

3.1.6 Concluding remarks .31

3.2 Efficient implementation of the Gradient-based Hough transform algo-

rithm for extracting lines .32

3.2.1 Introduction .32

3.2.2 Gadient-based Hough transform algorithm34

3.2.3 FPGA architecture for the gradient-based Hough transform . . .37

3.2.4 Experimental Results .42

3.2.5 Concluding remraks .45

3.3 Efficient implementation of the one-dimensional Hough transform algo-

rithm for extracting circles .45

3.3.1 Introduction .45

3.3.2 One-dimensional Hough transform algorithm for circles detection49

3.3.3 FPGA architecture for the one-dimensional Hough transform . .51

3.3.4 Experimental results .56

3.3.5 Concluding remarks .59

4 Implementation of the Euclidean algorithm on the FPGA 60

4.1 Introduction .61

4.2 Euclidean algorithms for computing GCD65

4.3 A GCD processor core for large integers69

4.4 Implementation of Hierarchical GCD cluster with DDR3 Memory . . .81

ii

4.5 Experimental results .83

4.6 Concluding remarks .89

5 Implementations of the LZW compression and decompression algorithms

on the FPGA 91

5.1 Introduction .92

5.2 LZW compression and decompression algorithms97

5.3 TIFF image file .106

5.4 FPGA architecture for LZW compression107

5.5 FPGA architecture for LZW decompression113

5.6 Experimental results .118

5.7 Concluding remarks .123

6 Conclusions 124

References 126

Acknowledgment 133

List of publications 134

iii

List of Figures

2.1 The architecture of FPGA .7

2.2 The DSP slice and block RAM in Xilinx FPGAs 8

3.1 Example of straight line detection using the Hough transform13

3.2 Two dimensional Spacesxy andθρ used in the Hough transform16

3.3 The outline of our FPGA architecture for the Hough transform20

3.4 Two DSP blocksXθ andYθ with an adder and subtractor to computeρ . 21

3.5 Pipeline architecture to computexk cosθ andyk sinθ with DSP blocks . 22

3.6 A block RAMVθ to storev[θ][ρ] . 24

3.7 The outline of the improved FPGA architecture for the Hough transform25

3.8 Architecture of computingysinθ with one DSP slice 27

3.9 Pipeline architecture of 3× 3 maximum filters 28

3.10 Example of straight lines detection using Hough transform34

3.11 Hough parameter spaces of the conventional Hough transform and gradient-

based Hough transform .35

3.12 The outline of our FPGA architecture for the gradient-based Hough

transform (λ = 4) . 37

3.13 Structure for the computation ofGx andGy 38

iv

3.14 A DSP slice and a block RAM to computexcosθ 39

3.15 A block RAMVθ to storev[θ][ρ] . 40

3.16 Comparison between conventional and gradient-based Hough transform

algorithms .43

3.17 Example of circles detection using the one-dimensional Hough trans-

form algorithm .48

3.18 The outline of the one-dimensional Hough transform algorithm for cir-

cle detection .49

3.19 Architecture of voting forx-coordinates of center candidates52

3.20 A block RAM to store the voted values53

3.21 Architecture for findingλ x-coordinates of center candidates55

3.22 Architecture of voting for radius .56

4.1 Advantages of our FDFM approach62

4.2 A 18k-bit block RAM and the memory configuration70

4.3 The architecture of a GCD processor70

4.4 The outline of rshift17(X) . 74

4.5 The outline ofrshift17(X − Y) . 78

4.6 The architecture of the Hierarchical GCD cluster83

5.1 An example of traversing tablesp andC f 103

5.2 Process of our LZW decompression hardware for an input compressed

codeY = y0y1 · · · ym−1 .106

5.3 The arrangement of hash table .108

5.4 The outline of our FPGA architecture for LZW compression algorithm .109

5.5 The outline of our FPGA architecture for hardware LZW algorithm . .114

v

5.6 Dual-port block RAM and memory configurations of tablesp andC f . . 115

5.7 Three gray scale images with 4096× 3072 pixels used for experiments .117

vi

Chapter 1

Introduction

1.1 Background and Motivation

Recently, the improvements in speed of the microprocessor is slowing down since the

heat generation and size constraints of transistor become significant problems. On the

other hand, the Field-Programmable Gate Array has been widely used in various fields

for the high performance, ability of parallel processing, programmable features and low

price of it.

The FPGA is an integrated circuit designed to be configured by a designer after

manufacturing, that differs from Application Specific Integrated Circuits (ASCIs) which

are designed for specific applications. It contains an array of programmable logic blocks

called CLB (Configurable Logic Block), and the reconfigurable interconnects allow the

blocks to be inter-wired in different configurations. In the past, FPGAs are used for

lower speed and complexity designs due to the lack of internal logic resources and

low frequency of the FPGA. Recent FPGAs can easily run at high frequency and have

unprecedented logic density. Furthermore, embedded processors, DSP slices, block

1

RAMs are embedded in the FPGA that are make a higher performance and a broader

application. Since any logic circuits can be embedded in an FPGA, it can be used for

parallel computing which is one of the most important features that separate FPGA from

the conventional microprocessor.

In order to improve the processing speed, multicore processors are widely used in

many application domains such as general purpose computation, digital signal process-

ing, and image processing. Especially Embedded multicore processors represented by

FPGA has lately attracted considerable attention for their potential computation ability

and power consumption. By partitioning the algorithm into several independent parts,

multicore processors can perform all parts concurrently. If the algorithm is hard to be

parallelized, we can also improve the processing speed considerably by employing mul-

ticore processor to perform the same algorithm for different data sets.

1.2 Contributions

1.2.1 Implementations of the Hough transform algorithm on the

FPGA

Hough transform is a technique to find shapes in images. In particular, it has been uti-

lized to extract lines, circles, ellipses and arbitrary shapes. In this dissertation, we have

presented implementations of the Hough transform on the FPGA for extracting lines and

circles. The Hough transform defines a mapping from an image into a parameter space

represented by an accumulate array. For each edge point of the image, the mapping adds

a vote to corresponding elements in the accumulate array. Therefore, the elements that

are voted intensively represent associated parameters of detected shapes.

2

In the implementation of the Hough transform algorithm for extracting lines, we

partition the parameter space and the voting operation is performed in parallel by us-

ing the DSP slices and block RAMs of the FPGA. The same architecture can also be

easily implemented in other hardware device to obtain high performance of the Hough

transform. First, for the voting operation of the Hough transform, our FPGA implemen-

tation attains a speed-up factor of more than 300 over the sequential implementation on

the CPU by using 178 DSP slices and 180 block RAMs. However, the implementation

needs to accept the coordinates of edge points as input. Also, since identified lines are

obtained just by thresholding after voting, similar to lines in the input image but in-

correct lines are also detected. Then, we improve the implementation to process pixel

data given in raster scan order, and the number of used DSP slices becomes approxi-

mately half. Also, 3× 3 maximum filters are used to obtain more precise lines after

voting operation. The experimental result show that this implementation uses only 90

DSP slices and 181 block RAMs and attains a speed-up factor of more than 38 over the

sequential implementation on the CPU. Next, as one of the efficient improvements to

the Hough transform for line detection, we present an efficient architecture of gradient-

based Hough transform, where the gradient direction and magnitude of each pixel are

used to simplify the voting operation and reduce the usage of the FPGA resources. This

implementation uses only 13 DSP slices and runs 309 times faster over the sequential

implementation on the CPU. Furthermore, comparing with other FPGA implementa-

tions, the performance of our FPGA implementations is better. On the other hand, we

present an efficient implementation of the Hough transform algorithm that uses only

one-dimensional parameter spaces for circles detection on the FPGA. Our implementa-

tion uses 398 DSP slices and 309 block RAMs and runs in 181.812MHz. According to

3

the experimental results, our implementation attains a speed-up factor of approximately

189 over the sequential implementation on the CPU.

1.2.2 Implementation of the Euclidean algorithm on the FPGA

FPGA is also desired hardware device for general purpose computation. The Greatest

Common Divisor (GCD) computation is widely used in computer systems for cryptog-

raphy, data security and other important algorithms. Most of the time of these computer

systems is consumed for computing the GCDs of very large integers. In this disserta-

tion, we have proposed an efficient processor core that executes the Euclidean algorithm

computing the GCD of two large numbers in an FPGA by using only one DSP slice

and one block RAM. Since the proposed processor core is compactly designed and uses

very few resources, we have succeeded in implementing more than one thousand pro-

cessor cores in an FPGA. The experimental results have shown that our implementation

of 1280 GCD processor cores runs 3.8 times faster than the best GPU implementation

and 316 times faster than a sequential implementation on the CPU.

1.2.3 Implementations of the LZW compression and decompres-

sion algorithms on the FPGA

Data compression is one of the most important task in the area of computer engineering.

It is always used to improve the efficiency of data transmission and save the storage of

data. Data compression includes two basic methods, lossy compression and lossless

compression. LZW algorithm is one of the most famous dictionary-based lossless com-

pression and decompression algorithms. Since dictionary tables are created by reading

input data one by one, LZW compression and decompression are hard to parallelize. In

4

this dissertation, we present a hardware architecture of LZW compression and decom-

pression, respectively. Since the proposed modules of LZW compression and decom-

pression use very few FPGA resources, we have succeeded in implementing 24 modules

of LZW compression and 34 modules of LZW compression in an FPGA, respectively.

The experimental results show that, our implementation of LZW compression attains a

speed-up factor of 23.51 times faster than a sequential implementation on a single CPU,

while our implementation of LZW decompression attains a speed-up factor of 64.39

times faster than a sequential implementation on the CPU.

1.3 Dissertation Organization

The doctoral dissertation is organized as follows. In Chapter2, we show the details of

the FPGA and the embedded resources of it. We show efficient implementations of the

Hough transform for extracting lines and circles in Chapter3. In Chapter4, we propose

a hardware binary Euclidean algorithm for computing GCD of two very large numbers

and implement it on the FPGA. Chapter5 presents an efficient implementation of LZW

compression and decompression algorithms, respectively. Finally, Chapter6 concludes

this dissertation.

5

Chapter 2

FPGA

We show the architecture and the embedded resources of the FPGA in this chapter.

Since Xilinx Virtex-6 and Virtex-7 FPGAs are used to evaluate the performance of our

implementations in this dissertation, we also show the main resources of them such as

the embedded DSP48E1 slices and block RAMs which are used in our implementations.

2.1 Architecture of FPGA

Field-Programmable Gate Arrays (FPGAs) are programmable semiconductor devices

that contains an array of Configurable Logic Blocks (CLBs) [54, 59] that can be inter-

wired by reconfigurable interconnects. Slice Registers and Slice LUTs (Look-Up-Tables)

are the main hardware resources in CLB, that are used to implement sequential and

combinatorial logics. Recent FPGA architecture consists of an array of CLBs, I/O pads,

DSP slices [51, 58], block RAMs [52, 60], and routing channels as shown in Figure2.1,

where the embedded block RAMs and DSP slices make a higher performance and a

broader application. Since most of recent FPGAs produced by principal vendors equip

6

I/O I/O I/O I/O I/O I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O I/O I/O I/O I/O I/O

I/O

I/O

I/O

I/O

I/O

I/O

DSP

DSP

DSP

DSP

DSP

DSP BRAM

BRAM

BRAM

BRAM

BRAM

BRAM

CLB

CLB

CLB

CLB

CLB

CLB DSP

DSP

DSP

DSP

DSP

DSP BRAM

BRAM

BRAM

BRAM

BRAM

BRAM

CLB

CLB

CLB

CLB

CLB

CLB

Figure 2.1: The architecture of FPGA

embedded DSP slices and block RAMs, one of the most important key techniques for

accelerating computation using FPGAs is an efficient usage of DSP slices and block

RAMs. In this dissertation, all of our FPGA implementations are proposed by using the

DSP slices and block RAMs efficiently to obtain high performance. Hence, we show

the details of the DSP slice and block RAM in the following.

2.2 DSP48E1 slice

DSP48E1 slices are the embedded DSP slices of Virtex-6 and Virtex-7 family FPGAs.

The basic architecture of DSP48E1 slice is illustrated in Figure2.2(a). DSP48E1 slices

are equipped with a 25-bit pre-adder, a 25-bit by 18-bit two’s complement multiplier,

48-bit multiplexers, an optional logic unit, a pattern detector, etc. We show some details

of the embedded resource of DSP48E1 slice as follows.

Pre-adder: Port A and D feed pre-adder. By controlling the behavior of the pre-adder,

7

B

A

D

C

P

Pattern Detector

48-Bit Accumulator/Logic Unit

Pre-adder

25×18
Multiplier

(a) The DSP48E1 slice

DIB

ADDRB

WEB

CLKB

DOA

DOB

DIA

ADDRA

WEA

CLKA

(b) The dual-port block RAM

Figure 2.2: The DSP slice and block RAM in Xilinx FPGAs

it can dynamically compute the values of D-A, A, D, D+A, etc. The A and D data

inputs can optionally be registered one or two times to highly pipelined architecture for

different applications.

Multiplier : The embedded multiplier of DSP slice has two input ports. The output of

the pre-adder and Port B feed to the multiplier, where the B data input and the output of

the pre-adder can optionally be registered up to two times and one time, respectively.

ALU : The Arithmetic Logic Unit (ALU) can be configured as three-input adder/subtractor

or two-input logic unit. The output of the multiplier and port C are connected to inputs

of the ALU. By controlling the behavior of the ALU, we can dynamically perform dif-

ferent addition/subtraction computations and logic operations between the inputs of the

ALU. The obtained result of the ALU is then connected to the register P.

Pattern detector: The pattern detector at the output of the DSP48E1 slice provides

support for convergent rounding, overflow/underflow, block floating point, and support

for accumulator terminal count. More specifically, the pattern detector can detect if the

output of the DSP48E1 slice matches a pattern as qualified by a predefined mask.

The DSP slice includes dedicated buses for cascading. Hence, the DSP slice also

supports cascading multiple DSP48E1 slices for applications requiring wide math func-

8

tions and complex arithmetic without the use of general FPGA logic resources. By em-

ploying the functionality of the DSP slice, we can implement complex applications on

the FPGA with better performance and reduce the usage of FPGA resources, comparing

with the implementation using general FPGA logic resources.

2.3 Block RAM

The block RAM is an embedded dual-port memory supporting synchronized read and

write operations as illustrated in Figure2.2(b). The block RAM can be configured as

36kbit dual-port block RAMs, FIFOs, or two 18kbit dual port RAMs. The dual port

block RAMs have two sets of ports operated independently. Two sets of ports are:

Port Set A: ADDRA(ADDRess A),DOA (Data Output A),DIA (Data Input A)

Port Set B: ADDRB(ADDRess B),DOB (Data Output B),DIB (Data Input B)

In read operation of Port Set A, the element in addressADDRAis output fromDOA

after the rising clock edge. In write operation of Port Set A, the data given toDIA is

written to the element in addressADDRAof the block RAM at the rising clock edge.

Read/write operations of Port Set B are the same as Port Set A. Port Set A and Port

Set B work independently. In the block RAMs in the target devices of this dissertation,

read/write operations can be configured as either RF (Read First) mode or WF (Write

First) mode. In the RF mode, if reading and writing operations are performed to the

same address, reading operation is performed before the writing operation. Hence the

reading data is the data before writing data. On the other hand, in the WF mode, since

the writing performed before the reading, the reading data is the updated data. However,

when a dual port is used, there is a restriction that if read and write operation to the same

address are performed for each port, the setting of block RAMs must be RF [52, 60].

9

Chapter 3

Implementations of the Hough

transform algorithm on the FPGA

In this chapter, we show efficient implementations of the Hough transform for extracting

lines and circles, respectively. In the implementation of the Hough transform algorithm

for extracting lines, the parameter space is partitioned, and the voting operation is per-

formed in parallel by using the DSP slices and block RAMs of the FPGA. First, we

present an architecture for the voting operation of the Hough transform algorithm and

implement it on the FPGA. Our FPGA implementation uses 178 DSP slices and 180

block RAMs and attains runs over 300 faster than the sequential implementation on the

CPU. However, the implementation needs to accept the coordinates of edge points as

input. Also, since identified lines are obtained just by thresholding after voting, simi-

lar to lines in the input image but incorrect lines are also detected. Then, we improve

the implementation to process pixel data given in raster scan order, and the number

of used DSP slices reduces approximately half. The revised implementation uses only

90 DSP slices and 181 block RAMs, and runs over 38 times faster than the sequential

10

implementation on the CPU.

Next, as one of the efficient improvements to the Hough transform for line detection,

we present an efficient architecture of gradient-based Hough transform, where the gradi-

ent direction and magnitude of each pixel are used to reduce the useless votes for obtain-

ing more precise straight lines. The experimental results show that this implementation

use only 13 DSP slices and runs 309 times faster over the sequential implementation on

the CPU.

On the other hand, we present an efficient implementation of the Hough transform

algorithm that uses only one-dimensional parameter spaces for circles detection on the

FPGA. Our implementation runs 189 times faster than the sequential implementation

on the CPU.

3.1 Efficient implementations of the Hough transform

algorithm for extracting lines

Hough transform is a technique to find shapes in images [20] such as lines, circles,

ellipses. The Hough transform defines a mapping from an image into a parameter space

represented by an accumulate array. The parameter space is defined by parameterizing

detected shapes. Based on each edge point of the image, the mapping adds a vote

to corresponding elements in the accumulate array. The elements that are increased

represent associated parameters based on detected shapes. Therefore, the elements that

are voted intensively correspond to the parameters of shapes in the image space. In this

section, we show two implementations of the Hough transform using DSP slices and

block RAMs on the FPGA.

11

3.1.1 Introduction

The Hough transform can be used to extract straight lines in a binary image [11]. The

idea of this method is to exploit the duality between points of a line and parameters of

that line. A point in the image is represented by a curve in the parameter space and lines

of collinear points intersect in the parameter space at one point. These intersections are

counted in an array of accumulators that quantizes the parameter space appropriately.

In the followings, we call this counting to the accumulatorsvoting. More specifically,

for each edge point (x, y) in a 2-dimensional image, the voting is performed along a

curveρ = xcosθ + ysinθ (0 ≤ θ < 180). Possible lines can be detected by searching

points that are voted intensively. Figure3.1shows an example of straight line detection

using the Hough transform. For an input image (Figure3.1(a)), the binary edge image

(Figure3.1(b)) is obtained by the edge detector such as Sobel filter. The result of voting

to the parameter space is shown in Figure3.1(d). In this figure, darker points show

points that are voted intensively, that is, represent probable lines. According to the

result of voting, the principal lines are detected (Figure3.1(c)).

The first contribution of this chapter is to present an implementation of the Hough

transform on the FPGA. The first idea of the implementation is an efficient usage of DSP

slices and block RAMs for FPGAs. The second idea is to partition the voting space in

the Hough transform and the voting operation is performed in parallel. We describe the

ideas of our FPGA implementation as follows.

Voting Space Partitioning: Polar coordinate voting space (θ, p) is partitioned and ar-

ranged into block RAMs. This enables us to perform voting operations in parallel. Also,

the function of dual-port of block RAMs are fully used to accumulate the voting value

instantly.

12

(a) Input image (b) Binary edge image by Sobel filter

(c) Line detection using the Hough transform (d) Hough parameter space

Figure 3.1: Example of straight line detection using the Hough transform

Efficient Usage of DSP slices:DSP slices are used to computexcosθ andysinθ in

parallel for each edge pixel (x, y). We computexcosθ andysinθ for θ such that 0≤

θ < 90 instead of computing them forθ such that 0≤ θ < 180. Also, we avoid the

computation of the values of cosθ and sinθ by pre-loading them in the DSP slices.

Fully Pipelined Architecture: We take into account a layout of DSP slices and block

RAMs in Virtex-6 FPGA architecture, and design our Hough transform architecture

as a fully pipelined one. For example, in the Virtex-6 FPGA XC6VLX240T has 768

DSP48E1 slices arranged in 8 columns of 96 adjacent DSP48E1 slices. Neighboring

DSP48E1 slices are connected directly through pipeline registers. Our Hough transform

13

architecture uses 2 columns to computexcosθ and ysinθ each, and uses a pipeline

technique to maximize the clock frequency.

Using these ideas, our architecture for the Hough transform uses 178 DSP48E1

slices and 180 block RAMs with 18kbits that work in parallel. As far as we know,

there is no previously published work that full utilizes DSP slices and block RAMs

for the Hough transform. Roughly speaking, a conventional sequential implementation

performs 180m voting operations form edge points. Our architecture performs voting

operations in parallel, and outputs identified lines inm+ 97 clock cycles. Since 180m

voting operations are performed using 178 DSP48E1 slices, the lower bound of the

computing time ism clock cycles. Hence, our implementation is close to optimal. We

have implemented our architecture on a Virtex-6 family FPGA XC6VLX240T-1, that

runs in 245.519MHz. For example, Figure3.1(b) includes 33232 edge points. The

circuit can perform the Hough transform in 135.75µs and the software implementation

on the CPU performs in 37.10ms. Also, if all the points of an image of size 512×512 are

edge points, it takes 1068.11µs to output the results, where the software implementation

takes 359.27ms to output the results. In other words, our FPGA implementation runs

over 300 times faster than the sequential implementation on the CPU.

However, the implementation needs to accept the coordinates of edge points as in-

put. Since pixel data of input images from digital video cameras are generally input in

raster scan order, the requirement might not to be versatile. Also, since identified lines

are obtained just by thresholding after voting, similar to lines in the input image but in-

correct lines are also detected. Then, the second contribution of this chapter is to present

an improved FPGA implementation of the Hough transform. One of the main different

points from the previous implementation is that the improved FPGA implementation

14

processes pixel data in raster scan order and outputs the identified lines. Therefore,

the voting time is a fixed clock cycles corresponding to the size of the image. Com-

pared to the previous implementation above, the number of used DSP slices becomes

approximately half. Our new idea that differs from the previous implementation above

includes:

(i) More Efficient Usage of DSP slices:DSP slices are usedxcosθ andysinθ in parallel

for each edge pixel (x, y). We computexcosθ andysinθ for θ such that 0≤ θ < 90

instead of computing them forθ such that 0≤ θ < 180. In addition, since pixel data

are input in raster scan order, we use the fact that the value ofy in a certain row is not

change. When pixels in a certain rowy are processed, we pre-compute (y+ 1) sinθ for

θ such that 0≤ θ < 90 in the next row. According to the above, compared with the

previous implementation, the number of used DSP slices is reduced to approximately

half. More specifically, the improved implementation uses only 1 DSP slice to compute

ysinθ, and uses 1 columns to computexcosθ.

(ii) More precise line detection: In previous implementation, the straight lines are

output such that the number of votes exceeds a certain threshold value. However, the

output includes many mistaken lines due to the discretization error in voting. Therefore,

after voting operation, to obtain more precise straight lines, we apply 3× 3 maximum

filters for the voted results.

For the image shown in Figure3.1(b) of size 512×512, the software implementation

performs the Hough transform in 41.408ms. On the other hand, the improved FPGA im-

plementation performs in 1.065ms. Hence, the improved FPGA implementation attains

a speed-up factor of more than 38 over the sequential implementation on the CPU.

Many hardware algorithms for FPGA implementation of the Hough transform for

15

lines have been proposed in past. In the existing researches, they introduced incremen-

tal Hough transform [45, 5, 10], CORDIC [24, 8], and hybrid-log arithmetic [30] to the

computation of Hough transform. Since most of recent FPGAs produced by principal

vendors equip embedded DSP slices [49, 50, 4], one of the most important key tech-

niques for accelerating computation using FPGAs is an efficient usage of DSP slices

and block RAMs.

3.1.2 Hough transform algorithm

The main purpose of this section is to review Hough transform algorithms for straight

lines. Suppose that we have an image of sizen × n. We assume thatn × n pixels are

arranged in two dimensionalxy-space such that the origin is in the center of the image

as illustrated in Figure3.2. Hence, both coordinatesx andy take integers in the range

n

n
x

y

θ

ρ

(x, y)

θ

ρ

0 180

n
√

2

(θ, ρ)

−

n
√

2

n

2

−

n

2
+ 1

−

n

2
+ 1

n

2

Figure 3.2: Two dimensional Spacesxy andθρ used in the Hough transform

[−n
2 + 1, n

2]. A pixel (x, y) (−n
2 + 1 ≤ x, y ≤ n

2) in the xy-space is converted to a curve in

theθρ-space by the following formula:ρ = xcosθ+ysinθ (0 ≤ θ < 180). Clearly, the

double inequality− n√
2
< ρ ≤ n√

2
is satisfied. The values ofθ andρ can also be obtained

16

geometrically. Suppose that we draw a line going through the origin with angleθ as

illustrated in Figure3.2. For such lines, we can draw the orthogonal line going through

a pixel (x, y). The value ofρ corresponds to the distance to the line. In other words, a

point (θ, ρ) of θρ-space corresponds to a line ofxy-space.

The key idea of the Hough transform is to vote inθρ-space only for every edge pixel

in thexy-space. Let (x0, y0), (x1, y1), . . . , (xk−1, yk−1) be thek pixels inxy-space. Suppose

that the coordinates of edge points edge points are given, the Hough transform is spelled

out as follows:

[Straight Forward Hough Transform]

for i ← 0 tok− 1

for θ ← 0 to 179

begin

ρ← xk cosθ + yk sinθ

v[θ][ρ] ← v[θ][ρ] + 1

output (θ, ρ) if v[θ][ρ] = threshold

end

For simplicity, we assume that the value ofρ is automatically rounded to an integer.

In the Straight Forward Hough Transform, for each point (x, y), the values ofxcosθ

andysinθ are computed forθ = 0,1, . . . ,179. If v[θ][ρ] is storing a large value, many

edge pixels in the input pixels lie in the line inxy-space corresponds to a point (θ, ρ) in

θρ-space.

We will show that, it is sufficient to compute these values forθ = 0,1, . . . , 90. From

the addition theorem of trigonometric functions, we have

ρ = xcos(180− θ) + ysin(180− θ)

17

= −xcos(θ) + ysin(θ). (3.1)

Using Formula (3.1), the Hough transform can also be done by partitioning the range

[0, 179] ofθ into two ranges [0,89] and [90,179]. Also, we avoid going through arrayv

for finding elements larger than a threshold. Thus, our new Hough transform, called the

Circuit-oriented Hough Transform, is spelled out as follows:

[Circuit-oriented Hough Transform]

for i ← 0 tok− 1

begin

for θ ← 0 to 89 do

begin

ρ← xk cosθ + yk sinθ

v[θ][ρ] ← v[θ][ρ] + 1

output (θ, ρ) if v[θ][ρ] = threshold

end

for θ ← 1 to 90 do

begin

ρ← −xk cos(θ) + yk sin(θ)

v[180− θ][ρ] ← v[180− θ][ρ] + 1

output (θ, ρ) if v[θ][ρ] = threshold

end

end

Recall that the FPGA implementation of the Circuit-oriented Hough transform is

improved to process all pixels of the image in raster scan order, and maximum filters

are applied to obtained more precise straight lines. Let (x, y) be the pixel inxy-space,

and letp[x][y] be the value of the pixel such thatp[x][y] = 1 if a pixel (x, y) is an edge

18

pixel andp[x][y] = 0 if a pixel (x, y) is a non-edge pixel. The Circuit-oriented Hough

Transform for the improved FPGA implementation, is spelled out as follows:

[Circuit-oriented Hough Transform for the improved implementation]

for y← −n
2 + 1 to n

2

for x← −n
2 + 1 to n

2

if p[x][y] = 1

begin

for θ ← 0 to 89 do

begin

ρ← xcosθ + ysinθ

v[θ][ρ] ← v[θ][ρ] + 1

end

for θ ← 1 to 90 do

begin

ρ← −xcos(θ) + ysin(θ)

v[180− θ][ρ] ← v[180− θ][ρ] + 1

end

end

In the following sections, we show the FPGA implementation of the Circuit-oriented

Hough transform and the improved FPGA implementation, respectively.

3.1.3 FPGA architecture for the Hough transform

This section describes our FPGA architecture for the Hough transform using DSP slices

and block RAMs in Xilinx Virtex-6 Family FPGA XC6VLX240T-1 [53].

Figure3.3 illustrates our architecture for the Hough transform. We use 178 DSP

19

blocksX1,X2, . . .X89 andY1,Y2, . . . ,Y89. For eachθ (0 ≤ θ ≤ 90) Xθ andYθ compute

xk cosθ andyk cosθ for givenxk andyk, respectively. Sincexk cos 0= xk, xk cos 90= 0,

yk sin 0 = 0, andyk cos 90= yk, DSP blocksX0, X90, Y0, andY90 are not necessary.

Using an adder and a subtractor for each pairXθ andYθ, ρθ = xk cosθ + yk cosθ and

ρ180−θ = −xk cosθ+ yk cosθ are computed. We also use 180 block RAMsV0,V1, . . .V179

to store the voting value. Addressρ of eachVθ (0 ≤ θ ≤ 179) is used to store the value

of v[θ][ρ].

X1 X2

Y1 Y2

V0 V1V179 V2V178

xk

yk

X89

Y89

V89V91V90

(θ, ρ)

Figure 3.3: The outline of our FPGA architecture for the Hough transform

To minimize the delay between registers, DSP blocksX1, . . . ,X90 are connected in a

pipeline fashion as illustrated in Figure3.3. EachXθ has a register to store the value of

xk. In every clock cycle, the value is transferred fromXθ to Xθ+1. Similarly, DSP blocks

Y0,Y1, . . . ,Y90 are connected in a pipeline fashion.

Figure 3.4 illustrates two DSP blocksXθ and Yθ with an adder and subtractor to

computeρ. In Xθ, the value ofxk is loaded in an internal register. Also, the value of

cosθ is pre-computed. Note that the value of cosθ used inXθ is a fixed value. The

20

cosθ

xk

sinθ

yk

xk cosθ

yk cosθ

xk

yk

Figure 3.4: Two DSP blocksXθ andYθ with an adder and subtractor to computeρ

product ofxk and cosθ is computed in a multiplier of the DSP blockXθ. Similarly, the

value of sinθ used inYθ is a fixed value and the product ofyk and sinθ is computed in a

multiplier of the DSP blockYθ.

In the Virtex-6 FPGA XC6VLX240T, that is our target device, has DSP48E1 blocks

are arranged in 8 columns of 96 adjacent DSP48E1 blocks. Neighboring DSP48E1

blocks are connected directly through pipeline registers. Our Hough transform architec-

ture uses 2 columns to computexk cosθ andyk sinθ each, and uses a pipeline technique

to maximize the clock frequency (Figure3.5).

Figure3.6 illustrates the architecture ofVθ using a block RAM. A block RAM in

the FPGA is dual port architecture. Xilinx Virtex-6 Family has 18Kbit dual-port block

RAMs, which have two sets of ports operated independently. Two sets of ports are:

Port Set A: ADDRA(ADDRess A),DOA (Data Output A),DIA (Data Input A)

21

×

cos1

xk cos1

×

cos2

xk cos2

×

cos89

xk cos89

xk

xk (=xk cos0)

89 DSP blocks

×

sin1

yk sin1

×

sin2

yk sin2

×

sin89

yk sin89

yk

yk (=yk sin90)

89 DSP blocks

Figure 3.5: Pipeline architecture to computexk cosθ andyk sinθ with DSP blocks

Port Set B: ADDRB(ADDRess B),DOB (Data Output B),DIB (Data Input B).

Let M[i] denote a data of addressi of the block RAM. In read operation of Port Set A,

M[ADDRA] is output fromDOA after the rising clock edge. In write operation of

Port Set A, the data given toDIA is written in M[ADDRA] at the rising clock edge.

Read/write operations of Port Set B are the same as Port Set A. Port Set A and Port Set B

work independently. In the block RAMs in the target device of this work, read/write op-

erations can be configured as either RF (Read First) mode or WF (Write First) mode.

In the RF mode, if reading and writing operations are performed to the same address,

reading operation is performed before the reading operation. Hence the reading data is

the data before writing data. On the other hand, in the WF mode, since the writing per-

formed before the reading, the reading data is the updated data. However, when a dual

port is used, there is a restriction that if read and write operation to the same address

22

are performed for each port, the setting of block RAMs must be RF as mentioned in

Chapter2.

We use the block RAM to store the values ofv[θ][ρ] (− n√
2
< ρ ≤ n√

2
). Let vθ[i]

denote the data of addressi in block RAM Vθ. Sinceρ is given to it ADDRA, vθ[ρ]

is output fromDOA after the rising clock edge as illustrated in Figure3.6. After that,

vθ[ρ] + 1 is computed and it is given toDOB. Sinceρ is given toADDB, vθ[ρ] + 1

is written in vθ[ρ]. In other words,vθ[ρ] ← vθ[ρ] + 1 is performed. At that time,

according to the restriction stated in the above, since the same value ofρ may be input

continuously, the setting of block RAMs must be RF. Namely, when the same value ofρ

is input continuously, the former voted value is not read from the block RAM. To avoid

this situation, we use an additional register to store the latest voted value and if the same

value ofρ is input continuously, the stored value is used instead of the value read from

the block RAM.

In the same time, a comparator is used to determine ifvθ[ρ] + 1 = threshold. If

so, the value ofρ is written in a register. After that, a pair (θ, ρ) is written into a next

register. The pair (θ, ρ) represents a probable line. It moves toward the output of the

circuit using series of shift registers one by one shown in Figure3.3. In order to reduce

the number of clock cycles necessary to move data to the output, we use two series of

shift registers. One is used for output data ofV0, . . . ,V89. The other is used for output

data ofV90, . . . ,V179. Therefore, the number of clock cycles necessary to move data to

the output is reduced to at most 90 clock cycles.

The choice of data precision is guided by the implementation cost in terms of area,

simplicity of design, speed and power consumption. Higher precision will lead to less

quantization error in the final implementation. On the other hand, lower precision will

23

+1

ADDRA

DOA

ρ

ADDRB

DIB

ρ

vθ[ρ]

=

vθ[ρ] + 1

block RAM

Figure 3.6: A block RAMVθ to storev[θ][ρ]

produce more compaction and faster designs with less power consumption. A trade-

off choice needs to be made depending on the given application and available FPGA

resources.

In our work, in order to minimize chip space and computation time, short fixed

point representation of numbers are used. Considering the structure of DSP blocks and

block RAMs, we choose the data presentation in our implementation, as follows. The

data format of inputs that are pairs of coordinatesxk andyk are 10bit two’s complement

integer each. Also, the data format of cosθ and sinθ is 16bit fixed point number, which

consists of 1bit sign, 1bit integer and 14bit fraction based on two’s complement. On the

other hand, the data format ofρ is 10bit two’s complement integer. The data format of

the voted value is 18bit integer. Namely, the number of the vote is at most 218−1. Since

the range of the value ofθ is 0 to 180, the data format ofθ is 8bit integer.

3.1.4 Improved FPGA architecture for the Hough transform

This section describes the improved FPGA architecture for the Hough transform that

uses approximately half of DSP slices and processes all pixels in raster scan order.

24

X1 X2

V0 V1V179 V2V178

x

y

X89

V89V91 V90

Computation of y sin θ(1 ≤ θ ≤ 90)

3 × 3 maximum filters (θ, ρ)

Counter

Counter

Input
pixels

y sin 1 y sin 2 y sin 89 y sin 90

x cos 1 x cos 2 x cos 89

Figure 3.7: The outline of the improved FPGA architecture for the Hough transform

Figure3.7 illustrates the outline of our FPGA architecture for the Hough transform.

Whenever each input pixel is given, the two counters forx andy increment appropri-

ately. We use 89 DSP slicesX1,X2, . . .X89. For eachθ (0 ≤ θ ≤ 90), Xθ computes

xcosθ. Sincexcos 0= x and xcos 90= 0, DSP slicesX0 andX90 are not necessary.

Also, we use a module to computeysinθ (1 ≤ θ ≤ 90). Using an adder and a subtractor

for xcosθ andysinθ, ρθ = xcosθ + ysinθ andρ180−θ = −xcosθ + ysinθ are computed.

We also use 180 block RAMsV0,V1, . . . ,V179 to store the voting value. Addressρ of

eachVθ (0 ≤ θ ≤ 179) is used to store the value ofv[θ][ρ]. After voting, to obtain iden-

tified straight lines, we use 3× 3 maximum filters. These filters simultaneously work

row by row.

As the same as the implementation of previous section, to minimize the delay be-

tween registers, DSP slicesX1, . . . ,X90 are connected in a pipeline fashion as illustrated

in Figure3.7. EachXθ has a register to store the value ofx. In every clock cycle, the

value is transferred fromXθ to Xθ+1. The DSP sliceXθ is the same as illustrated in Fig-

25

ure 3.4. In Xθ, the value ofx is loaded in an internal register. Note that the value of

cosθ used inXθ is a fixed value. The product ofx and cosθ is computed in a multiplier

of the DSP sliceXθ. Also, the improved Hough transform architecture uses 1 column

to computexcosθ, and uses a pipeline technique to maximize the clock frequency as

show in Figure3.5.

On the other hand, to computeysinθ (1 ≤ θ ≤ 90) we use the fact that the value ofy

in a certain row is not change since pixel data are input in raster scan order. Therefore,

when pixels in a certain rowy are processed, we pre-compute (y + 1) sinθ for θ such

that 0≤ θ < 90 in the next row and store them into the registers. In the next rowy+ 1,

the computed values of (y + 1) sinθ are used. Figure3.8 illustrates our architecture to

computeysinθ. We use a look-up-table using a block RAM to compute sinθ. and a

DSP slice to compute a product ofy and sinθ. Also, we utilize two series of registers,

called banks. One is used to pre-compute the values ofysinθ for the next row. The

other is used to output the already computedysinθ for the current processing row. To

compute the values of sinθ we successively generate the value ofθ = 90,89,88, . . . , 2,1

by a counter. By inputting them to the look-up-table, the values of sinθ are obtained.

Using the DSP slice, the products ofysinθ are computed. Note that the values ofysinθ

is for the next row. Therefore, the value ofy is incremented in advance. The obtained

values are successively input to a bank. In each bank, registers are cascaded shown in

the figure. The values shift one by one until all the values are input to the bank. When

pixels in a row are finished, the banks are switched.

Let vθ[i] denote the data of addressi in block RAM Vθ. Sinceρ is given to it

ADDRA, vθ[ρ] is output fromDOA after the rising clock edge as illustrated in Fig-

ure 3.6, that is the same with the implementation of the previous section. After that,

26

LUT
for

sin θ

y

θ sin θ

y sin θ
block RAM

90, 89, ..., 2, 1

Bank 0

Bank 1

y[0]

y sin 2y sin 1 y sin 3 y sin 90

Counter

+1

Figure 3.8: Architecture of computingysinθ with one DSP slice

vθ[ρ] ← vθ[ρ] + 1 is performed. Also, we use an additional register to store the latest

voted value and if the same value ofρ is input continuously, the stored value is used in-

stead of the value read from the block RAM. Recall that the improved implementation

processes all pixels in raster scan order. Note that the above voting process is performed

when the input value is an edge pixel. Namely, when it is a non-edge pixel, the voting

process is not performed.

In the following, when all the voting operations are completed, we utilize 3× 3

maximum filters to output the final correct identified straight lines. The maximum filter

is defined as the maximum of all pixels within a local region of an image. In here, for

each value in the voting space, this filter copies the largest value from a 3× 3 region to

it. In the voting process, the vote concentrates to each point (θ, ρ) corresponding to a

line in the original image. However, it also concentrates to around the point.

Figure3.9illustrates our architecture to perform a 3×3 maximum filter to the voted

results. Since the voted values in the sameρ can be obtained fromV0,V1, . . . ,V179, this

architecture works row by row in a pipeline fashion. To perform a 3× 3 maximum filter

to each value in a certain row, it is concurrently read fromV0,V1, . . . ,V179. After that,

using comparators, local maxima of each 3 neighboring votes in the row are obtained.

27

V0 V1 V2 V3 V4 V5 V6 V177 V178 V179

local maxima of each
3 neighboring votes
in the row ρi+1

local maxima of each
3 neighboring votes
in the row ρi

local maxima of each
3 neighboring votes
in the row ρi−1

local maxima of each
3× 3 votes

if the maximum equals
to the vote of the center
in the corresponding
3× 3 votes, output its
(θ, ρ)

(θ, ρ)

Figure 3.9: Pipeline architecture of 3× 3 maximum filters

These local maxima are input shift registers. After local maxima in the 3 rows are

computed, local maxima of each 3× 3 votes are obtained by computing maxima from

corresponding 3 values. If the maximum equals to the original value of the center in the

corresponding 3× 3 votes, its (θ, ρ) that represents a probable line is input to the shift

registers and output through the registers.

In the improved implementation of the Hough transform, the data format of inputs

are values (0 or 1) of all pixels in the image, these values are input in raster scan order.

The coordinates (x, y) which are necessary to computeρ are generated by the counter

as shown in Figure3.7. In order to minimize chip space and computation time, short

fixed point representation of numbers are used. Considering the structure of DSP slices

and block RAMs, we choose the data presentation in our implementation, as follows.

The data format of inputs that are values of pixelsp[x][y] are 1bit binary number. The

28

data format of cosθ and sinθ is 16bit fixed point number, which consists of 1bit sign,

1bit integer and 14bit fraction based on two’s complement. On the other hand, the data

format of ρ is 10bit two’s complement integer. The data format of the voted value is

18bit integer. Namely, the number of the vote is at most 218 − 1. Since the range of the

value ofθ is 0 to 180, the data format ofθ is 8bit integer.

3.1.5 Experimental Results

We have implemented and evaluated our proposed architectures of the Hough transform

on the Xilinx Virtex-6 FPGA XC6VLX240T-1. For the purpose of estimating the speed

up of our implementations, we have also implemented a conventional software approach

of the Hough transform using GUN C. We have used Intel Xeon X7460 (2.66GHz) and

128GB memory to run the sequential algorithm for the Hough transform.

In the evaluation of our original implementation that processes only edge points

and outputs lines by only thresholding, Table3.1 shows the experimental results using

Xilinx ISE 13.1. In this implementation, to reduce the delay of the circuit, some pipeline

registers are inserted into between circuit elements. It takes 3 clock cycles to compute

the values ofρ for given coordinatesxk andyk. Also, 4 clock cycles are necessary to

output a pair (θ, ρ) that represents a probable line. Moreover, the number of clock cycles

necessary to move data to the output is reduced to at most 90 clock cycles. Hence,

this circuit can output identified lines represented by (θ, ρ) in m+ 97 clock cycles, i.e.,

m+97
245.519µs. For example, Figure3.1(b) includes 33232 edge points. The circuit performs

the Hough transform in 135.75µs, where the software implementation on the CPU takes

37.10ms. Also, if all the points of an image of size 512×512= 262144 are edge points,

it takes 1.068ms to complete to output the results, and the software implementation

29

takes 359.27ms. Of course, it is not possible that all points are edge points, however,

this fact guarantees that this implementation for any 512× 512 image terminates in less

than 1.068ms. Therefore, our original implementation attains a speed-up factor of more

than 300 over the sequential implementation on the CPU.

Table 3.1: Performance evaluation of the proposed architectures for Hough transform

original work improved work

DSP48E1 slices (out of 768) 178 (23.1%) 90 (11.1%)

18Kbit block RAMs (out of 832) 180 (21.6%) 181 (21.7%)

Slices (out of 301440) 14493 (4.81%) 40487 (13%)

Clock frequency [MHz] 245.519 247.525

On the other hand, in the evaluation of the improved implementation that processes

all pixels in raster scan order and outputs lines using 3× 3 maximum filters, Table3.1

shows the experimental results. To computeysinθ for (1 ≤ θ ≤ 90) in the first row,

94 clock cycles are necessary. It takes 3 clock cycles to compute the values ofρ for

given x and the precomputedysinθ. Also, 4 clock cycles are necessary to vote to the

Hough space. Furthermore, to perform vote for eachVθ, the number of clock cycles

necessary to move data from the leftmost register to the rightmost register as shown in

Figure3.7 is 91. Since all of the points in the binary image are input into the improved

implementation, the voting operations are performed for ann×n image inn2+192 clock

cycles. After voting,
√

2n+ 187 clock cycles are necessary to output identified straight

lines with 3× 3 maximum filters. Hence, in total,n2 +
√

2n + 379 clock cycles, i.e.,

n2+
√

2n+379
247.525 µs are necessary to perform the Hough transform for ann×n image. Thus, our

circuit completes the Hough transform for an 512×512 image in 1.065ms. For the image

shown in Figure3.1(b) of size 512× 512, the software implementation performs the

30

Hough transform in 41.08ms. Therefore, our improved FPGA implementation attains a

speed-up factor of more than 38 over the sequential implementation on the CPU. If all

points of the image are edge points, the improved FPGA implementation runs over 300

times faster than the sequential implementation on the CPU.

Table 3.2: Comparison with related works for Hough transform

Karabernou [24] Deng [8] Lee [30] original work improved work

Device XC4010EPC84 XC4010XL Virtex 4 XC6VLX240T-1 XC6VLX240T-1

Logic blocks 205 CLBs 333 CLBs 314 CLBs 14493 Slices 40487 Slices

DSP slices — — — 178 DSP48E1s 90 DSP48E1s

Frequency 23.166MHz 40MHz 132MHz 245.519MHz 247.525MHz

Throughput 10.368Mpixel/s 0.623Mpixel/s 32.768Mpixel/s 245.428Mpixel/s 246.219Mpixel/s

There are a number of literatures reported to implement Hough transform for lines

using the FPGA shown in Section3.1.1. Performances such as device, logic blocks, DSP

slices, frequency and throughput are compared in Table3.2. It is difficult to directly

compare to other works because utilized FPGAs and supported size of images differ.

Considering the throughput, however, it is clear that the performance of our FPGA

implementations are better than that of other works. In addition, although the improved

implementation takes more time than our previous work to perform Hough transform,

the number of DSP slices are less than the original implementation, and the result is

filtered.

3.1.6 Concluding remarks

We have presented two architectures of the Hough transform for the straight lines using

DSP slices and block RAMs in the Virtex-6 Family FPGA. The original FPGA im-

31

plementation of the Hough transform uses 178 DSP48E1 slices and 180 18kbit block

RAMs. The implementation results show that the our original implementation runs at

245.519MHz, and performs the Hough transform for a image withm edge points in

m+ 97 clock cycles. On the other hand, we improved the original implementation to

process all pixels of image in raster scan order and reduce the usage of DSP slices. Also,

maximum filters are applied to obtain more precise lines after the voting operation. The

experimental results show that the improved implementation uses 91 DSP48E1 slices

and 181 18kbit block RAMs. The improved implementation runs at 247.525MHz, and

performs the Hough transform for a binary image of sizen× n in n2 +
√

2n+ 379 clock

cycles. Compared to the conventional CPU implementation of the Hough transform,

our implementations achieve a sufficient speed-up.

3.2 Efficient implementation of the Gradient-based Hough

transform algorithm for extracting lines

The gradient-based hough transform is an improvement of the original Hough trans-

form. It is utilized to reduce substantially the computation quantity and make the detec-

tion more accurate using gradient information. We show an efficient implementation of

the gradient-based Hough transform for straight lines detection using a Xilinx Virtex-7

FPGA in this section.

3.2.1 Introduction

The Hough transform can be used to extract straight lines in a binary image [11]. As

mentioned in the previous section, the idea of this method is to exploit the duality be-

32

tween points of a line and parameters of that line. More specifically, for each edge point

(x, y) in a 2-dimensional image, the voting is performed along a curveρ = xcosθ+ysinθ

(0 ≤ θ < 180). Possible lines can be detected by searching points that are voted inten-

sively. For an input image (Figure3.10(a)), the binary edge image (Figure3.10(b)) is

obtained by the edge detector such as Sobel filter. We can see that the normal Hough

transform performs well basing on the pure edge image. The result of voting to the pa-

rameter space is shown in Figure3.11(a). In this figure, darker points show points that

are voted intensively, that is, represent probable lines. According to the result of voting,

the principal lines are detected (Figure3.10(c)).

There are many improvements to the Hough transform for line detection [21]. One

of the efficient improvements is using gradient information [39]. The idea of the method

is to utilize gradient direction and magnitude. It is based on the fact that if a given point

happens to indeed be on a line,(i) The local direction of the gradient gives approxi-

mately the same direction of the actual line.(ii) The gradient magnitude at the pixel

is higher than that of other points not lying on lines. Using these ideas, we reduce the

number of useless votes by limiting the range of votes with the local gradient direction,

and weight voted values proportional to the local gradient magnitude to enhance the

votes of pixels on lines. In the following, the straight forward Hough transform shown

in Section3.1.2, is calledconventional Hough transform, and the Hough transform us-

ing gradient information is calledgradient-based Hough transformto distinguish them

easily. In our implementation, we use the Sobel filter, which is used in edge detection

algorithms [38] to obtain the gradient information. Figure3.11(b) shows the resulting

Hough space based on the above ideas. Compared with that of the conventional Hough

transform, we can see that votes are limited to the several parts that are darker points in

33

the figure. Actually, these correspond to real lines in the image and it is easy to find that

useless votes are reduced.

The third contribution of this chapter is to present an efficient architecture for the

gradient-based Hough transform. Our implementation uses 13 DSP48E1 slices, 180

block RAMs with 36kbits and 8 block RAMs with 18kbits. We have implemented our

architecture on a Virtex-7 XC7VX485T-2. Our proposed circuit runs at 260.061MHz,

and the voting operations are performed for ann×n gray-scale image inn2+2n+44 clock

cycles. After the voting operation, our circuit outputs the identified lines in
√

2n+ 188

clock cycles. Therefore, our circuit can perform the gradient-based Hough transform in

n2 + (
√

2+ 2)n+ 232 clock cycles.

(a) Input image (b) Binary edge image by Sobel

filter

(c) Line detection using the

Hough transform

Figure 3.10: Example of straight lines detection using Hough transform

3.2.2 Gadient-based Hough transform algorithm

In the gradient-based Hough transform, lines detection is performed for a gray-scale

image, not a binary image. To obtain the gradient information for a gray-scale image,

we use the Sobel filter. The Sobel filter is applied on the image for approximating the

34

(a) Conventional (b) Gradient-based

Figure 3.11: Hough parameter spaces of the conventional Hough transform and

gradient-based Hough transform

vertical and horizontal derivatives using a couple of 3× 3 convolutionsGx andGy:

Gx =


1 0 −1

2 0 −2

1 0 −1

 ⊗ I ,Gy =


1 2 1

0 0 0

−1 −2 −1

 ⊗ I , (3.2)

whereI represents the input image and⊗ denotes the 2-dimensional convolution oper-

ation. The two results convolved byGx andGy are approximations of the gradient for

horizontal and vertical of the image, respectively. At each pixel in the image, the result-

ing gradient approximations can be combined to obtain the gradient magnitude using

the formula:

G =
√

Gx
2 +Gy

2. (3.3)

We can also compute the gradient directionθ′ using

θ′ = tan−1(
Gy

Gx
). (3.4)

Based on the gradient direction obtained by the above, we vote to the parameter space.

However, there is an error between local gradient direction and the direction of actual

35

lines due to the quantization error. Therefore, voting operation is performed not only to

the angle obtained by the gradient direction, but also angles in the vicinity of it. In our

implementation, we introduce weighted valuesw that depends on the angle as follows:

w(θ − θ′) =


2λ−|θ−θ

′ | |θ − θ′| ≤ λ

0 otherwise.
(3.5)

To be suitable for the compact FPGA implementation, we use the weights as power-of-

two numbers. Also, the voting range is limited to [−λ,+λ] instead of the range [0,179]

in the conventional Hough transform. The gradient-based Hough transform is spelled

out as follows:

[Gradient-based Hough Transform]

for y← −n
2 + 1 to n

2

for x← −n
2 + 1 to n

2

ComputeG andθ′ for p[x][y]

for θ ← θ′ − λ to θ′ + λ do

begin

if θ < 0 thenθ ← θ + 180

ρ← xcosθ + ysinθ

v[θ][ρ] ← v[θ][ρ] +G · w(θ − θ′)

end

Simply speaking, the gradient-based Hough transform votes for each pixel of the gray-

scale image with a weighted valueG · w(θ − θ′) which is proportional to the gradient

magnitude. The parameter space will be sharpened by such voting operations that make

the accuracy higher. Our implementation for the computation of the gradient direction

and magnitude is a pipelined architecture. In the following section, we show the efficient

implementations of the gradient-based Hough Transform on the FPGA.

36

3.2.3 FPGA architecture for the gradient-based Hough transform

This section describes our FPGA architecture for the gradient-based Hough transform

using DSP slices and block RAMs in Xilinx Virtex-7 Family FPGA XC7VX485T-2 as

the target device [56]. Figure3.12illustrates the outline of our architecture. The details

are described as follows.

x cos(θ′
− 4) x cos(θ′

− 3) x cos(θ′
− 2) x cos(θ′

− 1) x cos θ
′

x cos(θ′ + 1) x cos(θ′ + 2) x cos(θ′ + 3) xcos(θ′ + 4)

Counter

x

y sin 1, y sin 2, . . . , y sin 179

θ′

V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V177 V178 V179

Computation for y sin θ(1 ≤ θ ≤ 179)

G

3 × 3 maximum filters
(θ, ρ)

ρ for (θ′ − 4 ≤ θ ≤ θ′ + 4)

Counter

y

y sin(θ′
− 3) y sin(θ′

− 2) y sin(θ′
− 1) y sin θ′ y sin(θ′ + 1) y sin(θ′ + 2) y sin(θ′ + 3) y sin(θ′ + 4)y sin(θ′

− 4)

. . .0

−4 −3 −2 −1 +1 +2 +3 +4

. . .

+ + + + + + + + +

3 × 3
Sobel
filter

Input pixels

Figure 3.12: The outline of our FPGA architecture for the gradient-based Hough trans-

form (λ = 4)

[Structure for the computation of gradient information]

In our architecture, we use a 3× 3 Sobel filter to obtain gradient information. Since

we assume that input pixels are given to the circuit in the raster scan order, we use

a two-lines buffer with block RAMs to provide pixels in each 3× 3 subimage to the

filter. Our circuit computes the horizontal and vertical derivative approximations using

combinational circuits as shown in Figure3.13, wheredout2, dout1anddin represent

37

pixel values in the three lines of the input image, respectively.

dout2

dout1

din

×1

×(−1)

0

×2

×(−2)

×1

×(−1)

0

0

0

Gx

dout2

dout1

din

×2

0

0

Gy

0

0

×(−1)

×(−1)

×(−2)

0

(a)Gx (b) Gy

Figure 3.13: Structure for the computation ofGx andGy

As mentioned before, the algorithm needs the gradient direction and magnitude as

shown in Section3.2.2. The formula includes the computation of the square root and

the inverse tangent. Since it is difficult to compute them directly on the circuit, we use

the CORDIC IP provided by Xilinx [57]. The CORDIC IP provides a hardware module

that is fully pipelined architecture and available easily on the FPGA.

[Structure for the computation of ρ and voting operation]

Given the gradient directionθ′ and magnitudeG of each pixel are obtained with a

pipelined architecture, the circuit computesρ and performs voting operation. When-

ever the gradient magnitudeG and the gradient directionθ′ of each pixel are given, the

two counters forx andy increment appropriately.

We use DSP slices and block RAMs to computexcos(θ′ − λ), . . . , xcos(θ′ + λ). The

detail of each circuit that computesxcosθ is shown in Figure3.14. The circuit consists

of one DSP slice and one block RAM. Using the block RAM as a look-up-table, cosθ

is computed and the DSP slice computes the product ofx and cosθ. We note that in

38

our implementation, since two circuits can share the two block RAMs for the look-up-

table with the dual port, we use 2λ + 1 DSP slices and⌈2λ+1
2 ⌉ block RAMs to compute

xcos(θ′ − λ), . . . , xcos(θ′ + λ). For simplicity, the sharing is omitted in Figure3.12

though it seems that every circuit that computesxcosθ has one block RAM.

x

cos θ

x cos θ

DSP slice

LUT
for

cos θ

Block RAM

θ

x

×

Figure 3.14: A DSP slice and a block RAM to computexcosθ

Also, to computeysinθ (1 ≤ θ ≤ 179), we use the same architecture as illustrated

in Figure3.8of Section3.1.4. We use the fact that the value ofy does not change while

processing pixels are in a certain row. Therefore, when pixels in a rowy are processed,

we pre-compute the values of (y + 1) sinθ for (1 ≤ θ ≤ 179) in the next row and store

them into the registers, that differs from the value of (1≤ θ ≤ 90) as shown in Figure3.8.

When pixels in the next rowy+ 1 are processed, the values are used. We utilize a block

RAM as a look-up-table to compute sinθ, and one DSP slice to compute a product ofy

and sinθ. Also, we use two series of registers, called banks. One is used to pre-compute

the values ofysinθ for the next row. The other is used to output the already computed

ysinθ for the current processing row. To compute the values of sinθ, we successively

generate the value ofθ = 179,178, ...2,1 by a counter. By inputting them to the look-

up-table, the values of sinθ are obtained. The products ofysinθ are computed using a

DSP slice. Note that the values ofysinθ are for the next row. Therefore, the value of

39

y is incremented in advance. The obtained values are successively input to a bank of

registers. In each bank, registers are connected in cascade. The values shift one by one

until all the values are input to the bank. When pixels in a row are finished, the banks

are switched.

Figure 3.15 illustrates the architecture ofVθ using a block RAM. Given gradient

directionθ′ and magnitudeG, the voted valueG · w(θ − θ′) is computed, whereθ is a

constant value in eachVθ. Since in our implementation the value ofw(θ − θ′) is power

of two shown in Section3.2.2, it can be computed with a subtractor and a bit shifter. A

block RAM in Xilinx Virtex-7 Family FPGA is dual port architecture, has two sets of

ports operated independently.

ADDRA

ADDRB

DIB

DOA
vθ[ρ]

ρ

G · w(θ − θ
′)

G

ρ

+

<<

θ′

θ

−

Bit shift

=

Figure 3.15: A block RAMVθ to storev[θ][ρ]

We use the block RAM to store the values ofv[θ][ρ] (− n√
2
< ρ ≤ n√

2
). Let vθ[i]

denote a data of addressi of the block RAMVθ. Sinceρ is given to itsADDRA, vθ[ρ]

is output fromDOA after the rising clock edge as illustrated in Figure3.15. After that,

vθ[ρ] + G · w(θ − θ′) is computed and it is given toDIB. Sinceρ is given toADDB,

vθ[ρ] + G · w(θ − θ′) is written invθ[ρ]. In other words,vθ[ρ] ← vθ[ρ] + G · w(θ − θ′)

40

is performed. At that time, according to the restriction stated in Section2.3, since the

same value ofρ may be input continuously, the setting of block RAMs must be RF.

Namely, when the same value ofρ is input continuously, the former voted value is not

read from the block RAM. To avoid this situation, we use an additional register to store

the latest voted value and if the same value ofρ is input continuously, the stored value

is used instead of the value read from the block RAM.

After all the voting operations are completed, we utilize the maximum filters as

shown in Figure3.9, to output the correct identified straight lines. In here, for each

value in the voting space, the filter copies the largest value from a 3× 3 region to

it. Since the voted values in the sameρ can be obtained fromV0, V1, . . . , V179, this

architecture works row by row in a pipeline fashion. All values in a certain row is

concurrently read fromV0, V1, . . . , V179. After that using comparators, local maxima of

each 3 neighboring votes in the row are obtained. These local maxima are input to shift

registers. After local maxima in the 3 rows are computed, local maxima of each 3× 3

votes are obtained by computing maxima from corresponding 3 values. If the maximum

equals to the original value of the center in the corresponding 3× 3 votes, its (θ, ρ) that

represents a probable line is input to the shift registers and output through the registers.

In this implementation, the data format of inputs are 8-bit integer of all pixels in the

gray-scale image and these values are input in raster scan order. The coordinates (x, y)

which are used to computeρ are appropriately generated by the counters. In order to

minimize chip space and computation time, short fixed point representation of numbers

is used. The data format of inputs that are values of pixelsp[x][y] is 8-bit integer. The

data format of cosθ and sinθ is 16-bit fixed point number, which consists of 1-bit sign,

1-bit integer and 14-bit fraction based on two’s complement. On the other hand, the data

41

formats of gradient magnitudeG and gradient directionθ′ are 12-bit and 8-bit integers,

respectively. The data format ofρ is 10-bit two’s complement integer. Since the range

of the value ofθ is 0 to 179, the data format ofθ is 8-bit integer. The data format of the

voted value is 24-bit integer.

3.2.4 Experimental Results

We have implemented the proposed architecture for the gradient-based Hough transform

and evaluated it on the Xilinx Virtex-7 FPGA XC7VX485T-2. Table3.3 shows the

experimental results using Xilinx ISE 14.1.

Table 3.3: Performance evaluation of the proposed architecture for the gradient-based

Hough transform

DSP48E1 slices (out of 2800) 13 (1%)

36Kbit block RAMs (out of 1030) 180 (17%)

18Kbit block RAMs (out of 2060) 8 (1%)

Slices (out of 607200) 80181 (13%)

Clock frequency [MHz] 260.061

In our implementation, the voted range of the gradient-based Hough transform shown

in Section3.2.2is set toλ = 4, that is for local gradient directionθ′, we perform the

voting operation to the rangeθ′ − 4 ≤ θ ≤ θ′ + 4. The range was obtained by our experi-

ments. The range is enough to extract lines because the error between the angle of lines

obtained by the Sobel filter and the actual angle is small [7].

Figure3.16shows the result of lines detection for the conventional Hough transform

and the gradient-based Hough transform. Compared with the result of the conventional

42

Hough transform, we can see that the gradient-based Hough transform obtained more

correct lines and exclude the inexistent lines.

Original gray-scale Lines detection Lines detection

image by the conventional by the gradient-based

Hough transform Hough transform

Figure 3.16: Comparison between conventional and gradient-based Hough transform

algorithms

In our implementation, the circuit can work in fully pipelined fashion. Namely, input

pixels can be provided to the circuit clock by clock in raster scan order. To reduce the

delay of the circuit, some pipeline registers are inserted into between circuit elements.

It takes 2n + 44 clock cycles to complete voting from the first input pixel is given to

its voting is finished. Since the input image consists ofn2 pixels, the voting operations

are performed inn2 + 2n + 44 clock cycles. After voting,
√

2n + 188 clock cycles are

necessary to output identified straight lines with 3× 3 maximum filters. Therefore, in

total, n2 + (
√

2+ 2)n+ 232 clock cycles, i.e.,n
2+(
√

2+2)n+232
260.061 µs are necessary to perform

43

the gradient-based Hough transform. If an input image of size 1000×1000 is given, our

circuit can detect straight lines in 3.859ms.

We have also implemented a software approach of the gradient-based Hough trans-

form using GNU C. We have used Intel Xeon X7460 running in 2.66GHz and 128GB

memory to run the sequential algorithm for the gradient-based Hough transform. For

the image shown in Figure3.10(a) whose size is 333× 333, the software implementa-

tion can perform the gradient-based Hough transform in 133.519ms. On the other hand,

our circuit can perform it in 431.660µs. Therefore, our FPGA implementation attains a

speed-up factor of more than 309 over the sequential implementation on the CPU.

Table 3.4: Comparison with related works for Hough transform

Deng [8] Lee [30] Karabernou [24] Our work

Hough transform Conventional Conventional Gradient-based Gradient-based

Device XC4010XL Virtex 4 XC4010EPC84 XC7VX485T-2

Logic blocks 333 CLBs 314 CLBs 205 CLBs 80181 Slices

DSP slices — — — 13 DSP48E1s

Frequency 40MHz 132MHz 23.166MHz 260.061MHz

Throughput 0.623Mpixel/s 32.768Mpixel/s 10.368Mpixel/s 263.979Mpixel/s

There are a number of literatures reported to implement Hough transform for lines

using the FPGA shown in Section3.1.1. Algorithms, that is conventional or gradient-

based, and performances such as device, logic blocks, DSP slices, frequency and through-

put are compared in Table3.4. It is clear that the performance of our FPGA implemen-

tation is better than that of other works.

44

3.2.5 Concluding remraks

We have presented an efficient implementation of the gradient-based Hough transform

for gray-scale images using DSP slices and block RAMs in the Virtex-7 Family FPGA.

We have implemented the circuit using 13 DSP48E1 slices, 180 block RAMs with

36Kbits and 8 block RAMs with 18Kbits on the Virtex-7 Family FPGA XC7VX485T-

2. The experimental results show that the architecture runs in 260.061MHz and for an

n × n gray-scale image, our circuit can perform inn2 + (
√

2 + 2)n + 232 clock cycles,

i.e., n2+(
√

2+2)n+232
260.061 µs, including the computation of gradient information.

3.3 Efficient implementation of the one-dimensional Hough

transform algorithm for extracting circles

The Hough transform can be used to find circles in images. The conventional Hough

transform for extracting circles needs three-dimension space, that is too costly. In this

section, we show an efficient FPGA implementation of the Hough transform algorithm

that uses only one-dimensional parameter spaces for circles detection on a Xilinx Virtex-

7 FPGA. Our implementation uses 398 DSP48E1 slices and 309 block RAMs with

18kbits. The experimental results show that our implementation runs at 181.812MHz.

For an edge image of size 400× 400, our implementation attains a speed-up factor of

approximately 189 over the sequential implementation on the CPU.

3.3.1 Introduction

The Hough transform defines a mapping from an image into a parameter space repre-

sented by an accumulate array. Let us consider circle detection using the Hough trans-

45

form. A circle can be defined by the three parameters, its center coordinate (xc, yc) and

the radiusr. Therefore,O(N3) space is necessary to store the parameter space, where

n is the size of each dimension of the parameter space. Moreover, it takesO(N3)-time

to vote for each edge point and search intensive elements in the accumulate array. Re-

cent FPGAs (Field Programmable Gate Arrays) have embedded DSP48E1 slices and

block RAMs. The DSP slices are equipped with a multiplier, adders, logic operators,

etc [58]. The block RAM is an embedded memory supporting synchronized read and

write operations, and can be configured as a 36Kbit or two 18Kbit dual port RAMs [60].

The key technique for accelerating the algorithm is an efficient usage of DSP slices and

block RAMs. However, in the conventional Hough transform algorithm for circles de-

tection, even the state-of-the-art FPGA such as the Xilinx Virtex-7 series FPGAs can

not handle theO(N3) space without off-chip memories. The parameter space decom-

position is used to reduce the parameter space. Many of methods based on the Hough

transform that use two-dimensional parameter spaces [22, 25] and one-dimensional pa-

rameter spaces [17] have been proposed. Specifically, in the one-dimensional Hough

transform algorithm [17], the x-coordinate of center,y-coordinate of center, and radius

are detected in series. In each detection, one-dimensional parameter spaces is used

in the same way as the Hough transform. Moreover, various hardware algorithms for

circle detection have been proposed. These existing researches use the template match-

ing [43, 46] and the Hough transform algorithms [23, 16, 12]. Shaferet al. proposed

an FPGA implementation to detect the iris position [43]. However, it detects only one

circle in an image. Jenet al. proposed an FPGA implementation to detect circles us-

ing any three nonlinear pixels to form a circle [23]. However, because of the huge size

of parameter spaces, this method uses off-chip memories. Elhossiniet al. proposed a

46

pipelined FPGA architecture for circles detection [12]. Four specific radii are fixed due

to the limitations of on-chip memories on the FPGA.

The fourth contribution of this chapter is to present an efficient FPGA implementa-

tion of the one-dimensional Hough transform algorithm for circles detection [17]. Our

ideas include:

One-Dimensional Parameter Spaces:In the algorithm [17], since only one-dimensional

parameter spaces are used, this algorithm is implemented using the block RAMs on the

FPGA. Additional off-chip memories are not necessary.

Voting Space Partitioning: The parameter spaces forx- andy-coordinates of center

candidates are partitioned into multiple block RAMs that are voted in parallel. The

voting operations of radius for each center candidate is also concurrently performed

using multiple block RAMs.

Efficient Usage of DSP slices:DSP slices are used to merge the partitioned voting

spaces forx- andy-coordinates of center candidates in a pipelined fashion. Furthermore,

DSP slices are used to compute the Euclidean distance between each center candidate

and edge points.

The one-dimensional Hough transform algorithm consists of the following four

steps: (1)x-coordinates of center candidates of circles are detected by voting midpoints

of every two edge points in each row. (2)y-coordinates of center candidates of circles

are detected by voting midpoints of every two edge points in each column. (3) Center

candidates are listed fromx- andy-coordinates of center candidates. (4) For each center

candidate, radii of the circles are detected. Also, detected circle candidates are checked

whether the candidate is a true circle by voting the Euclidean distances between each

center candidate and every edge point.

47

(a) Input image (b) Binary edge image (c) Detected circles

Figure 3.17: Example of circles detection using the one-dimensional Hough transform

algorithm

Figure3.17shows an example of circles detection using this method. For an input

image (Figure3.17(a)), its edge image (Figure3.17(b)) is obtained using the edge de-

tector such as Canny edge detector [6]. Figure3.17(c) draws detected circles using the

one-dimensional Hough transform algorithm.

We have implemented the one-dimensional Hough transform algorithm on a Xilinx

Virtex-7 XC7VX485T-2. Our new architecture uses 398 DSP48E1 slices and 309 block

RAMs with 18Kbits. Our proposed circuit runs in 181.812MHz. For a binary image of

size 400×400, our circuit performs the circles detection in at most 970434 clock cycles,

i.e., 5337.568µs. Our implementation attains a speed-up factor of approximately 189

over the sequential implementation on the CPU.

48

Input edge image

(1) Voting for x-coordinates of center candidates

(2) Voting for y-coordinates of center candidates

Detected(3) Center candidates

(4) Voting for radii

.

.

.

.

.

.

.

.

.

.

.

.

0

y

x

0

y

x

0

y

x

0

y

x

+
1

+
1

+
1

+1

+1

+1

+1

+1

+1

+1

+1

+1

+3

+1

Figure 3.18: The outline of the one-dimensional Hough transform algorithm for circle

detection

3.3.2 One-dimensional Hough transform algorithm for circles de-

tection

The main purpose of this section is to show the one-dimensional Hough transform al-

gorithm for circles detection. Figure3.18 illustrates an outline of this algorithm. The

detail of this algorithm is shown as follows.

Step 1: We compute midpoints of every two edge points on each row. After that, the

x-coordinates are voted to a one-dimensional accumulate array. Namely, the element

that corresponds to thex-coordinate of each midpoint is incremented by one. This

operation is performed for every row in the input image. If there is a circle, the voting

to the x-coordinate of its center is concentrated since a circle is symmetrical to the

vertical bisector through its center. To cope with quantization error, after voting, we use

a maximum filter for the voted values. In here, for each value in the accumulate array,

49

this filter copies the value if it is the maximum within a local range, otherwise, the filter

outputs zero. After that, the topλ largest elements are extracted asx-coordinates of

center candidates of circles to detect multiple circles.

Step 2: In the same way as Step 1, we compute midpoints of every two edge points

on each column. After that, they-coordinates are voted to a one-dimensional accumulate

array for every column. If there is a circle, the voting to they-coordinate of its center is

concentrated since a circle is symmetrical to the horizontal bisector through its center.

The voted values are filtered by the maximum filter. After filtering, the topλ largest

elements are obtained asy-coordinates of center candidates of circles.

In the following FPGA implementation, we perform Steps 1 and 2 in parallel since

these steps can be executed independently.

Step 3: We list center candidates that are all combinations fromx- andy-coordinates

obtained in the above steps. Since each step obtainsλ coordinates,λ2 center candidates

are listed in total.

Step 4: For each center candidate, the Euclidean distances between the center candi-

date and all edge points are computed and the distances are voted to a one-dimensional

accumulate array as radii of circles. If a center candidate is a center of true circle in the

image, an element that corresponds to the radius is intensely voted. Therefore, we ver-

ify whether the center candidate and each radius represent a true circle using the voted

value. In digital images, it is known that the number of pixels on the circumference of

circles with radiusr is 4
√

2r [29]. However, practical circles may be broken or dis-

turbed. Therefore, for each radius, we determine whether the center candidate and its

radius represent a true circle using the thresholdf×4
√

2r, where f is a threshold factor

that is a constant value within the range (0,1]. If the voted value of radius is larger than

50

the threshold, the circle is verified as a true circle. The validation for each radius, circles

with the center candidate are extracted.

For each center candidate, the above operation is performed. In our FPGA imple-

mentation, this operation is performed in parallel and circles are detected.

3.3.3 FPGA architecture for the one-dimensional Hough transform

This section describes our FPGA architecture of the one-dimensional Hough transform

algorithm. The input data for our implementation is given as two edge lists consisting

of coordinates of edge pixels in row- and column-major order, respectively. These edge

lists can be obtained by edge detection easily, and each list is stored into a block RAM.

Structure for voting operation of center candidates

Figure3.19shows our architecture for the voting operation ofx-coordinates of cen-

ter candidates, wherep is the number of voting modules. Namely, up top voting opera-

tions are concurrently performed. We utilize one series ofp shift-registers that transfer

data in the left-to-right direction. In order to compute the midpoints of any two edge

points on each row, we read them from the block RAM that stores the edge list in row-

major order. To give all pairs ofx-coordinates of whichy-coordinates are identical for

each row, we inputx-coordinates which have the samey-coordinate to the register and

transferred them with shift-registers one by one. If all orp x-coordinates which have

the samey-coordinate are transferred to the registers, then allx-coordinates which have

the samey-coordinate are continuously read out from the block RAM and broadcast

to pair with thex-coordinates in the registers. If the number of edge points whosey-

coordinates are identical is larger thanp, the above operation is repeated. For each given

51

pair of x-coordinates, the coordinate of the midpoint is computed using an adder and a

1-bit right-shifter that divides by two.

· · ·

· · ·

÷2 ÷2 ÷2 ÷2 ÷2 ÷2 ÷2

computation
of

midpoint

· · ·

· · ·

· · ·

26 1554

R0 R1 R2 R3 R4 Rp−2 Rp−1

· · ·

voted values

distributed
voting spaceV0 Vp−1V1 V2 V3 V4 Vp−2

edge list
(row-major)

(10, 2)

(15, 2)

(26, 2)

(18, 9)

(32, 9)

...

...

...

(17, 3)

(26, 3)

(54, 2)

10

(45, 9)

︸ ︷︷ ︸

p − 1 DSP slices

maximum
filter

circuit for
finding λ

x-coordinates of
center candidates

10 10 10 10

shift-registers

Figure 3.19: Architecture of voting forx-coordinates of center candidates

After that, thex-coordinates of midpoints are voted to the block RAM. Namely, an

element that corresponds to thex-coordinate in the block RAM is incremented by one.

We usep block RAMs Vk (0 ≤ k ≤ p − 1) to store the voted values and at mostp

midpoints are concurrently voted. Figure3.20illustrates the architecture ofVk using a

block RAM, that is the same with the architecture shown in Figure3.6. The block RAM

is utilized in dual port mode, where port set A and B are operated for read and write

operation, respectively.

In the block RAMs on the target device of this work, read/write operations can be

configured as either RF (Read First) mode or WF (Write First) mode. As mentioned in

Section2.3, in the dual port mode, there is a restriction that if read and write operation

to the same address are performed for each port, the setting of block RAMs must be

RF [60].

We use the block RAM to store the values ofvk[x] (0 ≤ x < n), where the size of

52

ADDRA

ADDRB

DIB

DOA
vk[x]

x-coordinate
of midpoint

+1

=

Figure 3.20: A block RAM to store the voted values

image isn× n andx is anx-coordinate of midpoints. Letvk[x] denote a data of address

x in the block RAMVk. Sincex is given to itsADDRA, vk[x] is output fromDOA after

the rising clock edge as illustrated before. After that,vk[x] + 1 is computed and it is

given toDOB. Sincex is given toADDRB, vk[x] + 1 is written invk[x]. According to

the restriction stated in the above, since the same value ofx may be input continuously,

we used an additional register to store the latest voted value and if the same value ofx

is input continuously, the stored value is used instead of the value read from the block

RAM.

After the voting operations, we combine the voted values stored inp block RAMs.

We read every element in each block RAM one by one. These values are added and

transferred left-to-right for each clock cycle to compute the sum of each element with

p − 1 registers andp − 1 adders. To optimize the circuit resources, we use a cascaded

DSP slice for each pair of register and adder.

Structure for finding the center candidates of circles

A maximum filter is used to cope with the quantization error for the voted values

53

above. After filtering, thex-coordinates to which theλ largest values correspond are

obtained asx-coordinates of center candidates of circles. Each voted value is input to

maximum filter for each clock cycle. For each value, the filter verifies whether it is the

maximum comparing with its neighboring 2 values. If it is the maximum in the local

range, the filter copies the largest value, otherwise, the filter outputs it as zero. There-

fore, the largest value in the local range and zero are alternately output after filtering.

Figure3.21illustrates the structure that finds thex-coordinates of center candidates.

An array of registers and comparators are used to obtain the largestλ values. Every

register is initialized to zero. The filtered values are continuously input to the left-most

register for each clock cycle. Each register ofci (0 ≤ i < λ) compares the value with

its left register. If this register has smaller value, the value of its left register is then

transferred to it. If this register has larger value, it will compare the value with its

right register, and if the register has larger value, this value is transferred to its right

neighboring register. All the values of registers are transferred in parallel. Since input

values are obtained through the maximum filter, the input values are given at more

than one clock cycle intervals. Hence, the larger values will be gradually transferred

to the right side through the registers. Finally, the topλ largest values are stored in the

registers. Namely, thex-coordinates that have the topλ largest values are chosen to be

thex-coordinates of center candidates of circles.

Similarly, using another circuit whose structure is the same as the above, the voting

operation fory-coordinates of center candidates are performed with edge lists stored

in column-major order as input. Also,y-coordinates with the topλ largest values are

obtained as they-coordinates of center candidates. Everyx- andy-coordinates of centers

candidates are combined to constructλ2 center candidates.

54

filtered

values

· · ·

· · ·

· · ·

c0 c1 cλ−1c2 c3

Figure 3.21: Architecture for findingλ x-coordinates of center candidates

Structure for the voting operation of radius

The voting operation of radius is performed for each center candidate in paral-

lel (Figure 3.22). Sinceλ2 center candidates are obtained, we useλ2 voting spaces

to store the voted values. For each center candidate, the Euclidean distances between

the center candidate and all edge points are computed. The circuit runs in a pipeline

fashion for coordinates of edge points that are given for each clock cycle. The compu-

tation of the Euclidean distances include the computation of the square root. Since it is

difficult to compute them directly on the circuit, we use the CORDIC IP provided by

Xilinx that provides a hardware module that is fully pipelined architecture [57]. Since

the computed distances are voted to a block RAM for each center candidate, totally,λ2

block RAMs Mk (0 ≤ k < λ2) are used. The architecture ofMk is the same as shown in

Figure3.20.

Structure for verifying true circles

Finally, we verify whether the center candidates are true circles. If a center candidate

is that of true circle in the image, an element of the block RAM that corresponds to the

radius is intensely voted. A maximum filter is also used to cope with the quantization

error for the voted values. If the value is the maximum in a local range, the filter copies

55

· · ·
edge

points
(x, y) · · ·

· · ·

x

y

· · ·

· · ·

√ √ √ √

r

· · ·

· · ·
M2

block RAM

(x − xc)2

+
(y − yc)2

λ2 center candidates
edge list

(row-major)
︷ ︸︸ ︷

M0 M1 M
λ2
−1

r r r

maximum
filter

maximum
filter

maximum
filter

maximum
filter· · ·

· · · (x, y, r)

Figure 3.22: Architecture of voting for radius

the largest value, otherwise, the filter output it as zero. After filtering, each radius is

verified whether it is the radius of a true circle by comparing its voted value with the

thresholdf ×4
√

2r (Section3.3.2). All the values off ×4
√

2r are precomputed to store

in a block RAM that is used as a Look-up-table. If it is larger than the threshold, the

center candidate and the radius that represent a circle is input to the shift registers and

output through the registers.

3.3.4 Experimental results

We have implemented the proposed architecture for circles detection and evaluated it on

the Xilinx Virtex-7 FPGA XC7VX485T-2 [55]. For our implementation, 398 DSP48E1

slices, 309 block RAMs with 18Kbit and 20452 slices of the FPGA are used. The FPGA

56

with the architecture proposed in this paper works in 181.812MHz.

In our implementation, thex- andy-coordinates of edge list stored in row- or column-

major are 9-bit integer. The voted values ofx- andy-coordinate of center candidates are

set to be 17-bit integer. The numberp of voting modules forx- andy-coordinates of

center candidates is set to be 100. The numberλ of x- or y-coordinates of center candi-

dates is set to be 10, therefore, 100 center candidates are constructed. The data format

of the voted values for radius is 13-bit integer.

Since the latency of our architecture depends on the input image, we suppose that

all pixels of input image of sizen×n are edge points. Letp be the number of voting

modules forx- or y-coordinates of center candidates andλ be the number ofx- or y-

coordinates of center candidates. For simplicity, we assume thatn is a multiple ofp.

For a certain row or columni, it takesn
p(p+ n+ 6) clock cycles to complete the voting

operations of row or columni. Therefore, it takesn
2

p (p+n+6) clock cycles to complete

the voting operations for all rows or columns. After that, it takesp + n + λ + 4 clock

cycles to findx- or y-coordinate of center candidates. The combination of everyx- and

y-coordinates of center candidates takes 1 clock cycle. The voting operation for radius

takesn2+11 clock cycles, and it takesn2 + λ
2+ 8 clock cycles to output all detected true

circles. Finally, our circuit totally takesn
3

p +
(2p+6)n2

p + 3
2n+ p+ λ2 + λ + 24 clock cycles

to implement the one-dimensional Hough transform.

For estimating the speed up of our FPGA implementation, we have also imple-

mented a software approach of the one-dimensional Hough transform using GNU C.

We have used Intel Xeon X7460 running in 2.66GHz and 128GB memory to run the

sequential one-dimensional Hough transform algorithm. For the image above, the soft-

ware implementation can perform the one-dimensional Hough transform for circles de-

57

tection in 1008.658ms. On the other hand, our circuit can perform it in 970434 clock

cycles, i.e., 5337.568µs. Therefore, our FPGA implementation attains a speed-up factor

of approximately 189 over the sequential implementation on the CPU.

Table 3.5: Comparison with related works for Hough transform

Shafer [43] Tokunaga [46] Jen [23]

Base

algorithm

Template

matching

Template

matching

Hough

transform

Device
Altera

EP4SGX530

Xilinx

XC4025E

Altera

Stratix 1S25

Memory Int. 6.75Mbit — Int. 1.6Mbit & Ext

Frequency 159MHz — —

Throughput 9.362Mpixel/s 0.0512Mpixel/s 0.01524Mpixel/s

Geninatti [16] Elhossini [12] Our work

Base

algorithm

Hough

transform

Template

matching

Hough

transform

Device
Xilinx

Spartan 3

Xilinx

Virtex-4

Xlinix

XC7VX485T-2

Memory Ext. 1Mbit Int. 256Kbit Int. 5.4Mbit

Frequency — 27MHz 181.812MHz

Throughput 12.32Mpixel/s 14.4Mpixel/s 29.976Mpixel/s

There are a number of literatures reported to implement circles detection using the

FPGA shown in Table3.5, where Int. means internal (on-chip) and Ext. means external

(off-chip). It is difficult to directly compare to other works because utilized FPGAs

and supported size of images differ. Considering the throughput, our implementation

compares favorably with other works. The deficiencies of these existing researches

such as detecting only one circle or using off-chip memories are not existing in our

implementation. Our implementation detects multiple circles with variable radii using

58

only the block RAMs on the FPGA.

3.3.5 Concluding remarks

We have presented an efficient implementation of the one-dimensional Hough trans-

form using 398 DSP slices, 309 block RAMs with 18Kbits on the Virtex-7 Family

FPGA XC7VX485T-2. The architecture runs in 181.812MHz and for an image of size

400×400 that all pixels are edge points, our circuit performs the one-dimensional Hough

transform in 970434 clock cycles, i.e., 5337.568µs which theoretically attains a speed-

up factor of approximately 189 over the sequential implementation on the CPU.

59

Chapter 4

Implementation of the Euclidean

algorithm on the FPGA

In this chapter, we show a processor core that executes Euclidean algorithm computing

the GCD (Greatest Common Divisor) of two large numbers in an FPGA. The proposed

processor core uses only one DSP slice and one block RAM, that is called GCD pro-

cessor core. Since the proposed GCD processor core is compactly designed based on

FDFM approach (Few DSP slices and Few block Memories) and uses very few re-

sources, we have succeeded in implementing 1280 GCD processor cores in a Xilinx

Virtex-7 family FPGA XC7VX485T-2. The experimental results show that the perfor-

mance of this FPGA implementation using 1280 GCD processor cores is 0.0904µs per

one GCD computation for two 1024-bit integers. Quite surprisingly, it is 3.8 times faster

than the best GPU implementation and 316 times faster than a sequential implementa-

tion on the Intel Xeon CPU.

60

4.1 Introduction

The GCD (Greatest Common Divisor) computation is widely used in computer systems

for cryptography, data security and other important algorithms. Most of the time of

these computer systems is consumed for computing the GCDs of very large integers.

Therefore, it is an important task of accelerating the GCD computation. However, arith-

metic operations on integers numbers exceeding 64 bits cannot be performed directly

by a conventional 64-bit CPUs as its instruction set support integers of at most 64-bit

in length. It is an efficient way to implement the arithmetic operations on large integers

using hardware device such as FPGA, VLSI or GPU.

Recent FPGAs have embedded DSP48E1 slices and block RAMs. The Xilinx Virtex-

7 series FPGAs have DSP slices equipped with a multiplier, adders, logic operators,

etc [58]. The DSP slice also has pipeline registers between operators to reduce the

propagation time. The block RAM is an embedded memory supporting synchronized

read and write operations, and can be configured as a 36Kbit or two 18Kbit dual port

RAMs [60]. They are widely used in consumer and industrial products for accelerat-

ing processor intensive algorithms [35, 36, 3, 18]. Since the continuing decline in the

ratio of FPGA price to performance and its programmable features, FPGA is suitable

for a hardware implementation of general purpose computing. The main contribution

of this chapter is to present an efficient processor core that executes the Euclidean algo-

rithm computing the GCD of two large integers using an FPGA. The proposed processor

core is designed based on theFDFM (Few DSP slices and Few block Memories) ap-

proach[2]. The key idea of the FDFM approach is to use few DSP slices and few block

RAMs for constituting a processor core. We must note that the FDFM approach has

some advantages. First, despite the main circuit occupies most of hardware resources

61

of the FPGA, we can also implement the necessary hardware algorithm in the FPGA

using remaining few resources as shown in Figure4.1 (1). On the other hand, we can

implement multiple FDFM processors working in parallel if enough hardware resources

are available as illustrated in Figure4.1 (2). In this paper, we also employ the FDFM

approach to implement parallel GCD computation in the FPGA. For example, in this pa-

per, we propose a processor core for GCD computation of 1024-bit, 2048-bit, 4096-bit,

and 8192-bit integers, that uses only one DSP slice and one block RAM. We implement

one processor core in the FPGA, and the frequency of the FPGA is over 380MHz, that is

extremely high. If only one proposed GCD processor core is implemented in the FPGA

for computing one GCD of 1024-bit, 2048-bit, 4096-bit, and 8192-bit integers, it takes

73.12µs, 253.35µs, 915.78µs, and 3614.91µs, respectively. In other words, single GCD

processor core has competitive performance. Since the proposed GCD processor core

uses very few resources of FPGA, we can implement more than one thousand identical

processor cores in an FPGA, that all processor core work are paralleled to execute bulk

GCD computation. The pairwise GCD computation that computes all pairs of integers

in a set, can be used to evaluate the performance of the implementation of thousand

processor cores.

(1) Minimum implementation (2) Parallel implementation

block
RAM

DSP

main
circuit

block
RAM

DSP

block
RAM

DSP

block
RAM

DSP

block
RAM

DSP

Figure 4.1: Advantages of our FDFM approach

One of the applications for benchmarking pairwise GCD computation is breaking

62

weak RSA keys. RSA [41] is one of the most well-known public-key cryptosystems

widely used for secure data transfer. RSA cryptosystem has an encryption key open

to the public. An encryption key includes a modulusn calledan RSA modulussuch

that n = pq for two distinct large prime numbersp andq. If the values ofp andq

are available, the encrypted message can be easily converted to the original message.

Thus, the safety of RSA cryptosystem relies on the difficulty of factoring RSA modulus

n of two large prime numbersp and q. Suppose that we have a set of many RSA

encryption keys collected from the Web. If some of RSA moduli in encryption keys

are generated by inappropriate implementation of a random prime number generator,

they may reuse the same prime number. We call the keys sharing a prime number as

weak RSA keys. If two RSA moduli share a prime number, they can be decomposed

by computing the GCD of these two moduli. It is well known that the GCD can be

computed very easily by Euclidean algorithms [27]. Hence, we can compute the GCDs

of all pairs of RSA moduli in the Web to find the RSA keys that sharing the same prime

number. In this paper, pairwise GCD computation for RSA moduli is used to measure

the performance of the proposed GCD processor core based on FDFM approach. We

have succeeded in implementing 1792 GCD processor cores in a Xilinx Virtex-7 family

FPGA XC7VX485T-2. However, when the circuit of 1792 GCD processor cores is

operated on the FPGA device, this circuit becomes unstable because the number of

used resources of FPGA is too close to the maximum available resourses. Finally, we

implement 1280 GCD processor cores in the FPGA, that compute the GCDs of all pairs

of RSA moduli that are stored in an off-chip DDR3 memory MT8JTF12864HZ-1G6G1.

Our implementation of 1280 GCD processor cores computes one GCD of two 1024-bit

RSA moduli in expected 0.0904µs.

63

Several hardware implementations for computing the GCD on FPGAs have been

presented [9, 28]. However, they just implemented Binary Euclidean algorithm to com-

pute the GCD using programmable logic blocks as it is. Hence, they can support the

GCD computation for numbers with very few bits. On the other hand, several previ-

ously published papers have presented GPU implementations of Binary Euclidean al-

gorithm in CUDA-enabled GPUs. Fujimoto [13] has implemented Binary Euclidean

algorithm using CUDA and evaluated the performance on GeForce GTX285 GPU. The

experimental results show that the GCDs for 131072 pairs of 1024-bit numbers can be

computed in 1.431932 seconds. Hence, his implementation runs 10.9µs per one 1024-

bit GCD computation. Scharfglasset al. [42] have presented a GPU implementation

of Binary Euclidean algorithm. It performs the GCD computation of all 199990000

pairs of 20000 RSA moduli with 1024 bits in 2005.09 seconds using GeForce GTX 480

GPU. Thus, their implementation performs each 1024-bit GCD computation in 10.02µs.

Later, White [48] has showed that the same computation can be performed in 63.0

seconds on Tesla K20Xm. It follows that it computes each 1024-bit GCD in 3.15µs.

Quite recently, Fujitaet al. have presented new Euclidean algorithm called Approxi-

mate Euclidean algorithm and implemented it in the GPU [14]. Approximate Euclidean

algorithm performs perform each 1024-bit GCD computation in 0.346µs on GeForce

GTX 780Ti and 28.6µs on Intel Xeon X7460 (2.66GHz) CPU. Our implementation

of 1280 GCD processor cores in Xilinx VC707 evaluation board [61] equipped with

FPGA XC7VX485T-2 performs one 1024-bit GCD computation in 0.0904µs which is

3.8 times faster than the GPU and 316 times faster than the CPU.

64

4.2 Euclidean algorithms for computing GCD

This section review classical Euclidean algorithm and Fast Binary Euclidean algorithm

for computing the GCD of two numbersX and Y. We then show Hardware Binary

Euclidean algorithm by modifying Fast Binary Euclidean algorithm, that is implemented

in an FPGA.

Let GCD(X,Y) denote the GCD ofX andY. For any odd integerX and even integer

Y, GCD(X,Y) = GCD(X, Y
2) holds. Also, for any even integersX and Y, GCD(X,Y) =

2 × GCD(X
2 ,

Y
2) holds, and so we can obtain a factor of 2 in the GCD ofX andY very

easily.

For simplicity, we assume that both inputsX andY are odd andX ≥ Y holds. Based

on the fact, it should have no difficulty to modify all GCD algorithms shown in this

paper to handle even input numbers. Letswap(X,Y) denote a function to exchange the

values ofX andY. We can write a standard Euclidean algorithm for computing the GCD

of X andY as follows:

[Original Euclidean algorithm]

gcd(X,Y){

do {

X← X modY; //X < Y always holds

swap(X,Y); //X > Y always holds

} while(Y , 0)

return(X);

}

SinceX ≥ Y holds, modulo computation is performed andX will store the value of

X modY, which is less thanY. After that,swap(X,Y) is executed andX > Y always

65

holds. The same operation is repeated untilY = 0 andX stores the GCD of input

integersX andY. However, modulo computation used in Original Euclidean algorithm

is costly. So, Binary Euclidean algorithm which does not execute it, is often used to

compute the GCD efficiently:

[Binary Euclidean algorithm]

gcd(X,Y){

do {

if(X is even)X← X
2 ;

else if(Y is even)Y← Y
2 ;

elseX← X−Y
2 ;

if(X < Y) swap(X,Y);

} while(Y , 0)

return(X);

}

If X (or Y) is even, thenX (or Y) is halved to remove the least significant bit ofX (or

Y) which is 0. If bothX andY are odd,X-Y is computed. Since result of subtraction of

two odd numbers is even,X−Y
2 is performed to remove the least significant bit ofX − Y,

thenX will store the value ofX−Y
2 . If X < Y holds,swap(X,Y) is performed, thenX ≥ Y

always holds. Note that the Binary Euclidean algorithm removes one 0 bit from the

least significant bit ofX (or Y) and X−Y
2 in each iteration of the do-while loop. We can

reduce the number of iterations of the do-while loop by removing consecutive 0 bits.

Let rshift(X) be a function returning the number obtained by removing consecutive 0

bits from the least significant bit ofX. For example, ifX = 11010100 in binary system,

thenrshift(X) = 110101 in binary notation. Using swap and rshift functions, we can

write the Fast Binary Euclidean algorithm as follows:

66

[Fast Binary Euclidean algorithm]

gcd(X,Y){

do {

X← rshift(X − Y);

if(X < Y) swap(X,Y);

} while (Y , 0)

return(X);

}

In each iteration of the do-while loop, at least one 0 bit is removed fromX (or Y).

Hence, for any input numbers, the number of iteration of the do-while loop in Fast Bi-

nary Euclidean algorithm is no larger than that in the Binary Euclidean algorithm. How-

ever, we need to read all bits ofX andY to exchange them if we implement function

swap as it is. Also,rshift function needs a large barrel shifter. Hence, we should avoid

direct implementations of these functions in the FPGA. Instead of functionrshift(X),

we implement functionrshiftk(X), which removes at mostk consecutive 0 bits from

the least significant bit ofX. In other words, ifX has at mostk consecutive 0 bits from

the least significant bit, all of them can be removed in one iteration of do-while loop

by executingrshiftk(X). If X has more thank consecutive 0 bits, thenk 0 bits from

the least significant bit are removed, andrshiftk(X) is repeated untilX is odd. For ex-

ample,rshift2(1101,1000)=11,0110 andrshift2(1101,1010)=110,1101 hold. Using

rshiftk, we can describe the Hardware Euclidean-based GCD algorithm as follows:

[Hardware Binary Euclidean algorithm]

gcd(X,Y){

do {

if(X is even)X←rshiftk(X);

67

else if (Y is even)Y←rshiftk(Y);

else if(X ≥ Y) X←rshiftk(X − Y);

elseY←rshiftk(Y− X); // X < Y

} while(X , 0 andY , 0)

if(X , 0) return(X);

else return(Y);

}

Note that operationrshiftk may return an even number. Hence, one ofX or Y can be an

even number. If this is the case, eitherX←rshiftk(X) or Y←rshiftk(Y) is executed

until both of them are odd. Hence, bothX andY are odd, wheneverrshiftk(X − Y) is

executed. Thus, the argument ofrshiftk is always even and the least significant bit is

0 when it is executed.

Table4.1shows the average number of iterations of the do-while loop 1024-bit RSA

moduli for each values ofk of rshiftk. Note thatk = ∞ corresponds to Fast Binary

Euclidean algorithm, which performsrshift function that removes all consecutive 0

bits. Clearly, the number of iterations is smaller for largek. In our implementation,

we use a multiplier embedded in DSP slice to computershiftk for k = 17 instead

of using logic resources of the FPGA. Hence, we can reduce the number of CLBs and

implement more GCD processor cores in an FPGA. Since the subtraction of two very

large numbersX andY returning a result which has more than 17 consecutive 0 bits from

the least significant bit is a very rare case,rshift17 of our implementation and ideal

rshiftk(k = ∞) of the Fast Binary Euclidean algorithm has almost the same number

of iterations as shown in the table.

68

Table 4.1: The average number of iterations of the do-while loop for 1024-bit RSA

moduli

Hardware Binary Euclidean Fast Binary

k 1 2 3 4 5 6 7 8 17 Euclidean

number of iterations 1445.8 964.3 827.0 772.0 747.1 735.3 729.7 726.8 724.0 723.9

4.3 A GCD processor core for large integers

This section shows aGCD processor core, which computes the GCD of two very large

numbers based on the Hardware Binary Euclidean algorithm. Our GCD processor uses

only one 18k-bit block RAM and one DSP slice in the FPGA. The 18k-bit block RAM

is configured as a simple dual-port memory [60] with portsA andB of width 36 bits and

18 bits, respectively. Figure4.2 illustrate the configuration of the 18k-bit block RAM

used in our GCD processor core. Two large numbersX and Y of Hardware Binary

Euclidean algorithm are stored as 18-bit words. If each of them has 1024 bits, it is

stored in⌈1024
18 ⌉ = 57 words. LetX56X55 · · ·X0 denote 57 words representingX such

thatX =
∑56

i=0 Xi × 218i holds. Similarly, letY56Y55 · · ·Y0 denote the words representing

Y. Since the operationsrshift17(X − Y) andrshift17(Y − X) of Hardware Binary

Euclidean algorithm are executed for computing the GCD ofX andY, we want to read

X andY simultaneously. Hence, portA of the block RAM is configured as read-only

36-bit mode. On the other hand, since the result of operationrshift17(X − Y) (or

rshift17(Y− X)) is overwritten to one ofX or Y, the portB is configured as write-only

18-bit mode.

Reading: Since portA of the block RAM is configured as read-only 36-bit mode, the

block RAM is a 512×36-bit memory for portA. We can read 36-bit dataXiYi(0 ≤

69

DOA

9

18

10

DIA

ADDRA

DIB

ADDRB

CLKA

WEB

CLKB

36

36

18k-bit block RAM

A

B

X0

X1

X2

X3

X4

0

1

2

3

4

Y0

Y1

Y2

Y3

Y4

36 bits

X0

Y0

X1

Y2

X3

0

1

2

3

4

18 bits

address of port A address of port B

Figure 4.2: A 18k-bit block RAM and the memory configuration

i ≤ 56) from addressi using portA for performing the operationrshift17(X − Y) (or

rshift17(Y− X)).

Writing: Since portB is configured as write-only 18-bit mode, the block RAM is a

1024×18-bit memory for portB. We can write 18-bit dataXi in address 2i or andYi in

address 2i + 1 (0≤ i ≤ 56) using portB. In other words, the result ofrshift17(X − Y)

(or rshift17(Y− X)) can be overwitten toX (or Y).

in

18k-bit block RAM

X

Y

B

Pre-adder

M

ALU

PATTERN

C

(X − Y)×B ± 1

P

P
′

out

B

PATTERNDETECT

DSP slice

CIN

∼ P [47]

P [47]

D

A
Multiplier

CARRYIN 1 or 0

2
17−n

0

−1

Figure 4.3: The architecture of a GCD processor

The DSP slice in our GCD processor core uses a pre-adder, a multiplier and a

three input ALU (Arithmetic Logic Unit) as illustrated in Figure4.3. Suppose that

X ≥ Y holds. We briefly show how to use the DSP slice for executing the operation

70

rshift17(X − Y) of Hardware Binary Euclidean algorithm. The 36-bit dataXiYi(0 ≤

i ≤ 56) is read from the block RAM one by one, and is connected to the pre-adder of

DSP slice. The operationX − Y needs to be executed from the least significant bit of

large numbersX andY. Thus, the pre-adder is used to computeXi − Yi for each 36-bit

dataXiYi one by one fromX0Y0. SinceXi − Yi is computed one by one, ifX0 − Y0 < 0

holds, we need to borrow from the higher bit which is in the next wordX1−Y1. In other

words,X1 − Y1 − 1 needs to be computed for 36-bit dataX1Y1, and we call−1 borrow.

Let b0 denote the borrow fromX0 − Y0, and letbi(1 ≤ i ≤ 55) denote the borrow from

Xi−Yi−bi−1. We note thatX0−Y0 needs to be computed forX0Y0, andXi−Yi−bi−1 needs

to be computed forXiYi(1 ≤ i ≤ 56). However, we can not compute the borrow using the

pre-adder because it has only two input ports. Thus, we first perform the shift operation

to remove the consecutive 0 bits from the least significant bit using the multiplier. The

multiplier performs the operation (Xi − Yi) × 217−n for eachXi − Yi(0 ≤ i ≤ 56) one by

one, wheren(1 ≤ n ≤ 17) is the number of consecutive 0 bits from the least significant

bit of X − Y. If X − Y has more than 17 consecutive 0 bits from the least significant

bit, n has the value 17. For example, ifX0 − Y0 = (11,0010,1000,0000,0000), that is,

X − Y has 11 consecutive 0 bits from the least significant bit. The multiplier computes

(X0 −Y0) × 217−11 = (1100, 1010,0000,0000,0000,0000). We note that the 11 bits con-

secutive 0 bits are on the right of the 17-th bit of (X0−Y0)×26. For othern(1 ≤ n ≤ 17),

the n bits consecutive 0 bits are also on the right of the 17-th bit of (X0 − Y0) × 217−n.

We use this feature to remove the consecutive 0 bits in the following. Next, since we

suppose thatX ≥ Y holds, ALU computes (Xi − Yi) × 217−n − bi−1. Otherwise, ifX < Y

holds, ALU can also compute−(Xi − Yi) × 217−n − bi−1 = (Yi − Xi) × 217−n − bi−1.

In other words, the computation of (X − Y) and (Y − X) can be switched dynami-

71

cally by controlling the behavior of ALU, and the borrow is computed after the shift

operation using the ALU. For example, suppose thatX ≥ Y and X0 < Y0 hold, and

X0 − Y0 = (11,0010,1000, 0000,0000). The multiplier computes (X0 − Y0) × 217−11 =

(1100,1010,0000,0000,0000,0000), where the 11 consecutive 0 bits are all on the right

of the 17-th bit of (X0 −Y0) × 26 as we shown above. Then, ALU outputs (X0 −Y0) × 26

as it is. To remove 11 consecutive 0 bits from the least significant bit ofX−Y, we retain

the higher 18− 11= 7 bits from the 17-th bit of (X0−Y0)× 26, which is (110,0101). On

the other hand, suppose thatX1 − Y1 = (01,1011, 0100,1011,0100), the multiplier also

computes (X1−Y1)×26 = (0110,1101,0010,1101, 0000,0000). Since there is a borrow

from X0−Y0, ALU computes (X1−Y1)×26−1 = (0110,1101,0010,1100,1111, 1111).

We note that the higher 18 bits of (X1 − Y1) × 26 − 1 is equal toX1 − Y1 − 1. Since

only 7 bits ofX0 − Y0 are retained, we need to pick up 11 bits from the least significant

bit of X1 − Y1 − 1 to restructure the first 18-bit word ofrshift17(X − Y). Hence, we

pick up 11 consecutive bits on the right of the 17-th bit of (X1 − Y1) × 26 − 1, which

is (100,1011,0011). Then, we concatenate 11 bits data (100,1011,0011) ofX1 − Y1 − 1

with 7 bits data (110,0101) ofX0 − Y0 to restructure the first word ofrshift17(X − Y),

which is (10,0101,1001,1110,0101). Also, the other words ofrshift17(X − Y) can be

obtained in the same way. The configuration of DSP slice is described as follows:

Pre-adder: The pre-adder of DSP slice has 25-bit portD and 30-bit portA. The 36-bit

output of the block RAM are connected to the pre-adder via a pipeline register.X is

given to portD, andY is given to portA. The remaining bits of the ports are padded

with 0. The pre-adder of DSP slice can computeD − A, A and D by controlling its

behavior, in other words, the pre-adder outputsX − Y, Y or X optionally. For example,

to perform the operationX−Y, the subtractionXi −Yi is performed for each 36-bit data

72

XiYi one by one, and the output of pre-adder is connected to the multiplier.

Multiplier: The embedded multiplier has two input ports, where one accepts an 18-bit

two’s complement operand from portB via a pipeline register, the other one accepts an

25-bit two’s complement operand from the pre-adder via a pipeline register. We use the

multiplier to perform the multiplication between the result of pre-adder and value of port

B, whereB has the value 2k(0 ≤ k ≤ 17) in our implementation. Thus, the operations

(Xi − Yi) × B, Xi × B, andYi × B can be executed using multiplier. In other words, shift

operation can be executed forX − Y, X, andY. The output of multiplier is connected to

ALU(Arithmetic logic unit) via a pipeline registerM as shown in the Figure4.3.

ALU: The ALU (Arithmetic Logic Unit) has three input ports, that are connected to

registerM, input portC of DSP slice, and portCIN, respectively. The most significant

bit of registerP, the negation of the most significant bit of registerP and portCARRYIN

are connected to portCIN of ALU. Port CIN can select one of the three values by

controlling its behavior. The ALU can performs several operations such asM+C+CIN

and−M −C −CIN − 1. In our implementation,C is configured as the value−1. Since

M is connected to the output of multiplier, we can control the behavior of the ALU

dynamically for computing (Xi − Yi) × B + CIN − 1 if X ≥ Y holds, and computing

−(Xi − Yi) × B − CIN = (Yi − Xi) × B − CIN if X < Y holds, whereCIN is used as

the borrow corresponding to the subtraction of previous 36-bit dataXi−1Yi−1. The value

computed by ALU is then connected to registerP.

Pattern detector: The pattern detector can determine that the value of registerPmatches

a pattern or not, as qualified by a mask. The mask is used as enable signals for pattern

detector. More specifically, if a certain bit of mask is set to “0”, the corresponding bit

of PATT ERNandP is compared. Otherwise, the comparison of the corresponding bits

73

is not performed. The value of portPATT ERNis configured as 0.

Using the block RAM and the functionality of DSP slice, we can perform Hardware

Binary Euclidean algorithm without fabric barrel shifter and multiplexers that are used

in the preliminary verison of this paper. We show how each operation in Hardware

Binary Euclidean algorithm can be performed. Letx1023x1022· · · x0 denote 1024 bits

representingX such thatx17x16 · · · x0 representsX0. Similarly, lety1023y1022· · · y0 denote

1024 bits representingY such thaty17y16 · · · y0 representsY0.

X is even:The numberX is write to the block RAM word by word. Thus, the condition

can be determined by reading the least significant bit ofX0 when X is input into the

block RAM.

X0

X56

Pre-adder Multiplier ALU

X1

X2

X

0 B = 217−n

Xi × B

Xi

MSB LSB

n consecutive

0 bits

Xi

P

17-th bit

DSP slice

X0

X1

X2

X55

P

Z1

Z1

Z0

X55
· · ·

Z55

X56

Z56

0

n consecutive

0 bits

are removed

18-bit

18-bit

Figure 4.4: The outline of rshift17(X)

X ← rshift17(X): If X is even, functionrshift17(X) is executed to remove the

consecutive 0 bits from the least significant bit ofX. Suppose that we need to com-

puteZ=rshift17(X). Let Z56Z55 · · ·Z0 denote 57 words representingZ and show how

74

rshift17(X) is computed as the flow shown in Figure4.4. All words of X are se-

quentially read from the block RAM beginning withX0 and then processed one by one

in a pipelined order.Xi(0 ≤ i ≤ 56) is given to the pre-adder of DSP slice. The

pre-adder outputsXi as it is. Also, we must obtain the number of consecutive 0 bits

from the least significant bit ofX0 to execute shift operation using the multiplier. Let

δ = δ17δ16 · · · δ0 denote the result of logic prefix-or operation ofX0. The operation

δi ← xi ∨ δi−1(1 ≤ i ≤ 17) is performed, whereδ0 = x0 = 0 sinceX is even. For

example, suppose thatX0 = (11,0010,1011,1011,0000), where the numbern of con-

secutive 0 bits ofX is 4. We haveδ = (11,1111, 1111,1111,0000). Note that except

the consecutive 0 bits from the least significant bit, the other bits all have the value 1.

Let λ = λ17λ16 · · · λ0 denote the result of exclusive-or operation ofδ. The operation

λi ← δi ⊕ δi−1(1 ≤ i ≤ 17) is performed, whereλ0 = δ0 = 0 holds. For theδ shown

above,λ = (00,0000,0000,0001,0000) holds. The only one bit that has the value 1

indicates that there are 4 consecutive 0 bits from the least significant bit ofX0. Then,

the inverse ofλ which has the value (00,0010,0000,0000,0000), is configured as the

value of portB to perform shift operation using the multiplier of DSP slice. We note

that if X hasn(0 < n ≤ 17) consecutive 0 bits, the value ofB will be 217−n. Other-

wise, B = 20 holds. In the case of executing operationX ← rshift17(X), pre-adder

directly outputsX0 to the multiplier. The product ofX0 × 217−n is then computed by the

multiplier. Similarly, for other words ofX, Xi × 217−n(1 < i ≤ 56) are also computed

one by one in the same way. We note that the consecutive 0 bits ofX0 are always on

the right of 17-th bit from the least significant bit ofX0 × 217−n. In the example above,

sincen = 4 holds,X0 × 217−4 = (110,0101,0111,0110, 0000,0000,0000,0000), where

the 4 consecutive 0 bits from the least significant bit ofX0 are all on the right of 17-th

75

bit of X0 × 213. The resulting value ofX0 × 213 is then transferred to ALU via reg-

ister M. The ALU outputsM + C + CIN, where portC is configured as a constant

-1. CIN is used as borrow of subtraction ofX − Y which is not needed for execut-

ing rshift17(X), thusCIN is set to 1. Therefore, ALU outputs the resulting value

X0 × 213 to registerP. We then retain higher 18− 4 = 14 bits from 17-th bit ofP, that is

(11,0010,1011,1011). In other words, the 4 consecutive 0 bits from the least significant

bit of X0 are removed. Since 4 consecutive 0 bits are removed fromX0, we must pick

n bits from its next wordX1 of X to restructure the new wordZ0 of Z = rshift17(X).

Suppose thatX1 = (01,1101,0010,0011, 1011), the same operation is performed for

X1, andX1 × 217−4 = (011,1010,0100,0111,0110,0000,0000,0000) will be stored in

registerP in the next clock cycle since the architecture is pipelined. Similarly, 4 bits

from the least significant bit ofX1 are also on the right of 17-th bit ofP. Thus, we can

easily pick 4 bits from the least significant bit ofX1 that are store on the right of 17-th

bit of P, and then concatenate with retained 14 bits ofX0 to restructure the new word

Z0 = (10,1111,0010,1011, 1011) ofZ = rshift17(X). As shown in Figure4.4, since

X56X55 · · ·X0 are input one by one,Z56Z55 · · ·Z0 can be computed one by one and then

transferred to the block RAM to overwrite the oldX. We say thatX ← rshift17(X) is

executed such thatn consecutive 0 bits from the least significant bit ofX are removed.

If input X has more than 17 consecutive 0 bits from the least significant bit, the function

rshift17(X) is repeated untilX is odd. Also, if inputY is even, the same operation is

performed forY.

X ≥ Y: The conditionX ≥ Y can be determined by comparingX andY from the most

significant bit. More specifically,X andY are compared from the wordsX56 andY56.

The wordsX56Y56 are read from the block RAM concurrently, then are connected to port

76

D andA of DSP slice, respectively. We always assume thatX ≥ Y holds, thus, the pre-

adder computesX56 − Y56 , and the resulting value is input to multiplier. The portB is

configured as 217 in this case. Thus, multiplier computes (X56−Y56)×217. However, since

B is 18-bit two’s complement, the most significant bit ofB is sign bit. Hence, ifB = 217,

the operation (X56−Y56)×(−217) is computed by multiplier, and the resulting value is then

transferred to ALU. The ALU outputs the value to registerP as it is. Clearly, the value

of X56−Y56 is left shifted by 17 bits, and is stored in registerP from 34-th bit to 17-th bit.

If X56 > Y56 holds, the most significant bit ofP have the value 1 since (X56−Y56)×(−217)

is computed by the multiplier. We determine the conditionX ≥ Y if the most significant

bit P[47] of P has the value 0. However, the valueX56−Y56 may be 0 ifX56 = Y56 holds.

Thus, we use the pattern detector to determine that 18 bits inP[34:17] of registerP are

all 0 or not. If X56 = Y56, P[34 : 17] = 0 holds and the detector outputs the value 1.

We need to compare the next wordsX55Y55 to determine the conditionX ≥ Y. It takes

3 clock cycles to determine the conditionX56 = Y56 from the wordsX56Y56 are input to

the DSP slice, because three-stage pipeline registers are used as shown in Figure4.3.

And in most of cases, we can determine the conditionX ≥ Y by comparing the words

X56Y56. Hence, we start to execute the operationrshift17(X − Y) one clock cycle after

the wordsX56Y56 are input to DSP slice. More specifically, we start the execution of

rshift17(X − Y) from wordsX0Y0 without waiting the determination of the condition

X ≥ Y, which we will show in operationX ← rshift17(X − Y). If X56 = Y56 is

determined after 3 clock cycles, we terminate the execution ofrshift17(X − Y), and

restart to compare the next wordsX55Y55 to determine the conditionX ≥ Y.

X ←rshift17(X − Y): Suppose that we need to computeZ = rshift17(X − Y). Let

Z56Z55 · · ·Z0 denote 57 words representingZ. As mentioned above, if we execute the

77

X0

X56

X1

X2

X

X55

18-bit

Y0

Y56

Y1

Y2

Y55

18-bit

Pre-adder Multiplier ALU

B = 217−n

(Xi − Yi) × B

Xi − Yi

MSB LSB

P

17-th bit

DSP slice

18-bitXi

Yi

Xi − Yi − bi−1

X0 − Y0 − 0

Z0

X1 − Y1 − b0

Z1

X2 − Y2 − b1

Z2

X55 − Y55 − b54

Z55

X56 − Y56 − b55

Z56

0

b0

b1

b2

b3

b56

bi

borrow

n consecutive
0 bits

are removed

Y

P

Figure 4.5: The outline ofrshift17(X − Y)

functionrshift17(X − Y) after the conditionX ≥ Y is determined which takes 3 clock

cycles, that is, any operation can be performed in 3 clock cycles for each iteration of

do-while loop of the Hardware Binary Euclidean algorithm. Fortunately, we do not

need to wait for the determination of the conditionX ≥ Y. In our implementation, all

words ofX andY are read from the block RAM one by one beginning withX0Y0, one

clock cycle afterX56Y56 are read from the block RAM to determine the condition of

X ≥ Y. Thus,X0 − Y0 is computed by pre-adder since we assume thatX ≥ Y always

holds. The resulting value ofX0 − Y0 is input to the multiplier, then (X0 − Y0)×217−n

is computed by the multiplier, wheren is the number of consecutive 0 bits from the

least significant bit ofX − Y. Since determination of the conditionX ≥ Y is executed

one clock cycle earlier than functionrshift17(X − Y), we can dynamically control

the behavior of the ALU depending on the determination of the conditionX ≥ Y. More

specifically, the result ofX56−Y56 is obtained one clock cycle earlier than (X0−Y0)×217−n

78

is accepted by ALU. Hence, ifX56 > Y56 holds, we control the behavior of ALU to

compute (X0−Y0)×217−n+CIN−1. If X56 < Y56 is determined,−(X0−Y0)×217−n−CIN

is computed by the ALU. The selection ofCIN depends on the borrow of subtraction

of wordsXiYi(0 ≤ i ≤ 56), and we can also dynamically select the value ofCIN by

controlling its behavior. For example, ifX ≥ Y holds, we selectCIN as 1 to compute

(X0 − Y0) × 217−n + 1 − 1 = (X0 − Y0) × 217−n. If X < Y holds, we selectCIN as 0 to

compute−(X0 − Y0) × 217−n. Then, the result of the ALU is stored to registerP. Hence,

by checking the most significant bitP[47] of registerP, we can obtain the borrow of the

subtractionX0 − Y0. Suppose thatX ≥ Y is determined. IfX0 ≥ Y0, P[47] = 0 holds,

otherwise,P[47] = 1 holds. In the same way, (X1 − Y1) × 217−n +CIN − 1 is computed

by ALU in the next clock cycle, We select the value ofCIN as the negation ofP[47] as

the borrow fromX0 − Y0. Thus, if X0 ≥ Y0, (X1 − Y1) × 217−n + 1 − 1 = (X1 − Y1) × 2

is computed. Otherwise, (X1 − Y1) × 217−n − 1 is computed. Next, we briefly show how

to obtain the wordZ0 of Z = rshift17(X − Y) is computed as shown in Figure4.5.

Suppose thatX0 ≥ Y0 holds. Since the result ofX0 − Y0 is shifted by 17− n bits and

stored inP, then consecutive 0 bits from the least significant bit ofX0 − Y0 are on the

right of 17-th bit ofP. Hence, we retain 18− n bits on the left of 17-th bit ofP to store

in a register. In other words, then consecutive 0 bits from the least significant bit of

X0 − Y0 stored on the right of 17-th bit ofP are removed. Also,X1 − Y1 is shifted by

17− n bits and stored inP. Similarly, then bits from the least significant bit ofX1 − Y1

are stored on the right of 17-th bit ofP. Then, we can easily pick upn bits from the least

significant bit ofX1 −Y1 to concatenate with higher 18− n bits of X0 −Y0 to restructure

the new wordZ0 as shown in Figure4.5. The same operation is executed for all words

XiYi(0 ≤ i ≤ 56) in a pipelined order. Hence, the wordsZ56Z55 · · ·Z0 can be obtained

79

one by one and are then written back to the block RAM to overwrite the oldX.

X , 0: We use a register to store the current number of bits ofX. If operationX ←

rshift17(X) or X← rshift17(X−Y) is executed, we rewrite the value of this register.

We determine the conditionX , 0 if the number of bits ofX is not 0.

Let us briefly confirm that the GCD processor core can execute Hardware Binary

Euclidean algorithm. By controlling the behavior of pre-adder, multiplier and ALU

of DSP slice, we can computershift17(X − Y), rshift17(Y− X), rshift17(X) and

rshift17(Y) without multiplexers and barrel shifter that use resources of FPGA. The

resulting value can be written to the block RAM to overwriteX or Y. The conditions

“X is even” and “Y is even” can be determined whenX0 andY0 are written in the block

RAM. The condition “X ≥ Y” can be determined by checkingX andY from the MSB

(Most Significant Bit). More specifically, ifX56 > Y56 holds, “X ≥ Y” is determined.

We execute thershift17(X − Y) without waiting the determination of the condition

“X ≥ Y”, because the condition “X ≥ Y” can be determined by comparing the words

X56 andY56 in most of the cases. However, ifX56 = Y56, we terminate the execution

of rshift17(X − Y), and then read and compareX55 with Y55. During the computation

of Hardware Binary Euclidean algorithm, the number of bits ofX andY is decreased.

For example, ifX56 andY56 both decrease to 0, the next iteration of the do-while loop

of Hardware Binary Euclidean algorithm is only performed for wordsXiYi(0 ≤ i < 56).

We use registers to store the current numbers of bits ofX andY. If the number of bits is

0, we terminate the algorithm.

80

4.4 Implementation of Hierarchical GCD cluster with

DDR3 Memory

This section presents a hierarchical parallel architecture that we call hierarchical GCD

cluster using an off-chip DDR3 memory equipped in Xilinx VC707 evaluation board [61].

The proposed GCD processor core is compactly designed based on the FDFM approach.

We use only one DSP slice, one block RAM and a few CLBs to implement the proces-

sor core. Therefore, single proposed FDFM GCD processor core is clocked at high

frequency and provides high performance that we show in the next section. On the

other hand, by employing multiple proposed FDFM GCD processors, the computing

time reduces considerably. Since the proposed GCD processor is designed based on

the FDFM approach and uses very few FPGA resources, we have succeeded in imple-

menting more than one thousand proposed GCD processor cores working in parallel in

the FPGA, thus, it makes sense to use multiple servers. Each server controls more than

one hundred GCD processor cores. The hierarchical GCD cluster consists of multiple

GCD clusters, each of which involves multiple GCD processor cores as illustrated in

Figure4.6. A single central server controls local servers, each of which maintains GCD

processor cores in the same GCD cluster.

We show how the hierarchical GCD cluster is used to execute pairwise GCD compu-

tation for RSA moduli. The DDR3 memory consists of 8 banks. Each bank has a mem-

ory array that can be used to store lots of moduli. Suppose that we have a lot of moduli

collected from the Web and all moduli are divided into two sets. We store two sets

of moduli to two different banks of DDR3 memory for simplifying the address/control

circuit. Our goal is to compute all pairs of moduli using the hierarchical GCD cluster

81

in an FPGA. For this purpose, we partition all moduli of each set into groups withm

moduli each. FPGA picks one group from each set and sends them to the central server,

respectively. LetN = {n0,n1, . . . nm−1} andN′ = {n′0,n′1, . . . n′m−1} denote two groups of

m moduli each that the central server in the FPGA has received. The hierarchical GCD

cluster computes gcd(ni , n′j) for all pairs of i and j (0 ≤ i, j ≤ m− 1), and reports the

GCDs larger than 1.

Next, we will show how the hierarchical GCD cluster computes the GCDs ofN and

N′ using GCD clusters. Each group ofmmoduli is partitioned intob blocks ofk moduli

each, wherem = bk. Let Ni = {nik,nik+1, . . . , n(i+1)k−1} andN′i = {n′ik,n′ik+1, . . . ,n
′
(i+1)k−1}

(0 ≤ i ≤ b− 1) be two sets ofk moduli in thei-th groups of setsN andN′, respectively.

Each cluster is assigned a task to compute the GCDs of all pairsX (∈ Ni) andY (∈ N′j)

for a pair i and j (0 ≤ i, j ≤ b − 1). For this purpose, all moduli inNi and inN′j are

copied from the block RAM in the central server to that in the local server of a GCD

cluster. After the local server receives all moduli, the cluster starts computing the GCDs

of all pairsX (∈ Ni) andY (∈ N′j). The local server then picks a pairX andY and copies

them to the block RAM of a GCD processor. Upon completion of the copy, the GCD

processor starts computing the GCD ofX and Y by the Hardware Binary Euclidean

algorithm. This procedure is repeated for all GCD processors. If a GCD processor

terminates the GCD computation, the local server sends a new pair to it. In this way, the

GCDs of all pairs inNi andN′j are computed by a GCD cluster. When a GCD cluster

completes the computation of all GCDs of a given pair of two groups, the central server

picks a new pairi and j and sends all moduli inNi and inN′j to the local server. The

same operation is repeated until the GCDs of all pairsN andN′ are computed.

82

block
RAMs

block
RAM

GCD
processor

GCD cluster

cluster
server

central
server

off-chip DDR3 memory

FPGA

block
RAMs

block
RAM

block
RAM

GCD
processor

GCD
processor

GCD cluster GCD cluster GCD cluster

Figure 4.6: The architecture of the Hierarchical GCD cluster

4.5 Experimental results

We have implemented a GCD processor core for computing the GCD of 1024-bit, 2048-

bit, 4096-bit, and 8192-bit integers in Xilinx Virtex-7 XC7VX485T-2. Table4.2shows

the implementation results. Slice Registers and Slice LUTs (Look-Up-Tables) are hard-

ware resources in CLB (Configurable Logic Block) [59], which are used to implement

sequential logics. The proposed GCD processor is compactly designed based on FDFM

approach. More specifically, we use only one DSP slice to perform subtraction and

shift operation for very large numbers and use one block RAM to store the computed

result instead of using lots of CLBs. Therefore, the proposed FDFM GCD processor is

clocked at over 380MHz and provides a high performance. Calculated simply, single

proposed FDFM GCD processor core computes one GCD of two 1024-bit, 2048-bit,

83

4096-bit and 8192-bit moduli in expected 73.12µs, 253.35µs, 915.78µs and 3614.91µs.

We control the behavior of the embedded ALU of the DSP slice to performX−Y or

Y−X dynamically instead of using multiplexers. Also, we use the embedded multiplier

of the DSP slice to perform the shift operation instead of the barrel shifter that uses a lot

of FPGA logic resources. Since these mechanisms simplify the circuit of the proposed

processor, the frequency of the proposed FDFM processor is over 380MHz that is very

high.

Table 4.2: Implementation results of one GCD processor for 1024-bit, 2048-bit, 4096-

bit, and 8192-bit moduli

Slice Slice DSP 18k-bit block Clock cycles Clock

Registers LUTs slices RAMs for computing Frequency

Available 607200 303600 2800 2060 one GCD (MHz)

1024-bit 179 163 1 1 28006.1 383.00

2048-bit 185 174 1 1 98198.5 387.60

4096-bit 191 178 1 1 359131.4 392.16

8192-bit 197 188 1 1 1381328.5 382.12

First, the simulation of pairwise GCD computation for 1024-bit RSA moduli without

DDR3 memory is performed. In our implementation, a GCD cluster with a local cluster

with eight 18k-bit block RAMs and 128 GCD processor cores are used. Since four

18k-bit block RAMs can store⌊4×1024
57 ⌋ = 71 moduli with 1024 bits, each GCD cluster

computes the GCDs of 71× 71 = 5041 pairs of blocks stored in block RAMs. Hence,

each GCD processor computes the GCDs for expected5041
128 = 39.4 pairs of 1024-bit

moduli. Also we arranged 64 block RAMs to the central server. Since a block of moduli

is stored in four block RAMs, we can think that the central server has 8× 8 = 64 pairs

of blocks. Thus, each cluster computes the GCDs for moduli in expected64
14 = 4.5 pairs

84

of blocks since we have succeeded in implementing 14 clusters in an FPGA. Table4.3

shows the implementation results of clusters of our work. Since a cluster server uses

eight 18k-bit block RAMs, each GCD cluster with 128 GCD processors involves 128+

8 = 136 block RAMs. In this paper, the implementation of the hierarchical GCD cluster

with 14 GCD clusters and the central server, uses 14× 128 = 1792 DSP slices and

14× 136+ 64 = 1968 block RAMs. Due to the overhead for the connection between

the central server and GCD clusters, the clock frequency is decreased to 207.04MHz.

The used block RAMs of the implementation with 14 clusters are close to the available

number.

Table 4.3: Implementation results of the GCD cluster and the hierarchical GCD cluster

for 1024-bit moduli

Slice Slice DSP 18kb block Clock

Registers LUTs slices RAMs Frequency

Available 607200 303600 2800 2060 (MHz)

one cluster 23414 20598 128 136 327.87

hierarchical clusters 325987 272127 1792 1968 207.04

We have evaluated the number of clock cycles to compute all GCDs of 71× 71 =

5041 pairs of 1024-bit moduli by one GCD cluster. For this purpose, we have used RSA

moduli generated by OpenSSL Toolkit. By performing the simulation, one cluster with

128 processors takes 1157789 clock cycles to compute the GCDs of 5041 pairs. If a

GCD cluster is clocked at 207.04MHz as shown in Table4.3, the expected computing

time is 1157789/207.04MHz= 5.592ms. Also, it takes about 71× 2× 57= 8094 clock

cycles to transfer a pair of two blocks involving 71 moduli each and this overhead is

negligible. Since up to 14 clusters can be implemented theoretically, we can expect that

85

the GCDs of 5041× 14 = 70574 pairs can be computed in the same time. Therefore,

we say that one GCD can be computed in expected 5.592ms/70574= 0.0792µs.

Table 4.4: Implementation results of hierarchical GCD clusters for 1024-bit, 2048-bit,

4096-bit, and 8192-bit moduli

Slice Slice DSP 18kb block Clock Average Number

Registers LUTs slices RAMs Frequency Time of

Available 607200 303600 2800 2060 (MHz) (µs) clusters

1024-bit 235486 206955 1280 1424 250.00 0.0904 10

2048-bit 220697 204460 1152 1424 250.00 0.3422 9

4096-bit 230636 213670 1152 1568 250.00 1.2537 9

8192-bit 244621 226521 1152 1568 250.00 4.7895 9

Next, for measuring the performance of GCD computation accurately, we implement

the hierarchical GCD cluster to compute all pairs of moduli stored in an off-chip DDR3

memory MT8JTF12864HZ-1G6G1 [33] equipped in VC707 evaluation board [61]. Un-

fortunately, if the used resources of FPGA is close to the available number, the circuit

of FPGA becomes unstable and can not compute the results correctly when it is actually

operated in the evaluation board. According to the experimental results, 10 clusters can

be implemented in the FPGA clocked at 250MHz for pairwise GCD computation of

1024-bit RSA moduli. In other words, 1280 GCD processor cores can be implemented

in FPGA XC7VX485T-2 equipped in VC707 evaluation board, and works in parallel

to compute GCDs of all pairs of 1024-bit RSA moduli stored in the off-chip DDR3

memory.

We use the built-in CORE Generator software of Xilinx Vivado design suite 2015.1

to generate a DDR3 memory interface core in the FPGA to control the write and read

operations of the DDR3 memory. The DDR3 memory consists of 8 banks. Each bank

86

has a 214 × 210 memory array, of which each element has 64-bit. In other words, each

bank of the DDR3 memory can store up to (214 × 210 × 64bits)/1024bits= 1048576

1024-bit RSA moduli. The DDR3 memory runs in 500MHz that is 2 times faster

than the FPGA. Moreover, the DDR3 memory offers high-speed data transfers on the

rising and falling edges of the clock of it. Hence, the DDR3 memory can perform

500MHz/250MHz× 2 = 4 times write or read operations in one clock cycle of the

FPGA. Hence, we can read 4× 64bits= 256bits data from DDR3 memory in one clock

cycle of the FPGA. Suppose that we have a lot of 1024-bit RSA moduli collected from

the Web, we divide all moduli into two sets and store them to two different banks of the

DDR3 memory. We partition all moduli of each set into groups with 71×8 = 568 moduli

each. FPGA picks one group from each set and sends them to the central server, respec-

tively. More specifically, we send read commands to the DDR3 memory interface core

for reading a 1024-bit modulus. Then, the interface core performs the read operation

of the DDR3 memory and the modulus is transferred to FPGA after a few clock cycles.

The obtained 1024-bit modulus is then stored to the block RAMs of central server as

18-bit words in 57 clock cycles, and we read the next 1024-bit modulus at the same time.

The same operation is repeated until two groups of 568 moduli are stored in the central

server. Moreover, the interface core processes a refresh operation to maintain the data of

the DDR3 memory in refresh interval, and other operations of DDR3 memory must wait

for the refresh operation. By implementing the hierarchical GCD cluster with 1280 pro-

cessor cores in the FPGA, we have that it takes 7294417 clock cycles compute the GCDs

of 568×568= 322624 pairs, where 71646 clock cycles for transferring 568×2 1024-bit

moduli from DDR3 memory to the central server of the FPGA is included. Comparing

with the total clock cycles for computing the GCDs of 322624 pairs of 1024-bit moduli,

87

the clock cycles for transferring moduli from DDR3 memory to central server is negli-

gible. Moreover, after all moduli of central server are transferred to the clusters, we can

read the next two groups with 568 moduli each from DDR3 memory while the GCD

computation of the clusters is still being performed. In other words, the operation of

transferring moduli from DDR3 memory to central server can be overlapped. Hence,

we note that the transfer time is not significant. Since the hierarchical GCD cluster runs

in 250MHz, the computing time is 7294417/250MHz= 29.178ms. Therefore, we say

that one GCD can be computed in 29.178ms/322624= 0.0904µs. For performing pair-

wise GCD computation of 2048-bit, 4096-bit, and 8192-bit moduli, we have succeeded

in implementing the hierarchical GCD cluster that has 9 clusters in the FPGA, where

the frequency of FPGA is also 250MHz. The implementation results of hierarchical

clusters and computing time for one GCD of 1024-bit, 2048-bit, 4096-bit, and 8192-bit

moduli is also shown in Table4.4. The hierarchical GCD cluster is designed based on

FDFM GCD processors that are compact and use very few FPGA resources. One of

the advantage of the FDFM approach is that we can implement multiple FDFM pro-

cessors working in parallel to reduce the computing time if enough hardware resources

are available. Comparing with single FDFM GCD processor core, the computing time

of the hierarchical GCD cluster for one GCD reduces considerably by employing more

than one thousand FDFM GCD processor cores.

According to the implementation results as shown in Table4.4, the hierarchical GCD

cluster computes one GCD of two 8192-bit moduli in 4.7895µs, that is 52.98 times

slower than the time for computing one GCD of two 1024-bit moduli. We show the

reason of the large difference. Since the large input numbers are stored in the block

RAM as 18-bit words and processed word by word, if the width of the input numbers

88

increases, the number of iterations of the do-while loop of the Hardware Binary Eu-

clidean algorithm will increase. Also, the clock cycles for performing each iteration of

the do-while loop will increase. Hence, the proposed GCD processor takes more clock

cycles for computing one GCD of larger numbers. For example, as shown in Table4.2,

single proposed processor takes 1381328.5 clock cycles for computing one GCD of two

8192-bit moduli, that is 49.32 times more than that for computing one GCD of two

1024-bit moduli. This is the main reason for the large difference of the computing time

for 1024-bit and 8192-bit moduli. Recall that each 1024-bit and 8192-bit modulus is

stored in the block RAM as 57 and 456 18-bit words, respectively. Hence, the cen-

tral server and cluster server take more time for transferring the 8192-bit moduli than

that for 1024-bit moduli. However, since the data transfer is overlapped with the GCD

computation, the transfer time does not significantly affect the large difference of the

computing time for 1024-bit and 8192-bit moduli. Moreover, the number of clusters for

8192-bit moduli is 9, that is less than that for 1024-bit moduli. Based on the reasons

above, one GCD of two 8192-bit moduli is computed 52.98 times slower than one GCD

of two 1024-bit moduli in the implementation of hierarchical GCD cluster.

4.6 Concluding remarks

We have presented an efficient processor core for computing GCDs of very large num-

bers. Since the processor is designed based on the FDFM approach, each processor core

uses only one DSP slice and one 18k-bit block RAM. We implement the hierarchical

GCD cluster with 1280 processor cores in Xilinx FPGA XC7VX485T-2. The imple-

mentation with 1280 processor cores executes pairwise GCD computation for 1024-bit

RSA moduli stored in an off-chip DDR3 memory on Xilinx VC707 evaluation board.

89

The experimental results shows that our implementation of 1280 GCD processor cores

computes one GCD of two 1024-bit RSA moduli in 0.0904µs including the time of data

transferring from off-chip DDR3 memory to FPGA. It is 3.8 times faster than the best

GPU implementation and 316 times faster than a sequential implementation on the Intel

Xeon CPU.

90

Chapter 5

Implementations of the LZW

compression and decompression

algorithms on the FPGA

LZW compression algorithm is one of the most famous compression algorithms. In this

chapter, we first show an efficient hardware architecture for accelerating LZW compres-

sion using an FPGA. Since the proposed module of LZW compression is compactly

designed, we have succeeded in implementing 24 identical modules in an FPGA. On

the other hand, we present a hardware LZW decompression algorithm and implement it

in the FPGA. Also, we have succeeded in implementing 34 LZW decompression mod-

ules which works in parallel on the FPGA. According to the experimental results, the

implementation of 24 modules of LZW compression attains a speed-up factor of 23.51

times faster than a sequential software implementation on a single CPU. The imple-

mentation of 34 LZW decompression runs up to 64.39 times faster than a sequential

implementation on the CPU.

91

5.1 Introduction

Data compression is one of the most important tasks in the area of computer engineering.

It is always used to improve the efficiency of data transmission and save the storage of

data. Data compression includes two basic methods, lossy compression and lossless

compression. Lossy compression uses the fact that human are not sensitive to some

frequency ingredients of image or sound. Some information of the original data are

discarded in lossy compression. Thus, the decompressed data are not identical to the

original data. On the other hand, lossless compression preserves all information of the

original data. In other words, the decompression of lossless compression creates exactly

the same data with the original data.

Some famous compression algorithm are proposed such as LZ77 [62], LZ78 [63]

and LZW [47]. LZ77 algorithm uses two buffers such as dictionary buffer and pre-

view buffer. Dictionary buffer includes the processed data and preview buffer stores the

pending data. In LZ77 algorithm, the longest string of preview buffer matching to the

string of dictionary buffer is converted to a code that corresponds to the index of dic-

tionary buffer. However, it is not suitable to hardware implementation since it needs a

large dictionary buffer and preview buffer. LZ78 algorithm creates a dictionary table

and finds the longest matched string in the dictionary table. If there is no matched string

in the dictionary table, it outputs the index of dictionary table and the last character of

the unmatched string. LZW algorithm is a variant of LZ78 algorithm that outputs only

the index of matched string of dictionary table. In our implementation, we focus on

LZW compression which is used in Unix utility “compress” and in GIF image format.

LZW compression is included in TIFF standard [1], which is widely used in the area of

commercial digital printing. The LZW compression algorithm converts an input string

92

of characters into a series of codes using a dictionary that maps strings into codes. In

LZW compression in TIFF standard, characters are 8-bit unsigned integers represent-

ing intensity levels of gray-scale image, and codes are 12-bit unsigned integers. Since

dictionary tables are created by reading input data one by one, LZW compression and

decompression are hard to parallelize. One of the main goals of this chapter is to develop

an efficient hardware architecture of LZW compression and implement it in an FPGA.

Furthermore, suppose that a high-definition image or video is compressed to a file once,

and stored to the server of a commercial organization to be accessed by users in different

regions or countries. The compressed file is transferred to users through the network,

and then is decompressed locally. Hence, decompression is performed more frequently

than compression. Also, the other goal of this chapter is to present an efficient hardware

architecture of LZW decompression in the FPGA.

Recent FPGAs have embedded block RAMs. As illustrated in Figure2.2, the Xilinx

Virtex-7 family FPGAs have block RAMs, each of which is an embedded dual-port

memory supporting synchronized read and write operations, and can be configured as

a 36k-bit or two 18k-bit dual port RAMs [60]. Since FPGA chips maintain relatively

low price and its programmable features, it is suitable for a hardware implementation

of image processing method to a great extent. They are widely used in consumer and

industrial products for accelerating processor intensive algorithm.

Numerous implementations of variety of LZW compression and decompression on

FPGAs or VLSIs have been proposed to accelerate the computation. LZRW3 data com-

pression core [19] is designed by Helion technology. This data compression core uses

LZRW3 algorithm that is a variant of LZ77 algorithm. This core provides a maximum

compression throughput of 172MBytes/s and a maximum decompression throughput

93

of 180.75MBytes/s in Xilinx Virtex-5 FPGA. Navqiet al. [37] implemented a variant

of LZW algorithm in Xilinx Virtex-2 FPGA, where only one fixed-length dictionary

table is used. This implementation provides the maximum compression and decom-

pression throughputs of 87.5MBytes/s and 160MBytes/s in Xilinx Virtex-2 FPGA. Sev-

eral implementations of data compression are proposed based on PDLZW(Parallel Dic-

tionary LZW) algorithm that is a variant of LZW algorithm [31, 32, 40]. Instead of

one variable-length table used in LZW algorithm, multiple fixed-length tables are used

in PDLZW algorithm to accelerate the speed of data compression. Lin implemented

the PDLZW algorithm in a VLSI that provides a maximum compression throughput

of 33.33MBytes/s and a maximum decompression throughput of 45.5MBytes/s [31].

Lin et al. also proposed a two stage hardware architecture that combines PDLZW and

AH(Adaptive Huffman) algorithm and implement it in a VLSI [32]. By decreasing the

number of parallel dictionaries, this implementation provides a maximum compression

throughput of 125MBytes/s and a maximum decompression throughput of 83MBytes/s.

In these hardware implementations, the LZW compression algorithms is modified to

be suitable for hardware implementation. However, these modified algorithms sacrifice

compression ratio and provide worse performance than the original LZW compression

algorithm. On the other hand, there is some research for accelerating the computation

of LZW compression using GPUs (Graphics Processing Units) [15, 44], multiproces-

sor [26] and cluster systems [34]. However, as far as we know, there is no hardware

implementation of the original LZW compression and decompression algorithms since

it is not easy to implement them.

The first contribution of this chapter is to present an efficient hardware LZW com-

pression algorithm and to implement it in an FPGA. In general, the original LZW

94

compression uses a dictionary table which stores variable-length strings. On the other

hand, in our implementation, we use a pointer-character table efficiently. Each pair of

pointer and character corresponds to a string. Characters are 8-bit unsigned integers

and pointers are 12-bit unsigned integers. Since the creation of dictionary depends on

input string of characters, there are 212 × 28 = 220 possible combinations of pointer

and character. Moreover, each pair of pointer and character corresponds to an index of

the dictionary, where the index is 12-bit unsigned integers if dictionary size is 4096.

If the pointer-character table is implemented in a straightforward way, the table needs

220× 12bits= 1.5MBytes. Therefore, we have reduced the size of the pointer-character

table to 32KBytes using a hash table. In the proposed architecture, we efficiently use

dual-port block RAMs embedded in the FPGA to implement a hash table that is used

as the dictionary. Using independent two ports of the block RAM, reading and writ-

ing operations for the hash table are performed simultaneously. Additionally, we can

read eight values in the hash table in one clock cycle by partitioning the hash table into

eight tables. The proposed module of LZW compression in Virtex-7 family FPGA uses

104 slice registers, 346 slice LUTs and 18 block RAMs with 18k-bit each, where the

frequency of FPGA is 179.99MHz. Since the compression ratio is data dependent, the

throughput of our implementation for LZW compression differs for input data. When

the compression ratio of input file is lower, that means the size of compressed file is

larger, the throughput time is shorter. On the other hand, when the compression ratio

of input file is higher, the throughput time is longer. According to the experimental

results, the compression throughput of the proposed module is 118.73MBytes/s while

the compression ratio (original image size : compressed image size) is 1.43:1. On the

other hand, the compression throughput is 86.79MBytes/s while the compression ratio

95

is 36.72:1. Furthermore, since the proposed module of LZW compression uses a few

FPGA resources, we have succeeded in implementing 24 identical modules in an FPGA,

where the frequency is 163.35MHz and each module has independent input/output ports

to work in parallel. Hence, the implementation of 24 proposed modules attains a speed

up factor that surpasses 23.51 times over a sequential algorithm on a single CPU. The

number of available input/output ports of the targeted FPGA is the bottleneck of our

FPGA implementation of multiple modules. In addition, assuming that the limitation of

the number of input/output ports is ignored, we show that at most 110 proposed mod-

ules can be arranged in the FPGA. It is a theoretical result, but the result shows the

compactness of the proposed architecture.

On the other hand, the second contribution of this chapter is to present an efficient

hardware LZW decompression algorithm and to implement it in an FPGA. In general,

LZW decompression uses a dictionary table which stores variable-length strings. How-

ever, in our hardware algorithm we use two tables, pointer tablep and character table

C f which store a single value in each entry. The algorithm consists of three steps and

these steps are concurrently executed efficiently using the dual-port block RAMs. The

proposed module of hardware LZW decompression algorithm in Virtex-7 family FPGA

uses 278 slice registers, 307 slice LUTs and 13 block RAMs with 18k-bit, where the

frequency of FPGA is 301.02MHz. The running time of proposed module attains a

speed up factor that surpasses 2.16 times over a sequential algorithm on a single CPU.

Since the decompression throughput is data dependent, according to the experimental

results, the decompression throughput of our module is about 280.17MBytes/s while

the compression ratio of input file is extremely high. Even in the worst condition, the

decompression throughput of proposed module is about 143.54MBytes/s. Also, since

96

the proposed module uses very few resources, we have succeeded in implementing 34

modules in an FPGA, where all modules works in parallel clocked at 263.92MHz. The

implementation of 34 proposed LZW decompression modules attains a speed up fac-

tor that surpasses 64.39 times over a sequential algorithm on a single CPU. Similarly,

we implement multiple modules in the FPGA, where we assume that the limitation of

the number of input/output ports is ignored. We show that 150 LZW decompression

modules can be arranged to the FPGA.

5.2 LZW compression and decompression algorithms

The main purpose of this section is to review LZW compression and decompression

algorithms. For details of the algorithms, the interested reader may refer to Section 13

in [1].

The LZW (Lempei-Ziv-Welch) [47] lossless data compression algorithm converts

an input string of characters into a series of codes using a dictionary table that maps

strings into codes. If the input is an image, characters may be 8-bit unsigned integers.

It reads characters in an input image string one by one and adds an entry in a dictionary

table. In the same time, it writes an output series of codes by looking up the dictionary

table. LetX = x0x1 · · · xn−1 be an input string of characters andY = y0y1 · · · ym−1 be an

output string of codes. For simplicity, we assume that an input string is a string of 4

charactersa, b, c andd. Let C be a dictionary table, which determines a mapping of a

code to a string, where codes are non-negative integers. Initially,C(0) = a, C(1) = b,

C(2) = c andC(3) = d. By operation AddTable, new code is assigned to a string. For

example, if AddTable(cb) is executed after initialization ofC, we haveC(4) = cb.

The LZW compression algorithm finds the longest prefixΩ of the current input that

97

is already added in the dictionary table, and outputs the code ofΩ. Let x be the following

character ofΩ. SinceΩ · x is not in the dictionary table, it is added to the dictionary,

where “·” denotes the concatenation of string/character. The same procedure is repeated

from x. Let C−1(Ω) denote the index ofC whereΩ is stored. For example, ifC(3) = d,

thenC−1(d) = 3. The LZW compression algorithm is described as follows:

[LZW compression algorithm]

Ω← x0;

for i ← 1 ton− 1 do

if(Ω · xi is in C)

Ω← Ω · xi ;

else

Output(C−1(Ω)); AddTable(Ω · xi); Ω← xi ;

Output(C−1(Ω));

Table5.1 shows the compression flow of an input string “cbcbcbcda”. First, Ω ←

x0 = c is executed. Next, sinceΩ · x1 = cb is not inC, C−1(c) = 2 is output andcb is

added in the dictionary, then we haveC(4) = cb. Also,Ω ← x1 = b is performed. It

should have no difficult to confirm that 214630 is output by this algorithm.

Table 5.1: LZW compression flow for input stringX = cbcbcbcda

i 0 1 2 3 4 5 6 7 8 -

xi c b c b c b c d a -

Ω - c b c cb c cb cbc d a

S - cb(4) bc(5) - cbc(6) - - cbcd(7) da(8) -

Y - 2 1 - 4 - - 6 3 0

98

Next, let us discuss implementations of dictionary tableC. The following operations

for a stringΩ of characters and the following characterx must be supported for LZW

compression.(i) determine ifΩ · xi is in C. (ii) return the value ofC−1(Ω). (iii) perform

AddTable(Ω·xi). A straightforward implementation of the dictionary tableC, which uses

an array such thati-th (i ≥ 0) element storesC(i). However, since the lengths of strings

in C are variable, the straightforward implementation of dictionaryC is not efficient. All

values ofC(i) may be accessed to computeC−1(Ω), We can use an associative array with

keysC(i) and valuesi, which can be implemented by a balanced binary tree or a hash

table. But, these operations take more thanO(|Ω|) time. If the compression ratio is high,

Ω may be a long string. Hence, it is not a good idea to use a conventional associative

array to implementC.

In this section, we use a pointer-character table to implement the dictionary table

C as shown in Table5.2. In this table, a pointerp(j) and a characterc(j) are stored

for each codej. Also, a back-pointerq(j, x) for every codej and characterx is used.

Back-pointer tableq can be implemented using an associative array which we will dis-

cuss later. We can obtain a stringC(j) by traversingp until we reach NULL. More

specifically,C(j) can be obtained fromp andc by the following definition:

C(j) =


c(j) if p(j) = NULL

C(p(j)) · c(j) otherwise
(5.1)

For example, in Table5.2, we haveC(6) = C(4) · c = C(2) · bc = cbc. A back-pointer

q(j, x) takes valuek if p(k) = j andc(k) = x. If there exists nok such thatp(k) = j, then

q(j, k) = NULL. This is used to perform the three operations above efficiently.

We implement operation AddTable(Ω · xi) for dictionaryC by performing operation

AddTable(j,xi) for the pointer-character table. If AddTable(j,xi) is performed, a new

entry k with p(k) = j andc(k) = xi is added to the pointer-character table. In other

99

Table 5.2: A pointer-character table and a back-pointer table to implement dictionary

tableC

j 0 1 2 3 4 5 6 7 8 9

p(j) NULL NULL NULL NULL 2 1 4 6 3 0

c(j) a b c d b c c d a -

q(j,a) NULL NULL NULL 8 NULL NULL NULL NULL NULL NULL

q(j,b) NULL NULL 4 NULL NULL NULL NULL NULL NULL NULL

q(j, c) NULL 5 NULL NULL 6 NULL NULL NULL NULL NULL

q(j,d) NULL NULL NULL NULL NULL 7 NULL NULL NULL NULL

C(j) a b c d cb bc cbc cbcd da -

words, the valuek is written in q(j, xi) of back-pointer table. Using the back-pointer

table, we can rewrite LZW compression algorithm as follows:

[LZW compression algorithm with the back-pointer table]

j ← c−1(x0);

for i ← 1 ton− 1 do

if(q(j, xi) , NULL)

j ← q(j, xi);

else

Output(j); AddTable(j, xi); j ← c−1(xi);

Output(j);

We show how Table5.2 is created. First,j ← c−1(x0) = 2 is executed. Next, since

q(j, x1) = q(2,b) is NULL, Output(2) and AddTable(2,b) are executed. Then, the

pointer-character table has new entryp(4) = 2 andc(4) = b. Also, the value 4 is stored

in q(2,b), and operationj ← c−1(b) = 1 is executed. In the next iteration of the for-loop,

100

sinceq(1, c) is NULL, Output(1) and AddTable(1,c) are executed. The pointer-character

table has new entryp(5) = 1 andc(5) = c, and the value 5 is added inq(1, c). Similarly,

we can confirm that a series of codes 214630 is output by this algorithm. We will show

the implementation of this algorithm using the back-pointer tableq afterwards.

Next, let us show LZW decompression algorithm. LetC bethe code table, such that

C(0) = a, C(1) = b, C(2) = c, andC(3) = d. Also, letC1(i) denote the first character of

codei. For example,C1(4) = c if C(4) = cb. Similarly to LZW compression, the LZW

decompression algorithm reads a stringY of codes one by one and adds an entry of a

code table. At the same time, it writes a stringX of characters. The LZW decompression

algorithm is described as follows:

[LZW decompression algorithm]

Output(C(y0));

for i ← 1 ton− 1 do

if(yi is in C)

Output(C(yi)); AddTable(C(yi−1) ·C1(yi));

else

Output(C(yi−1) ·C1(yi−1)); AddTable(C(yi−1) ·C1(yi−1));

Table5.3shows the decompression process for a code string 214630. First,C(2) =

c is output. Sincey1 = 1 is in C, C(1) = b is output and AddTable(cb) is per-

formed. Hence,C(4) = cb holds. Next, sincey2 = 4 is in C, C(4) = cb is output

and AddTable(bc) is performed. Thus,C(5) = bc holds. Sincey3 = 6 is not inC,

C(y2) ·C1(y2) = cbc is output and AddTable(cbc) is performed. The reader should have

no difficulty to confirm thatcbcbcbcdais output by this algorithm.

Since the length of strings inC are variable, it is difficult to implement this algorithm

on hardware as it is. Therefore, we propose a new LZW decompression algorithm for

101

Table 5.3: Code tableC and the output string for 214630

i 0 1 2 3 4 5

yi 2 1 4 6 3 0

C - cb(4) bc(5) cbc(6) cbcd(7) da(8)

X c b cb cbc d a

hardware implementation without such dictionary table.

We assume that input characters are selected from an alphabet (or a set) withk

charactersα(0), α(1), . . . , α(k − 1). We usek = 4 charactersα(0) = a, α(1) = b,

α(2) = c, andα(3) = d, when we show examples as before. LetY = y0y1 · · · ym−1 denote

the compressed string of codes obtained by the LZW compression algorithm.

Before showing the LZW decompression for hardware implementation, we define

several notations. We define pointer tablep using code tableY as follows:

p(i) =


NULL if 0 ≤ i ≤ k− 1

yi−k if k ≤ i ≤ k+m− 1
(5.2)

We can traverse pointer tablep until we reach NULL. Letp0(i) = i andpj+1(i) = p(pj(i))

for all j ≥ 0. In other words,pj(i) is the code where we reach from codei in j pointer

traversing operations. LetL(i) be an integer satisfyingpL(i)(i) = NULL and LetC f be

the character table defined as follows:

C f (i) =


α(i) if 0 ≤ i ≤ k− 1

C f (p(i)) if k ≤ i ≤ k+m− 1
(5.3)

It should have no difficulty to confirm thatC f (i) represents the first character ofC(i),

and L(i) is the length ofC(i). Using C f and p, we can define the value ofC(i) in

following. If 0 ≤ i ≤ k − 1, C(i) = C f (i). On the other hand, ifk ≤ i ≤ k + m− 1,

C(i) = C f (pL(i)−1(i)) ·C f (pL(i)−2(i) + 1) ·C f (pL(i)−3(i) + 1) · · ·C f (p0(i) + 1).

102

Table 5.4: The values ofp, L, C f andC if Y = 214630

i 0 1 2 3 4 5 6 7 8 9

p(i) NULL NULL NULL NULL 2 1 4 6 3 0

C f (i) a b c d c b c c d a

L(i) 1 1 1 1 2 2 3 4 2 -

C(i) a b c d cb bc cbc cbcd da -

Table5.4 shows the value ofp, C f , L, andC for Y = 214630. According to the

table, we can obtain the decompressed string. Figure5.1shows an example of obtaining

the decompression string of codey3 = 6, that isC(6), from the table. For codey3 = 6,

we first readp(6) = 4 from tablep. Also, we readC f (6 + 1) = c from tableC f that

corresponds to the last character ofC(6). Since the obtained pointer 4 is not NULL, we

continue the traversing of table. Next,p(4) = 2 andC f (4+ 1) = b are read from tables

p andC f , respectively. Finally, pointerp(2) is read out, and we stop the traversing

operation for codey3 becausep(2) is NULL. Also, C f (2) = c is read out as the first

character of the string corresponding to codey3. We note that each character of string

corresponding to a code is obtained in reverse order.

i p(i) Cf (i)

0

1

2

NULL

NULL

NULL

3 NULL

a

b

c

d

4

5

6

7

8

9

2

1

4

6

3

0

c

b

c

c

d

a

y3 = 6

i p(i) Cf (i)

0

1

2

NULL

NULL

NULL

3 NULL

a

b

c

d

4

5

6

7

8

9

2

1

4

6

3

0

c

b

c

c

d

a

4

i p(i) Cf (i)

0

1

2

NULL

NULL

NULL

3 NULL

a

b

c

d

4

5

6

7

8

9

2

1

4

6

3

0

c

b

c

c

d

a

2

c

b

c

Figure 5.1: An example of traversing tablesp andC f

We are now in position to show hardware LZW decompression. This algorithm can

103

be done in three steps as follows:

[Hardware LZW decompression algorithm]

Step 1: Update tablesp andC f .

Step 2: Compute partially-reversal strings ofX andL usingp andC f .

Step 3: Reorder decompression stringX.

In Step 1, we initialize the values ofp(i), C f (i) for eachi (0 ≤ i ≤ k− 1). After that,

we compute the values ofp(i) andC f (i) for eachi (k ≤ i ≤ k +m− 1). The details of

Step 1 are spelled out as follows:

[Step 1 of hardware LZW decompression algorithm]

for i ← 0 tok− 1 do

p(i)← NULL; C f (i)← α(i);

for i ← k to k+m− 1 do

p(i)← yi−k; C f (i)← C f (yi−k);

In Step 2 of hardware LZW decompression algorithm, for each compressed codeyi

(0 ≤ i ≤ m− 1) of Y, Cr(yi) is read from tableC f by traversing pointer tablep, where

Cr(i) denotes a string obtained by reversingC(i). At the same time, the length of string

L(i) is also computed. By traversing tableC f with table p, the reversed string is read

and temporally stored to an output buffer for each character. Leto denote a table for

storing characters of concatenation of stringsCr(y0) · Cr(y1) · · ·Cr(ym−1). For example,

if C(7) = abc, in Step 2, we haveCr(7) = cbaandL(7) = 2. The details of Step 2 of

hardware LZW decompression algorithm are shown as follows:

[Step 2 of hardware LZW decompression algorithm]

addr← 0

104

for i ← 0 tom− 1 do

j ← yi ; L(i)← 0;

while(p(j) , NULL)

o(addr)← C f (j + 1); j ← p(j);

L(i)← L(i) + 1; addr← addr+ 1;

o(addr)← C f (j); L(i)← L(i) + 1; addr← addr+ 1;

In Step 3 of hardware LZW decompression algorithm, a concatenated string of

Cr(y0) · Cr(y1) · · ·Cr(ym−1) stored in output buffer o is arranged in corrected order, that

is,C(y0) ·C(y1) · · ·C(ym−1). Each ordered character is output one by one. The algorithm

code of Step 3 is shown as follows:

[Step 3 of hardware LZW decompression algorithm]

addr← 0;

for i ← 0 tom− 1 do

l ← L(i);

while(l > 0)

Output(o(addr+ l − 1)); l ← l − 1;

addr← addr+ L(i);

By sequentially executing Step 1, Step 2, and Step 3, LZW decompression can be

performed. In addition, the execution of these steps can be overlapped. More specifi-

cally, after an execution for an input code in each step is completed, the execution for

the code in the next step can be started. Figure5.2 illustrates a process of the above

execution for an input compressed codeY = y0y1 · · · ym−1. We will show the FPGA im-

plementation of the hardware LZW decompression algorithm after showing the imple-

mentation of LZW compression. In our FPGA implementation of LZW decompression,

105

Step 1

Step 2

Step 3

y1 y2 y3 y
m−1

y0

y0 y1

· · ·

y2

2

time

2m clock cycles

0

2 2 2 2

L(0) + 1 L(1) + 1 L(3) + 1

y0

y1 y2

L(2) + 1

y3
· · ·

y
m−1

L(m − 1) + 1

y3

y4

2

y4

L(4) + 1

· · ·

y
m−1y4

clock cycles

clock cycles

L(0) + 1 L(1) + 1 L(3) + 1L(2) + 1 L(m − 1) + 1L(4) + 1 clock cycles

Figure 5.2: Process of our LZW decompression hardware for an input compressed code

Y = y0y1 · · · ym−1

we use block RAMs of FPGA to implement the pointer tablep, character tableC f , and

output buffero. In the utilized FPGA, the block RAMs can be configured as a dual-port

block RAM. Since dual-port block RAM has two set of ports that work independently,

the writing and reading operations of these tables can be performed concurrently. Using

the block RAMs efficiently, we realizes the overlapped execution of the three steps.

5.3 TIFF image file

In our implementation, we focus on the compression of an image into a TIFF image file,

and the decompression of LZW compressed data in a TIFF image file. We assume that

a TIFF image file contains a gray-scale image with 8-bit depth, that is, each pixel has

intensity represented by an 8-bit unsigned integer. Since each of RGB or CMYK color

planes can be handled as a gray scale image, it is obvious to modify gray scale image

TIFF compression for color image compression. For further details on a TIFF image

file, the interested reader may refer to [1].

We show how image data in a TIFF image file is compressed. Since every pixel

106

has an 8-bit intensity level, we can think that an input string of an integer in the range

[0, 255]. Hence, codes from 0 to 255 are assigned to these integers. Code 256 (ClearCode)

is reserved to clear the code table. Code 257 (EndOfInformation) is used to specify the

end of the data. Thus, AddTable operations assign codes to strings from code 258.

While the entry of the code table is less than 512, codes are represented as 9-bit integer.

After adding code table entry 511, we switch to 10-bit codes. Similarly, after adding

code table entry 1023 and 2037, 11-bit codes and 12-bit codes are used, respectively. As

soon as code table entry 4094 is added, ClearCode is output. After that, the code table is

re-initialized and AddTable operations use codes from 258 again. The same procedure

is repeated until all pixels are converted into codes. After the code for the last pixel is

output, EndOfInformation is written out. We can think that a code string is separated

by ClearCode, We call each of thema code segment. Except the last one, each code

segment has 4094− 257+ 1 = 3838 codes. The last code segment may have codes less

than that.

5.4 FPGA architecture for LZW compression

This section describes our FPGA architecture of the LZW compression algorithm with

back-pointer table using block RAMs in Xilinx Virtex-7 FPGA. We use Xilinx Virtex-7

Family FPGA XC7VX485T-2 as the target device [55].

In this section, we show the implementation of the back-pointer tableq for TIFF

LZW compression. Recall that codes have 12 bits and characters have 8bits, thus, we

can implementq as a table that has 212 × 28 = 220 entries. Also, the value of each

entryq(j, x) has 12 bits. Hence, the back-pointer table needs 220× 12bits= 1.5MBytes.

However, the straightforward implementation has large overhead due to the cache miss.

107

In other words, most entries of the table are not used. Thus, we use a hash table to

implement the back-pointer tableq.

In the proposed FPGA implementation, we use a hash table that is suitable for FPGA

implementation. The hash table consists of 1024 bucketsBs(0 ≤ s ≤ 1023) and each

bucket Bs has 8 entrieses,0,es,1, . . . , es,7. To implement this hash table, we use two

tables,number tableand data table. Let |Bs| denote the number of values stored in

bucketBs. Each element of the number table stores|Bs|. Also, the data table stores

values of back-pointers. The table is partitioned into 8 tables, each of which stores

one of the 8 entries. Each entry stores 12-bit pointerj, 8-bit characterx and 12-bit

back-pointerq(j, x). Figure5.3 illustrates the structure of the hash table.

number table data table

bucket
h(j, x)

0

1

2

1023

.

.

.

|B0|

|B1023|

e0,0

e1023,0

|B1|

|B2|

e1,0

e2,0

e0,1

e1023,1

e1,1

e2,1

e0,2

e1023,2

e1,2

e2,2

e0,3

e1023,3

e1,3

e2,3

e0,4

e1023,4

e1,4

e2,4

e0,5

e1023,5

e1,5

e2,5

e0,6

e1023,6

e1,6

e2,6

e0,7

e1023,7

e1,7

e2,7

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 5.3: The arrangement of hash table

Let h(j, x) be a hash function returning a 10-bit number, where pointerj is 12 bits

and characterx is 8 bits. We can use the following hash functionh to specify a 10-bit

number.

h(j, x) = ((j << 4)⊕ (j >> 6)⊕ (x << 1))∧ 0x3FF (5.4)

Using this hash funtion, we select a bucket in addressh(j, x) and store the value of back-

pointer in one of the eight entries in the bucket. However, when the bucket may be full,

that is, eight values are already stored in the bucket. If this is the case, calledconflict,

108

the current value of each address (h(j, x) + i) ∧ 0x3FF is read fori = 1,2, . . . until a

bucket that has unused entries is found. We can easily find whether the bucketBs is full

or not by referring|Bs| in the number table. Regarding the size of the hash table, since

the total size of the hash table is 8192 and at most 3837 elements are added, conflict

may occur, but it is clear that the hash table can store all data.

input

h(j, xi)

(j, xi)

j

|B0|
|B1|

number table

4 bits

data table

ADDRA

DINA

DOB

h(j, xi)

ADDRA

=

j xi

j xi

(j, xi)

= =

1 bit

value

value of matched back-pointer

i
0

1

2

i 32 bits

0

1

2

1022

1023

data table data table

12 bits

DINA

(j, xi, value)

1 bit

8× 1 bit

8× 12 bits

+1

WEA

32 bits

1022

1023

number table

4 bitsi
0

1

2

1022

1023

output

+1

ADDRB

ADDRB

ADDRA

DINB

DINB

0

0
DOB

DINA

+1

DOB

= 0 = 1 = 7

ADDRB

0 0 0

> 0 > 1 > 7

+1

counter

|B2|

|B1022|
|B1023|

|B0|
|B1|
|B2|

|B1022|
|B1023|

e0,0

e1,0

e2,0

e1022,0

e1023,0

e0,1

e1,1

e2,1

e1022,1

e1023,1

e0,7

e1,7

e2,7

e1022,7

e1023,7

Figure 5.4: The outline of our FPGA architecture for LZW compression algorithm

Figure 5.4 shows the proposed architecture of LZW compression. In our imple-

mentation, characters in an input string are input one by one and the corresponding

compressed codes are output.

109

In the LZW compression, it is necessary to find whether a value of back-pointer is

already stored or not. Since the data table is partitioned into 8 tables, we read 8 values

at the same time. Therefore, given an address of bucket from the hash function, we can

find whether a value that includes the back-pointer is stored or not without checking

eight entries in the bucket one by one.

On the other hand, the number table consists of 1024 entries with 4 bits that represent

the number of used entries in each bucket. For example, if an element in the number

table is 0, we can find that the corresponding bucket does not have any values. Using

the number table, we can simply determine an element whether it is already stored or

not. Recall that we need to initialize all entries in the hash table whenever compression

for each segment is finished, that is, ClearCode is output. Since each entry represents

the number of used entries in each bucket, we set each entry to zero without clearing the

data tables.

In the proposed architecture, we perform LZW compression algorithm shown in the

previous section. The main part of the architecture is the hash table as described in the

above. There are three operations for the hash table, (i)initialize operation, (ii) find

operation, and (iii) add operation. We not that in the LZW algorithm, delete operation

that removes a value stored in the table is not necessary. We show the details of these

operations, as follows.

Initialize operation: The initialize operation is to clear all entries in the hash table.

We need to initialize all entries in the hash table whenever compression for each segment

is finished, that is, ClearCode is output. As shown in the above, we clear only the

number table to initialize the hash table. However, the next characters cannot be input

during the initialization. Therefore, in the proposed architecture, we use two number

110

tables and switch them in turn whenever ClearCode is output. More specifically, one of

them is used to perform LZW compression, while the other is initialized. Since every

segment excluding the last segment has 3838 codes and the last code is ClearCode, it

takes at least 3838 clock cycles to process a segment. Since the number table has 1024

entries, the initialized operation can be performed while another segment is processed.

Find operation: Given pointerj and characterx, this operation is to find whether

an entry that includes a back-pointerq(j, x) is stored in the hash table and if it is al-

ready stored, outputs the back-pointerq(j, x). This operation corresponds to “q(j, xi) ,

NULL”, “ j ← q(j, xi)”, and “Output(j)” in the algorithm shown in the previous section.

In the operation, first, we obtain the address of the hash table by computingh(j, x). This

address shows bucketBh(j,x) that has 8 entries. After that, we find whether a back-pointer

q(j, x) is stored inBh(j,x). As shown in the above, we can simultaneously read eight val-

ues in a bucket and the number of values in a bucket is read from the number table to

read valid data. Since each entry in the hash table has the values ofj andx, we can find

it by comparingj andx read from the hash table with input valuesj andx. Therefore,

we can check at most 8 entries inBh(j,x) at the same time. After comparing, ifq(j, x) is

found, output it. Otherwise, we check whetherBh(j,x) is full or not. If |Bh(j,x)| < 8, that is,

Bh(j,x) is not full, we can findq(j, x) does not exist in the hash table and output NULL.

If not, we perform the above operation for bucketB(h(j,x)+1)∧0x3FF for i = 1,2, . . . until we

find whetherq(j, x) is stored or not.

Add operation: This operation is to add pointerj, characterx, and back-pointer

q(j, x) to the hash table. It is performed in AddTable operation as shown in the algo-

rithm of the previous section. Indeed, it is performed after the find operation. More

specifically, this operation is used whenq(j, x) does not exist in the hash table and we

111

already know an entry in whichq(j, x) can be stored. The entry to be stored locates in

the bucket which was referred last in the find operation. Therefore, according to the

result of the find operation, we addj, x andq(j, x) to the hash table and increment the

corresponding number of stired values in the number table.

In order to implement the hash table, we use block RAMs configured as dual-port

mode [60] as illustrated in Figure2.2. Each of the number table consists of one 18k-bit

block RAMs. Also, two 18k-bit block RAMs are assigned to one of the 8 tables in the

data table. Since we use two tables for the number table, eighteen 18k-bit block RAMs

are used in total. For the number table, its dual-port is used as reading port and writting

port. They are used to perform the find and add operations, respectively. The reading

port is to refer the number of stored values. The writing port is to clear all the values

to zero for the initialize operation and to increment the number of stored values located

in addressh(j, x) for the add operation. On the other hand, for the data table, we also

use the dual-port as reading port and writing port for each. The reading port is to refer

the number of stored values in the find operation. The writing port is to add a value of

back-pointer for the add operation. To reduce the clock cycles, we always suppose that

for input string of charactersx0, x1, . . . , xn−1, the conditionq(j, xi) = NULL is satisfied.

More specifically, ifq(j, xi) = NULL, the next value ofj for xi+1 is c−1(xi)(= xi), which

shows that the next value ofj depends only onxi when the condition is true. Using

this, we can continuously input characters unless the conditionq(j, xi) = NULL is not

satisfied. When the condition is not satisfied, we need to wait to input the next character.

112

5.5 FPGA architecture for LZW decompression

This section describes our FPGA architecture of the hardware LZW decompression al-

gorithm using block RAMs in Xilinx Virtex-7 FPGA.

In thissection, we focus on the decompression of LZW-compressed data in a TIFF

image file. Figure5.5shows the proposed architecture of LZW decompression. In our

implementation, the LZW-based module decompresses all codes in a segment that are

given one by one. In order to implement pointer tablep, character tableC f , code buffer

and output buffer o, the block RAMs are used. The block RAMs are configured as

dual-port mode [60] as shown in Figure2.2. A dual-port block RAM has two sets of

ports which work independently. We use these two port to perform executions in three

steps described in Section5.2 in parallel. For tablep, as shown in the previous section,

since the values ofp(i) (0 ≤ i ≤ 255) are initialized to NULL and codes 256 and 257

are reserved codes, we do not actually use the block RAM in that range to reduce the

memory resources as illustrated in Figure5.6. Instead of use of the block RAM, the

module checks the value of the address. Namely, if the address is in [0,255], NULL is

output. Otherwise the value ofp(i) is read from the block RAM. For the same reason,

tableC f do not use the block RAM in the range. Each value ofC f (i) (0 ≤ i ≤ 255) is

initialized to an alphabetα(i). From the target application, we can assume thatα(i) = i

(0 ≤ i ≤ 255) since the alphabets correspond to pixel values. If the address is in [0,255],

the value of the address is just output.

We can obtain a string of each code by traversing tablesp andC f . To store the

characters, an output buffer o is used. Output buffer o is also configured as dual-port

block RAMs. Since the characters of corresponding string of a code is reversely read out

from tableC f and then written to the output buffer for each character in reversed order,

113

i

0

1

2

3

yi

y0

y1

y2

y3

code buffer i p(i)

0

1

255

256

NULL

NULL

NULL

y0

257

258

259 y1

4094 y3836

pj(i′)

+1 i Cf (i)

0

1

255

256

257

258

4094

4095

0

Cf (y3837)

1

255

Cf (y0)

pointer table p

character table Cf

Cf (y3836)

counter

+1

counter

i

0

L(i)

L(0)

1 L(1)

2 L(2)

3 L(3)

4 L(4)

5 L(5)

Cr(y0)

· · · · · ·

· · · · · ·

· · · · · ·

· · ·

DIB

+1

counter
ADDRB

ADDRA

length table L

output buffer

DOA

L(i)

L(i)

· · · · · ·

−1 −1

y0, y1, . . . , ym−1

C(y0), C(y1), . . . , C(ym−1)

· · · · · ·

4095 y3837

· · · · · ·

259 Cf (y1)

L(0)

Cr(y1)

Cr(y2)

Cr(y3)

L(1)

L(2)

L(3)

Cr(y4) L(4)

i′

i

i

code

i′

Cf (yi)

Cf (yi)

Cr(y0), ..., C
r(ym−1)

y0, y1, . . . , ym−1

y0, y1, . . . , ym−1

Figure 5.5: The outline of our FPGA architecture for hardware LZW algorithm

we use tableL to store the length of the string to reverse it in the following step. Finally,

we read the characters from output buffer and reverse it with the length. Indeed, it is

not necessary to store all the values ofL since the executions of three steps described in

Section5.2. Therefore, tableL is configured as a FIFO (First-In-First-Out). As the same

reason, we use a FIFO, which is also composed of the block RAMs, to temporally store

input codes called code buffer. For the reader’s benefit, the behavior of the proposed

architecture for each step is described next.

Step 1: In Step 1, for tablesp andC f , one port set of the dual-port block RAMs

is used to perform the updating operation as described in the algorithm in Section5.2,

respectively. The table update is executed for given compressed codesyi (0 ≤ i ≤ m−1)

one by one. If an input codeyi ≤ 257 holds, it is unnecessary to update both tables since

the elements inp andC f are constant values fori ≤ 257. Otherwise, ifyi ≥ 258, tablep

is updated by writingyi to p(i+258). The update for tablep can be easily done sinceyi is

stored to an element at addressi in the block RAM as illustrated in Figure5.6. Also, the

114

0

1
−258

y0

y1

3835 y3835

ADDRA

DIB

ADDRB

DOA

block RAM

3836 y3836

2 y2

3 y3

3837 y3837

pointer table p

· · · · · ·

0

1

2

3

4

3836

3837 Cf (y3837)

Cf (y0)

ADDRA

character table Cf

Cf (y3836)

DOA

ADDRB

· · · · · ·

Cf (y1)

4 y4

Cf (y2)

Cf (y3)

Cf (y4)

3835 Cf (y3835)

block RAM

DOB

−258

i′

NULL

≥ 258

pj(i′)

5

6

Cf (y5)

Cf (y6)

5 y5

6 y6

−258

i′ ≥ 258

≥ 258

Cf (yi)

i

i

Cf (yi)
DIA

+1

, yi

yi

Cr(yi)

Figure 5.6: Dual-port block RAM and memory configurations of tablesp andC f

update operation for tableC f is performed. It takes 2 clock cycles to read a value stored

at C f (yi − 258) and write it toC f (i). The above operations are repeatedly executed for

each input code. Since the update operations for both tables can be executed at the same

time, it takes two clock cycles for each input code. Sincem codes are input, in total,

2m clock cycles are necessary to perform Step 1. Recall that all each code segment has

3838 codes except the last one. For each code segment that has 3838 codes, tablep and

C f are full if the update operations for all codes of one code segment are performed. The

update operation is terminated until all codes of this segment are decompressed. For the

last code segment, if code 257 (EndOfInformation) is reached, the update operation is

115

terminated until all codes of the last code segment are decompressed.

Step 2:We will show how to obtain partially-reversed stringsCr(yi) (0 ≤ i ≤ m− 1)

with table p andC f updated in Step 1. In the following, we use another port set of

the dual-port block RAMs of tablesp andC f , respectively. As shown in the algorithm

of Step 2 in the previous section. for each input codeyi(0 ≤ i ≤ 3837), we traverse

tablesp and output characters ofCr(yi) in tableC f . Since it takes one clock cycle to

read an element in tablesp andCr(yi), respectively, two clock cycles are necessary to

output a character inCr(yi). However, the access to tablesp andC f can be performed

currently. We can overlap the access for an input codeyi with that for the next codeyi+1.

Therefore, when the length ofCr(yi) is L(i), we can output a stringCr(yi) in L(i) + 1

clock cycles. The characters ofCr(yi) are stored into an output buffer o one by one.

Also, L(i) is counted at the same time. After outputting the characters ofCr(yi), andL(i)

is stored to tableL which is composed of a dual-port block RAM. Since it takesL(i)+ 1

clock cycles to output for each input codeyi, Step 2 is performed inΣm−1
i=0 (L(i)+1) clock

cycles in total.

Step 3: In Step 3, partially-reversed stringsCr(y0), Cr(y1),. . . , Cr(ym−1), stored in

output buffer o in Step 2 is reordered to the uncompressed stringsC(y0), C(y1),. . . ,

C(ym−1). Since the length of each string is known fromL(i), each character can be read

reversely from output buffer o one by one. Each operation for an input codeyi can be

started afterCr(yi) is stored to output buffero, that is,L(i) is stored into tableL. It takes

L(i) + 1 clock cycles to perform the operation for a codeyi since one clock cycle for

readingL(i) and L(i) clock cycles for reversely readingC(yi) are necessary.

Let us consider the overlapped execution among the three steps as illustrated in

Figure5.2. Recall that Step 1 can be performed in 2 clock cycles for each input code.

116

“Crafts” “Flowers” “Graph”

Figure 5.7: Three gray scale images with 4096× 3072 pixels used for experiments

The operation for an input codeyi (0 ≤ i ≤ m− 1) in Step 2 can be performed after the

operation for the next codeyi+1 in Step 1 is finished. Also, the execution time for each

yi is at least 2 clock cycles sinceL(i) + 1 ≥ 2. Therefore, the execution of Step 2 can

be started 4 clock cycles later after the first codey0 is given in Step 1 and performed

continuously. In Step 3, the operation for an input codeyi can be performed after the

operation foryi in Step 2. Namely, the operation foryi in Step 3 can be executed when

the operation foryj (yj ≥ i + 1) in Step 2. Therefore, in Step 3, the execution sometimes

waits for the execution in Step 2. Let us consider the longest case for computing time

that an input data obtained by compressing data whose elements are the same value

is given. For example, when a stringX = 0,0,0, . . . is compressed, the compressed

data isY = 0,258, 259, The lengthL(i) of each uncompressed stringC(yi) can

be represented asL(i) = i + 1 (0 ≤ i ≤ m− 1) since the lengths are incremented by

one for each code. SinceL(i + 1) = L(i) + 1 in this case,L(i) < L(i + 1) always

holds. Therefore, the execution foryi in Step 3 can be performed when that foryi+1 is

performed concurrently. Moreover, the execution for eachyi in Step 3 waits for one

clock cycle. In such case, it takesΣm−1
i=0 (L(i) + 2) = m(m+ 5)/2 clock cycles. Since the

execution of Step 2 can be started 4 clock cycles later after the first codey0 is given in

117

Step 1 and Step 3 can be started 2(= L(0)+ 1) clock cycles later after the execution of

Step 2 is started, Step 3 can be started 6 clock cycles later after the first codey0 is given

in Step 1. Therefore, in such case, it takesm(m+ 5)/2+ 6 clock cycles to perform the

LZW decompression in total.

5.6 Experimental results

This section shows the implementation results of the implementations of LZW com-

pression and decompression algorithms in the FPGA.

First, to evaluate the performance of the proposed architecture of LZW compression,

we have implemented it in VC707 board [61] equipped with the Xilinx Virtex-7 FPGA

XC7VX485T-2. The experimental results of the implementation is shown in Table5.5.

We also use Intel Core CPU i7-4790 (3.6GHz) to evaluate the running time of sequential

LZW compression. We have used three gray scale images with 4096× 3072 pixels as

shown in Figure5.7, which are converted from JIS X 9204-2004 standard color image

data. Table5.6shows the time of compression on CPU and FPGA and the compression

ratio (original image size : compressed image size). The image “Graph” has high com-

pression ratio since it has large areas with similar intensity levels. The image “Crafts”

has small compression ratio since it has small details.

In the CPU implementation, we use the back-pointer tableq of which size is 220 ×

12bits= 1.5MBytes without a hash table. The table is composed of a two-dimensional

array of 212 × 28 elements. Each element has 32 bits that can be used to store the back-

pointerq(j, x). Since this table is not a hash table, no conflict occurs in the sequential

implementation on the CPU. After ClearCode is output, we need to initialize the table.

However, it is too costly to clear all elements in the table. Therefore, we use the time-

118

stamp technique as follows. Since the value of eachq(j, x) has 12 bits, the remaining 20

bits are used as a time stamp. The time stamp takes value from 0 to 220− 1 = 1048575.

Initially, the time stamp is 0 and incremented whenever ClearCode is output. When a

back-pointerq(j, x) is added in the table, the current time stamp is written with it. Using

the time stamp, we can determine if the value stored in each entry is valid. When the

time stamp is incremented 1048575 times, it is set to 0 and all entries of the table has

to be reinitialized. However, in the compression for most images, the number of code

segments is less than 1048575. Hence, in the sequential implementation on the CPU,

for three images utilized in the experiment, we can perform the sequential algorithm

without reinitializing the table.

Table5.6 shows the time of compression on CPU and FPGA and the compression

ratio. In our implementation on FPGA, to save the usage of block RAMs of FPGA,

we use the hash table to implement the back-pointer table. Since we partition the data

table of the hash table into 8 tables, we can check 8 elements of back-pointer table

concurrently. For example, when “Crafts”, “Flowers” and “Graph” are compressed,

the average number per code segment of accessing the hash table, that is the average

number of performing the add operation, is 3853.7, 3848.2 and 3916.4, respectively.

Since the add operation is performed 3837 times per code segment excluding the last

segment, we note that the conflict occurs. On the other hand, in the CPU implemen-

tation, there is no conflict because the hash table is not used. As shown in Table5.6,

for only one proposed module of LZW compression, the results show that implemen-

tation on FPGA is not faster than the implementation on the CPU. For example, in our

FPGA implementation of single proposed module, it takes 18191909 clock cycles to

compress image “Crafts”, i.e.,18191909
179.99MHz = 101.07ms. It takes 19426610 clock cycles to

119

compress image “Flowers”, i.e.,19426610
179.99MHz = 107.93ms. To compress image “Graph”, it

takes 24886071 clock cycles, i.e.,24886071
179.99MHz = 138.26ms. However, since the proposed

module uses very few FPGA resources, we have succeeded in implementing 24 identical

LZW compression modules in an FPGA, where the frequency is 163.35MHz and each

module has independent input/output (I/O) ports. Simply calculated, for image “Crafts”,

our implementation with 24 modules runs up to 23.51 times faster than sequential LZW

compression on a single CPU. As shown in Table5.5, the implementation of 24 pro-

posed modules uses 555 I/O ports, where more than one hundred of the remaining ports

are dedicated to perform other communication protocols and can not be used as general

I/O ports. Therefore, the number of available I/O ports of the FPGA is the bottleneck of

our implementation. For a theoretical interest, we implement much more modules in the

FPGA by assuming that the limitation of the number of I/O ports is ignored. The experi-

mental results show that up to 110 proposed modules can be arranged in the FPGA. This

implementation may not be used actually, but according to the results, for example, our

proposed implementation with 110 modules for the image “Crafts” attains a speed-up

factor of 89.63 over the sequential LZW compression on the CPU.

Table 5.5: Implementation results of one module and multiple modules of LZW com-

pression algorithm

number of modules 1 24 110 Available

Slice Registers 104 (0.02%) 3120 (0.51%) 15977 (2.63%) 607200

Slice LUTs 346 (0.11%) 7782 (2.56%) 37249 (12.27%) 303600

18K-bit block RAMs 18 (0.87%) 432 (20.97%) 1980 (96.12%) 2060

I/O 26 (3.71%) 555 (79.29%) — 700

Clock frequency [MHz] 179.99 163.35 135.87 —

120

For gray scale image “Graph” which has high compression ratio with 4096× 3072

pixels, the proposed module of LZW compression compresses 4096× 3072× 1Byte

original data in 138.26ms, that is, the compression throughput of the proposed module is

4096×3072×1Byte
138.26ms = 86.79MBytes/s. On the other hand, for gray scale image “Crafts” which

has low compression ratio, the compression throughput is4096×3072×1Byte
101.07ms = 118.73MBytes/s.

Table 5.6: Computing time (milliseconds) of LZW compression for three images

images compression time of time of Speedup

ratio CPU FPGA ratio

“Crafts” 1.43:1 109.10 101.07 1.08:1

“Flowers” 1.72:1 93.60 107.93 0.87:1

“Graph” 36.72:1 46.79 138.26 0.34:1

Table 5.7: Implementation results of one module and multiple modules of hardware

LZW decompression algorithm

number of modules 1 34 150 Available

Slice Registers 278 (0.05%) 9537 (1.57%) 40642 (6.69%) 607200

Slice LUTs 307 (0.1%) 10361 (3.41%) 45194 (14.89%) 303600

18K-bit block RAMs 13 (0.63%) 442 (21.46%) 1950 (94.66%) 2060

I/O 26 (3.71%) 564 (80.57%) — 700

Clock frequency [MHz] 301.02 263.92 245.4 —

Next, we have also implemented the proposed architecture for hardware LZW de-

compression algorithm and evaluated it in VC707 board [61]. The experimental results

of the implementation is shown in Table5.7. We also use Intel Xeon CPU E5-2430

(2.2GHz) to evaluate the running time of sequential LZW decompression for the three

gray scale images above. Table5.8 shows the time of decompression on CPU and

121

FPGA. In LZW decompression on CPU, the operation of creating dictionary tables oc-

cupies most of the computing time. In our implementation on FPGA, the operation

of creating tables is performed independently, and writing characters to output buffer

and reading characters from output buffer are paralleled, hence, the operation of out-

putting characters occupies most of the time. As shown in Table5.8, for only one

proposed module, the results show that implementation on FPGA is 2.16 times faster

than the implementation on the CPU. For example, in our FPGA implementation of

one proposed module, it takes 19674631 clock cycles to decompress image “Crafts”,

i.e., 19674631
301.02MHz = 65.36ms. It takes 18339574 clock cycles to decompress image “Flow-

ers”, i.e., 18339574
301.02MHz = 60.924ms. To decompress image “Graph”, it only takes 12892927

clock cycles, i.e., 12892927
301.02MHz = 42.831ms. Hence, for gray scale image “Graph” which

has high compression ratio with 4096×3072 pixels, the LZW decompression module

outputs 4096×3072×1 Bytes of original data in 42.83ms. Therefore, the decompression

throughput of module is4096×3072×1Bytes
42.831ms = 280.17MBytes/s. Since the decompression

throughput depends on input data, the decompression throughput can be even better if

the compression throughput of input file is higher. Suppose that in the worst case for

computing time, 4096× 3072 input codes are given, all of which corresponding strings

include 1 character. Since it takes 2 clock cycles to decompress each code that includes

only 1 character, all the codes can be decompressed in 4096× 3072× 2 = 25165824

clock cycles, i.e.,25165824
301.02MHz = 83.602ms. More specifically, the minimum decompression

throughput of proposed module is4096×3072×1Byte
83.602ms = 143.54MByte/s. Since the proposed

FPGA module uses a few resources of the FPGA, we have succeeded in implementing

34 LZW decompression modules in a FPGA, where each module has independent I/O

port. Since input characters are transferred to the proposed module every two clock

122

cycles, two modules can share one set of input port. Our implementation with 34 mod-

ules runs up to 64.39 times faster than sequential LZW decompression on a single CPU.

Similarly, we also have succeeded in implementing 150 proposed modules, where we

assume that the limitation of the number of I/O ports is ignored. The experimental

results show that 150 proposed modules can be arranged in the FPGA.

Table 5.8: Computing time (milliseconds) of LZW decompression for three images

images compression time of time of Speedup

ratio CPU FPGA ratio

“Crafts” 1.43:1 141.534 65.36 2.16:1

“Flowers” 1.72:1 127.136 60.924 2.08:1

“Graph” 36.72:1 75.901 42.831 1.77:1

5.7 Concluding remarks

We have presented hardware architectures of LZW compression and decompressing,

and implement them in a Virtex-7 family FPGA XC7VX485T-2, respectively. Accord-

ing to the implementation results, the implementation of 24 modules of LZW compres-

sion attains a speed-up factor of 23.51 times faster than a sequential software implemen-

tation on a single CPU. On the other hand, the implementation of 34 modules of LZW

decompression runs up to 64.39 times faster than the software implementation on the

CPU.

123

Chapter 6

Conclusions

Ability of parallel processing is one of the most important features of FPGA. More-

over, recently, embedded multicore processors represented by FPGA has lately attracted

considerable attention for their potential computation ability and power consumption.

In this dissertation, we have presented several efficient FPGA implementations on the

FPGA.

In Chapter3, we have presented an efficient FPGA implementation of the Hough

transform for lines detection on the Xilinx Virtex-6 FPGA XC6VLX240T-1. Our FPGA

implementation uses 178 DSP slices and 180 block RAMs, and runs over 300 times

faster than the sequential implementation on the CPU (Intel Xeon X7460 2.66GHz)

for processing an 512× 512 binary image of which all points are edge points. Then,

we improved the proposed implementation to process pixel data given in raster scan

order, and the usage of DSP slices reduces. Also, maximum filters are used to obtain

the correct lines after voting operation. The improved implementation used only 90

DSP slices and 181 block RAMs and attains a speed-up factor of more than 38 over

the sequential implementation on the CPU for processing an 512× 512 binary image

124

with 33232 edge points. If all the points of an 512× 512 = 262144 image are edge

pints, our improved implementation also runs over 300 times faster than the sequential

implementation on the CPU. Next, as one of the efficient improvements to the Hough

transform for line detection, we presented an efficient FPGA implementation of the

gradient-based Hough transform, where the gradient direction and magnitude of each

pixel are used to reduce the useless voting operation to obtain more precise straight lines.

The implementation of the gradient-based Hough transform uses only 13 DSP slices and

runs 309 times faster over the sequential implementation on the CPU for processing an

333×333 gray scale image. On the other hand, we presented an efficient implementation

of the Hough transform for circles detection on the Xilinx Virtex-7 FPGA XC7VX485T-

2, that uses only one-dimensional parameter spaces. Our implementation for circles

detection uses 398 DSP slices and 309 block RAMs, and attains a speed-up factor of

189 over the sequential implementation on the CPU.

In Chapter4, we proposed an efficient processor core that executes the Euclidean al-

gorithm computing the GCD of two large numbers in Xilinx Virtex-7 FPGA XC7VX485T-

2, that uses only one DSP slice and one block RAM. Since the proposed GCD processor

core uses very few resources, we have succeeded in implementing 1280 GCD processor

cores in the FPGA. The implementation of 1280 GCD processor cores runs 3.8 times

faster than the best GPU implementation and 316 times faster than a sequential imple-

mentation on the CPU.

In Chapter5, we proposed a hardware architecture of LZW compression and decom-

pression, respectively. We have succeeded in implementing 24 modules of LZW com-

pression and 34 modules of LZW decompression in an Xilinx Virtex-7 FPGA XC7VX485T-

2, respectively. According to the experimental results, our implementation of 24 LZW

125

compression modules runs 23.51 times faster than a sequential implementation on the

CPU (Intel Core CPU i7-4790 3.6GHz). On the other hand, our implementation of 34

LZW decompression modules runs 64.39 times faster than a sequential implementation

on the same CPU.

126

References

[1] Adobe Developers Association.TIFF Revision 6.0, June 1992.

[2] Y. Ago, Y. Ito, and K. Nakano. An FPGA implementation for neural networks with the

fdfm processor core approach.International Journal of Parallel, Emergent and Distributed

Systems, 28(4):308–320, 2013.

[3] Y. Ago, K. Nakano, and Y. Ito. A classification processor for a support vector machine with

embedded DSP slices and block RAMs in the FPGA. InProc. of IEEE 7th International

Symposium on Embedded Multicore Socs (MCSoC), pages 91–96, 2013.

[4] Altera Corp.Stratix V Device Handbook, 2012.

[5] H. Bessalah, S. Seddiki, F. Alim, and M. Bencherif. On line mode incremental Hough

transform implementation on Xilinx FPGA’s. InProc. of the 8th conference on Signal,

Speech and image processing, pages 176–179, 2008.

[6] J. Canny. A computational approach to edge detection.Pattern Analysis and Machine

Intelligence, IEEE Transactions on, (6):679–698, 1986.

[7] E. R. Davies. Circularity – a new principle underlying the design of accurate edge orien-

tation operators.Image and Vision Computing, 2(3):134–142, 1984.

[8] D. D. S. Deng and H. ElGindy. High-speed parameterisable Hough transform using re-

configurable hardware. InProc. of the Pan-Sydeny area workshop on Visual information

processing, volume 11, pages 51–57, 2001.

127

[9] R. Devi, J. Singh, and M. Singh. VHDL implementation of GCD processor with built in

self test feature.International Journal of Computer Applications, 25(2):50–54, July 2013.

[10] O. Djekoune and K. Achour. Incremental Hough transform: an improved algorithm for

digital device implementation.Real-Time Imaging, 10(6):351–363, 2004.

[11] R. O. Duda and P. E. Hart. Use of the Hough transformation to detect lines and curves in

pictures.Communications of the ACM, 15(1):11–15, 1972.

[12] A. Elhossini and M. Moussa. Memory efficient FPGA implementation of Hough transform

for line and circle detection. InElectrical& Computer Engineering (CCECE), 2012 25th

IEEE Canadian Conference on, pages 1–5. IEEE, 2012.

[13] N. Fujimoto. High throughput multiple-precision GCD on the CUDA architecture. In

International Symposium on Signal Processing and Information Technology, pages 507–

512, Dec 2009.

[14] T. Fujita, K. Nakano, and Y. Ito. Bulk GCD computation using a GPU to break weak RSA

keys. InInternational Parallel and Distributed Processing Symposium Workshops, May

2015.

[15] S. Funasaka, K. Nakano, and Y. Ito. Fast LZW compression using a GPU. Inin Proc. of

International Symposium on Computing and Networking, pages 303–308, 2015.

[16] S. R. Geninatti, J. I. B. Benı́tez, M. Calvio, N. G. Mata, and J. G. Luna. FPGA implemen-

tation of the generalized Hough transform. InReconfigurable Computing and FPGAs,

2009. ReConFig’09. International Conference on, pages 172–177. IEEE, 2009.

[17] A. Goneid, S. El-Gindi, and A. Sewisy. A method for the Hough transform detection

of circles and ellipses using a 1-dimensional array. InSystems, Man, and Cybernetics,

1997. Computational Cybernetics and Simulation., 1997 IEEE International Conference

on, volume 4, pages 3154–3157. IEEE, 1997.

[18] K. Hashimoto, Y. Ito, and K. Nakano. Template matching using DSP slices on the FPGA.

In Proc. of International Symposium on Computing and Networking, pages 338–344, 2013.

128

[19] Helion Technology.LZRW3 Data Compression Core for Xilinx FPGA, October 2008.

[20] P. V. C. Hough. Method and means for recognizing complex patterns. U.S. Patent

3,069,654, 1962.

[21] J. Illingworth and J. Kittler. A survey of the Hough transform.Computer Vision, Graphics,

and Image Processing, 44(1):87–116, 1988.

[22] D. Ioannou, W. Huda, and A. F. Laine. Circle recognition through a 2D Hough transform

and radius histogramming.Image and vision computing, 17(1):15–26, 1999.

[23] J. R. Jen, M. C. Shie, and C. Chen. A circular Hough transform hardware for industrial

circle detection applications. InIndustrial Electronics and Applications, 2006 1ST IEEE

Conference on, pages 1–6. IEEE, 2006.

[24] S. M. Karabernou and F. Terranti. Real-time FPGA implementation of Hough transform

using gradient and CORDIC algorithm.Image and Vision Computing, 23(11):1009–1017,

2005.

[25] H.-S. Kim and J.-H. Kim. A two-step circle detection algorithm from the intersecting

chords.Pattern recognition letters, 22(6):787–798, 2001.

[26] S. T. Klein and Y. Wiseman. Parallel Lempel Ziv coding.Discrete Applied Mathematics,

146(2):180–191, 2005.

[27] D. E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algorithms.

Addison-Wesley, 1997.

[28] S. D. Kohale and R. W. Jasutkar. Power optimization of GCD processor using low power

Spartan 6 FPGA family.International Journal of Conceptions on Electronics and Com-

munication Engineering, 2(1):1–6, June 2014.

[29] Z. Kulpa. On the properties of discrete circles, rings, and disks.Computer graphics and

image processing, 10(4):348–365, 1979.

[30] P. Lee and A. Evagelos. An implementation of a multiplierless Hough transform on an

FPGA platform using hybrid-log arithmetic. InProc. of Real-Time Image Processing

2008, volume 6811, pages 68110G–1, 2008.

129

[31] M. Lin. A hardware architecture for the LZW compression and decompression algorithms

based on parallel dictionaries.Journal of VLSI signal processing systems for signal, image

and video technology, 26(3):369–381, 2000.

[32] M. Lin, J. Lee, and G. E. Jan. A Lossless Data Compression and Decompression Algo-

rithm and Its Hardware Architecture.IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 14(9):925–936, 2006.

[33] Micron Inc. 1GB, 2GB, 4GB (x64, SR) 204-Pin DDR3 SODIMM, May 2015.

[34] M. K. Mishra, T. K. Mishra, and A. K. Pani. Parallel Lempel-Ziv-Welch (PLZW) tech-

nique for data compression.International Journal of Computer Science and Information

Technologies, 3(3):4038–4040, 2012.

[35] K. Nakano and E. Takamichi. An image retrieval system using FPGAs.IEICE Transac-

tions on Information and Systems, E86-D(5):811–818, May 2003.

[36] K. Nakano and Y. Yamagishi. Hardware n choose k counters with applications to the partial

exhaustive search.IEICE Transactions on Information and Systems, E88-D(7), 2005.

[37] S. Navqi, R. Naqvi, R. A. Riaz, and F. Siddiqui. Optimized RTL design and implemen-

tation of LZW algorithm for high bandwidth applications.PRZEGLAD ELEKTROTECH-

NICZNY (Electrical Review), 4:279–285, 2011.

[38] M. S. Nixon and A. S. Aguado.Feature Extraction and Image Processing. Academic

Press, second edition, 2008.

[39] F. O’Gorman and M. Clowes. Finding picture edges through collinearity of feature points.

Computers, IEEE Transactions on, C-25(4):449–456, 1976.

[40] S. Prakash, M. Purohit, and A. Raizada. A novel approach of speedy-highly secured

data transmission using cascading of PDLZW and arithmetic coding with cryptography.

International Journal of Computer Applications, 57(19), 2012.

[41] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and

public-key cryptosystems.Communications of the ACM, 21:120 – 126, 1978.

130

[42] K. Scharfglass, D. Weng, J. White, and C. Lupo. Breaking weak 1024-bit RSA keys with

CUDA. In Internatinal Conference of Breaking weak 1024-bit RSA keys with CUDA, pages

207 – 212, Dec 2012.

[43] J. L. Shafer, H. Ngo, and R. W. Ives. Using an FPGA to accelerate pupil isolation in iris

recognition. InSignals, Systems and Computers (ASILOMAR), 2010 Conference Record

of the Forty Fourth Asilomar Conference on, pages 1774–1777. IEEE, 2010.

[44] K. Shyni and K. V. M. Kumar. Lossless LZW data compression algorithm on CUDA.

IOSR Journal of Computer Engineering, pages 122–127, 2013.

[45] S. Tagzout, K. Achour, and O. Djekoune. Hough transform algorithm for FPGA imple-

mentation.Signal Processing, 81(6):1295–1301, 2001.

[46] Y. Tokunaga and T. Inoue. A method for circular pattern recognition in a binary image and

its implementation onto an FPGA.IEICE TRANSACTIONS on Fundamentals of Electron-

ics, Communications and Computer Sciences, 82(2):246–254, 1999.

[47] T. A. Welch. A technique for high-performance data compression.IEEE Computer,

17(6):8–19, June 1984.

[48] J. R. White.PARIS: A PARALLEL RSA-PRIME INSPECTION TOOL. PhD thesis, Cali-

fornia Polytechnic State University - San Luis Obispo, June 2013.

[49] Xilinx Inc. Virtex-4 FPGA User Guide(v2.6), 2008.

[50] Xilinx Inc. Virtex-5 FPGA User Guide(v5.2), 2009.

[51] Xilinx Inc. Virtex-6 FPGA DSP48E1 Slice User Guide (v1.3), 2011.

[52] Xilinx Inc. Virtex-6 FPGA Memory Resources User Guide (v1.6), 2011.

[53] Xilinx Inc. Virtex-6 Family Overview (v2.4), 2012.

[54] Xilinx Inc. Virtex-6 FPGA Configurable Logic Block User Guide (v1.2), 2012.

[55] Xilinx Inc. 7 Series FPGAs Configuration User Guide, 2013.

[56] Xilinx Inc. 7 Series FPGAs Overview (v1.14), 2013.

[57] Xilinx Inc. LogiCORE IP CORDIC v6.0, 2013.

131

[58] Xilinx Inc. 7 Series DSP48E1 Slice User Guide (v1.8), 2014.

[59] Xilinx Inc. 7 Series FPGAs Configurable Logic Block User Guide (v1.7), 2014.

[60] Xilinx Inc. 7 Series FPGAs Memory Resources User Guide (v1.11), 2014.

[61] Xilinx Inc. VC707 Evaluation Board for the Virtex-7 FPGA, Sept. 2015.

[62] J. Ziv and A. Lempel. A Universal Algorithm for Sequential Data Compression.IEEE

Transactions on Information Theory, 23(3):337–343, 1977.

[63] J. Ziv and A. Lempel. Compression of Individual Sequences via Variable-Rate Coding.

IEEE Transactions on Information Theory, 24(5):530–536, 1978.

132

Acknowledgment

First and foremost, I would like to show my deepest gratitude to my supervisor, Pro-

fessor Koji Nakano for his continuous encouragement, advice and support. He is a

respectable and resourceful scholar. Without his enlightening instruction and patience,

I can not complete my Ph.D. study. As a supervisor, he taught me skills and enlightened

in my future research career.

I shall express sincere appreciation to my thesis committee members, Associate Pro-

fessor Yasuaki Ito and Professor Takio Kurita for reviewing my dissertation.

I would also like to express my thanks to Assistant Professor Daisuke Takafuji for

his support and continuous guidance in every stage of my study. I shall extend my

thanks to all members of computer system laboratory. They were always very keen to

help.

I would express thanks to all the faculty members of the Department of Information

Engineering of Hiroshima University. I also would like to express thanks to the Japanese

Government for financial support to complete my study in Japan.

I wish to express my thanks to my family who always supported me. I also would

like to express my heartiest thanks to my wife Fang Hu for waiting me four years to

complete my study. Last, I would express my special thanks to my unborn child since

you encouraged me.

133

List of publications

Journals

[J-1] Xin Zhou, Norihiro Tomagou, Yasuaki Ito, and Koji Nakano, Implementations

of the Hough Transform on the Embedded Multicore Processors, International

Journal of Networking and Computing, Vol. 4, No. 1, pp. 174-188, January 2014.

[J-2] Xin Zhou, Koji Nakano, and Yasuaki Ito, Efficient Implementation of FDFM Ap-

proach for Euclidean Algorithms on the FPGA, International Journal of Network-

ing and Computing, to appear.

International Conferences

[C-1] Xin Zhou, Yasuaki Ito, and Koji Nakano, An Efficient Implementation of the

Hough Transform using DSP slices and block RAMs on the FPGA, Proc. of the

IEEE 7th International Symposium on Embedded Multicore SoCs (MCSoC), pp.

85-90, September 2013.

[C-2] Xin Zhou, Yasuaki Ito, and Koji Nakano, An Efficient Implementation of the

Gradient-based Hough Transform using DSP slices and block RAMs on the FPGA,

Proc. of International Parallel and Distributed Processing Symposium Work-

shops, pp. 762-770, May 2014.

[C-3] Xin Zhou, Yasuaki Ito, and Koji Nakano, An Efficient Implementation of the

One-Dimensional Hough Transform Algorithm for Circle Detection on the FPGA,

Proc. of International Symposium on Computing and Networking, pp. 447-452,

December 2014.

[C-4] Xin Zhou, Koji Nakano, and Yasuaki Ito, Parallel FDFM Approach for Com-

puting GCDs Using the FPGA, Proc. of International Conference on Parallel

Processing and Applied Mathematics (PPAM 2015, LNCS 9573), pp. 238-247,

September 2015.

[C-5] Xin Zhou, Yasuaki Ito, and Koji Nakano, An Efficient Implementation of LZW

Decompression in the FPGA, Proc. of International Parallel and Distributed Pro-

cessing Symposium Workshops, pp. 599-607, May 2016.

