
A Study on High Quality and Low Cost Peer to

Peer Live Streaming over Internet

(インターネット上のP2Pライブストリーミングの

高品質化・低コスト化の研究)

by

BAHAA ALDEEN ALGHAZAWY

A dissertation submitted to the Department of Information
Engineering, Graduate School of Engineering

in partial fulfillment of the requirements for the degree of

Doctor of Engineering

at the

Hiroshima University

2016

2

A Study on High Quality and Low Cost Peer to Peer

Live Streaming over Internet

(インターネット上のP2Pライブストリーミングの高品質化
・低コスト化の研究)

by
BAHAA ALDEEN ALGHAZAWY

Abstract

Recently, Peer to Peer (P2P) systems have been widely leveraged to broad-
cast a live video stream to a large number of viewers. In P2P live streaming,
peers (viewers) not only watch the stream but also contribute their resources
such share it. As a result, this collaborative approach reduces the cost and
improves the scalability of traditional client-server live streaming systems.
However, P2P systems work in a best-effort manner and depend on the vol-
untary contribution of peers. Hence, it is challenging to provide a high qual-
ity streaming service (i.e., smooth playback and short delay) in the P2P live
streaming. In order to achieve that, it is important to solve two key issues as
follows: 1) how to maximally utilize resources of participant peers to share
a live stream, and 2) how to improve the reliability of P2P systems by the
assistance of reliable servers with a low cost.

In this thesis, we tackled the above-mentioned two issues and provided
answers for them. At first, a scheme is proposed to maximally utilize re-
sources of participant peers. By that, the utmost level of available resources
is utilized which either can improve the quality of service or reduce the server
cost or a trade-off between that. The scheme allows all peers to be engaged in
the live stream distribution process. It is achieved by developing an efficient
peering and content scheduling strategy that takes both upload bandwidth
bottleneck and content bottleneck issues of P2P systems into account. The
scheme is able to construct an efficient overlay structure with a short hop-
count delay and attain a maximal streaming rate.

Secondly, the P2P system is assisted by the reliable cloud computing,
having a hybrid cloud-P2P, to provide a guaranteed quality of service. Such
assistance overcomes the reliability issue of a pure P2P where peers join/leave
the system or fail dynamically (peer churns). In the proposed cloud-P2P

model, cloud storage and cloud content delivery network services are ex-
ploited to help the peers to maintain a smooth playback. Moreover, peers
are referenced to the cloud storage service to recover the overlay quickly in
case of peer churns. As cloud services are not free, the model is designed to
incur as low cost as possible while guaranteeing the quality of service.

Dedicated
to my parents, Abdulhakim and Rehab,

to my wife, Borouj,
to my children, brothers and sisters

for the endless support, encouragement and love.
Having a PhD. is only possible due to their sacrifices.

Acknowledgments

I acknowledge, with gratitude, my debt of thanks to my supervisor Prof.
Satoshi Fujita for his encouragement and patience and whose knowledge and
expertise were generously shared throughout my PhD. His guidance helped
me in all the time of research and writing of this thesis.

Besides my supervisor, I would like to thank the rest of my thesis com-
mittee: Prof. Koji Nakano and Prof. Toru Nakanishi for their influential
insights and feedback.

My sincere thanks also go to Assoc. Prof. Sayaka Kamei and Assist. Prof.
Satoshi Taoka, who provided me with a precious support in the lab.

Thanks to my colleagues in Distributed Systems Lab. for their discussion
and motivation. Also, I would like to thank my friends in the Information
Engineering department who made my research and life easier.

Thanks to the faculty members and staff of the department of information
engineering for their continuous support.

THIS PAGE INTENTIONALLY LEFT BLANK

8

Contents

1 Introduction 15

1.1 Contribution . 19
1.2 Publications . 20
1.3 Thesis Outline . 21

2 P2P Live Streaming: A Literature Review 23

2.1 P2P Live streaming . 23
2.1.1 Overlay Structures . 24
2.1.2 Content Distribution 26

2.2 Performance Bounds . 28
2.3 Hybrid P2P Live Streaming 30

2.3.1 Hybrid CDN-P2P Live Streaming 31
2.3.2 Hybrid Cloud-P2P Live Streaming 31

3 P2P Maximal Resource Utilization 37

3.1 Problem Definition & Background 38
3.1.1 Mesh-based Overlays 40
3.1.2 Tree-based Overlays 42
3.1.3 Final Prospective Design 45

3.2 Proposed Scheme . 46
3.2.1 Preliminaries . 46
3.2.2 Tree Reconfiguration 47
3.2.3 Scheduling Process . 49
3.2.4 Scheduling Example 53
3.2.5 Managing the Free Set 55

3.3 Evaluation . 56
3.3.1 Setup . 57

9

3.3.2 Results . 58
3.4 CONCLUDING REMARKS 65

4 Low Cost Cloud-P2P Live Streaming 69

4.1 Problem Description & Contribution 70
4.1.1 Quick Recovery . 71
4.1.2 Proactive Bandwidth Investment 71
4.1.3 Number of Requests 72
4.1.4 Achievement . 73

4.2 System Model . 73
4.2.1 Overview . 73
4.2.2 Cloud Computing Platform 74

4.3 Baseline Model . 76
4.4 Proposed Method . 78

4.4.1 First Technique: Quick Recovery with Storage Service . 78
4.4.2 Second Technique: Proactive Bandwidth Investment . . 79
4.4.3 Third Technique: Less Requests to the CCDN 82

4.5 Evaluation . 84
4.5.1 Setup . 84
4.5.2 Amount of Data Fetched from the CCDN 86
4.5.3 Number of Requests Handled by the Cloud 89
4.5.4 Total Monetary Cost of the Cloud-Assistance 91
4.5.5 Playback Delay & Delivery Ratio 92

4.6 CONCLUDING REMARKS 94

5 Conclusions 95

References 98

10

List of Figures

1.1 A simple example of different multicast solutions. 16
1.2 A simple overlay example . 18

2.1 Mesh overlay. 24
2.2 Different types of tree-based overlay. 25
2.3 A simple example of a stream divided into three substreams. . 27
2.4 AQCS system design. 28
2.5 Hybrid CDN-P2P model in LiveSky. 32
2.6 Hybrid Cloud-P2P model. 34

3.1 Trees constructed by Kumar et al. scheme. 39
3.2 Three ways for reconfiguring a tree 48
3.3 A scheduling example of chapter 3 scheme. 54
3.4 Cumulative distribution of saturation fraction. 59
3.5 Cumulative distribution of average hop-count. 61
3.6 Number of uploaders in different levels. 63
3.7 Radial graphs of the proposed and SplitStream overlays. . . . 64
3.8 Free set requests. 66

4.1 Cloud-assisted P2P live streaming model. 75
4.2 Baseline P2P overlay configuration. 77
4.3 Proactive bandwidth investment. 80
4.4 The structure of frames. 83
4.5 Model of reducing number of requests to cloud CDN. 83
4.6 Number of online peers throughout the simulation 86
4.7 Time transition of the fetch rate from the CCDN. 87
4.8 Total amount of data fetched from the CCDN. 88
4.9 Fraction of redundant chunk. 88

11

4.10 The amount of fetches conducted by cloud peers and the other
peers. 89

4.11 The number of requests handled by the cloud storage service. . 90
4.12 The number of requests handled by the CCDN. 90
4.13 Total cost ($). 91
4.14 Time transition of the average playback delay. 93

12

List of Tables

3.1 Main notions of Chapter 3. 47
3.2 Simulation scenarios. 57
3.3 Fraction of each type in the population. 58
3.4 Average saturation fraction. 58
3.5 Average hop-count. 62

4.1 Distribution of the upload bandwidth of peers. 85
4.2 Parameters’ value in the simulation setting. 86
4.3 AWS prices in Tokyo region. 91
4.4 Quality of live stream in each scheme. 94

13

THIS PAGE INTENTIONALLY LEFT BLANK

14

Chapter 1

Introduction

Video over internet has attracted a huge number of users in recent years
thanks to the widespread of broadband accesses to the internet. Hundreds
of millions of video hours are watched on YouTube1 every day [1]. Along
with that, many successful streaming providers have attracted millions of
users such as Yahoo video2, Hulu3, and others. In fact, it is forecasted that
internet video streaming and downloads will grow up to more than 80% of
the global internet consumer traffic by 2019 [2].

An efficient streaming solution is the IP multicast which can be used to
deliver a video stream to many users with a low overhead on the underly-
ing IP network. In IP multicast, the server forwards only one copy of each
streaming packet to the nearest network router. Then, the packet is routed
to all destinations in such a way that a physical link transfers only one copy
of a single packet as illustrated in Figure 1.1(a). Unfortunately, IP multicast
is not widely deployed by Internet Service Providers (ISPs) due to different
challenges. Some of them are the costly installation and management, the
lack of supporting some functionalities such as security and group manage-
ment and the lack of a good pricing model [3].

Another traditional live streaming solution has been the client-server
model. In which, a central streaming server sends identical streaming packets
to every user as in 1.1(b). It is not difficult to show that such a solution has
different drawbacks such as: 1) it is not scalable where one server can sup-

1www.youtube.com
2www.yahoo.com
3www.hulu.com

16 CHAPTER 1. Introduction

(a) IP multicast. (b) Client-server model.

(c) Application layer multicast.

Figure 1.1: A simple example of different multicast solutions.

port a limited number of users, 2) it is highly expensive as a huge number of
users requires the investment of many servers and 3) it incurs more overhead
(number of packets per physical link) on the underlying IP network. To im-
prove the scalability, availability and performance, content delivery networks
(CDNs) are established such as Akamai 4 and Limelight 5. CDNs deploy
a large number of servers in multiple data centers located in separated ge-
ographical regions. The streaming content can be delivered to users from
nearby servers with a short latency. More recently, the emergence of cloud
computing offers an elastic platform to provision resources on demand to
support the content delivery process. Furthermore, a cloud content delivery

4www.akamai.com
5www.limelight.com

CHAPTER 1. Introduction 17

network (CCDN) supporting live streaming services has been deployed such
as Amazon CloudFront 6 and Microsoft Azure CDN 7.

Attractively, researchers reach to a solution to implement the multicast
functionality in the application layer rather than the network layer [4, 5,
6, 7]. In the application layer multicast (Figure 1.1(c)), users form a logic
overlay network over the physical IP network. So packets are replicated
and routed at the user hosts rather than the network routers. Different
works [8, 9, 10, 11] showed that such a solution, called peer-to-peer network
(P2P), addresses the scalability issue of the client-server model. In P2P,
peers contribute their resources to realize a low cost and scalable content
distribution service. Eventually, P2P has become a promising solution for
the live streaming service as its collaborative nature allows a server with a low
capacity (upload bandwidth) to serve thousands of users(peers). In P2P live
streaming, every peer can download and simultaneously also upload a video
stream to other peers. That is achieved by having a peering strategy which
allows a peer to connect to other peers forming an overlay structure. Along
with that, a content scheduling algorithm is necessary for peers to distribute
the streaming content among each other [12]. Different P2P live streaming
systems use different overlay structures and different content distribution
protocols. The challenging question is that how to provide a high quality of
streaming service (i.e., smooth playback and a short delay) with a low cost
by adopting the P2P.

One point is that by the efficient maximal utilization of peers’ resources,
we can broadcast a maximal streaming rate with a short end-to-end delay. In
case the streaming rate is fixed, the maximal utilization of resources reduces
the necessary amount of server’s bandwidth to broadcast the video stream to
peers, i.e., it reduces the cost. To maximally utilize the resources, we need
to guarantee that all peers are engaged in the content distribution process.
Then, an efficient peering and content scheduling strategy is needed which
is expected to overcome both of the upload bandwidth bottleneck and the
content bottleneck in the P2P systems. In more detail, if the aggregated
resources of peers, called the capacity of P2P system, is enough to broadcast
the streaming content then the server should deliver no more than one copy
of the video to the peers. A simple example is when every peer has an

6aws.amazon.com/cloudfront
7azure.microsoft.com

18 CHAPTER 1. Introduction

upload capacity greater than the streaming rate. Then, all peers can receive
the video by organizing them in a tree where the server is a root and each
peer has a single parent and a single child, Figure 1.2. However, such an
overlay is not efficient and has a long end-to-end delay. The problem becomes
more difficult in the heterogeneous environment where peers have unequal
upload capacity. In fact, converging to an efficient overlay that maximize the
resource utilization of peers is a challenging research question.

∙ Point 1: Finding an efficient overlay structure by designing a peering
and content scheduling strategy is a challenging question. Especially,
when the capacity of the P2P system is barely enough to broadcast the
streaming content to all peers, i.e., the spare capacity to adopt future
peers is very low.

Figure 1.2: A simple overlay example. A server and 𝑛 peers each has an
enough upload capacity to forward the live stream to another peer.

Another point is that P2P live streaming is not reliable enough as it
relies on the voluntary contribution of participating peers where peers join
or leave the system dynamically (peer churn). So, it is hard to guarantee the
quality of streaming service [13] even with a maximal resource utilization.
That is in contrast to the reliable but costly server-based solutions. Then,
to leverage the low cost and scalable P2P and, at the same time, overcome
the reliability issues, hybrid P2P with other infrastructures has attracted
considerable attention. For example, the hybrid cloud-P2P has been studied
to deliver a guaranteed quality of streaming service [14, 15]. The assistance
of P2P live streaming by the cloud is generally realized by on-demand renting
of computing, storage and bandwidth resources from the cloud. That incurs

CHAPTER 1. Introduction 19

additional cost related to the amount of resources rented. Recently, reaching
a low cost cloud-P2P live streaming has been an attractive topic.

∙ Point 2: A hot topic is how to guarantee the quality of service in
cloud-P2P live streaming with as low cost as possible.

1.1 Contribution

In this thesis, we provide solutions to improve the quality of P2P live stream-
ing service and reduce the cost of the guaranteed service in cloud-P2P live
streaming. The following issues has been addressed.

∙ How to maximally utilize peer resources and maintain an efficient P2P
overlay?.

By doing so, we improve the quality of service as more resources are utilized
efficiently. And, at the same time, we reduce the required server bandwidth to
deliver the live stream to all peers, i.e., reducing the cost. We discussed how
to improve the resource utilization [12] in mesh overlays. Then, we addressed
the issue in multiple-tree overlays by proposing a scheduling scheme [16] that
works in the challenging condition where no spare capacity is available in the
P2P system, i.e., all peers’ resources are utilized. The scheme attains the
maximal resource utilization while maintaining an efficient overlay of multiple
short-delay trees in a distributed manner. A budget-model is used in the
scheduling scheme such that each peer has a budget relative to its upload
capacity and corresponds to the maximum number of children that peer
can have. In the scheme, the role of uploading a substream (a part of video
stream) is transferred to another peer by exchanging money (capacity) among
peers, provided that the balance of each peer is not below zero. A newly
joining peer try to instantly spend its budget to subscribe to substreams in
such a way that guarantees a high number of peers forwarding exactly one
substream and that the trees have a short hop-count delay. Such a proposed
scheme is also able to broadcast the maximal streaming rate as it is able to
attain the maximal resource utilization.

∙ How to guarantee the quality of streaming service with a low cost?.

20 CHAPTER 1. Introduction

Improving the quality of service in the first work does not mean a guaranteed
quality of service. P2P live streaming systems are vulnerable to peer dynam-
ics. To guarantee the quality of service, we need to improve the reliability
of P2P systems. To achieve that, we assisted the P2P by the cloud storage
service and cloud content delivery network (CCDN). The assistance of P2P
live streaming by the cloud is realized by storing the latest chunks in the live
stream to the storage service in the cloud. In addition, each peer is allowed
to fetch missing chunks from the storage service through edge locations of
the CCDN. These edge locations fetch chunks from the storage service upon
receiving requests from peers. The cost of cloud-assistance is comprised of
the number of requests issued to the cloud and the amount of data fetched
from the cloud. We propose three techniques to reduce the cost of such a
cloud-assistance [17]. More concretely, in the proposed method, 1) each peer
which lost its parent in the overlay can find a new parent by referring to
the information registered in the cloud, 2) several peers which proactively
fetch chunks from the cloud are dynamically invested, and 3) the number of
requests issued to the cloud is reduced by allowing peers to fetch a collection
of chunks using a single request. We were able to reduces the cost of con-
ventional cloud-P2P live streaming schemes by reducing the total amount of
data fetched from the cloud by 42% and the total number of requests issued
to the cloud by 66% while guaranteeing the quality of live streaming service.

1.2 Publications

∙ Bahaa Aldeen Alghazawy and Satoshi Fujita, "Low cost cloud-assisted
peer to peer live streaming," KSII Transactions on Internet and Infor-
mation Systems, (In press).

∙ Bahaa Aldeen Alghazawy and Satoshi Fujita, "A scheme for maximal
resource utilization in peer-to-peer live streaming," International jour-
nal of Computer Networks & Communications, vol. 7, no. 5, pages
13-28, September, 2015.

∙ Bahaa Aldeen Alghazawy and Satoshi Fujita, "Probabilistic packet
scheduling scheme for hybrid pull-push P2P live streaming protocols,"
Proc. of the Second International Workshop on Advances in Network-
ing and Computing, pages 248-251, November, 2011.

CHAPTER 1. Introduction 21

1.3 Thesis Outline

∙ In Chapter 2, we present the background of our work by reviewing the
state-of-art literature in P2P live streaming. Different types of P2P
overlays along with the content distribution and performance bounds
are explained. Then, the hybrid CDN-P2P and cloud-P2P are intro-
duced. A special focus is given to the most related work.

∙ In Chapter 3, we go deeper into details of the maximal resource uti-
lization scheme. We explain how to attain the maximal streaming rate
in the challenging condition when the capacity of P2P system is barely
enough to broadcast the video stream to peers.

∙ In Chapter 4, a low cost cloud-assisted P2P live streaming system with
a guaranteed quality of service is presented. Three proposed techniques
are explained and evaluated to show the important reduction in the
monetary cost of the system.

∙ Chapter 5 concludes the thesis and points out the opportunities of a
future work.

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 2

P2P Live Streaming: A

Literature Review

In this chapter, we will go into deeper details of P2P live streaming pure and
hybrid systems by reviewing the state-of-art literature. That is to imple-
ment a solid base for understanding the work presented in this thesis. The
overlay structure, content distribution and the performance bounds of P2P
live streaming are explained. Then, hybrid CDN-P2P and cloud-P2P are
introduced where more details are spent on the cloud-P2P and its cost due
to the promising rule of cloud in future live streaming.

2.1 P2P Live streaming

As mentioned in Chapter 1, The basic idea of P2P live video streaming is that
every peer participating in the P2P overlay contributes their resources to help
the distribution of streaming content. P2P live streaming could realize a scal-
able video streaming with a low cost compared with the classical client-server
model. Hence, P2P streaming systems have been widely deployed to deliver
a good quality streaming content to a large number of users. As examples
of commercial deployment are SopCast1, PPLive2, PPStream3, UUSee4 and

1http://www.sopcast.com
2http://www.pplive.com
3http://www.ppstream.com
4http://www.uusee.com

24 CHAPTER 2. P2P Live Streaming: A Literature Review

many others. Different P2P streaming systems use different overlay struc-
tures and different content distribution methods. The fundamental types
of P2P overlay structures are: mesh structure, tree structure and hybrid
structures. On the other hand, the content distribution methods are either
pull-based, push-based or hybrid pull-push based.

2.1.1 Overlay Structures

Figure 2.1: Mesh overlay.

P2P overlay structures are either mesh structure, tree structure or a hy-
brid of them. In mesh overlays, each peer establishes neighborhood relation-
ships to random peers which are selected from the set of peers depending
on the upload capacity and the content availability, Figure 2.1. Peers peri-
odically exchanges the content availability with their neighborhood to “pull”
missing content from them. Such a content distribution method is called the
pull method which is widely used in mesh-based systems like PROMISE [18],

CHAPTER 2. P2P Live Streaming: A Literature Review 25

Chainsaw [19], CoolStreaming/DoNet [20] and PULSE [21]. In mesh-based
systems, there is a trade-off between the delay and control overhead. More
specifically, to achieve a short delay, peers need to exchange the content avail-
ability among each other within short intervals. That increases the control
overhead and wastes peers’ resources. By that reason, researchers are moti-
vated to study the scheduling, i.e., which peers are better neighbors [22] and
which missed content is given the priority to be pulled first [23, 24]. Thanks
to the dynamic and random construction of the mesh overlay, it is robust
against peer churns. However, it does not guarantee the quality of content
distribution such as the delay, jitter, and the transmission overhead.

(a) Single Tree (b) Multiple Trees

Figure 2.2: Different types of tree-based overlay.

On the other hand, in tree-based systems, peers are organized in a tree-
structured overlay as in Figure 2.2(a). The streaming content, which is
“pushed” by the media server located at the root of the tree, is delivered
to the downstream peers by repeating store-and-relay operation. Examples
of tree-based systems include ESM [4], NICE [25], ZIGZAG [26], SpreadIt [27]
and others. Tree-based systems are simple and efficient but are not robust
against peer churns. A leave of a parent peer prevents all its descendants from

26 CHAPTER 2. P2P Live Streaming: A Literature Review

receiving the stream till they find new parents. In addition, trees could not
fully utilize contributed resources since it does not use the upload capacity
of leaf peers in the overlay.

Such drawbacks of tree-based systems can be overcome by adopting mul-
tiple trees as in SplitStream [28], CoopNet [29], ChunkySpread [30] and
TURINStream [31]. SplitStream [28], as an example, divides a given stream
into multiple substreams and delivers those substreams using a forest of trees;
one tree for each substream. Peers are organized trying to use each peer as
an internal node in at most one tree and as a leaf node in remaining trees,
Figure 2.2(b).

To get the benefit of the two worlds, i.e., the mesh and tree overlays,
some works adopted a hybrid structure [32, 33]. A state-of-art work is
mTreebone [34] in which stable peers are organized in a tree-structure called
treebone; a backbone overlay over which most of the streaming content is
distributed. In addition, an auxiliary mesh overlay is organized between the
stable and non-stable peers to compensate the weakness of the tree and to
have a better resource utilization.

2.1.2 Content Distribution

After forming the overlay network, peers follow a content distribution method
to deliver the content to every single peer. Mainly, there are three content
distribution methods which are push method, pull method and the hybrid
of them. In fact, the overlay structure plays an important role in selecting
the distribution method. In tree overlays, it is straightforward to choose
the push distribution method where parents forward the content to their
children without an explicit request. For that reason, usually tree-based
systems are called tree-push systems. In such systems, the main deal is how
to construct and maintain the overlay, i.e., the parent-child relationships.
In contrast, for the mesh overlay, the representative distribution method
is the pull method. That is due to the random neighborhood relations in
which the role of the parent or child is not explicit. However, as mentioned
in the previous section, the pull method has some drawbacks such as the
performance-control tradeoff.

To improve the performance while reducing the overhead in mesh over-
lays, different works approached a pull-push content distribution method as
in [35, 36, 37]. Here, there is a distinction between the neighbor relation-

CHAPTER 2. P2P Live Streaming: A Literature Review 27

ship and parent-child relationship. More concretely, peers can select several
neighbors as parents according to the upload capacity and the content avail-
ability, and establish a parent-child relationship to the selected neighbors.
For example, in CoolStreaming [35], the video stream is divided into chunks,
and chunks are arranged into several substreams, e.g. Fig 2.3. The content
availability is represented by buffer maps storing the latest chunk received
in different substreams. After exchanging buffer maps among neighbors,
each peer can determine which substream to subscribe to and from which
neighbor. To subscribe to a substream, a peer sends a single request (pull
mode) to its neighbor. That leads to a parent-child relationship in which
the parent will continue pushing the substream chunks to the subscribing
peer. In this case, the child peer is responsible for monitoring the quality of
the received substream to determine if changing the parent is necessary. Our
work [12] is also based on the pull-push content distribution. It uses dynamic
and pseudo-random substreams to improve the upload capacity utilization
of peers.

Figure 2.3: A simple example of a stream divided into three substreams.

Going beyond the hybrid pull-push, some works [38, 39, 40], designed a
push-only content distribution method for the mesh overlay. That means a
peer will autonomously determine which chunk should be pushed to which
neighbor without explicit requests. That is to improve the stream continuity
and reduce the overhead and delay. Yet, it is a challenging issue to avoid the
redundancy of chunks received from different neighbors.

28 CHAPTER 2. P2P Live Streaming: A Literature Review

2.2 Performance Bounds

Researchers approached different P2P live streaming problems aiming to
strengthen its success. For example, incentive mechanisms [41, 42, 43] are
proposed to encourage peers to contribute their resources. That improves
the performance and stability of the system. To improve the robustness of
P2P live streaming and guarantee a good performance, the network coding is
exploited in [44, 45]. Nevertheless, P2P live streaming performance bounds
are still a hot topic to approach. The delay bounds are partially studied
in [46], and the optimal broadcast time is discussed in [47, 48].

Figure 2.4: AQCS system design.

In relation to the topic of Chapter 3, the maximum achievable stream-

CHAPTER 2. P2P Live Streaming: A Literature Review 29

ing rate has been recently studied. In the following, we assume the system
contains a media server in addition to 𝑛 participant peers. In [49], an upper
bound on the maximum streaming rate is derived for a fully connected net-
work in which each peer is adjacent with any another peer. Let 𝑢𝑠 denote
the upload capacity of the media server and 𝑢𝑖 denote the upload capacity
of the 𝑖𝑡ℎ peer. Then, an upper bound 𝑟max on the maximum streaming rate
is given as

𝑟max = min

{︂
𝑢𝑠,

𝑢𝑠 + 𝑈(𝑃)

𝑛

}︂
(2.1)

where 𝑈(𝑃) =
∑︀

𝑖 𝑢𝑖. The above formula indicates that 𝑟
max does not exceed

the upload capacity of the media server, and in addition, it does not exceed
the average upload capacity of peers and the media server. Different schemes
have been proposed in [50, 51, 52, 53] to achieve the maximum streaming rate
defined in Equation (2.1) for the fully connected overlay. As an example, in
AQCS [50], the stream is to divide into several chunks of few kilo bytes.
Those chunks are pulled/pushed from the media server to the peers, cached
at the receivers’ forwarding queues, and relayed from the receivers to their
𝑛−1 neighbors, see Figure 2.4. The upload capacity of each peer is “inferred”
from the occupancy of its forwarding queue. When the occupancy is less than
a threshold, the peer sends a pull signal to the server to acquire a new chunk
(step 1 in the figure), and upon receiving the request, the server sends back
three chunks to the requester (step 2), which will be stored in the forwarding
queue and relayed to other peers (steps 3 and 4). When the server responds
to all pull signals, it uploads one chunk to all peers (step 5) marked by "NF",
which will not be relayed to the other peers.

However, it is an impractical solution in large scale systems as every peer
needs to connect with all other peers. Moreover, those schemes cause either
an excessive transmission overhead or long delivery delay as the number of
peers increases. Then, more practical solutions are theoretically presented by
Liu et al. with bounded peer out-degree per-tree, i.e., the number of children
a peer can have in a single tree, in Snowball algorithm [54] and bounded
total peer out-degree in Bubble algorithm [55]. A cluster-tree algorithm is
proposed by same authors as a practical implementation of their theoretical
study. However, the cluster-tree algorithm is not a fully distributed algorithm
where a tracker is used to construct Bubble trees. Furthermore, the minimum
number of peers in each cluster is kept a little bit large to achieve a higher

30 CHAPTER 2. P2P Live Streaming: A Literature Review

streaming rate, and hence a long fan-out delay. Authors in [56] studied
the optimal streaming rate over general overlays with peer degree bounds
(number of active connections) by using central solutions. Network coding
and video coding schemes are also used in this regard. In [57], authors studied
a network-coding based distributed solution to maximize the streaming rate
for arbitrarily overlays and under peer degree bounds. In [58], the scalable
video coding SVC is used to maximally utilize peers’ resources.

Back to the multiple-tree systems, SplitStream [28] adopted a strategy
to use each peer as an internal node in at most one tree and as a leaf node
in remaining trees. By that reason, SplitStream highly utilizes the upload
capacity of each peer, i.e., can broadcast a maximal streaming rate. How-
ever, it results in an inefficient overlay of degenerate trees when trying to
maximally utilize the upload capacity of each peer. That will be discussed
in more details in Chapter 3 where we proposed a new scheme [16] to at-
tain the maximal resource utilization while maintaining an efficient overlay
of multiple short-delay trees in a distributed manner. In our scheme, each
peer contacts with only a small number of neighbors in the overlay network.
Then, it autonomously subscribes to substreams according to a budget-model
in such a way that realizes an efficient multiple-tree overlay.

2.3 Hybrid P2P Live Streaming

No thing is complete! The scalable and low cost streaming service offered by
P2P never made it reliable. Peers join, leave and fail randomly and frequently,
and contribute their resources voluntary. Such a dynamic nature makes it
hard to guarantee the quality of streaming service (QoS) such as playback
continuity and short playback delay [13]. On the other hand, content delivery
networks (CDNs) are used to deliver guaranteed quality of video streaming,
e.g., Youtube. But that comes with a high cost incurred by the huge number
of dedicated servers needed to meet the demand of users. That motivates
researchers to approach the hybrid of P2P with other infrastructures such as
CDN or cloud computing. Such an approach inherits the reliability from the
cloud or CDN and the scalability from the P2P. In fact, the hybrid archi-
tecture is applied into two kinds; 1) in the first kind, the P2P is augmented
to the CDN or cloud to reduce the costs of dedicated servers and improve
the scalability of the system. 2) in the second kind, the CDN is exploited to

CHAPTER 2. P2P Live Streaming: A Literature Review 31

assist the P2P to improve the reliability and guarantee the QoS.

2.3.1 Hybrid CDN-P2P Live Streaming

The hybrid of P2P with CDN is approached by many researchers [59, 60, 61].
A representative example of CDN-P2P is LiveSky [62] which is commercially
deployed. In LiveSky, the CDN servers are organized in a tree-based overlay,
Figure 2.5. The users are either served from the CDN only (legacy users) or
directed to the P2P overlay. That is the decision of edge servers which also
manage the P2P operations. The P2P overlay is localized per edge server
and is a hybrid tree-mesh overlay. Another example is PROSE [27] which
efficiently utilizes CDN resources by proactively injecting them into the P2P.
More concretely, it divides CDN resources into two parts, and uses the first
part to serve streaming content on demand. The second part is used to
proactively push streaming content to several selected peers (super-peers) to
improve the overall performance. A detailed analysis and comparison of the
CDN-P2P systems is found in [64]. Unfortunately, provisioning resources
in the CDN is semi-static, and such resources could be either insufficient
(affects the QoS) or underutilized (extra cost) due to the highly dynamic
P2P demand [65], and flash crowd cases [66].

2.3.2 Hybrid Cloud-P2P Live Streaming

Recently, cloud computing has become a promising platform offering an elas-
tic resource allocation and cost-effective (pay-as-you-go) model. Some of the
important resources offered by the cloud computing are, but not limited to,
computing instances (virtual machines), storage service and cloud content
delivery network CCDN. Different cloud providers are available and witness-
ing a huge success such as Amazon web services (AWS) 5, Microsoft Azure 6,
IBM cloud 7 and others.

Researchers have not missed the chance and started to leverage the cloud
computing for providing different services. A cost-effective content distri-
bution is discussed in [67, 68]. Mobile users are supported by the cloud to
improve the quality of streaming service in [69, 70]. Authors in [71] designed a

5www.aws.com
6azure.microsoft.com/
7www.ibm.com/cloud-computing

32 CHAPTER 2. P2P Live Streaming: A Literature Review

Figure 2.5: Hybrid CDN-P2P model in LiveSky.

migration strategy for video-on-demand (VoD) providers to partially migrate
their videos to the cloud trying to minimize the cost. In [72], a mechanism
is proposed to retrieve video segments’ metadata over the cloud for VoD.
CloudStraem [73] transcoded the videos to SVC (scalable video coding) over
the cloud and delivered them in an adaptive manner to network dynamics
through a cloud-based SVC-proxy. That lead researchers to focus on the
efficient scheduling of user media requests to cloud servers. To reduce the re-
sponse time and cost, the allocation of virtual machines to physical servers by
considering the requirements of the cloud media service is discussed in [74].
Authors in [75, 76] developed a blind scheduling algorithm for mobile media
cloud where no prior knowledge is available on the request rate and service
time. Jointly, the algorithm ensures simplicity, fairness among servers and
minimized user waiting time. To minimize the cost and assure the streaming

CHAPTER 2. P2P Live Streaming: A Literature Review 33

quality from a video provider perspective, researchers studied different mech-
anisms to allocate cloud resources based on the dynamic demand. In [77, 78]
provisioned resources in the cloud are dynamically scaled up and down to
meet the user demands in VoD. Authors in [79] studied how to optimally
procure virtual machines for VoD where the cost and quality of experience
trade-off is investigated under Amazon pricing models.

The research community also showed a great interest in exploiting the
flexible resource allocation of the cloud to solve the issues of CDN-P2P live
streaming. A general abstraction of the cloud-p2p model is illustrated in
Figure 2.6. In general, the cloud assistance is realized by storing latest chunks
in the live stream to the storage service in the cloud. In addition, each peer
is allowed to fetch missing chunks from the storage service through edge
locations of the CCDN. These edge locations fetch chunks from the storage
service upon receiving requests from peers. Another way for the assistance of
P2P by the cloud is to rent computing instances and to use them as virtual
peers to disseminate live stream to the existing peers. The cost of cloud
assistance is comprised of the amount of data fetched from the CCDN and
the number of requests handled by the cloud. The latter cost is further
divided into requests handled by the storage service and requests handled by
the CCDN. In the case of renting computing instances, the cost is comprised
of the amount of data fetched and number of hours instances are run. A
main goal of the work in this direction is to minimize the monetary cost of
the cloud-P2P live streaming while providing a guaranteed QoS.

CALMS [80] presented a general framework to migrate the live stream-
ing service to the cloud. The cloud servers are rented dynamically from
different regions based on a demand prediction mechanism. AngleCast [14]
is a typical P2P-assisted cloud live streaming system. It deploys comput-
ing instances (EC2) called angels on-demand to maintain a predefined high
streaming rate. These angels are augmented with an optimized multiple-tree
P2P overlay to reduce the cost of cloud resources. A central entity “registrar”
is used to orchestrate the multiple-tree overlay. Clive [15] is a cloud-assisted
P2P based on a mesh-structured P2P overlay. To guarantee the streaming
quality, it rents helpers from the cloud, which are either active or passive
(i.e., computing instances or storage service). Clive determines which and
how many helpers to be rented so as to maximize the system performance
while bounding the cloud cost. Most recently, VMCAST [81] is proposed as
a stability enhancing solution for the tree-based multicast overlays based on

34 CHAPTER 2. P2P Live Streaming: A Literature Review

Figure 2.6: Hybrid Cloud-P2P model.

the cloud virtual machine assistance.

However, the rent of computing instances is less flexible than the rent
of upload bandwidth (e.g., the minimum rent period of computing instances
is generally one hour). Thus to refine the cost of cloud assistance while
keeping the high performance, we exploited only the storage service and
the CCDN and proposed a cost effective cloud-assisted P2P live streaming
system [17]. The details of our method are presented in Chapter 4 where
three techniques are proposed to reduce the cost of such a cloud assistance
based on a multiple-tree P2P overlay. Unlike mesh-based P2P overlay as
in Clive [15], multiple-tree P2P overlay has the following flaws while it has

CHAPTER 2. P2P Live Streaming: A Literature Review 35

advantages such as the short playback delay and low overhead: 1) the chunk
size is smaller than in mesh-based overlays which increases the number of
requests submitted to the cloud to acquire missing chunks; and 2) the leave
of a peer causes suspension of a video stream at descendants of the leaving
peer which also causes the increase in the number of requests submitted to
the cloud. The proposed method scales the bandwidth resources flexibly
by asking more/fewer peers to proactively fetch the streaming content from
the CCDN rather than renting computing instances. What is more is that
the overlay is maintained in a distributed manner with the assistance of the
storage service in contrast to the central management of AngleCast [14].

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 3

Maximal Resource Utilization

A key issue to realize an efficient content distribution in the P2P environment
is how to maximize the utilization of resources contributed by the partici-
pants. Note that by the efficient maximal utilization of resources, we can
improve the quality of streaming service, for instance, broadcast a maximal
streaming rate with a short end-to-end delay. While if the streaming rate
is fixed, the higher utilization of peers’ resources reduces the required server
bandwidth to deliver the stream to the whole population which reduces the
cost. To maximally utilize the resources, we need to guarantee that all peers
are engaged in the content distribution process. Then, an efficient peering
and content scheduling strategy is needed which is expected to overcome
both of the upload capacity bottleneck and the content bottleneck in the un-
derlying P2P systems. Finding such a strategy becomes more difficult when
the capacity of the P2P system is barely enough to broadcast the streaming
content to all peers, i.e., the spare capacity to adopt future peers is very low.

In this chapter, we present a new scheme for the maximal resource utiliza-
tion. We adopt the multiple trees approach and designed a scheduling scheme
that works in the challenging condition where no spare capacity is available.
The scheme attains the maximal resource utilization while maintaining an ef-
ficient overlay of multiple short-delay trees in a distributed manner. For that
purpose, a budget-model is used such that each peer has a budget relative
to its upload capacity and corresponds to the maximum number of children
that peer can have. In the scheme, the role of uploading a substream is trans-
ferred to another peer by exchanging money among peers, provided that the
balance of each peer is not below zero. A newly joining peer tries to instantly

38 CHAPTER 3. P2P Maximal Resource Utilization

spend its budget to subscribe to substreams in such a way that guarantees
a high number of peers forwarding exactly one substream and that the trees
have a short hop-count delay. The proposed scheme is also able to broad-
cast the maximal streaming rate as it is able to attain the maximal resource
utilization.

By simulation, we show that the proposed scheme overcomes the draw-
backs of conventional live streaming schemes. The simulation result indicates
that under the proposed scheme, the overlay network certainly converges to
an efficient structure with a short hop-count delay. Moreover, it indicates
that the proposed scheme gives nice features in the homogeneous case, i.e.,
when all peers have an equal upload capacity.

The remainder of this chapter is organized as follows. Section 3.1 explains
the background of the maximal resource utilization problem. It introduces
the problem in both mesh and tree overlays. Then, Section 3.2 describes
the proposed scheme in details. Section 3.3 presents simulation results, and,
finally, Section 3.4 concludes the chapter.

3.1 Problem Definition & Background

As mentioned in Chapter 2, the upper bound on the maximum streaming
rate was derived by Kumar et al. [49] in a fully connected overlay. The fully
connected overlay is an ideal P2P overlay in which each peer is adjacent with
any another peer in the system. Let us assume that the system contains a
media server in addition to 𝑛 participant peers. Let 𝑢𝑠 denote the upload
capacity of the media server and 𝑢𝑖 denote the upload capacity of the 𝑖𝑡ℎ

peer. Then, an upper bound 𝑟max on the maximum streaming rate is given
as

𝑟max = min

{︂
𝑢𝑠,

𝑢𝑠 + 𝑈(𝑃)

𝑛

}︂
(3.1)

where 𝑈(𝑃) =
∑︀

𝑖 𝑢𝑖.
Kumar et al. proposed an optimal scheme which tightly attains that

upper bound. In the scheme, the media server divides the given stream into
several uneven substreams and feeds each substream to a designated peer
in the system. Each substream fed by the server will be propagated to all
peers in the system by repeating store-and-relay operation. The detail of the
scheme is as follows.

CHAPTER 3. P2P Maximal Resource Utilization 39

Figure 3.1: Trees constructed by Kumar et al. scheme over fully connected
overlay network.

∙ When 𝑟max = 𝑢𝑠, the stream of bit rate 𝑟max (= 𝑢𝑠) is divided into 𝑛
substreams so that the bit rate of the 𝑖𝑡ℎ substream is 𝑠𝑖 = 𝑢𝑖

𝑈(𝑃)
× 𝑟max.

Then the server feeds the 𝑖𝑡ℎ substream to the 𝑖𝑡ℎ peer using the first
𝑛 trees in Figure 3.1. The reader could easily verify that the aggregate
rate of 𝑛 substreams is 𝑟max and the 𝑖𝑡ℎ peer can simultaneously feed
its substream to the other (𝑛− 1) peers since (𝑛− 1)𝑠𝑖 ≤ 𝑢𝑖.

∙ When 𝑟max < 𝑢𝑠, the given stream of bit rate 𝑟max (= 𝑢𝑠+𝑈(𝑃)
𝑛

) is
divided into 𝑛 + 1 substreams so that 𝑠𝑖 = 𝑢𝑖

𝑛−1
for each 1 ≤ 𝑖 ≤ 𝑛

and 𝑠𝑛+1 = (𝑢𝑠 − 𝑈(𝑃)
𝑛−1

)/𝑛. Then the server feeds two substreams to

peer 𝑖, i.e., the 𝑖𝑡ℎ substream using the first 𝑛 trees in Figure 3.1, and
a copy of the (𝑛+ 1)st substream using the last tree in Figure 3.1. The
reader could easily verify that the 𝑖𝑡ℎ peer can simultaneously feed its
substream to the other (𝑛−1) peers, since the aggregated bit rate does
not exceed 𝑢𝑖.

With this scheme, each peer can successfully receive the full stream without

40 CHAPTER 3. P2P Maximal Resource Utilization

causing an overload of the participant peers. However, as the number of peers
increases, the bit rate of each substream becomes quite low. Hence, especially
for the peers with low upload capacity, it incurs an excessive transmission
overhead due to a large fraction of packet headers. AQCS [50], explained in
Chapter 2, also presented a different method to attain the maximum stream-
ing rate under the fully connected overlay. However, the assumption of each
peer is connected to all other peers is not practical and does not scale up. A
more practical model is when the out-degree of each peer (number of neigh-
bors) is bounded. In the next two subsections, we will discuss the bounded
peer’s out-degree in both mesh and tree overlays. Then, we reach to our final
prospective design in subsection 3.1.3

3.1.1 Mesh-based Overlays

As explained in Chapter 2, in mesh based protocols such as CoolStream-
ing/DoNet [20], the live stream is divided into equal chunks. Each peer
establishes a neighborhood relation with a bounded number of peers. Then,
it exchanges the availability of chunks in its buffer using buffer maps, and
tries to “pull" missing chunks from its neighbours. By decreasing the time
interval for the exchange of buffer maps, the delay is reduced. However, it
significantly increases the control overhead per chunk. To overcome such
drawbacks of conventional protocols, hybrid pull-push protocols have been
proposed. In Coolstreaming [35] proposed by Xie et al., data chunks are ar-
ranged into several substreams, and each peer can acquire substreams from
its neighbours by establishing parent-child relationships. Here, buffer maps
stores the latest chunk received in different substreams. After exchanging
buffer maps among neighbors, each peer can determine which substream to
subscribe to and from which neighbor. To subscribe to a substream, a peer
sends a single request (pull mode) to its neighbor. That leads to a parent-
child relationship in which the parent will continue pushing the substream
chunks to the subscribing peer. In Coolstreaming [35], the substream rate
is fixed and neighborhood relations are random. Such a scenario causes a
problem described as follows. Since each peer can have a limited amount of
upload capacity, it could accommodate a limited number of children. Thus,
it easily causes a competition among children, and the loser of such a com-
petition should try to find another parent after being refused by the former
parent. Such a wandering behavior of peers will not stabilize the overlay,

CHAPTER 3. P2P Maximal Resource Utilization 41

which will significantly degrade the overall performance and waste resources
of the P2P streaming system.

To overcome such an instability issue of the overlay network and im-
prove the resource utilization, we developed a chunk scheduling scheme for
pull-push method based on the notion of randomization [12]. In contrast to
CoolStreaming [35], substreams are dynamically (and randomly) generated
by each peer so that the load of parents with respect to the upload capac-
ity will be balanced. In our work [12], each chunk is associated with two
important information. The first one is the sequence number which is nec-
essary to order received chunks in the buffer. The second one is a pseudo
random number in the range [1; 100] which is generated by the server (in the
following, we will say that the chunk is “tagged with" a random number).
The attached tag is used to deliver the chunk through different routes while
avoiding duplication and starvation. Forwarding of tagged chunks is con-
ducted by referring to a forwarding table which is a set of rules designating
“which chunk should be forwarded to which child". Each entry of the table
provides two information, i.e., a subrange of [1; 100] and a set of children
associated with the subrange. The selection of chunks to be forwarded to
a child is conducted in a probabilistic manner at the time of constructing a
forwarding table as follows:

At first, each peer calculates the upload capacity availability, i.e., the
ability of forwarding a substream to the children. It is calculated by dividing
the number of children which can be supported without delay by the number
of children which are currently being accommodated. For example, if a peer
can accommodate 3 children with a full substream rate and it currently
accommodates 10 children then the upload availability is calculated as 0.3
(= 3/10).

After receiving upload availabilities from parents, a child partitions the
range [1; 100] into subranges so that each subrange is associated with a parent
and has a length proportional to the upload availability corresponding to the
parent. That is done by calculating the weight of each parent so that it is
proportional to the upload availability. More concretely, by using upload
availability 𝑝𝑖 of parent 𝑖, the weight of parent 𝑖 is calculated as

𝑤𝑖 :=
𝑝𝑖

Σ𝑖𝑝𝑖
.

For example, if the bandwidth availability of four parents are (𝑝1, 𝑝2, 𝑝3, 𝑝4) =

42 CHAPTER 3. P2P Maximal Resource Utilization

(0.2, 0.25, 0.3, 0.3), the weight of those parents are calculated as

(𝑤1, 𝑤2, 𝑤3, 𝑤4) = (0.19, 0.238, 0.286, 0.286).

After that, the peer divides range [1, 100] so that the length of each subrange
is proportional to the weight of each parent, and identifies the first integer in
each subrange. In the above example, those integers are identified as 1, 20, 42
and 72.

Finally, the peer sends tuples of the first and the last integers of the
subrange to the corresponding parent; e.g., parent 2 receives (20, 41) from
the peer. After receiving those ranges from children, each peer constructs
(or updates) a forwarding table. By adopting such a probabilistic, dynamic
decision making, we could effectively avoid a high concentration of requests
to specific neighbor and could improve the efficiency of resource utilizations.

3.1.2 Tree-based Overlays

A basic idea to bound the peer’s out-degree in tree overlays while trying to
maximize the resource utilization is to divide the given stream into

⌈︀
𝑟max

𝑠

⌉︀
substreams with fixed bit rate 𝑠. Here, the bit rate of the last substream
is given as 𝑠′ = 𝑟max − (

⌈︀
𝑟max

𝑠

⌉︀
− 1)𝑠 ≤ 𝑠. Let 𝑁 denote the number of

resulting substreams, i.e., 𝑁
def
=

⌈︀
𝑟max

𝑠

⌉︀
. Those substreams are delivered to the

participants through different spanning trees, i.e., 𝑁 edge-disjoint spanning
trees 𝑇1, 𝑇2, . . . , 𝑇𝑁 is prepared. Then, the server feeds the 𝑖𝑡ℎ substream to
the root 𝑣𝑖 of the 𝑖

𝑡ℎ spanning tree 𝑇𝑖. The set of spanning trees is designed so
that 1) the majority of peers are internal peers in only one tree and leaf peers
in the remaining trees and 2) any internal peer in each tree has a bounded
out-degree.

Let 𝑉 = {0, 1, 2, . . . , 𝑛 − 1} be the set of peers. We will construct a set
𝒯 of spanning trees in such a way that each peer 𝑖 is responsible to forward

only one substream to 𝜂(𝑖)
def
= 𝑢𝑖

𝑠
neighboring (downstream) peers, where 𝑢𝑖

is the upload capacity of 𝑖 and 𝑠 is the bit rate of a substream. A scheme
to construct the set 𝒯 is described as follows. At first, it prepares 𝑁 empty
bins 𝐼1, 𝐼2 . . . , 𝐼𝑁 , and tries to pack as many peers in 𝑉 into those bins as
possible, subject to:

∙ each peer is packed into at most one bin and

CHAPTER 3. P2P Maximal Resource Utilization 43

∙
∑︀

𝑖∈𝐼𝑗 𝜂(𝑖) does not exceed 𝑛− 1, for each 1 ≤ 𝑗 ≤ 𝑁 .

Let 𝑉 := 𝑉 −
⋃︀

1≤𝑗≤𝑁 𝐼𝑗 be the set of residual peers after the packing. By

definition, for any 𝐼𝑗 and for any 𝑘 ∈ 𝑉 , it holds∑︁
𝑖∈𝐼𝑗

𝜂(𝑖) + 𝜂(𝑘) > 𝑛− 1. (3.2)

Let us assume
∑︀

𝑖∈𝐼𝑗 𝜂(𝑖) < 𝑛−1 holds for any 𝑗, without loss of generality

(otherwise, we can easily construct a tree to have 𝐼𝑗 as the set of internal
peers using a procedure described later). Thus in order to construct a tree
with internal peers 𝐼* with 𝐼𝑗 ⊂ 𝐼* and

∑︀
𝑖∈𝐼* 𝜂(𝑖) = 𝑛−1 for each 𝑗, we need

to recruit peer(s) from 𝑉 which provide an upload capacity of amount ∆𝑗
def
=

𝑛−1−
∑︀

𝑖∈𝐼𝑗 𝜂(𝑖) to tree 𝑇𝑗. In a centralized environment, we can accomplish
such a recruitment using a simple greedy algorithm. More particularly, we
can attain an assignment such that each peer in 𝑉 contributes to at most
two trees as an uploader.

Given 𝐼𝑗 and a peer 𝑘 ∈ 𝑉 contributing an upload capacity of amount
∆𝑗, 𝑇𝑗 is constructed in the following manner.

∙ Peers in 𝐼𝑗 ∪ {𝑘} organize a tree structure 𝑇 ′
𝑗 such that: 1) each peer

𝑖 has at most 𝜂(𝑖) children and 2) the distance from the root to the
furthest peer is as short as possible. A reasonable heuristic to realize
such a configuration is to start from a tree consisting of a single peer
with a maximum upload capacity and to successively connect peers to
the tree in an descending order of the upload capacity.

∙ Since the upload capacity of 𝐼𝑗 ∪ {𝑘} is 𝑛− 1, after organizing such a
tree with |𝐼𝑗| + 1 peers, there remains an upload capacity of amount
𝑛− 1− |𝐼𝑗|. Thus, 𝑇𝑗 can be constructed from 𝑇 ′

𝑗 by connecting peers
in |𝑉 |− (𝐼𝑗 ∪{𝑘}) to peers in 𝑇 ′

𝑗 until the upload capacity is exhausted.

If 𝑢𝑠 = 𝑟max, it is possible to pack 𝑁 bins (i.e., trees). Then, we can
attain the maximum streaming rate by feeding 𝑁 substreams from the media
server to the roots of 𝑁 resulting trees. The aggregated bit rate 𝑟max, since
those substreams can be forwarded to the downstream peers in each tree
by repeating store-and-relay operation. However, if 𝑢𝑠 > 𝑟max, such a basic
approach does not work well, since the derivation of the upper bound 𝑟max

44 CHAPTER 3. P2P Maximal Resource Utilization

assumes that the media server “fully” utilizes its upload capacity. That means
the capacity of size 𝑢𝑠−𝑟max is not used in such a simple approach, and hence,
we can pack 𝑁 ′(< 𝑁) trees only.

To overcome this issue, when 𝑢𝑠 > 𝑟max, we virtually separate the role
of the media server into two sub-servers, say 𝜎𝑎 and 𝜎𝑏, and use those sub-
servers in the following manner:

∙ 𝜎𝑎 packs 𝑁
′ trees and feeds 𝑁 ′ substreams with bit rate 𝑠 to the roots

of packed trees, where each substream is disseminated to 𝑛 − 1 peers
according to the basic scheme, and

∙ 𝜎𝑏 disseminates the remaining substream to all peers using the remain-
ing upload capacity at the server and the capacity of peers in 𝑉 (after
packing 𝑁 ′ trees), if any.

In this case, the server packs 𝑁 ′ bins only where the value of 𝑁 ′ is determined
as follows. Let 𝑢𝑎 and 𝑢𝑏 denote the upload capacity of 𝜎𝑎 and 𝜎𝑏, respectively.
Note that 𝑢𝑎 +𝑢𝑏 = 𝑢𝑠 by definition. The value of 𝑢𝑎 is determined to satisfy

𝑢𝑎 =
𝑢𝑎 + 𝑈(𝑃)

𝑛
,

i.e., 𝑢𝑎 := 𝑈(𝑃)
𝑛−1

, and given bit rate 𝑠, 𝑁 ′ is determined as

𝑁 ′ :=
⌈︁𝑢𝑎

𝑠

⌉︁
.

Note that 𝑁 −𝑁 ′ is generally small for large 𝑛’s but is not negative since

𝑁 −𝑁 ′ =

⌈︂
𝑢𝑠 + 𝑈(𝑃)

𝑠𝑛

⌉︂
−
⌈︂

𝑈(𝑃)

𝑠(𝑛− 1)

⌉︂
≥ 0

for any 𝑛 ≥ 1 where the last inequality is due to 𝑢𝑠 >
𝑈(𝑃)
𝑛−1

.
Clearly, a larger 𝜂(𝑖) reduces the height of the resulting tree, which

results in a short end-to-end delay and a high resilience to “peer churns”
as it reduces the number of ancestors of each peer. By taking into ac-
count the heterogeneity of the upload capacity, we bound the maximum
out-degree of peers as max𝑖{𝜂(𝑖)} ≤ 𝑑𝑚𝑎𝑥 and bound the minimum out-
degree as min𝑖{𝜂(𝑖)} ≥ 𝑑𝑚𝑖𝑛. Then, we have 𝑑𝑚𝑎𝑥 = max𝑖 𝑢𝑖

min𝑖 𝑢𝑖
𝑑𝑚𝑖𝑛. By choosing

appropriate bounds 𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥, the bit rate of substreams is determined
as

𝑠 =
max𝑖 𝑢𝑖

𝑑𝑚𝑎𝑥

=
min𝑖 𝑢𝑖

𝑑𝑚𝑖𝑛

.

CHAPTER 3. P2P Maximal Resource Utilization 45

3.1.3 Final Prospective Design

In Section 3.1.1, the hybrid pull-push protocol in mesh overlays can efficiently
reduce both the delay and the overhead. Moreover, mesh based protocols
are robust against peer churns. Yet, the dynamic construction of random
overlay does not guarantee the quality of content distribution such as the
delay, resource utilization, and the transmission overhead. On the other
hand, multiple-tree overlays are structured, simple and efficient, and exhibit
a good performance with respect to the broadcasting time [47, 48] and the
maximum streaming rate [46, 16]. So, researchers’ preference will be for
multiple-tree overlays when a maximal resource utilization or a guaranteed
service is the target to be achieved.

Although the previous design of multiple-tree overlay (in Section 3.1.2)
can attain the maximum streaming rate, it is still hard to be implemented as
the degree of the server is still unbounded; that is when 𝑢𝑠 > 𝑟max. Another
problem is that the cost of adding a new peer to the overlay is generally high
since it would significantly change the structure of the overlay (the reader can
imagine a situation in which by adding a new peer, the decreasing order of
peers in a bin 𝑘 is changed, which causes a significant change of the structure
of the 𝑘𝑡ℎ tree). Moreover, such a design needs a global knowledge of the
whole population, i.e., requires a central solution, to construct the set of
trees. To reach an implementable model, we fix the number of substreams 𝑁
by selecting a fixed substream rate 𝑠. Here, we assume that the maximum
streaming rate is fixed over time. In fact, this is a soft assumption as, from
equation 3.1, the maximum streaming rate converges to a fixed value as the
number of peers increases. In this case, when the upload capacity of the
server 𝑢𝑠 is greater than the streaming rate 𝑁 × 𝑠, the extra capacity, i.e.,
𝑢𝑠−𝑁×𝑠 will be wasted. So, the server does not broadcast a substream rate
of (𝑢𝑠−𝑁×𝑠)/𝑛 to all peers to bound the out-degree of the server. However,
such a substream rate limits to zero when the number of participants 𝑛 is
high. Then, the goal is to construct a set of spanning trees in such a way
that maximize the utilization of peers’ resources in a distributed manner.
Furthermore, the overlay should be stable, i.e., with a minimal change due
to new arrivals, and efficient in terms of delay.

SplitStream [28], as a related work, with the aid of Scribe [82] ensures that
trees have a disjoint set of internal peers. When a peer joins the SplitStream
system, it selects random peers, and asks them to be their parents. If a peer

46 CHAPTER 3. P2P Maximal Resource Utilization

can not adopt more children and receives a join request from another peer,
one of its children will be rejected according to the value of a utility function.
Rejected child seeks for another parent by referring to its previous siblings or
to a set of peers with excess upload capacity called the spare capacity group.
Thus, SplitStream is able with a high probability to reorganize a collection
of trees even when the upload capacity of each peer is fully used, and hence
broadcasting the maximal streaming rate for a large population. However,
especially in our case of research when trying to maximally utilize the up-
load capacity of each peer, i.e., the spare capacity is low, the mechanism
of rejecting children will frequently happen. So, in many cases, peers will
not find a peer as a parent before asking the spare capacity group; this will
be verified later in this chapter. Thus, the search for spare capacity peers
happens frequently which is a time consuming process. The more important
consequence of asking the spare capacity peers is that those peers will have
a small number of children in different trees leading to degenerate trees.

To overcome this problem, we need to propose a new scheme specifi-
cally optimized to utilize the peer’s resources. That scheme should be able
to maintain an efficient overlay structure by allowing peers to change their
position or their set of children.

3.2 Proposed Scheme

3.2.1 Preliminaries

Notions used in the proposed scheme are summarized in Table 3.1. In the
proposed scheme, we divide the given video stream with bit rate 𝑟 into 𝑁
substreams of bit rate 𝑠 = 𝑟/𝑁 each, and deliver those substreams through
different spanning trees as in SplitStream. Thus in the following, we will use
terms “tree” and “substream” interchangeably.

Let 𝑉 be a set of 𝑛 peers and 𝒯 = {𝑇1, 𝑇2, . . . , 𝑇𝑁} be a variable set of 𝑁
trees (substreams). Each peer 𝑖 ∈ 𝑉 can have different number of children in
each tree in 𝒯 , while the total number of children should not exceed a value
𝑚(𝑖) determined by the upload capacity of the peer. In the following, we call
𝑚(𝑖) the budget of peer 𝑖, and will design a scheme such that the role of
uploading a substream is transferred to another peer by exchanging money
among peers, provided that the balance of each peer is not below zero.

CHAPTER 3. P2P Maximal Resource Utilization 47

Given collection of trees 𝒯 , the price of peer 𝑖 with respect to the 𝑘𝑡ℎ

tree 𝑇𝑘 is defined as the number of children of 𝑖 in 𝑇𝑘 plus one. Such 𝑁
prices of peer 𝑖 are locally stored in the form of a price vector 𝐶𝑖 of length
𝑁 . Note that 𝐶𝑖[𝑘] ≥ 1 for any 𝑖 and 𝑘. Given collection of trees 𝒯 , a peer is
said to be saturated if it has the maximum number of children in only one
tree. More particularly, peer 𝑖 is saturated with respect to the 𝑘𝑡ℎ tree 𝑇𝑘 if
𝐶𝑖[𝑘] = 𝑚(𝑖) + 1 and 𝐶𝑖[ℎ] = 1 for all ℎ ̸= 𝑘. 𝑇𝑘 is said to be a dominant

substream for peer 𝑖 if 𝐶𝑖[𝑘] = max𝑘 𝐶𝑖[𝑘].

Table 3.1: Main notions of Chapter 3.

𝑛: number of peers
𝑁 : number of substreams (trees)
𝑟: streaming rate
𝑠: substream rate

𝑚(𝑖): budget of peer 𝑖 (maximum number of children)
𝐶𝑖: price vector of peer 𝑖

𝐶𝑖[𝑘]: price of peer 𝑖 in 𝑘th tree
𝛽(𝑖): balance of peer 𝑖
𝑈𝑖: set of neighbors of peer 𝑖
𝐷: number of neighbors
𝑃𝑖: set of substreams not subscribed by peer 𝑖

3.2.2 Tree Reconfiguration

Suppose that each peer is associated with a set of𝐷 random peers (neighbors)
by the tracker. Let 𝑈𝑖 be a subset of peers associated with peer 𝑖. In the
proposed scheme, 𝑖 can subscribe to a (new) substream by communicating
with peers 𝑗 in 𝑈𝑖. The concrete scheduling algorithm, the details of which
will be described in Section 3.2.3, is based on three ways of re-configuring
trees in 𝒯 (see Figure 3.2 for illustration). If 𝑖 could not finish the scheduling
due to the lack of resources in 𝑈𝑖, it contacts peers in a set of peers with free
capacity, the detail of which is described in Section 3.2.5.

Way-1: The first way of re-configuring 𝒯 is to use the free upload ca-
pacity of a peer. More concretely, if peer 𝑗 ∈ 𝑈𝑖 is subscribing to the 𝑘𝑡ℎ

48 CHAPTER 3. P2P Maximal Resource Utilization

substream and has a free upload capacity, then peer 𝑖 can subscribe to the
𝑘𝑡ℎ substream by making itself as a child of 𝑗 in 𝑇𝑘 (note that such an action
decreases the balance of 𝑗 by one). See Figure 3.2 (A) for illustration. If
there are several such pairs of parent and substream, 𝑖 prefers to a pair of 𝑗
and 𝑘 such that 𝑘 is a dominant substream of 𝑗. That makes 𝑗 closer to the
saturation since the join of 𝑖 to 𝑗 in 𝑇𝑘 increases the value of 𝐶𝑗[𝑘] by one.

1

j

1

j

i 1

j

1

i

j 1

i

2

k

ji

12

T

j

(A) (B) (C)

TT kk

Figure 3.2: Three ways for reconfiguring tree 𝑇𝑘. (A) peer 𝑖 can be a child
of 𝑗 simply because 𝑗 has a free capacity. (B) peer 𝑖 can buy a substream 𝑇𝑘

from peer 𝑗 by paying a price of 2, and hence peer 𝑖 has two children. (C)
both peers 𝑖 and 𝑗 have one child in the same tree 𝑇𝑘 so peer 𝑖 asks 𝑗 to swap
his child.

Way-2: The second way is to buy the right of uploading substreams by
paying money. More particularly, if 𝑗 is subscribing to the 𝑘𝑡ℎ substream
and 𝑖 has a positive balance, then by paying money of amount 𝑚 (≥ 1) to
𝑗, 𝑖 can subscribe to the 𝑘𝑡ℎ substream by taking the place of 𝑗 in 𝑇𝑘 and
is granted the right of uploading the substream to 𝑗 and its 𝑚− 1 children.
Figure 3.2(B) illustrates this case. To not reduce the number of saturated
peers, the only restriction in this case is that 𝑗 must not be saturated with
respect to the transferred substream.

Way-3: The third way is to swap children with other peers. Suppose
that there are two peers 𝑖 and 𝑗 subscribing to the 𝑘𝑡ℎ substream, where: 1)
𝑖 has a free upload capacity while 𝑇𝑘 is its dominant substream and 2) 𝑗 has
at least one child in 𝑇𝑘 but it is not a dominant substream for 𝑗. Then, 𝑖
asks 𝑗 to hand over the right of uploading the 𝑘𝑡ℎ substream to one child of 𝑗
in 𝑇𝑘 by paying one unit of money. This way is exemplified in Figure 3.2(C).

CHAPTER 3. P2P Maximal Resource Utilization 49

3.2.3 Scheduling Process

In the proposed algorithm, peers subscribe to substreams through three
phases. The role of the first is to subscribe to substreams taking into ac-
count to increase the number of peers that are internal in only one tree, i.e.,
to increase the number of saturated peers. The role of the second phase is to
complete the subscription to all substreams. If the peer has a balance after
the second phase, it executes the third phase to increase the number of its
children for the dominant substream.

First Phase: Let 𝑃𝑖 be a variable representing the set of substreams
which is not subscribed by the peer 𝑖. For each 𝑞 ∈ 𝑃𝑖, peer 𝑖 counts the
neighbors who have children in tree 𝑞 but 𝑞 is not their dominant substream.
Then, those neighbors are willing to reject children in 𝑞 and adopt children
in their dominant substream. Let 𝑞* ∈ 𝑃𝑖 be a substream with a maximum
count and 𝑈*

𝑖 (⊆ 𝑈𝑖) be the set of neighbors contributing to the count of 𝑞
*.

Both 𝑞* and 𝑈*
𝑖 could be calculated as in Scheduling Alg. 3.1. To increase

the number of peers uploading exactly one substream, peer 𝑖 conducts three
steps of the first phase as follows (pseudo-code is shown in Scheduling Alg. 3.2
where all details related to hop-count are omitted for simplicity).

Step 1: Let 𝛽(𝑖) be the balance of peer 𝑖. This step is executed only
when 𝛽(𝑖) ≥ 1. Peer 𝑖 selects a peer 𝑗 ∈ 𝑈*

𝑖 with a shortest depth from the
root in the tree corresponding to 𝑞*, and buys 𝑞* from 𝑗 by paying money.
Peer 𝑖 either pays one unit of money and subscribes to 𝑞* (Way-2) or pays
more than one unit of money and subscribes to the dominant substream of
𝑗 (Way-1) in addition to 𝑞* (Way-2). In the latter case, the paid money
should not exceed 𝛽(𝑖) − (|𝑃𝑖| − 2), since we need to reserve money for the
remaining |𝑃𝑖| − 2 unsubscribed substreams. The reader should note that 𝑞*

is the potential dominant substream for peer 𝑖.

Step 2: For each 𝑗′ ∈ 𝑈*
𝑖 ∖ {𝑗}, peer 𝑖 gets one child of 𝑗′ for substream 𝑞*

(Way-3) and subscribes to the dominant substream of 𝑗′ (Way-1), if 𝑖 has not
yet subscribed to it. Note that substream 𝑞* should be commonly subscribed
by 𝑖 and 𝑗′ but is not a dominant substream of 𝑗′.

The last option for peer 𝑖 to increase the number of children for the
dominant substreams of peers in 𝑈𝑖 is to look for peers that have a free
capacity and subscribe to their dominant substreams. Thus, we have the
third step:

50 CHAPTER 3. P2P Maximal Resource Utilization

Scheduling Alg. 3.1: Calculating 𝑞* and 𝑈*
𝑖 by peer 𝑖

1: 𝑁 ← Number of substreams (subs.).
2: 𝐶𝑗 [𝑁]← cost vector of peer j.
3: 𝑃𝑖 ← 𝑁 set of unsubscribed subs.
4: 𝑈𝑖 ← set of neighbors of peer 𝑖.
5: 𝛽(𝑖)← balance of peer 𝑖.
6: 𝐹 [𝑁]← Array represents frequency of non-dominant subs.
7: 𝐼[𝑁]← Array of neighbor sets. // I[k] is a set of neighbors who have sub. k

as non-dominant.

8: for each sub 𝑞 in 𝑃𝑖 do

9: for each peer 𝑗′ in 𝑈𝑖 do

10: if 𝐶𝑗′ [𝑞] > 1 and 𝑞 is not dominant then
11: 𝐹 [𝑞]← 𝐹 [𝑞] + 1
12: 𝐼[𝑞]← 𝐼[𝑞] ∪ {𝑗′}
13: end if

14: end for

15: end for

16: 𝑞* ← 𝑚𝑎𝑥𝑞𝐹 [𝑞]
17: 𝑈*

𝑖 ← 𝐼[𝑞*]

CHAPTER 3. P2P Maximal Resource Utilization 51

Scheduling Alg. 3.2: First Phase
Step 1

Ensure: 𝛽(𝑖) > 0
Ensure: 𝑈*

𝑖 ̸= ∅
1: select a peer 𝑗 from 𝑈*

𝑖 with shortest depth.
2: 𝑖 subscribes to 𝑞* by buying 𝑗 (Way-2)
3: 𝑃𝑖 ← 𝑃𝑖 ∖ {𝑞*}
4: 𝛽(𝑖)← 𝛽(𝑖)− 1
5: while 𝛽(𝑖)− |𝑃𝑖| − 1 > 0 and 𝐶𝑗 [𝑞

*] > 1 do

6: 𝑖 gets a new child from 𝑗 for 𝑞* (Way-3)
7: 𝛽(𝑖)← 𝛽(𝑖)− 1
8: 𝐷𝑂𝑗 ← is the dominant sub of 𝑗
9: if 𝐷𝑂𝑗 /∈ 𝑃𝑖 then

10: 𝑖 subscribes to 𝐷𝑂𝑗 from 𝑗 (Way-1)
11: 𝑃𝑖 ← 𝑃𝑖 ∖ {𝐷𝑂𝑗}
12: else

13: 𝛽(𝑗)← 𝛽(𝑗) + 1
14: end if

15: end while

16: IF 𝛽(𝑖) = 0 goto Step 3

Step 2

Ensure: 𝛽(𝑖) > 0
Ensure: 𝑈*

𝑖 ̸= ∅
17: for each peer 𝑗′ in 𝑈*

𝑖 ∖ {𝑗} do
18: if 𝐶𝑗′ [𝑞

*] > 1 then

19: 𝑖 gets a new child from 𝑗′ for 𝑞* (Way-3)
20: 𝛽(𝑖)← 𝛽(𝑖)− 1
21: if 𝐷𝑂𝑗′ ∈ 𝑃𝑖 then

22: 𝑖 subscribes to 𝐷𝑂𝑗′ from 𝑗′ (Way-1)
23: 𝑃𝑖 ← 𝑃𝑖 ∖ {𝐷𝑂𝑗′}
24: else

25: 𝛽(𝑗′)← 𝛽(𝑗′) + 1
26: end if

27: IF 𝛽(𝑖) = 0 goto Step 3

28: end if

29: end for

Step 3

Ensure: 𝑃𝑖 ̸= ∅
30: for each peer 𝑗′ in 𝑈𝑖 do

31: if 𝛽(𝑗′) > 0 and 𝐷𝑂𝑗′ ∈ 𝑃𝑖 then

32: 𝑖 subscribes to 𝐷𝑂𝑗′ from 𝑗′ (Way-1)
33: 𝑃𝑖 ← 𝑃𝑖 ∖ {𝐷𝑂𝑗′}
34: 𝛽(𝑗′)← 𝛽(𝑗′)− 1
35: end if

36: end for

52 CHAPTER 3. P2P Maximal Resource Utilization

Step 3: If there is a peer 𝑗 ∈ 𝑈𝑖 such that 𝑗 has a free capacity and 𝑖 has
not subscribed to a “dominant” substream 𝑞 of 𝑗, then 𝑖 becomes a child of
𝑗 with respect to 𝑞. This operation is repeated until there is no such peer 𝑗
in 𝑈𝑖.

Scheduling Alg. 3.3: Second Phase
Step 4

Ensure: 𝛽(𝑖) > 0
Ensure: 𝑃𝑖 ̸= ∅
𝑃𝑜𝑞 ← represents a peer with the lowest cost of a sub 𝑞
1: for each sub 𝑞 in 𝑃𝑖 do

2: select a peer 𝑃𝑜𝑞 from 𝑈𝑖

3: if 𝛽(𝑖) ≥ 𝐶𝑃𝑜𝑞 [𝑞] and 𝐷𝑂𝑃𝑜𝑞 ̸= 𝑞 then

4: 𝑖 subscribes to 𝑞 by buying 𝑃𝑜𝑞 (Way-2)
5: 𝑃𝑖 ← 𝑃𝑖 ∖ {𝑞}
6: 𝛽(𝑖)← 𝛽(𝑖)− 𝐶𝑃𝑜𝑞 [𝑞]
7: IF 𝛽(𝑖) = 0 goto Step 5

8: end if

9: end for

Step 5

Ensure: 𝑃𝑖 ̸= ∅
10: for each sub 𝑞 in 𝑃𝑖 do

11: for each peer 𝑗′ in 𝑈𝑖 do

12: if 𝛽(𝑗′) > 0 then

13: 𝑖 subscribes 𝑞 from 𝑗′ (Way-1)
14: 𝑃𝑖 ← 𝑃𝑖 ∖ {𝑞}
15: 𝛽(𝑗′)← 𝛽(𝑗′)− 1
16: end if

17: end for

18: end for

19: IF 𝑃𝑖 ̸= ∅ contact the free set.

Second Phase: The second phase, Scheduling Alg. 3.3, is executed when
peer 𝑖 could not subscribe to all substreams after the first phase being fin-
ished. At any step in this phase, if 𝑃𝑖 becomes empty, peer 𝑖 proceeds to the
third phase to increase the number of children for its dominant substream
(𝑞*). The steps are as follows.

CHAPTER 3. P2P Maximal Resource Utilization 53

Step 4: For each unsubscribed substream 𝑞 ∈ 𝑃𝑖, peer 𝑖 seeks a peer
𝑗 ∈ 𝑈𝑖 such that 𝐶𝑗[𝑞] is the cheapest among all peers in 𝑈𝑖 and 𝑞 is not
the dominant substream of 𝑗. Then, peer 𝑖 buys 𝑞 from 𝑗 by paying money
(Way-2). A draw in prices is resolved by the hop-count delay. Peer 𝑖 looks
for the cheapest price to save the money to get more children in its dominant
substream 𝑞*.

Step 5: At this point, the budget of peer 𝑖 is exhausted. Thus in order
to subscribe to a new substream in 𝑃𝑖, 𝑖 needs to use the free capacity of
other peers in 𝑈𝑖 (Way-1). Recall that the use of the free capacity of peer 𝑗
does not decrease the balance of 𝑖, but it decreases the balance of 𝑗 because
it reduces the amount of free capacity of 𝑗. If there is no peer with an
available free capacity in 𝑈𝑖, as a last resort, peer 𝑖 asks peers in the free set
until 𝑃𝑖 becomes empty (the way of maintaining the free set is described in
section 3.2.5).

Third Phase: (Post Processing) If 𝛽(𝑖) > 0 and 𝑈*
𝑖 ̸= ∅ at this point,

peer 𝑖 tries to collect as many children for substream 𝑞* as possible from
peers in 𝑈*

𝑖 . We need to notice that this is a special case of the swap process
(Way-3) so that no new subscription occurs, and is conducted only once.
Third phase is shown in Scheduling Alg. 3.4.

Scheduling Alg. 3.4: Third Phase: Post Processing
Step 6

Ensure: 𝑈*
𝑖 ̸= ∅

Ensure: 𝛽(𝑖) > 0
1: for each peer 𝑗′ in 𝑈*

𝑖 do

2: while 𝐶𝑗′ [𝑞
*] > 1 do

3: 𝑖 get a child from 𝑗′ for 𝑞 (Way-3)
4: 𝛽(𝑖)← 𝛽(𝑖)− 1
5: IF 𝛽(𝑖) = 0 break

6: end while

7: end for

3.2.4 Scheduling Example

In the example, all peers have a uniform upload capacity of four, i.e., 𝑢𝑗 = 4
for each 𝑗, and the given video stream is divided into four substreams of unit

54 CHAPTER 3. P2P Maximal Resource Utilization

bit rate (𝑠 = 1), i.e., 𝑟 = 4 and 𝑁 = 4. Peer 𝑖, with an upload capacity
𝑢𝑖 = 4, wants to join the system. The budget of peer 𝑖 is determined as
𝑚(𝑖) := 𝑢𝑖/𝑠 = 4 and the set of neighbors is given as 𝑈𝑖 = {𝑎, 𝑏, 𝑐, 𝑑}. Given
a collection of trees 𝒯 shown in Figure 3.3(A), price vectors are calculated
as shown on top of the figure. From such vectors, we notice that: 1) peers
𝑏 and 𝑐 are saturated in fourth and third trees, respectively, and 2) peers 𝑎
and 𝑑 have the second substream as a dominant one.

a b c d a b c d a b c d

Prices : C =<2,4,1,1> , C =<1,1,1,5>, C =<1,1,5,1>, C =<2,4,1,1>

(A)

m(i)= 4

P ={1,2,3,4}

i b c d a b c d
(B)

(step 1)

m(i)= 2

P ={3,4} a i

i

i

i

i

i

i

i i

a b c d

a b c d

i

a b c d

(C)

(step 2)

m(i)= 1

P ={3,4}

(D)

(step 4)

m(i)= 0

P ={4}

(E)

(step 5)

m(i)= 0

P = {}

a b c d

i

i

i

i

i

i

a b c d

a b c d

a b c d

a b c

a b c

a b c

d

d

d

a b c d

a b c d

a b c d

b c d

b c d

b c d

a

a

a

1
T

2
T

3
T

4
T

1
T

1
T

1
T

1
T

2
T

2
T

2
T

2
T

3
T

3
T

3
T

3
T

4
T

4
T

4
T

4
T

Figure 3.3: A scheduling example. The triangle means that the peer has all
its children in this tree.

From the Figure 3.3(A), we notice that the first substream is not dominant
for both peers 𝑎 and 𝑑 with a price equals to two. Thus, peer 𝑖 selects the first
substream as 𝑞* along with peers 𝑎 and 𝑑 be the members of 𝑈*

𝑖 . According
to step 1, Figure 3.3(B), peer 𝑖 buys 𝑞* from the peer 𝑎(∈ 𝑈*

𝑖) by paying

CHAPTER 3. P2P Maximal Resource Utilization 55

two units of money. That means peer 𝑖 will replace peer 𝑎 in the first tree
and adopt both peer 𝑎 and his child. Then, peer 𝑎 has got a free capacity
by receiving money from peer 𝑖. That allows peer 𝑎 to adopt peer 𝑖 in the
second tree corresponding to the dominant substream of peer 𝑎.

In Figure 3.3(C), representing step 2, peer 𝑖 asked peer 𝑑 to swap its child
in first tree. However, it could not subscribe to the dominant substream of
peer 𝑑, which is the second tree, as it is already subscribed to. Note that by
this action the balance of peer 𝑖 is reduced by one and peer 𝑑 has got a free
capacity. At this point, as peer 𝑑 is the only peer that has a free capacity
and its dominant substream is not required by peer 𝑖, the step 3 will have no
effect on the overlay.

In the second phase of the algorithm, peer 𝑖 starts with step 4, illustrated
in Figure 3.3(D). There are three peers to have a price equals to one in the
third tree, and peer 𝑖 chooses peer 𝑑 as the seller of the third substream (note
that hop-counts are not illustrated in this figure for simplicity). By choosing
peer 𝑑, peer 𝑖 will replace it in the third tree and adopt it by paying one unit
of money. Finally, Figure 3.3(E) illustrates the case of step 5 in which peer
𝑖 becomes a child of peer 𝑑 ∈ 𝑈𝑖 in the fourth tree. Peer 𝑖’s balance is zero
and hence will skip the post processing phase.

3.2.5 Managing the Free Set

To implement the free set in a distributed manner, we get benefit from the
forest of trees organized in the proposed scheme. In this subsection, we
describe a concrete way to realize three operations used for the free set, i.e.,
join, leave and find.

To join the free set, a peer 𝑖 tells all its parents about that (recall that
it has at most 𝑁 parents in 𝒯). After receiving a message from a child in a
tree, each peer forwards the information to the parent in the tree unless it is
the root. As a result, we have a path from 𝑖 to the root in each tree so that
all peers on the path are aware of that 𝑖 is a member of the free set . This
operation takes at most 𝑁 × 𝑑 messages provided that the maximum depth
of trees is bounded by 𝑑. The leave from the free set is conducted in a similar
way. If peer 𝑖 in the free set changes the parent in a tree, which frequently
occurs in the scheduling process, such an update must be propagated to
all peers on the paths by the old and new parents of 𝑖, i.e., the old parent
initiates the propagation of leave message and the new parent initiates the

56 CHAPTER 3. P2P Maximal Resource Utilization

propagation of join message.
If peer 𝑗 wants to find a peer in the free set, it sends a request message

to one of its parents selected randomly. The request is forwarded up in the
corresponding tree until it finds a peer that knows about one of the free set
peers. Note that such a forwarding process can always find a peer in the free
set in at most 𝑑 hops (if any), since the root of any tree knows all members
of the free set. The reader should note that in the above process, the root of
a tree does not become a bottleneck in many cases, because: 1) the tree is
randomly selected from 𝑁 candidates in 𝒯 and 2) it is likely that a request
path and a join path will meet at a deep level of the selected tree. If a peer in
the free set receives several requests from different peers, it serves its upload
capacity in the first-come and first-serve basis.

3.3 Evaluation

To evaluate the performance of the proposed scheme, we conducted extensive
simulations based on OPSS [83]. The performance of the scheme is compared
with SplitStream, where not to reinvent the wheel, we used an OPSS simula-
tion package developed for SplitStream [28] in the evaluation. The efficiency
of constructed multiple-tree overlays is evaluated through the following three
metrics:

A) Saturation fraction of a peer is the ratio of the number of children
for its dominant substream to the maximum number of children of the peer
(i.e., budget). It takes a value in range [0, 1] where a higher value implies
that the leave of the peer affects its descendants for a smaller number of
substreams.

B) The hop-count delay of a peer in a tree is the number of links on
the unique path connecting the peer to the root (source) in the tree. The
average hop-count of a peer indicates the average of the hop-count delay
over all trees.

C) Free set requests represent the total number of requests received by
the free set to complete a scheduling. We are interested in this metric due
to the fact that the maintenance cost of the free set and the cost required
for seeking subscribers heavily affect the overhead of the scheme. More im-
portantly, by asking the peers of the free set, those peers will have a small
number of children in different trees leading to degenerate trees.

CHAPTER 3. P2P Maximal Resource Utilization 57

3.3.1 Setup

In the following, we represent the upload capacity of peers in terms of the
budget and the rate of video streams in terms of the number of substreams,
i.e., we normalize actual values by the bit rate of substreams. Table 3.2 sum-
marizes all scenarios examined in the evaluations, where in each scenario, the
download capacity of each peer is assumed to be sufficiently large. Scenario’s
name in the table is encoded by the environment type, HM (homogeneous)
or HT (heterogeneous), followed by the bit rate of given video stream (e.g.,
4 means that the stream is divided into four substreams), and the resource
index where 1 stands for 𝑅 = 1.0 and 2 stands for 𝑅 = 1.25. The reader
should note that the resource index, 𝑅, is defined as the ratio of the available
capacity in the system to the streaming rate times the number of peers as
in [28].

Table 3.2: Simulation scenarios.

HM4-1 HM4-2 HM8-1 HM8-2 HT4-1 HT4-2 HT8-1 HT8-2
Server’s capacity 4 5 8 10 4 4 8 8
Peer’s capacity 4 5 8 10 1,3,8 1,4,10 2,6,16 3,7,20
Stream rate 4 4 8 8 4 4 8 8

Resource Index 1 1.25 1 1.25 1 1.25 1 1.25

Heterogeneous settings follow the setting used in [88]. More concretely,
we adopt three types of upload capacities low, medium and high which corre-
spond to the bit rate of 128 [Kbps], 384 [Kbps] and 1000 [Kbps], respectively,
and we fix the substream rate to either 64 [Kbps] or 128 [Kbps]; thus in the
former case, the upload capacity of each type is normalized to 2, 6 and 16,
respectively. The fraction of each type of peers in the population is fixed as
in Table 3.3.

For each scenario, we ran the proposed scheme and SplitStream by fixing
the number of peers to 𝑛 = 10000, where we did not consider churn to make
a fair comparison of the schemes. The proposed scheme is evaluated for
different values of 𝐷 (the number of peers in set 𝑈𝑖). Although 𝐷 was chosen
to be a multiple of the number of substreams (namely, 𝑁 , 2𝑁 or 4𝑁) in
the simulation, any value can be used for 𝐷. The saturation fraction and
the average hop-count delay are calculated for each peer and the cumulative

58 CHAPTER 3. P2P Maximal Resource Utilization

distributions are plotted for only some scenarios to save the space. On the
other hand, the average value over all peers is presented in tables for all
scenarios.

Table 3.3: Fraction of each type in the population.

Type Fraction
Low (128 Kbps) 37%

Medium (384 Kbps) 27%
High (1000 Kbps) 36%

3.3.2 Results

Saturation Fraction

As was mentioned, a peer with a high saturation fraction means a lower
number of substreams to be lost in case of its leave. However, as will be
seen in the next section, a higher saturation fraction does not necessarily
mean a shorter hop-count delay, since a nearly-saturated peer might have
few children as leaves in other trees.

Table 3.4: Average saturation fraction.

SS 𝐷 = 4 𝐷 = 8 𝐷 = 16
HM4-1 0.89 0.87 0.93 0.96
HM4-2 0.76 0.73 0.78 0.80
HT4-1 0.90 0.88 0.93 0.96
HT4-2 0.82 0.80 0.85 0.87

SS 𝐷 = 8 𝐷 = 16 𝐷 = 32
HM8-1 0.87 0.82 0.90 0.94
HM8-2 0.76 0.70 0.77 0.79
HT8-1 0.87 0.84 0.90 0.94
HT8-2 0.81 0.78 0.84 0.86

CHAPTER 3. P2P Maximal Resource Utilization 59

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
u

m
u

la
ti

v
e

P
ro

p
o

rt
io

n
 o

f
P

ee
rs

Average Saturation Fraction

SS

D=4

D=8

D=16

(a) HM4-1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
u

m
u

la
ti

v
e

P
ro

p
o

rt
io

n
 o

f
P

ee
rs

Average Saturation Fraction

SS

D=4

D=8

D=16

(b) HT4-1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
u

m
u

la
ti

v
e

P
ro

p
o

rt
io

n
 o

f
P

ee
rs

Average Saturation Fraction

SS

D=8

D=16

D=32

(c) HM8-1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
u

m
u

la
ti

v
e

P
ro

p
o

rt
io

n
 o

f
P

ee
rs

Average Saturation Fraction

SS

D=8

D=16

D=32

(d) HM8-2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
u

m
u

la
ti

v
e

P
ro

p
o

rt
io

n
 o

f
P

ee
rs

Average Saturation Fraction

SS

D=8

D=16

D=32

(e) HT8-1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
u

m
u

la
ti

v
e

P
ro

p
o

rt
io

n
 o

f
P

ee
rs

Average Saturation Fraction

SS

D=8

D=16

D=32

(f) HT8-2

Figure 3.4: Cumulative distribution of saturation fraction.

60 CHAPTER 3. P2P Maximal Resource Utilization

Figure 3.4 shows the cumulative distribution of the saturation fraction
with different number of neighbors, 𝐷, and Table 3.4 summarizes the average
saturation fraction in each scenario, where (SS) stands for SplitStream.

The average saturation fraction of the proposed scheme increases as 𝐷
increases since it increases the chance of buying or swapping substreams with
other peers, whereas it is worse than SplitStream when 𝐷 takes the smallest
value 𝑁 . From the figure, we can also confirm that the number of peers
that have their children in more than one tree is 10% in HM4-1 and 20%
in HM8-1 for 𝐷 = 4𝑁 . It means that the saturation fraction is higher for
a lower number of substreams. It should also be noted that the saturation
fraction degrades by increasing the resource index 𝑅 from 1.0 to 1.25. In
fact, if 𝑅 is sufficiently large, it is possible to attain the given streaming rate
without fully utilizing upload capacities, which prevents many peers from
being saturated.

Average Hop-Count Delay

Next, we evaluate the average hop-count delay of the proposed scheme. Fig-
ure 3.5 shows the cumulative distribution of the average hop-count delay and
Table 3.5 shows its average in each scenario, as before. We can observe that
the proposed scheme outperforms SplitStream for all scenarios, and in seven
out of eight scenarios, it attains a shorter hop-count delay than SplitStream
by at least 1.0 even when 𝐷 = 𝑁 (note that the difference becomes large for
large 𝐷’s). Figure 3.5 also clarifies that the proposed scheme outperforms
SplitStream with respect to the “maximum” average hop-count delay.

Such a positive effect of parameter 𝐷 reduces for large resource index
𝑅. In fact, in scenario HM4-2 with 𝑅 = 1.25, the average hop-count in-
creases as 𝐷 increases in contrast to other scenarios with 𝑅 = 1.25. One
possible conjecture to explain such a phenomenon is that for large 𝑅’s, as
𝐷 increases, the average hop-count decreases up to a limit related to the
number of substreams and after that limit, the delay increases again due to
the (unnecessary) join to other trees as leaves of deeper level.

To verify this conjecture, we conducted additional simulation for HM8-2
and HM8-1 and increased 𝐷 up to 48. As a result, we found that the average
hop-count of HM8-2 increases from 4.99 to 5.31 by increasing 𝐷 from 40 to
48, and that of HM8-1 does not change from 5.47 regardless of the increase
of 𝐷.

CHAPTER 3. P2P Maximal Resource Utilization 61

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 6 8 10 12 14 16

C
u

m
u

la
ti

v
e

P
ro

p
o

rt
io

n
 o

f
P

ee
rs

Average Hop-count

SS

D=4

D=8

D=16

(a) HM4-1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 6 8 10 12 14 16 18 20 22 24 26

C
u

m
u

la
ti

v
e

P
ro

p
o

rt
io

n
 o

f
P

ee
rs

Average Hop-count

SS

D=4

D=8

D=16

(b) HT4-1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

C
u

m
u

la
ti

v
e

P
ro

p
o

rt
io

n
 o

f
P

ee
rs

Average Hop-count

SS

D=8

D=16

D=32

(c) HM8-1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 3.5 4 4.5 5 5.5 6 6.5 7 7.5

C
u

m
u

la
ti

v
e

P
ro

p
o

rt
io

n
 o

f
P

ee
rs

Average Hop-count

SS

D=8

D=16

D=32

(d) HM8-2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 5 6 7 8 9 10 11 12

C
u

m
u

la
ti

v
e

P
ro

p
o

rt
io

n
 o

f
P

ee
rs

Average Hop-count

SS

D=8

D=16

D=32

(e) HT8-1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 5 6 7 8 9 10

C
u

m
u

la
ti

v
e

P
ro

p
o

rt
io

n
 o

f
P

ee
rs

Average Hop-count

SS

D=8

D=16

D=32

(f) HT8-2

Figure 3.5: Cumulative distribution of average hop-count.

62 CHAPTER 3. P2P Maximal Resource Utilization

Table 3.5: Average hop-count.

SS D=4 D=8 D=16
HM4-1 9.58 7.43 7.31 7.29
HM4-2 7.96 6.62 6.47 7.03
HT4-1 12.51 8.52 8.43 8.22
HT4-2 9.95 8.05 7.60 7.45

SS D=8 D=16 D=32
HM8-1 6.53 5.52 5.43 5.47
HM8-2 5.54 5.05 4.95 4.93
HT8-1 7.52 5.60 5.47 5.37
HT8-2 6.28 5.28 5.07 5.05

Another important issue we need to address is that why the proposed
scheme outperforms SplitStream even under a low saturation fraction? To
clarify this point, we analyzed the difference of the structure of the result-
ing multiple-trees to an optimum multiple-tree, which can be obtained for
homogeneous cases as follows. Since the number of children of each peer is
bounded by 𝑁 , an optimum tree contains 𝑁 ℓ−1 peers at the ℓ𝑡ℎ level for each
ℓ (e.g., the first level consists of the root of the tree, the second level consists
of 𝑁 children of the root, and so on) except for the deepest level of the tree,
where the depth 𝑑 of the tree can be obtained by solving

𝑑−1∑︁
𝑖=1

𝑁 𝑖−1 < 𝑛 ≤
𝑑∑︁

𝑖=1

𝑁 𝑖−1,

which is approximately

log{𝑛(𝑁 − 1) + 1}
log𝑁

The number of uploaders (peers with at least one child) at the ℓ𝑡ℎ level
of the optimum tree can thus be calculated as follows:

1. for 1 ≤ ℓ < 𝑑− 1, it is 𝑁 ℓ, and

CHAPTER 3. P2P Maximal Resource Utilization 63

(a) HM4-1

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2 4 6 8 10 12 14 16

N
u

m
b

er
 o

f
u

p
lo

ad
er

s

Level

SS

D=8

Optimal

(b) HM8-1

Figure 3.6: Number of uploaders in different levels.

2. for ℓ = 𝑑−1, it is
⌈︁
𝑛−

∑︀𝑑−1
𝑖=1 𝑁 𝑖−1

𝑁

⌉︁
. Consequently, the number of uploaders

at the ℓ𝑡ℎ level across all trees in an optimum multiple-tree is given as

𝑁 *min{𝑁 ℓ−1,

⌈︃
𝑛−

∑︀ℓ
𝑖=1𝑁

𝑖−1

𝑁

⌉︃
}.

Figure 3.6 compares the resulting multiple-trees with an optimum one,

64 CHAPTER 3. P2P Maximal Resource Utilization

(a) The proposed scheme, HM4-1.

(b) SplitStream, HM4-1.

Figure 3.7: Radial graphs of the proposed and SplitStream overlays.

for scenarios HM4-1 and HM8-1. The horizontal axis of the figure is the level
of the tree and the vertical axis is the number of uploaders at each level. The
proposed scheme matches the optimum tree up to the fifth level, and it is
nearly optimal even for deeper levels. On the other hand, SplitStream goes

CHAPTER 3. P2P Maximal Resource Utilization 65

far from optimal with a large gap (e.g., the gap which is 2500 uploaders at
the sixth level in HM4-1) and with the existence of many uploaders at deeper
levels. Recall that the proposed scheme has been designed to increase the
number of saturated peers in all trees. Moreover, as peers prefer to buy or
swap other peers that have a short hop-count delay in case of a price draw,
the proposed scheme can maintain short depth trees. As for SplitStream,
the random selection of parents according to Pastry Id can not guarantee
an efficient overlay construction with a short hop-count delay and leads to a
high use of the peers in the free set capacity, as will be verified in the next
subsection, resulting in this kind of degenerate trees. To exemplify that, a
snapshot of the constructed multiple-tree overlays by the proposed scheme
and SplitStream are compared in Figure 3.7. Only 100 homogeneous peers
are simulated for this purpose to simplify the figures. It is clear from the
figure that SplitStream trees have extra hops.

Free Set Requests

Finally, we evaluate the amount of free set requests issued by the participants.
Figure 3.8 shows the fraction of peers which issued (at least one) free set
request before completing the scheduling. Recall that such a request is issued
when it does not have enough balance or it can not find a neighbor which
has enough upload capacity. In homogeneous scenarios, the proposed scheme
causes no free set request, whereas the fraction of peers which issue a free
set request in SplitStream is 60% for 𝑅 = 1.0 and 30% for 𝑅 = 1.25. This
means that in homogeneous environment, the proposed scheme is remarkably
efficient compared with SplitStream with respect to the overhead for the
maintenance of free set.

The superiority of the proposed scheme to SplitStream can be observed
even under heterogeneous scenarios provided that 𝑅 = 1.25 and such an
effect is enhanced for larger 𝐷’s. For example, in HT8-2, exactly one peer
(among 10000 peers) issued a free set request for 𝐷 = 32.

3.4 CONCLUDING REMARKS

This chapter presented a scheduling scheme for P2P streaming systems which
attains the maximal resource utilization in a distributed manner. The pro-

66 CHAPTER 3. P2P Maximal Resource Utilization

SS D=4 D=8 D=16

HM41 59.14% 0.00% 0.00% 0.00%

HM42 29.47% 0.00% 0.00% 0.00%

HT41 81.02% 54.98% 46.84% 34.96%

HT42 72.79% 12.68% 3.79% 0.40%

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

F
ra

c
ti

o
n

 o
f

P
e
e
rs

 %

HM41 HM42 HT41 HT42

(a) Four substreams.

SS D=8 D=16 D=32

HM81 62.21% 0.00% 0.00% 0.00%

HM82 31.23% 0.00% 0.00% 0.00%

HT81 87.99% 55.70% 48.88% 36.84%

HT82 76.02% 5.55% 0.64% 0.01%

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

F
ra

c
ti

o
n
 o

f
P

e
e
rs

 %

HM81 HM82 HT81 HT82

(b) Eight substreams.

Figure 3.8: Free set requests.

posed scheme is able to build an efficient multiple-tree overlay with a short
hop-count delay even when no spare capacity is available. The result of
simulation proves that:

CHAPTER 3. P2P Maximal Resource Utilization 67

∙ The constructed multiple-trees certainly converge to an efficient overlay
with a short hop-count delay

∙ The proposed scheme outperforms SplitStream with respect to the av-
erage hop-count in all scenarios examined in the experiments.

∙ the proposed scheme outperforms SplitStream in regard to the number
of peers who are internal in only one tree (saturated peers) provided
that the number of allowed neighbors is more than the number of sub-
streams.

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 4

Low Cost Cloud-P2P Live

Streaming

In the previous chapter, a higher streaming rate with a shorter delay is
attained by maximally utilizing resources of P2P. Yet, the P2P live streaming
has a high dynamism in peer population (called peer churn) which affects
the reliability of pure P2P live streaming systems. Without a guaranteed
reliability, no quality of service can be guaranteed.

In this chapter, we provide a guaranteed quality of service by assisting
the pure P2P live streaming by the cloud. That assistance is achieved by
exploiting a storage service and a cloud content delivery network (CCDN).
The latest chunks in the live stream are stored to the storage service in the
cloud, and each peer is allowed to fetch missing chunks from the storage ser-
vice through edge locations of the CCDN. These edge locations fetch chunks
from the storage service upon receiving requests from peers.

The cost of cloud assistance is comprised of the amount of data fetched
from the CCDN and the number of requests handled by the cloud. The
latter cost is further divided into requests handled by the storage service and
requests handled by the CCDN. Accordingly, we propose three techniques
to reduce the cost of such a cloud assistance and evaluate them through
extensive simulations.

The remainder of this chapter is organized as follows. In Section 4.1,
the research problem is introduced. Section 4.2 formally describes a model
consisting of multiple-tree overlay assisted by the cloud. Section 4.3 describes
the baseline model over which we proposed our method in Section 4.4. The

70 CHAPTER 4. Low Cost Cloud-P2P Live Streaming

results of simulations are summarized in Section 4.5. Finally, Section 4.6
concludes the chapter.

4.1 Problem Description & Contribution

P2P system can not standalone and needs the support from other reliable
services when 1) the streaming service has to be guaranteed. That is due
to the dynamic nature and voluntary contribution in P2P, and 2) when the
streaming rate expected by peers exceeds the capacity of the P2P system.
This is widely expected today as the download bandwidth offered by Internet
providers is normally higher than the upload bandwidth.

To solve these issues, P2P should be assisted by a server or a farm of
servers to disseminate the video stream to all peers. The own servers and
content delivery networks (CDNs) are expensive solutions due to the cost of
dedicated infrastructures in the former one and the semi-static provision of
resources (i.e., servers) in the latter one. On the other hand, the cloud emer-
gence has offered a flexible and cost-effective platform to provision resources
on-demand. Cloud computing platform offers different services that could
be exploited for this purpose such as the storage service, cloud CDN and
computing instances (virtual servers). Then, the assistance may be achieved
by two different ways. At first, by exploiting a storage service and a cloud
content delivery network (CCDN). The latest chunks in the live stream are
stored to the storage service in the cloud, and each peer is allowed to fetch
missing chunks from the storage service through edge locations of the CCDN.
These edge locations fetch chunks from the storage service upon receiving re-
quests from peers. Another way for the assistance of P2P by the cloud is to
rent computing instances and to use them as virtual peers to disseminate the
live stream to other peers [14, 15]. However, the rent of computing instances
is less flexible than the rent of upload bandwidth (e.g., the minimum rent
period of computing instances is generally one hour). Moreover, tenants of
computing instances share the network infrastructure where the bandwidth
allocated for an instance is not predictable nor guaranteed. Thus to refine the
cost of cloud assistance while maintaining the high performance, we take the
former approach to propose a cost effective cloud-assisted P2P live streaming
system.

CHAPTER 4. Low Cost Cloud-P2P Live Streaming 71

4.1.1 Quick Recovery

In this chapter, we adopt the multiple tree structure. Such a structure is
weak against peer churn compared with other structures. However, it is
efficient in terms of the latency and the message overhead, and it exhibits
a good performance with respect to the broadcasting time [47, 48] and the
maximum streaming rate [46, 16]. In other words, the multiple-tree structure
is an appealing structure if we can overcome its shortcomings (e.g., stability
and robustness) by combining it with other services such as the cloud. The
baseline model is multiple-tree overlay adopted in SplitStream [28]. In this
model, a given live stream is equally divided into substreams by the sequence
number of chunks contained in the stream. Then, each substream is delivered
to all peers (subscribers) through a different delivery tree. We assume that
sets of internal nodes of the trees must be mutually disjoint as in SplitStream.
In such a multiple-tree-structured P2P network, the leave of an internal node
suspends the forwarding of a substream to descendants which affects the
quality of the stream. The lost part of streaming data should be fetched
from the cloud which significantly increases the cost. Then, we need to have
a solution with the help of cloud to improve the robustness of the system.

∙ Contribution Point 1
Firstly, we propose a technique to reduce such a cost by exploiting
the cloud storage service to explicitly register “orphaned” peers which
lost their parents in delivery trees. Match-making between orphaned
peers and internal peers with enough capacity can be done by referring
to the registered information. That significantly reduces the time be-
fore an orphaned peer becomes a child of a new parent in the delivery
tree. However, it incurs additional cost due to requests handled by the
storage service.

4.1.2 Proactive Bandwidth Investment

Assume the case where the capacity of the P2P system is not enough to
disseminate the video stream to all peers. In fact, this case is a main interest
of our study in this thesis. Considering the number of peers as 𝑛, the stream
rate as 𝑟, the aggregated capacity of all peers including the source as 𝑈 ,
if 𝑛 × 𝑟 > 𝑈 then there is a shortage in the P2P system’s capacity. Let

72 CHAPTER 4. Low Cost Cloud-P2P Live Streaming

𝜃 = 𝑛 × 𝑟 − 𝑈 denote that shortage. In the hybrid system of P2P assisted
by the cloud, such a shortage will be fetched by the peers from the cloud to
maintain the quality of service. The fetch will occur when some peers notice
the delay of stream chunks, for example when two seconds remain to the
chunk playback point.

However, it would be a more efficient solution to estimate the shortage
𝜃, and proactively invest a corresponding bandwidth into the P2P system.
That could be done by selecting some peers to proactively fetch the chunks
and be roots of the multiple-tree overlay. The invested bandwidth should be
balanced among the trees, i.e., by investing 𝜃/𝑠 peers in each tree where 𝑠 is
the substream rate delivered through every tree. Such a solution will improve
the quality of stream as chunks are fetched earlier. Moreover, the capacity
of the system will be increased and the depth of trees will be shorter. That
will reduce the number of descendants affected by the leave of their parent.

∙ Contribution Point 2
We propose a second technique where the key idea is to proactively fetch
chunks by several internal nodes selected from each tree. The selected
node (peer) plays the role of a root for the corresponding tree, which
reduces the height of the delivery tree and the load of other internal
nodes. The number of peers to be selected is controlled by referring
to the number of orphaned peers registered to the storage service (first
technique). That is by the reason if the number of selected peers is too
large, the amount of proactively fetched chunks becomes excessive and
if it is too small, the cost due to orphaned peers increases.

4.1.3 Number of Requests

In the previous subsection, the system invests a bandwidth correspondent to
the shortage, 𝜃, to proactively fetch the chunks from the cloud. Remember,
the cost does not only depend on the amount of bandwidth invested but
also on the number of requests to fetch it. Normally, the chunk size is small
in tree-based systems to be quickly forwarded to children where a chunk is
forwarded only after being completely downloaded by the parent. Then, with
the increase of 𝜃, the number of requests to the cloud increases which is a
costly behavior. Accordingly, an efficient solution should overcome this issue
to minimize the cost.

CHAPTER 4. Low Cost Cloud-P2P Live Streaming 73

∙ Contribution Point 3
The third proposed technique reduces the number of requests handled
by the CCDN in the second technique by allowing peers to request
a collection of chunks instead of individual chunks. More concretely,
when proactively fetching chunks from the CCDN as a selected peer for
tree 𝑡, it acquires consecutive chunks associated with the whole stream
(instead of a particular substream) in the form of frames of chunks,
and serves as a root for tree t.

4.1.4 Achievement

In this chapter, we propose a method to reduce the cost of the cloud-assisted
P2P systems as explained in contribution points in the previous subsections.
The performance of the proposed method is evaluated by simulation. We
implement our simulator on top of an event-driven P2P simulator [85]. The
simulation results are summarized as follows.

1. In comparison with the baseline model, the first technique is able to
save 44% of the total amount of data fetched from the cloud and 40%
of the total number of requests issued to the cloud.

2. The second technique achieves extra save by reducing the number of
orphaned peers per failure due to the short height of the delivery tree.

3. The third technique has the least monetary cost where it saves up to
42% of the total amount of data fetched from the cloud and 66% of the
total number of requests issued to the cloud.

4. Due to the assistance of the cloud, all techniques are able to guarantee
the quality of live streaming service.

4.2 System Model

4.2.1 Overview

In this chapter, we focus on the hybrid of P2P and cloud computing platform.
The role of P2P is to deliver live streams issued by a media server to the peers
through a P2P overlay. Along with that, the role of cloud platform is to assist

74 CHAPTER 4. Low Cost Cloud-P2P Live Streaming

the delivery by using a storage service and a cloud content delivery network
(CCDN). In our model, we consider a P2P overlay consisting of N trees
which span all peers. Live stream is a sequence of chunks which are given
unique sequence numbers starting from 0. Chunks are equally divided into
𝑁 substreams so that the 𝑖𝑡ℎ substream consists of chunks with sequence
number 𝑗 ≡ 𝑖(𝑚𝑜𝑑 𝑁). The reader should note that by letting 𝑟 be the bit-
rate of the given stream, the bit-rate of each substream is given as 𝑟/𝑁 . As
will be described later, chunks are delivered to the peers in such a way that
the 𝑖𝑡ℎ substream is delivered through the 𝑖𝑡ℎ tree for each 0 ≤ 𝑖 ≤ 𝑁 − 1.

Let 𝑐(𝑢) denote the upload bandwidth of a peer 𝑢. Since the bit-rate of

each substream is 𝑟/𝑁 , 𝑢 can accommodate at most 𝑠(𝑢)
def
= ⌊𝑐(𝑢)𝑁/𝑟⌋ peers

as the “children” in the P2P overlay. 𝑠(𝑢) is called the capacity of 𝑢 and we
say that 𝑢 has a free capacity if it has less than 𝑠(𝑢) children. The resource
index 𝑅 of a P2P concerned with the delivery of the given stream is the ratio
of the available capacity of the P2P to the capacity which is necessary to
deliver 𝑁 substreams to all peers in the P2P, i.e.,

𝑅
def
=

∑︀
𝑢∈𝑉 𝑠(𝑢)

𝑁 × |𝑉 |
,

where 𝑉 is the set of peers in the P2P. In the following, we are particularly
interested in cases such that 𝑅 ≃ 1. Note that in hybrid live streaming
systems, the resource index of the P2P indicates the amount of contribution
of the cloud platform; i.e., the amount of contribution of the cloud should be
large as the value of resource index decreases.

As for the mechanism to detect the leave of adjacent peers in the P2P, we
assume that each peer exchanges hello messages with its neighbors for every
𝜏 seconds. Similarly, each peer detects the leave of parent in a delivery tree
by monitoring the delay of chunks contained in the corresponding substream.

4.2.2 Cloud Computing Platform

Figure 4.1 illustrates the behavior of the cloud platform. At first, it contin-
uously receives a stream of chunks from the media server, and keeps chunks
issued in the recent 𝑚 seconds in the storage service. Each peer in the P2P
can request these chunks at any time, and requested chunks are delivered
to the requester through edge locations in the CCDN. Such a request is is-
sued by a peer when it detects the missing of a chunk in a substream. A

CHAPTER 4. Low Cost Cloud-P2P Live Streaming 75

Figure 4.1: Cloud-assisted P2P live streaming model.

chunk is considered to be missed when the remaining time to its playback
point meets a certain threshold. Then, a peer and its descendants may con-
sider same chunks as missed in a close time and acquire them through the
CCDN. Moreover, when a peer acquires the missed chunk from the CCDN,
it will be busy in forwarding the latest chunks to its children. Hence, in this
case, chunks acquired through the CCDN are not forwarded to the children
to bound the overhead and redundant data. A different case, as in Sec-
tion 4.5.2, is that a subset of peers (proactively) issue requests to fetch some
(not-yet missed) chunks from CCDN, i.e., to increase the system through-
put. Forwarding these chunks to children is necessary to get the benefit of
the proactive design.

In addition to the recently issued chunks, in the proposed method, the
storage service keeps information concerned with “orphaned” peers. We say
that a peer is orphaned if the connection to the parent is lost. See Section 4.4
for the details.

In the following, we measure the cost of such a cloud assistance by using a
pricing model used in actual cloud computing platform. More concretely, we

76 CHAPTER 4. Low Cost Cloud-P2P Live Streaming

use Amazon’s pricing model [86, 87] in which the customer should pay for:
1) the amount of data bandwidth fetched from the CCDN, 2) the number
of requests issued to the CCDN and 3) the number of requests issued to the
storage service. We omit the other costs such as the storage cost, as they are
common for all cloud assisted schemes.

4.3 Baseline Model

This section introduces a model of hybrid P2P systems which will be used as
a baseline in succeeding sections. This model is a variant of the SplitStream
live streaming system [28] in which 𝑁 delivery trees are organized so that
internal nodes of the trees are mutually disjoint. In other words, each peer
can join at most one tree as an internal node and the other trees as a leaf
node. Let 𝑇 be the set of 𝑁 trees. At the time of participation, each
peer determines the role of the peer in each tree; i.e., internal or not. Let
𝜎 : 𝑉 × 𝑇 → {0, 1} be a function indicating the selection made by the peers,
where 𝜎(𝑝, 𝑡) = 1 if 𝑝 joins tree 𝑡 as a candidate of internal node. Note that
in the SplitStream, such a selection is conducted in a random manner.

Assume that peer 𝑞 submits peer 𝑝 a request to subscribe to a substream
through tree 𝑡, where 𝑝 is a peer with 𝜎(𝑝, 𝑡) = 1. Peer 𝑝 accepts the request
if it has a free capacity. Moreover, 𝑝 accepts the request if 𝜎(𝑞, 𝑡) = 1 and it
has a child 𝑐 with 𝜎(𝑐, 𝑡) = 0. Then 𝑝 admits 𝑞 as a new child after pushing
out 𝑐 from the tree (thus 𝑐 is orphaned at this time)(Figure 4.2-(A)). If it does
not accept the request, 𝑝 forwards the request to a child 𝑐′ with 𝜎(𝑐′, 𝑡) = 1,
and such a forwarding is repeated until it reaches a peer which accepts the
request or fails to be forwarded to a child, see Figure 4.2-(B). Note that this
process always succeeds for 𝑞 with 𝜎(𝑞, 𝑡) = 1 since any internal node with
a deepest level of the tree either has a free capacity or has a leaf child 𝑘′′

with 𝜎(𝑘′′, 𝑡) = 0, while it might fail for 𝑞 with 𝜎(𝑞, 𝑡) = 0. In such a case, 𝑞
should request the free set, see Figure 4.2-(C).

In the baseline model, to reduce the length of such forwarding steps, we
assume that the first peer 𝑝 receiving the request from 𝑞 with 𝜎(𝑞, 𝑡) = 1 is
selected in the following manner:

1. if 𝑞 is an orphaned peer and the depth of 𝑞 in the tree was two or more
before being orphaned, the former grandparent of 𝑞 is selected as 𝑝,
and

CHAPTER 4. Low Cost Cloud-P2P Live Streaming 77

Figure 4.2: Baseline P2P overlay configuration: circle peers belong to tree
𝑡 and square peers belong to other trees. Peer 𝑞 requesting peer 𝑝 for tree
𝑡. In (A), 𝜎(𝑝, 𝑡) = 𝜎(𝑞, 𝑡) = 𝜎(𝐶2, 𝑡) = 1 while 𝜎(𝐶1, 𝑡) = 0 so peer
𝑝 accepts 𝑞 and rejects 𝐶1 which is forwarded to 𝑝 for example. In (B),
𝜎(𝑝, 𝑡) = 𝜎(𝐶1, 𝑡) = 𝜎(𝐶2, 𝑡) = 1 so peer 𝑝 forwarded 𝑞 to 𝐶1 for example.
In (C), 𝜎(𝑞, 𝑡) = 𝜎(𝐶1, 𝑡) = 𝜎(𝐶2, 𝑡) = 0 so peer 𝑞 reaches the leaves level
without being adopted. Hence, it should request the free set.

2. otherwise, a random peer is selected as 𝑝.

In addition, if 𝜎(𝑞, 𝑡) = 0, 𝑞 does not request any 𝑝 but registers itself to a
pool of orphaned peers concerned with tree 𝑡, and waits for a response from
peers with a free capacity. In the baseline model, the registration message
issued by 𝑞 is collected to the root of tree 𝑡′ with 𝜎(𝑞, 𝑡′) = 1 (i.e., it is sent
to the parent of 𝑞 in tree 𝑡′ and is forwarded up to the root of the tree), and
the collected messages are forwarded down from the root of tree 𝑡, so that
they are received by an internal node of 𝑡 with a free capacity, if any. If 𝑞
receives several responses, it accepts only one and discards others.

78 CHAPTER 4. Low Cost Cloud-P2P Live Streaming

Thus the cost of the baseline model concerned with the cloud assistance
is comprised of the number of requests issued to the CCDN and the amount
of chunks fetched from the CCDN.

4.4 Proposed Method

The proposed method consists of three techniques; 1) quick recovery from
the status being orphaned with the aid of cloud storage services, 2) proactive
fetching of chunks from the CCDN, and 3) the reduction of the number of re-
quests to the CCDN with the notion of frames. In the succeeding subsections,
we explain each technique in detail.

4.4.1 First Technique: Quick Recovery with Storage

Service

In hybrid P2Ps, once a peer becomes orphaned, the delivery of chunks to the
peer is suspended until it becomes a child of a new parent. During such a
suspension, the orphaned peer should fetch missing chunks from the CCDN
to keep the playback of the live stream. Thus, a short suspension time will
significantly reduce the amount of fetched data.

The basic idea of the first technique is to reduce such a suspension time
with the aid of cloud storage services (note that it is experimentally eval-
uated that general cloud storage services can serve as many requests as it
receives [15]). More concretely, when a peer 𝑝 becomes orphaned in a tree 𝑡
where 𝜎(𝑝, 𝑡) = 0, it sends a PUT request to a bucket in the cloud storage
to add a file concerned with the event, where the directory of buckets and
the way of authentication should be known to all peers in advance. The file
name encodes peer’s IP, port, and the name of substream, i.e., it needs to
add different files for each tree. For example, if peer 𝑎 is orphaned for a
substream 𝑘, it puts a file in the storage bucket with the following name:

𝑎𝐼𝑃_𝑃𝑜𝑟𝑡𝑁𝑢𝑚𝑏𝑒𝑟_𝑘.𝑡𝑥𝑡

On the other hand, any peer with a free capacity can find orphaned peers
by sending a LIST request to the bucket which returns a list of file names
with necessary metadata. After obtaining it, the free capacity peer tries to
accommodate orphaned peers as new children until its capacity is exhausted,

CHAPTER 4. Low Cost Cloud-P2P Live Streaming 79

and each orphaned peer which becomes a child of a new parent deletes the
corresponding file in the bucket by sending a DELETE request.

Such a match-making mechanism is also used to balance the load of trees.
More concretely, we modify the selection of a tree conducted by each newly
arrived peer in the baseline model in such a way that it joins the tree as an
internal node with the largest number of orphaned peers (recall that such a
number of orphaned peers can be easily obtained by sending a LIST request
to the bucket).

Additional cost due to the first technique is the number of requests han-
dled by the storage service. Usually, requests to the storage service are more
expensive than requests to the CCDN (see [86, 87] for the example of cloud
price in Amazon), but as will be evaluated later, the additional cost incurred
by the first technique is smaller than the benefit of quick recovery.

4.4.2 Second Technique: Proactive Bandwidth Invest-

ment

The key idea of the second technique is to allow several peers selected from
each tree to conduct a proactive fetch of chunks from the CCDN so that
the delayed chunks due to the shortage of P2P capacity does not occur.
Such selected peers, called cloud peers hereafter, plays the role of a root
concerned with the delivery of the corresponding substream. See Figure 4.3
for illustration. As will be evaluated later, with the notion of cloud peers,
we could reduce the depth of the overlay and enlarge the available capacity
of the delivery tree.

The number of cloud peers is related to P2P shortage and determined as
follows (see Step 1 of Algorithm 4.1). At first, the server periodically issues
a LIST request to the storage service to acquire the latest list 𝑂 of orphaned
peers. A request and computational overhead is incurred when the length of
such a period is short (few seconds). On the other hand, a long period might
make it difficult to follow the dynamic change in the P2P shortage. In our
implementation we found a period of 30 seconds as a good balance. Since
the list 𝑂 might not accurately reflect the shortage of the P2P capacity (i.e.,
𝑁 × |𝑉 | −

∑︀
𝑢∈𝑉 𝑠(𝑢)), the server identifies a subset 𝐿 (⊆ 𝑂) which have

been orphaned for a time longer than 𝜏𝑛, and regards it as a subset of actual
orphaned peers due to P2P shortage. A typical value of 𝜏𝑛 is four seconds,

80 CHAPTER 4. Low Cost Cloud-P2P Live Streaming

Figure 4.3: Proactive bandwidth investment. Assume the estimated P2P
shortage is 4. Then, two peers are selected in each tree to act as cloud peers,
where peers 𝐴 and 𝐵 fetch substream 1 from the CCDN, and peers 𝐶 and
𝐷 fetch substream 2.

while as for the selection of the value of 𝜏𝑛, there is a tradeoff between the cost
of proactive fetching and the cost of reactive fetching. Automatic adjustment
of parameter 𝜏𝑛 is left as a challenging future work.

If |𝑂| > 𝜃 holds for a predetermined threshold 𝜃, and all trees in 𝑇
contain at least one peer belonging to subset 𝐿, then the server selects |𝐿|/𝑁
random peers from each tree and asks them to act as cloud peers (see Step 2 of
Algorithm 4.1). The reader should note that the latter condition is necessary
to exclude extreme cases in which the distribution of peers in 𝐿 across trees
is highly imbalanced since such an imbalance could be naturally resolved by
accepting more peers to the system without investing cloud peers. If |𝑂| < 𝜃′

for some 𝜃′ < 𝜃, on the other hand, the server eliminates a set of cloud peers to
reduce the cost of proactive fetching. Eliminated cloud peers rejoin their tree,
while keeping to fetch chunks from the CCDN till they become a child of new
parent. A typical value of threshold 𝜃 is 10𝑁 , which implies that it allows

CHAPTER 4. Low Cost Cloud-P2P Live Streaming 81

Algorithm 4.1: Selection of Cloud Peers
1: 𝑂 ← the set of all orphaned peers.
2: 𝐿← ∅
3: 𝑁 ← number of trees (substreams).
4: 𝐶[𝑁]← Array of the set of cloud peers in each tree.
5: 𝐼[𝑁]← Array of the set of internal peers in each tree. //Note 𝐼[𝑖] ⊃ 𝐶[𝑖] (

0 ≤ 𝑖 ≤ 𝑁 − 1).

Step 1: Determine the number of cloud peers
6: for each peer 𝑗 in 𝑂 do

7: 𝑡𝑗 ← the time when 𝑗 is registered as orphaned peer.
8: if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝑡𝑖𝑚𝑒− 𝑡𝑗 ≥ 𝜏𝑛 then

9: 𝐿← 𝐿 ∪ {𝑗}
10: end if

11: end for

12: // |𝐿| represents the estimated shortage of P2P capacity.

Step 2: adding/removing cloud peers
13: 𝜃 ← 10𝑁 .
14: if |𝑂| > 𝜃 and every tree contains at least one peer in 𝐿 then

15: for 𝑖 := 0 to 𝑁 − 1 do

16: // select new |𝐿|/𝑁 cloud peers in each tree
17: 𝑈 ← a set of |𝐿|/𝑁 peers randomly chosen from 𝐼[𝑖] ∖ 𝐶[𝑖]
18: 𝐶[𝑖]← 𝐶[𝑖] ∪ 𝑈
19: end for

20: else
21: if |𝑂| < 𝜃

′
then

22: for 𝑖 := 0 to 𝑁 − 1 do

23: // eliminate cloud peers from each tree
24: 𝑈 ← set of 𝑁 peers randomly chosen from 𝐶[𝑖]
25: 𝐶[𝑖]← 𝐶[𝑖] ∖ 𝑈 .
26: end for

27: end if

28: end if

each tree to have ten orphaned peers on average. In the implementation,
5𝑁 cloud peers are eliminated when |𝑂| < 𝜃′. Thus, each tree will have
new five orphaned peers to be adopted by the free capacity peers. Selecting

82 CHAPTER 4. Low Cost Cloud-P2P Live Streaming

these values as a multiple of 𝑁 allows us to have a fair comparison between
the second and third technique (Section 4.5.3) by having the same ratio of
selected to eliminated cloud peers.

The cost due to the second technique is similar to the first technique,
while it has an apparent advantage so that the depth of the trees becomes
much smaller and a disadvantage so that the server should manage the set
of cloud peers.

4.4.3 Third Technique: Less Requests to the CCDN

The objective of the third technique is to reduce the number of requests issued
to the CCDN with the notion of frames. More concretely, when a cloud peer
proactively fetches chunks from the CCDN, it requests a frame consisting
of 𝐹 consecutive chunks instead of individual chunks (see Figure 4.4 for
illustration). In addition, after being selected as a cloud peer for tree 𝑡, it
fetches chunks corresponding to the full stream from the CCDN, while it
forwards chunks corresponding to a substream associated with tree 𝑡 to the
children in the tree. Then to keep the amount of data fetched from the
CCDN, we decrease the number of cloud peers from |𝐿|/𝑁 to |𝐿|/𝑁2. See
Figure 4.5 for illustration.

Similar effect to the notion of frames could be obtained by increasing the
size of each chunk. However, in tree-based streaming systems, it is preferable
to have small chunks since each peer needs to receive the whole chunk before
forwarding it to the children. In fact, IP packet of 1 Kbyte length is used as
the basic chunk in the SplitStream [28]. This is in contrast to mesh-based
systems which use large chunks (60 Kbytes in [20], 14 Kbytes in some PPLive
channels [88]) to avoid excessive overhead of signaling per chunk.

The increase of frame size 𝐹 reduces the number of requests issued to the
CCDN inverse proportionally. For example, assume that the stream carries
20 chunks per second and the server invested 20 cloud peers, i.e., the CCDN
should receive 400 requests per second from cloud peers under the second
technique. If the frame size is set to 10 chunks, which corresponds to 0.5
second, the number of requests reduces to 40 per second (90 % save), and
if the frame size is set to 40, it reduces to 10 per second (97.5 % save).
A disadvantage of the large frame size is the waste of chunks which occurs
when the set of cloud peers changes. For example, by scaling the number
of cloud peers down, some of them need to rejoin all trees by finding new

CHAPTER 4. Low Cost Cloud-P2P Live Streaming 83

Figure 4.4: The structure of frames consisting of 10 consecutive chunks. In
this example, each frame corresponds to a part of the stream of 1 sec.

Figure 4.5: Third Technique. Assume 𝑁 = 2 and the P2P shortage is four
substreams. One peer is selected as a cloud peer for each tree. Peer 𝐴 (resp.
peer 𝐵) fetches the full stream from the CCDN and acts as a root in the first
tree (resp. the second tree).

84 CHAPTER 4. Low Cost Cloud-P2P Live Streaming

parents. Such new parents may not have received the latest chunks yet so
they will forward duplicated chunks. Also, when asking a peer to act as a
cloud peer, that peer will request the latest frame which may include some
of already received chunks. Another way of wasting the chunks is when a
cloud peer leaves the system after asking a large frame from the CCDN. In
the evaluation given in the next section, we set the value of 𝐹 to two seconds.

4.5 Evaluation

To evaluate the performance of the proposed method, we conducted extensive
simulations using an event-driven packet level simulator encoded in C++.
The simulator is implemented on top of a peer to peer simulator [85]. It uses
a real world node-to-node latency matrix measured on the Internet [89] with
the average end-to-end delay 79 ms, while it does not consider the queuing
management in routers.

In the following, we compare the following four schemes:

∙ cloud-assisted P2P live streaming scheme Baseline which is based on
the baseline model;

∙ scheme Orphan which is based on the first technique;

∙ scheme Proactive which is based on the first and second techniques; and

∙ scheme Frame which is based on the first, second and third techniques.

As for the metrics for evaluation, we consider: 1) the amount of data fetched
from the CCDN (Section 4.5.2), 2) the number of requests handled by the
cloud (Section 4.5.3), and 3) the quality of live stream including the delivery
ratio and the average playback delay (Section 4.5.5). We also calculate the
monetary cost of the schemes by assuming the cloud price of AWS (Section
4.5.4).

4.5.1 Setup

In the simulations, we consider a video stream of 1000 Kbps which is the bit-
rate recommended by YouTube for the 480p video quality1. The chunk size

1https://support.google.com/youtube/

CHAPTER 4. Low Cost Cloud-P2P Live Streaming 85

is 6250 bytes and the number of substreams is 𝑁 = 5 (i.e., each substream
carries 4 chunks per second). Each peer starts playback after buffering the
stream for 15 seconds, and it sends a request for a chunk to the CCDN when
the remaining time before playing back the chunk becomes 2 seconds. The
frame size in Frame is set to 𝐹 = 40, i.e., each frame corresponds to a part
of the stream of 2 seconds.

Table 4.1: Distribution of the upload bandwidth of peers.

Bandwidth [Kbps] 384 512 768 1024 3000
Share [%] 32.9 14.7 8 28.1 16.3
Capacity 1 2 3 5 15

The number of peers is 1000 and the upload bandwidth of the server is 2
Mbps. To reflect the heterogeneity of peers, we consider the distribution of
upload bandwidth summarized in Table 4.1(based on [90]); e.g., the upload
bandwidth of 147 peers is 512 Kbps which indicates that the capacity of these
peers is ⌊512/200⌋ = 2. Each peer possesses a download bandwidth exceeding
1000 Kbps to enjoy the live streaming. The resource index calculated from
the above parameters is 𝑅 = 0.944, which is slightly less than 1.00. Thus the
shortage 0.056 (= 1.000− 0.944) must be compensated by the CCDN.

The simulation time is fixed to 900 seconds. To realize a dynamic behavior
of peers, we use real P2P traces as in [36], in which the number of online
peers gradually increases from 0 to around 1000 and then reaches a stable
state in which 1% of peers join/leave in each second. See Figure 4.6 for
illustration. Among leaving peers, 95% of them gracefully leave and 5%
of them ungracefully leave [91], where the latter is detected by observing
the lag of chunks received from the parent and the missing of heartbeat
messages transmitted by the children every 5 seconds. We conduct such
a simulation run 16 times and take an average. The total download time
per simulation run is 13025 min on average (note that it is smaller than
15000 min (= 900× 1000/60) due to churn) and the total amount of chunks
downloaded by the peers is 93.16 GB, which implies that 5.21 GB of chunks
corresponding to 0.056 (= 1− 0.944) of downloaded chunks must be fetched
from the CCDN, where 0.944 is the resource index of the hybrid P2P. A
summary of parameters’ values is presented in Table 4.2.

86 CHAPTER 4. Low Cost Cloud-P2P Live Streaming

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600 700 800 900

N
u

m
b

e
r

o
f

O
n

li
n

e
 n

o
d

e
s

Time (sec)

Figure 4.6: Online peers.

Table 4.2: Parameters’ value in the simulation setting.

Number of peers 1000
Churn rate[per sec.] 1%
Streaming rate [Kbps] 1000
Number of substreams 5
Chuck size [Kbyte] 6.25
Frame size [chunks] 40
Buffering [sec.] 15

Server capacity [kbps] 2000
Simulation length [sec.] 900
Heartbeats interval [sec.] 5

4.5.2 Amount of Data Fetched from the CCDN

At first, we evaluate the amount of data fetched from the CCDN. Figure 4.7
summarizes the results, where the horizontal axis is the elapsed time and
the vertical axis is the fetch rate per second. The temporal variance of the

CHAPTER 4. Low Cost Cloud-P2P Live Streaming 87

Figure 4.7: Time transition of the fetch rate from the CCDN.

fetch rate is due to the join/leave of peers and we could observe that the
proposed schemes reduce the fetch rate of Baseline by about 40 %. The
total amount of fetched data during simulation is shown in Figure 4.8. Since
at least 5.21 GB of chunks must be fetched from the CCDN, the proposed
techniques certainly mitigate additional fetch due to churn, e.g., although it
is 7.28 (= 12.49 − 5.21) GB under Baseline, it significantly reduces to 1.33
(= 6.54− 5.21) GB under Proactive.

The badness of Frame with respect to additional fetches is because of the
redundancy mainly caused by the large frame size. Figure 4.9 shows the
fraction of duplicated chunks among received chunks, which indicates that
under Frame, 18 chunks among received 10000 chunks are duplicated. As a
reason for the redundancy is the leave of cloud peers which frequently occurs
in Proactive and Frame. More specifically, when a cloud peer leaves, its child
who has received most recent chunks from the cloud peer might connect to
a new parent which did not receive the latest chunks yet. In such a case, the
new parent forwards duplicated chunks to the new child. The large frame
size in Frame increases the redundancy as explained in Section 4.5.3.

To clarify the difference of Proactive and Frame in more detail, we sepa-
rately evaluate data fetches conducted by cloud peers and the other peers.

88 CHAPTER 4. Low Cost Cloud-P2P Live Streaming

 0

 2

 4

 6

 8

 10

 12

 14

Baseline Orphan Proactive Frame

C
C

D
N

 L
o
ad

 (
G

B
)

12.49

6.96
6.54

7.23

Figure 4.8: Total amount of data fetched from the CCDN.

 0

 0.0005

 0.001

 0.0015

 0.002

Baseline Orphan Proactive Frame

F
ra

ct
io

n
 o

f
re

d
u
n
d
an

t
ch

u
n
k
s.

0.0003

0.0002

0.0006

0.0018

Figure 4.9: Fraction of redundant chunk.

Figure 4.10 summarizes the result. The result shows that the amount of fetch
conducted by cloud peers is almost the same, i.e., 3.87 GB for Proactive and

CHAPTER 4. Low Cost Cloud-P2P Live Streaming 89

 0

 1

 2

 3

 4

 5

Data to cloud peers Data to other peers

 D
at

a
F

et
ch

ed
 (

G
B

)
Proactive

Frame

Figure 4.10: The amount of fetches conducted by cloud peers and the other
peers.

3.73 GB for Frame, but the amount of fetches conducted by the other peers
to mitigate churn differs, i.e., it is 2.98 GB for Proactive which is apparently
less than 3.84 GB for Frame. Such a difference is due to: 1) the redundancy
of Frame as was observed in Figure 4.9 and 2) the difference of average hop-
count from root to the peers which is 3.07 in Proactive and 5.43 in Frame

(recall that Frame invests less cloud peers than Proactive).

4.5.3 Number of Requests Handled by the Cloud

The number of requests handled by the cloud storage service is shown in
Figure 4.11. The proposed schemes issue more requests than Baseline since
they exploit the storage service to realize a quick match-making between
orphaned peers and free capacity peers. The difference of three proposed
schemes is mainly due to the difference of average hop-count, since shorter
hop-count implies that fewer peers are affected by churn. In fact, the result
shows that a scheme with a smaller average hop-count issues fewer requests;
e.g., Proactive issues the least and Frame issues the second least.

The number of requests handled by the CCDN is shown in Figure 4.12.

90 CHAPTER 4. Low Cost Cloud-P2P Live Streaming

 0⋅10
0

 2⋅10
4

 4⋅10
4

 6⋅10
4

 8⋅10
4

 1⋅10
5

Baseline Orphan Proactive Frame

N
u
m

b
er

 o
f

R
eq

u
es

ts

0

88404

76223
79892

Figure 4.11: The number of requests handled by the cloud storage service.

 3⋅10
5

 6⋅10
5

 1⋅10
6

 2⋅10
6

Baseline Orphan Proactive Frame

N
u
m

b
er

 o
f

R
eq

u
es

ts

2130170

1184833
1114907

640077

Figure 4.12: The number of requests handled by the CCDN.

The difference among Baseline, Orphan and Proactive is comparable to the
difference of the amount of fetched data observed in Figure 4.8. However,

CHAPTER 4. Low Cost Cloud-P2P Live Streaming 91

the number of requests issued in Frame is much smaller than the others (e.g.,
it saves 42.5% of requests compared with Proactive), which is apparently
because of the effect of introducing frames.

4.5.4 Total Monetary Cost of the Cloud-Assistance

Table 4.3: AWS prices in Tokyo region.

Requests Price

To the storage service $0.0047 per 1000 requests
To the CCDN $0.0090 per 10000 requests

Data Transfer out of CCDN Price

< 10 TB/month $0.140 per GB

 0

 1

 2

 3

 4

 5

Baseline Orphan Proactive Frame

T
o
ta

l
co

st
 (

$
)

3.75

2.50
2.32

2.01

Figure 4.13: Total cost ($).

In this subsection, we evaluate an example of the monetary cost of the
cloud-assistance for each scheme. In the example, we adopted the billing

92 CHAPTER 4. Low Cost Cloud-P2P Live Streaming

model of AWS [86, 87] 2 and assumed that all peers contact cloud services
in Tokyo region. Table 4.3 shows the AWS prices in Tokyo region, which
indicate that: 1) requests to the cloud storage service take $4.7 × 10−6 per
request, 2) requests to the CCDN take $0.9× 10−6 per request, and 3) data
fetch takes $0.14 per GB. Let 𝑅𝑠 be the number of requests handled by the
storage service, 𝑅𝑐 the number of requests handled by the CCDN, and 𝐷 the
amount of fetched data in GB. Then the total monetary cost of a scheme is
calculated as 3

𝐶($) = 4.7× 10−6 ×𝑅𝑠 + 0.9× 10−6 ×𝑅𝑐 + 0.14×𝐷.

By substituting values obtained in previous subsections, we have the mon-
etary cost of each scheme as shown in Figure 4.13. From the figure, we can
make the following observations:

1. Orphan saves the cost of Baseline by 33.3%. This implies that the
benefit of quick recovery is larger than the cost of requests handled by
the cloud storage service.

2. Proactive saves the cost of Baseline by 39.5%. The improvement of
Proactive is because of the proactive fetch conducted by the cloud peers
and the fewer orphaned peers due to the short average hop-count.

3. Frame saves the cost of Baseline by 46%. This is due to the reduction
of the number of requests handled by the CCDN.

4.5.5 Playback Delay & Delivery Ratio

Finally, we evaluate the quality of live stream delivered to the peers in terms
of the average delivery ratio and the average playback delay. Thedelivery
ratio is the ratio of chunks received by the playback deadline among chunks
transmitted by the server. The playback delay is the delay between the
time when a chunk is sent out from the server and the time when it is played
by the peer. The maximum playback delay is the time by which the chunk

2billing model and prices may change over time
3Only major costs are listed in the example. Some costs are neglected, such as the stor-

age cost, due to its small value and other costs are skipped, such as internal communication
among cloud services, assuming they are common among all simulated schemes.

CHAPTER 4. Low Cost Cloud-P2P Live Streaming 93

is played by all peers. Values of these metrics are sampled every 10 seconds
and averaged at the end of each simulation run.

Table 4.4 summarizes the results. The results indicate that all schemes
attain a sufficiently high delivery ratio 0.999 and a short maximum playback
delay of 13.5 seconds, which is due to the behavior of peers such that they
fetch chunks from the cloud when the time before playback becomes 2 sec-
onds. Note that 13.5 seconds is shorter than the buffering time which is set to
15 seconds in the simulation. As for the average playback delay, we can make
the following observations. At first, Proactive attains an average delay of 5.45
seconds thanks to the short depth of the delivery tree. However, Frame is
worse than Proactive by 1.37 seconds and Orphan is worse than Frame by 1.47
seconds. The badness of Orphan is due to the behavior of peers so that they
fetch chunks “after” detecting that the time before playback is 2 seconds, and
the badness of Frame is due to the longer depth of the delivery tree and the
longer time taken by cloud peers to download a frame before starting the
forward of the chunks to the children. Figure 4.14 shows the time transition
of the average delay of each scheme.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 100 200 300 400 500 600 700 800 900

D
el

ay
 (

m
se

c)

Time (sec)

Baseline

Orphan

Proactive

Frame

Figure 4.14: Time transition of the average playback delay.

94 CHAPTER 4. Low Cost Cloud-P2P Live Streaming

Table 4.4: Quality of live stream in each scheme.

Metric Baseline Orphan Proactive Frame

Avg. delivery ratio 0.999 0.999 0.999 0.999
Max. playback delay [sec.] 13.561 13.548 13.377 13.447
Avg. playback delay [sec.] 9.944 8.297 5.457 6.826

4.6 CONCLUDING REMARKS

This chapter presented three techniques to reduce the cost of cloud-assistance
in hybrid P2P live streaming while guaranteeing the quality of service. At
first, we exploit the cloud storage service to speed up the match-making
between orphaned peers and peers with a free upload capacity. Then, we
invest a set of cloud peers to proactively fetch chunks from the cloud, where
the number of cloud peers is dynamically adjusted based on the estimated
shortage of the P2P. Finally, to reduce the number of requests handled by
the cloud, we introduce the notion of frame to allow cloud peers to fetch a
collection of chunks using a single request. The simulation results indicate
that the resulting scheme reduces the total amount of data fetched from the
cloud by 42% and the total number of requests issued to the cloud by 66%
while guaranteeing a high streaming quality.

Chapter 5

Conclusions

In this thesis, the P2P live streaming is studied focusing on the quality and
the cost of the service. At first the problem of maximizing the resource
utilization of the participant peers is approached to improve the QoS in pure
P2P. Then, to guarantee the QoS, the hybrid of P2P with the reliable cloud
platform is studied. In addition, the cost of the hybrid scheme is reduced
without affecting the QoS. We achieved that by proposing new schemes and
methods as follows:

Firstly

The maximal of resource utilization is studied in Chapter 3 where a
new scheme is proposed to attain the maximal streaming rate in pure
P2P. That is done by exploiting the peer’s resources (upload capacity)
in the maximal manner. The peers are organized in a multiple-tree
overlay with the aid of a budget-model. In the scheme, peers exchange
the money (upload capacity) by transferring the children to each other.
The newly joined peer will quickly contribute to the distribution pro-
cess, i.e., spend its money. Exchanging the children is done in such
a way that guarantees a high number of peers forwarding exactly one
substream and that the trees have a short hop-count delay.

By delivering a maximal streaming rate with a short delay, we have im-
proved the quality of service in pure P2P. That is verified by simulation
where the result indicates that under the proposed scheme, the overlay
network certainly converges to an efficient structure with a short hop-
count delay. Moreover, it indicates that the proposed scheme gives nice

96 CHAPTER 5. Conclusions

features in the homogeneous case and overcomes conventional schemes
in all simulated scenarios.

Secondly

To guarantee the quality of service, the pure P2P is assisted by the
cloud storage service and the cloud content delivery network (CCDN)
in Chapter 4. The computing instances are avoided to attain a flexible
resource renting which results in a lower cost. The assistance is achieved
by storing the latest streaming chunks in the cloud storage service.
Then, each peer is allowed to fetch missing chunks from the storage
service through edge locations of the CCDN.

Such assistance incurred additional cost comprised of the amount of
data fetched from the CCDN and the number of requests handled by
the cloud. We proposed three techniques to reduce the cost of such a
cloud assistance and evaluate them through extensive simulations. In
the first technique, we exploited the the cloud storage service to reduce
the time for orphaned peers to find a new parent in the delivery tree.
That significantly reduces the system cost while incurs additional re-
quests handled by the storage service. In the second technique, several
internal nodes are selected from each tree to proactively fetch chunks
from the CCDN. The selected node (peer) plays the role of a root for
the corresponding tree, which reduces the height of the delivery tree
and the load of other internal nodes. Finally, the third technique re-
duces the number of requests handled by the CCDN in the second
technique by allowing peers to request a collection of chunks, called
frames, instead of individual chunks.

The simulation results indicate that the proposed method reduces the
total amount of data fetched from the cloud by 42% and the total
number of requests issued to the cloud by 66%. Along with that, due
to the assistance of the cloud, the proposed method is able to guarantee
the quality of live streaming service.

Future Work

In this thesis, the video stream is divided into substreams with an equal
rate, and the upload capacity of a peer is considered as its upload bandwidth

CHAPTER 5. Conclusions 97

divided by that rate. That may result in a waste of some bandwidth in
some peers, i.e., the reminder of the division. This problem is more server
when the substream rate is high like when the stream rate is high or the
number of substreams is low. Such a case is natural nowadays due to the
high video quality expected by the users. Then, to have a better resource
utilization with a fine granularity, it may be interesting to divide the stream
into unequal substream rates. Then, each peer is matched to a substream
rate in such a way to reduce the wasted bandwidth. That incurs additional
complexity though. Another issue is that other metrics like stability of peers,
location, underlying network delay could be considered to refine the proposed
methods.

In the hybrid cloud-P2P systems, the algorithm for estimating the short-
age of the P2P plays a key role in reducing the cost of the cloud assistance. It
will be a healthy direction to extend the presented algorithm to consider ad-
justing its parameters dynamically. Also, it will be a nice idea to consider the
payment per-peer rather than the per provider considered in this thesis. That
means to design a system in which peers cooperate to pay and disseminate
the live stream among each other with the assistance of the cloud. Further-
more, bringing the proposed method to the real work by implementing it will
open the door for more empirical studies on the cost of the cloud-assistance.
Finally, we need to mention that the cost-performance tradeoff is still a hot
topic in the cloud-P2P live streaming.

THIS PAGE INTENTIONALLY LEFT BLANK

Bibliography

[1] YouTube, Statistics. https://www.youtube.com/yt/press/

statistics.html, [accessed: December 2015]

[2] Cisco Systems Inc. Cisco Visual Networking Index: Fore-
cast and Methodology, 2014-2019. http://www.cisco.

com/c/en/us/solutions/collateral/service-provider/

ip-ngn-ip-next-generation-network/white_paper_c11-481360.

pdf [accessed: May 2015]

[3] C. Diot, B. N. Levine, B. Lyles, H. Kassem and D. Balensiefen. De-
ployment issues for the IP multicast service and architecture. IEEE
Network, Vol. 14, No. 1, pages 78 - 88, 2000.

[4] Y. Chu, S. Rao and H. Zhang. A case for end system multicast. Proc.
of ACM SIGMETRICS, pages 1-12, June, 2000.

[5] P. Francis. Yoid: Extending the Multicast Internet Architecture. White
paper http://www.aciri.org/yoid/, 1999.

[6] J. Jannotti, D.K. Gifford, K.L. Johnson, M.F. Kaashoek and J.W.
O’Toole, Jr. Overcast: Reliable Multicasting with an Overlay Network.
Proc. of the 4th Symp. on Operating Systems Design and Implementa-
tion, pages 197-212, October, 2000.

[7] D. Pendarakis, S. Shi, D. Verma and M. Waldvogel. ALMI: An Appli-
cation Level Multicast Infrastructure. Proc. of 3rd USENIX Symp. on
Internet Technologies and Systems, March, 2001.

99

[8] I. Stoica, R. Morris, D. Karger, F. Kaashoek and H. Balakrishan.
Chord: A Scalable peer-to-peer Lookup Service for Internet Applica-
tions. Proc. of ACM SIGCOMM, pages 149-160, August, 2001.

[9] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. Proc. of
IFIP/ACM Middleware, pages 329-350, November, 2001.

[10] S. Ratnasamy, M. Handley, R. Karp and S. Shenker. Application-Level
Multicast Using Content-Addressable Networks. Proc. of the 3rd Int.
COST264 Workshop on Networked Group Communication (NGC’1),
pages 14-29, November, 2001.

[11] S. Zhuang, B. Zhao, A. Joseph, R. Katz and J. Kubiatowicz. Bayeux:
an architecture for scalable and fault-tolerant wide-area data dissem-
ination. ACM Workshop on Network and Operating Systems Support
for Digital Audio and Video (NOSSDAV), pages 11-20, June, 2001.

[12] B.A. Alghazawy and S. Fujita. A scheme for maximal resource utiliza-
tion in peer-to-peer live streaming. International journal of Computer
Networks & Communications, vol. 7, no. 5, pages 13-28, 2015.

[13] C. Wu, B. Li and S. Zhao. Diagnosing Network-wide P2P Live Stream-
ing Inefficiencies. Proc. of IEEE INFOCOM, pages 2731-2735, April,
2009.

[14] R. Sweha, V. Ishakian and A. Bestavros. AngelCast: Cloud-based Peer-
Assisted Live Streaming Using Optimized Multi-Tree Construction.
Proc. of the 3rd Multimedia Systems Conf., pages 191-202, February,
2012.

[15] A. H. Payberah, H. Kavalionak, V. Kumaresan, A. Montresor and S.
Haridi. CLive: Cloud-assisted P2P live streaming. Proc. of the IEEE
Int. Conf. on Peer-to-Peer Computing, pages 79-90, September, 2012.

[16] B.A. Alghazawy and S. Fujita. Low cost cloud-assisted peer to peer live
streaming. KSII Transactions on Internet and Information Systems, to
appear.

[17] B.A. Alghazawy and S. Fujita. Probabilistic packet scheduling scheme
for hybrid pull-push P2P live streaming protocols. Proc. of 2nd Int.
Conf. on Networking and Computing, pages 248-251, December, 2011.

[18] M. Hefeeda, A. Habib, B. Botev, D. Xu and B. Bhargava. PROMISE:
peer-to-peer media streaming using CollectCast. Proc. of 11th ACM
Int. Conf. on Multimedia, pages 45-54, November,2003.

[19] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy and A. Mohr.
Chainsaw: eliminating trees from overlay multicast. Proc. of 4th Int.
Conf. on Peer-to-Peer Systems, pages 127-140, February, 2005.

[20] X. Zhang, J. Liu, B. Li and P. Yum. CoolStreaming/DONet: A Data-
driven Overlay Network for Peer-to-Peer Live Media Streaming. Proc.
of IEEE INFOCOM, pages 2102-2111, March, 2005.

[21] F. Pianese, D. Perino, J. Keller and E. Biersack. Pulse: an adaptive,
incentive based, unstructured p2p live streaming system. IEEE Trans-
action on Multimedia, vol. 9, no. 8, pages 1645-1660, 2007.

[22] J. Ghosha, M. Wang, L. Xu and B. Ramamurthy. Variable neighbor
selection in live peer-to-peer multimedia streaming networks. 5th Int.
Conf. on Broadband Communications, Networks and Systems, pages
344-346, September, 2008.

[23] C. Liang and Y. Guo and Y. Liu. Is Random Scheduling Sufficient
in P2P Video Streaming?. 28th Int. Conf. on Distributed Computing
Systems (ICDCS), pages 53-60, June 2008.

[24] L. Abeni, C. Kiraly and R. Lo Cigno. On the Optimal Scheduling
of Streaming Applications in Unstructured Meshes. Networking 2009,
pages 117-130, 2009.

[25] S. Banerjee, B. Bhattacharjee, C. Kommareddy and G. Varghese. Scal-
able application layer multicast. Proc. of ACM SIGCOMM, pages 205-
220, October, 2002.

[26] D. Tran, K. Hua and T. Do. Zigzag: An efficient peer-to-peer scheme for
media streaming. Proc. of IEEE INFOCOM,, pages 1283-1292, April,
2003.

[27] H. Deshpande, M. Bawa and H. Garcia-Molina. Streaming live media
over peer-to-peer network. Technical Report, Stanford University, 2001.

[28] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron and
A. Singh. SplitStream: High-bandwidth content distribution in coop-
erative environments. ACM Symp. on Operating Systems Principles
(SOSP), pages 298-313, October, 2003.

[29] V. Padmanabhan, H. Wang, P. Chou and K. Sripanidkulchai. Dis-
tributing Streaming Media Content using Cooperative Networking.
ACM Workshop on Network and Operating Systems Support for Digital
Audio and Video (NOSSDAV), pages 177-186, May, 2002.

[30] V. Venkataraman, K. Yoshida and P. Francis. Chunkyspread: Hetero-
geneous unstructured tree-based peer-to-peer multicast. Proc. of 14th
IEEE Int. Conf. on Network Protocols (ICNP), pages 2-11, November,
2006.

[31] A. Magnetto, R. Gaeta, M. Grangetto and M. Sereno. TURINstream:
A Totally pUsh, Robust, and effIcieNt P2P Video Streaming Architec-
ture. IEEE Transactions on Multimedia, vol. 12, no. 8, pages 901-914,
2010.

[32] Q. Huang, H. Jin and X. Liao. P2P Live Streaming with Tree-Mesh
based Hybrid Overlay. Int. Conf. on Parallel Processing Workshops,
pages 55, September, 2007.

[33] T. Kouchi and S. Fujita. How to Tolerate Simultaneous Leave of Peers
in Tree-Structured P2p Live Streaming Systems. Proc. of the Int. Conf.
on Parallel and Distributed Processing Techniques and Applications
(PDPTA), pages 149-155, July, 2014.

[34] F. Wang, Y. Xiong and J. Liu. mTreebone: A Collaborative Tree-Mesh
Overlay Network for Multicast Video Streaming. IEEE Transactions on
Parallel and Distributed Systems, vol. 21, no. 3, pages 379 - 392, 2010.

[35] S. Xie, B. Li, Y. Keung and X. Zhang. Coolstreaming: Design, Theory,
and Practice. IEEE Transactions on Multimedia, Vol. 9, No. 8, pages
1661-1671, 2007.

[36] M. Zhang, Q. Zhang, L. Sun and S. Yang. Understanding the Power
of Pull-Based Streaming Protocol: Can We Do Better? IEEE Journal
on Selected Areas in Communications, vol. 25, no. 9, pages 1678-1694,
December, 2007.

[37] C.Y. Keong, P.K. Hoong and C.-Y. Ting. Efficient hybrid push-pull
based P2P media streaming system. IEEE 17th Int. Conf. on Parallel
and Distributed Systems, pages 735-740, December, 2011.

[38] A. Ouali, B. Kerherve and B. Jaumard. A packet-loss resilient push
scheduling for mesh overlays. Proc. of IEEE Consumer Communica-
tions and Networking Conference (CCNC), pages 611-615, January,
2011.

[39] L. Bracciale, F. Lo Piccolo, D. Luzzi, S. Salsano, G. Bianchi and
N.Blefari-Melazzi. A push-based scheduling algorithm for large scale
P2P live streaming. Proc. of 4th Int. Telecommunication Networking
Workshop on QoS in Multiservice IP Networks, pages 1-7, February,
2008.

[40] N. Liu, J. Yang, H. Cui, G. Zheng and H. Chen. Efficient push-based
packet scheduling for Peer-to-Peer live streaming. Cluster Computing,
vol. 16, no. 4, pages 767-777, December, 2013.

[41] A. Payberah, J. Dowling, F. Rahimian and H. Haridi. Sepidar: Incen-
tivized market-based p2p live-streaming on the gradient overlay net-
work. Proc. of IEEE International Symposium on Multimedia, pages
1-8, December, 2010.

[42] G. Tan and S. Jarvis. A payment-based incentive and service differenti-
ation scheme for peer-to-peer streaming broadcast. IEEE Transaction
on Parallel and Distributed Systems, vol. 19, no. 7, pages 940-953, 2008.

[43] S. Kanda and S. Fujita. Incentive Scheme for P2p Live Streaming Sys-
tems Being Aware of the Upload Capability of the Participants. Proc.
of the Int. Conf. on Parallel and Distributed Processing Techniques and
Applications (PDPTA), pages 91-97, July, 2014.

[44] M. Wang and B. Li. R2: Random Push with Random Network Coding
in Live Peer-to-Peer Streaming. IEEE Journal on Selected Areas in
Communications, vol. 25, no. 9, pages 1655 - 1666, 2007.

[45] C. Feng and B. Li. On large-scale peer-to-peer streaming systems with
network coding. Proc. of 16th ACM int. conf. on Multimedia, pages
269-278, October, 2008.

[46] Y. Liu. On the Minimum Delay Peer-to-Peer Video Streaming: how
Realtime can it be?. Proc. of the 15th int. conf. on Multimedia, pages
127-136, September, 2007.

[47] G. Bianchi, N.B. Melazzi, L. Bracciale, F. Lo Piccolo and S. Salsano.
Streamline: An Optimal Distribution Algorithm for Peer-to-Peer Real-
Time Streaming. IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 21, no. 6, pages 857-871, 2010.

[48] S. Fujita. Optimal Serial Broadcast of Successive Chunks. Theoretical
Computer Science, vol. 574, pages 3-9, 2015.

[49] R. Kumar, Y. Liu and K. W. Ross. Stochastic Fluid Theory for P2P
Streaming Systems. Proc. of IEEE INFOCOM, pages 919-927, May,
2007.

[50] Y. Guo, C. Liang and Y. Liu. AQCS: Adaptive Queue-Based Chunk
Scheduling for P2P Live Streaming. Proc. of IFIP Networking, pages
433-444, May, 2008.

[51] L. Massoulie, A. Twig, C. Gkantsidis and P. Rodriguez. Randomized
decentralized broadcasting algorithm. Proc. of IEEE INFOCOM, pages
1073-1081, May, 2007.

[52] J. Li, and P. A. Chou and C. Zhang. Mutualcast: an efficient mech-
anism for content distributionin a p2p network. Microsoft Research,
MSR-TR-2004 100, 2004.

[53] T. Nguyen, K. Kolazhi, R. Kamath, S. Cheung and D. Tran. Efficient
Multimedia Distribution in Source Constraint Networks. IEEE Trans-
actions on Multimedia, vol. 10, no. 3, pages 532-537, 2008.

[54] S. Liu, R. Zhang-Shen, W. Jiang, J. Rexford and M. Chiang. Per-
formance bounds for peer-assisted live streaming. Proc. of ACM SIG-
METRICS, pages 313-324, June, 2008.

[55] S. Liu, M. Chen, S. Sengupta, M. Chiang, J. Li and P. A. Chou.
P2P Streaming Capacity under Node Degree Bound. Proc. of 30th
Int. Conf. on Distributed Computing Systems (ICDCS), pages 587-598,
June, 2010.

[56] S. Sengupta, S. Liu, M. Chen, M. Chiang, J. Li and P. A. Chou. Peer-to-
Peer Streaming Capacity. IEEE Transactions on Information Theory,
vol. 57, no. 8, pages 5072-5087, 2011.

[57] S. Zhang, Z. Shao, M. Chen and L. Jiang. Optimal Distributed P2P
Streaming under Node Degree Bounds. IEEE/ACM Transactions on
Networking, vol. 22, no. 3, pages 717-730, 2014.

[58] M. S. Raheel, R. Raad and C. Ritz. Achieving maximum utilization
of peer’s upload capacity in p2p networks using SVC. Peer-to-Peer
Networking and Applications, online, 2015.

[59] D. Xu, S.S. Kulkarni, C. Rosenberg and H.-K. Chai. Analysis of a CDN-
P2P hybrid architecture for cost-effective streaming media distribution.
Multimedia Systems, vol. 11, no. 4, pages 383-399, 2006.

[60] Z. Chen, H. Yin, C. Lin, X. Liu and Y. Chen. Towards a trustworthy
and controllable peer-server-peer media streaming: an analytical study
and an industrial perspective. Proc. of IEEE GLOBECOM, pages 2086-
2090, November, 2007.

[61] X. Liu, H. Yin, C. Lin, Y. Liu, Z. Chen and X. Xiao. Performance
analysis and industrial practice of peer-assisted content distribution
network for large scale live video streaming. Proc. of the 22nd Int.
Conf. on Advanced Information Networking and Applications, pages
568-574, March, 2008.

[62] H. Yin, X. Liu, T. Zhan, V. Sekar, F. Qiu, C. Lin, H. Zhang and B.
Li. Design and Deployment of a Hybrid CDN-P2P System for Live
Video Streaming: Experiences with LiveSky. Proc. of the 17th ACM
Int. Conf. on Multimedia, pages 25-34, October, 2009.

[63] Z.-H. Lv, L.-J. Chen, J. Wu, D. Deng, S.-J. Huang and Y. Huang.
PROSE: Proactive, Selective CDN Participation for P2P Streaming.
Journal of Computer Science and Technology, vol. 28, no. 3, pages
540-552, May, 2013.

[64] Z. Lu, Y. Wang and Y.R. Yang, An Analysis and Comparison of CDN-
P2P-hybrid Content Delivery System and Model. Journal of Commu-
nications, vol. 7, no. 3, March, 2012.

[65] E. Veloso, V. Almeida, W. Meira, A. Bestavros and S. Jin. A Hierarchi-
cal Characterization of a Live Streaming Media Workload IEEE/ACM
Transactions on Networking,, vol. 14, no. 1, pages 133-146, 2006.

[66] B. Li, G.Y. Keung, S. Xie, F. Liu, Y. Sun and H. Yin. An Empirical
Study of Flash Crowd Dynamics in a P2P-Based Live Video Streaming
System. Proc. of IEEE GLOBECOM, pages 1-5, December, 2008.

[67] A. Montresor and L. Abeni. Cloudy Weather for P2P, with a Chance
of Gossip. Proc. of the IEEE Int. Conf. on Peer-to-Peer Computing,
pages 250-259, September, 2011.

[68] P. Michiardi, D. Carra, F. Albanese and A. Bestavros. Peer-assisted
content distribution on a budget. Computer Networks, vol. 56, no. 7,
pages 2038-2048, May, 2012.

[69] X. Jin and Y.-K. Kwok. Cloud Assisted P2P Media Streaming for
Bandwidth Constrained Mobile Subscribers. Proc. of 16th IEEE Int.
Conf. on Parallel and Distributed Systems (ICPADS), pages 800-805,
December, 2010.

[70] X. Wang, T.T. Kwon, Y. Choi, H. Wang and J. Liu. Cloud-assisted
adaptive video streaming and social-aware video prefetching for mobile
users. IEEE Wireless Communications, vol. 20, no. 3, pages 72-79,
June, 2013.

[71] H. Li, L. Zhong, J. Liu, B. Li and K. Xu. Cost-Effective Partial Migra-
tion of VoD Services to Content Clouds. Proc. of IEEE Int. Conf. on
Cloud Computing (CLOUD), pages 203-210, July, 2011.

[72] V. Rocha, F. Kon, R. Cobe and R.a Wassermann. A hybrid cloud-
P2P architecture for multimedia information retrieval on VoD services.
Computing, online, September, 2014.

[73] Z. Huang, C. Mei, L.E. Li and T. Woo. CloudStream: delivering high
quality streaming videos through a cloud-based SVC proxy. Proc. of
IEEE INFOCOM, pages 201-205, April, 2011.

[74] M.M. Hassan, B. Song, A. Almogren, M.S. Hossain, A. Alamri, M.
Alnuem, M.M. Monowar and M.A. Hossain. Efficient Virtual Machine
Resource Management for Media Cloud Computing. KSII Transactions
on Internet and Information Systems, vol. 8, no. 5, pages 1567-1587,
May, 2014.

[75] L. Zhou and H. Wang. Toward Blind Scheduling in Mobile Media
Cloud: Fairness, Simplicity, and Asymptotic Optimality. IEEE Trans-
action on Multimedia, vol. 15, no. 4, pages 735-746, June, 2013.

[76] L. Zhou, Z. Yang, J.J.P.C. Rodrigues and M. Guizani. Exploring blind
online scheduling for mobile cloud multimedia services. IEEE Wireless
Communications, vol. 20, no. 3, pages 54-61, June, 2013.

[77] Y. Wu, C. Wu, B. Li, X. Qiu and F.C.M. Lau. Cloudmedia: When
cloud on demand meets video on demand. Proc. of the Int. Conf. on
Distributed Computing Systems (ICDCS), pages 268-277, June, 2011.

[78] D. Niu, H. Xu, B. Li and S. Zhao. Quality-assured cloud bandwidth
auto-scaling for video-on-demand applications. Proc. of IEEE INFO-
COM, pages 460-468, March, 2012.

[79] J. He, Y. Wen, J. Huang and D. Wu. On the cost-qoe tradeoff for
cloud-based video streaming under amazon ec2’s pricing models. IEEE
Transactions on Circuits and Systems for Video Technology, vol. 24,
no. 4, pages 669-680, April, 2014.

[80] F. Wang, J. Liu and M. Chen. CALMS: Cloud-assisted live media
streaming for globalized demands with time/region diversities. Proc.
of IEEE INFOCOM, pages 199-207, March, 2012.

[81] W. Gu, X. Zhang, B. Gong, W. Zhang and L. Wang. VMCAST: A VM-
Assisted Stability Enhancing Solution for Tree-Based Overlay Multi-
cast. PLoS ONE, vol. 10, no. 11, online, November, 2015.

[82] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron SCRIBE: A
large-scale and decentralized application-level multicast infrastructure.
IEEE Journal on Selected Areas in Communications, vol. 20 no. 8,
pages 1489-1499, October, 2002.

[83] L. Bracciale, F. Lo Piccolo, D. Luzzi and S. Salsano. OPSS: an overlay
peer-to-peer streaming simulator for large-scale networks. SIGMET-
RICS Performance Evaluation Review, vol. 35, no. 3, pages 25-27, De-
cember, 2007.

[84] S. Saroiu, K. P. Gummadi and S. D. Gribble. A Measurement Study of
Peer-to-Peer File Sharing Systems. Proc. SPIE, vol. 4673, pages 156-
170, 2001.

[85] Meng Zhang. Peer to Peer streaming simulator. http://media.cs.
tsinghua.edu.cn/~zhangm/ [accessed: May 2015].

[86] Amazon CloudFront pricing. http://aws.amazon.com/cloudfront/
pricing [accessed: May 2015].

[87] Amazon S3 Pricing. http://aws.amazon.com/s3/pricing/ [accessed:
May 2015].

[88] X. Hei, C. Liang, J. Liang, Y. Liu and K.W. Ross. A Measurement
Study of a Large-Scale P2P IPTV System. IEEE Transactions on Mul-
timedia, vol. 9, no. 8, pages 1672-1687, December, 2007.

[89] Meridian project. Meridian node to node latency matrix (2500x2500).
http://www.cs.cornell.edu/People/egs/meridian/data.php [ac-
cessed May: 2015].

[90] Z. Liu, Y. Shen, K.W. Ross, S.S. Panwar and Y. Wang. Substream
Trading: Towards an Open P2P Live Streaming System. Proc. of the
IEEE Int. Conf. on Network Protocols, pages 94-103, October, 2008.

[91] B. Li, S. Xie, G.Y. Keung, J. Liu, I. Stoica, H. Zhang, and X. Zhang.
An Empirical Study of the Coolstreaming+ System. IEEE Journal on
Selected Areas in Communications, vol. 25, no. 9, pages 1627-1639,
December, 2007.

