Doctoral Thesis

Analyses, Dynamics and Fates of Reactive Oxygen Species **(ROS) in Natural Waters: Emphasis on Photochemical Reactions**

(Summary)

Adebanjo Jacob ANIFOWOSE Graduate School of Biosphere Science Hiroshima University September 2016

学 位 論 文 の 要 旨

論文題目 Analyses, Dynamics and Fates of Reactive Oxygen Species (ROS) in Natural Waters: Emphasis on Photochemical Reactions.

(天然水中の活性酸素種の測定、動態、運命——特に光化学反応に関して)

 広島大学大学院生物圏科学研究科 環境循環系制御学専攻 学生番号 D130284 氏 名 Adebanjo Jacob ANIFOWOSE

A brief introduction of the reactive oxygen species (ROS) – hydrogen peroxide (H_2O_2) , hydroxyl radical (\cdot OH), nitric oxide (NO \cdot) and superoxide radical (O₂ \cdot) – measured in some natural waters in this study was reported in chapter 1. H_2O_2 and $O_2^{\bullet-}$ mediate in redox chemistry of metals (Fe, Cu, Mn) and other chemical species in natural waters, thus making them important targets of many environmental studies. Moreover, O_2 ^{\cdot} is a precursor of H₂O₂. Similarly, \cdot OH is a potent oxidizing agent capable of degrading recalcitrant organic pollutants in natural waters. NO \cdot is photoformed in natural waters containing nitrite and it could be a potential sink of O_2 ^{\cdot} due to their high reaction rate. The reaction of oxygen with photo-irradiated dissolved organic matter (DOM) in natural waters produces O_2 ^{*}. However, measurement of this important ROS (O_2^{\bullet}) has been a perennial challenge due to lack of suitable analytical technique. This and other environmental issues relating to the ROS in natural waters were addressed in this study.

Chapter 2 presents a report on the monthly NO• measurements in the Kurose River at Higashi-Hiroshima city. Results show that $NO⁺$ photoformation rate ranged from 0.01 to 35.4 (\times 10^{-10} M s⁻¹) with steady-state concentrations in the range of 0.02–68.5 (\times 10⁻¹¹ M). There was a strong correlation (r^2 = 0.95) between NO[•] photoformation rate and the nitrite concentration in the river showing NO_2^- as a major NO^* precursor. On the average, 98% of the photoformed NO^{\cdot} came from river nitrite. The NO \cdot lifetime ranged from 0.05 to 1.3 s in the river and remained fairly stable in the upstream and downstream. The •OH radical, which was quantified during the study, had a photoformation rate of 0.01 to 13.4 (\times 10⁻¹⁰ M s⁻¹) and a steady-state concentration of 0.04 to 119 (\times 10⁻¹⁶ M) with a lifetime that ranged from 0.3 to 23 µs. •OH only accounted for \leq 0.0011% of the total NO \cdot scavenged, showing that it was not a major sink for river NO \cdot .

In chapter 3, monthly measurements of H_2O_2 and \cdot OH in rainwater and the Kurose River were carried out in 2013. H₂O₂ concentrations in the rainwater and river were highly season-dependent. $H₂O₂$ concentrations in the rainwater varied from the lowest 0.03 µM in winter to the highest 14.3 µM in spring. In the year, estimated wet deposition of H_2O_2 in Higashi-Hiroshima city was 7.5 mmol m⁻² y⁻¹. In the Kurose River, H₂O₂ concentrations of 0.06–0.37 µM were measured. The lowest and highest concentrations were found in the winter and summer, respectively. There was good correlation between solar intensity and H_2O_2 concentrations measured in the rainwater (r = 0.79, $p < 0.01$ and the river $(r = 0.81, p < 0.01)$, which indicate photoproduction as one of the major H_2O_2 sources in the natural waters. The \cdot OH was 1 order of magnitude photoformed in the river $(\sim 10^{-10} \text{ M s}^{-1})$ than in the rainwater. H₂O₂ and the unknown (which probably include photo-Fenton reaction) were predominantly •OH photochemical sources in the rainwater, accounting for 0.2–48%, 43–84%, respectively. In contrast, NO_2 ^{$-$} was the major $·OH$ source (49–80%) in the Kurose River, while H_2O_2 contribution was negligible (<1%).

In chapter 4, daytime flux of NO^{\cdot} at the Seto Inland Sea-atmosphere boundary was measured in

September, 2013 and June, 2014. The average daytime NO• concentration measured in the sea surface was 1.9×10^{-11} mol L⁻¹ (~9.87 × 10⁻⁹ atm), while that measured over the sea was 5.2×10^{-10} atm. Using an average wind speed of 3.2 m s^{-1} measured over the Seto Inland Sea during the cruise, a daytime NO^{\cdot} efflux of 0.22 pmol m⁻² s⁻¹ from the sea to the atmosphere was estimated. Assuming 8 h of solar intensity per day, about 1.54×10^6 g NO y⁻¹ efflux of NO[•] from the 23,000 km2 Seto inland Sea surface was determined.

In chapter 5, a method was developed for the measurement of O_2 ^{\cdot} in sunlit seawater using a fluorogenic probe – 3',6'-(diphenylphosphinyl)fluorescein (PF-1). Reaction of the photoformed O_2 . with PF-1 produced fluorescein, which was separated by isocratic HPLC and measured using a fluorescence detector at 490/513 nm (excitation/emission wavelength). The reaction rate constant of the probe with O_2 ⁻ was pH-dependent: $(3.2-23.5) \times 10^7$ M⁻¹ s⁻¹ at pH_{TOT} 7.65–8.50. The detection limit of O_2 ⁻ photoformation rate was 1.78 pM s⁻¹. The method produced results that were consistent with those obtained in literatures when applied to ten (10) seawater samples from the Seto Inland Sea. The O_2 ⁻ photoformation rates were 3.1–8.5 nM s⁻¹, with steady-state concentrations ranging $(0.06-0.3) \times 10^{-10}$ M. The method requires no technical sample preparation and can analyze large number of samples.

In chapter 6, O_2 ^{*}, \cdot OH, NO \cdot , and H₂O₂, in surface seawater obtained from the Seto Inland Sea were determined by concerted photochemical measurements. O_2 ^{\cdot} was photoformed at rates (range of 10⁻¹⁰ M s⁻¹) 1–2 orders of magnitude higher than \cdot OH and NO \cdot . About 27% of the O₂ \cdot was transformed to H₂O₂. About 3% of the O₂^{\cdot} photoformed was consumed by NO^{\cdot}, while 15–21% of the NO• was consumed by the O_2 ⁻. Therefore, O_2 ⁻ could be a major sink for NO• in the sea. Estimated consumptions of O_2 ^{\cdot} by the \cdot OH and due to bimolecular dismutation were negligible. In the seawater, (+)-catechin- and humic-like fluorescent dissolved organic matter contributed $3.2 - 4.1\%$ and $3.6 - 4.8\%$ of the O_2 ⁻ photoformation rates, respectively.

Chapter 7 gives a general discussion and major conclusions of this study. The four ROS in this study are ubiquitous in sunlit natural waters. Nitrite is a major photochemical source of NO• and \cdot OH in natural waters. The O₂ \cdot concentration (~10⁻¹¹ M) in the Seto Inland Sea would be sufficient for speciation of the resident metals and other redox-active compounds.