Doctoral Thesis

Analyses, Dynamics and Fates of Reactive Oxygen Species (ROS) in Natural Waters: Emphasis on Photochemical Reactions

(Summary)

Adebanjo Jacob ANIFOWOSE Graduate School of Biosphere Science Hiroshima University September 2016 学 位 論 文 \mathcal{O} 要 旨

Analyses, Dynamics and Fates of Reactive Oxygen Species (ROS) in Natural Waters: 論文題目 **Emphasis on Photochemical Reactions.**

(天然水中の活性酸素種の測定、動態、運命――特に光化学反応に関して)

広島大学大学院生物圏科学研究科 環境循環系制御学専攻 学生番号 D130284 氏 名 Adebanjo Jacob ANIFOWOSE

A brief introduction of the reactive oxygen species (ROS) – hydrogen peroxide (H_2O_2), hydroxyl radical (\cdot OH), nitric oxide (NO \cdot) and superoxide radical (O₂ \cdot $\overline{})$ – measured in some natural waters in this study was reported in chapter 1. H_2O_2 and $O_2^{\bullet-}$ mediate in redox chemistry of metals (Fe, Cu, Mn) and other chemical species in natural waters, thus making them important targets of many environmental studies. Moreover, O_2^{-} is a precursor of H_2O_2 . Similarly, O_1 is a potent oxidizing agent capable of degrading recalcitrant organic pollutants in natural waters. NO' is photoformed in natural waters containing nitrite and it could be a potential sink of $O_2^{\bullet-}$ due to their high reaction rate. The reaction of oxygen with photo-irradiated dissolved organic matter (DOM) in natural waters produces $O_2^{\bullet-}$. However, measurement of this important ROS ($O_2^{\bullet-}$) has been a perennial challenge due to lack of suitable analytical technique. This and other environmental issues relating to the ROS in natural waters were addressed in this study.

Chapter 2 presents a report on the monthly NO[•] measurements in the Kurose River at Higashi-Hiroshima city. Results show that NO[•] photoformation rate ranged from 0.01 to 35.4 (× 10^{-10} M s⁻¹) with steady-state concentrations in the range of 0.02–68.5 (× 10^{-11} M). There was a strong correlation ($r^2 = 0.95$) between NO[•] photoformation rate and the nitrite concentration in the river showing NO_2^- as a major NO[•] precursor. On the average, 98% of the photoformed NO[•] came from river nitrite. The NO[•] lifetime ranged from 0.05 to 1.3 s in the river and remained fairly stable in the upstream and downstream. The 'OH radical, which was quantified during the study, had a photoformation rate of 0.01 to $13.4 (\times 10^{-10} \text{ M s}^{-1})$ and a steady-state concentration of 0.04 to 119 (× 10⁻¹⁶ M) with a lifetime that ranged from 0.3 to 23 μ s. OH only accounted for \leq 0.0011% of the total NO[•] scavenged, showing that it was not a major sink for river NO[•].

In chapter 3, monthly measurements of H_2O_2 and OH in rainwater and the Kurose River were carried out in 2013. H₂O₂ concentrations in the rainwater and river were highly season-dependent. H_2O_2 concentrations in the rainwater varied from the lowest 0.03 μ M in winter to the highest 14.3 μ M in spring. In the year, estimated wet deposition of H₂O₂ in Higashi-Hiroshima city was 7.5 mmol m⁻² y⁻¹. In the Kurose River, H_2O_2 concentrations of 0.06–0.37 μM were measured. The lowest and highest concentrations were found in the winter and summer, respectively. There was good correlation between solar intensity and H_2O_2 concentrations measured in the rainwater (r = 0.79, p < 0.01) and the river (r = 0.81, p < 0.01), which indicate photoproduction as one of the major H_2O_2 sources in the natural waters. The 'OH was 1 order of magnitude photoformed in the river (~ 10^{-10} M s⁻¹) than in the rainwater. H_2O_2 and the unknown (which probably include photo-Fenton reaction) were predominantly 'OH photochemical sources in the rainwater, accounting for 0.2-48%, 43-84%, respectively. In contrast, NO₂ was the major 'OH source (49–80%) in the Kurose River, while H_2O_2 contribution was negligible (<1%).

In chapter 4, daytime flux of NO[•] at the Seto Inland Sea⁻atmosphere boundary was measured in ii

別紙4

September, 2013 and June, 2014. The average daytime NO[•] concentration measured in the sea surface was 1.9×10^{-11} mol L⁻¹ (~9.87 × 10⁻⁹ atm), while that measured over the sea was 5.2×10^{-10} atm. Using an average wind speed of 3.2 m s^{-1} measured over the Seto Inland Sea during the cruise, a daytime NO[•] efflux of 0.22 pmol m⁻² s⁻¹ from the sea to the atmosphere was estimated. Assuming 8 h of solar intensity per day, about 1.54×10^6 g NO y⁻¹ efflux of NO[•] from the 23,000 km² Seto inland Sea surface was determined.

In chapter 5, a method was developed for the measurement of $O_2^{\bullet-}$ in sunlit seawater using a fluorogenic probe – 3',6'-(diphenylphosphinyl)fluorescein (PF-1). Reaction of the photoformed $O_2^{\bullet-}$ with PF-1 produced fluorescein, which was separated by isocratic HPLC and measured using a fluorescence detector at 490/513 nm (excitation/emission wavelength). The reaction rate constant of the probe with $O_2^{\bullet-}$ was pH-dependent: $(3.2-23.5) \times 10^7 \text{ M}^{\cdot1} \text{ s}^{\cdot1}$ at pH_{TOT} 7.65–8.50. The detection limit of $O_2^{\bullet-}$ photoformation rate was 1.78 pM s⁻¹. The method produced results that were consistent with those obtained in literatures when applied to ten (10) seawater samples from the Seto Inland Sea. The $O_2^{\bullet-}$ photoformation rates were 3.1–8.5 nM s⁻¹, with steady-state concentrations ranging $(0.06-0.3) \times 10^{-10} \text{ M}$. The method requires no technical sample preparation and can analyze large number of samples.

In chapter 6, $O_2^{\bullet, \bullet}$, $\bullet OH$, NO[•], and H₂O₂, in surface seawater obtained from the Seto Inland Sea were determined by concerted photochemical measurements. $O_2^{\bullet, \bullet}$ was photoformed at rates (range of 10^{-10} M s⁻¹) 1–2 orders of magnitude higher than $\bullet OH$ and NO[•]. About 27% of the $O_2^{\bullet, \bullet}$ was transformed to H₂O₂. About 3% of the $O_2^{\bullet, \bullet}$ photoformed was consumed by NO[•], while 15–21% of the NO[•] was consumed by the $O_2^{\bullet, \bullet}$. Therefore, $O_2^{\bullet, \bullet}$ could be a major sink for NO[•] in the sea. Estimated consumptions of $O_2^{\bullet, \bullet}$ by the $\bullet OH$ and due to bimolecular dismutation were negligible. In the seawater, (+)-catechin- and humic-like fluorescent dissolved organic matter contributed $3.2^{-4.1\%}$ and $3.6^{-4.8\%}$ of the $O_2^{\bullet, \bullet}$ photoformation rates, respectively.

Chapter 7 gives a general discussion and major conclusions of this study. The four ROS in this study are ubiquitous in sunlit natural waters. Nitrite is a major photochemical source of NO[•] and $^{\circ}OH$ in natural waters. The $O_2^{\bullet-}$ concentration ($^{\sim}10^{-11}$ M) in the Seto Inland Sea would be sufficient for speciation of the resident metals and other redox-active compounds.